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Abstract. The problem of determining unknown quantities in a PDE from
measurements of (part of) the solution to this PDE arises in a wide range
of applications in science, technology, medicine, and finance. The unknown
quantity may e.g. be a coefficient, an initial or a boundary condition, a source
term, or the shape of a boundary. The identification of such quantities is often
computationally challenging and requires profound knowledge of the analyt-
ical properties of the underlying PDE as well as numerical techniques. The
focus of this workshop was on applications in phase retrieval, imaging with
waves in random media, and seismology of the Earth and the Sun, a fur-
ther emphasis was put on stochastic aspects in the context of uncertainty
quantification and parameter identification in stochastic differential equa-
tions. Many open problems and mathematical challenges in application fields
were addressed, and intensive discussions provided an insight into the high
potential of joining deep knowledge in numerical analysis, partial differential
equations, and regularization, but also in mathematical statistics, homoge-
nization, optimization, differential geometry, numerical linear algebra, and
variational analysis to tackle these challenges.

Mathematics Subject Classification (2010): 35R30, 65J20, 65J22, 35R60, 86A15.

Introduction by the Organisers

The workshop was attended by 49 participants from eight countries (15 from out-
side Europe), eight of them women, as well as nine of them PhD students and
PostDocs. The scientific program consisted of 23 long and 4 short talks with ex-
tensive discussions, includig one evening talk after the Wednesday excursion to
Sankt Roman.
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Additionally, a diverse group of participants joined for regular evening discus-
sions on deep learning in model-based inverse problems. Topics included the poten-
tial of these methods to (a) learn better regularization; (b) learn model correction
in situations where the forward model is inexact, e.g., due to model reduction.

The talks, which covered a broad range of methods and applications and often
lead to lively discussion, were gathering around the following focus areas:

Imaging with waves: The reconstruction of an unknown wave speed inside
some domain from boundary observations arises in many applications ranging
from geophysical prospection to ultrasound imaging. One issues here is multiple
scattering leading to artifacts when using linearized reconstruction algorithms. A
novel method that was shown to erase multiple scattering, is based on appropriate
construction of exterior initial Cauchy data through scattering control. Another
approach presented at the meeting relies on reduced order modeling, which can
actually be carried out using the measured data only.

In the context of inverse source problems and inverse scattering in time har-
monic wave equations, reconstruction algorithms and stability as well as conver-
gence rate estimates were shown. Some of them resulted from uncertainty princi-
ples for certain Fourier type transforms, some of them from a monotonicity relation
between sets contained in the support of the scatterer and the Neumann-Dirichlet
operator. Others used Tikhonov regularization under appropriate regularity con-
ditions on the solution. In the context of electromagnetic waves, imaging of small
scatterers was discussed, with resolution results on the Kirchhoff imaging function-
als that extend the scalar acoustic case. An important topic in inverse scattering
is the computation of transmission eigenvalues, since they carry information on
the refractive index of non-absorbing media. Also forward modeling plays an im-
portant role here, e.g. the derivation of appropriate radiation conditions or the
characterization of shape derivatives as a crucial prerequisite for computationally
solving the inverse problem.

Uncertainty quantification: Incomplete information on the geometry of the
domain on which the governing PDE holds, modeling errors due to domain trunca-
tion, and noise in the data are examples of sources of uncertainty that propagates
into the computational solutions of inverse problems. Bayesian approaches allow
to quantify such uncertainties, as was demonstrated in the context of electrical
impedance tomography, quantitative photoacoustic tomography, modeling of ice
sheet flow, among others. Key challenges in the computational solution of infi-
nite dimensional Bayesian inverse problems governed by PDEs include the choice
of appropriate prior distributions, efficient solution of PDE constrained optimiza-
tion problems for evaluating the MAP estimator, approximation of the posterior
covariance, and the treatment of correlated non-zero-mean noise.

Phase retrieval: In many practical inverse scattering and wave imaging appli-
cations, only intensity measurements are available, whereas phase information is
inaccessible to direct observation. Certain wave imaging tasks allow to exploit illu-
mination and frequency diversity in order to recover complete interferometric data,
from which the image can be obtained in a robust manner. In X-ray phase contrast
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imaging, stability results can be achieved under support constraints on the image.
Also uniqueness questions as well as error estimates and explicit reconstruction
formulas for phaseless inverse medium scattering problems were discussed.

Stochastic differential equations: A strong link between this focus area and
the first one was given by a talk on high-order statistics for the random paraxial
wave equation, in which the slowly varying envelope satisfies an SDE, the Itô-
Schrödinger equation. This, among other results, leads to a stochastic motivation
for correlation based imaging. A rather different field of application is modeling
of neural activity of the brain by stochastic PDEs or function valued SDEs, which
was presented together with a statistical analysis, including, e.g., the derivation of
(approximate) 1-d SDEs for certain quantities of interest.

A couple of talks dealt with the problem of estimating parameters — drift and
diffusion — in stochastic differential equations. One of them gave an overview on
convergence rates results for drift and/or diffusion estimators in the continuous
and high frequency observation regime as compared to the more challenging and
so far less explored low frequency regime of coarsely spaced observation times.
These observation settings were also considered in a different presentation from a
Bayesian perspective. An alternative approach to drift and diffusion estimation
that is well suited for the low frequency – actually even for the single time –
observation case relies to a reformulation of the problem via the Fokker Planck (or
Kolmogorov) equation, a deterministic PDE for the transition density.

Seismic imaging: Extracting information on the interior of the earth from
seismic waves is a classical source of inverse problems. Related techniques, in
particular full waveform inversions, can be used to reconstruct interior quantities
in the Sun such as flows and sound speed using correlation data of the line-of-sight
velocities on the Solar surface.

Kirchhoff migration is a standard seismic imaging technique based on a ze-
roth order imaging functional. Alternative, appropriately constructed first order
imaging functionals were shown to allow for better recovery of singularities. Full
waveform inversion, requires efficient optimization tools that are capable of avoid-
ing local minima. This can, e.g., be achieved by means of multilevel algorithms,
whose stability constants and hence radii of attraction can be controlled by scale
and frequency.

Beyond these focus areas we also had a number of talks on mixed topics in
computation inverse problems for PDEs such as the reconstruction of singularities
of the conductivity in electrical impedance tomography, based on complex geomet-
ric optics solutions and a radial Fourier transform, that enables to establish and
exploit relations to X-ray tomography. Further the inverse problem of recovering
microscale properties of materials from effective or homogenized parameters, where
the spectral measure in the integral representation of the homogenized parameters
plays a crucial role was considered. In addition hybrid techniques such as pho-
tocoustic or acousto-optic imaging that enable enhanced biomedical imaging and
lead to coupled systems for different physical quantities like light and sound were
discussed.
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Workshop: Computational Inverse Problems for Partial Differ-
ential Equations
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Abstracts

Scattering control and inverse problem for the wave equation with
piecewise smooth wave speed

Maarten de Hoop

(joint work with Peter Caday, Vitaly Katsnelson, Paul Kepley, Lauri Oksanen,
Gunther Uhlmann)

We consider the wave equation with an unknown, piecewise smooth, wave speed
on a bounded domain. The wave speed contains a discrete set of conormal sin-
gularities. We assume that we can probe the domain from outside with arbitrary
Cauchy initial data and observe the wavefield outside the domain for sufficiently
large times. We introduce the notion of an almost directly transmitted wave con-
stituent generated by “localized” Cauchy initial values in an exact setting and a
microlocal framework. We show that one can obtain exterior Cauchy initial data
through scattering control that generate this constituent, at a time equal to some
geodesic distance from the boundary of the domain erasing the multiple scattering
that would probe the deeper part of the domain. This holds up to a harmonic ex-
tension of the first component of the (interior) Cauchy data at the above mentioned
time. The scattering control can be implemented as an iteration of Neumann type,
involving instantaneous time mirrors, which converges on a set that is dense in the
space of all exterior Cauchy initial data. We then prove uniqueness, that is, the
recovery of the locations of the discontinuities and the wave speeds in between
them.

In parallel, we consider the inverse boundary value problem for the wave equa-
tion with a smooth wave speed, using partial data. We present an algorithm for
reconstruction derived from the boundary control method via wavefield reconstruc-
tion and the reconstruction of the transformation from semi-geodesic to Cartesian
coordinates. The reconstruction holds in some region near the boundary, but it
possible to iterate it in a layer stripping fashion. The layer stripping alternates
between local reconstruction and so-called redatuming.

References

[1] Maarten V. de Hoop and Paul Kepley and Lauri Oksanen, On the Construction of Virtual
Interior Point Source Travel Time Distances from the Hyperbolic Neumann-to-Dirichlet
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Control for the Wave Equation with Unknown Wave Speed, arXiv:1701.01070.
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Back-projected reduced-order models for solving inverse acoustic
scattering problems

Mikhail Zaslavsky

(joint work with Vladimir Druskin, Alexander Mamonov)

We consider a problem of imaging the acoustic velocity in the scalar wave equa-
tion, in some domain of interest, from the measurements of its solutions in the time
domain on an array of transducers located on the boundary of said domain. This
problem is known to be highly non-linear, mostly because of multiple reflections be-
tween (unknown) scatterers. When more than one reflector is present, first reflec-
tions (primaries) from them are typically mixed together with multiply-reflected
wavefields (multiples). This creates additional events in the data compared to
linearized case with primaries only. Linear imaging methods may interpret these
events as extra reflectors that are not present in the actual medium. In this work
we developed artifact-free imaging algorithm based on the theory of model order
reduction. In particular, we construct an approximate wave equation propaga-
tor that is derived to satisfy certain data interpolation conditions, as explained
later. If the data is discretely sampled in time, then the reduced order model
(ROM) interpolating the data is an orthogonal projection of the propagator on
the (Krylov) subspace spanned by the wavefield snapshots taken precisely at the
data sampling instants. Computing the projection requires an orthogonalization
of wavefiled snapshots to be performed. Since the wavefields are not known inside
the domain of interest, the orthogonalization is performed implicitly. It is a non-
linear operation that is crucial to our approach, as it allows to suppress the effects
of multiple reflections and probe the medium of interest with localized wavefields.

Consider a scalar wave equation for the acoustic pressure p(x, t)

(1) ptt = c(x)2∆p+ qt(t)φ(x)e(x), −∞ < t <∞, x ∈ Ω,

where Ω is the domain of interest in Rd, d = 2, 3 . Domain Ω can be either
infinite or finite. Here we assume Ω is finite with boundary B = ∂Ω split into the
accessible BA and inaccessible BI = B \ BA parts respectively. We also assume
that the acoustic velocity c(x) is piecewise smooth in Ω.

Wave equation (1) is driven by the source term comprised of a wavelet q(t),
source weighting function φ(x) and a distribution e(x). Source distribution e(x)
is supported on the accessible boundary supp e ⊂ BA

Assuming that all sources and receivers are collocated, the components of the
measured data on BA are given by

(2) Di,j(t) =

∫

Ω

ψ(x)ei(x)u(x, t)dx, t > 0,

where u(x, t) = 1
2 (p(x, t) + p(x,−t)), ψ(x) is a spatial receiver weighting function

and p(x, t) is the solution of 1 for e = ej(x).
The data can be equivalently rewritten as

(3) D(t) = b∗ cos

(
t

√
−Â

)
b, t > 0,
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where Â = c(x)∆c(x) and

(4) b(x) = [q̃1/2(−Â)
√
φ(x)ψ(x)e](x),

is the row-vector-valued transducer function b : Ω → R1×m.
At the core of our imaging approach is the construction of a reduced order model

for the sampled data Dk, k = 0, . . . , 2n− 1. To that end we need to transform the
symmetrized data (3) using the fact that the data is sampled uniformly in time.
Specifically, it is clear

(5)
Dk = D(tk) = b∗ cos

(
kτ

√
−Â

)
b = b∗ cos

(
k arccos

[
cos τ

√
−Â

])
b

= b∗Tk(P )b,

where Tk are Chebyshev polynomials of the first kind of degree k and P is the
propagator

(6) P = cos

(
τ

√
−Â

)
.

We seek the reduced order model in the form (5), namely

(7) F̃k = B̃∗Tk(P̃)B̃,

where P̃ ∈ Rmn×mn is the reduced order propagator and B̃ ∈ Rmn×m is the
reduced order transducer matrix.

To compute the reduced order propagator and transducer matrices we solve the
following interpolation problem

(8) F̃k = Dk, k = 0, . . . , 2n− 1.

It can be shown [2] that the reduced order propagator P̃ ∈ Rmn×mn and trans-

ducer matrix B̃ ∈ Rmn×m that solve the interpolation problem

(9) Dk = B̃∗Tk(P̃)B̃, k = 0, . . . , 2n− 1,

are orthogonal projections

(10) P̃ = (UL−1)∗(PUL−1) = (L−1)∗(U∗PU)L−1, B̃ = (UL−1)∗b,

of the true propagator (6) and transducer function (4) on the Krylov subspace

colspan(U). Here U = (b, cos
(
τ
√

−Â
)
b, . . . , cos

(
(n− 1)τ

√
−Â

)
b) is a tall

matrix of snapshots and LL∗ = U∗U. Though we don’t have access to U, we still
can compute U∗PU and L via the given data {Dk}2n−1

k=0 only. Indeed, it can be
easily verified (see [1]) that (k; l)-th blocks of these matrices can be computed as

(U∗U)k,l = (ûk)∗ûl = b∗Tk(P )Tl(P )b =
1

2

(
b∗Tk+l(P )b+ b∗T|k−l|(P )b

)
.

and

(U∗(PU))k,l = (ûk)∗(P ûl) =
1

4

(
Dk+l+1 +D|k−l+1| +D|k+l−1| +D|k−l−1|

)
,
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Hence, having the measured data {Dk}2n−1
k=0 only without access to snapshots, we

still can compute the orthogonal projection of the propagator onto the subspace of

snapshots. Once the reduced order propagator P̃ is computed from the sampled
data, we can use it for inversion and imaging. In this work we target to approxi-
mation of the difference g(xi, xi, τ)− g0(xi, xi, τ) of the Green’s functions for the
true unknown medium and for some known background with velocity c(o)(x) that
is assumed to capture kinematics of the problem. If in the vicinity of a point
x ∈ Ω the unknown medium c(x) contains a reflector, then the difference will be
large. Otherwise, c(x) ≈ c(o)(x) and g(xi, xi, τ)− g0(xi, xi, τ) ≈ 0. If the subspace

of snapshots is rich enough then the back-projected propagator UL−1P̃(UL−1)∗

approximates g(xi, xi, τ) when being probed by delta-functions δ(x−xi) from the
left and from the right. However, we don’t have access to U. Hence, we propose to
approximate g(xi, xi, τ)− g0(xi, xi, τ) by ROM backprojection imaging functional

(11) IBP (x) = [U(o)(x)L
−1
(o)]

(
P̃− P̃(o)

)
[(U(o)(x)L

−1
(o))

∗], x ∈ Ω,

Imaging via IBP (x) can be related to imaging of the Schrödinger potential of the
Liouville-transformed equation (1) (see [2] for details).

In Figure 1 we demonstrate the performance of the algorithm for example of
imaging hydraulic fractures (exact model is shown on the left). The sources-
receivers array is located on top of the domain. As clearly seen, results obtained
using conventional linear approach (middle figure) exhibits numerous artifacts due
to multiple reflections. Imaging via IBP (x), in turn, captures the fracture pattern
very well.

Figure 1. For the model consisting of two extended reflectors
c(x) in the known layered background (left) we compared images
produced using backprojection and RTM functionals IBP (right)
and IRTM (middle), respectively. Locations xj , j = 1, . . . ,m, of
m = 32 point-like transducers are black ×.All distances in km,
velocities in km/s.
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Uncertainty principles for inverse source problems, far field splitting
and data completion

Roland Griesmaier

(joint work with John Sylvester)

Modelling the propagation of time-harmonic acoustic or electromagnetic waves
by the Helmholtz equation, the far field of such a wave radiated by a compactly
supported source f coincides up to a constant with the Fourier transform of the
source restricted to a sphere. Unique continuation of solutions to the Helmholtz
equation implies that no two sources with disjoint supports can radiate the same
far fields, so the subspaces of far fields radiated from disjoint compact sets intersect
only at the origin, and therefore a far field radiated by a collection sources with
disjoint supports has a unique splitting into a sum of far fields, each of which is
radiated by an individual source. Similarly, because the Fourier transform of a
compactly supported function is analytic, observations of the far field on any open
subset of the sphere uniquely determine the far field on the entire sphere. This
implies that far field splitting and data completion are theoretically possible, but,
without further assumptions both are severely ill-posed inverse problems.

We recently investigated both data completion and far field splitting in two and
three dimensions [4, 5]. Based on the singular value decomposition of the operator
that maps sources supported in a ball to the far fields they radiate, we developed
a regularized Picard criterion, which characterized the subspaces of nonevanescent
far fields radiated by L2 sources supported in a ball. These are the far fields that
can be radiated by a limited power source, and at the same time have enough power
to be detected by a sensor with limited sensitivity. We combined the regularized
Picard criterion with an uncertainty principle for the far field translation operator
to develop reconstruction algorithms and stability results for far field splitting. The
far field translation operator maps the restricted Fourier transform of a compactly
supported source f(x) to the restricted Fourier transform of its translate f(x+ c),
and our uncertainty principle is an upper bound on the cosine of the angle between
two different subspaces of nonevanescent far fields, each of which is radiated from
a different ball. The bound on the cosine implies a bound on the cosecant, and
the cosecant is exactly the condition number of the linear splitting operator.

We also combined the regularized Picard criterion with another uncertainty
principle for the operator that maps far fields to their Fourier components, and
obtained reconstruction algorithms and stability estimates for recovering missing
data segments of a far field radiated by a localized source. Both results can be
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combined to simultaneously complete far fields and split them into the components
radiated by well-separated localized sources. In both cases, the bounds depend
simply on wavelength, diameter, and (in the case of splitting) distance between
the sources.

Our main results are based on estimates of condition numbers for linear oper-
ators that split a vector into two or more components. The estimates are all of
the same general form. Define the cosine of the angle θ between two subspaces V1
and V2 as

cos θ = sup
v1∈V1, v2∈V2

∣∣∣∣
〈v1, v2〉
‖v1‖‖v2‖

∣∣∣∣ .

As long as cos θ < 1, the following result is straightforward to check.

Theorem 1. Suppose that v = v1+v2 with v1 ∈ V1 and v2 ∈ V2, then, for i = 1, 2,

(1) ‖vi‖2 ≤ 1

1− cos2 θ
‖v‖2 .

The inequality (1) asserts that the splitting operator that maps v to the pair
(v1, v2) exists and its condition number is bounded by csc θ.

