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POSITIVE LINE BUNDLES OVER THE IRREDUCIBLE
QUANTUM FLAG MANIFOLDS

FREDY DÍAZ GARCÍA, ANDREY KRUTOV, RÉAMONN Ó BUACHALLA,
PETR SOMBERG, AND KAREN R. STRUNG

Abstract. Noncommutative Kähler structures were recently introduced by the
third author as a framework for studying noncommutative Kähler geometry on
quantum homogeneous spaces. It was subsequently observed that the notion of
a positive vector bundle directly generalises to this setting, as does the Kodaira
vanishing theorem. In this paper, by restricting to covariant Kähler structures
of irreducible type (those having an irreducible space of holomorphic 1-forms) we
provide simple cohomological criteria for positivity, offering a means to avoid ex-
plicit curvature calculations. These general results are applied to our motivating
family of examples, the irreducible quantum flag manifolds Oq(G/LS). Building
on the recently established noncommutative Borel–Weil theorem, every covariant
line bundle over Oq(G/LS) can be identified as positive, negative, or flat, and
hence we can conclude that each Kähler structure is of Fano type. Moreover, it
proves possible to extend the Borel–Weil theorem for Oq(G/LS) to a direct non-
commutative generalisation of the classical Bott–Borel–Weil theorem for positive
line bundles.

1. Introduction

Positive line bundles, which is to say, line bundles whose Chern curvature is a positive
definite (1, 1)-form, play a central and ubiquitous role in modern complex geometry.
Analogously, ample line bundles are fundamental objects of study in projective alge-
braic geometry. An ample line bundle is a line bundle E such that, for any coherent
sheaf S, the tensor product S ⊗ E⊗k is generated by global sections, whenever k
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is sufficiently large. Under the GAGA (Géometrie Algébrique et Géométrie Ana-
lytique) correspondence [55], positive and ample line bundles are equivalent. The
existence of positive line bundles has many remarkable implications for the structure
of a complex manifold. For example, the Kodaira embedding theorem says that a
compact Kähler manifold is projective if and only if it admits a positive line bundle
[30, § 5.3]. Positivity also has strong cohomological implications, as evidenced by the
celebrated Kodaira vanishing theorem and the subsequent slew of related vanishing
theorems [25]. Given the relation of positivity to these elegant structural proper-
ties, the natural impulse is to try to extend the concept to settings beyond ordinary
complex geometry. This has been met with tremendous success in the study of
varieties over fields of prime characteristic. Positivity, or rather in this case ample-
ness, has been key to understanding innate differences between these geometries, for
example the failure of the Kodaira vanishing theorem in prime characteristic [51].
Another striking extension has been to the setting of noncommutative projective
algebraic geometry, where ample sequences and ample pairs are by now considered
foundational structures [1].

The goal of this paper is to explore the idea of positivity for the noncommutative
differential geometry of quantum groups. In particular, we show that the covari-
ant line bundles over an irreducible quantum flag manifold, endowed with their
Heckenburger–Kolb calculus, are either positive, flat, or negative, Theorems 3.3
and 4.8. Furthermore, we are able to distinguish between these three cases using
cohomological information, Corollary 3.4, in the form of the recently established
noncommutative Akizuki–Nakano identities [48, Corollary 7.8].

Positivity in noncommutative differential geometry is a concept that has been for-
mulated only recently in the companion paper [48]. These two papers are part of
a series exploring the noncommutative complex geometry of quantum homogeneous
spaces [46, 47, 48, 16, 17] based around the notion of a noncommutative Kähler
structure, as introduced by the third author in [47]. In this context, the classical
Koszul–Malgrange theorem [38] allows for an obvious noncommutative generalisa-
tion of the definition of a holomorphic vector bundle. As in the classical setting,
every Hermitian holomorphic vector bundle has a uniquely associated Chern con-
nection [5, Proposition 4.4]. In [48] it is observed that the definition of a positive
line bundle extends directly to the noncommutative setting. Building on this ob-
servation, a corresponding Kodaira vanishing theorem can be formulated and the
definition of a noncommutative Kähler structure can be refined to give the definition
of a noncommutative Fano structure. The implied vanishing of cohomologies makes
it possible to calculate holomorphic Euler characteristics.

Despite an abundance of structure, calculating the curvature of a line bundle in the
quantum setting remains an extremely challenging task: classical tools are either not
yet developed or are unavailable entirely. Any attempt at brute force calculations
quickly becomes prohibitively lengthy and tedious. The complications involved can
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already be seen in §5, where we carry out explicit calculations for the relatively sim-
ple case of the quantum complex projective spaces, Proposition 5.3. Fortunately,
the worst of these calculations can be avoided entirely by restricting to a particularly
tractable subclass, which subsumes and generalises the quantum complex projective
spaces: those covariant Kähler structures which are irreducible.

Our motivating family of examples is the irreducible, or cominiscule, quantum flag
manifolds Oq(G/LS), and this is the prime justification for restricting to the irre-
ducible case. The irreducible quantum flag manifolds form a large and robust family
of examples, and are a natural class to consider when attempting to extend geometric
notions from the classical to the noncommutative. Indeed, it is becoming increas-
ingly clear that the noncommutative geometry of the quantum flag manifolds is an
essential key to understanding the noncommutative geometry of quantum groups in
general. Here, the necessary cohomological information is provided by the forthcom-
ing noncommutative Borel–Weil theorem [19] (see [44] for the particular case of the
quantum Grassmannians). This allows us to prove in Theorem 4.9 that every irre-
ducible quantum flag manifold, endowed with its Heckenberger–Kolb calculus, is of
Fano type in the sense of [48, Definition 8.8]. With this information in hand, we ex-
tend the noncommutative Borel–Weil theorem to a noncommutative generalisation
of the classical Bott–Borel–Weil theorem for positive line bundles, Theorem 4.15.

Perhaps the most significant application of the positivity results of this paper is to
the proof in [17] that the appropriately twisted Dolbeault–Dirac operators of the
irreducible quantum flag manifolds are Fredholm. (For the precise formulation see
[17, §11.3]). These operators provide an illuminating example of how the spectrum
of a noncommutative Dolbeault–Dirac operator is shaped by the geometry of the
underlying de Rham complex, and a particularly satisfying demonstration of the
machinery of classical complex geometry being successfully applied to the quantum
world. In future work it is hoped to expand and strengthen this connection, with
the search for a noncommutative GAGA equivalence serving as a motivating goal.

The paper is organised as follows. In §2 we recall necessary background material,
including noncommutative Kähler structures, Hermitian and holomorphic vector
bundles, and compact quantum group algebras. In particular, we recall the recently
introduced notion of a compact quantum homogeneous (CQH) Kähler space [17,
Definition 3.13], which details a natural set of compatibility conditions between
covariant Kähler structures and compact quantum group algebras.

In §3 we develop the general theory of the paper. In particular, we introduce the
notion of an irreducible CQH-Kähler space, and show that for any such space, a
covariant Hermitian holomorphic line bundle is either positive, negative, or flat. We
then build upon this result to show that we can distinguish between these three
choices by examining the degree zero Dolbeault cohomology of the line bundle in
question.
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In §4 we present our motivating family of examples, the irreducible quantum flag
manifolds Oq(G/LS), their covariant line bundles El, for l ∈ Z, along with their
Heckenberger–Kolb calculi. We recall the irreducible CQH-Kähler structure of each
Oq(G/LS), and the associated noncommutative generalisation of the Borel–Weil
theorem. We then build upon the general theory presented in §3, and prove that,
for each k ∈ N, it holds that Ek > 0, and E−k < 0. As a consequence, we observe
that the Kähler structure of each Oq(G/LS) is of Fano type. Finally, through an
application of the results of [48], we extend the noncommutative Borel–Weil theorem
to a noncommutative Bott–Borel–Weil theorem for positive line bundles.

To provide the reader with some more concrete insight, in §5 we carry out explicit
curvature calculations for the positive line bundles of the quantum projective spaces,
the simplest type of A-series irreducible quantum flag manifold. We show that the
classical integer curvature q-deforms to quantum integer curvature.

For the reader’s convenience, and to settle notation, we also include three short
appendices. Appendix A Takeuchi’s equivalence, the natural setting for discussing
homogeneous vector bundles in the noncommutative setting. Appendix B includes
some diagrammatic descriptions of the quantum flag manifolds and their canonical
bundles. Finally, in Appendix C, we set notation for the relevant quantum integers
used in the paper.

Acknowledgments. Part of this work was carried when RÓB and AK visited KRS at
the Institute of Mathematics, Astrophysics and Particle Physics at Radboud Uni-
versity, Nijmegen and we thank the institute for their support. RÓB was hosted
numerous times by the Charles University in Prague. The authors also thank the
Université libre de Bruxelles for hosting FDG during September and October 2019.
KRS and RÓB are also grateful for a visit to Mathematisches Forschungsintitut
Oberwolfach in December 2018 where AK was a Leibniz fellow, and to the Mathe-
matics Department at the University of Zagreb during July 2019. All five authors
benefitted from meeting at the conference “Quantum Flag Manifolds in Prague”
at the Charles University in September 2019. We also thank Matthias Fischmann,
Vincent Grandjean, Dimitry Leites, Marco Matassa, Paolo Saracco, Jan Šťov́ıček,
Adam-Christaan van Roosmalen, and Elmar Wagner for helpful discussions.

2. Preliminaries

We recall the basic definitions and results for differential calculi, as well as complex,
Hermitian, and Kähler structures and associated noncommutative vector bundles
over these objects. For a more detailed introduction see [46], [47], and references
therein. For an excellent presentation of classical complex and Kähler geometry see
Huybrecht’s book [30].
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Notation. Throughout the paper N0 denotes the natural numbers, including zero,
while N will denote the non-zero natural numbers. All algebras are assumed to be
unital and defined over C, and all unadorned tensor products are defined over C.

2.1. Differential Calculi. A differential calculus
(
Ω• '

⊕
k∈N0

Ωk, d
)

is a differ-
ential graded algebra (dg-algebra) which is generated in degree 0 as a dg-algebra,
that is to say, it is generated as an algebra by the elements a, db, for a, b ∈ Ω0. We
call an element ω ∈ Ω• a form, and if ω ∈ Ωk, for some k ∈ N, then ω is said to
be homogeneous of degree |ω| := k. The product of two forms ω, ν ∈ Ω• is usually
denoted by ω ∧ ν, unless one of the forms is of degree 0, whereupon the product is
denoted by juxtaposition.

For a given algebra B, a differential calculus over B is a differential calculus such
that Ω0 = B. Note that for a differential calculus over B, each Ωk is a B-bimodule.
A differential calculus is said to have total degree m ∈ N0, if Ωm 6= 0, and Ωk = 0,
for every k > m.

A differential ∗-calculus over a ∗-algebra B is a differential calculus over B such that
the ∗-map of B extends to a (necessarily unique) conjugate linear involutive map
∗ : Ω• → Ω• satisfying d(ω∗) = (dω)∗, and(

ω ∧ ν
)∗

= (−1)klν∗ ∧ ω∗, for all ω ∈ Ωk, ν ∈ Ωl.

We say that ω ∈ Ω• is closed if dω = 0, and real if it satisfies ω∗ = ω.

2.2. Complex Structures. We now recall the definition of a complex structure as
introduced in [35, 6]. This abstracts the properties of the de Rham complex of a
classical complex manifold [30].

Definition 2.1. An almost complex structure Ω(•,•) for a differential ∗-calculus
(Ω•, d) is an N2

0-algebra grading
⊕

(a,b)∈N2
0

Ω(a,b) for Ω• such that, for all (a, b) ∈ N2
0

the following hold:

(i) Ωk =
⊕

a+b=k Ω(a,b),

(ii)
(
Ω(a,b)

)∗
= Ω(b,a).

We call an element of Ω(a,b) an (a, b)-form. For projΩ(a+1,b) , and projΩ(a,b+1) , the
projections from Ωa+b+1 to Ω(a+1,b), and Ω(a,b+1) respectively, we denote

∂|Ω(a,b) := projΩ(a+1,b) ◦ d, ∂|Ω(a,b) := projΩ(a,b+1) ◦ d.

A complex structure is an almost complex which satisfies

dΩ(a,b) ⊆ Ω(a+1,b) ⊕ Ω(a,b+1), for all (a, b) ∈ N2
0.(1)

For a complex structure, (1) implies the identities

d = ∂ + ∂, ∂ ◦ ∂ = − ∂ ◦ ∂, ∂2 = ∂
2

= 0.
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In particular,
(⊕

(a,b)∈N2
0

Ω(a,b), ∂, ∂
)

is a double complex, which we call the Dolbeault

double complex of Ω(•,•). Moreover, it is easily seen that both ∂ and ∂ satisfy the
graded Leibniz rule, and that

∂(ω∗) =
(
∂ω
)∗
, ∂(ω∗) =

(
∂ω
)∗
, for all ω ∈ Ω•.

2.3. Hermitian and Kähler Structures. We now present the definition of an
Hermitian structure, as introduced in [47, §4], as well as a Kähler structure, intro-
duced in the same paper, [47, §7].

Definition 2.2. An Hermitian structure (Ω(•,•), σ) for a differential ∗-calculus Ω•

over B of even total degree 2n is a pair consisting of a complex structure Ω(•,•) and
a central real (1, 1)-form σ, called the Hermitian form, such that, with respect to
the Lefschetz operator

L : Ω• → Ω•, ω 7→ σ ∧ ω,

isomorphisms are given by

Ln−k : Ωk → Ω2n−k, for all k = 0, . . . , n− 1.

