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We consider the problem of walking in a straight line
on the surface of a Platonic solid. While the tetrahe-
dron, octahedron, cube, and icosahedron all exhibit
the same behavior, we find a remarkable difference
with the dodecahedron.

1 The anti-social jogger: trajectories on a tetrahedron

Imagine a tetrahedron the size of a (small) planet. At each of the four corners
of the tetrahedron is a house. In one of the houses lives a jogger. Each morning
she sets off from her home jogging in a straight line. Her friendly neighbors
interrupt her jog with a conversation if she runs by their houses. Can she run in
a straight line, without ever changing direction, and return home, avoiding all of
her neighbors? We will call this an anti-social path. Stated more mathematically,
is it possible to draw a straight-line path on a tetrahedron that starts and ends
at the same vertex and doesn’t cross any other vertex?

Problems of this type have a long history, going back at least as far as 1906,
to the work of Paul Stéckel (1862-1919) and Carl Rodenberg (1851-1933) of
Hannover [6, 5]. They were motivated by “singularities” in equations that define
geodesics on surfaces, where a geodesic means the shortest path between two
points. An issue that they considered was how to define straight line trajectories
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as we cross various boundaries. Inside a face of the tetrahedron, it is clear
how to travel in a straight line. To travel over an edge, Stéckel observed that
there is a unique way to continue walking in a straight line over an edge, as
long as you are not at a vertex. A way to see this is to consider the net of the
tetrahedron: a flat diagram with folding instructions that, when assembled,
forms the tetrahedron, as in Figure 1.

Figure 1: A net for the tetrahedron. Below we see it folded up with the orange
face on the bottom.

Drawing a straight line on the net, and then assembling the net, the straight
line remains and shows how to cross edges. That is, a line is determined
by the initial direction — unless it hits a vertex. What happens then was
debated between Stéckel and Rodenberg, and we (along with most modern
mathematicians) choose the convention that there is no unique way to continue
walking when you reach the corner of a face. Since any point in the interior
of a flat region has 360 degrees around it, a line passing through it cuts this
360° angle into two pieces of 180 degrees on each side of it. The vertex of a
tetrahedron has three triangles coming together, for a total angle of 180 degrees,
which is too small to split into 180° + 180°, making the notion of going straight
ambiguous. So if we reach the vertex of a tetrahedron, we stop.

The question remains: can the anti-social jogger come back home without
being stopped by a neighbor? Using our net, and an “unfolding” trick, we’ll
show that on the tetrahedron, the answer is no. That is, our jogger will either
have to turn, or to visit a neighbor, to come back home.



Let’s return to our net, and notice that when we assemble the tetrahedron,
we are gluing sides of the same color by rotation of 180°. The unfolding
trick, introduced by Fox-Kershner and Zelmjakov-Katok, takes two copies of
our original picture, rotates one by 180°, and glues the resulting figure by
translation, as shown in Figure 2.

Figure 2: Unfolding the tetrahedron

We can further unfold this unfolding, to tile the plane. A portion of this
tiling is shown below in Figure 3. This picture can be continued infinitely in
all directions, tiling the full plane. The advantage of this perspective is that
trajectories never change direction when drawn on the tiled picture. This is
in contrast to drawing trajectories on the net for the tetrahedron where the
direction could change by rotation by =, due gluing identified sides that are
rotated by m, as one can see Figure 1. Our question now becomes: can we draw
a straight line in this picture, starting and ending at a dot of the same color,
without passing through a dot of any other color? We leave the verification
that you cannot do this as an exercise for the interested reader.

AVAY,
JAVA

Figure 3: Unfolding the unfolding.

So the tetrahedron doesn’t work, but could the jogger move to a different
shaped planet?



2 Regular shapes: the Platonic solids

Figure 4: The five Platonic solids.

In kindergarten, we learn about the regular polygons: shapes whose sides
are all the same: for example, the equilateral triangle, the square, the regular
pentagon. There are infinitely many of these — for any number of sides, there is
a regular polygon with that number of sides, where regular means that all the
sides have the same length, and the angle at each corner is the same.