For far field splitting and data completion, V1 and V2 are finite dimensional
subspaces of L2(Sd), d = 2, 3. We use a regularized Picard criterion to define the
subspaces V c

R of nonevanescent far fields radiated by sources supported in the ball
of radius R centered at a point c (at wavenumber k). We showed that, in R3,
the subspace V c

R is the approximately (kR)2 dimensional space spanned by eikc·φ

times the spherical harmonics of degree n ≤ kR. For comparison, in R2, V c
R has

dimension 2kR + 1 and is spanned by eikc·φ times the complex exponentials einφ

with |n| ≤ kR.
We established estimates for the cosine of the angle between nonevanescent far

fields radiated from well-separated balls. Specifically, in R3, if

|kc2 − kc1| > 2
(
kR1 + kR2 +

3

2

)
,

the cosine of the angle θ between the subspaces V c1
R1

and V c2
R2

satisfies

(2) cos θ .
(kR1)

3
2 (kR2)

3
2

|kc2 − kc1|
,

where the symbol . means that the left-hand side is less than or equal to the right
hand side times a constant that is independent of k, Ri, and ci, i = 1, 2. In R2,
the analogous inequality is

(3) cos θ .
(kR1)

1
2 (kR2)

1
2

|kc2 − kc1| 12
,

and an example in [4] using a line source shows that the dependence on k, Ri, and
ci, i = 1, 2, in (3) is sharp. An example in [5], which calculates the inner product
of the far fields radiated by constant sources supported on translated disks in R3,
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gives a cosine estimate

cos θ &
kR1kR2

|kc2 − kc1|
sin(|kc2 − kc1|)

so we don’t yet know if the dependence in (2) is sharp, or if it is possible to replace
the 3/2 power in (2) by the first power.

We also showed that the cosine of the angle θ between the subspaces V c
R and

L2(Ω), the subspace of functions in L2(S2) supported in Ω ⊂ S2, satisfies the
inequality

(4) cos θ .

√
|Ω|
4π

(kR)2 ,

where |Ω| is the area of Ω. An example in [5] shows that the dependence on k,
R, and |Ω| is sharp. The analogy in two dimensions, with |Ω| equal to the length
of Ω, is

(5) cos θ .

√
|Ω|
2π

kR ,

which is also sharp.
These estimates have been used to establish stability estimates for reconstruc-

tion algorithms for far field splitting and data completion in [4, 5] (see also [2, 3]).
We end this report by explaining why we refer to the inequalities (2), (3), (4),

and (5) as uncertainty principles. Let VT denote the L2 functions supported in
T and V

Ŵ
denote the L2 functions whose transforms are supported in W . By

transforms, we mean either the Fourier transform on the line, the Fourier series
on the circle, or the N-point discrete Fourier transform1.

Theorem 2. If there is a nonzero f that belongs to VT ∩ V
Ŵ
, then

C ≤ |T ||W | ,
where the constant C is 2π for the Fourier transform on the line and the circle,
and C = N for the N -point DFT.

The contrapositive of Theorem 2 is the following.

Theorem 3. If |T ||W | < C, then VT ∩ V
Ŵ

= {0}.
We reformulate this as follows.

Theorem 4. If f ∈ VT and g ∈ V
Ŵ
, then

(6) |〈f, g〉| ≤
√

|T ||W |
C

‖f‖‖g‖ .

Setting f = g in (6) recovers Theorems 3 and 2. Where Theorem 3 guaran-
tees the existence of a splitting operator, Theorem 4 explicitly estimates its norm,

1This example in [1] motivated this work.
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which is csc θ. In the case of the Fourier transform, Theorem 2 as stated is vacu-
ous, because a compactly supported function cannot have a compactly supported
Fourier transform2. Theorem 4 does not suffer this inconvenience.
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Tikhonov Regularization for Inverse Medium Scattering in Banach
Spaces

Frederic Weidling

(joint work with Thorsten Hohage)

This talk is concerned with the problem of the recovery of the potential q in the
Schrödinger equation (

−∆+ q(x)
)
u(x) = E u(x).

at fixed energy E from measurements of the corresponding Green’s function g =
F (q) on a sphere assuming that the potential is bounded and absorbing with
compact support inside the measurement sphere. To deal with the ill-posedness
of the problem given noisy measurements gδ = F (q)+ ξ with ‖ξ|L2‖ ≤ δ we apply
Tikhonov regularization

qδα ∈ argminTα,gδ (q) with Tα,gδ (f) =
1

2α
‖F (q)− gδ|L2‖2 +R(q).

to obtain a stable reconstruction of the true potential q†. Here we use as a penalty
term

R(q) = ιK(q) + ι‖·|L∞‖≤C∞
(q) +

1

2
‖q|B0

p,p‖2

where ιC is the indicator function of the set C, K is the set of all functions with
support contained in a fixed ball and nonnegative imaginary part and B0

p,p is a
Besov space with 1 < p ≤ 2. The Besov norm is in our case defined via a weighted
sum of wavelet coefficients see [1]. The idea behind this approach is to enforce
sparsity of the solution in the corresponding wavelet basis.

The first question that arises is whether the Tikhonov functional is indeed
regularizing. We prove that this in fact the case relying mainly on the support

2Theorem 2 can easily be modified to a useful statement about functions essentially supported
in certain subsets [1].
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constraint and L∞ bound to be able to use results in [2]. Another main issue
is to determine how close the minimizer of the Tikhonov functional qδα is to the
true potential q†. To answer this question we use the theory of variational source
conditions which for the problem under consideration has the form

(1) 〈q∗, q† − q〉 ≤ 1

2
∆ 1

2‖·|B
0
p,p‖

2(q, q†) + ψ(‖F (q)− F (q†)|L2‖2)

for all q ∈ K with ‖q|L∞‖ ≤ C∞. Here ∆ 1
2‖·|B

0
p,p‖

2 denotes the Bregman distance

with respect to 1
2‖·|B0

p,p‖2 and q∗ ∈ ∂ 1
2‖q†|B0

p,p‖2. For reasons why we consider
variational source conditions see [3] and references therein. Here we aim at making
the dependence on E of the function ψ explicit. This is inspired by known stability
estimates for the problem under consideration which show that the exponential ill-
posedness of the problem (see [4]) becomes a Hölder instability in the high energy
limit, see [5] and references therein.

Here we prove the following theorem:

Theorem 1. Let E ≥ 1 and q† ∈ K with ‖q†|L∞‖≤ C∞ and ‖q†|Bs
p,∞‖ ≤ Cs.

Then there exists a constant c > 0 such that a variational source condition holds
true for all q ∈ K with ‖q|L∞‖ ≤ C∞ with ψ given by

ψ(δ2) = c
(
E3δ

1
2 +

(
E + ln2(3 + δ−2)

)−µ
)
, where µ = min

{
s(p− 1),

2

4− p

}
.

The dependence of c on C∞ and Cs can be made explicit. The theorem has the
following two important implications.

Corollary 2. With the notation of Theorem 1:

(1) Convergence rate: Let q† as above and qδα be the minimizer of the Tikhonov
functional for optimal α, then

‖q† − qδα|B0
p,p‖2 ≤ cψ(δ2).

(2) Stability estimate: Let q1 and q2 fulfill the requirements on q†, then

‖q1 − q2|B0
p,p‖2 ≤ cψ(‖F (q1)− F (q2)|L2‖2).

Concerning the proof of Theorem 1 we rely on a generalization of a strategy
proven in [6] to spaces which are convex of power type. This strategy relies on
splitting the left hand side of (1) into two parts, one of which can be estimated
using smoothness of q∗ and the second one with properties of the forward operator.

For the first estimate an important step is to characterize the smoothness of q∗

in terms of the smoothness of q†.

Theorem 3. Let s > 0, 1 < p ≤ 2 and q∗ ∈ ∂ 1
2‖q†|B0

p,p‖2. Then q† ∈ Bs
p,∞ if

and only if q∗ ∈ B
s(p−1)
p′,∞ where 1

p + 1
p′ = 1.

For the second part it turns out that one has to estimate the largest Fourier
coefficient of q† − q in a ball of a certain radius. Here we proceed similar to [7] to
show the following:



1480 Oberwolfach Report 24/2017

Lemma 4. Let E ≥ 1 and q1, q2 ∈ K such that ‖qj |L∞‖≤ C∞ for j = 1, 2. Then
for fixed radius ̺ > 0 there exists constants a, c > 0 such that for all t large enough
the estimate
∥∥∥q̂1 − q2|L∞(B(̺))

∥∥∥ ≤ c

(
eatE3‖F (q1)− F (q2)|L2‖+ 1√

E + t2
‖q1 − q2|L2‖

)

holds true.

The proof of this result relies on well-known results in scattering theory [8, 9].
To derive the energy dependence, which has not been done in [7], we use in addition
results in [10].

With the help of the previous two results, interpolation and a proper choice of
the free parameters one then proves Theorem 1.
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Reconstruction of a compact perturbation of a periodic structure –
Preliminary Results

Andreas Kirsch

(joint work with Armin Lechleiter)

We consider the following scattering problem in the half plane R2
+ = {x ∈ R2 :

x2 > 0}: We are given the wave number k > 0, the index of refraction n ∈ L∞(R2
+)

which is assumed to be 2π−periodic with respect to x1 and equal to one for x2 > h,
a perturbation q ∈ L∞(R2

+) with compact support in the layer W := R × (0, h),

and the incident field ui(x) = Φ(x, y) − Φ(x, y∗). Here, y is the source location

with y2 > 0 and y∗ = (y1,−y2)⊤, and Φ(x, y) = i
4H

(1)
0 (k|x − y|) denotes the
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fundamental solution of the Helmholtz equation. The (direct) scattering problem
is to determine the total field ut = ui + us as the sum of the incident field ui and
the scattered field us such that

(1) ∆ut + k2n (1 + q)ut = 0 for x2 > 0 , ut = 0 for x2 = 0 .

Furthermore, us has to satisfy some kind of radiation condition, and the main
concern of this talk is to derive its correct form. A natural candidate is the
upward propagation radiation condition UPRC; that is, us has the form

us(x) = 2

∫

Γh

us(y)
∂

∂y2
Φ(x, y) ds(y) , x2 > h , were us|Γh

∈ L∞(Γh)

and Γh := R× {h}. However, this UPRC is not sufficient as we will see.

First, we consider the unperturbed situation q = 0. We transform the problem
into a source problem by choosing ξ ∈ C∞(R2) with ξ(x) = 0 for |x − y| ≤ ε/2
and ξ(x) = 1 for |x− y| ≥ ε and set u = us + ξui. Then u solves

(2) ∆u + k2nu = −f for x2 > 0 , u = 0 for x2 = 0 ,

for some f ∈ L2(R2
+) with compact support.

We look for quasi-periodic solutions of the homogeneous problem (f = 0); that is,
for solutions φ of (2) for f = 0 with φ(x1 + 2π, x2) = φ(x)ei2πα for all x ∈ W .
Parameters α ∈ (−1/2, 1/2] for which non-trivial α−quasi-periodic solutions of (2)
exist which satisfy also a Rayleigh expansion in the form

φ(x) =
∑

m∈Z

am ei(m+α)x1+i
√

k2−(m+α)2(x2−h) , x2 > h ,

for some am ∈ C are called exceptional values. We make the first assumption:

Assumption 1: Let k = k0 + κ with k0 ∈ N0 and κ ∈ (−1/2, 1/2]. Then ±κ are
not exceptional values.

It is well known that, in general, these exceptional values exist but there are
only finitely many of these. We collect them in the set {α̂j : j ∈ J} where J
is finite (or empty). Furthermore, the corresponding functions φ are evanescent;
that is, they decay exponentially as x2 tends to infinity. For every j ∈ J we set
Q∞ = (0, 2π)× (0,∞) and

Xj =

{
φ ∈ H1(Q∞) :

∆φ+ k2nφ = 0 for x2 > 0 , φ = 0 for x2 = 0 ,
φ is α̂j-quasi-periodic and evanescent.

}

Then every Xj is finite dimensional. For every j ∈ J we choose a basis {φℓ,j : ℓ =
1, . . . ,mj} of Xj by solving the eigenvalue problem

−i
∫

Q∞

ψ
∂φℓ,j
∂x1

dx = λℓ,j k

∫

Q∞

nφℓ,j ψ dx for all ψ ∈ Xj ,

with eigenvalues λℓ,j ∈ R for ℓ = 1, . . . ,mj and j ∈ J .

Assumption 2: λℓ,j 6= 0 for all ℓ and j ∈ J .
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The sign of the eigenvalues determine the modes which travel to the right and left,
respectively. Therefore, we set L±

j = {ℓ : λℓ,j ≷ 0}. Now we are able to prove the
following limiting absorption principle.

Theorem Let Assumptions 1 and 2 hold, and let uε ∈ H1(R2
+) be the unique

solution of (2) where k is replaced by k+ iε. Then uε converges to u0 in H1
loc(R

2
+)

where u0 satisfies (2), the UPRC, and has a decomposion into the form u0 =
u(1) + u(2) where u(1) ∈ H1

(
R× (0, H)

)
for every H > h and u(2) has the form

u(2)(x) = ψ+(x1)
∑

j∈J

∑

ℓ∈L+
j

a+ℓ,j φℓ,j(x) + ψ−(x1)
∑

j∈J

∑

ℓ∈L−
j

a−ℓ,j φℓ,j(x)

for some a±ℓ,j ∈ C. Here, ψ± are given by

ψ±(x1) :=
1

2


1 ± 2

π

x1/2∫

0

sin t

t
dt


 , x1 ∈ R .

We note that limx1→∞ ψ+(x1) = 1 and limx1→−∞ ψ+(x1) = 0 and ψ− = 1− ψ+.

By this theorem we have shown the existence of the Green’s function G(x, y) since
we can apply this limiting absorption principle to every point y in R2

+. Now we
include the perturbation q and consider (1).

Theorem Let Assumptions 1 and 2 hold.

(a) Let ut = ui + us be a solution of (1) such that us satisfies the radiation
condition of the previous theorem. Then the restriction of ut to D :=
supp q solves the Lippmann-Schwinger integral equation

(3) ut(x) = ui(x) + k2
∫

D

q(y)ut(y)G(x, y) dy , x ∈ D .

(b) Let ut ∈ L2(D) be a solution of (3). Then its extension by the right hand
side to R2

+ is a solution of the scattering problem (1) such that us satisfies
the radiation condition of the previous theorem.

(c) The integral equation is uniquely solvable in L2(D) for sufficiently small
k2

∫
D
q(y) dy.

Therefore, this theorem provides well-posedness of the direct scattering problem.
It is the aim of future work to study the corresponding inverse scattering problem
to determine properties of the perturbation q from the knowledge of the scattered
field outside (and far away) of the perturbation.
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Data-to-Born transform for inversion and imaging with waves

Alexander V. Mamonov

(joint work with Liliana Borcea, Vladimir Druskin, Mikhail Zaslavsky)

Inverse problems for the coefficients of wave equations are highly nonlinear due
to both kinematic and multiple scattering effects. Meanwhile, many conventional
inversion algorithms assume that the dependency of the scattered waves on the
medium properties is approximately linear. The linearization, known as the Born
approximation, is not accurate in strongly scattering media, where the waves un-
dergo multiple reflections before reaching the measurement sensors. This results in
artifacts in the reconstructions obtained under the Born approximation assump-
tion. Here we present an algorithm that removes the multiple scattering effects
from the data measured at an array of sensors based on the techniques of model
order reduction. The transformed data can then be fed to conventional linearized
inversion workflows.

The method relies heavily on the tools of linear algebra, so for simplicity of
exposition we treat all continuum quantities as discretized on a very fine grid with
N nodes. All matrix-valued quantities are denoted by bold letters. Consider the
first order form of the initial value problem for the symmetrized acoustic wave
equation

(1) ∂t

(
P
U

)
=

(
0 −Lq

LT
q 0

)(
P
U

)
, t > 0, P(0) = B, U(0) = 0.

Here the wavefields are driven by an array of m sources, the columns of the initial
condition matrix B ∈ RN×m. The columns of the matrix-valued function of time
P : R+ → RN×m contain the acoustic pressure wavefields for all m sources. The
matrices Lq, and LT

q are the fine grid discretizations of the operators

(2) Lq =
√
c(x)

(
−∇· +1

2
∇q(x)·

)√
c(x) and LT

q =
√
c(x)

(
∇+

1

2
∇q(x)

)√
c(x),

where the non-reflective wave speed c(x) is assumed known, and our objective is
to image the acoustic impedance σ(x) = eq(x).

The solution of (1) is given by P(t) = cos
(
t
√
LqLT

q

)
B. We assume that the

sources are collocated with receivers, so the receiver matrix is also B, and we can
write the data collected at the array of m receivers as

(3) D(t) = BT cos
(
t
√
LqLT

q

)
B ∈ R

m×m.

Typically, the data is sampled discretely in time, say uniformly at tk = kτ . This
allows us to write the sampled data Dk = D(kτ) = BTTk(P)B, using Chebyshev
polynomials of the first kind Tk and the propagator

(4) P = cos
(
τ
√
LqLT

q

)
.

Given the sampled data Dk, we construct a reduced order model (ROM) for
the propagator and the source-receiver matrix B. The ROM is given by a pair of
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matrices P̃ ∈ Rmn×mn, B̃ ∈ Rmn×m that satisfy the data interpolation conditions

(5) Dk = B̃TTk
(
P̃

)
B̃, k = 0, 1, . . . , 2n− 1.

Using the properties of Chebyshev polynomials we can show [1, 2, 3] that the
ROM (5) can be computed entirely from the knowledge of the sampled data Dk,
k = 0, 1, . . . , 2n− 1.

While the ROM can be used to image σ(x) directly [1, 2], here we follow [3]
to transform the multiple scattering data Dk to its single-scattering (Born) ap-
proximation. To that end we need to obtain a quantity that is (approximately)
linear with respect to q(x) = lnσ(x). Discrete data sampling also induces the
sampling of the wavefields into the snapshots Pk = P(kτ) that satisfy exactly a
second-order time stepping scheme

(6)
1

τ2

[
Pk+1 − 2Pk +Pk−1

]
= −ξ(P)Pk,

with a positive definite

(7) ξ(P) =
2

τ2
(
I− P

)
= LqLT

q ,

where we use Taylor series expansion to see that the factors satisfy Lq = Lq+O(τ
2),

i.e. they are approximately linear with respect to q. But the ROM P̃ is an
approximation of the propagator P, so the block Cholesky factors of

(8) ξ(P̃) =
2

τ2
(
I− P̃

)
= L̃qL̃

T
q ∈ R

mn×mn,

are also approximately linear in q.

Once we obtain the ROM P̃ from the sampled data Dk and thus the block

Cholesky factor L̃q of (8), we can perform the same computation for some reference

impedance, say σ ≡ 1 corresponding to q ≡ 0, to obtain L̃0 from the sampled
reference data D0

k. To compute the Born approximation around the reference
impedance we consider the perturbation of the block Cholesky factor

(9) L̃ε = L̃0 + ε
(
L̃q − L̃0

)
,

approximately linear in q, and the correspondingly perturbed propagator ROM

(10) P̃
ε = I− τ2

2
L̃εL̃εT .

Then the transformed single scattering data Fk is given by

(11) Fk = D0
k + B̃T

[
d

dε
Tk

(
P̃

ε
)∣∣∣∣

ε=0

]
B̃,

where the derivative can be computed using the three-term recurrence for Cheby-
shev polynomials. We refer to (11) as the Data-to-Born (DtB) transform. This
highly nonlinear procedure transforms the multiple scattering sampled data Dk to
its single scattering approximation Fk taken about the reference impedance.

In Figure 1 we demonstrate the performance of the DtB transform on the sim-
ulated data for a 2D model with linear wave speed and σ(x) with three reflectors.
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c(x) σ(x)

Dk −D0
k Fk −D0

k

Figure 1. Numerical example 2D model and DtB transform.
Top row: wave speed c(x) in km/s and acoustic impedance σ(x)
in kg/sm2, all distances in km, m = 50 sources/receivers are ×.
Bottom row: sampled data (left) and DtB transform (right) for
a single receiver (red ◦) with the surface wave D0

k removed; hori-
zontal axis: receiver index, vertical axis: sample time index k.

