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Abstract. The field of “Data Assimilation ” has been driven by applications
from the geosciences where complex mathematical models are interfaced with
observational data in order to improve model forecasts. Mathematically, data
assimilation is closely related to filtering and smoothing on the one hand and
inverse problems and statistical inference on the other. Key challenges of
data assimilation arise from the high-dimensionality of the underlying models,
combined with systematic spatio-temporal model errors, pure model uncer-
tainty quantification and relatively sparse observation networks. Advances
in the field of data assimilation will require combination of a broad range
of mathematical techniques from differential equations, statistics, machine
learning, probability, scientific computing and mathematical modeling, to-
gether with insights from practitioners in the field. The workshop brought
together a collection of scientists representing this broad spectrum of research

strands.
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Introduction by the Organisers

The workshop Mathematical and Algorithmic Aspects of Data Assimilation in the
Geosciences, organized by Andreas Griewank (Berlin), Sebastian Reich (Potsdam),
Ian Roulstone (Surrey), and Andrew Stuart (Warwick) was held 2 October – 8 Oc-
tober 2016. The meeting was attended by nearly 50 participants representing a
broad range of mathematical subject areas as well as applications of data assimi-
lation in the geosciences.
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A total of 29 talks were presented during the workshop. The talks were selected
such as to cover novel mathematical developments on, e.g., particle filters (Dan
Crisan, Peter Jan van Leeuwen, Nikolas Kantas), hybrid filter algorithms (Hans-
Rudolf Künsch, Roland Potthast), the analysis of sequential filter algorithms in
high-dimensions/small sample sizes (Chris Snyder, Daniel Sanz Alonso, Matthias
Morzfeld), theoretical and practical aspects of the ensemble Kalman filter (Lars
Nerger, Tijana Janjic, Xin Tong, Marc Bocquet, Claudia Schillings) parameter es-
timation and model comparison (Dean Oliver, Alberto Carrassi, Manfred Opper)
multi-level Monte Carlo filtering (Kody Law, Colin Cotter), statistical inference
(Youssef Marzouk, Illia Horrenko, John Harlim), variational techniques (Olivier
Talagrand, Jochen Bröcker, Henry Abarbanel, Manfred Opper, Nancy Nichols),
multi-scale dynamics (Rupert Klein), and Lagrangian data assimilation (John
MacLean, Amit Apte) on the one hand and practical advances and challenges
arising from the geosciences (Chris Snyder, Roland Potthast, Olivier Talagrand,
Nancy Nichols, Lars Nerger, Serge Gratton, Peter Jan van Leeuwen, Hans-Rudolf
Künsch) on the other. A poster session was held on Tuesday evening which gave
the attending PhD students and postdocs the opportunity to present and discuss
their work. The first prize for the best poster went to Yvonne Ruckstuhl.

Throughout the workshop a number of spontaneous discussion groups arose
triggered by the many different facets of data assimilation presented during the
talks. The following discussion groups in the central lecture hall of the MFO on
Monday and Wednesday evening, respectively, shall be mentioned in particular:
(i) typical sets and their relevance to particle filters in high dimensions (inspired
by the talk by Peter Jan van Leeuwen) and (ii) Localization, adaptivity and cross-
validation (inspired by the talk of Hans Rudolf Künsch). These discussions reflect
the actuality and broad scientific appeal of data assimilation.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Particle filters in high dimensions

Chris Snyder

Simple examples that are independent and identically distributed in each degree
of freedom illustrate basic difficulties in particle filters for high-dimensional sys-
tems. These examples, together with asymptotic results valid when the variance
of the unnormalized weights is large and the log likelihood function has an approx-
imately Gaussian distribution, demonstrate the need for sample sizes that grow
exponentially with that variance (which is proportional to the system dimension
in the simple examples). An approximated, spectral model of turbulence, follow-
ing Lorenz (1969), shows that the large-variance asymptotics are relevant as the
number of observations increases, except when the turbulent flow has a kinetic
energy spectrum with a k−3 power law.

Adapting the Ensemble Kalman Particle Filter to Large Scale Data
Assimilation

Hans Rudolf Künsch

(joint work with Sylvain Robert)

The Ensemble Kalman filter (EnKF) is used in operational data assimilation
schemes due to its robustness in high dimensions. It is however valid only for
Gaussian background distributions. Particle filters (PF) can deal with non-Gauss-
ian background distributions, but become degenerate in high dimensions. The
Ensemble Kalman Particle Filter (EnKPF) of Frei and Künsch ([1]) provides a con-
tinuous interpolation between these two methods through a parameter γ ∈ [0, 1]
and thus has the potential to combine their strengths. In this talk we discuss
the modifications necessary to apply the EnKPF to a near operational regional
weather prediction system over Europe. This involves finding a transform version
of the filter in ensemble space, reducing discontinuities that stem from a localisa-
tion of the filter and choosing the parameter γ . We also show preliminary results
from a numerical experiment with cycled assimilation over several days in a period
of intense convective activity.

References

[1] M. Frei, H. R. Künsch, Bridging the ensemble Kalman and particle filters Biometrika 100
(2013), 781–800.
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On Ensemble and Particle Filters for Large-Scale Data Assimilation
and Inverse Problems

Roland Potthast

In almost all operational centres for numerical weather prediction around the world
ensemble data assimilation techniques are of rapidly growing importance. Ensem-
ble techniques allow to describe and forecast uncertainty of the analysis, but they
also improve the assimilation result itself, by allowing estimates of the covariance
or, more general, the prior and posterior probability distribution of atmospheric
states.

In our talk, we will first give a survey about recent activities of the German
Meteorological Service DWD, who is using an Ensemble Kalman Filter both for its
new global ICON model as well as for the convective scale high-resolution model
COSMO-DE. To be more precise, for the global model a hybrid variational en-
semble Kalman filter EnVAR has been developed. We survey the setup of its
Ensemble Kalman Filter component, which is based on the LETKF of Hunt, with
a range of further features such as relaxation to prior perturbations or random
perturbations. The system is run operational since January 2016 and shows scores
comparable to state-of-the-art 4D-VAR systems as run by many international cen-
ters today. Ensemble data assimilation also provides initial states for ensemble
prediction (EPS). We describe ICON EPS and demostrate the high quality of the
system.

In the second part of the talk, we present recent work on the further devel-
opment of the ensemble data assimilation towards a particle filter for large-scale
atmospheric systems, which keeps the advantages of the LETKF, but overcomes
some of its limitations. We describe a Localized Markov Chain Particle Filter
(LMCPF), present its mathematical foundation. A localized particle filter has
been implemented for the global ICON model of DWD. We show results of a case
study of one week global assimilation for a hybrid particle filter variational as-
similation in a quasi-operational setup, showing the huge potential of the method
which already in its first simple implementation can achieve better or comparable
scores to the operational EnVAR system.

The seamless multilevel ensemble transform filter

Colin Cotter

(joint work with Alistair Gregory, Sebastian Reich)