For L the Lefschetz operator of an Hermitian structure, we denote

P (a,b) :=

{
{α ∈ Ω(a,b) |Ln−a−b+1(α) = 0}, if a+ b ≤ n,

0, if a+ b > n.

Moreover, we denote P k :=
⊕

a+b=k P
(a,b), and P • :=

⊕
k∈N0

P k. An element of P •

is called a primitive form.

An important consequence of the existence of the Lefschetz operator is the Lefschetz
decomposition of the differential ∗-calculus, which we now recall below. For a proof
see [47, Proposition 4.3].

Proposition 2.3 (Lefschetz decomposition). For L the Lefschetz operator of an
Hermitian structure on a differential ∗-calculus Ω•, a B-bimodule decomposition
of Ωk, for all k ∈ N0, is given by

Ωk '
⊕
j≥0

Lj
(
P k−2j

)
.

We call this the Lefschetz decomposition of Ω•.

In classical Hermitian geometry, the Hodge map of an Hermitian metric is related to
the associated Lefschetz decomposition through the well-known Weil formula (see
[57, Théorème 1.2] or [30, Proposition 1.2.31]). In the noncommutative setting, we
take the direct generalisation of the Weil formula for our definition of the Hodge
map, and build upon this to define an Hermitian metric.
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Definition 2.4. The Hodge map associated to an Hermitian structure
(
Ω(•,•), σ

)
is

the B-bimodule map ∗σ : Ω• → Ω• satisfying, for any j ∈ N0,

∗σ
(
Lj(ω)

)
= (−1)

k(k+1)
2 ia−b

j!

(n− j − k)!
Ln−j−k(ω), ω ∈ P (a,b) ⊆ P k=a+b,

where i =
√
−1.

The Hodge map allows us to construct a sesquilinear map (since we will mainly
deal with left modules, our convention is that such a map is conjugate-linear in the
second variable) called the Hermitian metric,

gσ : Ω• × Ω• → B,

which we define, for ω ∈ Ωk and ν ∈ Ωl, by

gσ(ω, ν) :=

{
∗σ(ω ∧ ∗σ(ν∗)), if k = l,

0, if k 6= l.

By [17, Corollary 2.9], it holds that

gσ(ω, ν) = gσ(ν, ω)∗, for all ω, ν ∈ Ω•.

Following C∗-algebra terminology, for a ∗-algebra B, the cone of positive elements,
B≥0, is defined by

B≥0 :=

{
l∑

i=1

b∗i bi | bi ∈ B, l ∈ N

}
.

We denote the non-zero positive elements of B by B>0 := B≥0 \ {0}.

Definition 2.5. We say that an Hermitian structure (Ω(•,•), σ) is positive definite
if the associated metric gσ satisfies

gσ(ω, ω) ∈ B>0, for all non-zero ω ∈ Ω•.

In this case we say that σ is a positive definite Hermitian form.

With respect to the Hermitian metric, the Lefschetz map L is adjointable, and we
denote its adjoint by L† = Λ. The map Λ can be explicitly presented as

Λ = ∗−1
σ ◦ L ◦ ∗σ.

We define the counting operator H : Ω• → Ω• by

H(ω) = (k − n)ω, for ω ∈ Ωk.

Together the maps L, Λ, and H give a representation of sl2, as they satisfy the
following commutation relations, see for example [17, Proposition 2.10]:

[H,L] = 2H, [L,Λ] = H, [H,Λ] = −2Λ.(2)
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We finish this subsection with the definition of a Kähler structure, [47, Definition
7.1].. This is a simple strengthening of the requirements of an Hermitian structure,
but as we will see below, one with profound consequences.

Definition 2.6. A Kähler structure for a differential ∗-calculus is an Hermitian
structure (Ω(•,•), κ) such that the Hermitian form κ is closed, which is to say, dκ = 0.
We call such a form κ a Kähler form.

2.4. Holomorphic Vector Bundles. Noncommutative holomorphic vector bun-
dles have been considered in various places, for example [6], [50], and [35]. Motivated
by the Serre–Swan theorem, finitely generated projective left modules are usually
considered as noncommutative generalisations of vector bundles. As we now recall,
one can build on this idea to define noncommutative holomorphic vector bundles
via the classical Koszul–Malgrange characterisation of holomorphic bundles [38]. See
[48] for a more detailed discussion.

For Ω• a differential calculus over an algebra B, and F a left B-module, a connection
for F is a C-linear map ∇ : F → Ω1 ⊗B F satisfying

∇(bf) = db⊗ f + b∇f, for all b ∈ B, f ∈ F .

With respect to a choice Ω(•,•) of complex structure on Ω•, a (0, 1)-connection for
F is a connection with respect to the differential calculus (Ω(0,•), ∂).

Any connection can be extended to a map ∇ : Ω•⊗BF → Ω•⊗BF uniquely defined
by

∇(ω ⊗ f) = dω ⊗ f + (−1)|ω| ω ∧∇f, for f ∈ F , ω ∈ Ω•,

where ω is a homogeneous form, and |ω| denotes its degree.

The curvature of a connection is the left B-module map ∇2 : F → Ω2 ⊗B F . A
connection is said to be flat if ∇2 = 0. Since ∇2(ω ⊗ f) = ω ∧ ∇2(f), a connection
is flat if and only if the pair (Ω• ⊗B F ,∇) is a complex.

Definition 2.7. For an algebra B, a holomorphic vector bundle over B is a pair
(F , ∂F), where F is a finitely generated projective left B-module, and the map
∂F : F → Ω(0,1) ⊗B F is a flat (0, 1)-connection, which we call the holomorphic
structure for (F , ∂F).

Note that for any fixed a ∈ N0, a holomorphic vector bundle (F , ∂F) has a naturally
associated complex

∂F : Ω(a,•) ⊗B F → Ω(a,•) ⊗B F .
For any b ∈ N0, we denote by H

(a,b)

∂
(F) the bth-cohomology group of this complex.

2.5. Hermitian Vector Bundles. When B is a ∗-algebra, we can also generalise
the classical notion of an Hermitian metric for a vector bundle, as we now recall.
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Definition 2.8. An Hermitian vector bundle over a ∗-algebra B is a pair (F , hF),
consisting of a finitely generated projective left B-module F and a sesequilinear map
hF : F × F → B satisfying

(i) hF(bf, g) = bhF(f, g), for all f, g ∈ F and b ∈ B,
(ii) hF(f, g) = hF(g, f)∗, for all f, g ∈ F ,
(iii) hF(f, f) ∈ B>0, for all non-zero f ∈ F .

Observe that if (Ω(•,•), σ) is an Hermitian structure for a ∗-calculus Ω• over B, then
(Ω•, gσ) is an Hermitian vector bundle. Furthermore, if (F , hF) is an Hermitian
vector bundle over B, then a sesquilinear map

hΩ•⊗BF : Ω• ⊗B F × Ω• ⊗B F → B

is defined by

hΩ•⊗BF(ω ⊗ f, ν ⊗ g) := gσ(ω, νhF(f, g)), f, g ∈ F , ω, ν ∈ Ω•.

Since gσ(ωb, ν) = gσ(ω, b∗ν) for all ω, ν ∈ Ω• and b ∈ B, it is straightforward to
check that (Ω• ⊗B F , hΩ•⊗BF) is also an Hermitian vector bundle.

Definition 2.9. Let (F , hF) be an Hermitian vector bundle, and consider the
sesquilinear map

hF : Ω• ⊗B F × Ω• ⊗B F → Ω•, (ω ⊗ f, ν ⊗ g) 7→ ωhF(g)(f) ∧ ν∗.

A connection ∇ : F → Ω1 ⊗B F is an Hermitian connection if

dhF(f, g) = hF(∇(f), 1⊗ g) + hF(1⊗ f,∇(g)) for all f, g ∈ F .

A holomorphic Hermitian vector bundle is a triple (F , hF , ∂F) such that (F , hF)
is an Hermitian vector bundle and (F , ∂F) is a holomorphic vector bundle. The
following is shown in [5], see also [48].

Lemma 2.10. For any Hermitian holomorphic vector bundle (F , hF , ∂F), there
exists a unique Hermitian connection ∇ : F → Ω1 ⊗A F satisfying

∂F =
(
projΩ(0,1) ⊗B id

)
◦ ∇.

We call ∇ the Chern connection of (F , hF , ∂F), and denote

∂F :=
(
projΩ(1,0) ⊗B id

)
◦ ∇.

We finish this subsection with the notion of positivity for a holomorphic Hermitian
vector bundle. This directly generalises the classical notion of positivity, a property
which is equivalent to ampleness [30, Proposition 5.3.1]. It was first introduced
in [48, Definition 8.2] and requires a compatibility between Hermitian holomorphic
vector bundles and Kähler structures.
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Definition 2.11. Let Ω• be a differential calculus over a ∗-algebra B, and let
(Ω(•,•), κ) be a Kähler structure for Ω•. An Hermitian holomorphic vector bundle
(F , hF , ∂F) is said to be positive, written F > 0, if there exists θ ∈ R>0, such that
the Chern connection ∇ of F satisfies

∇2(f) = −θiκ⊗ f, for all f ∈ F .

Analogously, (F , hF , ∂F) is said to be negative, written F < 0, if there exists θ ∈
R>0, such that the Chern connection ∇ of F satisfies

∇2(f) = θiκ⊗ f, for all f ∈ F .

2.6. Noncommutative Fano Structures. In order to produce a holomorphic vec-
tor bundle from a complex structure, we recall from [46, §6.3] a refinement of the
definition of a complex structure called factorisability. The Dolbeault double com-
plex of every complex manifold is automatically factorisable [30, §1.2], as are the
Heckenberger–Kolb calculi for all the irreducible quantum flag manifolds (see §4.3).

Definition 2.12. Let Ω• be a differential ∗-calculus over a ∗-algebra B. A complex,
or almost complex, structure for Ω• is called factorisable if, for all (a, b) ∈ N2

0, we
have B-bimodule isomorphisms

(i) ∧ : Ω(a,0) ⊗B Ω(0,b) → Ω(a,b),
∑

i ωi ⊗ νi 7→
∑

i ωi ∧ νi,
(ii) ∧ : Ω(0,b) ⊗B Ω(a,0) → Ω(a,b),

∑
i ωi ⊗ νi 7→

∑
i ωi ∧ νi.

An important point to note is that for any factorisable complex structure Ω(•,•) of
total degree 2n, the pair

(
Ω(n,0), ∂

)
is a holomorphic vector bundle. Moreover, for a

factorisable Hermitian structure, or factorisable Kähler structure, which is to say an
Hermitian, or Kähler, structure whose constituent complex structure is factorisable,
the triple

(
Ω(n,0), gσ,∧−1 ◦ ∂

)
is an Hermitian holomorphic vector bundle.

Definition 2.13. A Fano structure for a differential ∗-calculus Ω•, of total degree
2n, is a Kähler structure (Ω(•,•), κ) such that

(i) Ω(•,•) is a factorisable complex structure,
(ii)

(
Ω(n,0), gκ, ∂

)
is a negative holomorphic Hermitian vector bundle.

2.7. Covariant Hermitian Structures. Suppose that A is a Hopf algebra and B
is a left A-comodule algebra. A differential calculus Ω• over B is said to be covariant
if the coaction ∆L : B → A⊗B extends to a map ∆L : Ω• → A⊗Ω• giving Ω• the
structure of an A-comodule algebra, and such that d is a left A-comodule map.

A complex, or almost complex, structure for Ω• is said to be covariant if the
N2

0-decomposition is a decomposition in the category of left A-comodules AMod.
In this case Ω(a,b) is a left A-sub-comodule of Ω•, for each (a, b) ∈ N2

0. This implies
that ∂ and ∂ are left A-comodule maps.

If (Ω(•,•), σ) is an Hermitian structure such that Ω(•,•) is a covariant complex struc-
ture and σ is left A-covariant, that is, ∆L(σ) = 1⊗ σ, then we say that (Ω(•,•), σ) is
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a covariant Hermitian structure. In this case, L, ∗σ and Λ are also left A-comodule
maps. A covariant Kähler structure is a covariant Hermitian structure which is also
a Kähler structure.

We also require the notion of covariance for vector bundles. As above, let A be a Hopf
algebra and B an A-comodule algebra. Then a holomorphic vector bundle (F , ∂F)
is covariant if F is an object A

Bmod0 (see Appendix A.1) and ∂F : F → Ω(0,1) ⊗B F
is a left A-comodule map.

For a left B-module F , denote by F the conjugate right B-module of F , as defined
by the action

F ⊗B → F , f ⊗ b 7→ b∗f.

Denote by ∨F the dual module ∨F := Hom(F , B), which is a right B-module with
respect to pointwise multiplication

φ b(f) := φ(f)b, φ ∈ ∨F , b ∈ B and f ∈ F .

A covariant Hermitian vector bundle is an Hermitian vector bundle (F , hF) such
that F is an object in A

Bmod0 and the right B-module map

F →∨ F , f 7→ hF(·, f)

is a left A-comodule map. If (F , hF , ∂F ) is a covariant Hermitian holomorphic
vector bundle, then the Chern connection is always a left A-comodule map, see [48,
§7.1]. Finally, an Hermitian, or holomorphic, covariant line bundle, is a covariant
Hermitian, or holomorphic, vector bundle E such that dim(Φ(E)) = 1, where Φ is
the functor as given in Takeuchi’s equivalence, Appendix A.1.

2.8. CQH-Hermitian and CQH-Kähler Spaces. Let A be a Hopf algebra. For
a left A-comodule V with coaction ∆L : V → A⊗V , its space of matrix elements is
the subcoalgebra

C(V ) := spanC{(id⊗ f)∆L(v) | f ∈ V ∗, v ∈ V },

where V ∗ denotes the C-linear dual of V .