In the original data Dk we observe a number of events, arrivals of the scattered
waves to the receiver array, including the primary and multiple reflected waves,
which we reference in the order of arrival. We observe that the second event is a
combination of a primary arrival from the small reflector and a secondary arrival
from the topmost reflector. All events after the third one are multiple reflections.
The DtB transform successfully removes all the multiple reflection events. Specifi-
cally, in the second event it extracts the primary reflection from the small reflector
by suppressing the secondary reflection from the top reflector.
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Stochastic boundary models and geometric uncertainties

Jari Kaipio

(joint work with Daniela Calvetti, Paul Hadwin, Janne Huttunen, Erkki
Somersalo)

Inverse problems induced by partial differential equations and related boundary
value problems are notoriously sensitive to geometric uncertainties, and this topic
has received recent attention [3, 4, 2]. Furthermore, real world inverse problems
practically always necessitate truncation of the (computational) domain; and on
these boundaries, the boundary conditions depend on the material coefficients
outside the computational domain. Here, we constrain ourselves to electrical
impedance tomography with the complete electrode model which is the real world
counterpart of the inverse conductivity problem of Cálderon [1]

Consider the inverse conductivity problem of feeding currents into a body/
domain (volume conductor) via electrodes and measuring the resulting potentials
on the electrodes. The forward problem is induced by the the boundary value
problem (complete electrode model)

∇ · (σ∇u) = 0 in Ω

u+ zℓσ
∂u

∂ν
= Uℓ on eℓ , ℓ = 1, . . . , L

∫

eℓ

σ
∂u

∂ν
dS = Iℓ on eℓ, ℓ = 1, . . . , L

σ
∂u

∂ν
= 0 on ∂Ω\ ∪L

ℓ=1 eℓ

where zℓ are the contact impedances, u is the electric potential, eℓ are the elec-
trodes and σ is the electrical conductivity.

Let the domain Ω consist of two subdomains, Ω1 and Ω2, where the former is
of interest and the task is to estimate the (probability) distribution of σ1 so that
the computations are carried out in Ω1 only, as in the figure below.

The variational form of the complete electrode model was derived in [8] and the
extension of modelling part of the boundary with a (deterministic) Dirichlet-to-
Neumann (DtN) operator in [7].

Here, we model the unknown conductivity as a random field over the entire Ω
[9]. In [5, 6], it was shown that the DtN operator depends on the conductivity
σ2 outside Ω1 and the DtN can thus be interpreted as a stochastic operator. The
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Figure 1. Decomposition of the domain.

variational form with the DtN on the truncation boundary Γ is of the form

B[σ1,Λ]((v, U), (u, V )) =

L∑

ℓ=1

VℓIℓ

B[σ1,Λ]((v, U), (u, V )) =

∫

Ω1

σ1∇u · ∇v dx+

L∑

ℓ=1

1

zℓ

∫

eℓ

(v − Vℓ)(u − Uℓ) dS

+

∫

Γ

vΛu dS

where (u, U), (v, V ) ∈ Ḣ = H/R and H = H1(Ω1) × RL and Λ = Λσ2 is the DtN
operator Λσ2u = σ1∂nu on Γ.

After discretization of the variatinonal form, the DtN operator takes the form of
a matrix whose elements are random variables whose joint distribution is induced
by the distribution π(σ2) of the random field σ2.

Here, we construct a series approximation for the discretized DtN operator
Λ ∈ RN×N

Λ = Λ0 +

p∑

k=1

βkΛk + Λ̃

where β = (β1, . . . , βp) are random variables and we determine Λ0, . . . ,Λp so that

Λ̃ is small in some sense. We choose to minimize the expectation of the Frobenius
norm

E‖Λ̃‖2F
over π(σ2) which results in a Karhunen-Loéve type decomposition [6]. The inverse
problem is then to model the posterior density π(σ1, β |, V ) and compute point and
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spread estimates [10]. For the computational model, we need the basis operators
Λ0, . . .Λp which are provided by a Monte Carlo simulation over π(σ2), and we
approximate π(β) as normal.

An example of results from laboratory measurements are given in Fig. 2.

Figure 2. Left: reconstruction in the entire domain Ω, center:
reconstruction in Ω1 with homogeneous Neumann conditions used
on Γ, right: the stochastic DtN used on Γ.
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Practical aspects in computational methods for Bayesian inverse
problems governed by PDEs

Georg Stadler

(joint work with Yair Daon, Omar Ghattas, Tobin Isaac, Noemi Petra)

My presentation focused on challenges arising in the development of computational
methods for infinite-dimensional Bayesian inverse problems governed by PDEs. As
driving application, I considered the inference of a spatially distributed coefficient
in the basal Robin boundary condition of the Antarctic ice sheet. The data for this
inference are satellite observations of the flow on the top surface of the ice sheet,
and the governing PDE describing the gravity-driven flow of ice is an instanta-
neous nonlinear incompressible Stokes equation [3]. Inferring the basal boundary
condition together with the corresponding uncertainty is the crucial starting point
for predicting the contribution of the continental ice sheets to future sea level rise
under various climate forcing scenarios.

I first discussed the definition of prior distributions for infinite-dimensional pa-
rameters, such as, for instance, the uncertain Robin coefficient field for the Antarc-
tica ice sheet inference problem. Building on theoretic results [6] and computa-
tional experience [1, 3], we use a Gaussian normal distribution defined over the
Hilbert space of square integrable functions as prior. This Gaussian is character-
ized by its mean and its covariance operator, for which we choose the negative
square of an elliptic (Laplacian-like) PDE operator. This choice is motivated by
the connection between stochastic PDEs and Gaussian random fields [4], and by
the availability of fast solvers for elliptic PDE operators. These solvers allow for
the fast application of the covariance operator, its inverse and its square root
to vectors, as required to evaluate the likelihood and to draw samples from the
distribution.

However, these PDE operators require a choice of boundary conditions, and
this choice can have a strong influence on the prior distribution. This influence
is usually undesired. For instance, the commonly used homogeneous Neumann
boundary conditions tend to result in increased correlation close to the bound-
ary compared to the interior of the domain. As a remedy, in [2], we propose
two techniques that allow to ameliorate these boundary effects in the definition of
Gaussian priors based on elliptic PDE operators. The first approach we propose
combines the elliptic PDE operator with a Robin boundary condition, where a
varying Robin coefficient is computed from an optimization problem. The second
approach normalizes the pointwise variance by rescaling the covariance operator.
Numerical results on simple domains as well as the Antarctica domain illustrate
that these methods largely mitigate undesired boundary effects in the prior while
the computational efficiency that results from the choice to define covariance oper-
ators using elliptic PDE operators is retained. An alternative approach to mitigate
undesired boundary effects is to extend the computational domain, e.g., [5]. This
typically requires to assemble discretized PDE operators, which can be infeasible
for large-scale problems.
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As a second theme of my talk, I presented approximations of the posterior dis-
tribution for the basal Robin coefficient in the Antarctic ice flow inference problem.
This inference is formulated as Bayesian inverse problem (or inverse uncertainty
quantification problem). The uncertainty in the inferred coefficient is due to the
ill-posedness of the problem and the limited observational data. In particular in
infinite (upon discretization, high) dimensions and in the presence of expensive-to-
evaluate governing equations (here, a nonlinear Stokes equation), characterizing
the solution of a Bayesian inverse problem (i.e., the posterior probability distribu-
tion), is extremely challenging. Hence, one often has to resort to approximations.
A first approximation is to compute the maximum a posterior (MAP) estimate,
which amounts to the solution of a PDE-constrained optimization problem that is
similar to the problems being solved in regularization-based deterministic inverse
problem approaches. I presented results for this optimization problem using an in-
exact Newton-conjugate-gradient algorithm, where first and second derivatives of
this PDE-constrained optimization problem are computed using adjoints. A next
level of posterior approximation is a Gaussian approximation around the MAP
estimate, with posterior covariance operator given by the inverse of the Hessian
of the optimization problem for the MAP estimate. To make this approximation
computationally feasible, I presented a method that exploits that the posterior
covariance can typically be derived as a low rank update of the prior covariance.
This low rankness reflects that the amount of information one can learn from
observations is typically limited in ill-posed problems [1, 3]. I discussed the use
of randomized singular value decomposition methods to compute these low rank
approximation, and showed samples as well as pointwise variance plots from this
Gaussianized posterior distribution for the inference of the basal boundary co-
efficient of the Antarctica ice sheet. Finally, I briefly discussed challenges and
limitations of sampling algorithms. While in principle, sampling algorithms allow
to fully explore posterior distributions, they become computationally extremely
expensive in high dimensions with complex-to-evaluate parameter-to-observable
maps.
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Bayesian approach to quantitative photoacoustic imaging

Tanja Tarvainen

(joint work with Aki Pulkkinen, Jari P. Kaipio, Ben T. Cox, Simon R. Arridge)

Quantitative photoacoustic tomography (QPAT) is an emerging imaging technique
aimed at estimating the optical parameters inside tissues from photoacoustic im-
ages which are formed by combining optical information and ultrasonic propaga-
tion [1]. The two inverse problems of QPAT are: 1) reconstruct the initial acoustic
pressure distribution from measured acoustic waves and 2) reconstruct the distri-
butions of the optical parameters from the absorbed optical energy density. The
first inverse problem is an inverse initial value problem of acoustics. There are a
large number of reconstruction techniques available, see e.g. [2, 3] and the refer-
ences therein. However, in cases in which the acoustic properties of the medium
are varying, the inverse problem becomes significantly more challenging.

The second inverse problem in QPAT is the optical image reconstruction where
the goal is to estimate the concentrations of chromophores. These can be obtained
either by directly estimating the chromophore concentrations from photoacoustic
images obtained at various wavelengths [4, 5, 6] or by first recovering the absorp-
tion coefficients at different wavelengths and then calculating the concentrations
from the absorption spectra [4, 5]. As an alternative to the two-step approach,
estimation of the optical parameters directly from the photoacoustic time-series
has also been considered recently [7, 8, 9, 10].

In this work, the optical inverse problem of QPAT is studied. Modelling of
the noise and errors due to the acoustic solver and incorporating this information
into the solution of the optical inverse problem are investigated [11, 12]. That
is, we consider estimation of a distribution of parameters x in a case of a hybrid
tomography where the data is obtained as a solution of an another inverse problem.

Let us assume that all parameters are random variables. A discretised obser-
vation model with an additive noise model is

(1) y = Ah(x) + e

where y = (y1, . . . , ym)T ∈ Rm is the data vector which, in this work, is the ab-
sorbed optical energy density distribution obtained as a solution of the acoustic
inverse problem. Further, x is a discretised optical parameter distribution and Ah

is a discretised forward model [13].
Let us approximate the unknown parameters x and noise e as mutually inde-

pendent and Gaussian distributed x ∼ N (x∗,Γx), e ∼ N (e∗,Γe) where x∗ ∈ RN

and e∗ ∈ Rm are the means and Γx ∈ RN×N and Γe ∈ Rm×m are the covariance
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matrices. This yields to posterior density

(2) π(x|y) ∝ exp

{
−1

2
‖Le(y −Ah(x)− e∗)‖2 −

1

2
‖Lx(x− x∗)‖2

}

where Le and Lx are the Cholesky decompostions of the inverse of the covariance
matrices for the noise and prior, Γ−1

e = LT
e Le and Γ−1

x = LT
xLx, respectively.

In tomography, a practical solution for the inverse problem is obtained by cal-
culating point estimates from the posterior density. In this work, we consider the
maximum a posteriori (MAP) estimate. It is obtained as

(3) xMAP = arg min
x

{
1

2
‖Le(y −Ah(x)− e∗)‖2 +

1

2
‖Lx(x− x∗)‖2

}
.

Typically in tomographic inverse problems, the mean of the noise is assumed to
be zero, e∗ = 0 ∈ Rm, and the covariance is assumed to be a diagonal matrix with
known (constant) standard deviation σ, that is Γe = Γσ = diag(σ2) ∈ Rm×m. In
this case, the MAP estimate is obtained as

(4) xMAP = arg min
x

{
1

2
‖σ−1(y −Ah(x))‖2 +

1

2
‖Lx(x− x∗)‖2

}
.

which we refer as the MAP estimate with the conventional noise model (MAP-
CNM).

In QPAT, the solution method of the acoustic inverse problem affects how the
noise of the acoustic data is transferred to the optical problem. Therefore, the noise
of the optical inverse problem is necessarily not uncorrelated and it may have a
non-zero mean. A more accurate noise model can be, for example, approximated
as follows [12]. First, a set of noise samples of the acoustic measurements are sim-
ulated. Then, the inverse initial value problem is solved using these noise samples
as data. As a result, noise samples of the optical inverse problem e(l) are obtained.
The mean and the covariance of the noise model can then be approximated using
these noise samples as

e∗ =
1

L

L∑

l=1

e(l)(5)

Γe =
1

L− 1

L∑

l=1

e(l)e(l) T − e∗e
T
∗(6)

where L is the number of the samples. These are then utilised in the solution of
the minimisation problem (3). We refer to the solution of (3) together with (5)–(6)
as the MAP estimate with an approximate noise model (MAP-ANM).

In practice, the numerical implementation of the acoustic inverse method af-
fects also the data. Thus, the optical energy density distribution obtained as the
solution of the acoustic inverse problem contains modelling error ε which can be
due to e.g. discretisation of the geometry and time, implementation of the bound-
ary conditions and smoothing of the data by the acoustic solver. Therefore, let us
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write the observation model (1) in the form

ỹ = Ah(x) + e

y + (ỹ − y) = Ah(x) + e

y = Ah(x) + ε+ e(7)

where ε = y − ỹ is the modelling error of the acoustic solver which describes the
discrepancy between the ’ideal’ data ỹ and the data y which contains errors due to
the acoustic solver. Then, similarly as in the framework of Bayesian approximation
error modelling [11], a Gaussian approximation is constructed for ε, and the total
error n = ε + e is approximated by a Gaussian distribution, thus ε ∼ N (ε∗,Γε)
n ∼ N (n∗,Γn) where n∗ = ε∗ + e∗ and Γn = Γε + Γe. Furthermore, the mutual
dependence of x and ε is ignored. The MAP estimate with the noise and error
modelling (MAP-AEM) is obtained as

(8) xMAP = arg min
x

{
1

2
‖Ln(y −Ah(x)− n∗)‖2 +

1

2
‖Lx(x− x∗)‖2

}

where Γ−1
n = LT

nLn. The mean and covariance of the modelling error can be
simulated for example as in [12].
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Imaging with intensity-only measurements

Alexei Novikov

(joint work with Miguel Moscoso, George Papanicolaou, ChysoulaTsogka)

We propose an illumination strategy for interferometric imaging that allows for
robust depth recovery from intensity-only measurements. For an array with colo-
cated sources and receivers, we show that all the possible interferometric data for
multiple sources, receivers and frequencies can be recovered from intensity-only
measurements provided that we have sufficient source location and frequency il-
lumination diversity. There is no need for phase reconstruction in this approach.
Using interferometric imaging methods we show that in homogeneous media there
is no loss of resolution when imaging with intensities-only. If in these imaging
methods we reduce incoherence by restricting the multifrequency interferometric
data to nearby array elements and nearby frequencies we obtain robust images in
weakly inhomogeneous background media with a somewhat reduced resolution.

We consider an active array of size a consisting of N transducers separated by a
distance h which is of the order of the central wavelength λ0 of the probing signals.
The transducers emit probing signals of different frequencies ωl, l = 1, . . . , S, from
positions xs and record the reflected intensities at positions xr, s, r = 1, 2, . . . , N .
The goal is to determine the positions yj and reflectivities αj ∈ C, j = 1, . . . ,M ,
of a set of M point-scatterers within a region of interest, called the image window
(IW), which is at a distance L form the array.

Holographic Imaging. A holographic imaging approach with intensity-only
measurements is presented in [6, 4]. The main idea is to exploit illumination
diversity by designing illumination strategies that recover the missing phase in-
formation from intensity-only measurements. It was shown in [6, 4] how by using
an appropriate protocol of illuminations and the polarization identity, the sin-
gle frequency matrix M(ω) = P (ω)

∗
P (ω) can be determined from intensity-only

measurements at that frequency. Here P (ω) = [P (xr,xs;ω)]
N
r,s=1 is the full array

response matrix of the imaging system, including phases, with xr,xs the receiver
and source locations, and ω the radian frequency. The matrix M (ω) is called the
time reversal matrix as it arises in ultrasonic time reversal experiments [3]. We
will refer to M(ω) as the single frequency interferometric data matrix. Once we
have this data matrix we can image with the DORT method [7] which uses the
eigenvectors of M(ω), or MUSIC [8], which also uses the eigenvectors of M(ω).
Here DORT and MUSIC are the acronyms: Decomposition de l’Operateur de Re-
tournement Temporel (Decomposition of the Time Reversal Operator), and Multi-
ple Signal Classification, respectively. These are phase-sensitive imaging methods
that involve only phase differences contained in M(ω) and, therefore, they provide
interferometric information. The illumination strategies in [6, 4] are a form of dig-
ital holography since the resulting image does have phase information. Imaging
with M(ω) at a single frequency ω is not robust relative to small perturbations in
the unknown phases unless the array is very large. The perturbations can come
from medium inhomogeneities or from the discretization of the image window.



Computational Inverse Problems for Partial Differential Equations 1495

Having M(ωl) at multiple frequencies ωl, l = 1, 2, . . . , S still may not provide
robustness with respect to depth in the image. Methods that use the eigenvectors
frequency by frequency, as in MUSIC, are not robust.

Interferometric robust imaging. It is known [2] that we can get image robustly
if we have interferometric data

(1) d((xr,xr′), (xs,xs′), (ω, ω
′)) = P (xr,xs, ω)P (xr′ ,xs′ , ω

′)

at multiple frequency pairs (ω, ω′), receiver location pairs (xr,xr′) and source
location pairs (xs,xs′). The main result of [5] is that we can recover such data
d((xr,xr′), (xs,xs′), (ω, ω

′)) for pairs of arguments from intensity-only measure-
ments. Here receivers and transmitters are colocated in the same array. When
the imaging system has separate transmitting and receiving arrays then we can
recover only single receiver elements, one receiver at a time,

(2) d((xr,xr), (xs,xs′), (ω, ω
′)) = P (xr,xs, ω)P (xr,xs′ , ω

′)

for all pairs of frequencies, and source locations from intensity-only measurements.
In a homogeneous medium, imaging with d((xr,xr′), (xs,xs′), (ω, ω

′)) can be
done by

(3)
IInterf (ys) =

∑

xs,xs′

∑

xr,xr′

∑

ωl,ωl′

d((xr,xr′), (xs,xs′), (ωl, ωl′))

×G0(xr,y
s, ωl)G0(xs,y

s, ωl)G0(xr′ ,ys, ωl′)G0(xs′ ,ys, ωl′)

with G0(xr,y
s, ωl) the free space Green’s function for the Helmholtz equation,

and ys a point in the image window IW. Replacing the data by its expression
(1) we note that IInterf (ys) equals the square of the Kirchhoff Migration imaging
function

(4)
IInterf (ys) =

∣∣∣∣∣
∑

xs

∑

xr

∑

ωl

P (xr,xs, ωl)G0(xr,y
s, ωl)G0(xs,y

s, ωl)

∣∣∣∣∣

2

=
∣∣IKM (ys)

∣∣2 .
Here, the Kirchhoff migration functional

(5) IKM (ys) =
∑

xs

∑

xr

∑

ωl

P (xr,xs, ωl)G0(xr,y
s, ωl)G0(xs,y

s, ωl)

is simply the back propagation of the array response matrix in a homogeneous
medium, both for source and receiver points. Note that it is the square of the
Kirchhoff migration functional that we obtain with intensity-only measurements.