We report on recent work developing a multilevel ensemble transform filter. This
work combines two ideas together, the multilevel Monte Carlo method [1] which
has now been applied in many different application areas, and the idea of using
optimal transportation to transform between ensembles, which is the foundation
of the ensemble transform particle filter (ETPF) described in [2], [3]. The basic
idea behind the multilevel Monte Carlo method is to reduce the cost of a Monte
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Carlo estimator based on some underlying discretisation method by blending to-
gether results from a hierarchy of discretisation resolutions in time and/or space.
This is done by using a telescoping sum formula, replacing the high resolution
Monte Carlo estimate by a low resolution estimate, combined with a series of dif-
ference estimators that estimate the difference in the expected value between two
different levels of the discretisation hierarchy. If the number of samples at each
level is chosen correctly, there is the possibility to reduce the cost of estimating a
statistic with mean-square-error bound of ǫ2 from O(ǫ−3) for regular Monte Carlo
down to O(ǫ−2). As described in [1], this reduction is possible, provided that the
variance of the difference estimators decays sufficiently quickly with resolution.
This requirement depends on β > γ, where the variance of the difference estima-
tors scales with model resolution as O(hβ) and the cost of the model scales as
O(h−γ), where h is the model resolution parameter (e.g. the timestep or spatial
cell size). This provides a good framework for proving optimal multilevel Monte
Carlo algorithms in different application areas. Since ensemble data assimilation
algorithms are a form of Monte Carlo method, it is natural to try to build multi-
level ensemble data assimilation algorithms, and some other groups have also been
working on this [4], [5]. For particle filters, the idea is simple: maintain a large
ensemble at the coarsest resolution, together with correlated pairs of ensembles at
two consecutive resolutions that form the difference estimators. The correlation
is maintained by using the same noise realisations (appropriately coarse-grained)
for each pair of samples. The telescoping sum estimator is then used to calculate
sample statistics from the filter. The main challenge is finding a way to avoid
losing correlation after the filter resampling stage. This leads to the development
of coupled resamplers. Since the ETPF already makes use of linear programming
to apply the Bayesian ensemble transform to in- corporate new observed data, we
thought it would be interesting to experiment with using linear programming to
maximise correlation between the pairs of ensembles in the difference estimators.
In the algorithm described in [6], we used the ETPF procedure to independently
update the two ensembles, and then solved an assignment problem to repair the
ensemble members such that the covariance is maximised. For a one dimensional
state space, this assignment problem can be solved by a sorting algorithm in
O(N) time, where N is the ensemble size. For dimensions greater than one, we
used a direct linear programming algorithm that solves the assignment problem
in O(N3logN) time. In numerical experiments for one dimensional processes we
found that β = 2 scaling could be achieved, leading to optimal scaling of the whole
multilevel Monte Carlo algorithm. When considering higher dimensional problems
such as stochastic versions of Lorenz ’63 or Lorenz ’96, we obtained β = 1 which
is still possible to obtain optimal scaling for sufficiently efficient algorithms. Op-
timal scaling of the whole algorithm is not possible due to the O(N3logN) scaling
of the assignment calculation, but we expect that this part of the computation
will be dominated by the forward model cost in e.g. large dimensional geophysi-
cal simulations. More recently, we have found an improvement to the algorithm,
that we call the “seamless” multilevel ETPF. The problem with the algorithm
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described above is that independent resampling of coarse and fine ensembles in a
difference estimator decorrelates the two ensembles, and then we have to solve an
assignment problem using a direct solver. It would be much better to try to main-
tain correlation between the coarse and fine ensembles throughout the Bayesian
transform step. The idea of the seamless version is to reverse the steps described
above. After reweighting the ensemble members in both coarse and fine ensembles
in each difference estimator, we compute the optimal coupling between the coarse
and fine ensembles, and produce a new coarse ensemble using fine ensemble mem-
bers (possibly coarse-grained if there is a spatial discretisation) but with different
weights. Now we have pairs of ensembles members with the same state vector, but
different weights. We then resample the fine ensemble and the new coarse ensem-
ble using the ETPF procedure. In this version of the algorithm, we always solve
optimal transportation problems rather than assignment problems (the latter of
which seeks integer solutions rather than real valued solutions). This allows for
more accurate approximation of the transformed distributions, as well as the possi-
bility of using iterative solvers for the linear programming problems. In numerical
experiments, we have obtained β = 2 scaling for higher dimensional problems,
provided that the coarsest ensemble is large enough. Although we do not have
rigorous analysis to confirm it, we believe that this is because the seamless version
of the transform gives a more accurate estimate of the posterior distribution than
the old version of the algorithm. We are currently investigating the application
of the seamless algorithm, in combination with ensemble inflation and localisa-
tion techniques, to discretisations of nonlinear PDEs such as the quasigeostrophic
equations.

References

[1] M. B. Giles, Multilevel Monte Carlo Path Simulation, Oper. Res. 56 (3) (2008), 607–617.
[2] S. Reich, A nonparametric ensemble transform method for bayesian inference, SIAM Journal

on Scientific Computing 35 4 (2013), A2013–A2024.
[3] S. Reich, C. Cotter, Probabilistic forecasting and Bayesian data assimilation, Cambridge

University Press, (2015).
[4] A. Jasra, K. Kamatani, K. Law, Y. Zhou, Multilevel particle filter, arXiv:1510.04977, (2015).
[5] H. Hoel, K. Law, R. Tempone, Multilevel ensemble kalman filtering, SIAM Journal on

Numerical Analysis 54 3 (2016), 1813–1839.
[6] A. Gregory, C. Cotter, S. Reich, Multilevel ensemble transform particle filtering, SIAM

Journal on Scientific Computing 38 3 (2016), A1317–A1338.

Multilevel Monte Carlo for inference

Kody Law

For half a century computational scientists have been numerically simulating com-
plex systems. Uncertainty is recently becoming a requisite consideration in com-
plex applications which have been classically treated deterministically. This has
led to an increasing interest in recent years in uncertainty quantification (UQ). An-
other recent trend is the explosion of available data. Bayesian inference provides
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a principled and well-defined approach to the integration of data into an a priori
known distribution. The posterior distribution, however, is known only point-wise
(possibly with an intractable likelihood) and up to a normalizing constant. Monte
Carlo methods have been designed to sample such distributions, such as Markov
chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) samplers. Re-
cently, the multilevel Monte Carlo (MLMC) framework has been extended to some
of these cases, so that approximation error can be optimally balanced with statis-
tical sampling error, and ultimately the Bayesian inverse problem can be solved
for the same asymptotic cost as solving the deterministic forward problem. This
talk will concern the recent development of multilevel SMC (MLSMC) samplers
[1] and the resulting estimators for standard quantities of interest as well as nor-
malizing constants [2]. The methods have been applied successfully to nonlocal
equations [3], which are used to model anomalous diffusion and fractures in mate-
rials. MLMC data assimilation methods have also been developed, which combine
dynamical systems with data in an online fashion. Examples are ML particle filters
[4] and ensemble Kalman filters [5].

References

[1] A. Beskos, A. Jasra, K. J. H. Law, R. Tempone, Y. Zhou, Multilevel sequential Monte Carlo
samplers., Stochastic Processes and Applications (2016).

[2] P. Del Moral, A. Jasra, K. J. H. Law, Y. Zhou, Multilevel sequential Monte Carlo samplers
for normalizing constants., arXiv preprint arXiv:1603.01136 (2016).

[3] A. Jasra, K. J. H. Law, Y. Zhou, Forward and inverse uncertainty quantification us-
ing multilevel Monte Carlo algorithms for an elliptic nonlocal equation., arXiv preprint
arXiv:1603.06381 (2016).

[4] A. Jasra, K. Kamatani, K. J. H. Law, Y. Zhou, Multilevel particle filter., arXiv preprint
arXiv:1510.04977 (2015).

[5] H. Hoel, K. J. H. Law, R. Tempone, Multilevel ensemble Kalman filtering., SIAM J. Numer.
Anal. 54 (2016), 1813–1839.

What the collapse of the ensemble Kalman filter tells us about
particle filters

Matthias Morzfeld

(joint work with Daniel Hodyss, Chris Snyder)

The ensemble Kalman filter (EnKF) is a reliable data assimilation tool for high-
dimensional meteorological problems. On the other hand, the EnKF can be inter-
preted as a particle filter, and particle filters collapse in high-dimensional prob-
lems. We explain that these seemingly contradictory state- ments offer insights
about how particle filters function in certain high-dimensional problems, and in
particular support recent efforts in meteorology to “localize” particle filters, i.e.,
to restrict the influence of an observation to its neighborhood.
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Particle Filters in high dimensions: equal weights on the typical set

Peter Jan van Leeuwen

(joint work with Javier Amezcua, Mengbin Zhu, Mel Ades)

Introduction
Bayesian inference in high-dimensional systems is a major challenge both for prac-
titioners and mathematicians. Intuition obtained from low-dimensional systems is
not necessarily useful, and obtaining guidance from numerical experimentation is
hard because of computational expense.

We are interested in the Bayesian inference problem for a dynamical system
with state evolution equation xk = f(xk−1) + ηk in which the state xk ∈ ℜn,
f(..) is the nonlinear deterministic model, and ηk ∈ ℜn is the model noise, and
the index k denotes discreet time tk. Bayesian inference encodes prior knowledge
about this system, represented by the state vector in a prior probability density
function (pdf) denoted p(xk). When new information about the system becomes
available as new observations of the system yk ∈ ℜm, this prior pdf is transformed
into the so-called posterior pdf p(xk|yk) via Bayes Theorem, given by:

(1) p(xk|yy) = p(y|xy)

p(yk)
p(xk)

Note that we denote each pdf by its argument for simplicity of notation. The
observations are related to the true state of the system via the so-called observation
equation y = H(xtrue) + ǫ in which the observation operator H maps an element
of the state space to an element of the observation space and the observation error
is represented by ǫ ∈ ℜm.

It is easy to show that the Bayesian inference problem for e.g. numerical weather
forecasting, in which the dimension is n = 109 at present is to big to be stored in
even the biggest super computer. Assuming 10 frequency bins per dimension one

would need to store of the order of 1010
9

real numbers, a total number much larger
than estimates of the number of atoms in the whole universe (O(1080)). Hence we
will always have to make approximations.

Particle filters are a Monte-Carlo approximation to the Bayesian inference prob-
lem in which the prior is represented by a set of delta functions centred around the

particles xk−p
i , p > 0, i ∈ {1, · · · , N}. The problem to be solved can be formulated

as follows. Given these particles xk−p
i , find the best representation of p(xk|yk).

’Best’ is defined by the user, for instance the most accurate first moments of this
pdf. While common wisdom is that particle filters fail in high dimensional systems
due to the curse of dimensionality a more general class of particle filters has been
explored recently that does seem to allow for particle filters that beat the curse of
dimensionality (see e.g. [3], [4]). We will discuss one of these particle filters in the
following.

The typical set
When sampling from a pdf (probability density function) in a high dimensional
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space it is very unlikely to sample close to the mode. To build intuition on why
this is the case consider the following example.

