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One of the central concepts in the theory of symmetric functions are the Littlewood—
Richardson coefficients cﬁ/vz the coefficients when a product s,s, of two Schur func-
tions is expanded back in the Schur basis (s)),cp,- Various properties of these
coefficients have been found, among them combinatorial interpretations, vanishing
results, bounds and symmetries (i.e., equalities between ci,‘,v for different A, p, v). A
recent overview of the latter can be found in [BriRos20].

In [PelRes20], Pelletier and Ressayre conjectured a further symmetry of Littlewood—
Richardson coefficients. Unless the classical ones, it is a partial symmetry (i.e., it
does not cover every Littlewood—-Richardson coefficient); it is furthermore much
less simple to state, to the extent that Pelletier and Ressayre have conjectured its
existence while leaving open the question which exact coefficients it matches up.
In this paper, we answer this question and prove the conjecture thus concretized.

The conjecture, in its original (unconcrete) form, can be stated as follows: Let
n > 2, and consider the set Par [1] of all partitions having length < n. Let a and b be
two nonnegative integers, and define the two partitions « = (¢ + b,a"2) and g =
(a4 b,b"2) (where ¢" "2 means ¢,c, .. ., ¢, as usual in partition combinatorics). Fix

N e’
n—2 times

another partition u € Par [n]. Then, the families (cg’,y) Parfn] and (C%}y> Par(i]
welar|n 4 welar|n

of Littlewood-Richardson coefficients seem to be identical up to permutation. (We
can restate this in terms of Schur polynomials in the n variables x1, xy, ..., x;; this
then becomes the claim that the products s, (x1,x2,...,%n) - 54 (X1,X2,...,%,) and
sp (x1,%2, ..., Xn) - Sy (x1,x2,...,%,), when expanded in the basis of Schur polyno-
mials, have the same multiset of coefficients.)

Pelletier and Ressayre have proved this conjecture for n = 3 (see [PelRes20,
Corollary 2]) and in some further cases. We shall prove it in full generality, and
construct what is essentially a bijection ¢ : Par [n] — Par [n] that makes it explicit
w C@(“’)
“H B
a bijection Par [n] — Par [n], but rather a bijection from Z" to Z", and it will satisfy

g{uy — Cg(w)
Par [n] is qmderstood to be a subset of Z" by identifying each partition A € Par [n]
with the n-tuple (A1, Ay, ..., Ay).)

We will define this bijection ¢ by explicit (if somewhat intricate) formulas that
“mingle” the entries of the partition it is being applied to with those of u (as well
as a and b) using the min and + operators. These formulas are best understood
in the birational picture, in which these min and + operators are generalized to
the addition and the multiplication of an arbitrary semifield. (Our proof does

(i.e., that satisfies c for each w € Par [n]). To be fully precise, ¢ will not be

c with the understanding that ¢y, = cg,, = 0 when w ¢ Par [n]. (Here,
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not require this generality, but the birational picture has the advantage of greater
familiarity and better notational support. It also suggests a possible connection
with the notion of a geometric crystal — see Question 5.3/ for details —, which could
throw some light on the otherwise rather mysterious bijection.)

Another ingredient of our proof is an explicit formula for s, (x1,x2,...,x,) for
the above-mentioned partition «.
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Remark on alternative versions

This paper also has a detailed version [Grinbe20], which includes some proofs that
have been omitted from the present version (mostly basic properties of symmetric
functions).

1. Notations

We will use the following notations (most of which are also used in [GriRei20),

§2.1]):
e Welet N = {0,1,2,...}.

* We fix a commutative ring k; we will use this k as the base ring in what
follows.

* A weak composition means an infinite sequence of nonnegative integers that
contains only finitely many nonzero entries (i.e., a sequence (a1, a2, a3,...) €
IN* such that all but finitely many i € {1,2,3,...} satisfy «; = 0).

* We let WC denote the set of all weak compositions.

¢ For any weak composition « and any positive integer i, we let a; denote the i-
th entry of « (so that « = (a1, a2, a3,...)). More generally, we use this notation
whenever « is an infinite sequence of any kind of objects.

e The size || of a weak composition « is defined to be a1 +ap + a3+ --- € IN.

* A partition means a weak composition whose entries weakly decrease (i.e., a
weak composition « satisfying oy > ay > az > ---).
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We let Par denote the set of all partitions.

We will sometimes omit trailing zeroes from partitions: i.e., a partition A =
(A1,A2, A3, . ..) will be identified with the k-tuple (A1, A, ..., Ax) whenever k €
IN satisfies A1 = Ao = Agy3 = -+ - = 0. For example, (3,2,1,0,0,0,...) =
(3,2,1) =(3,2,1,0).

As a consequence of this, an n-tuple (A1,Ay,...,A;) € Z" (for any given
n € IN) is a partition if and only if it satisfies Ay > Ay > --- > A, > 0.

A part of a partition A means a nonzero entry of A. For example, the parts of
the partition (3,1,1) = (3,1,1,0,0,0,...) are 3,1, 1.

The length of a partition A means the smallest k € IN such that Ay 1 = Apyp =
Akrz = -+ = 0. Equivalently, the length of a partition A is the number of
parts of A (counted with multiplicity). This length is denoted by ¢ (A). For
example, ¢ ((4,2,0,0)) =¢((4,2)) =2and ¢((5,1,1)) = 3.

We will use the notation m* for “m,m, ..., m” in partitions and tuples (when-
————
k times

ever m € N and k € IN). (For example, (2,1%) = (2,1,1,1,1).)

We let A denote the ring of symmetric functions in infinitely many vari-
ables x1,x2,x3,... over k. This is a subring of the ring k [[x, x2, X3, ...]] of
formal power series. To be more specific, A consists of all power series in
k [[x1, x2, x3,...]] that are symmetric (i.e., invariant under permutations of the

variables) and of bounded degree (see [GriRei20, §2.1] for the precise meaning
of this).

A monomial shall mean a formal expression of the form x;'x52x3% -+ with
« € WC. Formal power series are formal infinite k-linear combinations of
such monomials.

For any weak composition a, we let x* denote the monomial x;'x52x5% - - -.

The degree of a monomial x* is defined to be |a|.

We shall use the symmetric functions /h, and s, in A as defined in [GriRei20),
Sections 2.1 and 2.2]. Let us briefly recall how they are defined:

For each n € Z, we define the complete homogeneous symmetric function h, € A

by
4
ho= ),  xpxp-oex, = Y X
i1 <ip<---<ip xeWGC;
|ac|=n

Thus, hy =1 and h, =0 for all n < 0.
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¢ For each partition A, we define the Schur function s, € A by

S\ = ZXT,

where the sum ranges over all semistandard tableaux T of shape A, and where
xT denotes the monomial obtained by multiplying the x; for all entries i of T.
We refer the reader to [GriRei20, Definition 2.2.1] or to [Stanle01, §7.10] for
the details of this definition and further descriptions of the Schur functions.

The family (s)),cpyy 1 @ basis of the k-module A, and is known as the Schur
basis. It is easy to see that each n € IN satisfies s(,,) = hy.

* We shall use the Littlewood—Richardson coefficients ci,‘/], (for A, u,v € Par), as de-
fined in [GriRei20, Definition 2.5.8], in [Stanle01, §7.15] or in [Egge19, Chapter
10]. One of their defining properties is the following fact (see, e.g., [GriRei20),
(2.5.6)] or [Stanle01, (7.64)] or [Eggel9, (10.1)]): Any two partitions u,v € Par
satisfy

A
SuSu =3, CuySh- (1)
A€Par

2. The theorem

Convention 2.1.

(a) For the rest of this paper, we fix a positive integer n.

(b) Let Par [n] be the set of all partitions having length < n. In other words,

Par[n] = {A € Par | A = (A1, A, ..., Ay)} = ParnNIN”
={(M, Ay, Ap) €Z" | Ay > A > > A, >0}

(where we are using our convention that trailing zeroes can be omitted
from partitions, so that a partition of length < n can always be identified
with an n-tuple).

(c) A family (u;);c of objects (e.g., of numbers) is said to be n-periodic if each
j € Z satisfies u; = ujy,. Equivalently, a family (u;);. of objects is n-
periodic if and only if it has the property that

(u]- = uy whenever j and j are two integers satisfying j = j’ mod n) .
Thus, an n-periodic family (u;);., is uniquely determined by the n entries

ui,up,...,u, (because for any integer j, we have uj = uj, where j’ is the
unique element of {1,2,...,n} that is congruent to j modulo n).