The main result can now be restated as follows. For colocated source and
receivers on a single array, we can obtain full-phase, holographic images from
intensity-only measurements by exploiting illumination and frequency diversity.
That is, in a homogeneous medium there is no loss of resolution when imaging only
with intensities if we have sufficient source and frequency illumination diversity.



1496 Oberwolfach Report 24/2017

Single receiver multifrequency interferometric imaging (SRINT). Re-
stricting the data to intensity-only measurements at a single receiver, we obtain
d((xr,xr), (xs,xs′), (ωl, ωl′)). Using only data from a single receiver, we introduce
the following single receiver coherent interferometric imaging (SRINT) functional

(6)

ISRINT (ys) =
∑

xs,xs′

|xs−xs′ |≤Xd

∑

ωl,ωl′

|ωl−ωl′ |≤Ωd

d((xr,xr), (xs,xs′), (ωl, ωl′))

×G0(xr,y
s, ωl)G0(xs,y

s, ωl)G0(xr,ys, ωl′)G0(xs′ ,ys, ωl′) .

Note that there is no sum over receivers here. We only have one receiver at xr.
The performance of the proposed interferometric method is explored with nu-

merical simulations in an optical (digital) microscopy regime. We observe in the
simulations that in homogeneous media we can image with the same resolution as if
phases where recorded and the method is robust with respect to the discretization
of the image window. When the ambient medium is weakly inhomogeneous the
interferometric approach removes some of the uncertainty in the data due to the
fluctuating phases, which tends to stabilize the images and this is seen clearly in
the simulations. We also compare the performance of the interferometric approach
with MUSIC which is shown to be sensitive to phase errors and does not provide
robust results unless the illuminating and receiving arrays are large [1]. The fact
that the SRINT imaging functional, which uses data obtained with intensity-only
measurements, gives images that are robust to weak fluctuations in the ambient
medium is another main result in this paper. It is surprising that such robust,
holographic imaging can be obtained with intensity-only measurements.
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Inverse scattering without phase information

Roman Novikov, Alexey Agaltsov

We consider direct and inverse scattering for the Schrödinger equation of quan-
tum mechanics and for the Helmholtz equation of acoustics or electrodynamics.
In addition, only scattering data without phase information can be measured di-
rectly in practice in quantum mechanics and in some other cases. Note that in
quantum mechanics this limitation is related to the probabilistic interpretation of
the wavefunction proposed originally by Max Born in 1926.

In this connection we report on non-uniqueness, uniqueness and reconstruction
results for inverse scattering without phase information. We are motivated by
recent and very essential progress in this domain.

In particular, in the first part of this talk we present the results of [6], [7], [8]
and in the second part of the talk we present the results of [1] and [2].

For more information, see [1], [2], [6], [7], [8], and references therein. In partic-
ular, among preceeding works we would like to mention [3], [4], [5].
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quency, Bulletin des Sciences Mathématiques 139 (2015), no. 8, 923–936.

[8] R. G. Novikov, Explicit formulas and global uniqueness for phaseless inverse scattering in
multidimensions, The Journal of Geometric Analysis 26 (2016), no. 1, 346–359.

Stability estimates for linearized near-field phase retrieval in X-ray
phase contrast imaging – A well-posed phase retrieval problem

Simon Maretzke

(joint work with Thorsten Hohage)

In classical X-ray radiography, an image of an unknown sample is obtained by
measuring the partial attenuation of transmitted X-rays. Phase contrast tech-
niques are sensitive also to the refraction of X-rays by the scattering interaction
with the illuminated sample. The refraction parameter δ of the refractive index
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n = 1 − δ + iβ in the hard X-ray regime is typically up to three orders of mag-
nitude larger than the attenuative part β. Consequently, X-ray phase contrast
imaging enables significantly improved contrast, thereby extending the scope of
X-ray imaging to microscale light-element samples such as biological cells. Spatial
variations of δ is encoded as phase shifts in the transmitted X-rays wave field.
However, the phase of the wave field cannot be observed directly, as X-ray detec-
tors are limited to measuring intensities. Phase contrast imaging thus involves a
phase retrieval problem, which is typically ill-posed and even non-unique.

Figure 1. Physical model of propagation-based X-ray phase con-
trast imaging (also known as inline holography).

We consider the setup of (propagation-based) X-ray phase contrast imaging.
The physical model is essentially that of phaseless Helmholtz scattering, as sket-
ched in Figure 1: an object is illuminated by a plane wave for a single incident
direction and wavenumber k. We make use the projection approximation, assuming
that the scattering interaction can be modeled by geometrical optics. The object
parameters δ, β are then encoded as line-integrals in the exit wave field at z = 0:

(1) Ψ(x, 0) = exp(h(x)) with h(x) = −ik

∫

R

(
δ(x, z)− iβ(x, z)

)
dz

A diffraction pattern (or hologram) is measured by a detector in the plane z =
d > 0 behind the object. By diffraction of the propagating wave field, the refractive
phase shifts are partially encoded into measurable intensities. We describe the
propagation from the exit plane z = 0 to the detector z = d by the free-space
solution to the Helmholtz equation within the paraxial approximation. Ψ(·, d) is
then related to Ψ(·, 0) via the Fresnel propagator D (F : Fourier transform):

(2) e−ikdΨ(·, d) = D (Ψ(·, 0)) := F−1

(
exp

(
− i| · |2
2NF

)
· F (Ψ(·, 0))

)

The parameter NF := kb2/d is the Fresnel number of the setup (scaled by 2π).
In total, we have the following forward model for the reconstruction of the

complex-valued image h from measured intensities I:

(3) I = F (h) := |Ψ(·, d)|2 = |D (exp(h))|2
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The underlying projection- and paraxial approximations have been shown to be
well-satisfied in the hard X-ray regime of very large wavenumbers k → ∞ [4].

We consider a commonly-used linearization of (3) for weakly scattering samples,
known as the contrast transfer function (CTF) model, see e.g. [1, 3, 9]:

(4) F (h) = 1 + T +O(h2), T (h) = 2Re (D(h)) (Re: pointwise real part)

Although the R-linear forward map T is clearly not injective as a map L2(R2,C) →
L2(R2,C), it has been shown in [5] that the linearized inverse problem (and also
the nonlinear one) is uniquely solvable if we restrict to images h with a compact
support. Such a constraint arises naturally within the ray-optical model (1).

In the present work [7], we analyze stability of image reconstruction h 7→ I for
the linearized forward model in (4) under support constraints. Our approach is
strongly inspired by Gabor holography [2]: the starting point is the formula

(5) T (h) = 2Re (D(h)) = D(h) +D(h) = D(h) +D−1(h).

Applying D to the data then yields DT (h) = D2(h) + h, i.e. a sum of the sharp

twin-image h (complex-conjugate) and a wavy pattern from the doubly propagated
image. If the support constraint supp(h) ⊂ Ω ⊂ R2 holds, we may thus eliminate
the twin-image contribution by restricting to R2 \ Ω. Stability-wise, this implies

(6) ‖T (h)‖2L2

D unitary
= ‖DT (h)‖2L2 ≥ ‖DT (h)|R2\Ω‖2L2

h|
R2\Ω=0
= ‖D2(h)|R2\Ω‖2L2,

i.e. the inversion of T cannot be more ill-posed or ill-conditioned than reconstruct-
ing h from incomplete Fresnel data D2(h)|R2\Ω. Using the representation

(7) D2(h) = e−iπ/2NFn
1
2

F · F(n
1
2

F · h)
(
NF

2
(·)

)
, n

1
2

F (x) := exp

(
iNF|x|2

4

)

this can be further identified with a reconstruction from incomplete Fourier data:

‖T (h)‖L2 ≥ ‖F(n
1
2

F · h)|R2\ΩF
‖L2 ≥ C‖h‖L2 C := inf

‖h‖L2=1
supp(h)⊂Ω

‖F(h)|R2\ΩF
‖L2(8)

with ΩF := {(NF

2 )x : x ∈ R2}. The arising Fourier data completion problem
is well-understood. In particular, for rectangular domains Ω the computation of
the stability constant C in (6) can be related to the principal singular value of
1D-integral operator, for which estimates are available [8]. By incorporating these
known results into (8), we arrive at the following startling stability result:

Theorem 1 (Well-posedness and stability estimate). Let the support-domain Ω
be given by a stripe of width 1, without loss of generality Ω := [−1/2; 1/2]× R.
Then the stability constant C = C(Ω, NF) in (8) is strictly positive and satisfies

(9) C(Ω, NF) ≥ (2πNF)
1
4

(
1− 3

8NF
+O

(
N−2

F

))
exp (−NF/8) .

Hence, the reconstruction of a complex-valued image h ∈ L2(R2) with supp(h) ⊂ Ω
from a single diffraction pattern I = 1 + Th is well-posed.
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Numerical computations indicate that the bound for the stability constant
C(Ω, NF) in (9) is surprisingly sharp. Due to the exponential decay with the Fres-
nel number NF, solving the inverse problem may thus be terribly ill-conditioned
for typical values NF = 102 . . . 104 encountered in imaging practice – despite well-
posedness. This is in accordance with experience from numerical reconstructions
which turn out to be practically impossible for larger NF but feasible in the deeply
holographic regime of Fresnel numbers NF ∼ 102 or less [6].

Using a different approach, we show that the stability estimates can be improved
to algebraic rates C(Ω, NF) ∼ N−1

F in two settings of high practical relevance:

1 Image reconstruction for single material objects with proportional β ∝ δ,
including the important special case of non-absorbing objects β ≈ 0

2 Recovery from two holograms I1, I2 acquired in different setups NF,1, NF,2

All in all, our analysis highlights the considerable value of support constraints
in propagation-based X-ray phase contrast imaging, turning a highly non-unique
phase retrieval problem into a well-posed one and ensuring practical stability of
image reconstruction for sufficiently small Fresnel numbersNF. The results may be
relevant to several related wave-optical or quantum-mechanical inverse problems
such as (phaseless) inverse scattering or wavefront reconstruction.
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High-order statistics for the random paraxial wave equation.
Application to correlation-based imaging

Josselin Garnier

In sensor array imaging an unknown medium is probed by waves emitted by an
array of sources and recorded by an array of receivers. Sensor array imaging in a
randomly scattering medium is usually limited because coherent signals recorded
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by the receiver array and coming from a reflector to be imaged are weak and
dominated by incoherent signals coming from multiple scattering by the medium.
Stochastic and multiscale analysis allows to understand the direct problem and
helps solving the inverse problem. We show in this talk how correlation-based
imaging techniques can mitigate or even sometimes benefit from the multiple scat-
tering of waves. Applications to seismic interferometry, non-destructive testing,
and intensity correlation imaging in optics are discussed.

1. Wave propagation in random media

We consider the three-dimensional scalar wave equation:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = F (t, ~x).

Here the source emits a time-harmonic signal and it is localized in the plane z = 0:

F (t, ~x) = δ(z)f(x)e−iωt with ~x = (x, z),

and the speed of propagation is spatially heterogeneous

1

c2(~x)
=

1

c2o

(
1 + µ(~x)

)
,

where µ is a zero-mean stationary random process with nice ergodic properties.
The time-harmonic field û such that u(t, ~x) = û(~x)e−iωt is solution of the

random Helmholtz equation

(∂2z +∆⊥)û+
ω2

c2o

(
1 + µ(x, z)

)
û = −δ(z)f(x),

where ∆~x = ∆⊥ + ∂2z . The function φ̂ (slowly-varying envelope of a plane wave
going along the z-axis) defined by

û(x, z) =
ico
2ω
ei

ωz
co φ̂

(
x, z

)

satisfies

∂2z φ̂+

(
2i
ω

co
∂zφ̂+∆⊥φ̂+

ω2

c2o
µ
(
x, z

)
φ̂

)
= 2i

ω

co
δ(z)f(x).

In the paraxial regime “λ ≪ lc, ro ≪ L” (which means, the wavelength 2πco/ω
is much smaller than the correlation radius of the medium and the radius of the
source, which are themselves much smaller than the typical propagation distance)

the forward-scattering approximation in direction z is valid and φ̂ satisfies the
Itô-Schrödinger equation [3]

dzφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z), φ̂(z = 0,x) = f(x),

where ◦ stands for the Stratonovich integral, B(x, z) is a Brownian field, that is
a Gaussian process with mean zero and covariance E[B(x, z)B(x′, z′)] = γ(x −
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x′) min(z, z′) with

γ(x) =

∫ ∞

−∞

E[µ(0, 0)µ(x, z)]dz.

2. Statistics of the wave field

By Itô’s formula, the coherent (or mean) wave satisfies the Schrödinger equation
with homogeneous damping:

∂

∂z
E[φ̂] =

ico
2ω

∆⊥E[φ̂]−
ω2γ(0)

8c2o
E[φ̂],

and therefore E
[
φ̂(x, z)

]
= φ̂0(x, z) exp(−z/Zsca), where φ̂0 is the solution in the

homogeneous medium and Zsca = 8c2o/[γ(0)ω
2]. The coherent wave amplitude

decays exponentially with the propagation distance and the characteristic decay
length is the scattering mean free path Zsca. This result shows that any coherent
imaging method (such as Kirchhoff migration or Reverse-Time migration) fails in
random media when the propagation distance is larger than the scattering mean
free path.

The mean Wigner transform defined by

W (x, ξ, z) =

∫

R2

exp
(
− iξ · y

)
E

[
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)]
dy,

is the angularly-resolved mean wave energy density. By Itô’s formula, it solves a
radiative transport-like equation

∂W

∂z
+
co
ω
ξ · ∇xW =

ω2

4(2π)2c2o

∫

R2

γ̂(κ)
[
W (ξ − κ)−W (ξ)

]
dκ,

starting from W (x, ξ, z = 0) = W0(x, ξ), the Wigner transform of the initial
field f . γ̂ is the Fourier transform of γ and determines the scattering cross section
of the radiative transport equation. This result shows that the fields observed
at nearby points are correlated and their correlations contain information about
the medium. Accordingly, one should use local cross correlations for imaging in
random media [1, 2].

In order to quantify the stability of correlation-based imaging methods, one
needs to study the fourth-order moment:

M4(r1, r2, q1, q2, z) =E

[
φ̂
(r1 + r2 + q1 + q2

2
, z
)
φ̂
(r1 − r2 + q1 − q2

2
, z
)

× φ̂
(r1 + r2 − q1 − q2

2
, z
)
φ̂
(r1 − r2 − q1 + q2

2
, z
)]
.

By Itô’s formula,

∂M4

∂z
=
ico
ω

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M4 +

ω2

4c2o
U4(q1, q2, r1, r2)M4,
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with the generalized potential

U4(q1, q2, r1, r2) = γ(q2 + q1) + γ(q2 − q1) + γ(r2 + q1) + γ(r2 − q1)

− γ(q2 + r2)− γ(q2 − r2)− 2γ(0).

These moment equations have been known for a long time [8]. If we take the
Fourier transform:

M̂4(ξ1, ξ2, ζ1, ζ2, z) =

∫∫∫∫

R8

M4(q1, q2, r1, r2, z)

× exp
(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2,

then in the regime “λ≪ lc ≪ ro ≪ L” the function M̂4 has the form

M̂4(ξ1, ξ2, ζ1, ζ2, z) = Φ(K,A, f)(ξ1, ξ2, ζ1, ζ2, z) +R(ξ1, ξ2, ζ1, ζ2, z),

where the nonlinear function Φ is explicit and

sup
z∈[0,L]

‖R(·, ·, ·, ·, z)‖L1(R2×R2×R2×R2) ≃ 0,

with

K(z) = (2π)8 exp
(
− ω2

2c2o
γ(0)z

)
,

A(ξ, ζ, z) =
1

2(2π)2

∫

R2

[
exp

( ω2

4c2o

∫ z

0

γ
(
x+

coζ

ω
z′
)
dz′

)
− 1

]
exp

(
− iξ · x

)
dx.

This result allows to quantify the scintillation index of the field (i.e. the relative
variance of the intensity) [4], the coefficient of variation of the (smoothed) Wigner
transform [5], and paves the way for original imaging modalities based on inten-
sity correlations [7] or optimal methods for wave focusing through a randomly
scattering medium [6].
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Statistical problems in nerve axon equations

Wilhelm Stannat

When modeling neural activity in the brain, stochasticity on the molecular level,
for example channel noise and synaptic noise, has to be taken into account. To
this end a mathematical framework is introduce that allows to analyze in a math-
ematical rigorous way stochastic conductance based neural models describing the
propagation of action potentials along the nerve axon under the impact of channel
noise fluctuations. The resulting stochastic partial differential equations exhibit a
rich phenomenology, like propagation failure, backpropagation, spontaneous pulse
solutions and annihilation of pulses, that cannot be modelled with their determin-
istic counterparts.

1. Conductance-based neural models

The temporal evolution of the membrane potential v(t, x) along the axon of a
nerve cell can be modelled by a linear cable equation coupled to a set of equations
describing the concentrations of ion channels, both excitatory and inhibitory, reg-
ulating v. For a mathematical introduction to this subject see [2]. In neuroscience
these models are called conductance-based neural models and the prototypical
example are the Hodgkin-Huxley equations:

(1) τ∂tv = λ2∂2xxv − gKn
4(v − EK)− gNam

3h(v − ENa)− gL(v − EL) + I

for t ≥ 0 and x ∈ [0, L], L > 0 fixed, coupled to three equations of the type

(2)
dp

dt
= αp(v)(1 − p)− βp(v)p

for the concentrations of ions of three different types, p ∈ {m,n, h}, where m, n
and h denote ion concentrations in activating sodium, activating potassium and
inactivating sodium channels. τ and λ denote specific time and space constants,
gNa, gK , gL conductances and ENa, EK , EL resting potentials of the respective
currents and the reaction rates αp(v) and βp(v) are functions of the following

structure αp(v) = a1
v+A

1−e−a2(v+Ap) and βp(v) = b1e
−b2(v+B) for certain parameters

a1, a2, b1, b2, A and B. The coupled system is a reaction-diffusion system which
is neither Lipschitz nor one-sided Lipschitz, but has the following two structural
properties:

a) conditioned on fixed ion-channel concentrationsX = (m,n, h) (1) becomes
linear,

b) the equations for p are forward Kolmogorov equations preserving proba-
bilities, i.e., p0(x) ∈ [0, 1] implies p(t, x) ∈ [0, 1].

The function I(t, x) denotes additional exterior current, for example of presy-
naptic neurons or sensory input and can mathematically be seen as a control.
Depending on the value of I, the solution v(t, x) to equation (1) can take the form
of an action potential (AP) or spike, i.e. a sharp rise of the membrane potential
followed by a sharp decrease and a recovery phase, traveling with constant speed
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c along [0, L]. Moreover, the system undergoes a Hopf bifurcation w.r.t. the pa-
rameter I, separating the excitable regime, where the solution exhibits at most
one AP, from the regime of periodic spiking.