Suppose we want to draw samples from a n-dimensional Gaussian N(0, I), in
which I is the n×n dimensional identity matrix. We can simply generate samples
from that density by sampling the coordinates of the sample vector as ξ(j) ∼
N(0, 1). The square of the length of this vector is a χ2 variable with mean n
and variance 2n. For Nx large this square is Gaussian distributed with the same
mean and variance. This means that more than 99% of the probability mass
of the pdf of the square of the length of a random vector lies in the interval
[
n− 3

√
2n, n+ 3

√
2n

]
, which is far away from the mean and mode of the pdf of

the random vectors when n is large. Interestingly enough the distance of each
element of that random vector to the mean and mode will be small, of order 1,
but adding the squares of all these small number will end up as a large number.

This means that the probability mass is not at the mode/mean, but some
distance away from that, and random samples from a pdf will end up in the areas
of high probability mass. These areas of high probability mass form the so-called
Typical Set: for ǫ > 0 and any n, we define the typical set A with respect to
probability density p(x) as follows:

(2) A(n)
ǫ =

{

(x) ∈ Sn :

∣
∣
∣
∣
− 1

n
log p(x)−H(X)

∣
∣
∣
∣
≤ ǫ

}

and it can be shows that for each ǫ > 0 and δ > 0 there exist an n such that

(3) Prob
(

X ∈ A(n)
ǫ

)

> 1− δ

The importance for us is that for our particles to represent the posterior pdf well
they have to be on the typical set, because that is where the probability mass is.
Advanced particle filters like the Implicit Particle Filter ([1]) do bring particles
close to the typical set. This has not been proven in general, but it is easy to
prove that that filter puts particles on the typical set for a Gaussian posterior pdf
for systems of arbitrary dimension, and numerical experimentation shows that the
method has good first-order moments in low-dimensional systems ([2]).

The problem with the IPF is that the relative weights of the particles vary
widely in high-dimensional systems. such that typically one particle has a weight
very close to one, while all other particles have weights close to zero. This is a
so-called degenerate configuration because when estimating moments of the pdf,
like mean and covariance, the weighted particles need to be used, leading to very
poor estimates of these moments. So an extra step is needed to ensure that the
particles have (near) equal weights.

Hamiltonian Monte Carlo
The idea is to start from particles near the typical set and use a Markov-Chain
Monte-Carlo method to bring them on the set and at the same time ensure they
obtain equal weights. Hamiltonian Monte Carlo (HMC) can be used in such a
method, with the advantage that large moves in state space can be made while that
move is still accepted in the Metropolis-Hastings ratio in the HMC methodology.
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Furthermore, it can be shown that HMC moves will keep the particles on the
typical set. Because HMC is computationally expensive for each step we propose
to perform just one step, as follows:

(4) xn
i = x∗

i − τ2P 1/2 dE

dx
+ αiτP

1/2vi

in which x∗
i is a particle generated with the Implicit Particle Filter, E(x) ∝

− log p(x|y), τ is the size of the HMC step, and the vi are the -artificial- velocity
variables introduced in the HMC algorithm.

Of special note is the scalar variable αi, which is used to ensure equal weight for
all particles in the following way. First we use the Implicit Particle Filter to find
x∗
i for each particle i. Then we calculate dE(x)/dx and sample vi ∼ N(0, I), with

identity matrix I ∈ ℜn×n. This leaves us with xn
i (αi). The resulting expression

for xn
i is then put into the expression for the weight of particle i, which is given

by:

(5) wi(αi) ∝
p(y|xn

i )p(x
n
i |x∗

i )p(x
∗
i |xn−1

i )

q(xn
i |x∗

1:N )q(x∗
i |xn−1

i , yn)

We now set a target weight wtarget, set wi(αi) = wtarget for each particle and solve
for scalar αi for each particle i. In this way we ensure that the particles are on or
close to the typical set while having equal weight.

Challenges
Although the above might be a step in the right direction, huge challenges remain.
First and foremost, it is vital that ideas like this get a proper mathematical founda-
tion. Work is ongoing, but no results have been obtained yet. Furthermore, issues
arise because we don’t have an exact expression for p(x|y) in particle filtering, so
E(x) needed in the HMC step is only known approximately via the particles. And
then there are several practical issues, for instance related to the fact that one has
to prescribe the statistics of the errors in the model equations, which is extremely
hard to obtain. It will be clear that this is not the last word on this matter, but
hopefully it is a start.
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New perspectives in importance sampling

Daniel Sanz Alonso

Importance sampling is a building block of many algorithms in computational
statistics, perhaps most notably particle filters. It is the importance sampling step
that often limits the accuracy of these algorithms. In this talk I will introduce a
new way of understanding importance sampling based on information theory. I
will argue that the fundamental problem facing algorithms based on importance
sampling can be understood in terms of the distance between certain measures.
The results give new understanding on the potential use of importance sampling
and particle filters in high (possibly infinite) dimensional spaces.

Towards a stable Particle Filter in High Dimensions (Take Two)

Dan Crisan

The purpose of this talk is twofold: First I will attempt to provide a common
platform of communication between two sister areas of research: data assimila-
tion and stochastic filtering, particularly its numerical component. Second, I will
describe the major difficulties encountered when solving the filtering problem in
high dimensions and will try to dispell some of the misconceptions that are still
prevalent in the data assimilation literature.

Data assimilation is the process by which observations are incorporated into
a computer model of a real system. Applications of data assimilation arise in
many fields of geosciences, perhaps most importantly in weather forecasting and
hydrology. Data assimilation proceeds by analysis cycles. In each analysis cycle,
observations of the current (and possibly past) state of a system are combined with
the results from a numerical weather prediction model (the forecast) to produce an
analysis, which is considered as the best estimate of the current state of the system.
This is called the analysis step. Essentially, the analysis step tries to balance the
uncertainty in the data and in the forecast. The model is then advanced in time
and its result becomes the forecast in the next analysis cycle.

The stochastic filtering problem involves a pair of processes (Z, Y ) = {(Zt, Yt), t
≥ 0} where

• Z is the signal process or the “hidden component”
• Y is the observation process - “the data” and Yt = f(Z, “noise”).

and aims to find the conditional distribution of the signal Zt given Yt = σ(Ys, s ∈
[0, t]), i.e.,

πt (ϕ) = E[ϕ(Zt)|Yt], t ≥ 0.

Both data assimilation (DA) and stochastic filtering are dealing with the same
problem of merging models with partial observations. DA focuses on algorithms
for large scale problems and large data sets. Stochastic filtering has a wider scope
incorporating both theoretical and numerical components. Both fields are moving
towards each other.
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Ensemble-based algorithms in both areas fit into the following framework:

particle approximations Gaussian approximations

πM
t

mutation
︷︸︸︷−→
model

π̄M
t+δ

selection
︷︸︸︷−→
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forecast
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assimilation
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The approximations appear to be different:

particle approximations Gaussian approximations
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but the stored information can modelled by, say M stochastic processes

{pi(t), t > 0} i = 1, ..., n, pi(t) ∈ R
N .

We can think of the processes pi as the trajectories of M (generalized) parti-
cles/ensemble members. Typically N > d, where d is the dimension of the state
space. The approximation of the conditional distribution of the signal will then
take the form

πM
t = ΛM

t (pi(t), t > 0 i = 1, ..., n).

I will talk about numerical approximations of the filtering problem in high dimen-
sions, that is, when the hidden state lies in Rd with d large (typical set-up in data
assimilation). For low dimensional problems, one of the most popular numerical
procedures for consistent inference is the class of approximations termed particle
filters or sequential Monte Carlo methods. However, in high dimensions, stan-
dard particle filters (e.g. the bootstrap particle filter) can have a cost
that is exponential in d for the algorithm to be stable in an appropriate sense. I
will present a new particle filter, called the space-time particle filter, designed for
a specific family of state-space models in discrete time. This new class of particle
filters provide consistent Monte Carlo estimates for any fixed d , as do standard
particle filters. The space time particle filter is expected to scale much better with
d than the standard filter. The numerical results suggest that it is indeed possible
to tackle some high dimensional filtering problems using the space-time particle
filter that standard particle filters cannot handle. The talk is based on the papers
[1, 2, 3, 4].
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Iterative Ensemble Smoother for Parameter Estimation

Dean Oliver

The key features of inverse problems applied to subsurface flow models are that the
number of parameters are large (∼ 105 − 107) and that the relationships between
observations and model variables are highly nonlinear and nonlocal. The cost of
evaluating the likelihood is relatively high (15 min to 1 day).

I present a method for generating sample realizations that are concentrated
in regions of high probability density for the posterior distribution. The sam-
ples are generated by minimizing a cost function with perturbed observations and
perturbed model parameters. The distribution of the samples can be computed
from the Jacobian of the transformation. This distribution is used to evaluate
the Metropolis-Hastings test to generate samples from the actual posterior, but
they could have been used for importance sampling. The weights are shown to be
nearly uniform and the method was shown to scale well even when the prior and
the posterior are highly dissimilar.

The method is illustrated with two multimodal toy problems. In actual applica-
tions to geoscience problems, an iterative ensemble smoother is used to minimize
the cost function. It has not been feasible to compute the weighting of samples in
those cases.