If we move up a dimension and ask for solids with identical regular polygons
for faces, so all edges of the same length, and which have the same number of
faces meeting at each corner, it turns out that there are only five such shapes.
Together they are known as the Platonic solids. To get a closed solid, there
must be at least three polygons at every corner of the solid. The sum of the
angles of the polygons at each corner must be the same for all corners, and
must be strictly less than 360°. With these restrictions, the only possible faces
are triangles, squares, and pentagons because three hexagons meeting at a
corner yields a total angle 360°, and the angle gets larger as the number of sides
increases. Squares and pentagons can have at most three polygons meeting at
a corner. For triangles, three, four, or five triangles are all possible. The five
Platonic solids are illustrated in Figure 4.



3 Anti-social joggers: vertex-to-self trajectories

Returning to our jogger: is there a different Platonic solid-shaped planet she
could move to?

Question: On which Platonic planets can a jogger avoid her neighbors?

This question was studied in [3], and continued in [4]. As we saw, the jogger
on the tetrahedron has no anti-social path. This is also true on the octahedron,
cube, and icosahedron: regardless of which direction she chooses, either she
will never return home or she will run into one of her neighbors’ houses. The
argument for the other solids is similar to our argument for the tetrahedron;
it is quite a bit more involved, but still relies on the fact that you can tile the
plane with triangles or squares.

One might conjecture that since the answer is no for these four Platonic
solids, it should also be no for the dodecahedron. However, the jogger on the
dodecahedron is in luck! It is possible for her to run on an anti-social path; one
possibility is illustrated in Figure 5.

Figure 5: An anti-social jogging path on the dodecahedron, shown on a net
and folded up.



As we hinted above, the crucial difference between the dodecahedron and
the other solids is that the face of a dodecahedron, a regular pentagon, does
not tile the plane.

4 Jogging paths

Happy that she can jog around her planet without seeing her neighbors, she
grows tired of running the same path every day. Is there another path that she
can take? If so, how many different anti-social paths are there?

In mathematics (and outside of it), we seek complete understanding of
phenomena we observe. In this case, a complete understanding corresponds to
having a list of all the possible anti-social trajectories. With Pat Hooper [2],
we were able to solve this problem by using the theory of “lattice translation
surfaces” to show that there are in fact infinitely many trajectories, where
trajectories are allowed to self-intersect. In other words, while you walk around
the dodecahedron planet, you can walk across a path on which you already
walked.

Since there are infinitely many trajectories, what does it mean to make a list
of infinitely many things? The key here is the notion of equivalence classes. For
any set of mathematical objects, if there is a notion of equivalence defined on
the set, we can split the elements up into subsets of those that are equivalent to
each other. A good way to understand the idea of equivalence classes is the idea
of even and odd numbers. There are infinitely many natural numbers: 1,2,3,....
Nevertheless, we can classify them as even, 2,4,6,... and odd 1,3,5,.... Given
a natural number, it is either even or odd. To represent these two classes, we
can get every even (respectively odd) number by starting with 0 (respectively
1), and adding an even number to it.

Returning to the anti-social trajectories on the dodecahedron, we sort them
into subsets using a natural type of symmetry. We found that there are 31
different types of trajectories from a vertex to itself when they are sorted by
what are called “affine symmetries”. An affine symmetry is essentially a way
of deforming the dodecahedron by applying a linear transformation, and then
cutting and reassembling it back into itself. Just like in the natural numbers
example, any of the infinitely many trajectories from a vertex to itself can be
placed into exactly one of these 31 different equivalence classes, and given a
trajectory, it is possible to construct infinitely many distinct trajectories of
the same type from that trajectory. That is, we can start with any trajectory,
and by doing an affine symmetry construct every other trajectory of the same
type. These affine symmetries are different than the usual symmetries of the
dodecahedron — we do not distinguish between two trajectories which are images
of each other by a usual symmetry. Finally, we should note that the group of



affine symmetries is countably infinite, while there are only finitely many of the
ordinary symmetries.

Figure 6: A really long vertex-to-self trajectory. This is a representative from
equivalence class 25.

5 Further reading

We invite the reader to visit the website below in order to explore the interactive
3D animations with different trajectories. The website also contains nets of
dodecahedra that can be used for grade school or math club activities. Two
such activities are suggested in the document available for download on the
website.

http://userhome.brooklyn.cuny.edu/aulicino/dodecahedron/

There is also the following video available where anti-social walks on the
dodecahedron are explained and visualised:

https://www.numberphile.com/videos/yellow-brick-road

The reader is also encouraged to read the paper [1], which is accessible to a
general audience. Technical details for specialists are contained in [2].


http://userhome.brooklyn.cuny.edu/aulicino/dodecahedron/
https://www.numberphile.com/videos/yellow-brick-road
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