Pelletier—Ressayre hidden symmetry page 6

Example 2.2. If n = 3, then both partitions (3,2) and (3,2,2) belong to Par [n],
while the partition (3,2,2,2) does not. The n-tuples (4,2,1) and (3,3,0) are
partitions, while the n-tuples (1,0, —1) and (2,0,1) are not.

If ¢ is an n-th root of unity, then the family (')._,, of complex numbers is
n-periodic.

We can now state our main theorem, which is a concretization of [PelRes20, Con-
jecture 1]:

Theorem 2.3. Assume thatn > 2. Leta, b € IN.

Define the two partitions &« = (a4 b,a"?) and g = (a + b, b"2).

Fix any partition y € Par [n].

Define a map ¢ : Z" — Z" as follows:

Let w € Z". Define an n-tuple v = (v,v2,...,Vy) € Z" by v; = w; — a for each
i€{1,2,...,n}, where w; means the i-th entry of w.

For each i € Z, we let i# denote the unique element of {1,2,...,n} congruent
to i modulo n.

For each j € Z, set

5 = min { (Ve + Vgea o Vo)

+ (‘u(]'—i-k—i-l)# + P (j+k+2)# +---+ ]/t(j—&-n—l)#)
| ke {O,l,...,n—l}}.

Define an n-tuple 1 = (11,12, ...,1n) € Z" by setting

i = Mg+ (ﬂ(zel)# + T(ifl)#) - (V(i+1)# + T(i+1)#> foreachie€ {1,2,...,n}.

Let ¢ (w) be the n-tuple (71 +b,12+0b,...,1,+b) € Z". Thus, we have de-
tined a map ¢ : Z2" — Z".
Then:

(@) The map ¢ is a bijection.

(b) We have

cfx",y = cg(yw) for each w € Z".

Here, we are using the convention that every n-tuple w € Z" that is not a
partition satisfies ¢;, = 0 and c‘ﬁ" w =0

This theorem will be proved at the end of this paper, after we have shown several
(often seemingly unrelated, yet eventually useful) results.
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Example 2.4. Let n = 4 and a = 1 and b = 4. The partitions « and B defined in
Theoremthen take the forms o = (1+4,1%) = (5,1,1) and B = (1+4,4%) =
(5,4,4).

Let u € Par[n] be the partition (2,1) = (2,1,0,0). Let w € Par[n] be the
partition (5,3,2) = (5,3,2,0). We shall compute the n-tuple ¢ (w) defined in
Theorem

Indeed, the n-tuple v from Theorem [2.3|is

v= (w1 —a,wp—a,ws—a,wyg—a)=(5-13-12-10-1)= (4,2,1,-1).
The integers i# from Theorem [2.3| form an n-periodic family
(i#);cz = (..., O, 1#,2# 3# 4#,5#, 64, 7#,.. ) = (...,4,1,2,3,4,1,2,3,...).

The integers 7; (for j € Z) from Theorem [2.3|are given by

71 = min { (1/2# + v+ -+ V(k+1)#> + <7/‘(k+2)# t Wz Tt }44#>
| ke {0,1,2,3}}
= min {pog + sy + Man, Vo + p3s + Hag, Vop + Vas + Hag, Vop + Usg + Vag}
=min{py +pu3+ps, v2+us+ps, Vv2+vz+ps, v2+vz+ua}
=min{l1+0+0, 2+0+0, 24140, 24+1+4+(-1)}
—min{1,2,3,2} =1

and

T2 = min { (V3# Tt 1/(k+2>#> T (P‘(k+3)# T Hleray T F ﬂ5#>
| ke {0,1,2,3}}
= min {p3g + pap + psy, Vg + Mag + sy, Vs + Vag + Usw,  V3g Vs + Usy)
=min{pz+ps+p1, vs+ps+u1, vs+va+p, vz+uva+uv}
=min{0+0+2, 1+0+2, 1+(=1)+2, 1+ (-1)+4}
=min {2,3,2,4} =2

T3 = min { (V4# +Usg 4o+ V(k+3)#> + <7/‘(k+4)# T Hts+ -t Pl6#>
| ke{0,1,2,3}}
= min { g4y + pss + tew, Vag + Usk + e, Vag + Vsy + e,  Vap + Usy + Ver )
=min{ps +p1+p2, vatpr+pz, vatvi+pz, vatvi+ia}
—min{0+2+1, (-1)4+2+1, (=1)+4+1, (-1)+4+2}
=min{3,2,4,5} =2
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and

T4 = min { (1/5# + v+ -+ V(k+4)#) + <7/‘(k+5)# t Hikre Tt ]/17#>
| ke {0,1,2,3}}
= min {psys + es + U7s,  Vss + Hes + Hzs,  Vse + Ve + Uz, VUse + Ve + Uzs )
=min{p +po+pu3, vi+u2+us, vi+1o+us, vi+1p+uvs}
—min{2+140, 44140, 4+2+0, 4+2+1}
=min {3,5,6,7} =3
and
T =T whenever j = ' mod 4

(the latter equality follows from the n-periodicity of the family (i#),.,). Thus,
the n-tuple ¥ = (11,12, ..., 1) from Theorem [2.3is given by

_ _ =2+ (0+3)—(24+2) =1
m g + | Mo + Tos (Vz#-l-Tz#) +(0+3)—(2+2)

:Vlzz :],[4:(] =14=3 =1p=2 =Tr=2

and

— + T — Vg + T =14+R2+1)—(1+2)=1
12 Mox + | Mg 1# ( 34 3#) ( ) —( )

:‘1,[2:1 :]/[1:2 =7=1 =v3=1 :T3:2

and

= + + T —| vsz + T =0+0+2)—(4+1) =-3,
e U U3 3# ( 5# 5#) ( ) ( )

=1 =4 =7 =1

soy = (1,1,1,-3). Hence, ¢ (w) = (1+b,1+b,1+b,-3+b) = (5,5,5,1)
(since b = 4). This is a partition. Theorem (b) now yields ¢, = g/(yw) , that is,

[ 5/
gi?; 1) = CE?ZZ;SM) And indeed, this equality holds (both of its sides being

equal to 1).
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Question 2.5. Can the bijection ¢ in Theorem [2.3|be defined in a more “intuitive”
way, similar to (e.g.) jeu-de-taquin or the RSK correspondence? (Of course, there
is no tableau being transformed here, just a partition, but this should make this
construction easier.)

3. A birational involution

The leading role in our proof of Theorem 2.3/ will be played by a certain piecewise-
linear involution (which is similar to the bijection ¢ in Theorem but without
the shifting by —a and b). For the sake of convenience, we prefer to study this
involution in a more general setting, in which the operations min, + and — are
replaced by the structure operations +, - and / of a semifield. This kind of gener-
alization is called detropicalization (or birational lifting, or tropicalization in the older
combinatorial literature); see, e.g., [Kirill01], [NouYam02], [EinProl3, Sections 5
and 9] or [Roby15, §4.2] for examples of this procedure (although our use of it will
be conceptually simpler).

3.1. Semifields

We recall some basic definitions from basic abstract algebra (mostly to avoid con-
fusion arising from slight terminological differences):

* A semigroup means a pair (S, ), where S is a set and where * is an associative
binary operation on S. We do not require this operation * to have a neutral
element. We usually write the operation * infix (i.e., we write a x b instead of
% (a,b) when a,b € S).

e A semigroup (S, ) is said to be abelian if the operation * is commutative (i.e.,
we have axb = bx*a foralla,b € S).

e A monoid means a triple (S, *,¢e), where (S, %) is a semigroup and where ¢ is a
neutral element for the operation * (that is, e is an element of S that satisfies
exa = axe = a for each a € S). Usually, the monoid (S, *, e) is equated with
the semigroup (S, *) because the neutral element is uniquely determined by
S and *.

e If (S,%,e) is a monoid and 4 is an element of S, then an inverse of a (with
respect to *) means an element b of S satisfying axb = bxa = e. Such an
inverse of a is always unique when it exists.

e A group means a monoid (S, *,¢e) such that each element of S has an inverse
(with respect to *).

We next recall the definition of a semifield (more precisely, the one we will be
using, as there are many competing ones):
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Definition 3.1. A semifield means a set K endowed with

* two binary operations called “addition” and “multiplication”, and denoted
by + and -, respectively, and both written infix (i.e., we writea +band a-b
instead of + (a,b) and - (a,b)), and

¢ an element called “unity” and denoted by 1

such that (K, +) is an abelian semigroup and (K, -, 1) is an abelian group, and
such that the following axiom is satisfied:

e Distributivity: We havea- (b+c) = (a-b)+ (a-c)and (a+b)-c=(a-c) +
(b-c)foralla e K,b e Kandc € K.