Performance of the EnKFs with small ensemble size

Xin Tong

The successful EnKF prediction skill with an ensemble size K much smaller than
the dimension d has remained an intriguing mystery. The practitioners often at-
tribute this success to an low effective dimension p, of which the formal definition
has never been given. The first part of our framework proposes a natural defini-
tion for the effective dimension, using the covariance spectrum of an associated
Kalman filter. The second component employs the Mahalanobis norm to quan-
tify the EnKF performance, which is intrinsically dissipative for Kalman type of
filter updates. This dissipative mechanism is stable enough to wither the noisy
perturbation from model or small sampling error. The low effective dimension
plays a vital role here, since when K > Cp for a constant C, the sample forecast
covariance matrix can concentrate around its expected value, using a new random
matrix theory result. Practical covariance inflation and spectral projection are
employed to our EnKF. The fact that these augmentations are necessary for our
proof, indicates the theoretical significance of these augmentations, while their
practical significance has already been observed and well documented.
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On the convergence of (ensemble) Kalman filters and smoothers onto
the unstable subspace

Marc Bocquet

(joint work with Alberto Carrassi, Karthik S. Gurumoorthy, Amit Apte, Colin
Grudzien, Christopher K. R. T. Jones)

The characteristics of the model dynamics are critical in the performance of (en-
semble) Kalman filters. In particular, as emphasized in the seminal work of Anna
Trevisan and co-authors, the error covariance matrix is asymptotically supported
by the unstable and neutral subspace only, i.e. it is spanned by the backward
Lyapunov vectors with non-negative exponents. This behavior is at the heart of
algorithms known as Assimilation in the Unstable Subspace, although its formal
proof was still missing.

This convergence property, its analytic proof, meaning and implications for the
design of efficient reduced-order data assimilation algorithms are the topics of this
talk. The structure of the talk is as follows.

Firstly, we provide the analytic proof of the convergence on the unstable and
neutral subspace in the linear dynamics and linear observation operator case, along
with rigorous results giving the rate of such convergence. The derivation is based
on an expression that relates explicitly the covariance matrix at an arbitrary time
with the initial error covariance. Numerical results are also shown to illustrate
and support the mathematical claims.

Secondly, we discuss how this neat picture is modified when the dynamics be-
come nonlinear and chaotic and when it is not possible to derive analytic formulas.
An ensemble Kalman filter (EnKF) is used in this case. We also explain why, in
the perfect model setting, the iterative ensemble Kalman smoother (IEnKS), as an
efficient filtering and smoothing technique, has an error covariance matrix whose
projection is more focused on the unstable-neutral subspace than that of the EnKF.

Conservation laws and the ensemble Kalman filter

Tijana Janjic

(joint work with Yuefei Zeng, Yvonne Ruckstuhl)

Numerical discretization schemes have a long history of incorporating the most
important conservation properties of the continuous system in order to improve
the prediction of the nonlinear flow. The question arises whether data assimi-
lation algorithms should follow a similar approach and whether the inclusion of
conservation laws when computing the initial condition would improve the predic-
tion of the nonlinear flow. To address these issues, we explore for which problems
the conservation laws could be beneficial in data assimilation algorithms and in
which cases conservation properties are well recovered when using local ensemble
Kalman filter (EnKF). We show the behavior of the localized EnKF with respect
to preservation of positivity, conservation of mass, energy and enstrophy in toy
models that conserve these properties. These toy models are motivated with two
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applications of data assimilation, on convective scale for radar data assimilation
and on global scale for conventional data assimilation. Both applications show
benefit of including some of the conservation laws as constraints. Past studies
have shown that EnKF algorithm can be applied to the convective scales since
it is capable of handling complex and highly nonlinear processes through use of
time evolving error covariances. However, some challenges for the convective scale
applications still remain. These include a need to estimate fields that are nonneg-
ative (such as rain, graupel, snow) and to use data sets such as radar reflectivity
that have the same property. What underlines these examples are errors that are
non-Gaussian in nature causing a problem with the EnKF that uses Gaussian error
assumptions to produce the estimates from the previous forecast and the incom-
ing data. Since the proper estimates of hydrometeors are crucial for prediction on
convective scales, the question arises whether the EnKF method can be modified
to improve these estimates. In this talk, we first illustrated the problem using the
non-hydrostatic convection permitting COSMO model, and the localized EnKF
(LETKF) [1] as implemented in KENDA (Km-scale Ensemble Data Assimilation)
system of German Weather Service [2]. We showed that the analyses of water
species would become negative in some grid points of the COSMO model when
radar data are assimilated. These values are set to zero after the LETKF analysis
step, in order not to give the numerical model unphysical values. The tests done
within this setup show that such a procedure introduces a bias in the analysis
ensemble with respect to the truth, that increases in time due to the cycled data
assimilation. In order to preserve physical properties in the analysis as well as
to deal with the non-Gaussianity in an EnKF framework, Janjic et al. 2014 [3]
proposed the use of physically based constraints in the analysis step to constrain
the solution and therefore change the analysis error statistics. This approach led
to the Quadratic Programming Ensemble filter algorithm (QPEns) based on the
EnKF and the quadratic programming. In [3] it was shown on a very simple ex-
ample that for state estimation, the inclusion of the constrained estimation can
improve the ensemble Kalman filter results in case of strongly non-Gaussian er-
ror distributions. Importantly, only methods that preserved positivity and mass
together produced accurate analysis. The QPEns algorithm was further tested
on the modified shallow water model [4], which was designed to mimic the most
important characteristics of convective motion. Perfect model experiments were
performed with observations that are taken every 5 minutes at the grid points
where there is rain for all three variables of the modified shallow water model
(wind, height of the fluid and rain). It was shown that the mass conservation- and
positivity-constrained rain significantly suppresses noise seen in localized EnKF
results. This is highly desirable in order to avoid spurious storms from appearing
in the forecast starting from this initial condition [5]. In addition, the root mean
square error (RMSE) is reduced for all fields and total mass of the rain is correctly
simulated. In the second application, using perfect model experiments with mass,
total energy and momentum conserving 2D shallow water model that also con-
serves enstrophy for non-divergent flow, we mimicked with the simple model data
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assimilation on global scale over the domain corresponding to Northern Hemi-
sphere with the horizontal resolution of 50 km. The data assimilation used the
LETKF with varying localization radius, thinning interval, observed variable and
inflation [6]. During assimilation, the total mass remained consistent with that
of the nature run and the total energy of the analysis mean converged towards
the nature run value. However, enstrophy, divergence, as well as energy spectra
were strongly affected by localization radius, thinning interval, and inflation and
depended on the variable, which was observed. In this idealized setup, we tested
the effects on prediction depending on the type of errors in the initial condition.
By measuring nonlinear energy cascade through a scalar, domain averaged, noise
term, we show that the accumulated noise during assimilation and the analysis
RMSE are good indicators of quality of the prediction. In both applications, the
EnKF would violate some of the conservation properties. In convective scale appli-
cations, these include preservation of positivity, and, due to setting of the negative
values to zero, conservation of mass. In global application, the EnKF was able
to recover the correct energy and mass, but it was not able to recover the correct
enstrophy and divergence. To this end, imposing the constraints on enstrophy and
energy will be tested in this setup in the future.
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Balanced data assimilation via blended models from an asymptotic
hierarchy

Rupert Klein

The state of the atmosphere is nearly balanced in that it is free of acoustic os-
cillations of sizeable amplitude and in that it is essentially free of very long-wave
internal gravity waves. Numerical weather forecasting schemes are designed to
maintain the associated acoustic, hydrostatic, and geostrophic near-balances very
well, even if they approximate the full compressible flow dynamics of the atmo-
sphere.
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The assimilation of observational data into numerical weather forecasting codes
implies adjustments of the model state that are generally not compatible with the
model dynamics. In particular, they will perturb the state substantially away from
the abovementioned intricate balances. The development of assimilation schemes
that avoid such imbalances is an active field of research.

In this presentation I have described a strategy for balanced data assimilation
which, instead of focusing on the core data assimilation algorithms, considers the
problem from the side of the dynamical model [1]. The acoustic, hydrostatic, and
geostrophic balances emerge analytically from asymptotic limits for low Mach,
Froude, and Rossby numbers. Reduced dynamical equations for the respective
limit situations maintain these balances exactly. The idea promoted in [1] is to
utilize numerical discretizations of the full compressible dynamics that robustly
default to solvers of the limit equations when the respective dimensionless param-
eters become small or are set to zero. Depending on the scientific community, such
schemes are called “well-balanced”, “asymptotic preserving” or“asymptotically
adaptive”.

The strategy for balanced data assimilation proposed in [1] and presented here
consists of first performing the adjustment of the model state according to some
chosen data assimilation scheme. The subsequent temporal evolution of the state
is then, however, not done right away with the full compressible model. Rather,
for a few time steps after assimilation the forecast model is run in an appropriate
asymptotic limit mode. During these time steps, the pressure field and flow di-
vergence get adjusted automatically to balanced distributions. Subsequently the
constraint is relaxed continuously over a few more time steps and from then on
the scheme is run again as a full compressible flow solver.

