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Abstract. There have been recent breakthroughs in two related questions:
the study of Cremona groups, and the problem of rationality of algebraic
varieties. Our workshop brought together algebraic geometers, who discussed
and tried to solve problems that are relevant to the classification of finite
subgroups of Cremona groups. Priority was given to the following four related
areas: automorphisms of algebraic varieties, birational geometry of Mori fibre
spaces, and rationality problems.
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Introduction by the Organisers

The workshop Subgroups of Cremona Groups has been organized by Fabrizio
Catanese, Ivan Cheltsov, Julie Deserti and Yuri Prokhorov. Unfortunately Julie
Deserti was unable to participate.

The workshop was well attended with 26 participants with broad geographic
representation from France, Germany, Great Britain, Japan, Korea, Switzerland,
Russia and United States: Hamid Ahmadinezhad, Artem Avilov, Ingrid Bauer,
Jeremy Blanc, Christian Bohning, Serge Cantat, Fabrizio Catanese, Ivan Cheltsov,
Adrien Dubouloz, Alexander Duncan, Anne-Sophie Kaloghiros, Igor Krylov, Anne
Lonjou, Frederic Mangolte, Mirko Mauri, Lucy Moser-Jauslin, Keiji Oguiso, Jihun
Park, Yuri Prokhorov, Victor Przyjalkowski, Julia Schneider, Costya Shramov,
Christian Urech, Egor Yasinsky and Susanna Zimmermann.

Among the participants there were 6 women (Bauer, Kaloghiros, Lonjou, Moser-
Jauslin, Schneider, Zimmermann), 5 postdocs (Avilov, Lonjou, Krylov, Urech,
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Yasinsky), and 2 PhD students (Mauri, Schneider). All of them (with the exception
of Yasinsky) gave talks, PhD students gave short talks, and all talks were excellent.

The complex projective plane P2 and the projective space P3, while being the
most basic objects of geometry, especially concerning their linear geometry, still
provide source for intriguing questions.

One such question is the algebraic structure of the group of their birational
transformations, called the Cremona groups, and denoted respectively Cr2(C) and
Cr3(C).

The study of the plane Cremona group, respectively of the space Cremona
group,shows that these are two exceptionally complicated objects. The group
Cr2(C) has been studied intensively over the last two centuries, after the pioneering
work of Noether and Castelnuovo in the nineteenth century, and many facts about
it were established until now. For example, Serge Cantat and Stephane Lamy
proved in 2013 that the group Cr2(C) is not simple. The structure of the group
Cr3(C) is much more complicated and mysterious. Until know it resisted all the
attempts to study its global structure. Nevertheless, during our workshop, Jeremy
Blanc and Susanna Zimmermann announced

Theorem (Blanc, Lamy, Zimmermann). The group Crn(C) is not simple
for n > 3.

This came as a big surprise. Because of this, we asked them to give two talks
about the proof of this beautiful result.

One approach to study Cremona groups is by means of their finite subgroups.
The complete classification of finite subgroups in the plane Cremona group Cr2(C)
was obtained by Blanc, Dolgachev and Iskovskikh. Recent achievements in three-
dimensional birational geometry allowed Prokhorov to classify finite simple sub-
groups in Cr3(C). His classification became possible thanks to a general obser-
vation that a birational action of a finite group G on the projective space can
be regularized, that is, replaced by a regular action of this group on some more
complicated rational threefold. This transfers the problem into the rich world of
rational threefolds with prescribed symmetry groups, which is an inseparable part
of the much more natural world of rationally connected threefolds.

Our workshop carried together 26 mathematicians actively working on automor-
phisms of algebraic varieties, classification of Fano varieties, birational geometry
of Mori fibre spaces, and rationality problems. Its main goal was to understand
how (finite) groups can act on rational three-dimensional algebraic varieties. In
this respect, the workshop has been very successful. The atmosphere has been
lively and very collaborative. During every talk, many questions have been posed
and interesting problems pointed out. The active presence of young participants
has been especially remarkable. All of the talks presented top-level results, we do
not have time to comment on all of them, but we would like to mention one im-
portant breakthrough by a younger participant: Igor Krylov announced the proof
of a twenty years old conjecture posed by Corti in a famous paper published in
1996 on Annals of Mathematics, about the existence of good birational models of
fibrations in del Pezzo surfaces of degree 1.
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During the week, 18 one-hour long lectures have been given by the participants,
and PhD students, Mirko Mauri and Julia Schneider, gave half-hour talks. This
report contains extended abstracts of all the talks (Jeremy Blanc and Susanna
Zimmermann prepared one extra long joint abstract for their talks).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Conjugacy classes of the Klein simple group in rank 3 Cremona group

and geometry of del Pezzo fibrations

Hamid Ahmadinezhad

(joint work with Igor Krylov)

We word over the field of complex numbers.
The Klein simple group PSL2(F7) is the automorphism group of the Klein quartic
curve C defined as the vanishing of

Q = x3y + y3z + z3x

in P3. The action of this group on the projective plane that leaves C invarient
defines an embedding of PSL2(F7) into Cr(2), the group of birational automor-
phisms of P2. Another embedding can be obtained by the action of PSL2(F7) on
the surfaceS, where S is the double cover of P2 branched along C. The surface
S is a smooth del Pezzo surface of degree 2, hence it is rational resulting in an
embedding of the Klein group in Cr(2). These two embeddings are however not
conjugate in Cr(2) as both P2 and S are PSL2(F7)-birationally rigid [4, Theo-
rem B.8]. The same actions can be lifted to P2 × Pm and S × Pm, for any m ≥ 1,
by acting trivially on the second component. It is natural to ask whether the
two induced embeddings of PSL2(F7) in Cr(m + 2) are conjugate, that is to ask
whether the two embeddings of the Klein group in the plane Cremona group are
stably conjugate. Following [3], it can be shown that stable conjugacy of the two
embeddings of PSL2(F7) as above would imply

H1(G,Pic(P2)) = H1(G,Pic(S))

for any subgroup G of PSL2(F7). But this fails if G = Z2 that fixes a line in P2 and
an elliptic curve in S [1, §2], hence these two embeddings of the Klein simple group
in Cr(2) are stably non-conjugate. A particularly interesting case is when m = 1,
that is to study conjugacy classes of PSL2(F7) in Cr(3). By running equivariant
resolution of singularities followed by equivariant minimal model programme, an
action of a finite group on P3 can be lifted to a faithful action on a rational Mori
fibre space. Hence, the study of finite subgroups of Cr(3) is replaced by the study
of finite subgroups of the automorphism groups of Mori fibre spaces of dimension
3. There are three possibilities for rational Mori fibre spaces in dimension 3: Fano
varieties, del Pezzo fibrations over P1, and conic bundles over rational surfaces.
The study of conic bundles that admit an action of PSL2(F7) is rather complicated.
On the other hand, embeddings of PSL2(F7) into Cr(3) coming from a faithful
action on Fano 3-folds has been studied in [5]. There remains the study of del
Pezzo fibrations that admit a PSL2(F7) action and whether they are rational.
For each n ∈ N, let Xn be a hypersurface in a toric variety T of Picard number
two, constructed as follows. Let the coordinate ring of T be a Z2-graded ring with
variables u, v, x, y, z, t, and grading (1, 0), (1, 0) for u and v, and (0, 1), (0, 1), (0, 1),
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and (−n, 2) for x, y, z, t, and the irrelevant ideal (u, v)∩ (x, y, z, t). Suppose Xn is
a degree (0, 4) hypersurface defined by

α(u, v)t2 +Q(x, y, z) = 0,

where α is a general homogeneous polynomial of degree 2n. The singular locus
of T is P1

u:v × 1
2 (1, 1, 1) quotient singularity. This locus is cut out by Xn in 2n

points, the solutions of α = 0 in P1, so that Xn has 2n singular points of type
1
2 (1, 1, 1). For each n, the 3-fold Xn is a PSL2(F7)-del Pezzo fibrations of degree
2. See [1, §3] for details of the construction. It was shown in [6] that these are
the only del Pezzo fibrations admitting an action of PSL2(F7). Clearly, X0 is
the same variety as P2 × P1. In [1] I showed that X1 is PSL2(F7)-equivariantly
birational to S × P1 and conjectured that Xn is birationally rigid, in particular
irrational, for n ≥ 2, which implies that there are only two (stably non-conjugate)
embeddings of PSL2(F7) in Cr(3) coming from an action on a del Pezzo fibration.
This conjecture, verified for n ≥ 3 in [6], comes from a general expectation in the
subject:

Conjecture. Let X be a semi-stable del Pezzo fibration of degree 1, 2, or 3 that
is a Mori fibre space. Then X is birationally rigid if and only if −KX /∈ Mob(X)o.

Unfortunately, this conjecture is out of reach at the moment. However, several
theorems have been made that get us closer to the statement above. The “right”
notion of semi-stability is the subject of an upcoming joint work of the author
with Maksym Fedorchuk and Igor Krylov. In a recent joint work with Igor Krylov
we proved the following theorem [2], which stands as the closest result to the
conjecture above in degree 2.

Theorem. Let π : X → P1 be a del Pezzo fibration of degree 2. Suppose X is a
general quasismooth hypersurface of bi-degree (4, ℓ) in a P(1, 1, 1, 2)-bundle over
P1 satisfying the K2-total condition. Then X is birationally rigid.

In the theorem above, quasi-smooth means that no singularities come from the
defining equation of X , hence all singularities are indeed of type 1

2 (1, 1, 1) and

inherited from the ambient toric variety. The K2-condition requires that K2
X /∈

NE(X)o, which is slightly weaker than the K-condition in the conjecture above.
For every singular point Q of X there is a Sarkisov link starting by blowing up X
at Q and results in a new quasi-smooth model of X , that is square birational. Let
N be the number of singularities of X and denote the singular points by Qi for
I ⊂ {1, . . . , N}. Denoting by XI the model acquired by combining the elementary
links corresponding to Qi, i ∈ I, we say X satisfies the K2-total condition if for
every I ⊂ {1, . . . , N} the model XI satisfies the K2-condition. Let F be the
quartic surface in P(1x, 1y, 1z, 2w) given by

wq2(x, y, z) + q4(x, y, z) = 0,

where q2 and q4 are homogeneous polynomials of degrees 2 and 4 respectively. The
generality condition in the theorem asks that the intersection

q2(x, y, z) = q4(x, y, z) = 0
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on P2 is 8 distinct points.
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G-birational rigidity of G-del Pezzo threefolds

Artem Avilov

In this talk we work over an angebraically closed field k of characteristic 0. Recall
that a G-variety is a pair (X, ρ), where X is an algebraic variety and ρ : G →
Aut(X) is an injective homomorphism of groups. We say that G-variety X has
GQ-factorial singularities if every G-invariant Weil divisor of X is Q-Cartier.

Let X be a G-variety with at most GQ-factorial terminal singularities and π :
X → Y be aG-equivariant morphism. We call π aG-Mori fibration if π∗OX = OY ,
dimX > dim Y , the relative invariant Picard number ρG(X/Y ) is equal to 1 (in
this case we say that G is minimal) and the anticanonical class −KX is π-ample.
If Y is a point then X is a GQ-Fano variety. If in addition the anticanonical class
is a Cartier divisor then X is a G-Fano variety.

Let X be arbitrary normal projective G-variety of dimension 3. Resolving
the singularities of X and applying the G-equivariant minimal model program we
reduceX either to aG-variety with nef anticanonical class, or to a G-Mori fibration
(see e.g. [10, §3]). So such fibrations (and GQ-Fano varieties in particular) form
a very important class in the birational classification. A projective n-dimensional
variety X is a del Pezzo variety if it has at most terminal Gorenstein singularities
and the anticanonical class −KX is ample and divisible by n − 1 in the Picard
group Pic(X). If a G-Fano variety X is a del Pezzo variety, then we say that X is
a G-del Pezzo variety.
GQ-factorial G-minimal three-dimensional G-del Pezzo varieties were partially

classified by Yu. Prokhorov in [11]. The main invariant of a del Pezzo threefold
X is the degree d = (− 1

2KX)3, it is an integer in the interval from 1 to 8. In this
talk we consider the case d = 4, 3 and 2. If d = 8 then X is a projective space.
In this case equivariant birational geometry were studied by I. Cheltsov and C.
Shramov in the paper [3]. If d > 4 then X is smooth (cf. [11]) while smooth del
Pezzo threefolds and their automorphism groups are known well. For other types
of G-Fano threefolds there are only some partial results.
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Classification of finite subgroups of the Cremona group Cr3(k) is one of the
motivations of this research. The Cremona group Crn(k) is the group of bira-
tional automorphisms of the projective space Pn

k . Finite subgroups of Cr2(k) were
completely classified by I. Dolgachev and V. Iskovskikh in [9]. The core of their
method is the following. Let G be a finite subgroup of Cr2(k). The action of G can
be regularized in the following sence: there exists a smooth projective G-variety
Z and an equivariant birational morphism Z → P2. Then we apply the equivari-
ant minimal model program to Z and obtain a G-Mori fibration which is either
a G-conic bundle over P1 (which is a blowing up of a Hirzebruch surface at some
points), or a G-minimal del Pezzo surface. Dolgachev and Iskovskikh classified
all minimal subgroups in automorphism groups of del Pezzo surfaces and conic
bundles and so they obtained the full list of finite subgroups of Cr2(k). But quite
often two subgroups from such list are conjugate in Cr2(k), so it is natural to iden-
tify them. One can see that G-varieties Z1 and Z2 give us conjugate subgroups if
and only if there exists a G-equivariant birational map Z1 99K Z2. So we need to
classify all rational G-Mori fibrations and birational maps between them as well.

Following this program in the three-dimemsional case one can reduce the ques-
tion of classification of all finite subgroups in Cr3(k) to the question of classifica-
tion of all rational GQ-Mori fibrations and birational equivariant maps between
them. Such program was realized in some particular cases: simple non-abelian
groups which can be embedded into Cr3(C) (see [13], see also [4], [5], [6], [7]) and
p-elementary subgroups of Cr3(C) (see [12], [14]).

For applications to Cremona groups we are mostly interested in classification
of rational del Pezzo varieties. Thus if degree of X is equal to 3 then we assume
that x is singular (every smooth cubic threefold is not rational due to the classical
result of Clemens and Griffiths [8]). The rationality of del Pezzo threefolds of
degree 2 were stydied by I. Cheltsov, V. Przyjalkowski and C. Shramov in [2].

In this talk we are interested in the following problem: classify rational G-
birationally rigid G-del Pezzo threefolds of degree less than 5. We give a partial
answer for this question.