Thus, a semifield is similar to a field, except that it has no additive inverses
and no zero element, but, on the other hand, has multiplicative inverses for all its
elements (not just the nonzero ones).

Example 3.2. Let Q be the set of all positive rational numbers. Then, Q4 (en-
dowed with its standard addition and multiplication and the number 1) is a
semifield.

Example 3.3. Let (A, x,e) be any totally ordered abelian group (whose operation
is * and whose neutral element is ¢). Then, A becomes a semifield if we endow
it with the “addition” min (that is, we set a + b := min {a, b} for alla,b € A), the
“multiplication” * (that is, we set a-b := a* b for all a,b € A), and the “unity”
e. This semifield (A, min, ,e) is called the min tropical semifield of (A, *,e).

Convention 3.4. All conventions that are typically used for fields will be used
for semifields as well, to the extent they apply. Specifically:

¢ If K is a semifield, and if 4,b € K, then a - b shall be abbreviated by ab.

* We shall use the standard “PEMDAS” convention that multiplication-like
operations have higher precedence than addition-like operations; thus, e.g.,
the expression “ab + ac” must be understood as “(ab) + (ac)” (and not, for
example, as “a (b +a)c”).

e If K is a semifield, then the inverse of any element b € K in the abelian
group (K,-,1) will be denoted by b=!. Note that this inverse is always
defined (unlike when K is a field).

e If K is a semifield, and if a, b € KK, then the product ab~! will be denoted by
a/b and by %. Note that this is always defined (unlike when K is a field).
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¢ Finite products [] a; of elements of a semifield are defined in the same way
icl
as in commutative rings. The same applies to finite sums )’ 4; as long as
i€l
they are nonempty (i.e., as long as I # @). The empty sum is not defined
in a semifield, since there is no zero element.

3.2. The birational involution

For the rest of Section (3, we agree to the following two conventions:

Convention 3.5. We fix a positive integer n and a semifield K. We also fix an
n-tuple u € K".

Convention 3.6. If a € K" is an n-tuple, and if i € Z, then a; shall denote the i’-th
entry of a, where 7’ is the unique element of {1,2,...,n} satisfying i/ = imod n.
Thus, each n-tuple a € K" satisfies a = (ajy,4ay,...,4,) and a; = a;;, for each
i € Z. Therefore, if a € K" is any n-tuple, then the family (4;),., is n-periodic.

We shall soon use the letter x for an n-tuple in K”; thus, x1, xp, ..., x, will be the
entries of this n-tuple. This has nothing to do with the indeterminates x1, xp, x3, . ..
from Section [I| (that unfortunately use the same letters); we actually forget all
conventions from Section [1] (apart from N = {0,1,2,...}) for the entire Section

The following is obvious:

I Lemma 3.7. If 2 € K" is any n-tuple, then ay a5 - - - Ay, = a1az - - - a, for each
keZ.

Definition 3.8. We define a map £, : K" — K" as follows:
Let x € K" be an n-tuple. For each j € Z and r € N, define an element ¢, ; € K

by
,
trj = Z Xjt1Xj+2 o Xjk - Uk 1tjrk2 - Ujtr -
S T
— P = Uii;
il;le]-H i=k+1 I
Define y € K" by setting
CUiatp_1,i1

Y = u; foreachi e {1,2,...,n}.

Xit1tn—1,i+1
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Example 3.9. Set n = 4 for this example. Let x € K" be an n-tuple; thus,
x = (x1,x2,x3,x4). Let us see what the definition of f, (x) in Definition [3.8 boils
down to in this case.

Let us first compute the elements f,, 1 ; = f3; from Definition The defini-
tion of t3 yields

3

t3,0 = Z X04+1X0+42 * * * X0+k * UO4+k+1U0+k+2 "~ U043
k=0

3
= lexz...xk.uk+1uk+2...u3
k=0

= UQUU3 + X1UpU3 + X1X2U3 + X1X2X3.
Similarly,

t31 = UpUaUy + XoUzUy + X2X3Ug + X2X3X4;
t32 = U3lUgls + X3U4U5 + X3X4U5 + X3X4X5
= UzUgU1 + X3UgU71 + X3X4U71 + X3X2X1
(since us = uy and x5 = x7);
t3,3 = UglsUp + X4U5Ue + X4X5Ue + X4X5X6
= UgU1Up + XqU1Up + XgX1 U + X4X1X2
(since us = 11 and x5 = x7 and ug = up and xg = x7) .

We don’t need to compute any further #3 s, since we can easily see that
ts3; = t3y for any integers j and j’ satisfying j = j' mod 4. (2)

Thus, in particular, t34 = t39 and t35 = t3 1.
Now, let us compute the 4-tuple y € K" = K* from Definition By its
definition, we have

B ui-1f31-1 uotzog ugts o
Vyi=u ——(—— =Uup- = Uyr-
X14+1t3,141 X232 X2t32
(since ug = uy)
uy (Uqupus + X1Ups 4+ X1XU3 + X1X2X3)

X2 (u3u4u1 + X3UgUq + X3X4U71 + x3x4x1)

(by our formulas for t3 and t3). Similar computations lead to

uy (Upuzly + XUy + XoX3Ug + X2X3Xy4)
Yo = Uy ;
x3 (Uglqtly + XquqUp + XqX1Up + X4X1X2)
up (Uztigty + X3UgUy + X3X4U1 + X3X4X1)
Y3 =uz- ;
x4 (UqUUz + X1UpU3 + X1X2U3 + X1X2X3)
uz (Uguquy + Xquqp + Xg4X1Up + X4X1X7)
Ya = Uy .
x1 (UoUzlg + XoUslg + X2X3Uys + X2X3X4)
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Of course, knowing one of these four equalities is enough; the expression for
yi41 is obtained from the expression for y; by shifting all indices (other than the
“3”s that were originally “n —1”s) forward by 1.

Remark 3.10. Instead of assuming K to be a semifield, we could have assumed
that K is an infinite field. In that case, the f,, in Definition would be a bira-
tional map instead of a map in the usual sense of this word, since the denomi-
nators x;;1t,_1,+1 in the definition of y can be zero. Everything we say below
about f;, would nevertheless still hold on the level of birational maps.

The map f,, we just defined has the following properties:
Theorem 3.11.
(@) The map £, is an involution (i.e., we have f, o f, = id).
(b) Let x € K" and y € K" be such that y = £, (x). Then,
VY2 Y- XX Xy = (Uqtly - - 1)

(c) Let x € K" and y € K" be such that y = f, (x). Then,

(ui+xi)( ! +L):<”i+yi)< I )

Uit1  Xit1 Uit Yit1

for eachi € Z.

(d) Let x € K" and y € K" be such that y = £, (x). Then,
n n

uj+x; u; +y;

T -1

-1 X i=1 i

Theorem will be crucial for us; but before we can prove it, we will need a
few lemmas.

Lemma 3.12. Let x € K" be an n-tuple. Let t,; and y be as in Definition
Then:

(@) We have t,; = t, i for any r € N and any two integers j and j’ satisfying
j = jmodn. In other words, for each r € IN, the family (trff)jez is n-
periodic.

(b) We have ty; =1 for each j € Z.
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(c) Foreachr € N and j € Z, we have
Xjtpj+Ujlljpq - Ujpy = beggj1.
(d) For eachr € N and j € Z, we have
Ujprsatrj + Xjr1Xjp2 - Xjprp1 = b j-
(e) Foreacha € Z and b € Z, we have
Xatn—1,0 +Up—1tn—1p-1 = Xpty—1p + Ug—1tn—14-1.
(f) For each i € Z, we have
Xip1tn—1iv1 +Uicaty1,i-1 = (X +ui) tp1,e
(g) For each j € Z and each positive integer g, we have
tn—1j+q+1 " Xj+2Xj43 " Xjpg+1 T Ujtp_1jtq—1j+1 = tu—1,j4114-

(h) For each i € Z, we have

C Uicatno1,i

=u .
/i Xit1tn—1,i+1
Now, for each j € Z and r € N, let us define an element t; ;€ K by

r
/ p—
k=0 iy ” "

=

[
=
=
B

_i 1y]+l i=k+1

(This is precisely how ¢, ; was defined, except that we are using y in place of x
now.) Then:

(i) For each j € Z and g € IN, we have

/
o, _ b g,

Upaljsa s Uitg Eneljvgtl XjraXies o Xig
(j) For each j € Z, we have

/
Barjii 141X

Urly -+ - Uy X1Xp Xy

(k) For each i € Z, we have

/
uiat, q; 4
X; = Uuj;- tl—
YVitaty, 11
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Proof of Lemma The proof of this lemma is long but unsophisticated: Each part
follows by rather straightforward computations (and, in the cases of parts (g) and
(i), an induction on gq) from the previously proven parts. We shall show the details,
but a computationally inclined reader may have a better time reconstructing them
independently