Various tests including a double pendulum, the slow-fast Lorentz ’96 model,
and an abruptly started buoyancy-driven flow in a vertical 2-dimensional slice
of the atmosphere yield favorable results (see also the poster-contribution by M.
Reinhardt, G. Hastermann).

The main advantage of the approach is that the task of balanced data assim-
ilation can be taken care of without any computational overhead, provided the
dynamical forecast model’s discretization belongs to the class of asymptotically
adaptive schemes.
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Ensemble variational assimilation and Bayesian Estimation

Olivier Talagrand

(joint work with Mohamed Jardak)

Ensemble Variational Assimilation (EnsVAR) consists in perturbing the data to
be assimilated according to their error probability distribution, and then perform
variational assimilation on the perturbed data. EnsVAR achieves exact Bayesian
estimation in the linear and Gaussian case.
EnsVAR is implemented on the Lorenz’96 small-dimension chaotic nonlinear sys-
tem. It numerically achieves as high a degree of bayesianity (as measured by sta-
tistical reliability) as in a purely linear and Gaussian situation. For assimilation
windows longer than the predictability time defined by the dominant Lyapunov
exponent (10 days or more), high reliability requires the use of Quasi Static Vari-
ational Assimilation (QSVA), in which the length of the assimilation window is
gradually increased. The performance of EnsVAR compares favourably with that
of other ensemble assimilation algorithms, such as Ensemble Kalman Filter and
Particle Filter.
Quantitavely similar results are obtained with the Kuramoto-Sivashinsky equa-
tion. Similar results are also obtained in the case of a noisy model, assimilation
being implemented in weak-constraint form.

Issues in making the weakly-constrained 4DVar formulation
computationally efficient

Serge Gratton

(joint work with Selime Gürol, Ehouarn Simon, Philippe Toint)

The main challenges in applying weakly constrained 4D-Var to large scale data
assimilation problems are considered. In a first part, three formulations are re-
viewed. The first two, called state and forcing formulations, take the form of an
unconstrained optimization problem and differ in the parametrization of the de-
grees of freedom. The third instead reformulates the problem as a saddle point
calculation. All three formulations lead to a sequence of linear systems which
must be solved iteratively, and the crucial ingredient of computational efficiency
depends on the time-paralellizable matrix-vector products both in the problem
formulation and also in the design of an efficient preconditioner. In our approach,
the preconditioner relies on the solution of a very large scale lower triangular sys-
tem with block bi-diagonal structure. The use of parallel computing for solving
this system is therefore a prerequisite for efficient application of the weakly con-
strained 4D-Var approach. While methods for solving this kind of systems in
parallel have long been known for tridiagonal systems, new challenges arise in the
structured bi-diagonal case where the entries are possibly very large matrices. A
complexity analysis is reported providing a bound on the length of the critical
path in a generalization of the block-cyclic reduction algorithm which exploits the
special structure of the involved system. It is shown that this method can only be
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efficient in parallel if the product of two large matrices representing the model can
be computed at a cost bounded by a moderate multiple of that of a matrix-vector
product.

Data assimilation has long been an integral and important part of weather fore-
casting, as new (and often incomplete) meteorological observations are integrated
in the ongoing process of predicting the weather for the next few days [1]. The
question we consider here is that of using the data to determine a “best” current
state of the weather system from which elaborate models may then be evolved in
time, providing the desired predictions. Among the possible techniques for this
task, variational methods have been applied extensively, typically weighting the
use of a priori knowledge (often materialized by the specification of a background
state x0) with the quality of the fit to the data. This is the case, in particular,
for the well-known 4D-Var formulation [4, 2]. In recent years, it has also be-
come necessary to take possible model errors into account, thus weighting a priori
knowledge, data fitting and model error reduction, an approach which leads to the
“weakly-constrained 4D-Var” formulation of the relevant data assimilation prob-
lem [14, 15]. In this formulation, the total time horizon (assimilation window)
considered is split into a number (Nsw) of time sub-windows, and the problem can
be be written as

min
x∈ℜℓ

1

2
‖x0 − xb‖2B−1 +

1
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Nsw∑
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∥
∥Hj

(
xj
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∥
∥
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j

+
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2

Nsw∑
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‖xj −Mj(xj−1)‖2Q−1
j

(1)

where

• x = (x0, x1, . . . , xNsw
)T ∈ ℜℓ is the control variable (with xj = x(tj)),

• xb ∈ ℜn is the background given at the initial time (t0).
• yj ∈ ℜmj is the observation vector over a given time interval
• Hj maps the state vector xj from model space to observation space
• Mj represents an integration of the numerical model from time tj−1 to tj
• B, Rj and Qj are the covariance matrices for background, observation and
model error, respectively.

The incorporation of possible model errors is achieved by the presence of the third
term in the objective function.

As it is the case for the standard 4D-Var (consisting of the first two terms in 1),
the general unconstrained nonlinear least-squares problem is solved by applying
the Gauss-Newton algorithm [3, 7], which iteratively proceeds by linearizing H
and M at the current iterate and then, often very approximately, minimizing the
resulting quadratic function. If the operatorsMj are the linearized Mj and Hj are
the linearized Hj , then the problem can be expressed in terms of δxj = (x− x0)j
as

min
δx∈ℜℓ

1

2
‖L δx− b‖2D−1 +

1

2
‖H δx− d‖2R−1(2)
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where the matrices are defined as:

L =










I
−M1 I

−M2 I
. . .

. . .

−MNsw
I










,(3)

H = diag(H0, H1, . . . , HNsw
), D = diag(B,Q1, . . . , QNsw

),

and
R = diag(R0, R1, . . . , RNsw

),

and where the vectors are defined as:

d = (d0, d1, . . . , dNsw
)T and b = (b0, c1, . . . , cNsw

)T ,

with b0 = xb−x0, ∀j ∈ [1, . . . , Nsw] cj = Mj(xj−1)−xj and ∀j ∈ [0, . . . , Nsw] dj =
yj − mathcalHj(xj).

(Note the incorporation of the background covariance matrix B in D). The
approximate minimization of the quadratic subproblem is itself carried out using
a Krylov method (often conjugate gradients [10] or a specialized version of it such
as RPCG [9] or RSFOM [8], see also [6]), which typically requires preconditioning
for achieving reasonable computational efficiency.

Three variants of the above problem can then be defined. In the form presented
above, the formulation is called the “state formulation” and requires solving the
linear system of the form

(LTD−1L+HTR−1H) δx = LTD−1b+HTR−1d.

Another version (called the “forcing formulation”) may be obtained by making the
change of variables δp = Lδx, then requiring the solution of the linear system

(D−1 + L−THTR−1L−1H) δp = D−1b+ L−THTR−1d.

A third version (the “saddle” formulation) is obtained by transforming the terms in
2 in a set of equality constraints and writing the Karush-Kuhn-Tucker conditions
for the resulting constrained problem, leading to the large “saddle” linear system
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b
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where the control vector [λ, µ, δx]T is a (2ℓ+m)-dimensional vector. For the sake
of brevity, we do not cover the details of this latter derivation here, see [13, 12].

The crucial observation is that matrix-vector products with L−1 appear sequen-
tial at first sight, which is a serious drawback in the context of modern computer
architectures for high-performance computing. In this respect, using the forcing
formulation is problematic and, even if the state and saddle point formulations
allow performing matrix-vector products with L in parallel, their suitable precon-
ditioners involve the operator L̃−1, where L̃ is a bi-diagonal formulation-dependent
approximation of L.
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The use of this operator therefore centrally depends on the efficient (and pos-
sibly approximate) solution of a linear system

L̃u = v,(4)

involving the bi-diagonal matrix L̃ whose form is structurally the same as that
defined for L in 3 and suitable vectors u and v. While a simple recurrence of the
form

u0 = v0, ui = vi +Miui−1 (i = 1, . . . , Nsw)(5)

is obviously possible, this technique is inherently sequential, which is a computa-
tional drawback as mentioned before. One is thus naturally lead to considering
parallel algorithms for the solution of tridiagonal systems (of which our system is
a specially structured instance) and, in particular, the “cyclic reduction” method
[5, pp. 177-190]. Broadly speaking and when applied to 4 with Nsw = 5, this
method transforms the system
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where Mi,j
def
= MiMi−1 . . .Mj . The systems 6 and 7 can then be solved in parallel

(recursively using cyclic reduction).
While the parallel performance of cyclic reduction has already been analyzed for

tridiagonal systems (see [11], for instance), its performance for structured block bi-
diagonal systems appears to be unstudied so far. As it is clear from the description
above, it hinges on making the product Mi+1Mi efficient. Focussing on the simple
case (corresponding to one-dimensional models) where the matrix Mi is banded
with semi-bandwidth p and where the computation Mi+1Mi makes use of this
banded structure, it turns out that the relative parallel complexity of solving 4
exactly using Nsw processors is given by

wall-clocktime for cyclic red.

wall-clocktime for sequential
≤

(
2pNsw

3
+

log2 Nsw

max[p, 1]Nsw
+ 3

)
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where the “sequential” mode refers to the substitution 5. The wall-clocktime is
considered in an idealized perfect scenario: infinite number of processors, infinite
memory, and neither I/O time nor communication delay is taken into account. As
a consequence, the use of block cyclic reduction cannot be as efficient in parallel as
that of the sequential substitution, unless the products Mi+1Mi are approximated
in a manner that makes the cost of such a matrix-matrix product comparable to
that of a matrix-vector product. This may for instance be achieved if each of
the products Mi+1Mi is itself approximated by a matrix of semi-bandwidth p, in
which case the relative parallel complexities become

wall-clocktime for cyclic red.

wall-clocktime for sequential
≤ (2p+ 2) log2 Nsw

Nsw
.