In this talk we use the following notation:

• Cn is a cyclic group of order n;
• D2n is a dihedral group of order 2n;
• Sn is a symmetric group of degree n;
• An is an alternating group of degree n.

The main our results is the following theorems:

Theorem 1 ([1]). Let X be a G-del Pezzo threefold of degree 4. Assume that X
is G-birationally rigid. Then X is one of the following varieties:

(1) intersection of two quadrics in P5 with rkCl(X) = 5. Such a variety is
unique and his automorphism group is isomorphic to (C∗ ⋊ C2)

3 ⋊S3;
(2) smooth intersection of two quadrics. In this case we have the following

possibilities:
(i) Aut(X) ≃ C5

2 ⋊ C5;
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(ii) Aut(X) ≃ C5
2 ⋊D12;

(iii) Aut(X) ≃ C5
2 ⋊D6;

(iv) the group Aut(X) fits in an exact sequence

0 → C5
2 → Aut(X) → S4 → 0.

In cases (2, i), (2, ii) and (2, iv) such a variety X is unique up to iso-
morphism. In the case (2, iii) such varieties X form a one-parametric
family.

In the case (2, i) the variety X is G-birationally rigid if and only if G = Aut(X)
or C24 ⋊ C5. In cases (1), (2, ii) and (2, iv) variety X is G-birationally superrigid
with respect to Aut(X).

Theorem 2 ([2]). Let X = X3 ⊂ P4 be a singular cubic hypersurface and G be
a finite subgroup of Aut(X). Suppose that X is G-birationally rigid. Then there
is only the following possibilities for X and G:

1. X =

{
5∑

i=0

xi =
5∑

i=0

x3i = 0

}
⊂ P5, i.e. X is the Segre cubic, and G is

Aut(X) = S6, A6, S5 or A5, two last subgroups are standard;

2. X = {x0x1x2 − x3x4x5 =
5∑

i=0

xi = 0} ⊂ P5 and G is Aut(X) = S2
3 ⋊ C2,

S2
3 (which acts transitively on the set of singularities) or C2

3 ⋊ C4.

All G-varieties of the first type are G-birationally superrigid and the variety of
the second type is birationally superrigid with respect to the whole automorphism
group.

Proposition 3. Let X be a G-del Pezzo threefold of degree 2. Assume that X
has 13, 14 or 15 nodes and no other singularities. Then X is G-birationally rigid
if and only if X has the following equations in P(2, 1, 1, 1, 1, 1):

y2 = 4

5∑

i=1

x4i − (

5∑

i=1

x2i )
2,

5∑

i=1

xi = 0

and G is isomorphic to Aut(X) = S5 × C2 or S5 (non-standard subgroup of
Aut(X)).
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Symmetries and equations of Del Pezzo surfaces and applications

Ingrid Bauer

(joint work with Fabrizio Catanese)

We consider an arrangement of lines L := {L0, L1, . . . , Lr} of (r + 1) lines in P2,
not passing through one point. For any n ≥ 2 we take the Galois covering X(n,L)
of P2 branched over the union of these (r + 1) lines with Galois group (Z/nZ)r .
The Hirzebruch-Kummer covering of exponent n associated to L is the minimal
resolution S(n,L) of X(n,L). The simplest interesting example occurs when r = 5
and L is the complete quadrangle CQ, the union of the sides and of the medians
of a triangle (in other words, the six lines joining pairs of points of a projective
basis P1, P2, P3, P4).
In this case S(n) := S(n, CQ) is a smooth ramified Galois covering of the Del
Pezzo surface Y5 of degree 5, the blow-up of the plane in the points P1, P2, P3, P4.
In (cf. [1]) it is shown that S(5) is a ball quotient.
In particular S(5) enjoys the following properties:

(1) S(5) is rigid;
(2) S(5) admits a Hermitian metric of strongly negative curvature;
(3) S(5) is a projective classifying space (indeed S(5) has a contractible uni-

versal cover S̃(5) ∼= B2 := {z ∈ C2||z| < 1});
(4) the universal cover S̃(5) of S(5) is Stein.

A natural question ([2]) is whether these properties extend, for exponent n suf-
fciently large, to Hirzebruch-Kummer coverings S(n,L) associated to rigid line
configurations L.
Motivated by these and other considerations, we analysed in [2] the first property
in the particular case of CQ, establishing the following result:

Theorem 1. The surface S(n, CQ) is rigid (indeed, infinitesimally rigid) if and
only if n ≥ 4.
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We raised therefore the following conjecture:

Conjecture 2. Given a rigid line configuration L, then the surface S(n,L) is rigid
for n sufficiently large.

The proof of theorem 1 is quite long and technically involved, and makes use of
the S5-symmetries of the Del Pezzo surface Y5 and vanishing theorems for twisted
sheaves of logarithmic forms. The proof does not use the deformation invariance
of the fibrations onto generalized Fermat curves induced by the projection of the
plane with centre one of the singular points of the configuration.

In order to investigate the properties (2) and (3) for S(n) it should be useful to
have ”good” equations for S(n). Therefore we consider the Del Pezzo surface of

degree 5: Y = Y5 := P̂2(P1, P2, P3, P4), where P1, . . . , P4 is a projective basis of
P2. Then there are 5 fibrations ϕi : Y → P1, induced, for 1 ≤ i ≤ 4, by the
projection with centre Pi, and, for i = 5, by the pencil of conics through the 4
points. We have the following result:

Theorem 3.

1) Let Σ ⊂ (P1)4 =: Q, with coordinates

(v1 : v2), (w1 : w2), (z1 : z2), (t1 : t2),

be the image of the Del Pezzo surface Y via ϕ1 × · · · × ϕ4. Then the equations of
Σ are given by the four 3× 3-minors of the following Hilbert-Burch matrix:

(4) A :=




t2 −t1 t1 + t2
v1 v2 0
w2 0 w1

0 −z1 z2


 .

In particular, we have a Hilbert-Burch resolution:

(5) 0 → (OQ(−
4∑

i=1

Hi))
⊕3 →

4⊕

j=1

(OQ(−
4∑

i=1

Hi +Hj)) → OQ → OΣ → 0,

where Hi is the pullback to Q of a point in P1 under the i-th projection.
2) The equations of S(n) ⊂ C(n)4 (where C(n) is the Fermat curve of degree n,
C(n) = {Y n

1 + Y n
2 + Y n

3 = 0} ⊂ P2) are given by the four 3 × 3-minors of the
following matrix:

(6) A′ :=




T2 −T1 −T3
V1 V2 0
W2 0 W1

0 −Z1 Z2


 ,

and the linear syzygies among the four equations are given by the columns of the
matrix A′.

If one instead considers the anticanonical embedding ϕ|−KY | : Y → P5 of the del
Pezzo surface of degree 5, then it is wellknown that the equations of Y are given
by the (4× 4) - Pfaffians of an anti-symmetric (5× 5) - matrix of linear forms. In
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order to find a matrix which is equivariant under the S5-action on Y , we choose
as basis for H0(Y,OY (−KY )) ∼= {F ∈ C[x1, x2, x3]3 : F (P1) = . . . = F (P4) = 0}:

sij := xixj(xj − xk), 1 ≤ i 6= j ≤ 3.

Then we can prove the following result:

Theorem 7. Let Y be the del Pezzo surface of degree 5, embedded anticanonically
in P5. Then the ideal of Y is generated by the 4×4 - Pfaffians of the S5 - invariant
anti-symmetric 6× 6-matrix



0 s21 + s23− s12 + s31− −s13 − s21 s31 + s32 s21 + s32−
−s31 − s32 −s32 − s21 −s12 − s23

−s21 − s23+ 0 s12 + s23 s31 + s23− s13 + s21− −s12 − s31
+s31 + s32 −s13 − s32 −s23 − s31
−s12 − s31+ −s12 − s23 0 s12 + s13− s12 − s21+ s23 + s31
s32 + s21 −s32 − s31 s31 − s13
s13 + s21 −s31 − s23+ −s12 − s13+ 0 −s21 − s32 s23 + s12−

s13 + s32 s32 + s31 −s13 − s32
−s31 − s32 −s13 − s21+ −s12 + s21− s21 + s32 0 s12 + s13−

s23 + s31 −s31 + s13 −s12 − s23
−s21 − s32+ s12 + s31 −s23 − s31 −s23 − s12+ −s12 − s13+ 0
s12 + s23 s13 + s23 s12 + s23
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Non-simplicity of the Cremona groups in dimension ≥ 3

Jérémy Blanc and Susanna Zimmermann

(joint work with Stéphane Lamy)

This is an abstract for two talks on a common work given by Susanna Zimmermann
and then Jérémy Blanc in the workshop “subgroups of Cremona groups” held in
Oberwolfach in June 2018.

The Cremona group of rank n, denoted by Birk(P
n), or simply Bir(Pn) when

the ground field k is implicit, is the group of birational transformations of the
projective space.

The classical case is n = 2, where the group is already quite complicated but
well described when k is algebraically closed. In this case the Noether-Castelnuovo
Theorem [Cas01, Alb02] asserts that Bir(P2) is generated by Aut(P2) and a single
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quadratic transformation. This fundamental result together with the strong fac-
torisation of birational maps between surfaces helps to have a good understanding
of the group.

The dimension n ≥ 3 is more difficult, as we do not have any analogue of the
Noether-Castelnuovo Theorem and also no strong factorisation. Here is an extract
from the article “Cremona group” in the Encyclopedia of Mathematics, written
by V. Iskovskikh in 1987 (who uses the notation Cr(Pn

k
) for the Cremona group):

One of the most difficult problems in birational geometry is that

of describing the structure of the group Cr(P3
k
), which is no longer

generated by the quadratic transformations. Almost all literature

on Cremona transformations of three-dimensional space is devoted

to concrete examples of such transformations. Finally, practically

nothing is known about the structure of the Cremona group for

spaces of dimension higher than 3. [Isk87]

In fact, 30 years later there is still almost no result on the group structure of
Bir(Pn), but only about some of its subgroups. In arbitrary dimension there
are descriptions of the algebraic subgroups of rank n [Dem70], and much more
recently of their lattices [CX18]. For n = 3, there is also a classification of the con-
nected algebraic subgroups [Ume85], and partial classification of finite subgroups
(e.g. [Pro11, Pro12, PS16, BZ17]). There are also numerous articles devoted to
the study of particular classes of examples of elements in Bir(Pn), especially for n
small (we do not attempt to start a list here, as it would always be very far from
exhaustive).

Nevertheless, using modern tools such as Sarkisov links and Minimal model
program, we are able, in this work, to give insight on the structure of the Cremona
groups Bir(Pn) and of its quotients.

0.1. Normal subgroups. The question of the non-simplicity of Bir(Pn) for each
n ≥ 2 was also mentioned in the article of V. Iskovskikh in the Encyclopedia

It is not known to date (1987) whether the Cremona group is sim-

ple. [Isk87]

but was in fact asked much earlier. It is explicitly mentioned in a book by F. En-
riques in 1895:

Tuttavia altre questioni d’indole gruppale relative al gruppo Cre-

mona nel piano (ed a più forte ragione in Sn n > 2) rimangono an-

cora insolute; ad esempio l’importante questione se il gruppo Cre-

mona contenga alcun sottogruppo invariante (questione alla quale

sembra probabile si debba rispondere negativamente). [Enr95,
p. 116]1

1“However, other group-theoretic questions related to the Cremona group of the plane (and,
even more so, of Pn, n > 2) remain unsolved; for example, the important question of whether
the Cremona group contains a non-trivial normal subgroup (a question which seems likely to be
answered negatively).”
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The feeling expressed by Enriques that the Cremona group should be simple was
maybe supported by the analogy with biregular automorphism groups of projective
varieties, such as Aut(Pn) = PGLn+1(k). In fact in the trivial case of dimension
n = 1, we have Bir(P1) = Aut(P1) = PGL2(k), which is indeed a simple group
when the ground field k is algebraically closed. Pushing further the analogy with
algebraic groups, it was proved by J. Blanc that when considered as a topological
group, the Cremona group Bir(P2) is indeed simple, in the sense that any proper
Zariski closed normal subgroup must be trivial [Bla10]. This result was recently
extended to arbitrary dimension by J. Blanc and S. Zimmermann [BZ18].

The non-simplicity of Bir(P2) as an abstract group was proven, over an alge-
braically closed field, by S. Cantat and S. Lamy [CL13]. The idea of proof was
to apply small cancellation theory to an action of Bir(P2) on a hyperbolic space.
A first instance of roughly the same idea was [Dan74], in the context of plane
polynomial automorphisms. The modern small cancellation machinery as devel-
oped in [DGO17] allowed A. Lonjou to prove the non simplicity of Bir(P2) over
an arbitrary field, and the fact that every countable group is a subgroup of a
quotient of Bir(P2) [Lon16]. It turns out that all the normal subgroups produced
by this technique have infinite index, and for instance the group PGL2(k(T )) of
Jonquières maps embeds in all associated quotients, which are in particular infinite
non-abelian.

Another source of normal subgroups for Bir(P2), of a very different nature, was
discovered by S. Zimmermann, when the ground field is R [Zim18]. In contrast
with the case of an algebraically closed field where the Cremona group of rank 2
is a perfect group, she proved that the abelianisation of BirR(P

2) is an uncount-
able direct sum of Z/2. Here the main idea is to use an explicit presentation by
generators and relations. In fact a presentation of Bir(P2) over an arbitrary per-
fect field is available since [IKT93], but because they insist in staying inside the
group Bir(P2), they obtain a very long list. However, if one accepts to consider
birational maps between non-isomorphic varieties, the Sarkisov program provides
more tractable lists of generators. Using this idea together with results of Kaloghi-
ros [Kal13], the existence of abelian quotients for Bir(P2) was extended to the case
of many non-closed perfect fields by S. Lamy and S. Zimmermann [LZ17].

The work presented in this abstract is a further extension in this direction,
this time in arbitrary dimension, and over any ground field k which is abstractly
isomorphic to a subfield of C (this includes any field of rational functions of any
algebraic variety defined over a subfield of C). Our main result is the following:

Theorem 1. For each subfield k ⊆ C and n ≥ 3, there is a group homomorphism

Birk(P
n)։

⊕

I

Z/2

where the indexing set I has the same cardinality as k, and such that the restriction
to the subgroup given locally by

{(x1, . . . , xn) 7→ (x1α(x2, · · · , xn), x2, . . . , xn) | α ∈ k(x2, . . . , xn)
∗}
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is surjective. Moreover, Aut(Pn) = PGLn+1(k) is contained in the kernel of the
homomorphism. In particular, Birk(P

n) is not perfect and thus not simple.

