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Abstract. A number of important recent developments in various branches
of discrete geometry were presented at the workshop, which took place in hy-
brid format due to a pandemic situation. The presentations illustrated both
the diversity of the area and its strong connections to other fields of math-
ematics such as topology, combinatorics, algebraic geometry or functional
analysis. The open questions abound and many of the results presented were
obtained by young researchers, confirming the great vitality of discrete ge-
ometry.

Mathematics Subject Classification (2010): 52Bxx, 52Cxx.

Introduction by the Organizers

Discrete Geometry deals with the structure and complexity of discrete geometric
objects, from finite point sets in the plane to intersection patterns of convex sets
in high dimensional spaces. It goes back to classical problems such as Kepler’s
conjecture on the density of packings of balls in space, and Hilbert’s third problem
on decomposing polyhedra, as well as works by Minkowski, Steinitz, Hadwiger,
and Erdős form the heritage of this area. Over the past years, several outstanding
problems were solved, for example: (1) Natan Rubin improved the 30-year old
upper bound on the size of weak epsilon-nets, (2) Karim Adiprasito proved the
g-conjecture, from 1970, on the characterization of face vectors of triangulated
spheres, etc.

The workshop gathered 17 participants on-site and 33 remote participants. The
outstanding contributions by young scholars include the lecture by Avvakumov of
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his construction (with Adiprasito and Karasev) of a triangulation of RPn of sub-
exponential size. Another one was Kühne and Yashfe’s answer to a question of
Björner concerning configuration spaces of matroids as multilinear arrangements.

There were 21 other, mostly short, lectures presenting new connections to clas-
sical topics such as combinatorics (Keszegh) or stochastic geometry (Akopyan),
as well as new developments in classical topics such as arrangements and ma-
troids (Kühne, Steiner, Yashve), polytopes and triangulations (Cano, de Loera,
Padrol, Welzl), euclidean geometry (Pak, Tóth), combinatorial convexity and
topology (Frick, Paták, Tancer, Yuditski, Zerbib), and convex geometry (Mon-
tejano, Patáková). Altogether, 13 of the talks were given by remote participants.

In order to encourage collaboration, the workshop started with an opening
session in which the junior participants presented themselves and outlined their
research focus. An open problem session took place on Tuesday evening; the col-
lection of open problems resulting from this session can be found in this report.
The program left ample time for research and discussions. The small size of the
group and larger fraction of junior researchers among the on-site participants made
the atmosphere of the Oberwolfach Institute even more stimulating than usually.
There were several small informal sessions on specific topics of common interest.
On Tuesday afternoon, most participants joined the traditional outing to St. Ro-
man with the black forest cherry cake, enjoying the beautiful autumn air under
somewhat adverse weather conditions.
Subject classification. The topics of the conference belong mainly to classes 52C
and 52B in the AMS-classification scheme. They fall into category 4 (Geometry)
of the International Mathematical Union (1995) classification. There is only a
minor overlap with other Oberwolfach meetings like “Convex Geometry and its
Applications” or “Topological and Geometric Combinatorics”.
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Abstracts

The Beauty of Random Polytopes Inscribed in the 2-sphere

Arseniy Akopyan

(joint work with Herbert Edelsbrunner, Anton Nikitenko)

We study properties of random polytopes Xn defined as the convex hull of n points
chosen uniformly at random on the unit sphere in R3.

First, we prove the following results, the asymptotic version of which was ob-
tained in [4, 2].

Theorem 1 (Random Triangle). A uniformly chosen random facet of Xn is an
acute triangle with probability 1

2 .

We also give an elementary proof of the following results from [1] and [3]

Theorem 2.

E[W(Xn)] = W(B3) · n−1
n+1 ,

E[A(Xn)] = A(B3) · n−1
n+1

n−2
n+2 ,

E[V(Xn)] = V(B3) · n−1
n+1

n−2
n+2

n−3
n+3 ,

in which W,A,V map a 3-dimensional convex body to its mean width, surface area,
and volume.

Here we give the proof of the area part. We need the following lemma.