This then becomes advantageous when Nsw grows. There are several ways to
obtain a limited bandwidth approximation of Mi+1Mi at various levels of the
cyclic reduction recursion. The simplest is just to truncate the product by ignoring
entries outside the band, but one can also think of integrating the models with a
coarser time step (stability allowing) or using simplified physics models.

All the above assumes that valuable preconditioning information is contained
in the model matrices Mi. An alternative and somewhat radical point of view is
to ignore this information, in which case approximations such as

L̃ = I, or M̃i = αiI (i = 1, . . . , Nsw)

for well-chosen scalar αi may be considered, leading to very cheap and fully-parallel
but less informative preconditioners [13]. In particular the use of secant informa-
tion to update the scalars αi is an attractive option.

Limited numerical experiments show that the choice of a best strategy among
all these options is far from straightforward, and significantly depends on the
particular formulation used, the conditioning of the various operator involved as
well as on the number of time sub-windows and available processors. Further
experiments are therefore necessary to reach stable conclusions on the feasibility
of using efficient parallel computations in the context of weakly-constrained 4D-
Var data assimilation problem.
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On existence and uniqueness of solutions for variational data
assimilation in discrete time

Jochen Bröcker

Data assimilation is a term from the geosciences and refers to methods for esti-
mating orbits of dynamical models from observations. Variational techniques for
data assimilation estimate these orbits by minimising an appropriate cost func-
tional which takes the error with respect to the observations but also deviations
of the orbits from the model equations into account. Such techniques are very im-
portant in practice. In this contribution, the problem of existence and uniqueness
of solutions to variational data assimilation is investigated. Under mild hypothe-
ses a solution to this problem exists. The problem of uniqueness is investigated
as well, and several results (which all have analogues in optimal control) are es-
tablished in the present context. The value function is introduced as the cost
of an optimal trajectory starting from a given initial condition. The necessary
conditions in combination with an envelope theorem can be used to demonstrate
that the solution is unique if and only if the value function is differentiable at the
given initial condition. This occurs for all initial conditions except maybe on a
set of Lebesgue measure zero. Several examples are studied which demonstrate
that non–uniqueness of solutions cannot be ruled out altogether though, which
has important consequences in practice.
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Annealing method to find the smallest minimum action (cost function)
in variational methods

Henry Abarbanel

Formulating the statistical data assimilation problem as a path integral [1] pro-
vides a powerful framework for estimating moments of the conditional distribution,
states and parameters of a model conditioned on observations. The path integral
also provides a structure within which one can systematically evaluate the correc-
tions to ideas about estimating the integral and a guide to using the information
in the measurements more efficiently. This talk focuses on using this framework
to identify the global maximum of the conditional probability distribution in the
space of paths of the model system through time.
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Variational approximation to inference for stochastic differential
equations

Manfred Opper

In this talk I will discuss an approximation method for inference of multivariate
stochastic differential equations of the form dXt = fθ(Xt)dt+D1/2(Xt)dWt, where
θ is a set of parameters. We assume that we have discrete time, noisy observa-
tions Y .

= (y1, . . . , yn) and that these observations are described by a likelihood

p(Y|X0:T ) =
∏N

k=1 p(yk|Xtk) where X0:T denotes the path of the process over a
time window T . The goal will be to estimate the parameters θ by a maximum
likelihood or Bayesian approach, and, given the parameters, to predict the path
X0:T , e.g. by the computation of the conditional expectation E[Xt|Y]. It is possi-
ble to solve this problem using Markov chain Monte Carlo methods by treating the
unobserved process as a latent random variable. However, this approach could be
time consuming for higher dimensional problems, because one has to draw samples
of the entire path conditioned on the observations. Here I will discuss a different
approximate approach which has its origin in the field of statistical physics and
which has been applied in recent years to inference in probabilistic models in the
area of machine learning. In this method, one tries to approximate the (analyt-
ically or computationally intractable) conditional measure over paths P (X0:T |Y)
by an approximation Q(X0:T ) which is a member of a tractable family of measures,
e.g. Gaussian ones. Q is chosen by minimising the Kullback–Leibler divergence
(relative entropy) D(Q‖P ) =

∫
dQ ln(dQdP ) over the tractable family of measures.



Aspects of Data Assimilation in the Geosciences 2733

One can show that the optimal Gaussian measure corresponds to an approxi-
mate linear stochastic differential equation dXt = (AtXt + bt)dt + D1/2(Xt)dWt

where the explicit time dependency of the variational parameter functions At and
bt take the fact into account that the conditional process (through the observa-
tions) is no longer homogeneous. The variational problem can be solved using
forward–backward iterations for small dimensionalities. The approach also yields
an approximation for the evidence (likelihood) P (X0:T |θ) which can be used for
parameter estimation. Higher dimensional problems can be treated efficiently us-
ing further approximation, e.g. a factorising one, where the individual components
of the process Xt are treated as independent.

Estimating model evidence using data assimilation

Alberto Carrassi

(joint work with Marc Bocquet, Alexis Hannart, Michael Ghil)

This study focuses on the problem of quantifying the resulting performance of a
state inference by estimating the so-called marginal likelihood – also sometimes
referred to as model evidence – which quantifies the “goodness-of-fit” between the
data and the chosen state-space model. Model evidence can be used as a general
metric for model selection and comparison, relevant to many different purposes
frequently faced by both scientists and practitioners: e.g. calibrating the model
parameters, comparing the skill of several candidate models (or model settings, or
boundary conditions) in representing the observed signal, or even evidencing the
existence (or non-existence) of a causal relationship between an external forcing
and an observed response. We review the field of data assimilation (DA) from
a Bayesian perspective and show that, in addition to its by now common appli-
cation to state estimation, DA may be used for model selection. An important
special case of the latter is the discrimination between a factual model – which
corresponds, to the best of the modeler’s knowledge, to the situation in the actual
world in which a sequence of events has occurred – and a counterfactual model,
in which a particular forcing or process might be absent or just quantitatively
different from the actual world. Three different Gaussian ensemble-DA methods
are reviewed for this purpose: the ensemble Kalman filter (EnKF), the ensemble
four-dimensional variational smoother (En-4D-Var), and the iterative ensemble
Kalman smoother (IEnKS). An original contextual formulation of model evidence
(CME) is introduced. It is shown how to apply these three methods to compute
CME, using the approximated time-dependent probability distribution functions
(pdfs) each of them provide in the process of state estimation. The theoretical
formulae so derived are applied to two simplified nonlinear and chaotic models:
(i) the Lorenz three- variable convection (L63) model, and (ii) the Lorenz 40-
variable mid-latitude atmospheric dynamics model (L95). The numerical results
of these three DA-based methods and those of an integration based on importance
sampling are compared. It is found that better CME estimates are obtained by
using DA, and the IEnKS method appears to be best among the DA methods.
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Differences among the performance of the three DA-based methods are discussed
as a function of model properties. Finally, the methodology is implemented for
parameter estimation and for event attribution. The next step in applying the
present DA-based approach to more realistic models and observational scenarios
is to consider climate models of intermediate complexity. This application-oriented
research activity has to be supported and accompanied by two theoretical lines of
investigations, namely the extension of the present results (i) in the presence of
model error, and (ii) in conjunction with spatial localization techniques. Prelimi-
nary results in the context of an intermediate complex primitive equation model of
the atmosphere are presented in which the model evidence formulae are re-derived
to account for the spatial localization.

Nonparametric probabilistic modeling and data assimilation

John Harlim

I will discuss a nonparametric modeling approach for forecasting stochastic dy-
namical systems on smooth manifolds embedded in Euclidean space. In the limit
of large data, this approach converges to a Galerkin projection of the semigroup
solution of the backward Kolmogorov equation of the underlying dynamics on a
basis adapted to the invariant measure. This approach, which we called the ”dif-
fusion forecast”, allows one to evolve the probability distribution of non-trivial
dynamical systems with an equation-free modeling. I will also discuss a data-
driven nonparametric method to estimate likelihood functions which can be used
to estimate observation model error distribution.

Low-dimensional transports for Bayesian filtering and smoothing

Youssef Marzouk

(joint work with Alessio Spantini, Daniele Bigoni)

In this talk, we present a variational approach to characterizing complex (e.g.,
high-dimensional, non-Gaussian) probability distributions, and discuss its partic-
ular application to problems of sequential Bayesian inference—filtering, smoothing,
and joint state/parameter inference. The central idea is to approximate the target
distribution using transportation of measures [8].