2. Stochastic conductance-based neural models

Despite this important feature, which was a great success of mathematical mod-
elling of neural activity, (1) nevertheless does not take into account the variability
in the ion concentrations due to the apparent random opening and closing of the
individual ion channels, so called channel noise. The dynamical implications of
channel noise are important and cannot be neglected in a thorough understanding
of neural activity. Possible implications are spontaneous spiking, propagation fail-
ure, splitting and annihilation of APs and time jitter (see [1]). There are various
possibilities for incorporating noise into (1). The simplest one is the so called
current noise leading to the following stochastic partial differential equation

(3) τ∂tv = λ2∂xxv−gNam
3h(v−ENa)−gKn4(v−EK)−gL(v−EL)+I+σ∂tξ(t, x)

where ξ(t, x) denotes L2(0, L)-valued Wiener noise, i.e.,

ξ(t, x) =

∞∑

m=1

σmβm(t)em(x)

for some orthonormal system (em)m≥1 of L2(0, L), independent, 1d-Brownian mo-
tions (βm)m≥1 and ℓ2-summable noise amplitudes (σm)m≥1. Numerical simula-
tions show that (3) exhibits a rich phenomenology, including the above mentioned
implications of channel noise effects on the AP.

Current noise clearly is a purely phenomenological modelling of channel noise.
A second possibility is to apply classical diffusion approximation to the Markovian
dynamics of the ion concentrations, leading to so-called subunit noise
(4)

∂tp = (αp(v)(1 − p(t))− βp(v)p(t)) dt+
√
α(v)(1 − p(t)) + β(v)p(t) ∂tξp(t, x) ,

turning (2) into a function-valued stochastic ordinary differential equation. A
mathematical theory of variational, i.e. analytically weak, solutions of general
stochastic conductance based neural models including both, current and subunit
noise, has been developed in [4, 5], including a numerical analysis of lattice ap-
proximations.

3. Statistical analysis of stochastic conductance-based neural

models

The statistical analysis of stochastic conductance-based neural models is important
to understand the impact of channel noise on neural activity. Consider as an
example the computation of the probability for the propagation failure of an action
potential. To this end we introduce the following observable

Φ(v) :=

∫ L

0

v(x)− v∗ dx , v∗ = resting potential
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and define a propagation failure on the time interval [T0, T ] w.r.t. a given threshold
θ if

Φ(v(t)) < θ for some t ∈ [T0, T ] .

The quantity of interest therefore is the probability

pσ := Pσ

(
min

T0≤t≤T
Φ(v(t)) < θ

)
.

In [6], a statistical analysis of the estimator Φ has been performed in the case of
the Hodgkin-Huxley model with current noise. It has been shown in particular
that for small noise amplitude the probability pσ can be approximated by a first
passage time probability of the following 1d-stochastic differential equation

dΦ(v(t)) = κ∗ (c− Φ(v(t))) dt+ σ̃dβ(t) .

Here, c =
∫ L

0
v̂(t, x) − v∗ dx is independent of time, σ̃2 = σ2 1

tVar
(∫ L

0
ξ(t, x) dx

)

and β denotes a 1d-Brownian motion.

A second example for a statistical analysis is the derivation of a 1d-stochastic
differential equation for the velocity c(t) of the AP. A derivation of a dynamical
equation first requires the identification of the position of the AP. To this end one
can consider a reference profile vAP and define the current position of the AP as
a (local) minimum of ‖v(t, ·)− vAP (·+ c)‖L2(0,L) w.r.t. c. Numerical illustrations
then indicate that for small noise amplitude σ, c(t) is approximately given as the
solution of the stochastic differential equation

(5) dc(t) = cdetdt+ 〈e
cdet
λ2 ·vAP (·+ cdett), σ dξ(t)〉

where cdet is the velocity of the AP in the absence of noise (σ = 0). The analogue
of (5) for the velocity of a traveling wave in a bistable stochastic reaction diffusion
equation has been rigorously derived in [3] as a result of a multiscale analysis.
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SDE estimation from discrete observations as inverse problems

Markus Reiß

(joint work with Jakub Chorowski, Emmanuel Gobet, Marc Hoffmann)

We consider time-homogeneous stochastic differential equations (SDEs) with drift
b and diffusion matrix Σ:

dXt = b(Xt) dt+Σ1/2(Xt) dWt, X0 = x0.

Here,W denotes d-dimensional Brownian motion and b : Rd → Rd, Σ : Rd → Rd×d

(with values in the positive definite matrices) are sufficiently regular to define a
unique strong solution (Xt, t ≥ 0).

Let us first restrict to the one-dimensional case with Σ = σ2. Then

E

[Xt+∆ −Xt

∆

∣∣∣Xt

]
∆→0−−−→ b(Xt),

Var
(Xt+∆ −Xt√

∆

∣∣∣Xt

)
∆→0−−−→ σ2(Xt)

holds with convergence in probability (for regular b, σ2). This is the basis for
constructing estimators based on continuous or high-frequency observations of one
sample path of X .

Continuous observations (Xt, t ∈ [0, T ]). The quadratic variation of X is given

by 〈X〉t =
∫ t

0 σ
2(Xs) ds such that σ2(x) is identifiable (meaning estimated without

error) by using d
dt 〈X〉t = σ2(Xt) for all x in the visited range {Xt | t ∈ [0, T ]}. A

standard kernel estimator for the drift is

b̂(x) =

∫ T

0 Kh(x−Xt) dXt∫ T

0 Kh(x−Xt) dt

with kernel for instance Kh(x) =
1
2h1[−h,h](x).

High-frequency observations (Xn∆, 0 ≤ n ≤ N), ∆ = ∆N → 0, N∆N → ∞.
Approximating the stochastic and deterministic integrals yields the estimators

b̂(x) =

∑N−1
n=0 Kh(x−Xn∆)

X(n+1)∆−Xn∆

∆∑N−1
n=0 Kh(x−Xn∆)

,

σ̂2(x) =

∑N−1
n=0 Kh(x−Xn∆)

(X(n+1)∆−Xn∆)2

∆∑N−1
n=0 Kh(x −Xn∆)

.

For low-frequency observations (Xn∆, n = 0, . . .N) with ∆ > 0 fixed and N →
∞ these strategies are no longer feasible. Assuming reflecting boundary conditions
on [0, 1] (implying Neumann boundary conditions for the Markov generator) and
ellipticity (σ2 bounded away from zero), a stationary ergodic solution X exists
with invariant density

µ(x) = Cσ−2(x) exp
(∫ x

0

2b(y)σ−2(y) dy
)
, x ∈ [0, 1],
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observations b σ2

continuous T−s/(2s+1) known

high-frequency (N∆N )−s/(2s+1) N−s/(2s+1)

low-frequency (1 unknown) N−s/(2s+3) N−s/(2s+1)

low-frequency (b, σ2 unknown) N−s/(2s+5) N−s/(2s+3)

Table 1. Optimal convergence rates.

where C > 0 is a norming constant. If σ2 is assumed to be known, we can solve for
b in this formula (taking derivatives) and use a kernel estimator for the invariant
density:

µ̂(x) =
1

N + 1

N∑

n=0

Kh(x−Xn∆).

Similarly, we can estimate σ2 in the case of known b.
In the more realistic case with both, b and σ2 unknown, we rely instead on the

Markov transition semigroup (P b,σ2

t )t≥0 with self-adjoint generator on L2(µ)

Lb,σ2

f(x) = 1
2σ

2(x)f ′′(x) + b(x)f ′(x) =
1

µ(x)
(Sf ′)′(x),

where µ is the invariant density and S = 1
2σ

2µ. The spectral approach consists in
estimating the first non-trivial eigenfunction-eigenvalue pair (u1, κ1) of the tran-

sition operator P b,σ2

∆ (matrix discretisation via approximation spaces) and to use

Lb,σ2

u1 = ν1u1 with ν1 = ∆−1 log κ1 by functional calculus in L2(µ). We obtain
the identification formulas

σ2(x) =
2ν1

∫ x

0 u1µ

u′1(x)µ(x)
, b(x) =

ν1(u
′
1(x)

∫ x

0 u1µ)
′

u′1(x)
2µ(x)

.

Remark that for σ2 the first derivative of the eigenfunction u1 appears and for
b even the second derivative. A detailed analysis yields the convergence rates

for E[‖b̂ − b‖L2], E[‖σ̂2 − σ2‖L2 ] in Table 1, assuming each time that b and σ2

are s-regular (in a Sobolev-sense; for low-frequency even linking both regularities
appropriately) and ∆N = o(N−1/2) in the high-frequency case. These rates are
provably optimal in an asymptotic minimax sense, see Gobet, Hoffmann and Reiß
[1] and the references therein. We see that different observation schemes induce
different degrees of ill-posedness and thus structurally different inverse problems.

For concrete data it is a priori difficult to choose among the low- and high-
frequency estimators. One unifying estimation strategy, regardless of the asymp-
totic scheme, is therefore desirable. A first such estimator for σ2 has been con-
structed by Chorowski [2]. See also the references therein for further recent devel-
opments, e.g. random observations times and a nonparametric Bayes approach.

Finally, let us point out the d-dimensional case d > 1. For continuous and
high-frequency observations the estimators and their theory readily transfer, but
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the spectral approach is more involved. Assuming again stationarity on a bounded
domain D ⊂ Rd with reflecting boundary and a divergence form (with respect to
the invariant density µ) of the generator

Lb,Σf(x) =
div(S(x)∇f(x))

µ(x)
with some positive definite S(x) ∈ R

d×d, x ∈ D,

the Markov semigroup is again self-adjoint in L2(µ) with Σ(x) = 2S(x)/µ(x) and
b(x) = (

∑
i ∂iSij(x))j/µ(x). Then eigenfunction-eigenvalue pairs (uk, νk) of L

b,Σ

satisfy the Poisson equation

div(S(x)∇uk(x)) = νkµ(x)uk(x), x ∈ D, with Neumann boundary conditions.

We face the inverse problem of estimating the matrix-valued function S from these
equations for k = 1, . . . ,K (K to be determined) and empirical (noisy) versions of
(νk, uk) and µ. A convergence analysis of this approach poses a fascinating open
problem.
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Nonparametric estimation in stochastic differential equations by
penalized maximum likelihood

Fabian Dunker

(joint work with Thorsten Hohage)

We develop nonparametric estimators for coefficients in time homogeneous sto-
chastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt.

The data are assumed to be either independent, identically distributed (i.i.d.) re-
alizations of Xt at some point in time t = t1 or i.i.d. observations of the invariant
measure of Xt for t → ∞. Hence, neither continuous nor high frequency obser-
vations of Xt are assumed. This means that our estimators are suitable for low
frequency observations.

The problem is formulated as a nonlinear ill-posed operator equation with a
deterministic forward operator described by the Fokker-Planck equation. Regu-
larization is needed for a stable inversion of the operator equation. We propose an
iteratively regularized Newton method with maximum likelihood data misfit and
general convex regularization term to get stable reconstructions.

We derive convergence rates in terms of the Bregman distance with respect to
the regularization functional. The central assumptions of the convergence rate
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theorem are a smoothness condition on the true solution and a nonlinearity con-
dition on the operator. These assumptions are verified for estimation of the drift
coefficient µ with Sobolev-type regularization terms.

The advantages of maximum likelihood data misfit are demonstrated in Monte-
Carlo simulations. We used the iteratively regularized Gauss-Newton method
with quadratic data fidelity and quadratic regularization terms as the benchmark
method.
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Electrical impedance tomography imaging via the Radon transform

Samuli Siltanen

(joint work with Allan Greenleaf, Andreas Hauptmann, Matti Lassas, Matteo
Santacesaria, Gunther Uhlmann)

Electrical impedance tomography (EIT) images the internal electric conductivity
distribution from current-to-voltage boundary measurements.

In [5], a method was introduced for recovering jumps in conductivity values
using EIT. The method is based on complex geometrical optics (CGO) solutions
introduced by Sylvester and Uhlmann [7], and it is capable of detecting inclusions
within inclusions in an unknown inhomogeneous background conductivity.

The inverse conductivity problem of Calderón [4] is the mathematical model of
EIT. Take a bounded, simply connected domain Ω ⊂ R2 with smooth boundary.
Let the scalar conductivity σ ∈ L∞(Ω) satisfy σ(x) ≥ c > 0. Applying a voltage
distribution f at the boundary leads to

(1) ∇ · σ∇u = 0 in Ω, u|∂Ω = f.

EIT measurements are modeled by the Dirichlet-to-Neumann map

(2) Λσ : f 7→ σ
∂u

∂~n

∣∣∣
∂Ω
,

where ~n is the outward normal vector of ∂Ω.
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Figure 1. (a) Three-dimensional plot of the conductivity hav-
ing a jump along the circle with radius ρ = 0.2 and center at
the origin. (b) Unit disc and singular support of the conductivity

in the (x1, x2) plane. (c) The term T a,+
0 µ(t, 1) has peaks, indi-

cated by blue arrows, at t = ±2ρ corresponding to the locations
of the main singularities in µ. The higher-order term T a,+

2 µ(t, 1),

smaller than T a,+
0 µ(t, 1) in amplitude, exhibits singularities caused

by reflections at both t = ±2ρ and t = ±4ρ. (d) The singularities

of the term T a,+
2 µ(t, 1) at t = ±4ρ are very small. Shown is the

zoom-in near t = 4ρ, with amplitude increased by a factor of 70.
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In [2], the construction of the CGO solutions was done via a Beltrami equation.
Identify R2 with C by setting z = x1 + ix2 and define a Beltrami coefficient by

µ(z) = (1− σ(z))/(1 + σ(z)).

We have |µ(z)| ≤ 1− ǫ for some ǫ > 0. Further, if we assume σ ≡ 1 outside some
Ω0 ⊂⊂ Ω, then supp(µ) ⊂ Ω0. Now consider the unique solution of

(3) ∂̄zf±(z, k) = ±µ(z)∂zf±(z, k); e−ikzf±(z, k) = 1 + ω±(z, k),

where ikz = ik(x1 + ix2) and ω
±(z, k) = O(1/|z|) as |z| → ∞. Here z is a spatial

variable and k ∈ C a spectral parameter. Also, u = Ref+ satisfies (1).
The new idea is to apply a partial Fourier transform in the radial direction of

k. Write k = τeiϕ and define

(4) ω̂±(z, t, eiϕ) = Fτ→t

(
ω±(z, τeiϕ)

)
.

Recall that the traces of CGO solutions can be recovered perfectly from Λσ [2, 1]
and approximately from practical EIT data [3].

Formally one can view the Beltrami equation (3) as a scattering equation, where
µ is considered as a compactly supported scatterer and the “incident field” is the
constant function 1. Consider a “scattering series” for the unaveraged ω±,

(5) ω± =
∞∑

j=0

ω±
j

and set ω̂±
j = Fτ→tω

±
j as in (4). The derivation of (5) makes use of [6].

Figure 1 suggests that jumps in conductivity produce certain useful singularities
in the terms of the scattering series.

Actually, what we can recover from EIT data resembles parallel-beam X-ray
projection data of the singularities of σ. Indeed, in [5] reconstruction formulae are
derived for σ analogous to the classical filtered back-projection method of X-ray
tomography.

Define averaged operators T a,±
j for j = 1, 2, 3, . . . and T a,± by the complex

contour integral,

T a,±
j µ(t, eiϕ) =

1

2πi

∫

∂Ω

ω̂±
j (z, t, e

iϕ)dz,(6)

T a,±µ(t, eiϕ) =
1

2πi

∫

∂Ω

ω̂±(z, t, eiϕ)dz,(7)

Now T a,± are recoverable from EIT data, and one can (to some extent) understand
its singularities, and derive approximate reconstruction formulas, by analyzing the
operators T a,±

j . See [5] for more details.
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Exterior Shape Calculus

Ralf Hiptmair

(joint work with Jing-Zhi Li)

1. Basic Concepts

Shape differentiation according to Zolesio’s velocity method proceeds as follows
[10, Sect 2.9], [2, Ch. 4]: Let (Ts(v))s∈R

be the flow, that is the 1-parameter

group of diffeomorphisms Ts : D → D of a bounded “hold all” domain D ⊂ Rd,
d ∈ N, generated by the C2-smooth and compactly supported velocity field v ∈
C2

0 (D,R
d). Given some C2-domain Ω strictly contained in D we introduce the set

of admissible domains

A := {Ts(v)(Ω) : s ∈ R, v ∈ C1
0 (D,R

d)} .
Writing X(Λℓ, B) for a space of ℓ-forms, 0 ≤ ℓ ≤ d on B ⊂ D, which is invariant
under pullbacks Ts(v)

∗ for any v ∈ C2
0 (D,R

d), we consider a shape-dependent
ℓ-form ω(Ω) ∈ X(Λℓ, B), B = D or B = Ω, and define its material derivative in
the direction v at Ω as (if the limit exists) [10, Sect. 2.25]

〈
Dω

DΩ
(Ω),v

〉
:= lim

s→0

Ts(v)
∗ω(Ts(Ω)) − ω(Ω)

s
∈ X(Λℓ, B) .

Whereas the material derivative belongs to the Lagrangian realm, the shape de-
rivative of ω at Ω in the direction v is an Eulerian concept, pointwise defined in
the sense of distributions by [10, Sect. 2.30]

〈
dω

dΩ
,v

〉
:= lim

s→0

ω(Ts(v)(Ω)) − ω(Ω)

s
in D′(B,Λℓ) , B = Ω, D .

Both derivatives are connected by the Lie derivative through the fundamental
formula [8, Sect. 1.1]

〈
dω

dΩ
,v

〉
=

〈
Dω

DΩ
(Ω),v

〉
−Lv ω(Ω) .
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This tells us (i) how to compute the shape derivative, and (ii) that the shape
derivative may not belong to X(Λℓ,Ω), because taking the Lie derivavtive involves
(exterior) differentiation. For instance, if ω maps into the Sobolev spaceH1Λℓ(D),
then its shape derivative at Ω may be in L2Λℓ(D) only: taking the shape derivative
may incur a loss of smoothness.

2. Shape Gradients of Integrals

Let ω be a shape-dependent ℓ-form and Σ ⊂ Ω an oriented, C1-smooth
ℓ-dimensional manifold. Then, following [7], we find using Cartan’s formulaLv ω =
d ◦ ıv + ıv ◦ d, ıv the contraction of a form with the vectorfield v, [3, Sect. 4.2]

d

ds

∫

Ts(v)(Σ)

ω(Ts(v)(Ω))

∣∣∣∣∣∣∣
s=0

=

∫

Σ

〈
Dω

DΩ
(Ω),v

〉
=

∫

Σ

〈
dω

dΩ
(Ω),v

〉
+Lv ω(Ω)

=

∫

Σ

〈
dω

dΩ
(Ω),v

〉
+

∫

∂Σ

ıv ω(Ω) +

∫

Σ

ıv dω(Ω) .

To render the shape derivative meaningful, traces on ∂Σ must exist, which alludes
to tighter regularity requirements on ω.