(@ Let r € IN. The definition of ¢t,; shows that t,; = t,;,, for each j € Z

(since each i € Z satisfies u; = u;,, and x; = x;,,). Thus, the family (trff)jez is
n-periodic. This yields the claim of Lemma (a).
(b) Trivial consequence of the definition of £y ;.
(c) Let r € N and j € Z. Then, the definition of f,,1,; 1 yields
tri1,j-1
r+1
= Z XiXjp1 - Xjpk—1 " UjpkUjrk+1 - Ujtr
k=0
r+1
= XjXjy1-ccXj1 cUjljyp - Ujyy + Z XjXj+1 Xjpk—1 UjpkUjpk41 - Ujtr
— k=1 ~~ o
=(empty product)=1 =X X1 2 X k-1

(here, we have split off the addend for k = 0 from the sum)

r+1
= UjlhjpcUjpr + ) X Xjp1 X2 0 Xjpk—1 - UjpkUjpkey1 - Ujgr
k=1
r+1 -
=Xj kgl Xjp1 X420 X k=1 W kU k17 U
r+1
= Ujlljpq - Ujypy T X Z Xj1Xj42 *  Xjpk—1 - UjpkUjpkt1 - Ujtr
k=1

(. J/
-~

T
:kzo Xjp1Xj42 Xjpk k18 jk42" " Ujrr

(here, we have substituted k for k—1 in the sum)

;
= Ujljpq - Ujpy T X Z XjH1Xj2 o Xjpk " Ujpk+1Ujrk+2 " Ujtr
k=0

[\ J/

g
(by the definition of ¢, ;)

= Ul W X = Xt Ul U

This proves Lemma (c).

!We note that the hardest parts of the proof — namely, the proofs of parts (g), (i), (j) and (k) — can
be sidestepped entirely, as these parts will only be used in the proof of Theorem (a), but we
will give an alternative proof of Theorem (a) later on (in Remark 3.16), which avoids using
them.
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(d) Let r € N and j € Z. Then, the definition of ¢, 1 ; yields

r+1
trv1,) = Z Xj41Xj42 " Xk " Ujrk1Ujrk42 ** Ujpr41
k=0
r

Xjt1Xj42 " Xjgpk " Ujpk1Ujpk42 " Ujpr1
k N~ o

0
Ukt Ujk2 Wi W41

T X1 X2 X1 Ui (e D) 1 (1) 42 7 U

= (empty;n;oduct) =1
(here, we have split off the addend for k = r + 1 from the sum)

.
= Z Xip1Xj42  Xjgk * Uik 1 Wjpk42 ** Wjpr * Wjprb 1 TXj41Xj42 * - Xjgrp 1
k=0

N J/
-~

r
=Ujiri1 kZO Xj 1 Xj2 e Xk Wk 1 k27 Uy

r
= Ujtr+1 2 Xjp1Xj42  Xjpk - Wik 1Wjpkt2 - Uiy TXj01 X020 X4l
k=0

N J/
-~

=t
(by the definition of ¢, )

= Ujprpityj + Xjp1Xj42 - Xjprg1e

This proves Lemma (d).

(e) We WLOG assume that n # 1, since otherwise the claim is easy to check by
hand. Thus, n > 2, so that n — 2 € IN.

Leta € Z and b € Z. Then, Lemma (c) (applied to ¥ = n—2 and j = a)
yields

Xaty—2,4 + Uglgyy - Ugpp2 = t(n—2)+1,a—1 =ty 1,a-1
(since (n—2)+1 = n —1). Multiplying both sides of this equality by u,_1, we
obtain
Ug— (xutn—2,u + Uglgyq - ua+n—2) = Uz 1ty—1,4-1-

Hence,

Ug_1tp—10-1 = Ug—1 (Xaty—2,0 + Uallgs1 - Ugin—2)

=Ug 1Xgty_pq+ Ug_1 Uglgyy - Ugip—2
H\,—J \ /

=XgqlUgz—1 =Ug_1Ug " Ug4p—2
=U(g—2)+1%(a—2)+2" " U(a—2)+n
=Uqlip Uy
(by Lemma3.7)
= Xallg—1tp—2,0 + Urllp - - - Up. 3)

Also, Lemma (d) (applied to r =n —2 and j = b) yields

Upt(n—2)+1tn—2,b T Xb41Xp+2 * ** Xpy (n—2)+1 = E(n—2)+1,b-
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In view of (n —2) +1 = n — 1, this rewrites as
Uptn—1tn—2p + Xpr1Xp12 " Xptn—1 = tn—1p-
Multiplying both sides of this equality by x;, we obtain
Xp (Upn—1tn—2p + Xb4+1Xb+2 * * * Xpin—1) = Xptu—1,bs

so that

Xptn—1p = Xp (”bJrnfltan,b + Xpr1Xp2  Xpn—1)
=Xp  Upyp-1  tp2p+ Xp Xpp1Xp42 Xpyn—1
N s N S/

=Up-1)+n=Ub-1 =XpXp+1 Xp4n-1
=X(b-1)+1%X(b—1)+2"""X(b—1)+n

(by Lemma3.7)
= XpUp_1ty—2p + X1X2 - - Xp.

Adding (3) to this equality, we obtain
xbtn—l,b + uu—ltn—l,a—l

= xbub—ltn—Z,b + X1X2 - Xy + XgUg_1ty_pgq +UUp - - Uy (4)
= XqUg-1tp—24+ X1X2 "+ X + XpUp_1ty_op + Ul - - - Up.

The same argument (applied to b and a instead of a4 and b) yields

Xatn—1,0 + Up-1tn-1p-1
= xbub_ltn_zlb + x1x0 - xy + xaua_ltnlea + uqly - - - Uy.
Comparing this with {@), we obtain x,t, 15+ up_1ty—1p-1 = Xptp_1p + Ua—1tn—1,a-1-

This proves Lemma 3.12| (e).
(f) Applying Lemma [3.12|(e) toa =i + 1 and b = i, we obtain

Xip1bn—1it1 + Uiatn—1,i-1 = Xity—1; T Wiy1-1tn-1i41-1
N e
=Uu; =tp_1,
= Xitp—1,i + Uitn—1; = (Xi + i) 1,
This proves Lemma (f).
(g) We shall prove Lemma (g) by induction on g:

Induction base: Let us show that Lemma (g) holds for g = 1.
Indeed, let j € Z. The definition of ¢, ; yields

1
b= Z Xjt1Xj+2 " Xjpk - Ujpkp1Ujpk+2 - Uil = Xjp1 + Ujgq.
k=0
Hence,

tootjr1 tj = taonjen (X1 F ) = (X1 4 i) Bt
~—~—~

=Xj+1tUjt1
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Comparing this with

bnt,j+141  Xjp2Xj43 - X1 TUjte—1; i1
> NS > HH

=tp_1,j12 =Xj+2Xj+3° Xj+2 =to,j+1=1
=Xjt2 (by Lemma (b))

= ty_1js2Xjr2 + Ujtp_1,j = Xjpotn_1j42 + Uity—1,; = (Xj41 + Ujr1) ta—1,j41
(by Lemma (f), applied toi =j+1),

we obtain

bn—1,j+141 - Xj+2Xj43 - - Xjp14+1 T Ujtp—1jt1-1,j+1 = tu—1,j+1f1,)-

Now, forget that we fixed j. We thus have proved that

bn—1,j4141 * Xj+2Xj+3 - Xjp141 + Ujty—1jf1-1j+1 = ta—1,j+1t1)

for each j € Z. In other words, Lemma (g) holds for g = 1. This completes the
induction base
Induction step: Fix a positive integer p. Assume (as induction hypothesis) that

Lemma (g) holds for 4 = p. We must now show that Lemma (g) holds for
g=p+1

We have assumed that Lemma (g) holds for g4 = p. In other words, each
J € Z satisfies

bn1jrpe1 Xjr2Xj43  Xjppr1 T Ujtn1itp-1,j11 = tn—1,j11tp - )

Now, let j € Z be arbitrary. Then, Lemma (d) (applied to r = p) yields

Ujpptitpj+ Xjp1Xj12 - Xjppp1 = Eppa ).