Recall that a Hopf algebra A is cosemisimple if it satisfies the following three equiv-
alent conditions:

(i) A ∼=
⊕

V ∈Â C(V ), where summation is over Â, the set of all equivalence
classes of irreducible left A-comodules,

(ii) the abelian category AMod of left A-comodules is semisimple,
(iii) there exists a unique linear map h : A → C, which we call the Haar func-

tional, satisfying h(1) = 1, and

(id⊗ h) ◦∆(a) = h(a)1, (h⊗ id) ◦∆(a) = h(a)1.
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We now give the definition of a compact quantum group algebra, the algebraic coun-
terpart of Woronowicz’s C∗-algebraic notion of a compact quantum group [58]. This
strengthening of cosemisimplicity to the setting of Hopf ∗-algebras was introduced
by Koornwinder and Dijkhuizen [20].

Definition 2.14. A compact quantum group algebra, or a CQGA, is a cosemisimple
Hopf ∗-algebra A such that h(a∗a) > 0, for all non-zero a ∈ A.

Definition 2.15. Let π : A → H be a surjective Hopf algebra map between Hopf
algebras A and H. Then a homogeneous right H-coaction is given by the map

∆R := (id⊗ π) ◦∆ : A→ A⊗H.

The associated quantum homogeneous space is defined to be the space of coinvariant
elements, Aco(H), that is,

Aco(H) := {a ∈ A | ∆R(a) = a⊗ 1}.

A CQGA-homogeneous space is a quantum homogeneous space such that A and H
are both CQGAs and π : A→ H is a ∗-algebra map.

We now present closed integrals for Hermitian structures, abstracting the situa-
tion for a classical manifold without boundary. Note that this is a special case of
an orientable differential calculus with closed integral [47, §3.2], where the Hodge
map is taken as the orientation. The assumption of a closed integral is essential
for establishing the codifferenial formulae presented in (4) below, as well as the
noncommutative Hodge decomposition as presented in Theorem 2.18.

Definition 2.16. Let (Ω(•,•), σ) be an Hermitian structure of total degree 2n, for
some n ∈ N. The integral is the linear map∫

:= h ◦ ∗σ : Ω2n → C.

If
∫

dω = 0, for all ω ∈ Ω2n−1, then the integral is said to be closed, and (Ω(•,•), σ)
is said to be

∫
-closed.

With these definitions introduced, we are now ready to consider the definition of a
CQH-Hermitian space, the main theoretic structure of this paper.

Definition 2.17. A compact quantum homogeneous Hermitian space, or simply a
CQH-Hermitian space, is a quadruple H :=

(
B = Aco(H),Ω•,Ω(•,•), σ

)
where

(i) B = Aco(H) is a CQGA-homogeneous space,
(ii) Ω• is a left A-covariant differential ∗-calculus over B, and an object in

A
Bmod0,

(iii)
(
Ω(•,•), σ

)
is a covariant positive definite Hermitian structure for Ω• which

is
∫

-closed.
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We denote by dim(H) the total degree of the constituent differential calculus Ω•,
and call it the dimension of H.

Over any CQH-Hermitian space H :=
(
B = Aco(H),Ω•,Ω(•,•), σ

)
, every F ∈ A

Bmod0

admits an Hermitian structure, for more details see [17, Remark 6.4]. For a given
Hermitian vector bundle (F , hF , ∂F) over B, an inner product is given by

〈·, ·〉F : F × F → C, (f, g) 7→ h(hF(f, g)).

In particular, for the Hermitian vector bundle Ω• ⊗B F , we have the inner product

(3) 〈·, ·〉σ,F : Ω•⊗BF×Ω•⊗BF → C, (ω⊗f, ν⊗g) 7→ h◦hΩ•⊗BF(ω⊗f, ν⊗g).

We denote by ∂†F , and ∂
†
F the adjoint operators of ∂F and ∂F , respectively. That

∂ and ∂ are adjointable with respect to this inner product is a consequence of the
fact that they are covariant [48, Proposition 5.15]. We refer to any such operator
as a codifferential. Just as in the classical case [30, §4.1], each noncommutative
codifferential admits a description in terms of the Hodge map [48, Proposition 5.15].
Since such formulae will not be needed in what follows, we recall only the case where
F = B, as originally established in [47, §5.3.3]:

∂† = − ∗σ ◦ ∂ ◦ ∗σ, ∂
†

= − ∗σ ◦ ∂ ◦ ∗σ.(4)

The holomorphic, and anti-holomorphic, Laplace operators of (F , ∂F) are defined
respectively by

∆∂F
:= ∂

†
F∂F + ∂F∂

†
F , ∆∂F := ∂†F∂F + ∂F∂

†
F .

We denote the space of harmonic elements by H•
∂
(F) := ker(∆∂F

). The following
generalisation of classical Hodge decomposition was established in [48, Theorem 6.4].

Theorem 2.18 (Twisted Hodge Decomposition). Let (F , h, ∂F) be an Hermitian
holomorphic vector bundle over a CQH-Hermitian space (B,Ω•,Ω(•,•), σ). Then an
orthogonal decomposition of A-comodules with respect to the Hermitian metric is
given by

Ω(0,•) ⊗B F = H(0,•)
∂

(F)⊕ ∂F(Ω(0,•) ⊗B F)⊕ ∂†F(Ω(0,•) ⊗B F).

An isomorphism is given by the projection

H(0,•)
∂

(F)→ H
(0,•)
∂

(F), α 7→ [α].

Definition 2.19. A CQH-Kähler space K :=
(
B,Ω•,Ω(•,•), κ

)
is a CQH-Hermitian

space such that (Ω(•,•), κ) is a Kähler structure.
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2.9. The Akizuki–Nakano Identity and the Kodaira Vanishing Theorem.
Suppose that (Ω(•,•), σ) is an Hermitian structure for a differential ∗-calculus over a
∗-algebra B, and that F is a left B-module. Define a triple of operators, acting on
Ω• ⊗B F , by setting

LF := L⊗ idF , HF := H ⊗ idF , ΛF := Λ⊗ idF ,

where L,H,Λ are respectively the Lefschetz, counting, and adjoint Lefschetz oper-
ators on Ω•. It follows directly from the Lefschetz identities (2) that

[HF , LF ] = 2LF , [LF ,ΛF ] = HF , [HF ,ΛF ] = −2ΛF .

For the twisted Dolbeault complex of a CQH-Kähler space, the following direct
generalisation of the Kähler identities was established in [48, Theorem 7.6]. For a
discussion of the classical situation, see [30, §5.3] or [18, §VII.1].

Theorem 2.20 (Nakano identities). Let K = (B,Ω•,Ω(•,•), κ) be a CQH-Kähler
space, and (F , h, ∂F) an Hermitian holomorphic vector bundle. Denoting the Chern
connection of F by ∇F = ∂F + ∂F , it holds that

[LF , ∂F ] = 0, [LF , ∂F ] = 0, [ΛF , ∂
†
F ] = 0, [ΛF , ∂

†
F ] = 0,

[LF , ∂
†
F ] = i∂F , [LF , ∂

†
F ] = −i∂F , [ΛF , ∂F ] = i∂

†
F , [ΛF , ∂F ] = −i∂†F .

As observed in [48, Corollary 7.8], these identities imply that the classical relation-
ship between the Laplacians ∆∂F and ∆∂F

, namely the Akizuki–Nakano identities,
carries over to the noncommutative setting.

Theorem 2.21 (Akizuki–Nakano Identity). It holds that

∆∂F
= ∆∂F + [i∇2,ΛF ].

Note that, in the untwisted case (which is to say, the case where we do not tensor Ω•

with an Hermitian vector bundle F) the Laplacian operators coincide, and hence by
the Hodge identification of harmonic forms and cohomology classes, the holomorphic
and anti-holomorphic groups coincide [47, Corollary 7.7].

We finish with the noncommutative generalisation of the Kodaira vanishing theorem,
originally established in [48, Theorem 8.3]. For an alternative proof, using the
Akizuki–Nakano identities, see [17, Theorem 9.17].

Theorem 2.22 (Kodaira Vanishing). Let E+, and E−, be positive, and respec-
tively negative, line bundles over a CQH-Kähler space K = (B,Ω•,Ω(•,•), κ) such
that dim(K) = 2n. It holds that

(i) H
(a,b)

∂
(E+) = 0, for all a+ b > n,

(ii) H
(a,b)

∂
(E−) = 0, for all a+ b < n.
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3. Irreducible CQH-Hermitian Spaces and Positive Line Bundles

Determining positivity, or negativity, of an Hermitian holomorphic line bundle os-
tensibly requires one to calculate the Chern curvature explicitly. In practice, this
can prove to be a very challenging technical task. This is true in the classical setting,
and even more so in the noncommutative world, as can be seen in the calculations
presented in §5. As we demonstrate in this section, however, self-adjointness of the
Laplacian associated to a CQH-Kähler space allows us to avoid these difficulties, and
to conclude positivity from the vanishing, and non-vanishing, of zeroth cohomology
groups. This is most easily done if we assume irreducibility of the holomorphic, or
equivalently anti-holomorphic, space of 1-forms.

3.1. Irreducible CQH-Hermitian Spaces. Let H =
(
B = Aco(H),Ω•,Ω(•,•), σ

)
be a CQH-Hermitian space. Since Ω(1,0) and Ω(0,1) are objects in A

Bmod0, we can
consider their irreducibility as objects in that category. We claim that Ω(1,0) is
irreducible if and only if Ω(0,1) is irreducible. Indeed, for any proper non-trivial
sub-object N ⊂ Ω(1,0), let N∗ denote its image under the ∗-map, that is,

N∗ := {ω∗ | ω ∈ N}.

Then N∗ ⊂ Ω(0,1) is necessarily a proper non-trivial sub-object of Ω(0,1). Clearly, the
analogous argument works in the opposite direction, which proves the claim. This
leads us to the next definition.

Definition 3.1. A CQH-Hermitian space H =
(
B = Aco(H),Ω•,Ω(•,•), σ

)
is said to

be irreducible if Ω(1,0), or equivalently Ω(0,1), is irreducible as an object in A
Bmod0.

Irreducible Hermitian structures generalise our motivating family of examples, the
irreducible quantum flag manifolds Oq(G/LS), as presented in §4. Many of the
properties of the irreducible quantum flag manifolds extend to this more general
setting. In the following theorem, we present those relevant to the sequel.

Lemma 3.2. Let H =
(
B = Aco(H),Ω•,Ω(•,•), σ

)
be a factorisable irreducible CQH-

Hermitian space, and let (E , hE , ∂E) be a covariant Hermitian holomorphic line bun-
dle over H.

(i) The space of coinvariant (1, 1)-forms is a one-dimensional space spanned by
σ, that is, co(A)Ω(1,1) = Cσ.

(ii) The holomorphic structure ∂E of the line bundle E is unique.
(iii) Denoting 2n := dim(H), it holds that

ΛE ◦ ∇2(e) = λnie, for all e ∈ E .

(iv) There exists a scalar λ ∈ R such that

∇2(e) = λiσ ⊗ e, for all e ∈ E .
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Proof. Since Hmod is a rigid monoidal category, V := Φ(E) is invertible. In partic-
ular V ⊗ V ∗ ' C, where V ∗ denotes the dual left H-comodule of V .

By assumption Ω(•,•) is factorisable, so we have Φ(Ω(1,1)) ' Φ(Ω(1,0)) ⊗ Φ(Ω(0,1)),
where Φ is the functor defined in (18). Denote the decomposition of Φ(Ω(1,1)) into
irreducible comodules by

Φ(Ω(1,0))⊗ Φ(Ω(0,1)) ':
⊕
i

Ki.

Since σ is a left A-coinvariant Hermitian form, we have [σ] ∈ co(A)Φ(Ω(1,1)), implying
that one of the summands Ki must be isomorphic to the trivial comodule. Thus
Φ(Ω(1,0)) and Φ(Ω(0,1)) are dual. Moreover, since both Φ(Ω(1,0)) and Φ(Ω(0,1)) are
by assumption irreducible, precisely one of the summands will be trivial. With
U : F 7→ Ψ◦Φ(F) the unit of Takeuchi’s equivalence, it is easily seen (see §10.8 [17]
for example) that

U
(

co(A)Ω(1,1)
)

= 1⊗
(

co(H)Φ(Ω(1,1))
)
' 1⊗ C,

giving the claimed equality in (i) above.

Now we prove (ii). For a non-trivial summand Ki, the tensor product Ki ⊗ V will
again be irreducible. Indeed, assume that Ki⊗ V has a decomposition into a direct
sum of two comodules Ua and Ub. Then it would hold that

Ki ' Ki ⊗ V ⊗ V ∗ '
(
Ua ⊗ V ∗

)
⊕
(
Ub ⊗ V ∗

)
.

This would contradict the irreducibility of Ki, and so we are forced to conclude that
Ki ⊗ V is again irreducible. Now let us assume that Ki ⊗ V ' V . Drawing again
on invertibility of V , we see that

Ki ' Ki ⊗ V ⊗ V ∗ ' V ⊗ V ∗ ' C.

Since this contradicts our assumption of non-triviality of Ki, we are forced to con-
clude that Ki ⊗ V can never be isomorphic to V .