Let Z be a random variable on R
n endowed with an intractable continu-

ous density π that we wish to simulate. We assume that π is available only
up to a normalizing constant, as is typical in Bayesian inference. One possible
approach to the problem of sampling is to seek a deterministic transport map
T : Rn → R

n that couples Z with a tractable reference random variable X (e.g.,
a standard normal) [4]. If we let η denote the density of X, then we can say
that T pushes forward η to π, i.e., T♯η = π, where, for any invertible map T we
have T♯η(z) = η(T−1(z)) · | det∇T−1(z)|. (Here we abuse notation slightly, by
writing the notion of a pushforward measure in terms of densities with respect to
the Lebesgue measure on R

n.) A map satisfying this coupling condition enables
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the generation of cheap, independent, and unweighted samples from π; one simply
has to evaluate T on a collection of iid reference samples.

A transport map between distributions on R
n exists under very weak condi-

tions. For instance, in the example above it suffices that the law of X vanish on
subsets of (Hausdorff) dimension n−1. As shown in [5], the transport map can be
computed via deterministic optimization by minimizing the Kullback–Leibler di-
vergence DKL(T♯η ||π ) over a suitable function space for the map, i.e., for T ∈ T .
The approach adopted in [5] seeks a parametric transport map within a finite di-
mensional approximation space, Th ⊂ T . The resulting variational problem reads
as minT∈Th

DKL(T♯η ||π ). The particular approximation spaces we consider are
subsets of the cone T△ of “triangular” maps that are monotone increasing with
respect to the lexicographic order on R

n [4]. T△ includes the Knothe-Rosenblatt
(KR) rearrangement [6] between η and π. In fact, the Rosenblatt map can be
characterized as the unique minimizer of DKL(T♯η ||π ) over T△ for absolutely
continuous η and π.

The key observation of this work is that a transport map is not just any mul-
tivariate function on R

n. There exist transports that inherit low-dimensional pa-
rameterizations from the Markov structure [3] of the underlying target density. By
considering recursive graph decompositions of a (non-complete) Markov network
for π, it is possible to prove the existence of transports T that factorize exactly
as the composition of k low-dimensional maps, T = T1 ◦ · · · ◦ Tk, for some finite
k, where each map Tj differs from the identity function only along few compo-
nents and is triangular up to a permutation of the input and output space. We
call such transports decomposable. Clearly, a decomposable transport is easier to
parameterize than a regular one. Moreover, the decomposition T = T1 ◦ · · · ◦ Tk

suggests that the computation of T may be broken into multiple simpler steps,
each associated with the computation of a low-dimensional map Tj that accounts
only for local features of π.

We instantiate this observation in the context of Bayesian filtering and smooth-
ing [7]. Consider the problem of sequential Bayesian inference for a discrete-time,
continuous-state, nonlinear, and non-Gaussian state-space model, in a general for-
mulation that also includes hyperparameters (i.e., static parameters) to be in-
ferred. Let (Zk)k≥0 denote the unobserved latent Markov process (each Zk is a
random variable on R

n), (Y k)k≥0 denote the observed process, and Θ represent
the hyperparameters of the model, which are treated as an R

p-valued random
variable. The state-space model is then fully specified in terms of the conditional
densities πY k|Zk,Θ, πZk+1|Zk,Θ, πZ0|Θ, and the marginal density πΘ, together
with the observed data (yk)k≥0. We assume these are given. Our goal is then
to characterize, sequentially, the posterior distribution πΘ,Z0:k|Y 0:k

for all k ≥ 0,
from which any filtering distributions πZk|Y 0:k

or smoothing distributions πZj |Y 0:k

with j < k, along with the parameter marginals πΘ|Y 0:k
, are readily available.

Based on the recursive decomposition of the Markov network associated with
the posterior distribution above, we propose a new deterministic and recursive
algorithm for online inference with transport maps. In a single forward pass,
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the algorithm computes a sequence of triangular maps (Mj)j≥0, each of fixed
dimension (2n+p), that, properly composed, are capable of sampling πΘ,Z0:k|Y 0:k

for all k ≥ 0. Unlike most smoothing algorithms, the present algorithm does not
resort to any backward pass that touches the state-space model. The composition
step involves embedding the submaps (Mj) into higher-dimensional identity maps
to form the sequence (Tk)k≥0. We can then evaluate Tk := T0 ◦ · · · ◦ Tk to sample
directly from πΘ,Z0:k+1|Y 0:k+1

and obtain information about any smoothing or
filtering distribution of interest. Successive transports in the sequence (Tk)k≥0 are
nested and thus ideal for online inference. The variational yet online character of
the algorithm seems to distinguish it from existing approaches to nonlinear and
non-Gaussian smoothing and joint parameter inference [1, 2].
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A hybrid particle-ensemble Kalman filter for Lagrangian data
assimilation

Amit Apte

(joint work with Laura Slivinski, Elaine Spiller, Bjorn Sandsted)

Lagrangian data assimilation (LaDA) refers to the use of observations provided
by (pseudo-)Lagrangian instruments such as drifters, floats, and gliders, which are
important sources of surface and subsurface data for the oceans. After giving a
brief introduction to augmented state approach to LaDA and issues specific to
this problem, I will describe a recent proposal for a hybrid particle-Kalman filter
method for LaDA. The main motivation for the hybrid filter is as follows: particle
filters work well for nonlinear systems but the computational effort required grows
exponentially with dimensions of the system, whereas Kalman filters are successful
in dealing with large dimensional problems which are close to being linear. Thus
neither of them work well for high dimensional, highly nonlinear systems. On
the other hand, in LaDA, the dynamics of the Lagrangian drifters is typically
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low dimensional but highly nonlinear, whereas the flow in which they move is high
dimensional but less nonlinear. The hybrid filter attempts to combine the strengths
of both these filters and the specific structure of the Lagrangian dynamics, by
using an ensemble Kalman filter for the velocity flow while at the same time using
a particle filter for the Lagrangian drifters. I present some promising results about
the efficacy of this proposed method and discuss its shortcomings.

Bridging sequences for Sequential Monte Carlo

Nikolas Kantas

(joint work with Alex Beskos, Ajay Jasra, Alex Thierry, Dan Crisan, Francesc
Pons-Llopis)

Traditional particle filtering or Sequential Monte Carlo (SMC) methodology has
been extremely successful in low dimensional non-linear non-Gaussian applications
(e.g [1]), but their application in high dimensional settings has been very challeng-
ing mainly due to the difficulty to perform importance sampling efficiently in high
dimensions ([2], [3], [4]). Despite this challenge a few successful high dimensional
particle filtering implementations have appeared recently for data assimilation ap-
plications when the hidden signal obeys discrete time dynamics ([5], [6], [7], [8],
[9], [10]). In this talk we present past and ongoing work for addressing prob-
lems related to dimensionality or more generally the mismatch between successive
posterior distributions in the SMC target sequence. We will focus on the use of
tempering and MCMC steps and also outline how these methods can be tuned
adaptively. In addition we present recent theoretical results on the method and
relate them with the issue of dimensionality. Finally we present numerics related
to high dimensional inverse problems or filtering problems when the signal of inter-
est obeys the deterministic or stochastic Navier Stokes equation that is observed
at discrete times with noise.
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Localization-induced filter instability and a simple adaptive
localization method

Lars Nerger

(joint work with Paul Kirchgessner, Angelika Bunse-Gerstner)

Localization is a standard method for the application of ensemble-based Kalman
filters with high-dimensional models, e.g. [1]. While localization is widely used, it
theoretical basis is not yet fully understood. The application of localization can
lead to surprising results as is demonstrated for the case of ensemble Kalman filters
that use serial processing of observations [2, 3]. Based on experiments using the
Lorenz-96 model [4] it is shown that the interaction of serial observation processing
with localization can result in a filter instability. It is found that if the assimilation
has a strong influence, the error of the state estimate can jump during the data
assimilation series to a level significantly larger than the error without assimilating
any observations. This instability results from an inconsistent update of the state
error covariance matrix. The resulting error in the covariance matrix accumulates
during the serial assimilation of the scalar observations. While the instability is
visible only in filters with serial observation, the inconsistent matrix updates also
exist in filters that assimilate all observations at once, e.g. [5, 6, 7]. However,
in this case the forecast phase directly following the analysis update hides this
inconsistency [8].