Lemma (non-Bertrand paradox in 3d). The probability distribution on lines in-
tersecting S2, defined by choosing two points uniformly and independently on S2,
coincides with the Crofton measure, i.e., the isometry-invariant measure on lines
in R3 normalized to have the total measure 1 of lines intersecting the unit ball.

Proof of the area part of Theorem 2. The E[A(Xn)
A(B3) ] is the probability that a ran-

dom chord—which, by the Lemma, has the distribution of X2—intersects Xn.
Joining all points together, it is the probability that the extra two points span
a diagonal of Xn+2. There are 1

2 (n + 2)(n + 1) pairs of vertices and (by Euler’s
formula) 3n edges, so this probability is

1
2 (n+ 2)(n+ 1)− 3n

1
2 (n+ 1)(n+ 2)

=
(n− 1)(n− 2)

(n+ 1)(n+ 2)
.

Multiplying by the area of S2, we get the claimed identity. �

Similar results hold for X̺, the convex hull of the stationary Poisson point
process with intensity ̺ > 0 on the unit sphere in R3.
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Theorem 3.

E[W(X̺)] = W(B3) · 2π̺0.5e−2π̺ I1.5(2π̺),

E[A(X̺)] = A(B3) · 2π̺0.5e−2π̺ I2.5(2π̺),

E[V(X̺)] = V(B3) · 2π̺0.5e−2π̺ I3.5(2π̺),

in which Iα(x) is the modified Bessel function of the first kind.

Theorem 4. The sums of lengths of the edges on the two inscribed random poly-
topes satisfy

E[L(Xn)] =
(
n
3

)
512
3π ·B

(
n− 1

2 ,
5
2

) [

= 64
3
√
π

√
n · (1 + o(1))

]

,

E[L(X̺)] =
128
3 ̺0.5 · 2π̺0.5e−2π̺ I2(2π̺)

[

= 64
3
√
π

√

4π̺ · (1 + o(1))
]

.

We finish the report with the following “conjecture” motivated by the figure
below.

Conjecture. Knowing the total mean curvature of a random polytope X, we can
find its volume and surface area.

Figure.
Projections of the graph of

(

W(B3) t−1

t+1
; A(B3) t−1

t+1

t−2

t+2
; V(B3) t−1

t+1

t−2

t+2

t−3

t+3

)

,

and the triplets of expected intrinsic volumes into the width-area plane on
the left and the width-volume plane on the right. Top: the 150 blue, orange,
green, and red points belong to polytopes with 10, 40, 100, and 200 vertices
each.
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A subexponential size RPn

Sergey Avvakumov

(joint work with Karim Adiprasito, Roman Karasev)

1. Introduction

While in general, every smooth manifold allows for a triangulation, it is a noto-
riously hard problem to construct small triangulations of manifolds, and usually
poses a difficult challenge. And so, outside of special cases, there are few cases
known where the upper bounds and lower bounds come even close to each other.

Let us focus on minimality in terms of the number of vertices that a trian-
gulation of a given manifold would have, a study Banchoff and Kühnel initiated
[Küh95]. The best lower bounds in this area are usually either homological, or
homotopic in nature. Indeed,
◦ it is clear that the number of vertices cannot be lower than the ball-category, or
the more studied Lusternik-Schnirelmann category [CLOT03]. In particular

◦ it is bounded from below in terms of the cup length of the space in question. In
fact, it is easy to show and observed by Arnoux and Marin that for a space of
cup length n, one needs

(
n+2
2

)
vertices [AM91].Finally

◦ Murai gave a lower bound in terms of the Betti numbers of (closed and ori-
entable) manifolds [Mur15], which was simplified and generalized to general
manifolds by Adiprasito and Yashfe [Adi18, AY20]. This bound in general is
not so good for interesting manifolds, as it seems insensitive to any interesting
multiplicative structure in the cohomology ring, let alone homotopy.
On the example of RPn, the bound by Arnoux and Marin is best. Still, the best

construction so far is essentially still Kühnel’s observation that the barycentric
subdivision of the n-simplex yields a triangulation of the (n−1)-sphere on 2n+1−2
vertices, with a Z2-action, such that antipodal vertices are at distance at least 3
from each other. This yields a triangulation of RPn−1 of size 2n − 1.