By Schur’s lemma, we now have a one-dimensional space of comodule maps from V
to Φ(Ω(1,1))⊗ V . Explicitly, this means that all comodule maps are of the form

V → Φ(Ω(1,1))⊗ V, v 7→ θ [σ]⊗ v,

for some θ ∈ C. Since the curvature operator is a morphism in A
Bmod0, Takeuchi’s

equivalence gives us the following commutative diagram:

Ω(1,1) ⊗B E A�HΦ
(
Ω(1,1) ⊗B E

)U−1
oo

E

∇2

OO

U
// A�HΦ(E),

Φ(∇2)

OO
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where we have used the formula for the inverse of Takeuchi’s unit, as presented in
(19). Thus, for any particular element e ∈ E , we see that

∇2(e) = U−1 ◦ Φ(∇2) ◦ U(e) = U−1 ◦ Φ(∇2)(e(−1) ⊗ [e(0)])

= θU−1(e(−1) ⊗ [σ ∧ e(0)])

= θe(−2)S(e(−1))σ ⊗ e(0)

= θε(e(−1))σ ⊗ e(0)

= θσ ⊗ e.

The operators ∆∂E and ∆∂E
are, by construction, self-adjoint operators on Ω•⊗B E .

Thus any eigenvalue of ∆∂E − ∆∂E
must be a real scalar. It now follows from the

Akizuki–Nakano identity that

(∆∂E −∆∂E
)(e) = [i∇2,ΛE ](e) = −iΛE ◦ ∇2(e) = −θiΛE(σ ⊗ e) = −θi ΛE ◦ LE(e).

Recalling now the twisted Lefschetz identities, and denoting 2n := dim(H), the
above expression can be reduced to

−θiΛE ◦ LE(e) = θi [LE ,ΛE ](e) = θiHE(e) = −inθe.

Thus θi ∈ R and setting λ := −θi gives the equation in (iii) as claimed, establishing
(ii) in the process. �

For the special case of a CQH-Kähler space, the identity in Lemma 3.2 (ii) immedi-
ately implies the following result. This serves as the principal theoretical result of
the paper.

Theorem 3.3. For any covariant line bundle E over an irreducible CQH-Kähler
space, precisely one of the following three possibilities holds:

(i) E > 0,
(ii) E is flat,

(iii) E < 0.

Let Ω(•,•) be an almost complex structure. Its opposite almost complex structure, as
considered in [44, §2.2.3], is the almost complex structure Ω(•,•) uniquely defined by
Ω(a,b) := Ω(b,a), for all (a, b) ∈ N2

0. By [17, Lemma 8.4], if H = (B,Ω•,Ω(•,•), σ) is a
CQH-Hermitian space, then

H :=
(
B,Ω•,Ω(•,•),−σ

)
is also a CQH-Hermitian space, which we call the opposite CQH-Hermitian space.
Clearly, H is a CQH-Kähler space if and only if H is a CQH-Kähler space, hence
we also have the notion of the opposite CQH-Kähler space.

The general cohomological consequences of positivity presented in the Kodaira van-
ishing theorem now allow us to produce sufficient cohomological conditions for posi-
tivity, flatness, or negativity, of a line bundle over an irreducible CQH-Kähler space.
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Corollary 3.4. Let E be a covariant line bundle over an irreducible CQH-Kähler
space K.

(i) If H0
∂
(E) 6= 0 and H0

∂(E) = 0, then E is positive.

(ii) If H0
∂(E) = H0

∂
(E) 6= 0, then E is flat.

(iii) If H0
∂
(E) = 0 and H0

∂(E) 6= 0, then E is negative.

Proof. First we show (i). By Theorem 3.3, the line bundle E must be positive,
negative, or flat. If it were negative, then Theorem 2.22 would imply that H0

∂
(E) is

trivial. Since we are assuming that this is not the case, E must be flat or positive.
If it were flat, then the Akizuki–Nakano identity would reduce to the equality

∆∂E
= ∆∂E .

This would imply equality of harmonic forms, and hence equality of cohomologies.
However, since we are assuming that H0

∂(E) = 0, this cannot be the case. Thus we
are forced to conclude that E is positive.

Moving now to (ii), we note that if the holomorphic and anti-holomorphic coho-
mologies coincide and are non-trivial, then there must exist a non-trivial

e ∈ ker(∆∂) ∩ ker(∆∂).

By the Akizuki–Nakano identity, and Lemma 3.2 (iii), this means that

0 = ∆∂(e)−∆∂(e) = [i∇2,ΛE ](e) = −ΛE ◦ ∇2(e) = −λnie,

where 2n := dim(K), and λ is the unique scalar such that ∇2(e) = λie. Thus we
see that λ must be zero, which is to say, E must be flat.

For (iii), the proof is completely analogous to that given for (i). However, in this case
the argument is given in terms of the opposite CQH-Kähler space. In particular,
using the assumptions that H0

∂
(E) = 0, and H0

∂(E) 6= 0 one eliminates the possibility
that E is either negative or flat, and hence one can conclude that E is positive with
respect to the opposite Kähler structure. Recalling Definition 2.11, it is easy to
see that an Hermitian holomorphic vector bundle is positive if and only if it is
negative with respect to the opposite CQH-Kähler space. Thus we can conclude
that E < 0. �

Example 3.5. We now consider an interesting family of examples, namely those
irreducible CQH-Kähler spaces K = (B = Aco(H),Ω•,Ω(•,•), κ) of dimension 4. In
particular, we bear in mind the quantum projective plane Oq(CP2), a member of
the general family of examples discussed in §4 and §5. Note that in dimension four
the Hodge map satisfies ∗2

κ = id on 2-forms. Hence ∗κ has eigenvalues 1 and −1.
Moreover, it follows from the definition of ∗κ that ∗κ(κ) = κ. Following the classical
definition we define the first Chern class c1(E), of a covariant Hermitian holomorphic
line bundle E , to be c1(E) := tr∇2, where tr is the trace of ∇2 defined in the obvious
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way. By Lemma 3.2 the first Chern class c1(E) is proportional to κ, and so, satisfies

∗κ(c1(E)) = c1(E).

In the classical setting such connections are called self-dual connections. They are
of interest because they satisfy the Yang–Mills equations [3]. For a more detailed
discussion for the special case of Oq(CP2), see the pair of papers [13, 15].

3.2. Noncommutative Hermite–Einstein Vector Bundles. In this subsection,
which is in effect an extended remark, we observe that the classical definition of an
Hermite–Einstein vector bundle extends to the setting of CQH-Kähler spaces.

Any positive, negative, or flat vector bundle (F , h, ∂F) over an irreducible CQH-
Kähler space K = (B = Aco(H),Ω•,Ω(•,•), κ) satisfies

ΛF ◦ ∇2 = γi idF , for some γ ∈ R.(5)

This is established by a verbatim extension of the argument of Lemma 3.2 (iii)
from the covariant line bundle setting to the case of general Hermitian holomorphic
vector bundles. What is very interesting about (5) is that it is satisfied by a far
larger class of Hermitian holomorphic vector bundles than those which are simply
positive, negative, or flat. Classically, this motivates the definition of an Hermite–
Einstein vector bundle [30, §4.B]. As we now observe, this definition carries over
directly to the noncommutative setting.

Definition 3.6. For a CQH-Kähler space K, we say that an Hermitian holomorphic
vector bundle (F , h, ∂F) over K is Hermite–Einstein if

ΛF ◦ ∇2 = γi idF , for some γ ∈ R.

Hermite–Einstein vector bundles are objects of central importance in classical com-
plex geometry. They are intimately related to the theory of Yang–Mills connections
[31]. Moreover, the Donaldson–Uhlenbeck–Yau theorem relates the existence of an
Hermite–Einstein metric to semi-stability of the vector bundle, see [39] for details.
The investigation of how such structures and results extend to the noncommutative
setting presents itself as a very interesting direction for future research.

4. The Heckenberger–Kolb Calculi for the Irreducible Quantum
Flag Manifolds

In this section we consider our motivating family of examples: the irreducible quan-
tum flag manifolds endowed with their Heckenberger–Kolb calculi. We assume that
the reader has some familiarity with the representation theory of Lie algebras. For
standard references see [29, 32, 49].
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4.1. Drinfeld–Jimbo Quantum Groups. In this subsection we recall the neces-
sary definitions from the theory of Drinfeld–Jimbo quantum groups. We refer the
reader to [37] for further details, as well to the seminal papers [21, 33]. Let g be
a finite-dimensional complex semisimple Lie algebra of rank r. We fix a Cartan
subalgebra h with corresponding root system ∆ ⊆ h∗, where h∗ denotes the linear
dual of h. With respect to a choice of simple roots Π = {α1, . . . , αr}, denote by (·, ·)
the symmetric bilinear form induced on h∗ by the Killing form of g, normalised so
that any shortest simple root αi satisfies (αi, αi) = 2. Let {$1, . . . , $r} denote the
corresponding set of fundamental weights of g. The coroot α∨i of a simple root αi is
defined by

α∨i := diαi =
2αi

(αi, αi)
, where di :=

2

(αi, αi)
.

The Cartan matrix A = (aij)ij of g is the (r × r)-matrix defined by aij :=
(
α∨i , αj

)
.

Let q ∈ R such that q /∈ {−1, 0, 1}, and denote qi := q(αi,αi)/2. The quantised
enveloping algebra Uq(g) is the noncommutative associative algebra generated by
the elements Ei, Fi, Ki, and K−1

i , for i = 1, . . . , r, subject to the relations

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi, KiKj = KjKi, KiK

−1
i = K−1

i Ki = 1,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

along with the quantum Serre relations∑1−aij

r=0
(−1)r

[
1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0, for i 6= j,

∑1−aij

r=0
(−1)r

[
1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0, for i 6= j;

where we have used the q-binomial coefficients defined in Appendix C. A Hopf
algebra structure is defined on Uq(g) by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

S(Ei) = −EiK−1
i , S(Fi) = −KiFi, S(Ki) = K−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

A Hopf ∗-algebra structure, called the compact real form of Uq(g), is defined by

K∗i := Ki, E∗i := KiFi, F ∗i := EiK
−1
i .

Let P be the weight lattice of g, and P+ its set of dominant integral weights. For
each µ ∈ P+ there exists an irreducible finite-dimensional Uq(g)-module Vµ, uniquely
defined by the existence of a vector vµ ∈ Vµ, which we call a highest weight vector,
satisfying

Ei . vµ = 0, Ki . vµ = q(µ,αi)vµ, for all i = 1, . . . , r.
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Moreover, vµ is unique up to scalar multiple. We call any finite direct sum of such
Uq(g)-representations a type-1 representation. In general, a vector v ∈ Vµ is called a
weight vector of weight wt(v) ∈ P if

Ki . v = q(wt(v),αi)v, for all i = 1, . . . , r.

Finally, we note that since Uq(g) has an invertible antipode, we have an equivalence
between Uq(g)Mod, the category of left Uq(g)-modules, and ModUq(g), the category of
right Uq(g)-modules, as induced by the antipode.

4.2. Quantum Coordinate Algebras and Quantum Flag Manifolds. In this
subsection we recall some necessary material about quantised coordinate algebras,
see [37, §6 and §7] and [52] for further details. Let V be a finite-dimensional left
Uq(g)-module, v ∈ V , and f ∈ V ∗, the C-linear dual of V , endowed with its right
Uq(g)-module structure. An important point to note is that, with respect to the
equivalence of left and right Uq(g)-modules discussed above, the left module corre-
sponding to V ∗µ is isomorphic to V−w0(µS), where w0 denotes the longest element in
the Weyl group of g.

Consider the function cVv,f : Uq(g) → C defined by cVv,f (X) := f
(
X . v

)
. The

coordinate ring of V is the subspace

C(V ) := spanC
{
cVf,v | v ∈ V, f ∈ V ∗

}
⊆ Uq(g)∗.

A Uq(g)-bimodule structure on C(V ) is given by

(6) (Y . cVf,v / Z)(X) := f ((ZXY ) . v) = cVf/Z,Y .v(X).

Let Uq(g)◦ denote the Hopf dual of Uq(g). It is easily checked that C(V ) ⊆ Uq(g)◦,
and moreover that a Hopf subalgebra of Uq(g)◦ is given by

Oq(G) :=
⊕
µ∈P+

C(Vµ).

We call Oq(G) the quantum coordinate algebra of G, where G is the compact, con-
nected, simply-connected, simple Lie group having g as its complexified Lie algebra.

For {αi}i∈S a subset of simple roots, consider the Hopf ∗-subalgebra

Uq(lS) :=
〈
Ki, Ej, Fj | i = 1, . . . , r; j ∈ S

〉
.

The Hopf ∗-algebra embedding ι : Uq(lS) ↪→ Uq(g) induces the dual Hopf ∗-algebra
map ι◦ : Uq(g)◦ → Uq(lS)◦. By construction Oq(G) ⊆ Uq(g)◦, so we can consider the
restriction map

πS := ι|Oq(G) : Oq(G)→ Uq(lS)◦,

and the Hopf ∗-subalgebra Oq(LS) := πS
(
Oq(G)

)
⊆ Uq(lS)◦. The quantum flag man-

ifold associated to S is the CQGA-homogeneous space associated to the surjective
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Hopf ∗-algebra map πS : Oq(G)→ Oq(LS), and is denoted by

Oq
(
G/LS

)
:= Oq

(
G
)co(Oq(LS))

.

Denoting µS :=
∑

s/∈S $s, we choose for VµS a weight basis {vi}i, with corresponding
dual basis {fi}i. As shown in [27, Proposition 3.2], writing N := dim(VµS), a set of
generators for Oq(G/LS) is given by

zij := cµSfi,vN c
−w0(µS)
vj ,fN

for i, j = 1, . . . , N,

where vN , and fN , are the highest weight basis elements of VµS , and V−w0(µS), re-
spectively, and, to ease notation, we have written

cµSfi,vN := c
VµS
fi,vN

, c
−w0(µS)
vi,fN

:= c
V−w0(µS)
vi,fN

.