3. Shape Derivative of Solutions of Boundary Value Problems

A Neumann boundary value problem for an ℓ-form ω reads in variational form:
for given γ ∈ HΛd−ℓ−1(D) seek ω ∈ HΛℓ(Ω) such that [8, Sect. 3.3.1]

∫

Ω

∗ dω ∧ d η + ∗ω ∧ η =

∫

∂Ω

t(γ ∧ η) ∀η ∈ HΛℓ(Ω) ,(1)

where ∗ is a Hodge operator and HΛℓ(B) is a Sobolev space of ℓ-forms on B. Note
that the Neumann data γ have to be defined everywhere in D and that the test
space does not depend on Ω. This paves the way for implicit shape differentiation
of (1), relying on the formulas from Section 2: Abbreviating δω :=

〈
dω
dΩ (Ω),v

〉

for given deformation velocity field v ∈ C2
0 (D,R

d) we end up with a variational
characterization of the shape derivative [8, Sect .4.3]:

(2)

∫

Ω

∗ d δω ∧ d η + ∗ δω ∧ η

=

∫

∂Ω

− t ıv(∗ dω ∧ d η + ∗ω ∧ η) + t ıv d(γ ∧ η)

=

∫

∂Ω

{
(−1)d−ℓ

d t(ıv ∗ dω) + t(ıv ∗ω + ıv d γ) + (−1)d−ℓ−1
d t(ıv γ)

}
︸ ︷︷ ︸

=:ν(ω)∈Λd−ℓ−1, “Neumann data” for δω

∧ t η

for all η ∈ HΛℓ(D). The final identity relies on product rules for d and ıv plus
the strong form of the equation (−1)d−ℓ

d ∗ dω + ∗ω = 0 and of the boundary
conditions t(∗ dω) = t γ on ∂Ω. This is possible, because we have to assume extra
regularity of ω and γ anyway, in order to render the trace expressions meaningful.
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This is the case, for instance, for ω ∈ H1Λℓ(Ω), γ ∈ H1Λℓ(D). Since we have
restricted ourselves to C2-domains, the required smoothness of ω is guaranteed by
elliptic regularity theory. From the above formulas we conclude that the shape
derivative of ω solution of (1) at Ω in direction v solves a veriational problem of
the same structure with Neumann data given by ν(ω) ∈ L2Λd−ℓ−1(∂Ω) from (2).

Remark 1. The approach to shape derivatives of solutions of Dirichlet problems
cannot rely on the standard variational formulation whose trial space will depend
on Ω. Instead one may use a mixed variational formulation [7] or Lagrange mul-
tipliers to enforce the boundary conditions weakly.
Remark 2. For transmission problems the loss of smoothness under shape differ-
entiation manifests itself in the failure of the shape derivative to satisfy the usual
transmission conditions. This rules out the use of standard variational formula-
tions. Instead the transmission conditions have to be imposed weakly through
Lagrange multipliers, see [8, Sect. 3.3.3].

4. Translation to Vector Proxies

Classical vector analysis offers an isomorphic model for exterior calculus in Eu-
clidean space, with d and ıv incarnated by familiar operations on functions and
vector fields, see [8, Sect. 5.2]. This permits us, for a concrete degree ℓ of the
form ω, to translate the general formulas derived by means of exterior calculus to
expressions for functions and vector fields. For instance for the Neumann problem
for ℓ = 1, which is related to the so-called eddy current equations for an unknown
vector field u, we arrive at the boundary condition on ∂Ω [8, Sect. 5.2]

curl δu× n = curlΓ((v · n)(curlΓ ut + g · n))− (v · n)(u+ curl g)t ,

where n is the exterior unit normal to ∂Ω, and g : Ω → R3 e vector representative
of the data 1-form γ.

Thus, using the fundamental operations of exterior calculus, it takes only a few
general formulas to find boundary value problems satisfied by shape derivatives
of solutions of many second order boundary value problems. In one fell swoop we
recover the results of a host of articles, see [5, 4, 9, 1, 6].
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Imaging small scatterers with electromagnetic waves

Fernando Guevara Vasquez

(joint work with Maxence Cassier)

We consider the problem of imaging small scatterers in a homogeneous medium
by probing the medium with electric dipoles located at an array and recording the
resulting scattered electric field at the same array. For well separated scatterers,
the scattered field can be well described in terms of a polarization tensor per
scatterer [1], i.e. a 3 × 3 complex symmetric matrix. For N scatterers located at
points ~y1, . . ., ~yN with polarization tensors α1, . . ., αN , the array data (ignoring
multiple scattering) is the matrix valued field

(1) Π(xr,xs, k) =

N∑

j=1

G(~xr, ~yj , k)αNG(~yj , ~xs, k),

for all receiver ~xr = (xr, 0) and source ~xs = (xs, 0) positions in an array A × 0,
located in the x3 = 0 plane. Here we write vectors with three components in bold
with arrows, and vectors with two components in bold only, so that ~x = (x, x3).
Also G(~x, ~y, k) ∈ C3×3 is the dyadic Green function for the Maxwell equation at
wavenumber k = 2π/λ = ω/c. As usual λ is the wavelength, ω is the angular
frequency and c is the wave speed (see e.g. [4]).

We presented a resolution study of the Kirchhoff imaging function adapted to
electromagnetics:

(2) I(~y, k) =
∫

A

dxr

∫

A

dxsG(~xr, ~y, k)Π(xr,xs, k)G(~y, ~xs, k),

which is a matrix valued field instead of a scalar one in acoustics. For an array
of aperture a used to image an object at a distance L, the acoustics Kirchhoff
imaging function is known to have a resolution of λL/a in the cross-range plane
(the plane parallel to the array) and of c/B in the range direction (the direction
perpendicular to the array). Here B is the bandwidth of the measurements and
the image for multi-frequency data is obtained by integrating the single frequency
image over the bandwidth. We show in [3] that the imaging function (2) obeys
the same resolution estimates as the Kirchhoff imaging function in acoustics, if
we consider the scalar field consisting of the norm of the matrix field (2) at each
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imaging point. Moreover we give a simple post-processing step that can extract
from (2) a matrix field that approximates the polarization tensor of a scatterer if
it were located at the imaging point. The analysis in [3] is done in the Fraunhofer
asymptotic regime, which assumes that the propagation distance is large compared
to the array, and that the object we want to image is small compared to the array
(among other assumptions). The key quantity we study is the matrix valued field

(3) H(~y, ~y′, k) =

∫

A

dxrG(~xr, ~y, k)G(~xr, ~y
′, k),

which plays the role of a point spread function, i.e. the image of a point. This
concept is easier to explain if we switch to the passive imaging case where the
array consists of only receivers and the goal is to image a collection of small
sources. In this case H(~y, ~y′, k)~p is the Kirchhoff image at a point ~y of a single
point source located at ~y′ and with polarization vector ~p. We show that in the
Fraunhofer asymptotic regime and if ~y and ~y′ are in the same x3 = L plane, the
point spread function decays as 1/‖y−y′‖ at a rate consistent with the resolution
estimate λL/a. Similarly if we integrate over a frequency band ω0 + [−B/2, B/2],
we obtain a sinc like behavior in the range direction that gives the c/B range
resolution estimate. Another conclusion of the asymptotic study is that H(~y, ~y, k)
is singular but that its 2× 2 block corresponding to the cross-range coordinates is
well-conditioned. Thus the problem of finding the polarization vector ~p of a point
source from the Kirchhoff image is ill-conditioned. However the linear system
obtained by keeping only the cross-range components of H and the image is well-
conditioned. Similarly for the active case, the problem of finding the cross-range
components α1:2,1:2 of a polarization tensor α is stable. We note that only the
cross-range components of the electric field are needed to image these quantities.

Examples of matrix valued images are given in figures 1 and 2, where we imaged
two point scatterers located at ~y1 = (6λ0, 6λ0, 100λ0), ~y2 = (6λ0,−6λ0, 106λ0)
and with polarization tensors

α1 =



2 + 2ı 1− ı/2 0
1− ı/2 1 + 2ı 1 + ı/2

0 1 + ı/2 1 + ı


 and α2 =



2 + ı ı/2 1/2
ı/2 1 + ı 0
1/2 0 1 + ı


 .

In both figures 1 and 2, we visualize 2 × 2 symmetric matrices by ellipses with
principal axis and dimensions given by the matrices’ eigenvectors and eigenvalues.

We are currently adapting a technique for Kirchhoff imaging without phases [2]
to the Maxwell equations (joint with Patrick Bardsley and Maxence Cassier). The
experimental setup consists of a single electric dipole point source located at ~xs

and a passive array that are used to image the position and polarization tensors
of a collection of small scatterers. The electric field generated by the source is

~Einc(~x, k) = G(~x, ~xs, k)~js

where the polarization vector ~js(k) is a zero mean, stationary, ergodic Gaussian

process with known correlation matrix J(k) = 〈~js(k)~js(k)∗〉. We assume the array
can only measure polarization data in the cross-range plane. That is only the 2×2
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Figure 1. (a) Cross-range (z = 106λ0) and (b) range (x = 6λ0)
images of scatterers. The color indicates the norm of the re-
covered polarization tensor. The white/black ellipses represent
the true/calculated real part of the polarization tensor. The yel-
low/pink ellipses represent the true/calculated imaginary part.
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Figure 2. Images of the polarization tensor in range (x = 6λ0).
The analysis in [3] shows that a straightforward solution of the
system for the polarization tensor α is afflicted by oscillatory ar-
tifacts (a). These can be removed by fixing the phase of the
recovered polarization tensor by enforcing e.g. that α1,1 be real
(b). The ellipses’ color represents the polarization tensor norm.

Hermitian auto-correlation matrices C(xr, k) = 〈E(~xr, k)E(~xr, k)
∗〉 are known.

Here E(~xr, k) is the cross-range total field evaluated at the array location ~xr.
Hence the data we work with is equivalent to measuring the Stokes parameters
of the electric field at the array [4]. We have preliminary results showing that
the resolution estimates apply to this setting, but the information that can be
recovered stably about the polarization tensors α corresponds to a 2×2 projection
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of α in left and right bases determined by the positions of the receiver array, the
source and the scatterer.
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The monotonicity method for inverse scattering

Bastian Harrach

(joint work with Mikko Salo, Valter Pohjola)

We consider the problem of determining the support of an unknown scatterer in a
bounded domain from knowledge of the associated Neumann-Dirichlet-operator for
the Helmholtz equation. We show that the support can be uniquely reconstructed
from operator comparisons in the sense of operator definiteness up to finitely
many eigenvalues. This extends previous works on coercive equations such as EIT
[4] to coercive-plus-compact equations, and yields a constructive characterization
of scatterers, that is numerically stable in the sense that is allows convergent
implementations for noisy data. The results that we present herein have to be
considered work-in-progress, and we only sketch the main ideas for a sample case.

The setting. Let

(1) Λ0 : L2(∂Ω) → L2(∂Ω), g 7→ u
(g)
0 |∂Ω

be the Neumann-Dirichlet-operator for the homogeneous Helmholtz equation in a

bounded domain Ω ⊆ Rn, n ≥ 2, with smooth boundary ∂Ω, i.e. u
(g)
0 ∈ H1(Ω)

solves

(2) ∆u
(g)
0 (x) + k2u

(g)
0 (x) = 0 in Ω, ∂νu

(g)
0 |∂Ω = g.

We also consider the case where the domain contains an open scatterer D ⊂ Ω
with D ⊂ Ω and Ω \ D is connected. We assume that the refractive index in
D is real-valued and strictly larger than the background, so that the scattering
coefficient is given by 1+q(x), where q ∈ L∞(Ω) is assumed to fulfill that q(x) = 0
(a.e.) outside D and

0 < qmin ≤ q(x) ≤ qmax for all x ∈ D (a.e.)

Then the scattering field u(g) ∈ H1(Ω) solves

(3) ∆u(g)q (x) + k2(1 + q(x))u(g)q (x) = 0 in Ω, ∂νu
(g)
q |∂Ω = g,
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and the corresponding Neumann-Dirichlet-operator is denoted by

(4) Λq : L
2(∂Ω) → L2(∂Ω), g 7→ u(g)q |∂Ω.

We assume that k2 is not a resonance, neither for the homogeneous nor for the
inhomogeneous problem, so that both, (2) and (4), are uniquely solvable for all
g ∈ L2(∂Ω) and the Neumann-Dirichlet-operators are well-defined.

The main result. Our main result is a constructive proof that D is uniquely
determined from comparing Λq with Λ0. For an open set B (e.g., a small ball), we
introduce the self-adjoint compact test operator

TB : L2(∂Ω) → L2(∂Ω),

∫

∂Ω

gTBh :=

∫

B

k2u
(g)
0 u

(h)
0 .

Theorem 1. There exists a number dmax ∈ N such that

(a) if B ⊆ D then

αTB ≤dmax
Λ(q)− Λ(0) for all α ≤ qmin.

(b) if B 6⊆ D then, for all α > 0, Λ(q)− Λ(0)− αTB has infinitely many negative
eigenvalues,

where αTB ≤dmax
Λ(q)−Λ(0) denotes that the difference Λ(q)−Λ(0)−αTB has at

most dmax negative eigenvalues. The number dmax only depends on qmax and can
be calculated without knowledge of D.

Proof of the main result. The proof of theorem 1 follows the approach in
[4] (see also [2, 3, 5] for uniqueness proofs based on this approach) and combines
a monotonicity estimate with the idea of localized potentials from [1].

Lemma 2 (Monotonicity). There exists a number dmax ∈ N0 such that
∫

∂Ω

g (Λ(q)− Λ(0)) g ≥dmax

∫

Ω

k2q|u(g)0 |2

Proof. From the variational formulations of (1) and (3) one obtains that
∫

∂Ω

g (Λ(q)− Λ(0)) g −
∫

Ω

k2q|u(g)0 |2

≥
∫

Ω

(∣∣∣∇(u(g)q − u
(g)
0 )

∣∣∣
2

− k2(1 + qmax)|u(g)q − u
(g)
0 |2

)

= 〈
(
I − (1 + k2(1 + qmax))K

)
(u(g)q − u

(g)
0 ), u(g)q − u

(g)
0 〉H1(Ω),

where I is the identity on H1(Ω) and

K : H1(Ω) → H1(Ω), 〈Ku, v〉H1(Ω) :=

∫

Ω

uv,

is compact. The assertion now follows from the fact that I − (1 + k2(1 + qmax))K
can only have a finite number dmax ∈ N0 of negative eigenvalues. �
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Lemma 3 (Localized potentials). If B ⊆ Ω is open and B 6⊆ D then for each
finite dimensional subspace V ⊆ L2(∂Ω),

(5) ∃(gk)k∈N ⊆ V ⊥ :

∫

B

k2|u(gk)0 |2 → ∞ but

∫

D

k2|u(gk)0 |2 → 0.

Moreover, for this sequence also
∫
D k

2|u(gk)q |2 → 0.

Proof. By shrinking B, we can assume w.l.o.g. that B ⊆ Ω, B ∩ D = ∅ and that
Ω \ (B ∪D) is connected. We then argue by contradiction, and assume that (5) is
not true. Then, with the Neumann-to-Solution operators

LD : L2(∂Ω) → L2(D), g 7→ u
(g)
0 |D,

LB : L2(∂Ω) → L2(B), g 7→ u
(g)
0 |B,

there would exist a constant C > 0 such that

‖LBg‖ ≤ C‖LDg‖ for all g ∈ V ⊥.

This would yield that there exists a self-adjoint compact F with dim(F ) <∞ and

‖LBg‖2 ≤ C2‖LDg‖2 + ‖Fg‖2 for all g ∈ L2(∂Ω).

Using a powerful relation between norms of operator evaluations and the ranges
of their adjoints [1, Lemma 2.5]), this would imply that

(6) R(L∗
B) ⊆ R(L∗

D) +R(F ).

However, the adjoints L∗
D and L∗

B can be characterized as Source-to-Dirichlet
operators, and using a unique continuation argument as in part (b) of the proof
of theorem 3.6 in [4], one can show that

R(L∗
D) ∩R(L∗

B) = {0},
and that R(L∗

D),R(L∗
B) ⊆ L2(∂Ω) are both dense and thus infinite-dimensional.

By a dimension argument, it thus follows that (6) cannot be true. This proves (5).

Defining L̃D : L2(∂Ω) → L2(D), g 7→ u
(g)
q |D and using that q = 0 out-

side of D, one can show that R(L̃∗
D) = R(L∗

D). Hence, the additional assertion∫
D
k2|u(gk)q |2 → 0 follows by the same arguments. �

Proof of theorem 1. If B ⊆ D and α ≤ qmin then lemma 2 yields that

α

∫

∂Ω

gTBg = α

∫

B

k2|u(g)0 |2 ≤
∫

Ω

k2q|u(g)0 |2 ≤dmax

∫

∂Ω

g (Λ(q)− Λ(0)) g,

which shows (a). Interchanging uq and u0 in lemma 2, it also follows that
∫

∂Ω

g (Λ(q)− Λ(0)) g ≤dmax

∫

Ω

k2q|u(g)q |2

Hence, if B 6⊆ D, but Λ(q)− Λ(0) ≥fin αTB, then this would imply that

α

∫

B

k2|u(g)0 |2 ≤
∫

Ω

k2q|u(g)q |2 =

∫

D

k2qmax|u(g)q |2
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holds for all g ∈ V ⊥ with some finite-dimensional space V ⊂ L2(∂Ω). But this
contradicts lemma 3 and thus proves (b). �
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Stekloff Eigenvalues in Inverse Scattering

Shixu Meng

(joint work with Fioralba Cakoni, David Colton, Peter Monk)

We consider a problem in non-destructive testing in which small changes in the
(possibly complex valued) refractive index n(x) of an inhomogeneous medium of
compact support are to be determined from changes in measured far field data
due to incident plane waves.

It is known that transmission eigenvalues can be determined from the measured
scattering data and carry information about the refractive index of non-absorbing
media [3]. However the use of transmission eigenvalues in nondestructive testing
has two major drawbacks. The first drawback is that in general only the first
transmission eigenvalue can be accurately determined from the measured data [2]
and the determination of this eigenvalue means that the frequency of the inter-
rogating wave must be varied in a frequency range around this eigenvalue. In
particular, multi-frequency data must be used in an a priori determined frequency
range. This also requires the medium to be non-dispersive. The second drawback
is that only real transmission eigenvalues can be conveniently determined from
the measured scattering data which means that transmission eigenvalues cannot
be used for the non-destructive testing of inhomogeneous absorbing media.

To overcome these difficulties, we consider a modified far field operator F whose
kernel is the difference of the measured far field pattern due to the scattering
object and the far field pattern of an auxiliary scattering problem with the Stekloff
boundary condition imposed on the boundary of a domain B where B is either
the support of the scattering object or a ball containing the scattering object in
its interior. It is shown that F can be used to determine the Stekloff eigenvalues
corresponding to B where if B 6= D the refractive index is set equal to one in
B \D. For fixed k, λ := λ(k) ∈ C is called a Stekloff eigenvalue if there exists a
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nontrivial solution u ∈ H1(B) to

∆w + k2n(x)w = 0 in B,
∂w

∂ν
+ λw = 0 on ∂B.

In the simple case when the refractive index is real valued, we establish the
existence of Stekloff eigenvalues in this case and derive a relationship between
small changes in the refractive index and the corresponding change in the Stekloff
eigenvalue. The case that the refractive index can be complex valued is more com-
plicated. We study this non-selfadjoint Stekloff eigenvalue problem using Agmon’s
theory of non-selfadjoint eigenvalue problems [1] and the Dirichlet to Neumann
map [5], we show that there exist infinitely many Stekloff eigenvalues. Finally a
formula is obtained relating changes in n(x) to changes in the Stekloff eigenval-
ues and numerical examples are given [4] showing the effectiveness of determining
changes to the refractive index in this way.
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Problems in computational helioseismology

Laurent Gizon

(joint work with Damien Fournier, Thorsten Hohage)

The Sun supports acoustic oscillations continuously excited by near-surface turbu-
lent convection. Global helioseismology consists of inverting the measured frequen-
cies of the normal modes of oscillation to infer the sound speed and rotation as a
function of radius and unsigned latitude [1]. Techniques of local helioseismology
based on correlations of the wave field at the surface are being developed to infer
the structure and dynamics of the Sun in three dimensions [2, 3].