0.2. Generators. As already mentioned, the Noether-Castelnuovo theorem pro-
vides simple generators of Bir(P2) when k is algebraically closed. In dimension
n ≥ 3, we do not have a complete list of all Sarkisov links and thus are far
from having an explicit list of generators for Bir(Pn). The lack of an analogue to
the Noether-Castelnuovo Theorem for Bir(Pn) and the question of finding good
generators was already cited in the article of the Encyclopedia above, in [HM13,
Question 1.6], and also in the book of Enriques:

Questo teorema non è estendibile senz’altro allo Sn dove n > 2;
resta quindi insoluta la questione capitale di assegnare le più sem-

pilici trasformazioni generatrici dell’intiero gruppo Cremona in Sn

per n > 2. [Enr95, p. 115]2

A classical result, due to H. Hudson and I. Pan [Pan99], shows that Bir(Pn), for
n ≥ 3, is not generated by Aut(Pn) and finitely many elements. The reason is that
one needs at least, for each irreducible variety Γ of dimension n− 2, one birational
map that contracts a hypersurface birational to Γ × P1. These contractions can
be realised in Bir(Pn) by Jonquières elements, i.e. elements that preserve a family
of lines through a given point, which form a subgroup

PGL2(k(x1, . . . , xn))⋊ Bir(Pn−1) ⊆ Bir(Pn).

Hence, it is natural to ask whether the group Bir(Pn) is generated by Aut(Pn) and
by Jonquières elements (a question for instance asked in [PS15]).

We answer the question in dimension 3 by the negative, in the following stronger
form:

Theorem 2. Let k be a subfield of C. Then the normal subgroup of the Cremona
group Birk(P

3) generated by Autk(P
3), by all Jonquières elements and by any

finite set of elements is a strict subgroup of Birk(P
3).

It is interesting to make a parallel between this statement and the classical
Tame Problem in the context of the affine Cremona group Aut(An), or group
of polynomial automorphisms (which is one of the “challenging problems” on
the affine spaces, described in the Bourbaki seminar [Kra96]). The Tame Prob-
lem asks whether Aut(An) is generated by the group PGLn+1(k) ∩ Aut(An) of
affine automorphisms and by the group of elementary automorphisms of the form
(x1, . . . , xn) 7→ (x1 + P (x2, . . . , xn), x2, . . . , xn), analogue of
the PGL2(k(x1, . . . , xn)) factor in the Jonquières group. It was solved in dimen-
sion 3 over a field of characteristic zero in [SU04], and is an open problem for
n ≥ 4.

2“This theorem can not be easily extended to Pn where n > 2; therefore, the main question of
finding the most simple generating transformations of the entire Cremona group of Pn for n > 2
remains open.”
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On the one hand, one could say that our Theorem 2 is much stronger, since we
consider the normal subgroup generated by these elements, and we allow some ex-
tra generators of bounded degree. It is not known (even if not very likely) whether
one can generate Aut(A3) with linear automorphisms, elementary automorphisms
and one single automorphism, and a fortiori neither whether the normal subgroup
generated by these is the whole group Aut(A3).

On the other hand, even in dimension 3 we should stress that Theorem 2 does
not recover a solution to the Tame Problem. The reason is that the group Aut(A3),
or more generally the group Bir0(P

3) of birational maps that contract only rational
hypersurfaces (birational maps of genus 0 in the sense of Frumkin [Fru73, Lam14]),
lies in the kernel of all group homomorphisms produced by Theorem 1.

0.3. Overwiew of the strategy. By the Minimal model program, every ratio-
nally connected variety Z is birational to a Mori fibre space, and every birational
map between two Mori fibre spaces is a composition of simple birational maps,
called Sarkisov links. We associate to such a variety Z the groupoid BirMori(Z) of
all birational maps between Mori fibre spaces birational to Z. We then concentrate
on some special Sarkisov links, called Sarkisov links of conic bundles of type II.

To each Sarkisov link of conic bundles of type II, we associate a marked conic,
which is a pair (X/B,Γ), where X/B is a conic bundle (a terminal Mori fibre
space with dimB = dimX − 1) and Γ ⊆ B is an irreducible hypersurface, and
measure the base-locus and the conic bundle associated to the link. We then define
a natural equivalence relation between marked conics, and associate each of these
Sarkisov links χ an integer covgon(χ) = covgon(Γ) that measures the degree of
irrationality of Γ. For each variety Z, we denote by CZ the set of equivalence
classes of conic bundles X/B with X birational to Z, and for each class of conic
bundles C ∈ CZ we denote by MC the set of equivalence classes of marked conics
(X/B,Γ), where C is the class of X/B.

The Sarkisov program is established in every dimension [HM13] and relations
among them are described in [Kal13]. Inspired by the latter, we define rank r fibra-
tions X/B ; rank 1 fibrations are Mori fibres spaces and rank 2 fibrations dominate
Sarkisov links. We prove that the relations among Sarkisov links are generated by
elementary relations, which are relations dominated by rank 3 fibrations.

The BAB conjecture, proven in [Bir16a] and [Bir16b], tells us that the set of
weak Fano terminal varieties of dimension n form a bounded family and the degree
of their images by a (universal) multiple of the anticanonical system is bounded
by a (universal) integer d. As a consequence, we show that any Sarkisov link χ of
conic bundles of type II appearing in an elementary relation over a base of small
dimension has covgon(χ) ≤ d. This and the description of the elementary relations
over a base of maximal dimension and including a Sarkisov link of conic bundles
of type II allow us to prove the following statement

Theorem 3. Let n ≥ 3. There is an integer d ≥ 2 such that for every conic
bundle X/B, where X is a rationally connected variety of dimension n, we have a
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groupoid homomorphism

BirMori(X) → ˚
C∈CX





⊕

MC

Z/2





that sends each Sarkisov link of conic bundles χ of type II with covgon(χ) ≥ d
onto the generator indexed by its marked conic, and all other Sarkisov links and
all automorphisms of Mori fibre spaces onto zero. Moreover it restricts to group
homomorphisms

Bir(X) → ˚
C∈CX





⊕

MC

Z/2



 , Bir(X/B) →
⊕

MX/B

Z/2.

In order to deduce Theorem 1 and Theorem 2, we study the image of the group
homomorphism from Bir(X) and Bir(X/B) provided by Theorem 3, for some
conic bundle X/B. We give a criterion to compute the image and then apply this
criterion to show that the image is very large if the generic fibre of X/B is P1 (or
equivalently if X/B has a rational section, or is equivalent to (P1 × B)/B). This
allows us to prove Theorem 1. We finish by studying the more delicate case where
the generic fibre X/B is not P1 (or equivalently if X/B has no rational section).
We manage to give such examples where X is a rational threefold and where the
image of the group homomorphism is big enough to deduce Theorem 2.

Aknowledgements. We thank Hamid Ahmadinezhad, Caucher Birkar, Ivan
Cheltsov, Tom Ducat, Andrea Fanelli, Enrica Floris, Anne-Sophie Kaloghiros,
Vladimir Lazić, Zsolt Patakfalvi and Yuri Prokhorov for discussions related to
this project.
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[Lon16] A. Lonjou. Non simplicité du groupe de Cremona sur tout corps. Ann. Inst. Fourier
(Grenoble), 66(5):2021–2046, 2016.

[LZ17] S. Lamy & S. Zimmermann. Signature morphisms from the Cremona group over a
non-closed field. https://arxiv.org/pdf/1707.07955Preprint arXiv:1707.07955, 2017.
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Universal CH0, the Brauer group and conic bundle threefolds in

characteristic 2

Christian Böhning

(joint work with Asher Auel, Alessandro Bigazzi and Hans-Christian Graf von
Bothmer)

The talk was an overview of the main results of the two recent preprints
[ABBB18-1], [ABBB18-2].

The degeneration method due to Voisin [Voi15], Colliot-Thélène, Pirutka
[CT-P16] et al. can be summarised as follows. Let R be a discrete valua-
tion ring with algebraically closed residue field k and field of fractions K. Let
π : X → SpecR be a flat surjective projective morphism with integral geometric
fibres, smooth geometric generic fibre XK̄ , and mildly singular special fibre Xk:
the latter means that there should exist a CH0-universally trivial resolution of sin-
gularities X̃k → Xk. Then it holds that if XK̄ has universally trivial Chow group

of zero cycles, so does X̃k. In particular, since smooth stably rational varieties
have universally trivial CH0, it follows that if one can produce an obstruction to
X := X̃k having universally trivial CH0, then one can conclude that XK̄ is not
stably rational.

Such obstructions have traditionally been of two types: (1) nonzero sections in
some H0(X,Ωi

X), i > 0, for R of unequal characteristic; (2) unramified elements
in M∗(k(X)), where M∗ is some Rost cycle module.

We gave an indication of the proof of the following result.

Theorem 1. Suppose X is a smooth projective variety over any (not necessarily
algebraically closed) field k. If X has universally trivial CH0, then the Brauer
group Br(X) is reduced to Br(k).

This is new only if the torsion order of the Brauer classes equals the character-
istic of k, otherwise it had previously been proven by Merkurjev.

We are particularly interested to study the case when X is birationally a conic
bundle over a smooth projective surface S and the ground field k is algebraically
closed of characteristic 2. The reason for this is that in tame cases the Brauer group
is still governed by the arrangement and double covers of discriminant components,
but those are now subject to Artin-Schreier theory (not Kummer theory any more),
and the usual formalism of Gersten complexes to ascertain which discriminant
profiles are realised by actual conic bundles breaks down in characteristic 2: hence
we expect that there will be new and interesting ways to degenerate.

More precisely, for k of char. 2, we call a flat surjective projective morphism
f : Y → S a conic bundle if each geometric fibre is isomorphic to a plane conic,
and if the geometric generic fibre is a smooth conic: hence wild conic bundles
in the sense of Mori are excluded for the time being. In addition, to be able
to formulate our result concisely, let us call a conic bundle good if (a) all the
irreducible components of its discriminant are reduced, (b) the geometric generic
fibre of the conic bundle restricted to each component of the discriminant is a
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cross of lines, (c) the conic bundle induces a nontrivial Z/2 Galois extension of
the function field of each discriminant component, i.e., the double cover over it is
non-split.

Theorem 2. Let Y → S and Y ′ → S be good conic bundles over a smooth
projective surface S and k = k̄ of char. 2. Suppose that

(1) the discriminant ∆Y of Y can be written as

∆Y = ∆Y ′ ∪∆′′

where ∆Y ′ is the discriminant of Y ′ → S, and ∆′′ is the union of the
discriminant components of Y → S that are not discriminant components
of Y ′ → S. Also assume that ∆′′ is not empty;

(2) the Z/2 Galois extensions induced by Y → S and Y ′ → S are isomorphic
for every irreducible component of ∆Y ′ ;

(3) whenever p is a point of ∆Y ′ ∩∆′′, the fibre of Y ′ → S over p is a cross of
lines.

Then for every resolution of singularities Ỹ → Y , the Brauer group Br(Ỹ )[2] is
not trivial.

In [ABBB18-2] this is applied to show that a certain concretely given conic
bundle, which is a divisor of bidegree (2, 2) in P2 × P2 and defined over Z, is not
stably rational over C. If one reduces mod. 2, the preceding theorem applies in
this case. However, if one reduces modulo any other prime, the Brauer group is
trivial, and we know of no other method that yields this result other than reducing
modulo 2 and applying the theorem.
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Parabolic elements of the Cremona group

Serge Cantat

(joint work with Yves de Cornulier, Julie Déserti and Junyi Xie)

The Cremona group in two variables, over the field of complex numbers, is the
group Cr2(C) of all birational transformations of the projective plane P2

C
. This

group acts faithfully by isometries on an infinite dimensional hyperbolic space H∞,
which is obtained by taking the limit of all Néron-Severi groups NS(X ;R) of all
rational surfaces

π : X → P2
C,

π being a birational morphism (see the book ”Cubic Forms” of Yuri Manin). The
limit of these Néron-Severi groups comes with an intersection form of signature
(1,∞), and H∞ is the connected component of the set {u | u ·u = 1} that contains
the class of a line ℓ ⊂ P2

C
.

This representation Cr2(C) → Isom(H∞) is useful to describe algebraic prop-
erties of Cr2(C). For instance, a birational transformation f of P2

C
acts as a

parabolic isometry on H∞ if and only if f satisfies one of the following two prop-
erties:

(1) deg(fn) ≃ n, and then f preserves a unique pencil of rational curves;
(2) deg(fn) ≃ n2 and then f preserves a unique pencil of curves of genus 1.

Here deg(f) is the degree of the total transform of a line by f , fn is the n-th
iterate of f , and un ≃ vn if there is a positive constant α such that |un−αvn|/|un|
converges towards 0 as n goes to +∞. This result, due to Gizatullin and to Diller
and Favre, provides a path from hyperbolic geometry to algebraic geometry, and
vice versa.

In collaboration with Yves de Cornulier, and with Julie Déserti and Junyi Xie,
we push the interplay between hyperbolic and algebraic geometry farther, and
show the following results. Let f be a parabolic element of Cr2(C), with quadratic
degree growth. Firstly, f is not distorted in Cr2(C). This means that, given any
finite subset S of Cr2(C) which generates a subgroup 〈S〉 containing f , the word-
length of fn with respect to S grows linearly with n. Secondly, one can bound the
degree of the invariant pencil (of curves of genus 1 in P2

C
) by a function of deg(f).

Thirdly, the conjugacy class of f in Cr2(C) is constructible: for every degree k,
the intersection of the conjugacy class in the space of birational transformations
of degree k is constructible (in the sense of Chevalley, i.e. in the Zariski topology).
The first and second properties extend to all parabolic elements of Cr2(C), but
not the third.
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Algebraic vector bundles on the 2-sphere and smooth rational

varieties with infinitely many real forms

Adrien Dubouloz

(joint work with Gene Freudenburg and Lucy Moser-Jauslin)

A classical problem in real algebraic geometry is the classification of real forms
of a given real algebraic variety X , that is, real algebraic varieties Y non iso-
morphic to X but whose complexifications YC are isomorphic to XC as com-
plex algebraic varieties. For example, the smooth real affine algebraic surfaces
S2 =

{
x2 + y2 + z2 = 1

}
and X =

{
uv + z2 = 1

}
in A3

R have isomorphic com-
plexifications, an explicit isomorphism being simply given by the linear change of
complex coordinates u = x + iy and v = x − iy, but are non isomorphic. This
follows for instance from the fact that the set of real points of S2 is the usual
euclidean 2-sphere S2 ⊂ R3 whereas the set of real points of X is not compact for
the euclidean topology.