Localization methods require usually a costly tuning for optimal filtering per-
formance. The second part of the talk discusses an adaptive localization method,
which avoids the need for tuning for the case that dense observations (e.g. ob-
serverations of one field at all grid points) are assimilated. Numerical experiments
show that a minimal estimation error is obtained when the number of assimilated
observations is approximately equal to the ensemble size. In case of localization
with weighted observations, this holds for the effective observation number given
by the sum of the weights. This finding is used to formulate an adaptive local-
ization method by choosing localization radii such that the effective observation
number is equal to the ensemble size for each local analysis domain. This method
works successfully, as is demonstrated by an experiment assimilating sea surface
height into a global ocean model [9]. Also, the German Weather Service (DWD)
has implemented this method in their ensemble assimilation system [10].
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Correlated Observation Errors in Data Assimilation

Nancy Nichols

(joint work with Joanne A. Waller, Jemima M. Tabeart, Sarah L. Dance, Amos
S. Lawless, David Simonin, Susan P. Ballard, Graeme A. Kelly)

With the development of convection-permitting numerical weather prediction, the
efficient use of high resolution observations in data assimilation is becoming in-
creasingly important. In current practice, however, the observation errors are
assumed to be uncorrelated and about 80% of the available observations are dis-
carded, partly in order to remove observation error correlations from the assimi-
lation. Observation uncertainty arises from a number of sources, including instru-
ment errors, pre-processing errors, observation operator uncertainty and represen-
tativity errors (scale mismatch between observations and model data). Calculation
of observation error statistics is difficult as they cannot be measured directly. Nev-
ertheless, idealized and operational studies have shown that a better treatment of
observation error correlations gives improved forecast skill. Using a diagnostic that
makes use of statistical averages of background and analysis innovations [1], we
derive observation error statistics for different data types. We develop new theory
on the effect of changes in the assumed error statistics used in the assimilation
on the estimated observation error covariance matrix [2]. If it is assumed in the
assimilation that the correlation matrix is diagonal but the observation errors are
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in fact correlated, then it is likely that the diagnostic will underestimate the vari-
ance and the correlation length-scales of the observation errors; nevertheless the
diagnostic will provide an improved estimate of the observation error covariance
matrix. We apply the diagnostic to determine horizontal and along-range obser-
vation error covariances for Doppler-radar radial winds [3]. The diagnostic has
also been applied to SEVIRI instrument data and to Atmospheric Motion Vectors
[4],[5].

In practice the implementation of correlated observation errors in data assimi-
lation schemes is challenging. We investigate the application of correlated obser-
vation errors in a 1D-variational system used operationally for satellite retrievals
and examine the conditioning of the optimization problem. The condition number
measures the sensitivity of the solution to perturbations in the data of the problem
and the computational work needed to solve the problem. We present theoretical
bounds on the condition number and show experimentally that the bounds are
tight and that the condition number increases as: the observations become more
accurate; the observation spacing decreases; the prior (background) becomes less
accurate; the prior error correlation length scales increase; and the observation
error covariance matrix becomes ill-conditioned [6],[7]. In particular we find that
the conditioning of the assimilation scheme depends on the minimum eigenvalue
of the observation error correlation matrix. To improve the conditioning and re-
duce the operational costs of the assimilation, we recondition the observation error
correlation matrix by altering its eigenstructure. Experiments demonstrate that
incorporating the reconditioned observation error correlation matrices in the as-
similation has minimal effect on temperature retrievals but does have impact on
humidity retrievals. The application to 4D variational systems and techniques for
preconditioning the assimilation problem are currently under investigation.
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A coherent structure approach to data assimilation

John Maclean

(joint work with Naratip Santitissadeekorn, Chris KRT Jones)

We introduce a Lagrangian data assimilation method to estimate model param-
eters by directly assimilating Lagrangian Coherent Structures, where they exist.
Our approach is different from previous research, where parameters are estimated
based on tracer trajectories. Our numerical approach is based on the Approxi-
mate Bayesian Computation (ABC) framework and does not require knowledge
of the likelihood function of the coherent structure, which is usually unavailable
and produces filter degeneracy when the observations are sufficiently precise [1].
We solve the ABC by a Sequential Monte Carlo (SMC) method [2], and use Prin-
ciple Component Analysis (PCA) to identify the coherent patterns from tracer
trajectory data. Our new method shows remarkably improved results compared
to the bootstrap particle filter when the number of (passive) tracers is large, the
dynamical system is noisy and the observations are highly informative (i.e. there
is small variance in observational error statistics).
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On a direct data-driven reduction of Bayesian models

Ilia Horenko

The applicability of many computational approaches is dwelling on identification of
reduced dynamical models defined on a small set of collective variables (colvars).
The popular approaches to Bayesian model reduction rely on the knowledge of
the full matrix of relations between the systems components. In many application
areas these matrices are not directly available and must first be estimated from the
data, resulting in the uncertainty of the obtained models and colvars. A simple-
to-implement clustering methodology for probability-preserving identification of
reduced Bayesian models and colvars directly from the data is presented - not
relying on the availability of the full relation matrices at any stage of the resulting
algorithm. Methodology is demonstrated on several applications from climate
research, computational fluid mechanics and molecular dynamics - covering various
scales relevant for the multiscale geophysical problems.
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Analysis of the Ensemble Kalman Filter for Inverse Problems

Claudia Schillings

(joint work with Andrew M. Stuart)

The Ensemble Kalman filter (EnKF) has had enormous impact on the applied
sciences since its introduction in the 1990s by Evensen and coworkers. The low
computational costs, the straightforward implementation and the non-intrusive
nature make the EnKF appealing in various areas of application, but, on the
downside, the method is underpinned by very limited theoretical understanding.
We will present an analysis of the EnKF based on the continuous time scaling
limits, which allows to study the properties of the EnKF for fixed ensemble size.

Let G : X → Y denote the forward response operator mapping from the param-
eter space X to the observation space Y = R

K . We assume that the operator G
is continuous and X is a separable Hilbert space. The inverse problem is then to
recover the unknown u ∈ X from noisy observation y ∈ Y where

(1) y = G(u) + η.

The observational noise η is assumed to be Gaussian, i.e. η ∼ N (0,Γ) for a
given symmetric, positive definite matrix Γ ∈ R

K×K . We define the least-squares
functional by

(2) Φ(u; y) =
1

2
‖Γ− 1

2 (y − G(u))‖2Y .

In the Bayesian framework, we view (u, y) as a jointly varying random variable
in X × Y and, under the assumption that u ∼ µ0, the solution to the inverse
problem is the X−valued random variable u|y distributed according to measure

(3) µ(du) =
1

Z
exp

(
−Φ(u; y)

)
µ0(du),

where Z denotes the normalization constant Z :=
∫

X
exp

(
−Φ(u; y)

)
µ0(du). The

EnKF is derived within the Bayesian framework and, through its ensemble proper-
ties, is viewed as approximating the posterior distribution on the random variable
u|y. However, except in the large sample limit for linear Gaussian problems, there
is little to substantiate this viewpoint. Here we will choose a different perspective
viewing the EnKF as a regularization technique for minimization of the least-
squares misfit functional Φ. The basic variant of the EnKF for inverse problems
can be summarized as follows: the EnKF maps the ensemble {uj

n}Jj=1, where J ∈ N

is the number of ensemble particles, in the n-th iteration according to

(4) u
(j)
n+1 = u(j)

n + Cup(un)(C
pp(un) + h−1Γ)−1

(
y
(j)
n+1 − G(u(j)

n )
)
, j = 1, · · · , J,

where

y
(j)
n+1 = y + ξ

(j)
n+1
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and, for u = {u(j)}Jj=1, we define the operators Cpp and Cup by

Cpp(u) =
1

J

J∑

j=1

(
G(u(j))− G

)
⊗
(
G(u(j))− G

)
,(5)

Cup(u) =
1

J

J∑

j=1

(
u(j) − u

)
⊗
(
G(u(j))− G

)
,(6)

u =
1

J

J∑

j=1

u(j), G =
1

J

J∑

j=1

G(u(j)).(7)

Interpreting the update step of the EnKF as a time-stepping scheme, i.e. as-
suming that un ≈ u(nh), we take the limit h → 0

du(j)

dt
= Cup(u)Γ−1(y − G(u(j))) + Cup(u)Γ−1

√
Σ
dW (j)

dt
,(8)

where W (j) are independent cylindrical Brownian motions on X .
The study of the linear forward problem gives us useful insights into proper-

ties of the method and allows us to establish well-posedness results, quantitative
bounds on the ensemble collapse and convergence results for a fixed ensemble size.
Furthermore, variants such as variance inflation and localization, together with
new ideas borrowing from the use of sequential Monte Carlo (SMC) method for
inverse problems can be investigated in this framework.

Numerical results indicate that the conclusions observed for linear problems
carry over to nonlinear problems. Theoretical considerations for the nonlinear
problem will be subject of future work.
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Università della Svizzera Italiana
Via Giuseppe Buffi 13
6904 Lugano
SWITZERLAND

Dr. Tijana Janjic Pfander

Hans-Ertel-Centre for Weather Research
Institute of Meteorology
Ludwig-Maximilians-Universität
München
Theresienstrasse 37
80333 München
GERMANY

Dr. Nicolas Kantas

Department of Mathematics
Imperial College London
Huxley Building
180 Queen’s Gate
London SW7 2AZ
UNITED KINGDOM

Prof. Dr. Rupert Klein

FB Mathematik und Informatik
Freie Universität Berlin
Arnimallee 6
14195 Berlin
GERMANY

Dr. Peter Korn

Max Planck Institut für Meteorologie
Universität Hamburg
Bundesstrasse 55
20146 Hamburg
GERMANY

Prof. Dr. Hans Rudolf Künsch
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