4.3. The Heckenberger–Kolb Calculi. Let S = {1, . . . , r} \ {s} where αs has
coefficient 1 in the expansion of the highest root of g. Then we say that the asso-
ciated quantum flag manifold is irreducible. In the classical limit of q = 1, these
homogeneous spaces reduce to the family of compact Hermitian symmetric spaces,
as classified, for example, in [4]. Presented in Table 1 of Appendix B is a useful dia-
grammatic presentation of the set of simple roots defining the irreducible quantum
flag manifolds, along with the names associated to the various series.

The irreducible quantum flag manifolds are distinguished by the existence of an
essentially unique q-deformation of their classical de Rham complex. The existence
of such a canonical deformation is one of the most important results in the study
of the noncommutative geometry of quantum groups, serving as a solid base from
which to investigate more general classes of quantum spaces. The following theorem
is a direct consequence of results established in [27], [28], and [42]. See [17, §10] for
a more detailed presentation.

Theorem 4.1. Over any irreducible quantum flag manifold Oq(G/LS), there exists
a unique finite-dimensional left Oq(G)-covariant differential ∗-calculus

Ω•q(G/LS) ∈ Oq(G)

Oq(G/LS)mod0,

which is of classical dimension, that is to say, satisfying

dim Φ
(
Ωk
q(G/LS)

)
=

(
2M

k

)
, for all k = 0, . . . , 2M,

where M is the complex dimension of the corresponding classical manifold, as pre-
sented in Table 2 of Appendix B.

The calculus Ω•q(G/LS), which we call the Heckenberger–Kolb calculus of Oq(G/LS),
has many remarkable properties. We begin with the existence of a unique covariant
complex structure, following from the results of [27], [28], and [42].
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Proposition 4.2. Let Oq(G/LS) be an irreducible quantum flag manifold, and
Ω•q(G/LS) its Heckenberger–Kolb differential ∗-calculus. Then the following hold:

(i) Ω•q(G/LS) admits a unique left Oq(G)-covariant almost complex structure,

Ω•q(G/LS) '
⊕

(a,b)∈N2
0

Ω(a,b) =: Ω(•,•),

(ii) Ω(•,•) is both integrable and factorisable,

(iii) Ω(1,0) and Ω(0,1) are irreducible as objects in
Oq(G)

Oq(G/LS)mod0.

As observed in [47, §10.8] (using the same argument as presented in part (i) of
Lemma 3.2) there exists a real leftOq(G)-coinvariant form κ ∈ Ω(1,1), and it is unique
up to real scalar multiple. Moreover, by extending the representation theoretic
argument given in [47, §4.4] for the case Oq(CPn), the form κ is readily seen to
be a closed central element of Ω•q(G/LS). This motivated [47, Conjecture 4.25],

where it was proposed that the pair (Ω(•,•), κ) is a Kähler structure for the calculus.
With suitable restrictions on the values of q, the conjecture was verified in [42,
Theorem 5.10].

Theorem 4.3. Let Ω•q(G/LS) be the Heckenberger–Kolb calculus of the irreducible

quantum flag manifold Oq(G/LS). The pair (Ω(•,•), κ) is a covariant Kähler structure
for all q ∈ R>0 \ F , where F is a finite, possibly empty, subset of R>0. Moreover,
any element of F is necessarily non-transcendental.

In [17, Lemma 10.10], positive definiteness of the Kähler structure was subsequently
verified, giving us a CQH-Kähler space [17, Theorem 10.11]. Taken together with
irreducibility of the holomorphic forms (as recalled in part (iii) of Proposition 4.2
above), this gives us the following theorem.

Theorem 4.4. For each irreducible quantum flag manifold Oq(G/LS), there exists
an open interval I ⊆ R>0 around 1, such that an irreducible CQH-Kähler space is
given by the quadruple

KS :=
(
Oq(G/LS), Ω•q(G/LS), Ω(•,•), κ

)
.

In the rest of this section we build upon this result, using it to apply the general
framework of the paper to the study of the irreducible quantum flag manifolds.

4.4. Line Bundles over the Irreducible Quantum Flag Manifolds. In this
subsection, we recall the necessary definitions and results about noncommutative
line bundles over the irreducible quantum flag manifolds. Some of the results in this
section rely on the forthcoming [19], which extends the results in [44] from quantum
Grassmannians (in other words, the A-series irreducible quantum flag manifolds).
Since, at the time of writing [19] has yet to appear, we direct the interested reader
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to [44] where the claimed results have already been established for the quantum
Grassmannians.

Classically, the algebra lS is reductive, so we have a decomposition into a direct sum
lsS ⊕ u1, comprised of a semisimple part and a commutative part, respectively. In
the quantum setting, we are thus motivated to consider the Hopf subalgebra

Uq(l
s
S) :=

〈
Ki, Ei, Fi | i ∈ S

〉
⊆ Uq(lS).

From the Hopf ∗-algebra embedding ι : Uq(l
s
S) ↪→ Uq(g), we have the dual Hopf

∗-algebra map ι◦ : Uq(g)◦ → Uq(l
s
S)◦. By construction Oq(G) ⊆ Uq(g)◦, so we can

consider the restriction map

π s
S := ι|Oq(G) : Oq(G)→ Uq(l

s
S)◦,

and the Hopf ∗-subalgebra Oq(Ls
S) := π s

S

(
Oq(G)

)
⊆ Uq(l

s
S)◦. We denote by

Oq
(
G/L s

S

)
:= Oq

(
G)co(Oq(L s

S)),

the CQGA-homogeneous space associated to the Hopf ∗-algebra map π s
S.

It follows directly from the defining relations of the Drinfeld–Jimbo quantum groups
that the element

Z = Kdet(A)$s = Ka1
1 · . . . ·Kar

r ,

where a1, . . . , ar are determined by det(A)$s = a1α1 + . . . + arαr, belongs to the
centre of Uq(lS).

The fact that Z is central implies that Oq(G/L s
S) is closed under the right action

of Z defined in (6). Thus we have a well-defined U(u1)-action generated by Z on
Oq(G/L s

S), or equivalently an O(U1)-coaction. This implies an associated Z-grading

Oq(G/L
s
S) '

⊕
k∈Z

Ek.

Each Ek is clearly a bimodule over E0 = Oq(G/LS). Moreover, since the action of
U(u1) clearly commutes with the left Oq(G)-coaction on Oq(G/L s

S), each Ek is an
Oq(G)-sub-comodule of Oq(G/L s

S). In [19] (see also [44]), it is shown that

Ek ∈ Oq(G)

Oq(G/LS) mod0, for all k ∈ Z,

and moreover that each Φ(Ek) is a one-dimensional space. From the equivalence of
the category of finite-dimensional representations of lS and the category of type-1
representations of Uq(lS) it easy to deduce that Φ(Ek) enumerate all one-dimensional
representations of Uq(lS). Thus Ek classify all line bundles over Oq(G/LS).

Using the general theory of principal comodule algebras, it is shown in [19] (see also
[44]) that each Ek is projective as a left Oq(G/LS)-module. Thus, when q = 1, each
Ek reduces to the space of sections of a line bundle over Oq(G/LS).
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Example 4.5. For the special case of quantum projective space Oq(CPn), the quan-
tum homogeneous space Oq(G/Ls

S) is given by the odd-dimensional quantum sphere
Oq(S2n−1), where the decomposition into line bundles is well known [43, 45].

For the case of the quantum quadrics Oq(Qn), the quantum homogeneous space
Oq(G/Ls

S) is a q-deformation of the coordinate ring of V2(Rn), the Stieffel manifold
of orthonormal 2-frames in Rn.

4.5. The Borel–Weil Theorem and Positive Line Bundles. Using the general
theory of quantum principal bundles, it was shown in [44, Lemma 5.3] that each
covariant line bundle over the quantum Grassmannians Oq(Grs,n+1) admits a unique
covariant holomorphic structure. This result is subsequently extended to the setting
of the general irreducible quantum flag manifolds in [19], as we now recall.

Theorem 4.6. For every covariant line bundle Ek over Oq(G/LS), there exists a
unique covariant (0, 1)-connection

∂Ek : Ek → Ω(0,1)
q (G/LS)⊗Oq(G/LS) Ek.

Moreover, ∂Ek is flat, which is to say, it is a holomorphic structure.

It now follows directly from Theorem 3.3 that the covariant line bundles over the
irreducible quantum flag manifolds Oq(G/LS) are either positive, flat, or negative.
To differentiate between these possibilities, we need some cohomological information
about the bundles. This information is given by the noncommutative Borel–Weil
theorem for Oq(G/LS), a result to appear by the first and third authors in [19],
generalising the special case of the quantum Grassmannians established in [44].

Theorem 4.7 (Borel–Weil). For each irreducible quantum flag manifold Oq(G/LS),
we have Uq(g)-module isomorphisms

(i) H0
∂
(Ek) ' Vk$s, for k ≥ 0,

(ii) H0
∂
(E−k) = 0, for k > 0.

Using this cohomological information, we can now apply Theorem 3.3 to the irre-
ducible quantum flag manifolds.

Theorem 4.8. For any irreducible quantum flag manifold Oq(G/LS), it holds that,
for any k ∈ N,

(i) Ek > 0,
(ii) E−k < 0,

for choice of positive definite Kähler form κ.

4.6. A Fano Structure for the Irreducible Quantum Flag Manifolds. In
this subsection we show that each irreducible quantum flag manifold Oq(G/LS) is
of Fano type (Definition 2.13). Since we now know that a line bundle El is negative
if and only if l is a negative integer, this amounts to showing that Ω(M,0) ' E−k, for
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some k > 0. This we do by producing a general description of k in terms of the
Cartan matrix of g. In Table 2 of Appendix B, we present the explicit values of k
for each series of the irreducible quantum flag manifolds.

Theorem 4.9. Let Oq(G/LS) be an irreducible quantum flag manifold, endowed
with its Heckenberger–Kolb calculus Ωq(G/Ls). For any q ∈ R>0, if (Ω(•,•), κ) is a
Kähler structure, then it is moreover a Fano structure.

Proof. Since the complex structure Ω(•,•) is factorisable, we only need to verify condi-
tion (ii) of Definition 2.13, that is, show that (Ω(M,0), gκ, ∂) is a negative line bundle,
where 2M is the total dimension of Ω•q(G/LS). First, we need to identify the unique
k ∈ N such that

Φ
(
Ω(M,0)

)
' Φ(E−k) = (Φ(E−1))⊗k.(7)

To do so, we will compare the actions of the central element Z ∈ Uq(lS) on the
Uq(lS)-modules Φ(E−1) and Φ(Ω(M,0)).

Consider first Φ(E−1), which is one-dimensional and (as observed in [19, 44]) is

spanned by the element [c
−w0($s)
vN ,fN

], where N := dim(VµS). Explicitly, Z acts as

[c
−w0($s)
vN ,fN

] / Z = [c
−w0($s)
vN/Z,fN

] = q−($s,$s) det(A)[c
−w0($s)
vN ,fN

].

Thus, since Φ(E−k) ' Φ(E−1)⊗k, and Z is grouplike, Z must act as multiplication
by the scalar q−k($s,$s) det(A).

Moving onto Φ
(
Ω(M,0)

)
, we note that Φ(Ω(1,0)) is irreducible as a Uq(lS)-module,

and hence that Z acts on Φ(Ω(1,0)) as multiplication by some scalar γ. Consider the
subset of J := {1, . . . , dim(V$s)} given by

J(1) := {i ∈ J | ($s, $s − αs − wt(vi)) = 0}.

As shown in [28, Proposition 3.6], a basis of Φ(Ω(1,0)) is given by{
[∂ziN ] | for i ∈ J(1)

}
.

Therefore, for any i ∈ J(1), we have

[∂ziN ] / Z = [∂(c$sfi/Z,vN c
−w0($s)
vN/Z,fN

)]

= q($s,$s−αs) det(A)−($s,$s) det(A)[∂ziN ]

= q−($s,αs) det(A)[∂ziN ].

Thus we see that γ = q−($s,αs) det(A). It follows from [28, Proposition 2.6.2] that
Φ(Ω(M,0)) can be naturally considered as a submodule of Φ(Ω(1,0))⊗M (see also the
remark below). From this it follows that Z must act on Φ(Ω(M,0)) as multiplication
by q−M($s,αs) det(A).

From (7) it is now clear that k is uniquely determined by the identity

M ($s, αs) det(A) = k ($s, $s) det(A).
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Recalling that ($s, αs) = d−1
s , and ($s, $s) = d−1

s ((At)−1)ss = d−1
s (A−1)ss, where A

is Cartan matrix of g, we see that

k =
M ($s, αs)

($s, $s)
= M/(A−1)ss.

It remains to show that k > 0. Indeed, each entry of the matrix (A−1)ss is a positive
rational number (see, for example, [49, Table 2] for an explicit presentation of the
values). Thus, for every irreducible quantum flag manifold Oq(G/LS), the scalar k,
which is necessarily an integer, must be an element of N. �

Remark 4.10. In the proof above, it was concluded from a calculation in [28] that
Φ(Ω(M,0)) can be naturally understood as a submodule of Φ(Ω(1,0))⊗M . As we now
observe, this fact can alternatively be concluded directly from the monoidal form of
Takeuchi’s equivalence, as presented in Appendix A. Indeed, since Ω(•,0) is a monoid
object in A

Bmod0, its image under Φ is again a monoid object in Hmod. Since Ω(•,0) is
generated as an algebra in degree 0 and degree 1, we see that Φ(Ω(•,0)) is generated
as an algebra in degree 0 and degree 1, giving us the surjective Uq(lS)-module map

Φ(Ω(1,0))⊗M → Φ(Ω(M,0)).