Examples of smooth real projective varieties admitting infinitely many pairwise
non-isomorphic real forms were only found very recently successively by Lesieu-
tre [7] in dimension ≥ 6 and by Dinh-Oguiso [3] in every dimension ≥ 2. These
are obtained as a by-product of clever constructions of smooth complex projective
algebraic varieties defined over R with discrete but non finitely generated automor-
phism groups containing infinitely many conjugacy classes algebraic involutions.
All their examples are non geometrically rational and the question of existence of
rational real algebraic varieties, projective or not, with infinitely many real forms
was left open. Our first main result explicitly fills this gap for smooth real affine
fourfolds:

Theorem 1. The smooth rational real affine fourfold S2 ×A2
R has at least count-

ably infinitely many pairwise non-isomorphic real forms.

In contrast with the examples found by Lesieutre and Dinh-Oguiso, which rely
on constructions of special classes of complex projective varieties by techniques
of birational geometry, ours are inspired by basic results on the classification of
topological vector bundles on the real sphere S2 ⊂ R3. Our construction can
indeed be interpreted as a sort of “algebraization” of the property that the com-
plexification E ⊗R C of any topological real vector bundle π : E → S2 of rank 2
on S2 is isomorphic, as a topological real vector bundle of rank 4, to the trivial
bundle S2 × R4. More precisely, we show that the topological real vector bundles
of rank 2 on S2, which are nothing but the underlying real vector bundles of the
complex line bundles OCP1(n), n ≥ 0, over CP1 ≃ S2, admit algebraic models in
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the form of algebraic vector bundles pn : Vn → S2 of rank 2 on S2 with pairwise
non-isomorphic total spaces, but whose complexifications pC : Vn,C → S2C are all
isomorphic to the trivial bundle S2C × A2

C.
The existence of such algebraic models was known in the form of certain projec-

tive modules on the coordinate ring of the affine surface S2 after successive works
of Fossum [4] and Moore [9] and, later on, of Swan [10]. Nevertheless, we give
a new alternative geometric construction which provides models of these bundles
in the form of restrictions to S2 of natural algebraic vector bundles on the real
projective quadric Q2 =

{
X2 + Y 2 + Z2 − T 2 = 0

}
in P3

R.

It is worth noticing that by a result of Kambayashi [6], A2
R has no nontrivial

real form. One can check along the same lines using the fact that similarly as to
Aut(A2

C), the automorphism group Aut(S2C) of S
2
C ≃ XC has a structure of a free

product of two subgroups amalgamated along their intersection [2, 8], that X is
the unique nontrivial real form of S2. So while A2

R and S2 both have finitely many
real forms, the total spaces of the algebraic vector bundles pn : Vn → S2 provide
an infinite countable family of real forms of S2 × A2

R which are by construction
pairwise locally isomorphic over S2, but globally pairwise non-isomorphic as real
algebraic varieties. In contrast, reminiscent of the fact that for every r ≥ 3 there
exists a unique nontrivial topological real vector bundle of rank r on S2, it follows
in particular from a surprising result of Barge and Ojanguren [1] that the varieties
Vn × Ar−2

R , n ≥ 0, give rise to a unique class of nontrivial real form of S2 × Ar
R.

This observation generalizes in passing a famous counter-example to the Zariski
Cancellation Problem constructed by Hochster [5].

Our construction thus does not directly yield higher dimensional families of
examples by simply taking product with affine spaces. Nevertheless, a suitable
adaptation of the technique used by Dinh-Oguiso [3], consisting in our situation
of taking products of the Vn with well-chosen real rational affine varieties of log-
general type, allows us to derive the following general existence result:

Theorem 2. For every d ≥ 4, there exist smooth rational real affine varieties of
dimension d which have at least countably infinitely many pairwise non-isomorphic
real forms.
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Automorphisms of del Pezzo surfaces in positive characteristic

Alexander Duncan

(joint work with Igor Dolgachev)

Let k be an algebraically closed field of arbitrary characteristic p. I reported
on progress towards a full classification of the automorphism groups of del Pezzo
surfaces over k. Our work is a first step towards understanding all finite subgroups
of the plane Cremona group in positive characteristic.

In [3], Dolgachev and Iskovskikh (almost) classified all finite subgroups of the
plane Cremona group over the complex numbers C. More specifically, finite sub-
groups of the plane Cremona group are precisely those with faithful actions on
minimal rational G-surfaces. By the classification of Manin [6] and Iskovkikh [5],
we know that these are either del Pezzo surfaces or conic bundle surfaces.

Recall that a del Pezzo surface is a smooth projective surface X with an ample
anticanonical bundle −KX . The degree of a del Pezzo surface d = K2

X is an integer
with values 1 ≤ d ≤ 9. Except for P1 × P1, they are isomorphic to blow ups of
9− d points in general position on the plane P2.

There is unique del Pezzo surface X of degree d ≥ 5, except for d = 8 where
there are exactly two. Their automorphism groups Aut(X) are listed in Table 1,
where Bn(P

2) denotes P2 blown up at n general points and M0,5 is the moduli
space of stable curves of genus 0 with 5 marked points.

Degree X Aut(X)

9 P2 PGL3(k)

8 P1 × P1 PGL2(k)
2 ⋊ 2

B1(P
2) subgroup of PGL3(k)

7 B2(P
2) subgroup of PGL3(k)

6 B3(P
2) (k×)2 ⋊ (S3 × S2)

5 M0,5 S5

Table 1. Automorphism groups of del Pezzo surfaces of degree ≥ 5.

Despite appearances, the automorphism groups can vary dramatically as ab-
stract groups as the field varies. For example, in characteristic 0, the only non-
abelian simple subgroups that appear are the alternating groups A5 and A6, and
the group PSL2(7) of order 168. In contrast, there are infinitely many non-abelian
simple subgroups of the form PSL2(q) and PSL3(q) for q = pn as n→ ∞.

A del Pezzo surface of degree 4 is a smooth complete intersection of two quadrics
in P5. Since 5 general points sit in a unique conic, del Pezzo surfaces of degree 4 are
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in bijection with 5-tuples of distinct points on P1. A classical result of Cauchy and
Jacobi tells us that when p 6= 2, the quadrics can be simultaneously diagonalized.
This is impossible when p = 2, so we determined a new normal form that works
in this case [1]. Using the normal forms, we prove the following, which is new in
characteristic 2:

Theorem 1. If X is a del Pezzo surface of degree 4, then:

Aut(X) = R⋊G

where R ∼= 24 is an elementary abelian 2-group generated by 5 reflections in
canonical bijection with the 5 points on P1 and G is isomorphic to the subgroup
of Aut(P1) which leaves invariant the set of 5 points.

The specific automorphism groups Aut(X) that occur can now be obtained by
enumerating the embedded automorphism groups of 5 points in P1. They are
listed in Table 2.

char(k) Aut(X) Order

any 24 16

6= 2 24 ⋊ 2 32

2 24 ⋊ 22 64

6= 2, 5 24 ⋊ 4 64

6= 2, 3 24 ⋊ S3 96

6= 2, 5 24 ⋊ D10 160

5 24 ⋊ (5 ⋊ 4) 320

2 24 ⋊ A5 960

Table 2. Automorphism groups of del Pezzo surfaces of degree 4.

A del Pezzo surface of degree 3 is a smooth cubic surface in P3. Over C,
automorphism groups were classified by Kantor, Wiman and Segre but it seems
the first error-free clasification is due to Hosoh [4] in 1997! We determine a full
list of possible automorphism groups for positive characteristics in [2], which I list
in Table 3. We also find normal forms for cubic surfaces realizing each abstract
automorphism group as well as determine the dimensions of their corresponding
strata in the moduli space.

We do not yet have a full classification for del Pezzo surfaces of degree 2 and 1
in positive characteristic.
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char(k) Aut(X) Order

any 1 1

any 2 2

6= 2 22 4

6= 2 4 4

any S3 6

6= 2, 3 8 8

6= 2 S3 × S2 12

2 24 16

6= 2 S4 24

any H3(3) ⋊ 2 54

6= 2, 3 H3(3) ⋊ 4 108

6= 2, 5 S5 120

2 23 ⋊ S4 192

3 H3(3) ⋊ 8 216

6= 2, 3 33 ⋊ S4 648

2 PSU4(2) 25920

Table 3. Automorphism groups of cubic surfaces.
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Birational geometry and mirror symmetry of Calabi–Yau pairs

Anne-Sophie Kaloghiros

(joint work with Alessio Corti)

A Calabi–Yau (CY) pair (X,DX) consists of a normal projective variety X and a
reduced sum of integral Weil divisors DX such that KX +DX ∼Z 0.

The pair (X,DX) has (t, dlt) (resp. (t, lc)) singularities if X is terminal and
(X,DX) divisorially log terminal (resp. log canonical).

A birational map (X,DX)
ϕ
99K (Y,DY ) is called volume preserving if for any

geometric valuation E with centre on X and on Y , the equality aE(KX +DX) =
aE(KY +DY ) holds.
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One can define an invariant of the volume preserving class of a (t, lc) CY pair as
follows. Recall that the dual complex of a dlt pair (Z,DZ =

∑
Di) is a regular cell

complex constructed by attaching an (|I|−1)-dimensional cell for every irreducible
component of

⋂
i∈I Di a non-empty intersection of components of DZ . De Fernex,

Kollár and Xu show that the PL homeomorphism class of the dual complex is
a volume preserving birational invariant of a dlt pair [1]. By [2], a (t, lc) CY

pair (X,DX) has a volume preserving (t, dlt) modification (X̃,DX̃) → (X,DX).
Abusing notation, I call dual complex of (X,DX) the PL homeomorphism class
of the dual complex of a volume preserving (t, dlt) modification. The dual com-
plex is denoted D(X,DX); it is an invariant of the volume preserving birational
equivalence class of (X,DX).

The underlying varieties of CY pairs range from Calabi–Yau to Fano varieties,
but X being Fano is not a volume preserving birational invariant of (X,DX). A
CY pair (X,DX) has maximal intersection if dimD(X,DX) = dimX − 1. In
other words, (X,DX) has maximal intersection if a volume preserving (t, dlt)
modification has a 0-dimensional log canonical centre. Since the dual complex
is a volume preserving birational invariant, so is the property of having maximal
intersection. Pairs with maximal intersection have some Fano-type properties, in
a sense made precise by the following result.

Theorem 1 ([3]). Let (X,DX) be a CY pair with maximal intersection. Then,
there is a volume preserving birational map (X,DX) 99K (Z,DZ) to a CY pair
whose boundary fully supports a big and semiample divisor.

Note that having maximal intersection is a “degenerate” condition; a CY pair
(X,DX) whose underlying variety is Fano does not have maximal intersection in
general.

Example 2. A toric pair (XΣ, DΣ) is a CY pair formed by a toric variety and the
reduced sum of its toric invariant divisors. A volume preserving birational map
to a toric pair is called a toric model. Any (t, lc) CY pair with a toric model has
maximal intersection.

Example 3. In dimension 2, this is an equivalence: CY pairs with maximal
intersection are precisely those with a toric model.

The existence of a toric model for a pair is difficult to determine. The results
of [5] state criteria that characterise toric pairs, but it is not clear whether or how
such criteria could be extended to characterise CY pairs with a toric model.

A motivation to understand better the birational geometry of CY pairs and their
relation to toric pairs comes from mirror symmetry. Most known constructions
of mirror partners make use of toric features of the varieties or pairs considered,
such as the existence of a toric model. In an exciting development, Gross, Hacking
and Keel propose a construction of the mirror partner of CY pairs with maximal
intersection; they conjecture:

Conjecture 4 ([4]). Let (Y,DY ) be a simple normal crossings CY pair with
maximal boundary such that DY supports an ample divisor (in particular U =
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Y \DY is affine). Let R = k[Pic(Y )×], Ω the canonical volume form on U and

U trop(Z) = { divisorial valuations: k(U) \ {0} → Z|v(Ω) < 0} ∪ {0}.
Then, denoting by V the free R-module with basis U trop(Z), V has a natural
finitely generated R-algebra structure whose structure constants are non-negative
integers determined by counts of rational curves on U . The associated fibra-
tion p : Spec(V) → Spec(R) = TPic(Y) is a flat family of affine log CY varieties
with maximal boundary. Letting K = Ker{PicY → Pic(U)}, the map p is TK-
equivariant. The quotient family Spec(V)/TK → TPic(U) depends only on U and
is the mirror family to U .

Versions of this conjecture are proved for cluster varieties in [6], but relatively
few examples are known.

In this talk, I present some examples of (t, lc) CY pairs with maximal inter-
section which do not have a toric model because their underlying varieties are
birationally rigid.

One can construct volume preserving (t, dlt) modifications of these pairs that
have relatively mild singularities and for which one expects to be able to compute
the punctured Gromov-Witten invariants appearing in the conjecture. There is no
known construction of mirror partners for these pairs, and they would be natural
examples on which to test and study the conjecture.

Example 5. Consider the pair (X,DX) where:

X = {x40 + x41 + x42 + x0x1x2x3 + x4(x
3
3 + x34) = 0} and DX = X ∩ {x4 = 0}.

The quartic X is rigid because it is nonsingular. The unique singular point p =
(0:0:0:1:0)} of DX is locally analytically equivalent to a T4,4,4 singular point 0 ∈
{x4 + y4 + z4 + xyz = 0}. A volume preserving (t, dlt) modification of (X,DX) is
obtained by taking a resolution of the cusp singularity of DX .

Example 6. (Example due to R. Svaldi) Consider the smooth cubic 3-fold

X = {x0x1x2 + x31 + x32 + x3q + x4q
′ = 0},

where q, q′ are general conics in x0, · · · , x4 with (q(1, 0, 0, 0, 0), q′(1, 0, 0, 0, 0)) 6=
(0, 0). Let Π = {x3 = x4 = 0} and D = {x3 = 0}+ {x4 = 0}. The section Π ∩X
is a cubic with a node at p = (1:0:0:0:0); p ∈ DX is locally analytically equivalent
to 0 ∈ {x2y2 − z2 = 0}. A volume preserving (t, dlt) modification of (X,DX) can
be constructed, showing that (X,DX) has maximal intersection.