Since then, no substantial improvement has been made for the general problem,
and focus has shifted to experimental study of low-dimensional cases (see [Lut99]
for an excellent survey) and improvements of the base of the exponential [BS15,
VZ19].

Surprisingly perhaps, and at least counter to the prevailing expectation of ex-
perts, we are not only constructing a triangulated sphere, but a polytope, counter
to intuition coming from concentration inequalities on the sphere, see for instance
[Bar13].

2. Main result

Theorem 2.1. For all positive integers n, there exists a convex centrally sym-
metric n-dimensional polytope P such that:

• All the vertices of P lie on the unit sphere.
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• For any vertex A ∈ P , if F, F ′ ⊂ P are faces with A ∈ F and −A ∈ F ′,
then F ∩ F ′ = ∅.

• The number of vertices of P is less than e(
1
2+o(1))

√
nlogn.

Corollary 2.2. For all positive integers n, there exists a triangulation of RPn−1

with at most e(
1
2 +o(1))

√
nlogn vertices.

The corollary is proved by symmetrically triangulating ∂P and then taking the
quotient of the Z2 action. The result is a simplicial complex by the second property
of P .

3. Proof of Theorem 2.1

Let V be a subset of the set of non-empty subsets of {1, . . . , n}. We identify any
A ∈ V with a unit vector in Rn whose endpoint has its ith coordinate equal to
1/

√

|A| if i ∈ A and 0 otherwise.
A centrally symmetric polytope P (V ) is the convex hull of the endpoints of the

vectors V ⊔ −V .
Our proof of Theorem 2.1 consists of the following three claims. By 〈·, ·〉 we

denote the inner product.

Claim 3.1. Suppose that V satisfies the following properties:

(1) {i} ∈ V for all i ∈ {1, . . . , n}.
(2) If A ∈ V and |A| > 1, then A \ i ∈ V for any i ∈ A.
(3) Let A,B ∈ V be vertices and X ∈ Sn−1 be a unit vector with non-

negative coordinates such that 〈A,B〉 = 0 and 〈A,X〉 = 〈B,X〉. Then
there is C ∈ V such that 〈C,X〉 > 〈A,X〉 = 〈B,X〉.

Then P (V ) satisfies the conditions of Theorem 2.1, except maybe the condition
on the number of vertices.

Claim 3.2. Suppose that V satisfies the following properties:

(1) {i} ∈ V for all i ∈ {1, . . . , n}.
(2) If A ∈ V and |A| > 1, then A \ i ∈ V for any i ∈ A.
(3) For every A,B ∈ V with A ∩B = ∅, there are i ∈ A and j ∈ B such that

either
(3a) B ⊔ i ∈ V and A ⊔ j \ i ∈ V ,
or
(3b) A ⊔ j ∈ V and B ⊔ i \ j ∈ V .

Then V satisfies the requirements of Claim 3.1.

Claim 3.3. There is a set V of size at most e(
1
2+o(1))

√
nlogn satisfying the require-

ments of Claim 3.2.

Remark 3.4. The set of combinatorial conditions on V in the statement of Claim
3.2 is not the only one which makes the claim work. Although, other conditions
we found give a worse bound on the number of vertices. In general, we don’t know
what conditions on V are necessary for our proof of Theorem 2.1 to go through.
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Cells in the box and a hyperplane

Imre Bárány

(joint work with Péter Frankl)

1. Main results

It is well-known that a line can intersect the interior of at most 2n − 1 cells of
the n × n chessboard. What happens in high dimensions? This is the question
addressed here.