Multiplying both sides of this equality by ¢, 1 ;,1, we obtain

th—1,j+1 (ujerJrltp,j + X1 X2 Xjppr1) = tue1js1tpr)-

2We could have simplified this part of the proof by taking g = 0 as induction base instead. But
this would have required extending the semifield K to a semiring K LI {0} by adjoining a zero
(since t_1; would be an empty sum). It is not hard to do this, but we prefer computations to
technicalities.
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Hence,

ti—tj+1tp41,)

=ty 1je1 (Wjrpritp )+ Xjp1% 42 Xjypi1)

= bu—tj U p1tpj T 11 X1 X2 Xjpp
%/_/

=Ujypritn—1,j+1

= Ujtp+1 tn—t1j+1tp,) Fhy—1,j4+1  Xj1Xj42 0 Xjppt1
— ~ ~~ d
=ty 1 p1 X2 X3 X pp1Hljt 1ty 1 i1 =X 41X 42Xj43 " Xjppt1

by @)

= Ujrpr1 (bntjrpe1 - Xj42Xj43 Xjypr1 + Uity 1 jtp1,j41)
1,41 0 Xj+1  Xj42Xj43 0 Xjpp+1
= Ujtptibn—1,j4p+1° Xj42Xj43  ** Xjgp1 + Ujpprathjty_1,jtp—1,j41
1,41 Xjp1  Xjp2Xj3 0 Xjpp
= (Wjgpritn—tjips1 T Eno1ja1 - Xj41) Xj2Xj03 Xjypa1 + Ujgprititn 1ty 141

[\ J/

~—
=Xjp1tn—1,j41 T Ujppr1tn—1,j4p+1

= (xj+1tn71,]'+1 + uj+p+1tn—1,j+p+1) Xj42Xj43 " Xjgpp1 T Ujpprajtn—1,jtp—1,j+1

(. J

=Xjpatn—1j+p+2TUjtn_1
(by Lemma (e), applied to a=j+1 and b=j+p+2)

= (Xjypaotn_tjrp2 + Ujtn_1j) - Xj1oXj43 - Xjgp1 + Ujpprititn_1,itp—1,j41
= Xjpp2tn—1jrp+2 Xj42Xj43  Xjgpp1 T Uit 1) Xjp2Xj43 0 Xjypi1
FUjtprittn-ttp-141
= Ujty_1, (Wjrpartp—1,jt1 + XjaXj43 - Xjipr1)

N J/
-

=t,;
}7,]+1
(by Lemma (d), applied to j+1 and p—1 instead of j and r)

+ Xjrpr2tn—1jtpr2 Xjr2Xj43 Xjpptl

-~

=t 1,j4p+2°Xj42X43 " Xjp1 X p42

= Wjtn—1jtpjr1 + bn1jpr2 - Xjr2Xjs  Xjpp41 - Xjp2

-~

=Xj42Xj+3 Xj+p+2
= Ujty_1,jtp i1 T 1 pt2  Xjp2Xj43 0 Xjpp42
= b1, j4p42 " Xj+2Xj43 - Xjppyo + Uity jtp iy

In other words,

bn—1jp+2 " Xj42Xj43 - Xjpp2 T Ujtp_1jtp i1 = tu1jpatpi)

Now, forget that we fixed j. We thus have proved that each j € Z satisfies

bn—1j+p+2 - Xj42Xj43 * * Xjppg2 T Uity —1jtp i1 = tu—1j41tp41,)-
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In other words, Lemma (g) holds for g = p + 1. This completes the induction
step. Hence, Lemma (g) is proved by induction.

(h) Fori € {1,2,...,n}, the claim of Lemma (h) follows from the definition
of y. Thus, it also holds for all i € Z, since any integers j and ;' satisfying j =
j'mod n satisfy x; = xy and u; = uy and t, 1; = t, 1y (by Lemma [3.12| (a)) and
yj = yy. Thus, Lemma (h) is proved.

(i) We shall prove Lemma (i) by induction on g:

Induction base: For each j € Z, we have

/
to,j eS| to,j

UipiUjyp - Uj by 1j41 XjpaXj3 - Xjt1

H In other words, Lemma (i) holds for g = 0. This completes the induction
base.

Induction step: Fix r € IN. Assume (as induction hypothesis) that Lemma (i)
holds for g = r. We must now show that Lemma (i) holds for g =r + 1.

We have assumed that Lemma (i) holds for g = r. In other words, each j € Z

satisfies .

tr,]' _ tn—l,]'—i—l ) tr,j . (6)
UipiUjso - Ujyyr b1 jrr1 Xj42Xj43 - Xjgr4l
Now, let j € Z be arbitrary. Then, (6) (applied to j 4 1 instead of j) yields
t;,j+1 _ binjer trj+1 7)

UjpoUjys - Ujprpd tn1jtr+2  Xj43Xj+4 - Xjpry2

But Lemma (c) (applied to j + 1 instead of j) yields

Xjpitrjp1 F Ujp1ljpo - Ujprpr = tegq .

Hence,

tri1,j = Xjpatrjr1 F Ujpaljpn - Uil = Ujpaljg oo Ujprp1 + Xjpaty ja.

3Proof. Let j € Z. Lemma (b) yields to; = 1. Similarly, t(),j = 1. From this equality, and from
Uji1tjyp - - - uj = (empty product) = 1, we obtain

/
to,]- _ 1
UjpiUjpp---uj 1
Comparing this with

tnfl,j+1 tO,j to/j 1

bno1j41 Xjp2Xjp3 oo X1 XjpoXjggcc o X1 1
(since to; = 1 and xj4Xj 3 - - Xj41 = (empty product) = 1),
/
fo,j tn-1,j+1 toj

we obtain = . Qed.
Ujp1Ujyo -« Uj fn—1,j41  Xj+2Xjp3 - Xjp1
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The same reasoning (applied to y and ¢t/ j instead of x and ¢, j) yields
/ /
Brnj = Wil Wirpd T Yjmb i
Hence,
/ /
b1, Wikl Ui T Yk g
UjpiUjyo - Ujpr41 UjpiUjyo - Ujpr41
o
14 Yit1tr i1
Wyl Ujrs1
V/
- Yi+1t i
Ujp1 - Ujpoljys - Ujpri
/
Yin b1
Ujp1 UjpoUjy3 - Ujir4
/
14 Yjir1 tr,j+1
Ujr1 UjpoUj3 - Ujpr41
th—1,j+2 trj+1
tn—1j+r+2 Xj+3Xj+4  Xjgr42
(by @)
Yiv1  tu-1j+2 tri+1
=1+=. = - 8)

Uigl tuoljrri2 Xj3Xjed© o Xjyrg2
But Lemma (h) (applied to i = j + 1) yields

_ Ujtn—1
Yisr = Ujpr - o
Xjy2ln—1,j+2
Dividing this equality by u;,1, we find
] _ J ]
Ujir1  Xjpoty—1j42
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Hence, (8) becomes
t/

r+1,j 14 Yi+1 12 trj+1
Wjp1Ujyp - Ujpril &ti tn—1j+r+2  Xj43%j4a - Xjpry2
B Ujty—1,j
 Xjgotn_1j42
14 Uitn—1;  ta-rjr2 trj+1
Xjitotn—1j+2 tn—1j+r+2  Xj43Xj44a " Xjqr42
g Uitn-1; trj+1
bn1j4r+2  Xj42 " Xj43Xj44 " Xjpri2
14 uitn-1,; trj+1

bn—tj4r42  Xj42Xj43 " Xjgrg2
(since Xj+2 " Xj43Xj+a - - Xjpr+2 = Xj42Xj43 - - xj+r+2)
bn—1jtr+2 " Xj42Xj43 0 Xjppyo + Uit 1 ity 11

= )
bn—1,j4r42 * Xj42Xj43 " Xjyr42
But Lemma (g) (applied to g = r + 1) yields
bn1jtre2 " Xj42Xj13 Xjppgo + Uity 1ty i1 = 11t (10)

Hence, (9) becomes

/
ey b2 Xjp2Xj43 X2 T Uity ity i

Ujp1Ujyp - Ujprs] bn—1j+r+2 " Xj42Xj43 - Xjpr42
tn—1,j+1tr+1,)

= (by (10))

bn—1jtr+2 * Xjp2Xj4+3 ** Xjpr42

tn—1,j+1 tri,)

th—1j+r+2  Xj42Xj43 - 'xj+r+2.
Forget that we fixed j. We thus have shown that each j € Z satisfies

/
ey b try1

UjpiUjp  Ujiprpl  bntjir2 Xj2Xj43 0 Xjgr42

In other words, Lemma (i) holds for g = r 4+ 1. This completes the induction
step. Hence, Lemma (i) is proved by induction.