Example 7. Consider the pair (X,DX) where:

X = {x21x22 + x1x2x3l + x23q + x4f3 = 0}, DX = X ∩ {x4 = 0},
where l is a general linear form and q a general conic in x0, · · · , x3 and f3 is a
general cubic in x0, · · · , x4. The surface DX is non normal as it has multiplicity
2 along L1 = {x1 = x3 = x = 4 = 0} and L2 = {x2 = x3 = x = 4 = 0}; the point
p = L1∩L2 is locally analytically equivalent to 0 ∈ {x2y2−z2 = 0}. The quarticX
has three ordinary double points lying on L1∩{f3 = 0} and three ordinary double
points lying on L2 ∩ {f3 = 0}. As X has less than 9 ordinary double points, X
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is birationally rigid. A volume preserving (t, dlt) modification of (X,DX) can be
constructed, showing that (X,DX) has maximal intersection.
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Stability over rings and good models

Igor Krylov

(joint work with Hamid Ahmadinezhad and Maksym Fedorchuk)

The birational classification of algebraic varieties is one of the key problems which
fueled the development of algebraic geometry since the very beginning. The idea
is to find and classify the good representatives in the birational class and then to
describe how varieties relate to the good representatives. The breakthrough was
achieved by Mori who has developed the Minimal Model Program. It describes
how to get a good representative from any variety. This good representative may
not be unique and in many situations one can find “best” representatives.

For now assume that the base field is C. Let X → S be a conic bundle over
a surface. It is well known that X is birational to a smooth variety X ′ such that
X ′ → S′ is a conic bundle for some surface S′ [2]. Thus it is enough to study only
smooth conic bundles. On the other hand there are singular Fano varieties which
are unique Mori fiber spaces in their birational classes [1]. Thus we have to study
singular Fano varieties.

There is one more type of three-dimensional Mori fiber spaces: del Pezzo fi-
brations. With regards to existence of good models the del Pezzo fibrations are
between Fano varieties and conic bundles. If the degree of the fibration over P1 is
> 4, then there is a Mori fiber space with a smooth total space in the birational
class. If the degree is 6 3, then we can improve singularities, but often we cannot
get rid of them altogether.

Theorem 1 ([C96]). Let X → P1 be a flat morphism and suppose its general
fiber Xη is a del Pezzo surface.

(1) If the degree of Xη is 3, then X is birational to a Gorenstein variety X ′

such that there is a del Pezzo fibration X ′ → P1 of degree 3.
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(2) If the degree of of Xη is 2, then X is birational to a 2-Gorenstein variety
X ′ such that there is a del Pezzo fibration X ′ → P1 of degree 2.

TheGorenstein singularities are the hypersurface singularities, they are smooth-
able. The 2-Gorenstein singularity is either Gorenstein or is a quotient of hyper-
surface singularity by a group of order 2. In the latter case the 2-Gorenstein
singularity is a degeneration of the half-point, that is a singularity analytically
isomorphic to C3/〈diag(−1,−1,−1)〉. Thus we expect that a general del Pezzo
fibration of degree 3 has smooth total space and singularities of the total space
space of a general del Pezzo fibration of degree 2 are only half-points.

It is expected that a similar result to hold for del Pezzo fibrations of degree 1.

Conjecture 2 ([C96]). Let X → P
1 be a flat morphism and suppose its general

fiber Xη is a del Pezzo surface of degree 1. Then X is birational to a 6-Gorenstein
variety X ′ such that there is a del Pezzo fibration X ′ → P1 of degree 2.

To prove the Theorem 1 Corti used the equations of the fibrations and con-
structed all the birational maps explicitly. The result on degree 3 may also be
proven using stability conditions [K97]. Kollar introduced a notion of stability for
of a hypersurface over a ring. This notion interpolates the notion of GIT-stability
of the general and the central fibers of a hypersurface fibration. Given a fibration
over an affine curve with a GIT-stable general fiber Kollar gives an algorithm to
construct a model stable over the coordinate ring of the base curve thus improv-
ing the singularities of the total space. Moreover this techinque works in a much
broader setting. Together with Ahmadinezhad and Fedorchuk we have extended
this to apply it to fibrations of degree 1 and 2.

Fibrations of degree 3 can be embedded into P
3-bundle and AutP3 is reductive,

thus the GIT techniques work very well. The del Pezzo surfaces of degree 1 and
2 are the hypersurfaces in weighted projective spaces P(1, 1, 2, 3) and P(1, 1, 1, 2),
respectively. The automorphism groups of these weighted projective spaces are
non-reductive which makes it difficult to use stability conditions. On the other
hand they have natural formal stability conditions which tell as a lot about sin-
gularities. From now on assume that A is a PID, typically A = Z or A = k[Z],
where Z is a curve. Let K be the fraction field of A.

Definition 3. We say (x,w) is a weight system on P(a0, . . . , an) if x = (x0, . . . , xn)
is a choice of coordinates on the weighted projective space and w = (w0, . . . , wn)
is an n-tuple of integers.

Let F be a polinomial of degree d on P(a0, . . . , an). Let p ∈ A be prime. Then
we say that (x,w) is stable (resp. semistable, unstable) on F at p over A if

multp F (p
wx) = multp F (p

w1x0, . . . , p
wnxn) < (6, >)

d∑
ai

·
∑

wi.

We say that F is stable (resp. semistable) over A if every weight system is
stable (resp. semistable) on F at every prime p ∈ A. We say that F is unstable

over A if there is a weight system which is unstable on F at some p.
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Note that if A is a field and ai = 1 for all i, this definition becomes Hilbert-
Mumford criterion of stability of hypersurfaces. Del Pezzo surfaces of degree 2 are
quartics in P(1, 1, 1, 2) and del Pezzo surface of degree 1 are sextics in P(1, 1, 2, 3).
This notion of stability is quite useful because of the following theorem.

Theorem 4. Let Z be and affine curve and let π : X → Z be a flat morphism
such that X is a semistable del Pezzo surface of degree 1 (resp. degree 2) over
C[Z]. Then the total space of π is a terminal 6-Gorenstein (resp. 2-Gorenstein)
variety. Also if a fiber over o ∈ Z is reducible, then the local equation of X in
P(1, 1, 2, 3)-bundle over Z can be written as

G1(x1, x2, x3)G2(x1, x2, x3) + t(. . . ) = 0,

where t is a parameter on the base and Gi = 0 defines a smooth curve of degree 3
on P(1, 1, 2) (resp. a smooth conic on P2).

The degree 2 case follows from the computations of Corti and the degree 1 case
is our computation.

Remark 5. If the semistable model has reducible fibers it can further be improved
by unprojection in P6 for degree 2 and in P22 for degree 1.

Theorem 6. Let Xη be a smooth del Pezzo surface of degree 1 or 2 over K. Then
there exists semistable del Pezzo surface π : X → SpecA over A such that its
extension to K is Xη.

This theorem together with the remark prove Corti’s conjecture and allow us
to find good models for del Pezzo surfaces of degree 1 and 2 in any characteristic.
Also setting A = Z we find good reductions to finite characteristic.

The idea of the proof is to transfer the problem to the appropriate projective
space. In case of degree 2 we do it by embedding P(1, 1, 1, 2) and therefore X into
P6 over A. Then we construct an space W of pairs (V,Q) such that V ∩ Q is a
del Pezzo surface of degree 2 and find a good notion of stability on W .

Lemma 7. There exists a line bundle L on W such that X is stable over A if and
only if the corresponding pair (V,Q) is stable over A with respect to L on W .

This key lemma together with usual GIT tricks proves Theorem 6.
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Cremona group and Voronöı tesselation

Anne Lonjou

A key tool for studying the Cremona group of rank 2 is the hyperboloid H in the
Picard-Manin space. The Picard-Manin space associated to P2 is the direct limit of
the Picard groups of surfaces obtained by blowing up any finite sequences of points
in P2 or infinitely near. The intersection form is of signature (1,∞). Taking a
hyperboloid sheet, gives us an infinite dimensional hyperbolic space, denoted by H
(see for instance [3] and [4]). Guided by the analogy of the modular group acting
on the hyperbolic plane, we exhibit a fundamental domain of the action of the
Cremona group over an algebraically closed field k on H using Voronöı tessellation
(which is a way of discretizing a metric space). We consider the Voronöı cells
associated to the orbit of the class of the line ℓ ∈ H by the action of Bir(P2).
The cell associated to ℓ and denoted by V(id) corresponds to classes of H which
are closer to ℓ than to any other points of the orbit. We characterize the classes
in V(id). The following statement says that it is enough to check that classes
are closer to ℓ than to any other element of the orbit of ℓ under the action of de
Jonquières element. We do not need to test all the orbits of ℓ.

Theorem 1. A class c belongs to V(id) if and only if for every Jonquières trans-
formation j,

dist(j#(c), ℓ) ≥ dist(c, ℓ).

In fact, the theorem is more precise. It is enough to check the inequality for a
finite number of Jonquières transformations.

We also study the geometry of this tessellation by determining the cells which
share a class with the cell V(id) called “adjacent cells” ([5]). Sites of such cells can
be de Jonquières transformations or of another form. The other form is Cremona
transformations that have at most 8 base-points in almost general position. A set
of points {p0, p1, . . . , pr} is said in almost general position if two conditions are
satisfied. The first one is that for every 0 ≤ i ≤ r the point pi lies either in P2 or
in a surface obtained by blowing up P2 in a subset of points of {p0, . . . , pr}. The
second one is that none of the three following conditions is satisfied: four points
of this set are aligned, seven points of this set lie on a conic, two points of this set
belong to the exceptional divisor obtained by blowing up another point of this set.

Theorem 2. The following Cremona transformations:

• Jonquières transformations,
• applications having at most 8 base-points in almost general position

are the sites of cells adjacent to V(id).

We study also the cells sharing a point at infinity with V(id) called “quasi-
adjacent cells”. The applications which are sites of adjacent cells are also the
sites of quasi-adjacent cells. Moreover applications having at most 9 base-points
in almost general position are the only transformations which are sites of quasi-
adjacent cells but not sites of adjacent cells.
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This gives us a natural way of building two metric graphs: the adjacency graph
and the quasi-adjacency graph. This leads us to two natural questions. Do they
correspond to graphs already built? Are they Gromov hyperbolic graphs? (A met-
ric space is Gromov hyperbolic if all its triangles are uniformly thin). The second
question comes from the analogy with the action of PSL(2,Z) on the Poincaré’s
half plane because in the case of a positive answer it would be an analogous to the
Bass-Serre tree.

We prove in [6] that the adjacent graph is quasi-isometric to a graph already
introduced by Wright in [7]. It is also quasi-isometric to a Cayley graph of the
Cremona group using the family of Jonquières and PGL(3,k) as generating set.
Using a result of J. Blanc and J-P Furter about the minimal decomposition in
Jonquières maps of a given Cremona transformation ([1]), we prove that this graph
is not Gromov hyperbolic. However, we prove that the quasi-adjacent graph has
this property.

Theorem 3. The quasi-adjacent graph is Gromov hyperbolic.

For this we use the Bowditch’s criterion [2] and the Gromov hyperbolicity of H
even if this two metric spaces are not quasi-isometric.
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Algebraic models of the line in the real affine plane

Frédéric Mangolte

(joint work with Adrien Dubouloz)

It is a standard consequence of the Jordan–Schoenflies Theorem that every two
smooth closed embeddings of R into R2 are ambient diffeotopic. Every algebraic
closed embedding of the real affine line A1

R into the real affine plane A2
R induces

a smooth embedding of the real locus R of A1
R into the real locus R2 of A2

R.
Given two such algebraic embeddings f, g : A1

R →֒ A2
R, the famous Abhyankar-

Moh Theorem [1], which is valid over any field of characteristic zero [23, § 5.4],
asserts the existence of a polynomial automorphism φ of A2

R such that f = φ ◦ g.
This implies in particular that the smooth closed embeddings of R into R2 induced
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by f and g are equivalent under composition by a polynomial diffeomorphism of
R2.

In this talk, we consider a similar problem in a natural category intermediate
between the real algebraic and the smooth ones. Our main object of study consists
of smooth embeddings of R into R2 induced by rational algebraic maps A1

R 99K A
2
R

defined on the real locus of A1
R and whose restrictions to this locus induce smooth

closed embeddings of R into R2. We call these maps rational smooth embeddings,
and the question is the classification of these embeddings up to birational diffeo-

morphisms of A2
R, that is, diffeomorphisms of R2 which are induced by birational

algebraic endomorphisms of A2
R containing R2 in their domains of definition and

admitting rational inverses of the same type.
A first natural working question in this context is to decide whether any rational

smooth embedding is equivalent up to birational diffeomorphism to the standard
regular closed embedding of A1

R into A2
R as a linear subspace. Since every ratio-

nal smooth embedding f : A1
R 99K A

2
R uniquely extends to a morphism P1

R → P2
R

birational onto its image, a rational smooth embedding which can be rectified to
a linear embedding by a birational diffeomorphism defines in particular a rational
plane curve C that can be mapped onto a line by a birational automorphism of P2

R.
By classical results of Coolidge [6], Iitaka [14] and Kumar-Murthy [17], complex
curves with this property are characterized by the negativity of the logarithmic
Kodaira dimension of the complement of their proper transform in a minimal res-
olution of their singularities. Building on these ideas and techniques, we show the
existence of non-rectifiable rational smooth embedding. In particular, we obtain
the following result:

Theorem. For every integer d ≥ 5 there exists a non-rectifiable rational smooth
embedding of A1

R into A2
R whose associated projective curve C ⊂ P2

R is a rational
nodal curve of degree d.

The existence of non-rectifiable rational smooth embeddings motivates the
search for weaker properties which can be satisfied by rational smooth embed-
dings. To this end we observe that the Abhyankar-Moh Theorem implies that
the image of a regular closed embedding A1

R →֒ A2
R is a real fiber of a structure

of trivial A1-bundle ρ : A2
R → A1

R on A2
R. In the complex case, this naturally

leads to a “generalized Abhyankar-Moh property” for closed embeddings of the
affine line in affine surfaces S equipped with A1-fibrations over A1

C, i.e. morphisms
π : S → A1

C whose general fibers are affine lines, which was studied for certain
classes of surfaces in [11]: the question there is whether the image of every regular
closed embedding of A1

C in such a surface is an irreducible component of a fiber
of an A1-fibration. The natural counterpart in our real birational setting consists
in shifting the focus to the question whether the image of a rational smooth em-
bedding is actually a fiber of an A1-fibration π : S → A1

R on a suitable real affine
surface S birationally diffeomorphic to A2

R, but possibly non biregularly isomorphic
to it. A rational smooth embedding with this property is said to be biddable.