Write Qn = Qd
n = [0, n]d, Qd = Qd

1 so Q
d
n = nQd. Let e1, . . . , ed be the standard

basis vectors of Rd and of the integer lattice Zd. For z = (z1, . . . , zd) ∈ Zd define
the unit cube

C(z) = {x = (x1, . . . , xd) ∈ Rd : zi ≤ xi ≤ zi + 1, i ∈ [d]}
that we are going to call a cell. Here [d] stands for the set {1, 2, . . . , d}. For v ∈ Rd,
(v 6= 0) let A(v, t) denote the hyperplane {x ∈ Rd : vx = t} where vx is the scalar
product of the two vectors. Define Nd(n) as the maximal number of cells in Qd

n

that a hyperplane A(v, t) can intersect properly, meaning that A(v, t) intersects
the interior of C(z).

https://arxiv.org/abs/1812.10454
https://arxiv.org/abs/2008.01044
https://arxiv.org/abs/1910.07433
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As we mentioned earlier N2(n) = 2n − 1. Variants of this result have appeared
as olympiad problems in several countries. József Beck used a slightly stronger
version of this fact to answer questions of Dirac, Motzkin, and Erdős in a seminal
paper [6]. Here we show that N3(n) = 9

4n
2 +O(n) and determine the asymptotic

behaviour of Nd(n) for d > 3. Our main result is

Theorem 1. Nd(n) = Vdn
d−1(1 + o(1)), where Vd > 0 is a constant depending

only on d.

For d = 3 more precise result is given in

Theorem 2. N3(n) ≤ 9
4n

2+2n+1. Moreover, for n large enough, N3(n) ≥ 9
4n

2+

n−5 for even n and N3(n) ≥ 9
4n

2+n− 17
4 for odd n, and N3(2) = 7, N3(3) = 19,

and N3(4) = 35.

For the defintion of the constant Vd in Theorem 1 we let |v| resp. |v|1 denote
the ℓ2 and ℓ1 norm of the vector v ∈ Rd. Set

Vd(v) =
|v|1
|v| max

t∈R
vold−1(A(v, t) ∩Qd),

and

Vd = max{Vd(v) : v ∈ Rd, v 6= 0, t ∈ R}.
It is a consequence of the Brunn-Minkowski theorem cf [7] that for fixed v the

quantity vold−1(A(v, t)∩Qd) is maximal when (A(v, t)∩Qd) is the central section
of Qd, that is A(v, t) contains the centre of Qd which is the point e/2 where
e = e1 + . . .+ ed. In this case of course t = ev/2. It is known that

1 ≤ vold−1(A(v, ev/2) ∩Qd ≤
√
2,

the upper bound is a famous result of Keith Ball [2], the lower bound is trivial.
This implies that √

d ≤ Vd ≤
√
2d.

It is known that the sequence V2, V3, . . . is increasing, V2 = 2, V3 = 9
4 , V4 = 8

3 etc

and its limit is
√

6d
π . We conjectured that the vector v = e gives the maximum in

the definition of Vd. This has been recently proved by Iskander Aliev [1].

2. Tools

Write S(v, t) for the strip {x ∈ Rd : vx ≤ t ≤ v(x+e)} where v ∈ Rd is a Euclidean
unit vector and t ∈ R. It is clear that Nd(n) is equal to the maximum number
of lattice points in Qd

n ∩ S(v, t) with the maximum taken over all Euclidean unit
vectors v and reals t.

Let K ⊂ Rd be a convex body. A cell C(z), z ∈ Zd called inside if C(z) ⊂ K,
outside if C(z)∩K = ∅, and boundary otherwise. The following inequality is fairly
simple and probably well known.

(1)
∣
∣volK − |K ∩ Zd|

∣
∣ ≤ |boundary cells of K|.



Discrete Geometry 11

This estimate useless for the convex body C = Qd
n ∩ S(v, t) since it has no inside

cells and volC ≈ |boundary cells of C|. In the proof we choose a basis F of Zd

more suitable for C.
Given a basis F = {f1, . . . , fd} of Zd we define the F -box with parameters

α, β ∈ Rd as

B(α, β, F ) = {x =

d∑

1

xifi ∈ Rd : αi ≤ xi ≤ βi, i ∈ [d]}.

This is a parallelotope. We of course assume that αi ≤ βi for all i. The min-
imal box containing a convex body K is denoted by B(K,F ). This is the F -
box B(α, β, F ) with all αi maximal and βi minimal under the condition that
K ⊂ B(α, β, F ). We will make use of the following theorem of Bárány and Ver-
shik from [5] and [8] as well.