Forward problem. Time-distance helioseismology [4] is a particular technique
of local helioseismology, analogous to geophysical seismic interferometry. Ignoring
terms that involve gravity, the oscillations at position r and frequency ω can be
described by a scalar field ψ(r, ω), which solves the acoustic wave equation [5]

(1) Lr,ω[ψ] := −(ω2 + 2iωγ)ψ − 2iωu · ∇rψ − c∇r ·
(
1

ρ
∇r(ρcψ)

)
= s(r, ω),
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where γ(r, ω) is attenuation and the steady background medium is represented by
density ρ(r), sound speed c(r), and flow u(r). Waves are excited by a station-
ary random process (granulation) represented by the function s(r, ω). The above
equation is supplemented by a radiative boundary condition [6]. The basic in-
put data in time-distance helioseismology is the covariance function C(r′, r, ω) =
ψ∗(r′, ω)ψ(r, ω) between two points on the solar surface. Under the assump-
tion that sources are spatially uncorrelated and of the form E[s∗(r′, ω)s(r, ω)] =
δ(r− r′)P (ω)γ(r, ω)/ρ(r) we have (to within a surface term)

(2) C(r′, r, ω) =
P (ω)

4iω

[
G(r, r′, ω)−G†(r, r′, ω)

]
+ noise,

where Lr,ω[G(r, r
′, ω)] = δ(r − r′)/ρ(r) and G† = G∗(u → −u) is obtained by

switching the sign of u and taking the complex conjugate. The linear forward
problem consists in computing the perturbations to the covariance function caused
by infinitesimally small perturbations in the background medium. Combining the
first Born approximation [7, 8] and Eq. (2), Gizon et al. [5] expressed sensitivity
kernels in terms of only four Green’s functions in the reference medium, computed
using the finite-element code Montjoie [9].

Inverse problem. The inverse problem consists of reconstructing γ(r, ω), c(r),
ρ(r), and u(r) in the interior, starting from a reference solar model. This requires
knowledge of the noise covariance matrix [10, 11]. Linear inversions are tradition-
ally performed using Tikhonov regularization [12] or the method of approximate
inverse (called optimally localized averaging, see ref. [13]). Under the assumption
of local horizontal translation invariance of the sensitivity kernels, multichannel
inversions in Fourier space enable to solve problems that would otherwise require
too much computer memory [14]. Minimax estimators have been computed for
this problem using the Pinsker method [15, 16].

The non-linear inverse problem of time-distance helioseismology (finite pertu-
bations to the medium) has not been studied in full detail yet. Future stud-
ies should build on existing theoretical uniqueness results, in particular on the
Novikov-Agaltsov reconstruction algorithm [17], which combines measurements of
G at several frequencies (see table below). For measurements of C instead of G,
we have conducted numerical experiments to determine the number of frequencies
required to reconstruct ρ and c. For realistic noise levels, more frequencies will be
needed to obtain useful reconstructions.

Outstanding problems. Further advances in local helioseismology will re-
quire improved forward solvers for vector MHD wave equations (see refs. [22, 23])
and homogenized wave equations [24], as well as improved inversion methods that
minimize the number of forward solves [25, 26]. A major challenge in local helio-
seismology is the very large size of the input dataset, e.g. ∼ 1012 pairs of points
times ∼ 102 frequencies in time-distance helioseismology. As a result, it is im-
portant to either select or average the input data before inverting them. One
interesting averaging scheme that deserves further attention is helioseismic holog-
raphy [27, 28, 29], which uses Green’s second identity to image scatterers in the
Sun, as in Porter-Bojarski holography [30, 31].
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Table 2. Number of frequencies needed for reconstruction

Observable: G Observable: C

theory experiment theory experiment

c 1 (ref. [18]) 1 (ref. [19]) ? 2 (this work)
ρ 1 (ref. [18]) 1 (ref. [19]) ? 2 (this work)
c, ρ 2 (ref. [18]) 2 (ref. [19]) ? 4 (this work)
u 2 (ref. [17]) 2 (ref. [20]) ? 2 (ref. [20])

c, ρ, γ, u 3 (ref. [17]) ≥ 3 (ref. [21]) ? ?
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type Helmholtz, PhD Thesis (2016), Université Paris-Saclay, France.
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Beyond Kirchhoff migration in 2D seismic imaging

Andreas Rieder

(joint work with Christine Grathwohl, Peer Kunstmann, Eric Todd Quinto)

In seismic imaging one wants to identify material parameters of a medium from
measurements of reflected waves. If the medium does not support shear stress and
has constant mass density (say 1) then the acoustic wave equation governs wave
propagation: the acoustic potential u(t;x,xs) ∈ R at location x ∈ R2 and time
t ≥ 0 satisfies

(1)
1

ν2
∂2t u−∆xu = δ(x − xs)δ(t)

where ν = ν(x) is the speed of sound and xs is the excitation (source) point.
The task is to reconstruct ν from the backscattered (reflected) field u(t;xr,xs),
(t;xr,xs) ∈ [0, Tmax] × R× S where S and R are the sets of source and receiver
(microphone) positions, respectively, and Tmax is the recording time.
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This inverse problem is nonlinear. We linearize by the Born ansatz

1

ν2(x)
=

1 + n(x)

c2(x)

with a smooth, a priori known background velocity c = c(x). Now, n is the
quantity we seek. The Born approximation is justified when no multiple scatterings
occur.

Using principles of wave propagation we can show that n may be determined
as a solution of the integral equation

(2) Fw(T ;xr,xs) =
1

π

∫ T

0

(u − ũ)(t;xr,xs)dt

with the reference solution ũ which has to be computed from (1) with ν replaced
by c. In (2), the operator F is a generalized Radon transform

Fw(T ;xr,xs) =

∫
w(x)

c2(x)
a(x,xs)a(x,xr)δ

(
T − τ(x,xs)− τ(x,xr)

)
dx

where the travel time τ and the amplitude a can be computed from

|∇xτ | = c−1 and div(a2∇xτ) = 0,

see, e.g. [6]. So, Fw integrates w over reflection isochrones: T = τ(·,xs)+ τ(·,xr).
Since the 1950’s Kirchhoff migration is the standard technique to approximately

solve the integral equation. Beylkin [1] gave Kirchhoff migration a mathematical
foundation: the reconstructed nrec can be expressed as nrec = F#Kg where g =
Fn are the data (measurements), K is a convolution operator, and F# denotes a
dual transform (generalized backprojection). Further, he could prove that

nrec = F#KFn = Ipartialn+Ψn

where Ipartial is a kind of band pass filtering (operator of partial reconstruction)
and Ψ is smoothing. Further, the imaging operator F#KF is a pseudo-differential
operator of order 0.

We propose a different approach which we think is more flexible, allows a better
control of the involved parameters, and gives a better understanding of the propa-
gation of singularities. As we cannot hope to recover n from the data completely
we consider imaging operators Λ which differ from F#KF :

Λ = P ∗F ∗ΦF

where Φ is a smooth cutoff function, F ∗ is (smoothly weighted) L2-dual, and P ∗

is the dual of a local operator such that Λ is of order 1. Our reconstruction
technique based on Λ also differs from Kirchhoff migration, see [2].

In what follows we assume that the background velocity is constant, c = 1,
yielding τ(x,y) = |x − y| as well as a(x,y) = 1/|x− y|. Further, let n be com-
pactly supported in R2

+, the lower half space x2 > 0 (x2 > 0 points downwards).
Source and receiver positions are given by the common offset scanning geometry

xs(s) = (s− α, 0)⊤ and xr(s) = (s+ α, 0)⊤
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where α ≥ 0 is the common offset. In this situation the generalized Radon trans-
form integrates over ellipses and may be written as

Fw(s, t) =

∫
A(s,x)w(x)δ

(
t− ϕ(s,x)

)
dx, t > 2α,

with

ϕ(s,x) := |xs(s)− x|+ |xr(s)− x| and A(s, x) =
1

|xs(s)− x| |xr(s)− x| .

We start with the imaging operator

Λ = ∆F ∗ΦF

where ∆ is the Laplacian. From the elliptic means g = Fn we can recover

Λn = ∆F ∗Φg.

We have composed Λ as a pseudo-differential operator of order 1 and Λn empha-
sizes singularities (e.g., jumps along curves) of n which are tangent to ellipses
being integrated over. To see this note that – under the Bolker assumption –
any hypersurface Radon transform R on Rd and its (formal, smoothly weighted)
L2-adjoint R∗ are Fourier integral operators of order −(d − 1)/2 [3]. If they can
be composed, then R∗R is a pseudo-differential operator. Our F on R2 satisfies
the Bolker assumption [4] and, hence, F ∗ΦF is of order −1.

Theorem 1. The top order symbol of Λ = ∆F ∗ΦF is

σ(x, ξ) = −2π |ξ|2 A
2(s,x)Φ(s, ϕ(s,x))

|ω|B(s,x)

where

B(s,x) =
∣∣det

(
∇xϕ(s,x), ∂s∇xϕ(s,x)

)∣∣.
The symbol is evaluated at (x, ξ) where s ∈ R and ω ∈ R are defined uniquely by

ξ = ω∇xϕ(s,x).

For positive α the explicit expression for σ is rather complicated. Therefore,
we restrict ourselves here to α = 0.

Corollary 2. Let α = 0. Then,

σ(x, ξ) = −π ξ
2
2

|ξ|
1

x32
Φ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
.

If

ξ ∈ C(x) :=
{
ξ ∈ R

2 : ξ2 6= 0, Φ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
> 0

}
.

then Λ is micro-locally elliptic at x in direction ξ. Thus, the next corollary follows
from a general result [5]. By WFs(u) we denote the Hs-wave front set of the
distribution u.
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Corollary 3. Let α = 0 and ξ ∈ C(x) for x ∈ R2
+. Then, for u ∈ D′

0(R
2
+)

(x, ξ) ∈ WFs(u) ⇐⇒ (x, ξ) ∈ WFs−1(Λu).

Loosely speaking, u fails to be in Hs at x in direction ξ iff Λu fails to be in Hs−1

at x in direction ξ.

Since the symbol of Λ goes to zero rapidly with increasing depth x2, the wave
fronts farther down are also reconstructed more weakly than those closer to the
surface. We compensate for this deficiency by introducing a modified imaging
operator

Λmod = ∆MF ∗ΦF where M is multiplication by x32.

The top order symbol of Λmod is x32σ(x, ξ) and depends on x2 only via the term
involving the cutoff function. The set C(x) is the same for both imaging operators.
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Stability and convergence for seismic reconstruction using full
waveform inversion

Florian Faucher

(joint work with Hélène Barucq, Henri Calandra, Guy Chavent, Maarten V. de
Hoop)

We study the seismic inverse problem associated with the time-harmonic wave
equations for the reconstruction of subsurface media. The reconstruction is con-
ducted using the full waveform inversion (FWI) method and relies on iterative
minimization algorithm, which we adapt for large scale situation. Considering the
Dirichlet-to-Neumann map as the data, the inverse problem shows a conditional
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Lipschitz-type stability when assuming piecewise constant representation of the
parameters. We obtain the analytical lower and upper bounds for the stability
constant and provide quantitative numerical estimates to demonstrate the sharp-
ness of these bounds, in the geophysical context. We further study the convergence
of the minimization problem and are able to numerically estimate the size of the
basin of attraction, depending on the frequency. From these stability and conver-
gence results, we design a multi-level algorithm with simultaneous progression in
frequency and scale. Eventually we carry out numerical experiments for acoustic
and elastic parameters reconstruction assuming no prior information in the initial
models, in two and three dimensions.

1. Time-harmonic inverse problem for the wave equation

The seismic inverse problem aims the recovery of subsurface materials from the
measurements of waves at the surface. The underlying inverse problem can be
formulated as an optimization problem, as initiated by the work of Tarantola
[5, 6]. Such techniques are referred to as full waveform inversion (FWI). Let us
consider a bounded domain Ω of R2 or R3, the propagation of wave is given by u
solution of

(1) −ω2ρ(x)u(x)−∇ · σ(x) = f(x),

where ω is the frequency, ρ the density, σ the stress tensor and f the source. The
medium properties (Lamé, Thomsen parameters, etc) are referred to as m and
contained in σ := σ(m,x). The number of parameters to recover depends on the
type of medium (i.e. acoustic, elastic, anisotropic, etc). For example in acoustic
isotropic case, the propagation of waves follows the Helmholtz equation

(2)
(
−∆− ω2

c(x)2
)
u(x) = f(x),

where the medium is defined by a single parameter: the wavespeed c.
In the seismic context, measurements are acquired on a portion Σ of the domain,

which is standardly a discrete set of surface locations; we denote the corresponding
data d. The forward problem F associated with parameter m is defined such that

(3) F : m → F(m) = {u(x) |Σ}.

The reconstruction follows an iterative minimization of the cost function defined
as the difference between the data and simulation using an approximate model:

(4) min
m

J (m) =
1

2
‖F(m)− d‖2.

2. Conditional Lipschitz-type stability

We consider the inverse problem associated with the Helmholtz equation using
the Dirichlet-to-Neumann map as the data. [1] shows conditional Lipschitz-type
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stability when taking a piecewise constant representation for the model:

(5) c−2(x) = m(x) =

N∑

k=1

αkχk(x),

where αk stands for constant coefficient and χk the characteristic function. In this
configuration the stability result gives

(6) ‖m1 −m2‖ ≤ C‖F(m1)−F(m1)‖.

In [2] we have been able to precisely characterize the stability constant C,

(7)
1

4ω2
eK1N

1/5 ≤ C ≤ 1

ω2
e(K2(1+ω2c−2

min)N
4/7),

where K1 and K2 are mathematical constant.
We confront the analytical bounds to numerical estimation of the stability con-

stant and demonstrate their sharpness, in particular for a geophysical setup. The
stability analysis helps conduct the iterative algorithm by providing insight on
frequency and scale dependency. Namely the use of low frequencies requires the
use of low scale (low N) to limit the growth of the stability constant.

3. Convergence of the iterative algorithm

We motivate the frequency progression in our algorithm by a local analysis of
convergence properties based on weakly nonlinear inverse problem as defined in
[3, 4].

Assuming an initial model m0, we focus on the interval [m0 −∆m0 ,m0 +∆m0 ]
where ∆m0 is a distance chosen to obtain the deflection condition (which indicates
advantageous convergence properties). We define numerical estimate of ∆m0 after
the discretization of the wave equation,

(8) ∆m0 ≥ π

4

‖DF(m0)‖
‖D2F(m0)‖

.

Hence it allows us to estimate the size of the basin of attraction with respect to the
frequency. In particular we show that low frequencies give a larger convergence
radius, which is particularly crucial when no initial information is known on the
model to be recovered.

4. Numerical experiments

From the stability and convergence results we define a multi-level algorithm where
the frequency progresses with scale in order to conduct the iterative minimization
algorithm. We carry out experiments in two and three dimensions for the recon-
struction of seismic coefficients, in acoustic and elastic media. In the Figure 1 we
illustrate the recovery of P-wavespeed model in elastic medium.
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Figure 1. Elastic reconstruction of a two dimensional seismic
model, initial (left), reconstructed (center) and true (right) P-
wavespeed coefficients (km s−1).

5. Perspectives

We aim to extend the stability result in the case of partial data and absorbing
boundary conditions on some part of the domain boundary. It involves the use
of Cauchy data and piecewise linear representation. We will discuss the current
progress and illustrate the numerical benefits.

A precise relation between frequency and scale, from the stability and conver-
gence, is the natural extension but necessitates further analysis. We also aim
at anisotropic coefficients reconstruction, which is numerically feasible but would
greatly benefit from analytical results.
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Bayesian Inversion for the Drift in Stochastic Differential Equations

Yvo Pokern

(joint work with Tjun Y. Hoh, Ioanna Manolopoulou)

For a stochastic differential equation (SDE) of Ito type of the form

dVt = ξ(Vt)dt+ σ(Vt)dWt, V0 = v0,

the problem considered here is to estimate the term ξ(·) known as the drift term
as well as the term σ(·) known as the diffusivity based on observations of the
stochastic process (Vt)t∈[0,T ] at time points ti ∈ [0, T ]. In the statistical context,
it has frequently been assumed that the unknown functions ξ(·) and σ(·) can be
described by a finite-dimensional parameter θ ∈ Θ, usually of small dimension and
with each component readily interpretable in the application domain. Interest then
shifts to finding good values for this parameter, an approach known as parametric
inference. Such a parameterization limits flexibility and if this is to be avoided,
a nonparametric approach can be adopted instead, where the whole functions
ξ(·), σ(·), or at least their values at a set of points are estimated. The Bayesian
approach is to assume a priori, i.e. before having taken the observations (Vti) into
account, that the function is an element of a suitable function space H and to
construct a probability measure π0, referred to as a prior, on this function space
which reflects a scientific consensus belief elicited from interaction with application
area experts. The SDE gives rise to a probability measure on the observations
P ((Vti)|ξ, σ) which is combined with the prior measure π0 using Bayes’ theorem
to yield the posterior measure; see [2] for the Bayesian viewpoint in general and [10]
for an exposition in the context of nonparametric estimation and inverse problems.

If observations are available at all points of the interval [0, T ], this is known as
continuous time observation and a rich theory exists to address this problem, see
[6]. This setting has also been considered in [8] as its relative simplicity enables a
study of the frequentist behaviour of the Bayesian procedure proposed in dimension
one. If observations are available at a finite number of time points with maximal
inter-observation time ∆t = max{ti+1 − ti} and it is acceptable to consider the
limit ∆t → 0, T → ∞, then many results are available, see [9] in the parametric
case and e.g. [5] in the nonparametric case.

This work assumes a simpler parametric form for the diffusivity σ(v) ≡ Σ ∈
R2×2 and presents fully nonparametric estimation of the drift ξ(·). In extension
of [7, 8], the state space considered is the two-dimensional torus, or equivalently
the unit square with periodic boundary conditions but the work differs from [4]
by defining the process on the torus rather than mapping a diffusion on R2 to the
torus by a modulus operation. The prior measure is Gaussian and described by
the prior mean function ξ0 ≡ 0 and the prior precision operator

A0 = ηoI + η(∂8x + ∂8y),

where x and y refer to the two coordinates describing the state space S = [0, 1]2 ∋
(x, y)T and η > 0, ηo > 0 are so-called hyperparameters that are chosen to more
carefully reflect prior beliefs on the drift.
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As in the univariate case, conditional on continuous time observations and dif-
fusivity, the posterior follows a Gaussian measure and the update equations con-
necting prior to posterior mean and precision are of the same form given in [7],
i.e. the posterior mean is given as the solution of

∫

S

ϕ(v)Aξ̂(v)dv =
1

2

∫ T

0

ϕ(Vt)dVt ∀ϕ ∈ D(A),(1)

where the posterior precision is given by

A = A0 + γT ,

where, in turn, γT is the empirical measure of the process {Vt}Tt=0:
∫ T

0

ϕ(Vt)dt =

∫

S

ϕ(v)dγT (v) ∀ϕ ∈ C(S).