Being a fiber of an A1-fibration on a surface birationally diffeomorphic to A2
R

imposes strong restrictions on the scheme-theoretic image f∗(A
1
R) of a rational
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smooth embedding f : A1
R 99K A

2
R. We show in particular that the real Kodaira

dimension [4] κR(A
2
R \ f∗(A1

R)) of the complement of the image has to be negative,
with the consequence for instance that none of the rational smooth embedding
mentioned in the theorem above is actually biddable. In contrast, a systematic
study of small degree embeddings reveals the existence of non-rectifiable biddable
rational smooth embeddings whose images are in a natural way smooth fibers of
A1-fibrations on some fake real planes, a class of real birational models of A2

R

recently introduced and studied in the series of papers [7, 8]. These are smooth
real surfaces S non isomorphic to A2

R whose real loci are diffeomorphic to R2 and
whose complexifications have trivial reduced rational singular homology groups.

We therefore develop a collection of geometric techniques to tackle the classifica-
tion of equivalence classes of biddable rational smooth embeddings up to birational
diffeomorphisms. As a result, we obtain in particular the following synthetic cri-
terion:

Theorem. For i = 1, 2, let fi : A
1
R 99K A2

R, be a biddable rational smooth em-
bedding and let αi : A

2
R 99K Si be a birational diffeomorphism onto an A1-fibered

fake real plane πi : Si → A1
R such that αi ◦ fi : A1

R 99K Si is a closed immersion as
the support of a smooth fiber of πi.

Then f1 and f2 are not rectifiable. Furthermore, the following conditions are
equivalent:

a) f1 : A1
R 99K A2

R and f2 : A1
R 99K A2

R are equivalent rational smooth
embeddings

b) There exists a birational diffeomorphism β : S1 99K S2 and an automor-
phism γ of A1

R such that γ ◦ π1 = π2 ◦ β.

As an application of this characterization, we derive in particular the existence
of infinitely many equivalence classes of biddable rational smooth embeddings.
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France, Paris, 2017.
[19] J.I. Mayer, Projective Description of Plane Quartic Curves, Tohoku Mathematical Journal,

First Series, 36 (1933),1-21.
[20] M. Miyanishi, Open Algebraic Surfaces, CRM Monogr. Ser., 12, Amer. Math. Soc., Provi-

dence, RI, 2001.
[21] M. Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto 2, (1962),

1-10.
[22] M. Namba, Geometry of Projective Algebraic Curves, Marcel Dekker, Inc., New York, 1984.
[23] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in
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The dual complex of log Calabi-Yau pairs on Mori fibre spaces

Mirko Mauri

A dual complex is a cell complex, encoding the combinatorial data of how the irre-
ducible components of a simple normal crossing or a dlt boundary intersect. These
objects have raised the interest of many scholars in different fields. For instance,
the homeomorphism type of the dual complex of a minimal dlt modification is an
interesting invariant of a singularity, see [2]. In mirror simmetry, the dual complex
of the special fibre of a good minimal dlt degeneration of Calabi-Yau varieties has
recently been proved to be the basis of a non-archimedean SYZ fibration, see [6]
and [7].

In both these examples, a neighbourhood of any cell of the dual complex is a
cone over the dual complex of a new dlt pair (X,∆), which satisfies the additional
property that KX +∆ ∼Q 0, provided that the singularity is log canonical and the
degeneration semistable. These pairs are called log Calabi-Yau, in brief logCY.
Their dual complexes have been deeply studied in [5]. In that paper, the authors
have posed the question whether the dual complex of a logCY pair of dimension n is
the quotient of a sphere Sk of dimension k ≤ n for some finite group G ⊂ Ok+1(R).
With the techniques developed, they were able to provide a positive answer in
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dimension ≤ 4 and in dimension = 5, under the additional hypothesis that (X,∆)
has simple normal crossings. It is worthy to remark that an affirmative answer to
this question would imply, for instance, that the basis of a SYZ fibration has the
structure of a topological orbifold.

In this talk, we answer positively the question for a special class of dlt logCY
pairs (Y,∆), endowed with a morphism π : Y → Z of relative Picard number one.
This hypothesis is inspired by the following observation. If (X,∆X) is a logCY
pair with maximal intersection, i.e. the pair admits a 0-dimensional lc centre, then
X is rationally connected, see [5, §18]. By [1], a KX-MMP with scaling f : X → Y
terminates with a Mori fibre space π : Y → Z and the pair (Y,∆ := f∗∆X) is still
logCY. It sounds sensible to us to check first whether the dual complexes of these
special pairs are finite quotients of spheres, under the dlt assumption.

The main results of our work are collected in the following statement.

Main Theorem. Let (Y,∆) be a dlt pair such that:

(1) Y is a Q-factorial projective variety of dimension n+ 1;
(2) (Mori fibre space) π : Y → Z is a Mori fibre space of relative dimension r;
(3) (logCY) KY +∆ ∼Q 0.

If ρ(Y ) = 1, then the dual complex D(Y,∆) is PL-homeomorphic either to a
ball Bm of dimension m ≤ n or to the sphere Sn.

If ρ(Y ) = 2, then D(Y,∆) is PL-homeomorphic to a ball Bm of dimension
m ≤ n, a sphere Sm of dimension m = r − 1, n− r or n.

If dimZ = 2, then D(Y,∆) is PL-homeomorphic to a ball Bm of dimension
m ≤ n, a sphere Sm of dimension m = 1, n − 2, n − 1 or n, or the quotient
P2(R) ∗ Sn−3.

All these cases occur.

The Main Theorem can be summarised in Table 4. In particular observe that

ρ(Y ) dim(Z) PL-homeomorphism type of D(Y,∆)
1 Bm, Sn

2 Bm, Sr−1, Sn−r, Sn

1 Bm, S0, Sn−1, Sn

2 Bm, S1, Sn−2, Sn−1, Sn,P2(R) ∗ Sn−3

Table 4. Dual complex of logCY pairs on Mori fibre spaces.

all these dual complexes are quotients of spheres, compatibly with the prediction
[5, Question 4].

The key ingredients of the proof of the Main Theorem are various connectivity
theorems. The first of them is the Hodge index theorem: ample divisors always
intersect, provided that they have dimension at least one. This fact allows to list
all the triangulations of D(Y,∆) under the assumption ρ(Y ) = 1. The naive idea
for the next step, namely the case of ρ(Y ) = 2, would be to build D(Y,∆) out
of the contribution of vertical divisors together with the information provided by
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horizontal divisors. Indeed, the pushforward of the former determines a logCY pair
(Z,B) of Picard number one, while the latter cut out a logCY pair (Fgen,∆gen)
on the general fibre Fgen, which in turns behaves like a logCY pair of Picard
number one. The special pairs for which this program works are here called of

combinatorial product type. The proof of the Main Theorem consists precisely in
understanding how far the general pair (Y,∆) is from this ideal arrangement.

As a measure of what can go wrong, observe that there could be strata of (Y,∆)
which do not dominate Z, but which are not contained in any vertical divisor of ∆.
The existence of such a stratum rigidifies the configuration of horizontal divisors
and it allows to describe explicitly the triangulation of D(Y,∆). Another issue
is represented by horizontal strata which map two-to-one to Z. These strata are
responsible for instance for the occurrence of the homeomorphism type P2(R) ∗
Sn−3.

We point out that the proof of the Main Theorem highly relies on the connectiv-
ity theorems [4, Proposition 4.37] and [4, Theorem 4.40] and the canonical bundle
formula [3, Theorem 8.5.1]. Observe finally that for a statement which does not
involve non-trivial quotients of spheres, our hypothesis on the Picard number is
the sharpest possible. Indeed, we construct logCY pairs on Mori fibre spaces of
Picard rank three such that D(Y,∆) ≃ P2(R) ∗ Sn−3.
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Families of inequivalent real circle actions on affine four-space

Lucy Moser-Jauslin

In this talk, we will show that there exist infinite families of inequivalent equivari-
ant real forms of linear C∗-actions on affine four-space. We consider the real form
of C∗ whose fixed point is a circle. In 2004, in collaboration with G. Freudenburg
[1], we constructed one example of a non-linearizable circle action. This was done
using an example of a non-trivial O2(C)-bundle constructed by G. Schwarz in 1989
[4]. Here, we generalize this result by using classifications of different equivariant
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O2(C)-bundles from [4], [3] and [5], and developing a new approach which allows
us to adapt methods to compare different real forms.

Note that in 2013, M. Koras and P. Russell [2] proved that over any field of
characteristic zero, all actions of any forms of a Gm-action on affine three-space are
linearizable. In particular, dimension four is minimal for finding non-linearizable
circle actions of affine space.

We start by defining real circle actions. A real form of an algebraic linear
complex group is defined by an antiholomorphic involution σ on G which is a
group homomorphism. A (G, σ)-real form of Y , or a real form of Y which is
compatible with σ, is given by an antiholomorphic involution µ on Y such that
µ(gy) = σ(g)µ(y) for all g ∈ G and y ∈ Y . Two such real forms are equivalent
if they are conjugate by a G-automorphism of Y . If one real equivariant form
µ0 exists, then for any other real equivariant form µ, there exists ϕ ∈ AutG(Y )
such that µ = ϕ ◦ µ. Moreover, the condition that µ is an involution means that
µ0ϕµ0 = ϕ−1. Also ϕ1µ0 is equivalent to ϕ2µ0 if and only if there exists a G-
equivariant automorphism ψ of Y such that ψ ◦ ϕ1 ◦ (µ0ψ

−1µ0) = ϕ2. In other
worlds, he set of all real equivariant forms can be described by a cohomology
set. More precisely, let Γ = Gal(C/R) = {1, γ}, and consider the action of Γ on
AutG(Y ) by γϕ = µ0ϕµ0. Then the set of real equivariant (G, σ)-forms of Y are
described by H1(Γ, AutG(Y )).

For the cases studied here we fix G = C∗ and σ(t) = t
−1

, and set Y to be
complex affine four space, endowed with a linear action of weights (2,−2, 2m +
1,−(2m + 1)). The linear (C∗, σ)-real form is given by µ0: If a, b, x, y are the
coordinates of Y with respective weights 2,−2, 2m+ 1,−(2m+ 1), then

µ0(

(
a
b

)
,

(
x
y

)
) = (

(
b
a

)
,

(
y
x

)
).

In order to construct families of inequivalent real circle forms on Y , we use
some of the classifications of O2(C)-vector bundles of G. Schwarz. Remember
that O2(C) is a semi-direct product of C∗ with {1, τ}, where τ is an involution.
Consider the irreducible two-dimensional representationsWk, for k ∈ N, where C∗

acts linearly with weights k and −k and the involution τ exchanges the two C∗-
eigenspaces. Schwarz showed that the set of isomorphism classes of O2(C)-vector
bundles with base W2 and zero fiber W2m+1 is a moduli space isomorphic to Cm

for m ≥ 1. Moreover all of these equivariant vector bundles are constructed as
trivial C∗-vector bundles on which one acts by an involution. By construction, if
this involution commutes with complex conjugation, it defines a real circle form
on the total space.

This allows us to construct large families of real circle forms. In order to
distinguish different circle forms, new methods have to be developed. Indeed,
two involutions giving non-isomorphic vector bundles do not necessarily give non-
equivalent real circle actions. For details of how to do this, see [6].

The main result is as follows:
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Let T = ab and let n = 2m+ 1. Given h ∈ R[T ], let ϕh be the automorphism
of Y :

ϕh(

(
a
b

)
,

(
x
y

)
) = (

(
a
b

)
,

(
1− Th2 anhn

−bnhn
∑n−1

j=0 (Th
2)j

)
,

(
x
y

)
).

Note that ϕh is C∗ equivariant: ϕh ∈ AutC∗(Y ).

Theorem 1. Let h ∈ R[T ] be a real polynomial, and let µh = ϕhµ0.

(i) µh defines a real circle form on Y =W2 ×W2m+1;
(ii) µh is equivalent to µh′ if and only if there exists r ∈ R∗ such that

h(T ) ≡ rh′(r2T ) mod (Tm).

In particular, if m ≥ 2, one finds infinitely many distinct real circle forms of
the linear C∗-action on C4.
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A surface with discrete and non-finitely generated automorphism

group

Keiji Oguiso

(joint work with Tien-Cuong Dinh)

We work in the category of projective varieties defined over the complex number
field C. In my talk, I presented the following theorem with an idea of proof, which
is the main result of my joint work with Professor Tien-Cuong Dinh [DO17]:

Theorem 1. For each integer d ≥ 2, there is a smooth projective variety V of
dimension d and of Kodaira dimension d− 2 such that

(1) the automorphism group Aut (V ) is discrete, i.e., its identity component
Aut0 (V ) is {idV };

(2) Aut (V ) is not finitely generated; and
(3) V admits infinitely many real forms which are mutually non-isomorphic

over R.
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Theorem 1 is inspired by a remarkable construction, due to Lesieutre, of such a
variety in dimension 6 over any field of characteristic zero [Le17]. We refer to this
reference for history on the finite generation problem of automorphism groups of
smooth projective varieties as well as its relation with their real forms.

For dimension d = 1, it is well-known that no smooth projective curve satisfies
the above properties. The existence of surfaces of Kodaira dimension 0 with in-
finitely many non-isomorphic real forms is unexpected and gives the final answer
to a longstanding open problem. In fact, the same property fails for abelian vari-
eties by Borel-Serre [BS64, Cor.6.3] and all surfaces of Kodaira dimension ≥ 1 and
all minimal surfaces of Kodaira dimension 0, see Degtyarev-Itenberg-Kharlamov
[DIK00, Appendix D]. For the reader’s convenience, we recall now the notion of
real form.

Let V be a variety defined over C. Let V ′
R

be a variety defined over R and V ′

the complex variety associated to it, i.e.,

V ′ := V ′
R ×SpecR SpecC .

We say that V ′
R

is a real form of V if V ′ is isomorphic to V over C. Two real
forms V ′

R
and V ′′

R
of V are said to be isomorphic if they are isomorphic over R.

The main new idea to construct varieties of low dimension satisfying Theorem 1
is an effective use of a projective K3 surface together with suitable blow-ups. As our
projective K3 surface is minimal and defined over C, the canonical representation
of its automorphisms group is finite, see [Ue75, Th.14.10], and blow-ups do not
produce new automorphisms. This is an advantage of using a K3 surface, which
is not available for the rational surface used in Lesieutre’s construction.