The category of Uq(lS)-modules is semisimple, so this surjection splits, giving us an
inclusion Φ(Ω(M,0)) ↪→ Φ(Ω(1,0))⊗M .

4.7. A Bott–Borel–Weil Theorem for Positive Line Bundles. In this subsec-
tion we examine the higher cohomologies of positive line bundles, proving a direct
generalisation of the classical Bott–Borel–Weil for the positive line bundles of irre-
ducible flag manifolds [7].

4.7.1. Holomorphic Bimodule Vector Bundles and Positivity. We first need to recall
some results and constructions from [48]. Let Ω(•,•) be a complex structure for a
differential ∗-calculus Ω• over a ∗-algebra B. If Ω(•,•) is factorisable, then we have
isomorphisms

β(a,b) : Ω(a,0) ⊗B Ω(0,b) ' Ω(0,b) ⊗B Ω(a,0), for each (a, b) ∈ N0.(8)

Using these isomorphisms, one can construct from a factorisable complex structure
a canonical type of bimodule connection for the space of highest degree holomorphic
forms. Before we do this, let us recall the general definition of a bimodule connection.

Definition 4.11. Let (Ω•, d) be a differential calculus over an algebra B, and F a
B-bimodule. A bimodule connection for F is a pair (∇, β), where ∇ : F → Ω1⊗BF
is a connection and β : F ⊗B Ω1 → Ω1 ⊗B F is a B-bimodule map such that

∇(fb) = ∇(f)b+ β(f ⊗ db), for all f ∈ F , b ∈ B.
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Bimodule connections are important because they allow us to take tensor products.
Let (∇, β) be a bimodule connection for F , and (∇′,G) a connection for G, a left
B-module. Then a connection for F ⊗B G is given by

∇′′ := ∇⊗ idG + (β ⊗ idG) ◦ (idF ⊗∇′) : F ⊗B G → Ω1 ⊗B F ⊗B G.

In addition to our above assumptions, let us suppose that B is a ∗-algebra, that Ω•

is a ∗-calculus, and let us make a choice Ω(•,•) of complex structure for Ω•.

Definition 4.12. A holomorphic bimodule vector bundle overB is a triple (F , ∂F , β),
where F is B-bimodule, (F , ∂F) is a holomorphic vector bundle, and (∂F , β) is a
bimodule connection for F , with respect to the differential calculus (Ω(0,•), ∂).

As observed in §2.6, when Ω• is a finitely generated, projective left B-module, and
Ω(•,•) is factorisable, then the pair (Ω(n,0), ∂) is a holomorphic vector bundle over B.
As we now see, the triple

(Ω(n,0),∧−1 ◦ ∂, β := β(n,1))

is a holomorphic bimodule vector bundle, where ∧−1 is the inverse of the map defined
in Definition 2.12 (i). Note that if B is a left A-comodule algebra, and the complex
structure is also left A-covariant, then the holomorphic bimodule vector bundle will
be covariant, in the sense that the maps ∂ and β will be comodule maps.

Here we are interested in a holomorphic bimodule vector bundle structure for Ω(0,n).
As explained in [48, §3], by formally dualising, one can produce a corresponding
holomorphic bimodule vector bundle structure for Ω(n,0). Moreover, in the covari-
ant setting, the dual bundle will again be covariant. In practice, covariance often
identifies the holomorphic structure uniquely, allowing us to take the formal dual-
ising procedure as an existence result. Importantly, as observed in [48, §3], for any
other holomorphic vector bundle (F , ∂F), the tensor product (0, 1)-connection on
Ω(0,n) ⊗B F will be flat, which is to say, it will be a holomorphic structure.

With these results in hand, we are now ready to recall [48, Proposition 8.7]. See the
remark below for a discussion of the original formulation of this result.

Proposition 4.13. Let H = (B = Aco(H),Ω•,Ω(•,•), σ) be a 2n-dimensional CQH-
Hermitian space, where Ω(•,•) is a factorisable complex structure, and let (F , hF , ∂F)
be an Hermitian holomorphic vector bundle over H. If the Hermitian holomorphic
vector bundle Ω(0,n) ⊗B F is positive, then

H
(0,k)

∂
(F) = 0, for all k > 0.

Remark 4.14. Note the original formulation is presented in a more general setting,
which contains the CQH-Hermitian space situation as a special case. It is stated
here for CQH-Hermitian spaces for sake of convenience and brevity.
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4.7.2. The Bott–Borel–Weil Theorem. We will now use Proposition 4.13, together
with the results of §4.5 and §4.6, to establish the following noncommutative gener-
alisation of the classical Bott–Borel–Weil theorem for the non-negative line bundles
over the irreducible flag manifolds. This result extends previous partial results for
line bundle cohomology over quantum projective space established in [35, 36, 14].

Theorem 4.15 (Bott–Borel–Weil). Let Oq(G/LS) be an irreducible quantum flag
manifold, endowed with its Heckenberger–Kolb calculus Ω•q(G/LS). Moreover, let

q ∈ R>0 such that (Ω(•,•), κ) is a Kähler structure, and hence a Fano structure.
Then we have the following Uq(g)-module isomorphisms

(i) H
(0,0)

∂
(Ek) ' Vk$s, for all k ∈ N0,

(ii) H
(0,i)

∂
(Ek) = 0, for all k ∈ N0, and all i > 0.

Proof. The isomorphisms in (i) are given by the noncommutative Borel–Weil theo-
rem for the special case of positive line bundles. From Theorem 4.9 we know that
Ω(0,M) ' Ej, for some j > 0. Thus, as line bundles,

Ω(0,M) ⊗B Ek ' Ej ⊗B Ek ' Ek+j.(9)

Since the complex structure Ω(•,•) is factorisable, the holomorphic structure of Ω(0,M)

is necessarily covariant, and moreover, the holomorphic structure on Ω(0,M)⊗B Ek is
covariant. Theorem 4.6 tells us that there is only one such structure on Ek+j, and
so, the isomorphism in (9) is an isomorphism of holomorphic vector bundles (in the
obvious sense of isomorphism). Moreover, since k + j > 0, it follows from Theorem
4.8 that the bundle Ω(0,M) ⊗B Ek is positive. Triviality of the cohomology groups in
(ii) now follows from Proposition 4.13. �

5. The Case of Quantum Projective Space

For any complex manifold, the curvature of the Chern connection is additive over
tensor products of holomorphic vector bundles. In particular, any tensor power of
a positive line bundle is again positive. In the noncommutative setting tensoring
two holomorphic vector bundles is more problematic. First of all, in order to de-
fine a tensor product, at least one of the bundles (F , ∂F) needs to be a bimodule.
Moreover, ∂F needs to be a bimodule connection (in the sense of [22, 23, 24]). Even
in this case, curvature does not behave additively. In particular, for a bimodule
holomorphic line bundle E , we cannot directly conclude positivity of E⊗Bk from pos-
itivity of E , making the general approach of this paper all the more valuable. For the
case of Oq(S2) the Podleś sphere [41], and Oq(CP2) the quantum projective plane
[15], it is known that the classical line bundle curvatures q-deform to quantum inte-
ger curvatures. In this section we show that this process generalises to all positive
line bundles over all quantum projective spaces. This suggests that there is some
type of q-deformed (or braided) additivity underlying these results. Understanding
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this process presents itself as an interesting and important future goal. Note that
throughout this section (k)q denotes the quantum integer defined in Appendix C.

5.1. General Results on Quantum Principal Bundles. In this subsection, we
recall those definitions and results from the theory of quantum principal bundles
necessary for our explicit curvature calculations below.

5.1.1. First-Order Differential Calculi. A first-order differential calculus over an al-
gebra B is a pair (Ω1, d), where Ω1 is a B-bimodule and d : B → Ω1 is a linear map
for which the Leibniz rule holds

d(ab) = a(db) + (da)b, a, b ∈ B,
and for which Ω1 is generated as a left B-module by those elements of the form db,
for b ∈ B. The universal first-order differential calculus overB is the pair (Ω1

u(B), du),
where Ω1

u(B) is the kernel of the multiplication map mB : B⊗B → B endowed with
the obvious bimodule structure, and du is the map defined by

du : B → Ω1
u(B), b 7→ 1⊗ b− b⊗ 1.

By [58, Proposition 1.1], every first-order differential calculus over B is of the form
(Ω1

u(B)/N, proj ◦ du), where N is a B-sub-bimodule of Ω1
u(B), and we denote by

proj : Ω1
u(B) → Ω1

u(B)/N the quotient map. This gives a bijective correspondence
between calculi and sub-bimodules of Ω1

u(B). Moreover, as is well known (see for
example [46, §2.5]) and is instructive to note, every first-order differential calculus
admits an extension to a maximal differential calculus, which is to say, one from
which any other extension can be obtained by quotienting.

For A a Hopf algebra, and B a left A-comodule algebra, we say that a first-order
differential calculus Ω1(B) over B is left A-covariant if there exists a (necessarily
unique) map ∆L : Ω1(B)→ A⊗ Ω1(B) satisfying

∆L(bdb′) = ∆L(b)(id⊗ d)∆L(b′), b, b′ ∈ B.
For the special case of A considered as a left A-comodule algebra over itself, we note
that every covariant first-order differential calculus over A is naturally an object in
the category A

AmodA.

5.1.2. Quantum Principal Bundles and Principal Connections. We say that a right
H-comodule algebra (P,∆R) is a Hopf–Galois extension of B := P co(H) if an iso-
morphism is given by

can := (mP ⊗ id) ◦ (id⊗∆R) : P ⊗B P → P ⊗H, r ⊗ s 7→ rs(1) ⊗ s(2),

where mP denotes the multiplication in P . It can be shown [8, Proposition 3.6]
that P is a Hopf–Galois extension of B = P co(H) if and only if an exact sequence is
given by

0 −→ PΩ1
u(B)P

ι−→Ω1
u(P )

can−→P ⊗H+ −→ 0,(10)
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where Ω1
u(B) is the restriction of Ω1

u(P ) to B, we denote by ι the inclusion, and can
is the restriction to Ω1

u(P ) of the map (mP ⊗ id) ◦ (id ⊗ ∆R) : P ⊗ P → P ⊗ H.
(Note that the map’s domain of definition is P ⊗ P , rather than P ⊗B P .) The
following definition, due to Brzeziński and Majid [9, 10], presents sufficient criteria
for the existence of a non-universal version of this sequence. A non-universal calculus
on P is said to be right H-covariant if the following, necessarily unique, map is well
defined

∆R : Ω1(P )→ Ω1(P )⊗H, rds 7→ r(0)ds(0) ⊗ r(1)s(1).

Definition 5.1. Let H be a Hopf algebra. A quantum principal H-bundle is a
pair (P,Ω1(P )), consisting of a right H-comodule algebra (P,∆R), such that P is a
Hopf–Galois extension of B = P co(H), together with a choice of right-H-covariant
calculus Ω1(P ), such that for N ⊆ Ω1

u(P ) the corresponding sub-bimodule of the
universal calculus, we have can(N) = P ⊗ I, for some Ad-sub-comodule right ideal

I ⊆ H+ := ker(ε : H → C),

where Ad : H → H ⊗H is defined by Ad(h) := h(2) ⊗ S(h(1))h(3).

Denoting by Ω1(B) the restriction of Ω1(P ) to B, and Λ1
H := H+/I, the quantum

principal bundle definition implies that an exact sequence is given by

0 −→ PΩ1(B)P
ι−→Ω1(P )

can−→ P ⊗ Λ1
H −→ 0,(11)

where by abuse of notation, can denotes the map induced on Ω1(P ) by identify-
ing Ω1(P ) as a quotient of Ω1

u(P ) (for details see [26]).

A principal connection for a quantum principal H-bundle (P,Ω1(P )) is a right H-
comodule, left P -module, projection Π : Ω1(P )→ Ω1(P ) satisfying

ker(Π) = PΩ1(B)P.

The existence of a principal connection is equivalent to the existence of a left
P -module, right H-comodule, splitting of the exact sequence given in (11). A prin-
cipal connection Π is called strong if (id− Π)

(
dP
)
⊆ Ω1(B)P .

5.1.3. Quantum Principal Bundles and Quantum Homogeneous Spaces. We now re-
strict to the case of a homogeneous quantum principal bundle, which is to say, a
quantum principal bundle whose composite H-comodule algebra is a quantum homo-
geneous space B := Aco(H), given by a surjective Hopf algebra map π : A→ H. For
this special case, it is natural to restrict to calculi on A which are left A-covariant.
Any such calculus Ω1(A) is an object in A

AModA, and so, by the fundamental theorem
of two-sided Hopf modules (Appendix A.2), we have the isomorphism

U : Ω1(A) ' A⊗ F
(
Ω1(A)

)
.

As a direct calculation will verify, with respect to the right H-coaction

F (Ω1(A))→ F (Ω1(A))⊗H, [ω] 7→ [ω(0)]⊗ π(S(ω(−1)))ω(1),
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the unit U of the equivalence is a right H-comodule map. (Here the right H-coaction
on A ⊗ F (Ω1(A)) is the usual tensor product coaction.) Thus a left A-covariant
principal connection is equivalent to a choice of right H-comodule decomposition

F (Ω1(A)) ' F (AΩ1(B)A)⊕ F (A⊗ Λ1
H) ' F (AΩ1(B)A)⊕ Λ1

H .

As established in [44], for a homogeneous quantum principal bundle with cosemisim-
ple composite Hopf algebras, all principal connections are strong.