Discretization is carried out via a truncated Fourier representation using pre-
conditioned conjugate gradient methods to solve the PDE (1) and to sample from
the posterior measure using the Krylov-based methods reviewed in [1]. The algo-
rithm is complemented by a Langevin-based sampling method for data augmenta-
tion and a Gibbs sampler. Finally, an application to animal movement modelling
is displayed briefly where position observations of a single Capuchin monkey are
obtained at not quite regularly spaced observation times. It is found that accept-
able model fit is obtained only upon sub-sampling of the data and the drift appears
non-conservative (i.e. it contains a rotational component) which precludes simpler
models present in the literature on animal movement ecology where the drift is
modelled as the gradient of a potential, e.g. [3].
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Inverse homogenization: Inverse problem for the structure of
composites

Elena Cherkaev

Subscale processes in microstructured media are of concern in a variety of physical
and biological imaging and inverse problems. Modeling of transport phenomena
(electromagnetic, thermal, fluid, etc.) in such medium involves homogenization
of the fine scale problem. Solution of the corresponding inverse problem provides
the homogenized or effective parameters of the medium. Inverse homogenization
is a problem of deriving characteristics of the underlying microlevel process or
geometry of a finely structured composite material from the known effective prop-
erties. The approach is based on the reconstruction of the matrix-valued spectral
measure in the Stieltjes integral representation of the homogenized parameters of
the media. This representation relates the n-point correlation functions of the
microstructure to the moments of the spectral measure of an operator depending
on the composite’s geometry. We show that the matrix-valued spectral measure
that contains all information about the fine scale geometry, together with its mo-
ments, can be uniquely reconstructed from the effective properties of the medium
measured in an interval of frequency.

As an example of a problem with processes on a subscale, we consider interac-
tion of low frequency electromagnetic wave with a finely structured medium. We
assume that a heterogeneous material occupying a domain Ω in R3, is ε-periodic
with the cell of periodicity Ωε, and consider the time-harmonic Maxwell’s equa-
tions in the ε-periodic medium:

{
∇× Eε(x)− iωµ(x/ε)Hε(x) = 0, ∇ · ǫ(x/ε)Eε(x) = 0
∇×Hε(x) + iωǫ(x/ε)Eε(x) = 0, ∇ · µ(x/ε)Hε(x) = 0

Here Eε and Hε are electric and magnetic fields, ǫ is complex permittivity, µ is
magnetic permeability, and ω is the frequency. Two-scale asymptotic expansions
method with y = x/ε ∈ Ωε results in homogenized Maxwell’s equations [11]:

{
∇× E(x) − iωµ∗H(x) = 0, ∇ · ǫ∗E(x) = 0
∇×H(x) + iωǫ∗E(x) = 0, ∇ · µ∗H(x) = 0

Functions E, H are the homogenized electric and magnetic fields, and ǫ∗ and µ∗

are effective permittivity and permeability of the medium,

(1) ǫ∗ =< ǫ(y) (I3 +∇yφe(y)) >, µ∗ =< µ(y) (I3 +∇yφh(y)) >

where < · > denotes averaging over Ωε, and functions φe and φh are solutions of
local elliptic equations:

(2) ∇y · ǫ(y)∇yφ
k
e (y) = −∇y · ǫ(y)ek, ∇y · µ(y)∇yφ

k
h(y) = −∇y · µ(y)ek

As the electric and magnetic problems are decoupled on the fine scale, we further
consider only the local problem for the electric field. We assume that on the fine
scale, the medium is a two-phase composite, χ is the characteristic function of the
domain occupied by the first material. Permittivity ǫ(y) takes values ǫi, i = 1, 2,
in domains occupied by the i-th material, ǫ(y) = ǫ1χ(y) + ǫ2(1 − χ(y)). The
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local problem (2) can be rewritten as ∇ · (ǫ1χ(y) + ǫ2(1 − χ(y)))E = 0 for
E = ek + ∇φ and brought to the form: ∇ · χE = s∇ · E with a complex
parameter s = 1/(1− ǫ1/ǫ2). Then, ∇ · χ (∇φ+ ek) = s∆φ , where (−∆) is the
Laplacian. Introducing an operator Γ projecting vector fields onto a subspace of
curl free, zero mean fields, Γ = ∇(−∆)−1(∇·), we can express E as a function of
the operator Γχ,

(3) E = (I +
1

s
Γχ)−1ek = s(sI + Γχ)−1ek.

With the function χ in the inner product, Γχ is a bounded self-adjoint opera-
tor. The spectral resolution of Γχ with the projection valued measure Q results
in the spectral representation for the field E. Using (1), (3), and the spectral
representation of the resolvent, we represent the function F (s) = 1− ǫ∗(s)/ǫ2 as

(4) Fjk(s) = 〈χ ( sI + Γχ )−1ej , ek〉 =
∫ 1

0

〈χdQ(z) ej, ek〉
s− z

=

∫ 1

0

dµjk(z)

s− z

where µ is the spectral measure of Γχ, dµjk(z) = 〈χdQ(z)ej, ek〉.
This integral representation was developed to derive forward bounds on ǫ∗ given

permittivity values ǫ1, ǫ2 and partial information on the composite geometry
[1, 7, 6]. Since then it was used in a variety of forward and inverse homoge-
nization problems (see [8, 3, 9, 10] and references therein). For the discussed
inverse problem, it is important that the representation (4) separates the param-
eter information in s from information about the microgeometry contained in µ.
Information about the structure of the subscale process is incorporated into µ
via its moments µn, depending on the (n + 1)-point correlation functions of the
medium:

(5) µn
jk =

∫ 1

0

zndµjk(z) = (−1)n〈χ[(Γχ)nej] · ek〉

In the case when the homogenized medium is isotropic with a scalar effective
permittivity, F (s) is a scalar function of s, and the spectral measure µ is a scalar
measure. Also, if the function χ is axisymmetric with respect to the spatial coordi-
nates, the matrix of measures µ is diagonalizable, and we can consider separately
diagonal elements µkk and Fkk(s) of µ and F (s) as scalar functions of s. In this
case, the following uniqueness theorems hold.

Theorem 1 ([2]). The measure µ can be uniquely reconstructed if the function
F (s) is known on an open set of the complex variable s with a limiting point.

Theorem 2 ([4]). The moments of the measure µ can be uniquely reconstructed
if the function F (s) is known on an open set of the complex variable s with a
limiting point. Moreover, function µ and its moments are uniquely reconstructed
if the effective complex permittivity ǫ∗ is known in an interval of frequency ω.

Here we extend these results to the general case of a non-diagonalizable matrix-
valued measure µ = {µjk} corresponding to an anisotropic medium.
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Theorem 3. A determinate matrix measure µ together with its moments (5), can
be uniquely reconstructed if the matrix function F (s) is known on an open set
of the complex variable s with a limiting point. In particular, sufficient data are
provided by the effective complex permittivity tensor ǫ∗ (1) known in an interval
of frequency ω.

An efficient numerical method of reconstruction of the function µ is based on
Padé approximation. In the case of scalar function µ, the convergence of the Padé
approximants is asserted by Markov’s theorem (A. Markov, 1895).

lim
n→∞

qn(s)

pn(s)
=

∫ 1

0

dµ(z)

s− z
, for s ∈ C \ [0, 1]

Here {pn}n is a sequence of polynomials orthogonal with respect to µ and {qn}n
is a sequence of polynomials of the second kind,

qn(t) =

∫ 1

0

pn(t)− pn(z)

t− z
dµ(z), n ≥ 0

The Padé approximant for a matrix-valued analytic function is constructed using
matrix polynomials Pn orthogonal with respect to measure µ:

∫ 1

0

Pn(z) dµ(z)P
∗
m(z) = δnmI, n,m ≥ 0, µ(z) = µjk(z)

and matrix polynomials of the second kind Qn(s).

Theorem 4 ([5]). For a determinate matrix measure µ

lim
n→∞

P−1
n (s)Qn(s) =

∫ 1

0

dµ(z)

s− z
, for s ∈ C \ [0, 1]

Convergence is uniform for s in compact subsets of C \ [0, 1].
Moreover, for a given sequence of polynomials {Pn}n, the corresponding mea-

sure can be found as weak accumulation points of a sequence of discrete measures
with support in a set of zeros of {Pn} , µn =

∑m
k=1 δzn,k

Gn,k, where Gnk are
matrices:

Gnk =
1

det(Pn(z))lk(znk)
(Adj(Pn(z)))

lk−1(znk)Qn(znk)

and znk are the zeros of Pn(z) (in increasing order) of multiplicity lk. Then the
matrix Padé approximant can be written as:

P−1
n (s)Qn(s) =

m∑

k=1

Gnk
1

s− znk

where m is the number of zeros of Pn(z). Using these results, we show that:

Theorem 5. The moments µk of the matrix-valued spectral measure µ of the
operator Γχ = ∇(−∆)−1(∇ · χ) are given by

µk =
m∑

j=1

Gnjz
k
nj .
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The formulas are exact for k = 0, 1, ..., 2n− 1.
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Quantitative Photoacoustic Imaging of Two-photon Absorption

Kui Ren

(joint work with Patrick Bardsley, Rongting Zhang)

Two-photon absorption photoacoustic tomography (TP-PAT) [4, 7, 9, 11, 12, 13,
14] is a variant of photoacoustic tomography (PAT) that uses photoacoustic effects
to determine two-photon optical absorption properties of biological tissues. Here
the term two-photon optical absorption refers to the phenomenon that an electron
transfers to an excited state after simultaneously absorbing two photons whose
total energy exceed the electronic energy band gap. It is obvious that two-photon
absorption occurs much less frequently than single-photon absorption when the
photon density is not particularly high. That is the main reason that two-photon
absorption is often neglected in traditional modeling of light propagation in biolog-
ical tissues. However, the two-photon absorption phenomenon can be very useful
in molecular imaging since it can often be tuned to be associated with specific
molecular signatures. We can therefore use it to visualize particular cellular func-
tions and molecular processes inside biological tissues if we have a way to image
two-photon absorption.

The main difference between TP-PAT and the regular PAT is that two-photon
absorption, in addition to single-photon absorption, needs to be considered in the
model for light propagation. Let Ω ⊆ Rd (d ≥ 2) be the medium to be probed,
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and u(x) be the density of photons at position x ∈ Ω. Then, in diffusive regime,
u(x) solves the following semilinear diffusion equation:

(1)
−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω

u = g(x), on ∂Ω

where the function g(x) models the incoming NIR photon source, the function
γ(x) is the diffusion coefficient of the medium, σ(x) is the usual single-photon
absorption coefficient of the medium, and µ(x) is the intrinsic two-photon ab-
sorption coefficient. The total two-photon absorption coefficient is given by the
product µ(x)|u| where the absolute value operation is taken to ensure that the
total two-photon absorption coefficient is non-negative, a property that needs to
be preserved for the diffusion model to correctly reflect the physics.

The initial pressure field generated by the photoacoustic effect in TP-PAT is the
product of the Grüneisen coefficient of the medium, Γ, and the total energy ab-
sorbed locally by the medium, σu+µ|u|u [3, 5]. Note that here the total absorbed
energy consists of two components, the contribution from single-photon absorp-
tion, σu, and the contribution from two-photon absorption, µ|u|u. Therefore, we
write the initial pressure field as [2, 3, 5]:

(2) H(x) = Γ(x)
[
σ(x)u(x) + µ(x)|u|u(x)

]
, x ∈ Ω.

The Grüneisen coefficient is non-dimensionalized. It describes the efficiency of the
photoacoustic effect of the underlying medium.

The change of pressure field generates ultrasound waves that propagate follow-
ing the standard acoustic wave equation [3]:

(3)

1

c2(x)

∂2p

∂t2
−∆p = 0, in (0,+∞)× Rd

p(t,x) = H(x)χΩ,
∂p

∂t
(t,x) = 0, in {t = 0} × Rd

where p(t,x) is the pressure field, c(x) is the speed of the ultrasound waves, and χΩ

is the characteristic function of the domain Ω. The ultrasound speed c is assumed
known. The objective of TP-PAT is to reconstruct the optical coefficients from
measured ultrasound signal on the surface of the medium, p|(0,T )×∂Ω for T long
enough.

We investigated numerically the inverse problem using the nonlinear least-
square framework. For instance, in the case of reconstructing (σ, µ) from J ≥ 1
data sets generated by sources {gj}Jj=1, we search for (σ, µ) that minimizes the
functional

(4) Φ(σ, µ) ≡ 1

2

J∑

j=1

∫ T

0

∫

∂Ω

(pj − p∗j )
2dxdt+ κR(σ, µ),

where (0, T ) is the measurement time interval, p∗j is the measured acoustic data
generated by source gj (1 ≤ j ≤ J), and the regularization term R(σ, µ) =
1
2

(∫
Ω
|∇σ|2dx+

∫
Ω
|∇µ|2dx

)
. In Fig. 1, we show some typical reconstructions

of the absorption coefficients in a numerical experiment with four data sets.
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Figure 1. The true absorption coefficients (σ (top row), µ (bot-
tom row)) (first column) and the reconstructions with data at dif-
ferent noise levels (ǫ = 0%, 2%, 5%, 10% from the second column
to the fifth column). Data collected from four different illumina-
tions are used in each reconstruction.

We also analyzed mathematically the quantitative step of the inverse problem:
to reconstruct information on the coefficients (Γ, γ, σ, µ) from J ≥ 1 internal data
sets:

Hj(x) = Γ(x)
[
σ(x)uj(x) + µ(x)|uj |uj(x)

]
, 1 ≤ j ≤ J,

generated with boundary sources gj (1 ≤ j ≤ J)

−∇ · γ(x)∇uj(x) + σ(x)uj(x) + µ(x)|uj |uj(x) = 0, in Ω
uj = gj(x), on ∂Ω

The results can be summarized as follows.
(a) Nonuniqueness in reconstructing (Γ, γ, σ, µ). It is not possible to recon-
struct all four coefficients simultaneously, no matter how much data we have. The
precise statement is as follows.

Theorem 1. Let γ1/2|∂Ω be given and assume that γ1/2 ∈ C2(Ω). Define the
following functionals:

α =
∆γ1/2

γ1/2
+
σ

γ
, β =

µ

γ3/2
, ζ1 = Γ

σ

γ1/2
, ζ2 = Γ

µ

γ
.

Assume that either (α, β, ζ1) or (α, β, ζ2) is known, and H is among the data used
to determine them. Then for any given new illumination g̃, the corresponding

datum H̃ is uniquely determined by (g̃, H).

This result says that once we know (α, β, ζ1) (or (α, β, ζ2)), which is not enough
to uniquely determine all four coefficients, introducing more data will not provide
new information in terms of uniqueness.
(b) Uniqueness and stability in reconstructing (σ, µ). If we are only inter-
ested in the reconstruction of the absorption coefficients, we can show that two
“well-chosen” data sets are sufficient to uniquely and stably reconstruct (σ, µ) as
stated in the following result.
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Theorem 2. Let Γ and γ be given. Let (H1, H2) and (H̃1, H̃2) be the data sets
corresponding to the coefficients (σ, µ) and (σ̃, µ̃) respectively that are generated
with the pair of sources (g1, g2). Assume that gi ≥ ε > 0, i = 1, 2, and g1 − g2 ≥
ε′ > 0 for some ε and ε′. Then (H1, H2) = (H̃1, H̃2) implies (σ, µ) = (σ̃, µ̃)
provided that all coefficients involved are sufficiently smooth. Moreover, we have

(5) ‖σ − σ̃‖L∞(Ω) + ‖µ− µ̃‖L∞(Ω) ≤ C̃
(
‖H1 − H̃1‖L∞(Ω) + ‖H2 − H̃2‖L∞(Ω)

)
,

for some constant C̃.

(c) Local uniqueness in determining (γ, σ, µ). It turns out that we can in fact
simultaneously reconstruct three of the four coefficients. However, the analysis of
the inverse problem in this case is much more complicated technically. In the
case of reconstructing (γ, σ, µ), assuming Γ is known, we can establish a local
uniqueness result using the tools of complex geometric optics (CGO) solutions [6,
8]. Our analysis is based on the study of the linearized system for the perturbations
{δγ, δσ, δµ, {δuj}Jj=1}, consisting of the governing equations as well as the internal
data, around background (γ, σ, µ):

−∇ · (δγ∇uj)−∇ · (γ∇δuj) = −δHj/Γ, in Ω

ujδσ + |uj|ujδµ+ (σ + 2µ|uj|)δuj = +δHj/Γ, in Ω

with appropriate boundary conditions.

Theorem 3. Let d = 3. Let {δHj}Jj=1 and {δ̃Hj}Jj=1 be the data sets generated

with (δγ, δσ, δµ) and (δ̃γ, δ̃σ, δ̃µ) respectively. Assume that the background coeffi-
cients are smooth enough. Then there exists a set of J ≥ d+1 boundary illumina-

tions, {gj}Jj=1, such that {δHj}Jj=1 = {δ̃Hj}Jj=1 implies (δγ, δσ, δµ) = (δ̃γ, δ̃σ, δ̃µ)

if δγ|∂Ω = δ̃γ|∂Ω.

A general stability result can be derived following the theory of Douglis-Niren-
berg on over-determined elliptic systems [1, 10]; see [5] for more details.
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Coherent acousto-optic imaging

John C. Schotland

(joint work with Jeremy Hoskins)

The acousto-optic effect refers to the scattering of light from a medium whose op-
tical properties are modulated by an acoustic wave. Brillouin scattering from
density fluctuations in a fluid [1] and the ultrasonic modulation of multiply-
scattered light [2] are familiar examples of this effect. It is well known that
the scattered optical field carries information about the medium. This princi-
ple has been exploited to develop an imaging modality, known as acousto-optic
imaging, which combines the spectroscopic sensitivity of optical methods with
the spatial resolution of ultrasonic imaging. Two forms of acousto-optic imag-
ing are usually distinguished. Direct imaging employs a focused ultrasound beam
for image formation [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The im-
age is created by scanning the focus of the beam and recording the intensity
of the scattered light at a fixed detector. Tomographic imaging utilizes an in-
verse scattering method to reconstruct images of the optical properties of the
medium [20, 22, 32, 33, 34, 29, 31, 30, 35].

The theory of the acousto-optic effect begins with a model for the propagation
of electromagnetic waves in a material medium. The most general such model is
based on the Maxwell equations for a dielectric whose permittivity is modulated
by an acoustic wave [1]. Alternatively, for multiply-scattered light, a phenomeno-
logical theory based on the radiative transport equation (RTE) or the diffusion
approximation (DA) to the RTE may be employed [18, 20, 21, 19]. In this paper,
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we develop a first-principles theory of the acousto-optic effect. We begin by con-
structing a model for the acoustic modulation of the dielectric permittivity of a
medium consisting of small scatterers suspended in a fluid. Next, we consider the
propagation of light in the medium and obtain the wave equations obeyed by the
frequency components of the optical field at harmonics of the acoustic frequency.
We then obtain the corresponding RTE by asymptotic analysis of the Wigner
transform of the field in a random medium. We note that the problem is challeng-
ing because the random medium acquires a time-dependence due to the presence
of the acoustic field. We apply our results to estimating the minimum detectable
size of a small inhomogeneity in acousto-optic imaging. Since the scatterers in
the medium are displaced by the acoustic wave, the scattered light undergoes a
frequency shift which permits the localization of the resulting so-called tagged
photons to the volume containing the focus.
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