In my talk, I first presented a general strategy to construct a variety V from a
K3 surface S and a smooth rational curve C ⊂ S and a point P ∈ C with a special
property, called very special triple [DO17] and a smooth projective variety M of
dimension d− 2 with special properties. Next, I explained an explicit example of
(S,C, P ) with properties required, i.e., of a very special triple, and get a variety
satisfying the properties (1) and (2) in Theorem 1. We will use the theory of
elliptic surfaces due to Kodaira [Ko63]. Finally, by specifying some parameters in
our construction, we get the property (3) of Theorem 1. A criterium for a variety
to have infinitely many non-isomorphic real forms, due to Serre and Lesieutre, is
crucial in our approach, see [Se02, Chapter 5] and [Le17, Lemma 13].
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[BS64] Borel, A., Serre, J.-P., : Théorèmes de finitude en cohomologie galoisienne, Com-
ment. Math. Helv. 39 (1964) 111–164.

[COV15] Catanese, F., Oguiso, K., Verra, A., : On the unirationality of higher dimensional
Ueno-type manifolds, Rev. Roumaine Math. Pures Appl. 60 (2015), no. 3, 337–353.

[DIK00] Degtyarev, A., Itenberg, I., Kharlamov, V., : Real Enriques surfaces. Lecture Notes
in Mathematics, 1746. Springer-Verlag, Berlin, 2000.

[DO17] T.-C. Dinh, Oguiso, K., A surface with discrete and non-finitely generated automor-
phism group, arXiv:1710.07019.



1728 Oberwolfach Report 28/2018

[Ka84] Katsura, T., : The unirationality of certain elliptic surfaces in characteristic p, To-
hoku Math. J. (2) 36 (1984), no. 2, 217–231.

[Ka08] Kawamata, Y., : Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008)
419–423.

[Ko63] Kodaira, K., : On compact analytic surfaces. II, Ann. of Math. 77 (1963), 563–626.
[Le17] Lesieutre, J., : A projective variety with discrete non-finitely generated automorphism

group, Invent. math., to appear. arXiv:1609.0639
[Og89] Oguiso, K., : On Jacobian fibrations on the Kummer surfaces of the product of

non-isogenous elliptic curves, J. Math. Soc. Japan 41 (1989) 651–680.
[Og17] Oguiso, K., : A few explicit examples of complex dynamics of inertia groups on

surfaces - a question of Professor Igor Dolgachev, Transformation Group, to appear.
arXiv:1704.03142

[Se02] Serre, J.-P., : Galois cohomology, english ed., Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2002, Translated from the French by Patrick Ion and revised
by the author.

[St85] Sterk, H., : Finiteness results for algebraic K3 surfaces, Math. Z. 189 (1985), no. 4,
507–513.

[Su82] Suzuki, M., : Group theory. I, Grundlehren der Mathematischen Wissenschaften,
247, Springer-Verlag, Berlin-New York, 1982.

[Ue75] Ueno, K., : Classification theory of algebraic varieties and compact complex spaces.
Lecture Notes in Mathematics, 439, Springer-Verlag, 1975.

Automorphism groups of the complements of hypersurfaces

Jihun Park

(joint work with Ivan Cheltsov and Adrien Dubouloz)

Let Sd be a smooth hypersurface of degree d in Pn, where n ≥ 2. It is easy
to see that the automorphism group of the hypersurface Sd coincides with the
automorphism group of Pn that keeps Sd fixed, i.e.,

Aut (Sd) = Aut
(
P3, Sd

)
.

We consider this phenomenon inside out. To be precise, we consider the comple-
ment of the hypersurface Sd in Pn and ask a question,

When Aut (Pn \ Sd) = Aut
(
P3, Sd

)
?

The results on non-ruledness of the hypersurfaces by Clemens-Griffith, Iskovskikh-
Manin, Kollár, Pukhlikov, and de Fernex ([4, 5, 8, 10, 12, 13]) yield partial answers
to this question. Using techniques based on cylinder, additive action and locally
nilpotent derivation ( [6]), one can also show that the equality does not hold for
quadric hypersurfaces.

In fact, the question above has been motivated by the following long-standing
conjecture by Gizatullin ([7]):

Conjecture 1. For a smooth cubic surface S in P3,

Aut
(
P3 \ S

)
= Aut

(
P3, S

)
.

At the current stage, Gizatullin’s conjecture is far away from answer. However,
based on the results in [1], [2] and[3], we may extend the conjecture to del Pezzo
surfaces that are hypersurfaces in weighted projective spaces.
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Let S be a del Pezzo surface with at worst Du Val singularities. We suppose
that the surface S is a hypersurface in a weighted projective space P. This means
that the surface S is one of the following:

(1) a hypersurface of degree d ≤ 3 in P3;
(2) a hypersurface of degree 4 in P(1, 1, 1, 2);
(3) a hypersurface of degree 6 in P(1, 1, 2, 3).

Denote by P the ambient weighted projective space of the hypersurface S. It can
be P3, P(1, 1, 1, 2) or P(1, 1, 2, 3) depending on the del Pezzo surface S.

An A1-cylinder is a variety isomorphic to Z × A1 for some affine variety Z. A
cylindrical affine variety W is an affine variety that contains a principal Zariski
open subset isomorphic to an A1-cylinder. For a Q-divisorM on a normal projec-
tive variety X , an M -polar cylinder in X is an open subset

U = X \ Supp(D)

defined by an effective Q-divisor D on X with D ∼Q M and isomorphic to an
A1-cylinder (see [9]).

It is surprising that anticanonically polarised cylinders on Fano hypersurfaces
in weighted projective spaces turn out to have a strong connection to unipotent
group actions on their complements in the weighted projective spaces.

Theorem 2 ([3]). If S contains a (−KS)-polar cylinder, then Aut(P\S) contains
a unipotent subgroup. In particular, Aut(P \ S) 6= Aut(P, S).

It is known that a smooth del Pezzo surface of anticanonical degree at most
3 never contains any (−KS)-polar cylinder. For the singular case, we obtain a
complete description for (−KS)-polar cylinders from [2, Theorem 1.5].

Theorem 3. The surface S does not contain any (−KS)-polar cylinder if and
only if one of the following conditions is satisfied:

(1) Its anticanonical degree is 1 and it has only singular points of types A1,
A2, A3, D4 if any;

(2) Its anticanonical degree is 2 and it allows only singular points of type A1

if any;
(3) Its anticanonical degree is 3 and it allows no singular point.

When Cheltsov, Dubouloz and the author proved Theorem 2 in [3], they also
proposed a conjecture ([3, Conjecture 4.12]) as follows:

The surface S does not contain any (−KS)-polar cylinder if and

only if the affine variety P \ S is not cylindrical.

The conjecture has been simply verified by the author,

Theorem 4 ([11]). If S contains no (−KS)-polar cylinder, then P \ S is not
cylindrical. In particular, Aut(P \ S) contains no unipotent subgroup.

It seems reasonable to propose the following conjecture based on various inter-
esting phenomena and evidences:
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Conjecture 5. The surface S contains no (−KS)-polar cylinder if and only if

Aut(P \ S) = Aut(P, S).

In the case when S is a smooth cubic surface, it does not contain any (−KS)-
polar cylinder ([1]). Therefore, Conjecture 5 claims that Aut (P \ S) = Aut (P, S)
for a smooth cubic surface S, which is Gizatullin’s conjecture.

Together with Theorems 2 and 3, the following theorem summarizes the current
knowledge towards the structure of the automorphism groups of the complements
of smooth del Pezzo hypersurfaces.

Theorem 6 ([3]). Suppose that S is smooth. If its anticanonical degree is 1, then

Aut (P \ S) = Aut (P, S) .

In particular, Aut (P \ S) is a finite group. If its anticanonical degree is either 2
or 3, then Aut(P \ S) does not contain nontrivial connected algebraic groups.
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Katzarkov–Kontsevich–Pantev conjectures in lower dimensions

Victor Przyjalkowski

(joint work with Ivan Cheltsov)

Mirror Symmetry came from physics, where physicists, describing elementary par-
ticles as Calabi–Yau threefolds, observed that for any such threefold X there exists
another Calabi–Yau threefold Y such that hp,q(X) = h3−p,q(X). In mathemat-
ics mirror symmetry conjecture got several formulations. In particular, Mirror
Symmetry conjecture of variations of Hodge structures describes the duality as a
relation between genus 0 Gromov–Witten invariants (expected numbers of rational
curves lying on the variety) with periods of the dual family. The most well-known
conjecture, Homological Mirror Symmetry conjecture, formulated by Kontsevich
in 1994, states the duality in terms of derived categories. Unfortunately, it is hard
to prove this conjecture at the moment, it is known only several rare examples.

The dual object to a Fano variety is not a variety again but a Landau–Ginzburg
model — a certain open variety with a complex-valued function on it called super-
potential (often Landau–Ginzburg models are considered as families of fibers of the
superpotential). The mirror conjecture for Hodge numbers can not be generalized
straightforward for Fano varieties since dual objects for them are not compact
varieties. However Katzarkov, Kontsevich, and Pantev, based on Homological
mirror symmetry intuition, in [7] gave generalizations of Hodge numbers for this
case. More precise, for a Landau–Ginzburg model w : Y → C in loc. cit. three
sets of numbers were defined: the numbers fp,q(Y,w) via w-adopted logarithmic
forms, the numbers hp,q(Y,w) via weight filtration of a monodromy at infinity, and
the numbers ip,q(Y,w) via sheaves of vanishing cycles at singular fibers. The two
natural conjectures are formulated.

Conjecture 1 ([7]). fp,q(Y,w) = hp,q(Y,w) = ip,q(Y,w).

Conjecture 2 ([7]). If (Y,w) is a Landau–Ginzburg model for a Fano variety X
of dimension n, then hp,q(X) = fn−p,q(Y,w).

To test these conjectures one needs to construct Landau–Ginzburg models for
Fano varieties. For two-dimensional case this is done in [1].

Theorem 3 ([9]). (Slightly corrected) Conjectures 1 and 2 hold for del Pezzo
surfaces (and their Landau–Ginzburg models constructed in [1]) and the numbers
fp,q(Y,w), hp,q(Y,w); they do not hold for numbers ip,q(Y,w).

Hodge numbers of del Pezzo surfaces are given just by their degrees. However
the situation in the threefold case is more complicated, because the dimension of
the third cohomology can not be computed straightforward. Moreover, Homo-
logical Mirror symmetry is not proven in this case. So to test the conjectures in
dimension three one needs to construct Landau–Ginzburg models for smooth Fano
threefolds. This can be done via the toric Landau–Ginzburg models theory.
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Definition 4 (see [11, §6]). A toric Landau–Ginzburg model for a smooth Fano va-
riety X of dimension n is a Laurent polynomial f ∈ C[x±1

1 , . . . , x±1
n ] which satisfies

the following.

Period condition: One has If = ĨX0 , where If is the main period for f and

ĨX0 is the constant term of regularized I-series for X .
Calabi–Yau condition: There exists a relative compactification of the fam-

ily f : (C∗)n → C whose total space is a (non-compact) smooth Calabi–Yau
variety Y . Such compactification is called a Calabi–Yau compactification.

Toric condition: There exists a degenerationX  TX to a toric variety TX
whose fan polytope coincides with the Newton polytope for f .

Definition 5. A compactification of the family f : (C∗)n → C to a family f : Z →
P1, where Z is smooth and −KZ = f−1(∞), is called a log Calabi–Yau compacti-

fication (cf. a notion of tame compactified Landau–Ginzburg model in [7]).

We consider Mirror Symmetry as a correspondence between Fano varieties and
Laurent polynomials. (In other words, we look for Landau–Ginzburg models which
are algebraic tori (C∗)n, so superpotentials are represented by the Laurent poly-
nomials.) That is, a strong version of Mirror Symmetry of variations of Hodge
structures conjecture states the following.

Conjecture 6 (see [11, Conjecture 38]). Any pair of a smooth Fano variety and
a divisor on it has a toric Landau–Ginzburg model.

The existence of toric Landau–Ginzburg models has been shown for Fano three-
folds (see [11] and [6] for Picard rank one case and [2], [5],and [12] for the general
case). For complete intersections in projective spaces see [11] and [6]. Aside from
that only partial results are known.

The natural wish is to compute invariants of Fano varieties in terms of their
toric Landau–Ginzburg models. Say, by [8] one can see rationality of Picard rank
one Fano threefold via monodromy of the cental fiber of its toric Landau–Ginzburg
model. Hodge numbers of Fano threefolds are given by their Picard numbers and
the dimensions of the intermediate Jacobians. Thus the Hodge numbers mirror
symmetry conjecture is almost given by the following.

Conjecture 7 (see [13, Conjecture 1.1]). Let X be a smooth Fano variety of
dimension n and let fX be its toric Landau–Ginzburg model. Let kfX be a number
of all components of all reducible fibers of a Calabi–Yau compactification for fX
minus the number of reducible fibers. One has h1,n−1(X) = kfX .

This conjecture is proven for Fano threefolds of Picard rank one (see [11]) and
for complete intersections (see [13]).

The case of ant Picard rank is more complicated. Let X be a smooth Fano
threefold and let f be its toric Landau–Ginzburg model of Minkowski type. Then,
using the toric variety dual to one associated with f , in [12] a log Calabi–Yau
compactification Z of f was constructed. In particular, this compactification gives
a tame compactified Landau–Ginzburg model w : Y → C, so Landau–Ginzburg
Hodge numbers defined for them.
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In the paper [4], Harder, under some assumptions, proved Conjecture 1 for f−
and h−numbers. By [12], these conditions hold for Z, so Conjecture 1 holds for X .
Moreover, Harder showed how to compute fp,q(Y,w) using the global geometry of
Z. He applied this in the case when X is a smooth Fano threefold. In this case
w : Y → C is a fibration into K3 surfaces by [12]. Harder proved that

f1,1
(
Y,w

)
= f2,2

(
Y,w

)
=
∑

P∈C1

(
ρP − 1

)
,

where ρP is the number of irreducible components of the fiber w−1(P ). Similarly,
he proved that

f1,2
(
Y,w

)
= f2,1

(
Y,w

)
= dim

(
coker

(
H2
(
Z,R

)
→ H2

(
F,R

))
)

− 2 + h1,2
(
Z
)
,

where F is a general fiber of w.
In most of cases one can construct the Calabi–Yau compactification in an-

other, more straightforward way. Using the natural embedding C[x±1, y±1, z±1] →֒
P[x, y, z, t], one can compactify the pencil of fibers for f to a pencil of quadrics in
P3. Then one needs to resolve the base locus of the pencil. Doing this by blowing
up points and smooth curves, one can keep track the required invariants.