() Let j € Z. Then, ujy, = u; (by Convention 3.6). Lemma (i) (applied to
g =n — 1) yields

/
o1 tn—1,+1 tn—1,

UipUjpoUjipn1 byopjrm-—1)41 Xj42Xj43 " Xjp(n—1)+1
th—1,j+1 th—1,j
= i (11)
tn—l,j+n Xj+2Xj4+3 " Xjtn
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(since (n—1)+1 = n). Butj = j+ nmodn; hence, Lemma (@) (applied to
r=n—1andj = j+n)yields tn—1,; = tn—1,j+n- Hence, becomes

/
b1, _ b th—1,j _ b tn—1,j+n

UjrqUjpp - Ujrn—1 thi—1j4n  Xj+2Xj43 " Xjtn tn—1j+n  Xj4+2Xj+3 " Xjtn
(since ty—1,; = ty—1,j4n)
tn—1,j+1 B tn—1,j+1Xj+1 _ bjXia

xj+2xj+3...xj+n xj+2xj+3...xj+n.xj+1 X1Xp Xy

(since x]-+2xj+3 cet xj+n : x]-+1 = Xj+1 : x]-+2x]-+3 cet x]'_|_n = x]'_|_1x]'_|_2 ce xj+n = X1X2 - Xp
(by Lemma 3.7)). Hence,

! ! . ! )
bo1,j+1%01 b1 Fy1,jUjn B Mjn
X1X2 -+ Xn UjpiUjyo - Ujyp—1  UjprUjpp - Ujpp1 - Ujpn  UjpiUjpp - Ujpy

(since UjpqUjpp - Ujpp—1  Ujpn = Ujp1ljio - ”j+n)
t%—u”j .
= (since uj4, = uj)
UjprUj4o - Ujin

! .
B tn_ll]-u]
u1u2 o e e un

(since uj 11j 9+ Ujy = Utz - - - Uy (by Lemma ). This proves Lemma G)-
(k) Let i € Z. Applying Lemma (j) to j = 1 — 1, we obtain

/ .
bi_via¥i-1 b1

Uity -+l XQX2 Xy

Applying Lemma (j) to j = i + 1, we obtain

uluz...un x1x2...xn

/ .
Bp—tipiel  ty1ip0Xiqo

Dividing the former equality by the latter, we obtain

Uil -+ Uy Ul - - - Uy X1Xp Xy X{Xp Xy

/ i / .
bi—1ici%i-1 byl tiX by ipaXigo

This rewrites as .
bprica%i-1  t_1x

: .
b1 iva i+l En—1i42Xiq2

Multiplying both sides of this equality by u;,1, we obtain

, .
bp1iaMi-1 tn—1,iXi
— = Uiy

; ; . (12)
n—1,i+1 n—1,i+2Xi42
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Now,
. / / .
CMiaby g Bgiqlic y ‘
Ui - .t - # Ui Yi+1
Vi1t 1,1 n—1,i+1 ~~
> . Uity_1,i
_1iXi =i
:”i+1'# Xijobn—1,i+2
tn—1,i+2Xit2 (by Lemma B.12] (h),
(by ) applied to i+1 instead of i)
_ tn—1,iXi uity_1; \ _
—Mi+1't—‘ui/ Wigr | = Xie
n—1,i+2%Xi+2 Xit2tn—1,i+2
This proves Lemma (k). O

Lemma 3.13. Let x € K" be an n-tuple. For each j € Z, let

n—1
95 = ) Xjir1Xje2 Xk Uik 1tjake2  Ujpn—1 -

k=0 ~~ ~~

k n—1
=11 xj4i = IT w4
i=1 i=k+1
Let z € K" be such that
U;_1G;_ )
zi:ui-qu1 foreachi e {1,2,...,n}.
Xi+19i+1

Then, f, (x) = z.

Proof of Lemma Let t,; and y be as in Definition Then, t,_1; = q; for each
j € Z (by comparing the definitions of t, 1; and g;). Hence, z; = y; for each
ie{l,2,...,n} (by comparing the definitions of z; and y;). Hence, z = y = f,, (x)
(since f, (x) was defined to be y). This proves Lemma [3.13] O

For future convenience, let us restate Lemma with different labels:

Lemma 3.14. Let y € K" be an n-tuple. For each j € Z, let

n—1
i = ) YirrYjr2 - Yjrk " Ujpk1Ujpk42 " Ujpn—1 -
k:() ~~ o A g

~~

k n—1
=TT yj+i = II wujti
i=1 i=k+1

Let x € K" be such that

Uj 17 .
xj =y L foreachi € {1,2,...,n}.

Yit1Ti+1

Then, f, (y) = x.
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Proof of Lemma Lemma is just Lemma with x, g; and z renamed as
y, rjand x. O

We are now ready for the proof of Theorem

Proof of Theorem (@) Let x € K". We shall prove that (f, o f,) (x) = x.
Let t, ; and y be as in Definition Then, f, (x) = y (by the definition of f,),
so that y = f, (x). Let t; ; (for each ¥ € N and j € Z) be as in Lemma W The

definition of t/ ; shows that

n—1

/ —

b1 = Z Yi+rYj+2 - Yjtrk  Ujtk+1Uj+k+2 " Ujrn—1
k:O\ ~~ g . g

=

Yj+i = IT Ujri

1

for each j € Z. Lemma (k) shows that

/
Uity q; 4

X; = U; foreachi € {1,2,...,n}.

e
Yit1t, 111

Thus, Lemma (applied to r; = t]_; ) yields that f, (y) = x. Hence, x =

f.| vy =f, (f, (x)) = (f, o f,) (x). In other words, (f, o f,) (x) = x.
=~
=fu(x)

Forget that we fixed x. We thus have proved that (f,of,) (x) = x for each
x € K". In other words, f, o f, = id. In other words, f, is an involution. This
proves Theorem (a).

(b) Let t,; be as in Definition Note that the y from Definition [3.8|is precisely
the y in Theorem (b) (because both y’s satisfy f, (x) = y).

Lemma () yields t,—19 = t;,—1, (since 0 = nmodn) and t,_11 = ty—1 441
(since 1 = n + 1 mod n). Multiplying these two equalities, we obtain t,_10t,—11 =
th—1ntn—1n+1, whence

f-votn-11 (13)
tn—l,ntn—l,n+1
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We have
n n
Ui 1ty—1,i-1
i=1 S~~~ i=1 Xi+1tn—1,i+1
Ui 1tp—1i-1
:ui.—
Xiv1tn—1,i41
(by the definition of y
in Definition 3.8)
n n
" ITuia)- (I t—1,i1
- (ITw) - 52
] n n
=1 (H xi+1) : (H tn—l,i+1>
i=1 i=1
n n n
= T]w |- Ui—1 | - [tn-1-
—_——r —— ~ ~
=ujup-uy  =HUQUL - Up—1 =ty_1,0tn-11"th-1n-1
e ti1,0tn-11" " th-1n41
(by Lemma@ — 7 7 7
tn—l,ntn—l,n—H
n n
/ [ Txie | - [Tti-1i+1
i=1 i=1
_\/_/ . ~ /
=X2X3Xp41 =tp-12tn-13"tn—1n+1
=X1X2°Xp t ¢ et
(by Lemma[37) _‘n=10°n—-11 n—1n+1
th-10tn—11
tn1,0tn—11" " th-1n41
:(uluZ"'un)'(uluZ"'un)' , ’ ,
tnfl,ntnfl,n+1
th—1,0tn—11" " th—1n1
/ <(x1xz e Xp) -
th—1,0tn-11
2y / 2
(uatz - - - un) o t—10tn-11 (uatz - - - un)
- - v
X1X2 -+ Xy tn—l,ntn—l,n—l—l/ X1X2 -+ Xy
—_————
=1
(by (13)
so that

ylyz. . .yn .xlxz. . -xn = (uluz. . .un)Z.
This proves Theorem (b).