Theorem 3. For every convex body K in Rd there is a basis F such that

volB(K,F ) ≪ volK.

The notation ≪ means, as usual, that the quantity on the LHS is smaller than
the one on the RHS times a positive constant that only depends on d. Of course
one can use F -cells (i.e. basic parallelotopes in the basis F ) and call them inside,
outside, and boundary F -cells with respect to K. Then inequality (1) becomes

(2)
∣
∣volK − |K ∩ Zd|

∣
∣ ≤ |boundary F -cells of K|.

The following result may be useful in other cases as well. It is similar to the
well-known fact that the surface area of a convex subset of a convex setK is smaller
that the surface area of K itself. To our surprise we couldn’t find it anywhere in
the literature.

Theorem 4. Assume K,L are convex bodies in Rd and K ⊂ L. Then

|boundary cells of K | ≤ |boundary cells of L|.
We need a non-degeneracy condition on K:

(3) K ∩ Zd contains d+ 1 affinely independent vectors.

Under this condition and with minimal box B(K,F ) = B(α, β, F ) we have αi ≤
⌈αi⌉ < ⌊βi⌋ ≤ βi for all i ∈ [d]. Setting γi = βi − αi, volB(K,F ) =

∏d
1 γi. The

number of boundary cells of B(K,F ) is easy to estimate: it is at most

2

d∑

i=1

∏

j 6=i

(γj + 2) ≪
d∑

i=1

∏

j 6=i

γj = volB(K,F )

(
1

γ1
+ . . .

1

γd

)

.

Combining the previous theorems we have

Theorem 5. Let K be a convex body in Rd satisfying (3), and let F be the basis
from Theorem 3. Then

∣
∣volK − |K ∩ Zd|

∣
∣ ≪ volK

(
1

γ1
+ . . .+

1

γd

)

.
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This is the main tool for proving Theorem 1.
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Hamiltonicity for generalized Delaunay graphs

Pilar Cano

(joint work with Prosenjit Bose, Maria Saumell, Rodrigo I. Silveira)

The study of the combinatorial properties of geometric graphs has played an im-
portant role in the area of Discrete and Computational Geometry. One of the
fundamental structures that has been studied intensely is the Delaunay triangu-
lation of a planar point set (see [12] for an encyclopedic treatment of this struc-
ture). It was conjectured by Shamos [14] that the Delaunay triangulation contains
a Hamiltonian cycle. This was disproved by Dillencourt [9]. However, Dillencourt
[10] showed that Delaunay triangulations are almost Hamiltonian, in the sense
that they are 1-tough.1

Focus then shifted on determining how much to loosen the definition of the
Delaunay triangulation to achieve Hamiltonicity. One such direction is to relax
the empty disk requirement. Given a planar point set S and two points p, q ∈ S,
the k-Delaunay graph (k-DG) with vertex set S has an edge pq provided that
there exists a closed disk with p and q on its boundary containing at most k
points of S different from p and q.2 If the disk with p and q on its boundary
is restricted to disks with pq as diameter, then the graph is called the k-Gabriel
graph (k-GG). For the k-Relative Neighborhood graph (k-RNG), pq is an edge
provided that there are at most k points of S whose distance to both p and q is
less than |pq|. Note that k-RNG ⊆ k-GG ⊆ k-DG. Chang et al. [8] showed that

1A graph is 1-tough if removing any k vertices from it results in at most k connected
components.

2Note that this implies that the standard Delaunay triangulation is the 0-DG.



Discrete Geometry 13

19-RNG is Hamiltonian.3 Abellanas et al. [1] proved that 15-GG is Hamiltonian.
Currently, the lowest known upper bound is by Kaiser et al. [11] who showed that
10-GG is Hamiltonian. All of these results are obtained by studying properties of
bottleneck Hamiltonian cycles. Given a planar point set, a bottleneck Hamiltonian
cycle is a Hamiltonian cycle whose maximum edge length is minimum among all
Hamiltonian cycles of the point set. Biniaz et al. [3] showed that there exist point
sets such that its 7-GG does not contain a bottleneck Hamiltonian cycle, implying
that this approach cannot yield an upper bound lower than 8. Despite this, it is
conjectured that 1-DG is Hamiltonian [1].