Theorem 8 (Cheltsov, Przyjalkowski). Conjecture 2 hold smooth Fano threefolds.
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Boundedness properties for finite groups of birational selfmaps

Constantin Shramov

(joint work with Yuri Prokhorov)

1. Known results

Although groups of birational selfmaps of algebraic varieties can be very far from
linear algebraic groups, they sometimes exhibit similar features on the level of
finite subgroups. The group-theoretic property we will be mostly interested in is
described as follows.

Definition 1 (see [4, Definition 1]). A group Γ is called Jordan if there is a
constant J such that for any finite subgroup G ⊂ Γ there exists a normal abelian
subgroup A ⊂ G of index at most J .

The first result concerning Jordan property (and motivating the modern ter-
minology) is an old theorem by C. Jordan that asserts this property for the group
GLn(k) over a field k of characteristic zero. J.-P. Serre noticed that Jordan prop-
erty sometimes holds for groups of birational automorphisms.

Theorem 2 ([9, Theorem 5.3]). The group of birational automorphisms of P2

over a field of characteristic zero is Jordan.

In [6, Theorem 1.8], Yu. Prokhorov and C. Shramov generalized Theorem 2 to
the case of rationally connected varieties of arbitrary dimension (actually, their re-
sults were initially obtained modulo boundedness of terminal Fano varieties, which
was recently proved by C.Birkar in [3, Theorem 1.1]). Jordan property was also
proved for groups of birational automorphisms (and similar types of automorphism
groups) in many other cases, see e.g. [8] and references therein. However, there
are varieties whose groups of birational automorphisms are not Jordan. Yu. Zarhin
showed in [10] that a product of a positive-dimensional abelian variety and a pro-
jective line over an algebraically closed field of characteristic zero has a non-Jordan
group of birational automorphisms.

Keeping in mind the example of Zarhin, it seems natural to try to understand
the groups of birational automorphisms for varieties with maximal rationally con-
nected fibration of small relative dimension. note that the case when the relative
dimension is 0 (that is, the MRC fibration is birational or, equivalently, the variety
is not uniruled) is settled by [5, Theorem 1.8(ii)]. To study fiberwise birational
automorphism in the case of MRC fibration of relative dimension 1, T. Bandman
and Yu.Zarhin proved the following.

Theorem 3 ([2, Corollary 4.11]). Let K be a field of characteristic zero that
contains all roots of 1. Let C be a conic over K. Assume that C is not K-rational,
i.e., that C(K) = ∅. Then every non-trivial element of finite order in Aut(C) has
order 2, and every finite subgroup of Aut(C) has order at most 4.
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Theorem 4 ([2, Theorem 1.6]). Let X be a variety over a field of characteristic
zero, and φ : X 99K Y be its maximal rationally connected fibration. Suppose that
the relative dimension of φ equals 1, and that φ has no rational sections. Then
the group of birational automorphisms of X is Jordan.

A partial two-dimensional generalization of Theorem 3 is as follows.

Theorem 5 ([7, Theorem 1.6]). LetK be a field of characteristic zero that contains
all roots of 1, and S be a geometrically rational surface over K. Assume that S is
not K-rational but has a K-point. Then the group of birational automorphisms of
S has bounded finite subgroups.

Theorem 6 ([7, Lemma 4.6]). LetX be a variety over a field of characteristic zero,
and φ : X 99K Y be its maximal rationally connected fibration. Suppose that the
relative dimension of φ equals 2, and that φ has a rational section. Suppose also
that X is not birational to Y × P2. Then the group of birational automorphisms
of X is Jordan.

2. Work in progress

The following assertion that can be interpreted as a two-dimensional generalization
of Theorem 3 and that applies both to surfaces with K-points and without them
is a work in progress with V.Vologodsky.

Theorem 7. Let K be a field of characteristic zero that contains all roots of 1.
Let X be a geometrically rational surface over K. Then the group of birational
automorphisms of S has unbounded finite subgroups if and only ifX isK-birational
to P1 × C, where C is a conic.

Using Theorem 7, one can obtain the following result that is somewhat similar
to Theorems 4 and 6.

Proposition 8. Let X be a variety over a field k of characteristic zero, and
φ : X 99K Y be its maximal rationally connected fibration. Suppose that the
relative dimension of φ equals 2, and that φ has no rational sections. Suppose also
that X is not birational to Z × P1, where Z is a conic bundle over Y . Then the
group of birational automorphisms of X is Jordan.

3. Further directions

The proof of Theorem 7 is based on studying boundedness properties for linear
algebraic groups that do not have subgroups isomorphic to Gm. In general, it
seems that many properties of finite groups of birational selfmaps of rationally
connected varieties can be deduced from the properties of linear algebraic groups
acting on (other) rationally connected varieties. In particular, I suspect that the
answer to the following question is positive.

Question 9. Can one give an alternative proof of the Jordan property for ratio-
nally connected varieties over a field of characteristic zero, following the approach
of [9] instead of [6]?
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Another question that may become accessible after properly studying certain
linear algebraic groups of automorphisms is as follows. We know from the exam-
ple of Zarhin that Jordan property does not always hold for groups of birational
selfmaps. Making obvious changes in Definition 1, one can introduce the nilpotent

Jordan property of groups.

Question 10. Does nilpotent Jordan property always hold for groups of birational
automorphisms of varieties over a field of characteristic zero?
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Maximal Ak-singularities of plane curves of fixed bidegree

Julia Schneider

We study algebraic curves (not necessarily reduced) on the affine plane A2(C)
that have a singularity of type Ak, which means that there is an analytical local
isomorphism such that the curve is given by

y2 − xk+1 = 0

in a neighbourhood of the singular point. We ask:

Question 1. For d ≥ 1, what is the maximal k such that there exists a curve of
degree d that has an Ak-singularity?

We denote this by N(d) and can give answers for small d:

d 1 2 3 4 5 6 7...
N(d) 0 1 3 7 12 19 ?

,
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where the result for d = 6 is by Yang, who gave a classification of all simple
singularities of sextic curves in [5]. (Note that the answers of N(2), N(3) and
N(4) differs if we consider only irreducible curves.) The difficulty of the question
increases rapidly for larger values of d, so the asymptotic behaviour is studied and
bounds for

α = lim sup
2N(d)

d2

are wanted, where we multiplied by 2 to obtain nicer numbers, as it is often done
in the literature. Gusein-Zade and Nekhoroshev [3] found in 2000 that 1.5 ≥ α ≥
15
14 ≃ 1.07142 and in the same year, Cassou-Nogues and Luengo [1] refined the

lower bound to 8 − 4
√
3 ≃ 1.07179. A decade passed until Orevkov [4] improved

it even further to 7
6 = 1.16 in 2012.

Question 1 can also be approached through fixing a bidegree instead of the degree.
We say that a polynomial F (or equivalently, the curve in A2(C) defined by its
zero set) has bidegree (a, b) if its Newton polygon lies in the triangle spanned by
(a, 0), (0, 0) and (0, b). For example, all polynomials of degree at most d are of
bidegree (d, d). So we generalize Question 1:

Question 2. For (a, b) ∈ N2, what is the maximal k such that there is a curve in
A2(C) of bidegree (a, b) with an Ak-singularity?

Similar to above, we denote this by N(a, b). For instance, one finds N(1, b) = 0
for all b, and fixing a = 2 yields N(2, 2n− 1) = 2n − 2 for odd b, and for even b
we get N(2, 2n) = 2n − 1. We have studied the case where b = 3 and found the
following values of N(3, b):

Theorem 3. For small b, N(3, b) is given by the following table:

b 3 4 5 6 7 8 9 10 11 12
N(3, b) 3 5 7 8 10 12 13 15 17 18

.

Moreover, for b ≥ 4 there are irreducible polynomials that achieve the maximal
singularities.

Studying polynomials of bidegree (a, b) is interesting on its own, however it
could also help to determine the asymptotical behaviour of N(d), thanks to the
following result.

Proposition 4 (Orevkov [4]). If N(a, b) ≥ k − 1, then α ≥ 2k
ab
.

And in fact, it does help: Luengo found N(4, 6) ≥ 13, Orevkov applied this
proposition and got α ≥ 7

6 . Initially, we hoped to improve this bound, but the

best we get with our results is N(3, 11) = 17 yielding α ≥ 12
11 ≃ 1.09. Anyway, a

better bound than Orevkov’s is not expected using N(3, b): A result in knot theory
by Feller [2] about the existence of algebraic cobordisms between the torus knots
T2,k+1 and T3,b gives 5b−4

3 as an upper bound for N(3, b), at least for b coprime

to 3. Hence, the best that might be found with N(3, b) is 2N(3,b)
3b ≃ 10

9 < 7
6 ,

asymptotically.
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Idea of the proof of Theorem 3. Let m be the integer such that b = 3m − r for
some r ∈ 0, 1, 2. By embedding A2(C) into the Hirzebruch surface Fm in a certain
way, a curve as in Question 2 is mapped onto a curve C ⊂ Fm that has an Ak-
singularity and that satisfies C ∼ 3S+ and does not intersect S−, where S+ is a
curve with self-intersection m and S− is the curve with self-intersection −m.
By blowing up the Ak-singularity and contracting the strict transform of the fiber
passing through the Ak-singularity, we obtain a curve C1 ⊂ Fm1

that has an
Ak−2-singularity and that intersects the push-forward S1 of S− with intersection
multiplicity 1, where m1 ∈ {m+1,m− 1}. We can repeat this n = ⌈k

2 ⌉ times and
we get a smooth curve Cn ⊂ Fmn and a rational curve Sn ⊂ Fmn that contain a
point with intersection multiplicity n.
In fact, we can prove that this configuration lies in F1 (or F0) and by contracting
it onto P2 we can determine whether the configuration exists or not. If it exists,
we find N(3, b) ≥ k, and otherwise N(3, b) ≤ k. In case of existence we provide
explicit polynomials for the configuration in P2. �

We stop at b = 12 because the computations get more and more tedious. It
would be interesting to have a family of curves of bidegree (3, b) with increasing b
that have maximal Ak-singularity.
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Subgroups of elliptic elements of the plane Cremona group

Christian Urech

The main source for the content of this abstract are the two papers [7] and [8]. The
Cremona group Cr2(C) is the group of birational transformation of the complex
projective plane. One of the key techniques for studying the group theoretical
properties of infinite subgroups of the complex plane Cremona group Cr2(C) has
been an action by isometries on an infinite dimensional hyperboloid H∞(P2) (see
[3] for an overview and references). Recall that there are three types of isometries
of hyperbolic spaces:

• elliptic isometries, which are the isometries that fix a point in H∞(P2),
• parabolic isometries, which are the isometries that do not fix any point in
H∞(P2), but fix exactly one point in the boundary ∂H∞(P2),
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• loxodromic isometries, which are the isometries that do not fix any point
in H∞(P2), but fix exactly two points in ∂H∞(P2).

We call an element f ∈ Cr2(C) elliptic, parabolic or loxodromic, if the isometry of
H∞(P2) induced by f is elliptic, parabolic or loxodromic respectively. This notion
is linked to the dynamical behavior of f .

We consider subgroups of Cr2(C) consisting only of elliptic elements. The main
result is that the group theoretical structure of these subgroups is not more com-
plicated than the structure of algebraic subgroups of Cr2(C):

Theorem 1 ([8]). Let G ⊂ Cr2(C) be a subgroup of elliptic elements. Then one
of the following is true:

(1) G is contained in an algebraic subgroup;
(2) G preserves a rational fibration;
(3) G is a torsion subgroup.

Theorem 2 ([8]). Let G ⊂ Cr2(C) be a torsion subgroup. Then G is isomorphic
to a bounded subgroup of Cr2(C).

In combination with the classification of maximal algebraic subgroups (see [1]),
Theorem 1 and Theorem 2 give an explicit description of groups of elliptic elements.
This allows to give new descriptions of arbitrary subgroups of Cr2(C).

Theorem 1 and Theorem 2 can now be used to prove structure theorems on
general subgroups of Cr2(C). Given a subgroup G of Cr2(C) one can consider the
following three cases:

(1) G contains a loxodromic element;
(2) G contains no loxodromic element but a parabolic element;
(3) G is a subgroup of elliptic elements.

In case (1), the groupG can be understood by using tools from hyperbolic geometry
and geometric group theory, in case (2) it is known that G preserves a rational
or elliptic fibration and case (3) can be treated with the help of Theorem 1 and
Theorem 2. Let us explain two results that can be proved with this strategy.

1. The Tits alternative

Recall the following definition:

Definition 3.

(1) A group G satisfies the Tits alternative if every subgroup of G is either
virtually solvable or contains a non-abelian free subgroup.

(2) A group G satisfies the Tits alternative for finitely generated subgroups

if every finitely generated subgroup of G either is virtually solvable or
contains a non-abelian free subgroup.

Cantat established the Tits alternative for finitely generated subgroups of
Cr2(C) ([2]). Theorem 1 and Theorem 2 yield the results needed to generalize
this result:

Theorem 4 ([8]). The plane Cremona group Cr2(C) satisfies the Tits alternative.
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2. Simple subgroups of the plane Cremona group

It had been a long-standing open question, whether the plane Cremona group
is simple as a group until Cantat and Lamy showed in 2012 that it is not ([4]).
The main idea to prove this result was to use techniques from small cancellation
theory, an approach that has been refined by Shepherd-Barron and Lonjou (see
[6], [5]). These results are a starting point for the following classification of all
simple subgroups of the plane Cremona group:

Theorem 5 ([7]). Let G ⊂ Cr2(C) be a simple group. Then:

(1) G does not contain loxodromic elements.
(2) If G contains a parabolic element, then G is conjugate to a subgroup of

J .
(3) If all elements in G are elliptic, then either G is a simple subgroup of an

algebraic subgroup of Cr2(C), or G is conjugate to a subgroup of J .

With the help of Theorem 5 all simple groups that act non-trivially by birational
transformations on compact complex Kähler surfaces can be described:

Theorem 6 ([7]). Let G be a simple group. Then

(1) G acts non-trivially by birational transformations on a rational complex
projective surface if and only if G is isomorphic to a subgroup of PGL3(C).

(2) G acts non-trivially by birational transformations on a non-rational com-
pact complex Kähler surface of negative Kodaira dimension if and only if
G is finite or isomorphic to a subgroup of PGL2(C).

(3) G acts non-trivially by birational transformations on a compact complex
Kähler surface S of non-negative Kodaira dimension if and only if G is
finite.

References
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