(c) Let ¢, ; be as in Definition Note that the y from Definition [3.§]is precisely
the y in Theorem (c) (because both y’s satisfy f, (x) = y).
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Leti € Z. Then,

uj + Yi
~
Ui 1ty—1,i-1
=y —————
Xit1tn—1,i4+1
(by Lemma (h))
s s L Ve (1 n Mz'—1tn—1,z'—1) _ ) Yty +ticabe1io
- 1 s, — 1 -, - i’
Xit1tn—1,i+1 Xit1tn—1,i+1 Xit1tn—1,i+1

Uj

= it (Xip1tn—1,i41 + Ui—1tp—1i-1)
Xit1ln—1,i4+1 - ~~ -
=(xjtui)ty_1
(by Lemma )

Uj

= ———— (xi+uy) ty_1 (14)
Xivitn-1,i41
Now,

1 1 u;
4 = (ui+]/i) /(l/ll"yi) = —(xi+ui) th-1,i/ (I/li']/i)
ui Y —— Xit1tn—1,i+1

Uj

=———(xtu)t, 1,
Xig1tn—1,i+1

(by (14))
1
= —— (xi+u) ty_1/ Vi
Xig1tn—1,i+1 ~—~

Ui1ty—1,i-1
=y

Xit1tn—1,i4+1
(by Lemma (h))

_ 1 Uiqty—1i-1\ _ (X +u;) b1,
= @it b/ = ; :
Xit1tn—1,i+1 Xit1tn—1,i+1 Uili_1ty—1,i-1

The same argument (applied to i 4 1 instead of i) yields

1 4 1 (it ui)terivr (i +uip1) boi
Uib1  Yip1 Wikl —1tn—1,3i+1)-1 Uip1Uity—1,i

(since (i4+ 1) — 1 = i). Multiplying (14) with this equality, we obtain

1 1 u; Xit1 + Uit1) tn—1,i+1
(ui +yi) ( + ) = l (i 4+ ui) by, - (i 1) bt
Uiyl Vil Xit1tn—1,i+1 Ujp1Uity—1,i
= (xi+u;)- Xip1 + i1 —(u-—i—x-)( 1 1 )
— 1 1 - 1 1 :
~——  Xit1Ui}1 Uir1  Xip1
=uitx;  N———
1 1

Ui+l Xit1

This proves Theorem (c).
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(d) Let ¢, ; be as in Definition Note that the y from Definition [3.§]is precisely
the y in Theorem B.11](d) (because both y’s satisfy f, (x) = y).

We have
n
[Txis1 = xox3- - x40 = 2922+ - 2 (by Lemma
i=1
n
= H Xi (15)
i=1
and
n n+1
H th_1i+1 = H th—1, (here, we have substituted i for i + 1 in the product)

n n
S ' PR | th—u =ty11 ] [ tn-n,i
— 2 i=2
=ty_1,1

(by Lemma 3.12] m (a),
since n+1=1mod n)

n
= H tn—l,i- (16)
i=1

Every i € Z satisties (as we have shown in the proof of Theorem (c)
above). Hence,

n n
2]

I (u; +yi) =11 (—t (x; + u;) tn—l,i)

i=1 u_\,d i—1 \Xir1ln—1,i+1
i

= (XUt
Xiv1tn—1,i41

(by (14)

n

IT u .
= . i=1 . ( x1—|—u ) (th 1z>
(z‘H xz+1) <ZI—[1 [ 11+1) i=1
[T u "
= — izln ( (x; + u; ) (th 11>
(H xi) (H tn—l,i) i=1

1

(by (L5) and (16))

n fll(xz"'”) i+
- (1) = = (1) T
I x; =1
i=1
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Thus,
n
i +Yi
izl(l yl)_ L Xi +u; o L Ui + X;
ﬁ U; i=1 ;xi , i=1 Xi
i=1 Uit X
=
so that .
ui +yi
ﬁui+xi_zljl(l yl): L u1+yz
i=1 i ﬁ Uu; =1 Wi
i=1
This proves Theorem (d). O

Let us observe one more property of the involution f, (even though we will have
no use for it):

Proposition 3.15. Let x € K" be such that xyxp---x, = wuqup---u,. Then,
£, (x) = x.

Proof of Proposition Let £, ; and y be as in Definition Then, £, (x) =y (by
the definition of f,).

Let i € Z. We shall first show that u; _1t,_1; 1 = xit,_1;.

Indeed, the definition of t,_; ; yields

n—1

th—1,i = Z Xit1Xi+2 - Xitk " Uitk+1Uitk+2 " Uitn—1-
k=0
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Multiplying both sides of this equality by x;, we find

n—1
Xity—1;i = Xi Y XipaXip2 - Xigk - Uipkp1Uivks2  Uitn—1
k=0
n—1
= Z Xit Xip1Xi42 " Xip Uik 1Uipk+2 " Uitn—1
k=0 ~

n—1
= Z XiXit1 = Xipk " Uitk 1Uitk+2 " Uitn—1
k=0

= XiXi41 " Xign—1 " WitnUitny1 " Uign—1

(b}/:ﬁcér)gr.r;éx =(empty product)=1
n—2
+ Z XiXig1 o Xipk  Uighk1Uipk+2 " Uign—1
k=0
(here, we have split off the addend for k = n — 1 from the sum)
n—2
=X1x2- - Xn + kg) XiXit1 - Xipk " Uitk1UWitk+2 " Uitn—1
=Uqlp--Upy N -~ _
n—1
:kgl XiXijp 1 Xipk—1 Witk Uitk+1 " Uitn—1
(here, we have substituted k—1 for k in the sum)
n—1
= Uty U+ Y XiXip1 Xkt - Ui kWik1 - Uisn—1- (17)
k=1

On the other hand, we have u; 1 = u;,, 1 (sincei—1=1i+n —1modn) and

n—1
tho1,i-1 = Z X(i—-1)+1X(i—1)42 """ X(i=1)+k " Y(i—1)+k+1 ¥ (i—1)+k+2 " U(i—-1)+n—1
k:O\ - 7 N -~ 7

=XiXiy1 - Xipk—1 =UjpkUitks1 - Uitn-2

(by the definition of ¢,_1,_1)

n—1
= Z XiXit1 " Xipk—1 " WipkUWitk+1 " Uitn—2-
k=0
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Multiplying these two equalities, we obtain

n—1

Ui—1tp—1,i—1 = Uitn—1 Z XiXit1 "+ Xipk—1 " UipkWitk+1 " Uitn-2
k=0

-~

n—1
= Z XiXip1 " Xipk—1 " WigkWitk4+1 " Uign—2 " Uitn-1
k=0

Uik Uitk+1 Uitn—1
n—1
= Z XiXit1 "+ Xipk—1 " UipkUitk+1 " Uitn—1
k=0

= XiXi41 0 Xig0-1 " UipOUi40+41 " Uitn—1

— e — =Uu;u; Vu —
=(empty product)=1 l:ilt}lz“}ut,n 1
(by Lemma3.7)
n—1
+ ) XiXig1 o Xipk—1 " WigkUWipk+1 " Uitn—1
k=1
(here, we have split off the addend for k = 0 from the sum)
n—1
= Uy Up + Z XiXit1 o Xipk—1 " WitkUitk+1 " " Uitn—1-
k=1

Comparing this with (I7), we obtain

Ui—itp—1,i-1 = Xitp_1,- (18)
The same argument (applied to i 4 1 instead of i) yields

Uitn—1,i = Xit1tn-1,i1- (19)

Now, the definition of y yields

Ui1tp—1,i—1
Yi=uj- Y i wiUitn—1,i-1/ (Xig1tn—1,i+1)
i n—1,i ~~ ~
=Xity_1 =Uity_1,i
(by (18) (by @)

= uixity_1;/ (Wity—1;) = x;.

Now, forget that we fixed i. We thus have proved that y; = x; for each i € Z.
Thus, in particular, y; = x; for each i € {1,2,...,n}. In other words, y = x. Hence,
f, (x) = y = x. This proves Proposition 3.15| O

Remark 3.16. There is an alternative proof of Theorem (a) that avoids the
use of the more complicated parts of Lemma (specifically, of parts (g), (i), (j)
and (k)). Let us outline this proof:

The claim of Theorem (@) can be restated as the equality f, (f, (x)) =
x for each x € K”". This equality boils down to a set of identities between
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rational functions in the variables uq, uy, ..., u,, x1,x2,..., X, (since each entry of
f, (x) is a rational function in these variables, and each entry of f, (f, (x)) is a
rational function in the former entries as well as uq,uy,...,u,). These rational
functions are subtraction-free (i.e., no subtraction signs appear in them), and
thus are defined over any semifield. But there is a general principle saying that
if we need to prove an identity between two subtraction-free rational functions,
it is sufficient to prove that it holds over the semifield Q1 from Example
(Indeed, this principle follows from the fact that any subtraction-free rational
function can be rewritten as a ratio of two polynomials with nonnegative integer
coefficients, and thus an identity between two subtraction-free rational functions
can be rewritten as an identity between two such polynomials; but the latter kind
of identity will necessarily be true if it has been checked on all positive rational
numbers.)

As a consequence of this discussion, in order to prove Theorem (a) in full
generality, it suffices to prove Theorem (a) in the case when K = Q... So let
us restrict ourselves to this case. Let x € K". We must show that £, (f, (x)) = x.