Next, we come to the question of connections for any F ∈ A
Bmod0. Note first that

we have a natural embedding

j : Ω1(B)⊗B F ↪→ Ω1(B)A�HΦ(F), ω ⊗ f 7→ ωf(−1) ⊗ [f(0)].

We claim that a strong principal connection Π defines a connection ∇ for F by

∇ : F → Ω1(B)⊗B F , f 7→ j−1
(
(id− Π)(df(1))⊗ [f(2)]

)
.

Indeed, since d and the projection Π are both right H-comodule maps, their com-
position (id − Π) ◦ d is a right H-comodule map. Hence the image of (id − Π) ◦ d
is contained in j (Ω1(B)⊗B F), and ∇ defines a connection. Moreover, if the prin-
cipal connection Π is a left A-comodule map, then the connection ∇ is also a left
A-comodule map.

5.2. Line Bundles over Quantum Projective Space. In this subsection we
recall the definition of quantum projective space, which is to say the A-series irre-
ducible quantum flag manifold Oq(CPn) with the defining subset of simple roots
S := {α2, . . . , αn+1}, or equivalently the invariant subspace of the quantum Levi
subalgebra

Uq(lS) :=
〈
Ki, Ej, Fj | i = 1, . . . , n+ 1; j = 2, . . . , n+ 1

〉
⊆ Uq(sln+1).

Motivated by the classical situation, we denote Oq(Un) := Oq(LS) (see [43, 45, 44]).
The corresponding central element Z in Uq(lS) is explicitly given by

Z = Kn
1K

n−1
2 · . . . ·Kn.

The quantum homogeneous space Oq(G/Ls
S) reduces to the the invariant subspace

of the Hopf subalgebra

Uq(lS) :=
〈
Ki, Ei, Fi | i = 2, . . . , n+ 1

〉
⊆ Uq(sln+1).

In this special case, the quantum space is usually denoted by Oq(S2n+1) and called
the (2n+ 1)-dimensional quantum sphere, as discussed in Example 4.5.

Since every finite-dimensional representation of sln+1 is contained in some tensor
power of the first fundamental representation of sln+1, the matrix coefficients of
V$1 generate Oq(SUn+1) as an algebra. In particular, we can choose a weight basis
{vj}n+1

j=1 of V$1 such that the elements uij := c$1
fi,vj

, for i, j = 1, . . . , n + 1, coincide

with the well-known FRT-presentation of Oq(SUn+1), see [52] or [37, §9] for details.
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With respect to this presentation, the quantum sphere Oq(S2n+1) is generated as an
algebra by the elements

zi := ui1, and zi := S(u1
i ), for i = 1, . . . , n.

In terms of the Z-grading induced by the action of Z,

Oq(S2n+1) =
⊕
k∈Z

Ek,

the elements zi have degree 1, while the elements z̄j have degree −1. Thus, for every
k ∈ N0, as objects

Ek, E−k ∈Oq(SUn+1)

Oq(CPn) mod0,

the line bundle Ek is generated by the element zk1 , while E−k is generated by the
element zk1.

Finally, we recall that, for all k ∈ E0, the unit of Takeuchi’s equivalence explicitly
acts according to

U(e) = e⊗ v±k, for all e ∈ E±k,(12)

where vk := [zk1 ] ∈ Φ(Ek), and v−k := [zk1] ∈ Φ(E−k).

5.3. A Quantum Principal Bundle Presentation of the Chern Connection
of Oq(CPn). In this subsection we recall the quantum principal bundle descrip-
tion of the Heckenberger–Kolb calculus introduced in [45]. The constituent calculus
Ω1
q(SUn+1) of the quantum principal bundle was originally constructed as a distin-

guished quotient of the standard bicovariant calculus on Oq(SUn+1) [34, 40]. Here
we satisfy ourselves with presenting those properties of the calculus which are rele-
vant to our calculations below, and refer the interested reader to [45, §4]. We stress
that the calculus is far from being a natural q-deformation of the space of 1-forms of
SUn+1, instead it should be considered as a convenient tool for performing explicit
calculations.

The calculus is left Oq(SUn+1)-covariant, right Oq(Un)-covariant, and restricts to the
Heckenberger–Kolb calculus Ω1

q(CP
n). Thus it gives us a quantum principal bundle

presentation of Ω1
q(CP

n), with associated short exact sequence

0→ Oq(SUn+1)Ω1
q(CP

n)Oq(SUn+1)
ι−→Ω1

q(SUn+1)
can−→Oq(SUn+1)⊗ Λ1

Oq(Un) → 0.

Since the calculus is left Oq(SUn+1)-covariant, it is an Oq(SUn+1)-Hopf module. A
basis of F (Ω1

q(SUn+1)) is given by

e+
i := [dui+1

1 ], e0 := [du1
1], e−i := [du1

i+1], for i = 1, . . . , n.

Moreover, [uij] = 0, if both i, j 6= 1. Let us now denote

Λ(1,0) := spanC{e+
i | i = 1, . . . , n}, Λ(0,1) := spanC{e−i | i = 1, . . . , n}.
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The space Λ(1,0)⊕Λ(0,1) is a right Oq(SUn+1)-sub-module of ΦOq(SUn+1)

(
Ω1
q(SUn+1)

)
.

Explicitly, its Oq(SUn+1)-sub-module structure is given by

e±i / u
k
k = qδi+1,k+δ1k−2/(n+1)e±i , e±i / u

k
l = 0, for all k 6= l.(13)

It is important to note that the subspace Ce0 is not an Oq(SUn+1)-sub-module
of F (Oq(SUn+1)), nor is it even an Oq(S2n−1)-sub-module. However, as shown in
[45, Proposition 6.2], it is a sub-module over C〈z1〉, the ∗-sub-algebra of Oq(S2n+1)
generated by z1.

It follows from the results of [45, §5] that

F
(
Oq(SUn+1)Ω1

q(CP
n)Oq(SUn+1)

)
= Λ(1,0) ⊕ Λ(0,1).

Moreover, a decomposition of right Oq(Un)-comodules is given by

F
(
Ω1
q(SUn+1)

)
= Λ(1,0) ⊕ Λ(0,1) ⊕ Ce0.

Thus we have a left Oq(SUn+1)-covariant strong principal connection Π, uniquely
defined by

F (Π) : F
(
Ω1
q(SUn+1)

)
→ Ce0.

For an arbitrary covariant vector bundle F , let us now look at the associated con-
nection

∇ : F → Ω1
q(CP

n)⊗Oq(CPn) F

associated to Π. The linear map

∂F := (projΩ(0,1) ⊗ id) ◦ ∇ : F → Ω(0,1) ⊗Oq(CPn) F

is a (0, 1)-connection. Moreover, we have an analogously defined (1, 0)-connection
for F , which we denote by ∂F . Consider next the obvious linear projections

Π(1,0) : F
(
Ω1
q(SUn+1)

)
→ Λ(1,0), Π(0,1) : F

(
Ω1
q(SUn+1)

)
→ Λ(0,1).(14)

In terms of these operators, we have the following useful formulae:

∂F = j−1 ◦ ((Π(1,0) ◦ d)⊗ id) ◦ U,

∂F = j−1 ◦ ((Π(0,1) ◦ d)⊗ id) ◦ U.

For the special case of the covariant line bundles, it follows from the uniqueness of
(0, 1)-connections, as presented in Theorem 4.6, that ∂Ek is equal to the holomorphic
structure of Ek, justifying the choice of notation. We have an analogous result for
the (1, 0)-connection ∂Ek . Thus ∇ = ∂Ek +∂Ek is equal to the Chern connection of Ek.
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5.4. Chern Curvature of the Positive Line Bundles of Oq(CPn). In this sub-
section we explicitly calculate the curvature of the positive line bundles over quantum
projective space. We begin with the following technical lemma.

Lemma 5.2. It holds that, for all k ∈ N,

Π(1,0) ◦ d(zk1 ) = (k)q2/(n+1)

(
Π(1,0) ◦ d(z1)

)
zk−1

1 .

Proof. We will prove the formula using induction. For k = 1, the formula is trivially
satisfied. For k = 2, we see that

U
(
Π(1,0) ◦ d(z1)z1

)
= U

(
Π(1,0) ◦ d(u1

1)
)
u1

1

=

(
n∑
a=2

u1
a ⊗ [d(ua1)]

)
u1

1

=
n∑
b=1

n∑
a=2

u1
au

b
1 ⊗ [d(ua1)u1

b ].

Recalling the identities in (13) and the definition of Π(1,0) given in (14), we see that
n∑
b=1

n∑
a=2

u1
au

b
1 ⊗ [d(ua1)u1

b ] =
n∑
a=2

u1
au

1
1 ⊗ [d(ua1)u1

1] = q1− 2
n+1

n∑
a=2

u1
au

1
1 ⊗ [d(ua1)].

The commutation relations of Oq(SUn+1) tell us that u1
au

1
1 = q−1u1

1u
1
a (see for ex-

ample [37, §9.2] or [52, §1] for details). Thus

q1− 2
n+1

n∑
a=2

u1
au

1
1 ⊗ [dua1] = q−

2
n+1u1

1

n∑
a=2

u1
a ⊗ [dua1]

= q−
2

n+1 U
(
z1 Π(1,0) ◦ d(z1)

)
.

Hence we see that z1

(
Π(1,0) ◦ d(z1)

)
= q

2
n+1

(
Π(1,0) ◦ d(z1)

)
z1.

Let us now assume that the formula holds for some general k. By the Leibniz rule

Π(1,0) ◦ d(zk+1
1 ) = Π(1,0)

(
(dzk−1

1 )z1 + zk−1
1 dz1

)
.

Since Π(1,0) is a left Oq(SUn+1)-module map, it must hold that

Π(1,0)
(
(dzk−1

1 )z1 + zk−1
1 dz1

)
= Π(1,0)

(
dzk−1

1 z1

)
+ zk−1

1 Π(1,0) (dz1) .

Moreover, since Ce0 is a C〈z1〉-sub-module of F
(
Ω1
q(SUn+1)

)
, the projection Π(1,0)

must be a right C〈z1〉-module map. Thus we see that

Π(1,0)
(
dzk−1

1 z1

)
+ zk−1

1 Π(1,0) (dz1) = Π(1,0)
(
dzk−1

1

)
z1 + zk−1

1 Π(1,0) (dz1) .

Using our inductive assumption, we can reduce this expression to

(k − 1)q2/(n+1)Π(1,0)(dz1) zk−1
1 + q2(k−1)/(n+1)Π(1,0)(dz1)zk−1

1 .
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By the definition of the quantum integer, this in turn reduces to

(k)q2/(n+1)Π(1,0)(dz1) zk−1
1 .

The claimed formula now follows by induction. �

Proposition 5.3. For any positive line bundle Ek over quantum projective space
Oq(CPn), it holds that

∇2(e) = −(k)q−2/(n+1)iκ⊗ e, for all e ∈ Ek,

where we have chosen the unique Kähler form κ satisfying

∇2(e) = −iκ⊗ e, for all e ∈ E1.(15)

Proof. We are free to calculate the curvature of Ek by letting ∇2 act on any element
of Ek. The element zk1 presents itself as a convenient choice since, as proved in [45],
it holds that ∂Ek(z

k
1 ) = 0. (See [19] for the extension of this result to the general

setting of irreducible quantum flag manifolds.) In particular, it holds that

∇2(zk1 ) = (∂Ek ◦ ∂Ek + ∂Ek ◦ ∂Ek)(zk1 ) = ∂Ek ◦ ∂Ek(zk1 ).

Let α := q−2/(n+1). From the quantum principal bundle presentation of ∂Ek given in
the previous subsection, together with Lemma 5.2, we see that

∂Ek(z
k
1 ) = j−1

(
Π(1,0) ◦ d(zk1 )⊗ vk

)
= (k)α j

−1
((

Π(1,0) ◦ d(zk1 )
)
zk−1

1 ⊗ vk
)
,

where in the first identity we have used (12). We now present this expression as an
element in Ω(1,0) ⊗B (A�HΦ(Ek)):

(k)αj
−1
((

Π(1,0) ◦ d(z1)
)
zk−1

1 ⊗ vk
)

=
n+1∑
i=1

(k)αj
−1
(
Π(1,0) ◦ d(u1

1)S(u1
i )u

i
1z
k−1
1 ⊗ vk

)
=

n+1∑
i=1

(k)α∂(u1
1S(u1

i ))⊗ (ziz
k−1
1 ⊗ vk).

Acting on this element by ∂Ek , and recalling that ∂zi = 0, for all i = 1, . . . , n, gives
us the identity

n+1∑
i=1

∂Ek

(
(k)α∂(u1

1S(u1
i ))⊗ (ziz

k−1
1 ⊗ vk)

)
=

n+1∑
i=1

(k)α∂∂(u1
1S(u1

i ))⊗ (ziz
k−1
1 ⊗ vk).

Operating by id⊗ U−1 produces the expression

(k)α

n+1∑
i=1

∂∂(u1
1S(u1

i ))⊗ zizk−1
1 = (k)α∇(u1

1)zk−1
1 ,
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where the right multiplication of ∇(u1
1) by zk−1

1 is defined with respect to the canon-
ical embeddings of Ω(1,1) ⊗B E1 and Ω(1,1) ⊗B Ek into Ω(1,1) ⊗B Oq(S2n−1). Finally,
recalling that we have chosen a scaling of our Kähler form to satisfy (15), we have

∇2(zk1 ) = (k)α(−iκ⊗ z1)zk−1
1 = −(k)αiκ⊗ zk1 ,

which gives us the claimed identity. �

Remark 5.4. It is worth noting that the Chern curvature is clearly independent of
any quantum principal bundle presentation of the calculus Ω1

q(CP
n). However, the

quantum bundle presentation allows us to calculate the curvature in a systematic
manner, and provides us with concrete insight into why the curvature undergoes
a q-integer deformation. For those irreducible quantum flag manifolds for which a
quantum bundle presentation is currently unknown, it is unclear how to perform
these calculations. For the quantum Grassmannians, where a quantum principle
bundle presentation is available [44], positive and negative line bundle curvature
calculations will appear in subsequent work.