Lety = f, (x), and let z = £, (y). We will show that z = x.

Assume the contrary. Thus, z # x. Hence, there exists some i € {1,2,...,n}
such that z; # x;. Consider this i. Hence, either z; > x; or z; < x;. We WLOG
assume that z; > x; (since the proof in the case of z; < x; is identical, except that
all inequality signs are reversed). But Theorem (c) yields

(u‘—l—x-)( ! + ! )—(u--l— )( ! + L >
T\ X i Uiy1  Yiq)

Likewise, Theorem (c) (applied to y and z instead of x and y) yields

(u; + )( ! + ! )—(u'—kz-)( ! + ! )
Y Uir1  Yinl : l Uit1  Zi+1

(since z = £, (y)). Hence,

(u-+x')( ! + ! )—(u‘+ )( ! + ! )
' l Uiyt  Xip1 ity Uit1  Yin

1 1
() Gl
~~ Uiyl Zj+1

>X;

>(ui+x1~)( ! + ! )

Uir1  Zi+1

Cancelling the positive number u; 4 x; from this inequality, we obtain

1 1 1 1
> + . Hence, —— >
Xi+1 Uit1  Zi+1 Xit1l  Zi41 )
we have obtained z;;1 > x;;1. The same reasoning (but applied to i + 1 instead

+
Uit

, so that z; 1 > x;.1. Thus, from z; > x;,
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of i) now vyields z;1, > x4 (since z;11 > xj;+1). Proceeding in the same way,
we successively obtain z;;3 > x;43 and z;14 > xj44 and z;y5 > x;45 and so on.
Hence,

Zi Zigl * Zign—1 > XiXip1o Xign—1- (20)
N
>Xj >Xjqq >Xitn—1

But Theorem (b) yields

2
ylyz...yn.xlxz...xn:(uluz...un) X

Also, Theorem (b) (applied to y and z instead of x and vy) yields

2
lez...zn.ylyz..-yn:(uluZ...un)

(since z = f,(y)). Comparing these two equalities, we find yiy2---yy -
X1X2 X = 2122 Zn - Y1Y2 - - - Yn, SO that

X1Xp -+ Xy = 2122 -+ - Zp. (21)

But Lemma yields zjzj11- - zjtp—1 = z1Z2---zp and XjXjy1 - Xjigy—1 =
x1x2 - - - xu. In light of these two equalities, we can rewrite as z1zp -z >
X1X3 - - - . This, however, contradicts (2I). This contradiction shows that our
assumption was false, thus concluding our proof of z = x.

Now, £, | f, (x) | = fu (y) = z = x, as we wanted to prove. Hence, Theorem
——
=Y
(a) is proved again.

We shall take up the study of the birational involution f,, again in Subsection
where we will pose several questions about its meaning and uniqueness properties.

4. Proof of the main theorem

We shall now slowly approach the proof of Theorem [2.3| through a long sequence
of auxiliary results, some of them easy, some well-known.

4.1. From the life of snakes

Recall the conventions introduced in Section [1l and in Convention Let us next
introduce some further notations.

I Definition 4.1.
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(@) Let £ denote the ring k [xlﬂ,xzﬂ,. : .,x%l] of Laurent polynomials in

the n indeterminates xi,xp,...,x, over k. Clearly, the polynomial ring
k [x1,x7,...,%,] is a subring of L.

(b) We let x11 denote the monomial x1x; - - - x,, € k[x1,x2,...,x,] C L.

If f € A is a symmetric functiorﬂ and if aq,a,,...,a, are n elements of a com-
mutative k-algebra A, then f (ay,4ay,...,a,,0,0,0,...) means the result of substitut-
ing aq,4ay,...,a4,0,0,0,... for x1,x2,...,Xu, Xyt1, Xn12, Xn43, ... in f. This is a well-
defined element of A (see [GriRei20, Exercise 2.1.2] for the proof), and is denoted
by f (ay,az,...,a,). It is called the evaluation of f at ay,ap,...,ay.

For any symmetric function f € A, the evaluation

f(x1,x2,...,x0) = f(x1,%2,...,%,,0,0,0,...)

is a polynomial in k [x1, x2, ..., x| and thus a Laurent polynomial in £. Moreover,
for any symmetric function f € A, the evaluation

-1 -1 -1 -1 -1 ~1
f(x1 JXy e Xy )zf(x1 JXy e, Xy ,0,0,0,...)

is a Laurent polynomial in £ as well.

Convention 4.2. For the rest of Section[4} let us agree to the following notation: If
7 is an n-tuple (of any objects), then we let y; denote the i-th entry of v whenever
i€{1,2,...,n}. Thus, each n-tuple 7 satisfies vy = (1,72, .-, n)-

Definition 4.3.

(@) A snake means an n-tuple A = (Aq,Ay, ..., Ay,) of integers (not necessarily
nonnegative) such that Ay > Ay > --- > A,

(b) A snake A is said to be nonnegative if it belongs to IN" (that is, if all its entries
are nonnegative). Thus, a nonnegative snake is the same as a partition
having length < n. In other words, a nonnegative snake is the same as a
partition A € Par [n].

(c) If A € Z" is an n-tuple, and d is an integer, then A + d denotes
the n-tuple (A +d, Ay +d,...,Ay+d) € Z" (which is obtained from
A by adding d to each entry), whereas A — d denotes the n-tuple
(M —d,Ay—d,..., Ay —d) € Z". (Thus, A —d = A+ (—d).)

(d) If A € Z", then AV denotes the n-tuple (—Ay, —Ay_1,...,—A1) € Z",

“or, more generally, any formal power series in k [[x7, X2, X3, .. .]] that is of bounded degree
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(e) We regard Z" as a Z-module in the obvious way. Thus, if A € Z" and
u € Z" are two n-tuples of integers, then

/\+.u: (A1+V11A2+,”2///\n+,un)/
A—p= (A —p1, A2 — P2, o, Ay — phn) -

(f) We let p denote the nonnegative snake (n —1,n —2,...,2,1,0). Thus,

pi=n—i for eachi € {1,2,...,n}. (22)

Example 4.4. In this example, let n = 3.

(@) The four 3-tuples (3,1,0), (2,2,1), (1,0, —1) and (—1, —2, —5) are examples
of snakes.

(b) The first two of these four snakes (but not the last two) are nonnegative.
(c) We have (5,3,1) +3 = (8,6,4) and (5,3,1) —3 = (2,0, —2).

(d) We have (5,2,2)" = (-2, -2, —5).

(e) We have (2,1,2) + (3,4,5) = (5,5,7).

(f) We have p = (2,1,0).

Note that what we call a “snake” here is called a “staircase of height n” in Stem-
bridge’s work [Stembr87], where he uses these snakes to index finite-dimensional
polynomial representations of the group GL, (C). We avoid calling them “stair-
cases”, as that word has since been used for other things (in particular, p is often
called “the n-staircase” in the jargon of combinatorialists).

The notations introduced in Definition [4.3| have the following properties:

Proposition 4.5.

(a) If A is a snake, and d is an integer, then A +d and A — d are snakes as well.
(b) If A is a snake, then A" is a snake as well.

() Wehave (A+u)+d=(A+d)+puforany A € Z", y e Z" and d € Z.

(d) Wehave A+ (d+¢) = (A+d)+eforany A € Z", d € Zand e € Z.

(e) Wehave (A+d)—d=(A—d)+d=Aforany A € Z" and d € Z.

Proof of Proposition Completely straightforward. O
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Let us now assign a Laurent polynomial a) to each A € Z'™:

Definition 4.6. Let A € Z" be any n-tuple. Then, we define the Laurent polyno-
mial

— MoA A
ap = §5 (=1 Xty ¥ule) Xl € £

where &, is the symmetric group of the set {1,2,...,1n} (and where (—1)% de-
notes the sign of a permutation w). This Laurent polynomial a, is called the
alternant corresponding to the n-tuple A.

(The “a” in the notation “a,” has nothing to do with the a in Theorem [2.3])

Example 4.7. We have

4(532) = ): (_1)wx?u(1)x§u(z)x§;(3)

weSs

_ 4D,3.2 5.,3,2 54342 5,.3,.2 5.,3,2 5.,3,2
= X7X3X3 + X3X3XT + X3X7X5 — X]X3X5 — X5X]X3 — X3X5X7.

The sum in Definition 4.6|is the same kind of sum that appears in the definition
of a determinant. Therefore, we can rewrite the alternant as follows:

Proposition 4.8. Let A € Z" be