Appendix A. Some Categorical Equivalences

In this appendix we present a number of categorical equivalences, all ultimately
derived from Takeuchi’s equivalence [56]. These equivalences play a prominent role in
the paper, giving us a formal framework in which to understand covariant differential
calculi as noncommutative homogeneous vector bundles.

A.1. Takeuchi’s Bimodule Equivalence. Let A and H be Hopf algebras, and
B = Aco(H) the quantum homogeneous space associated to a surjective Hopf algebra
map π : A → H. We define A

BModB to be the category whose objects are left
A-comodules ∆L : F → A⊗F , endowed with a B-bimodule structure, such that

∆L(bfc) = ∆L(b)∆L(f)∆L(c), for all f ∈ F , b, c ∈ B,(16)

and whose morphisms are left A-comodule, B-bimodule, maps. Let HMod denote the
category whose objects are left H-comodules, and with morphisms left H-comodule
maps.

If F ∈ A
BModB, and B+ := B ∩ ker(ε : A→ C), then F/(B+F) becomes an object

in HModB with the obvious right B-action, and left H-coaction given by

∆L[f ] = π(f(−1))⊗ [f(0)], for f ∈ F ,(17)

where [f ] denotes the coset of f in F/(B+F). A functor

Φ : A
BModB → HModB(18)

is now defined as follows: Φ(F) := F/(B+F), and if g : F → D is a morphism in
A
BModB, then Φ(g) : Φ(F)→ Φ(D) is the map uniquely defined by Φ(g)[f ] := [g(f)].
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If V ∈ HModB with coaction ∆L : V → H ⊗ V , then the cotensor product of A and
V is defined by

A�HV := ker(∆R ⊗ id− id⊗∆L : A⊗ V → A⊗H ⊗ V ),

where ∆R : A → A ⊗ H denotes the homogenous right H-coaction on A (see
Definition 2.15 for details). The cotensor product becomes an object in A

BModB by
defining a left B-bimodule structure, and left A-comodule structure, on the first
tensor factor in the obvious way, and defining a right B-module structure by(∑

ai ⊗ vi
)
b :=

∑
aib(1) ⊗

(
vi / b(2)

)
,

for any b ∈ B, and any
∑
ai ⊗ vi ∈ A�HV . A functor

Ψ : HModB → A
BModB

is now defined as follows: Ψ(V ) := A�HV, and if γ is a morphism in HModB, then
Ψ(γ) := id⊗ γ.

For a quantum homogeneous space B = Aco(H), the algebra A is said to be faithfully
flat as a left B-module if the functor A⊗B − : BMod→ CMod, from the category
of left B-modules to the category of complex vector spaces, preserves and reflects
exact sequences. As shown in [11, Corollary 3.4.5], for any coideal ∗-subalgebra of a
CQGA faithful flatness is automatic. For example, Oq(G) is faithfully flat as a left
module over any quantum flag manifold Oq(G/LS). The following equivalence was
established in [56, Theorem 1].

Theorem A.1 (Takeuchi’s Equivalence). Let B = Aco(H) be a quantum homoge-
neous space such that A is faithfully flat as a right B-module. An adjoint equivalence
of categories between A

BModB and HModB is given by the functors Φ and Ψ and unit,
and counit, natural isomorphisms

U : F → Ψ ◦ Φ(F), f 7→ f(−1) ⊗ [f(0)],

C : Φ ◦Ψ(V )→ V,
[∑

i

ai ⊗ vi
]
7→
∑
i

ε(ai)vi.

As observed in [46, Corollary 2.7], the inverse of the unit U of the equivalence admits
a useful explicit description:

U−1

(∑
i

fi ⊗ [gi]

)
=
∑
i

fiS
(
(gi)(−1)

)
(gi)(0).(19)

A.2. The Fundamental Theorem of Two-Sided Hopf Modules. In this sub-
section we consider a special case of Takeuchi’s equivalence, namely the fundamental
theorem of two-sided Hopf modules. (This equivalence was originally considered in
[54, Theorem 5.7] using a parallel but equivalent formulation, see also [53].) For a
Hopf algebra A, the counit ε : A→ C is a Hopf algebra map. The associated quan-
tum homogeneous space is given by A = Aco(C), the category A

BModB specialises to
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A
AModA, and the category HModB reduces to the category of right A-modules ModA.
In this special case we find it useful to denote the functor Φ as

F : A
AModA → ModA, F 7→ F/A+F ,

Moreover, since the cotensor product over C is just the usual tensor product ⊗, we
see that the functor Ψ reduces to

A⊗− : ModA → A
AModA, V 7→ A⊗ V.

Since faithful flatness is trivially satisfied in this case, we have the following corollary
of Takeuchi’s equivalence.

Theorem A.2 (Fundamental Theorem of Two-Sided Hopf Modules). An adjoint
equivalence of categories between A

AModA and ModA is given by the functors F and
A⊗−, and the unit, and counit, natural isomorphisms

U : F → A⊗ F (F), f 7→ f(−1) ⊗ [f(0)],

C : F (A⊗ V )→ V, [a⊗ v] 7→ ε(a)v.

A.3. Some Monoidal Equivalences. In this subsection we recall two monoidal
equivalences induced by Takeuchi’s equivalence. Denote by A

BMod0 the full sub-
category of A

BModB whose objects F satisfy the identity FB+ = B+F . Consider
also the full sub-category of HModB consisting of those objects endowed with the
trivial right B-action, which is to say, those objects V for which v / b = ε(b)v, for all
v ∈ V , and b ∈ B. This category is clearly isomorphic to HMod, the category of left
H-comodules, and as such, Takeuchi’s equivalence induces an equivalence between
A
BMod0 and HMod, for details see [46, Lemma 2.8].

For F ,D two objects in A
BMod0, we denote by F ⊗B D the usual bimodule tensor

product endowed with the standard left A-comodule structure. It is easily checked
that F ⊗B D is again an object in A

BMod0, and so the tensor product ⊗B gives
the category a monoidal structure. With respect to the usual tensor product of
comodules in HMod, Takeuchi’s equivalence is given the structure of a monoidal
equivalence (see [46, §4] for details) by the morphisms

µF ,D : Φ(F)⊗ Φ(D)→ Φ(F ⊗B D), [f ]⊗ [d] 7→ [f ⊗ d], for F ,D ∈ A
BMod0.

This monoidal equivalence will be tacitly assumed throughout the paper, along with
the implied monoid structure on Φ(N ), for any monoid object N ∈ A

BMod0.

Consider now the category A
BMod, whose objects are left A-comodules, and left B-

modules, satisfying the obvious analogue of (16), and whose morphisms are left
A-comodule, right B-module maps. We can endow any object F ∈ A

BMod with a
right B-action uniquely defined by

f / b := f(−2)bS(f(−1))f(0).

Since e(−2)bS(e(−1))e(0) ∈ B+F , for all b ∈ B+, this new right module structure
satisfies the defining conditions of ABMod0, giving us an obvious equivalence between
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A
BMod and A

BMod0. In particular, we see that any left A-comodule, left B-module
map between two objects in A

BMod0 is automatically a morphism. (We should
note that the implied equivalence between A

BMod and HMod is the original form
of Takeuchi’s equivalence [56], the bimodule form presented above being an easy
consequence.)

Next we examine A
BmodB the full sub-category of A

BModB whose objects F are
finitely generated as left B-modules and HmodB, the full sub-category of HModB

whose objects are finite-dimensional as complex vector spaces. As established in
[47, Corollary 2.5] Takeuchi’s equivalence induces an equivalence between these two
sub-categories. We define the dimension of an object F ∈ABmodB to be the vector
space dimension of Φ(F).

Finally, consider A
Bmod0, the full sub-category of ABMod0 whose objects are also ob-

jects in A
BmodB. By the above, we see that Takeuchi’s equivalence induces an equiva-

lence between A
Bmod0 and Hmod, the category of finite-dimensional leftH-comodules.

Both categories are easily seen to be closed under tensor products, and so both
have monoidal structures. Moreover, the monoidal equivalence between A

BMod0 and
HMod restricts to a monoidal equivalence between A

Bmod0 and Hmod.

Appendix B. Tables for the Irreducible Quantum Flag Manifolds

We recall the standard pictorial description of the quantum Levi subalgebras defining
the irreducible quantum flag manifolds, given in terms of Dynkin diagrams. For a
diagram of rank r as in Table 1, let G denote the corresponding compact, connected,
simply-connected, simple Lie group. Each node denotes a simple root, and to the
black node αs we associate the set S := {1, . . . , n}\{s}, with corresponding Levi
subgroup LS. The irreducible quantum flag manifold is then given by the coinvariant
subspace Oq(G/LS) ⊆ Oq(G). Note that any automorphism of a Dynkin diagram
results in an isomorphic quantum flag manifold, which is not denoted in the diagram.
In particular, for the case of Dn and E6, colouring the second spinor node, and the
first node, respectively produces an isomorphic copy of the corresponding quantum
flag manifold.

We present an explicit description of the canonical line bundles of the irreducible
quantum flag manifolds using the approach of Theorem 4.9. All line bundles are
indexed by the negative integers, and hence, are negative in the sense of Defini-
tion 2.11. The values coincide with their classical counterparts, see for example, [32,
§ II.4]. This allows us to conclude in Theorem 4.9 that the Kähler structure of each
irreducible quantum flag manifold is of Fano type.

Remark B.1. By a theorem of Atiyah, a 2m-dimensional compact Hermitian man-
ifold is spin if and only if its canonical line bundle Ω(m,0) admits a holomorphic
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Table 1. Irreducible Quantum Flag Manifolds: organised by series,
with defining crossed node numbered according to [29, §11.4], CQGA-
homogeneous space symbol and name

An Oq(Grs,n+1) quantum
Grassmannian

Bn Oq(Q2n+1) odd quantum quadric

Cn Oq(Ln) quantum Lagrangian
Grassmannian

Dn Oq(Q2n) even quantum quadric

Dn Oq(Sn) quantum spinor variety

E6 Oq(OP2) quantum Caley plane

E7 Oq(F) quantum Freudenthal
variety

Table 2. Irreducible Quantum Flag Manifolds: CQGA-homogeneous
space symbol, corresponding Heckenberger–Kolb calculus complex dimen-
sion, and the space of top holomorphic forms identified as a line bundle

Oq(G/LS) M := dim
(
Ω(1,0)

)
Canonical line bundle Ω(M,0)

Oq(Grs,n+1) s(n−s+1) E−(n+1)

Oq(Q2n+1) 2n− 1 E−2n+1

Oq(Ln) n(n+1)
2 E−(n+1)

Oq(Q2n) 2(n− 1) E−2(n−1)

Oq(Sn) n(n−1)
2 E−2(n−1)

Oq(OP2) 16 E−12

Oq(F) 27 E−18

square root [2, Proposition 3.2]. Thus from Table 2 we see that the classical Grass-
mannians Grs,n+1, and the classical Lagrangian Grassmannians Ln, are spin for all
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n ∈ 2N+ 1. Moreover, the even quadrics Q2n, and the spinor varieties Sn, are spin,
for all n ∈ N. For the exceptional cases, both the Caley plane and the Freuden-
thal variety are spin. Atiyah’s theorem suggests a definition for noncommutative
Hermitian spin structures with a substantial ready-made family of noncommuta-
tive examples. Whether or not this will prove a fruitful idea remains to be seen,
although initial investigation suggests that noncommutative Hermitian spin struc-
tures are closely related to Connes’ notion of reality for spectral triples [12].

Appendix C. Quantum Integers

Quantum integers are ubiquitous in the study of quantum groups. For this paper
in particular, they arise in the defining relations of the Drinfeld–Jimbo quantum
groups, and in the calculation of the curvature of the positive line bundles over
quantum projective space Oq(CPn). In each case we use different but related for-
mulations for quantum integers. Thus we take care here to clarify our choice of
conventions.

We begin with the version of quantum integer used in the definition of the Drinfeld–
Jimbo quantum groups. For q ∈ C, the quantum integer [m]q is the complex number

[m]q := q−m+1 + q−m+3 + · · ·+ qm−3 + qm−1.

Note that when q /∈ {−1, 0, 1}, we have the identity

[m]q =
qm − q−m

q − q−1
.

We next recall the definition of the quantum binomials, which arise in the quantum
Serre relations of the Drinfeld–Jimbo quantum groups. For any n ∈ N, we denote

[n]q! = [n]q[n− 1]q · · · [2]q[1]q,

and moreover, we denote [0]q! = 1. For any non-zero q ∈ C, and any n, r ∈ N0, the
associated q-binomial coefficient is the complex number[

n
r

]
q

:=
[n]q!

[r]q! [n− r]q!
.

By contrast, the form of quantum integer arising in curvature calculations is defined
as follows: For q ∈ C \ {1}, the quantum integer (m)q is the complex number

(m)q =
1− qm

1− q
.

When m > 0, we have

(m)q := 1 + q + q2 + · · ·+ qm−1.
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The definition of quantum binomial also makes sense for this version of quantum
integer, although we will not use it in this paper. Finally, it is instructive to note
that the two conventions are related by the identity

[m]q = q1−m(m)q2 .
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public

Email address: somberg@karlin.mff.cuni.cz

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague,
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