Another avenue that has been explored is the relaxation of the shape defining
the Delaunay triangulation. Delaunay graphs where the disks have been replaced
by various convex shapes have been studied in the literature. As for Hamiltonicity
in convex shape Delaunay graphs, not much is known. Bonichon et al. [5] proved
that every plane triangulation is Delaunay-realizable where homothets of a triangle
act as the empty convex shape. This implies that there exist DG△ graphs that
do not contain Hamiltonian paths or cycles. Biniaz et al. [4] showed that 7-
DG△ contains a bottleneck Hamiltonian cycle and that there exist points sets

where 5-DG△ does not contain a bottleneck Hamiltonian cycle. Ábrego et al. [2]
showed that the DG� admits a Hamiltonian path, while Saumell [13] showed that
the DG� is not necessarily 1-tough, and therefore does not necessarily contain a
Hamiltonian cycle.

We generalize the above results by replacing the disk with an arbitrary convex
shape C. We show that the k-Gabriel graph, and hence also the k-Delaunay
graph, is Hamiltonian for any convex shape C when k ≥ 24. Furthermore, we give
improved bounds for point-symmetric shapes, as well as for even-sided regular
polygons. Table 1 summarizes the bounds obtained. Finally, we provide some
lower bounds on the existence of a Hamiltonian cycle for an infinite family of
regular polygons, and bottleneck Hamiltonian cycles for the particular cases of
hexagons and squares. In this talk we give a sketch of the proof for the case of
general convex shape C. For detailed proofs we refer to [6].

Our results rely on the use of normed metrics and packing lemmas. In fact, in
contrast to previous work on Hamiltonicity for generalized Delaunay graphs, our
results are the first to use properties of normed metrics to obtain simple proofs for
various convex shape Delaunay graphs.

For future research, we point out that our results are based on bottleneck Hamil-
tonian cycles, in the same way as all previously obtained bounds [1, 8, 11]. How-
ever, in several cases, this technique is reaching its limit. Therefore a major chal-
lenge to effectively close the existing gaps will be to devise a different approach to
prove Hamiltonicity of Delaunay graphs.

3According to the definition of k-RNG in [8], they showed Hamiltonicity for 20-RNG.
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Type of shape C k ≤ k ≥ Bottleneck-k ≥
Squares 7 1 [13] 3
Regular hexagons 11 1 6
Regular octagons 12 1 -
Regular t-gons (t even, t ≥ 10) 11 - -
Regular t-gons (t = 3m with m odd, m ≥ 3) 24 1 -
Point-symmetric convex 15 - -
Arbitrary convex 24 - -

Table 1. Bounds on the minimum k for which k-DGC(S) is
Hamiltonian and for which k-GGC(S) contains a dC−bottleneck
Hamiltonian cycle.
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[2] Bernardo M Ábrego, Esther M Arkin, Silvia Fernández-Merchant, Ferran Hurtado, Mikio
Kano, Joseph SB Mitchell, and Jorge Urrutia. Matching points with squares. Discrete Com-
put. Geom., 41(1):77–95, 2009.

[3] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Bottleneck matchings and Hamiltonian
cycles in higher-order Gabriel graphs. In Proceedings of the 32nd European Workshop on
Computational Geometry (EuroCG16), pages 179–182.

[4] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Higher-order triangular-distance De-
launay graphs: Graph-theoretical properties. Comput. Geom., 48(9):646–660, 2015.

[5] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connections between
theta-graphs, Delaunay triangulations, and orthogonal surfaces. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 266–278. Springer, 2010.

[6] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I Silveira. Hamiltonicity for convex
shape Delaunay and Gabriel graphs. Computational Geometry, page 101629, 2020.

[7] Prosenjit Bose, Paz Carmi, Sebastien Collette, and Michiel Smid. On the stretch factor of
convex Delaunay graphs. J. Comput. Geom., 1(1):41–56, 2010.

[8] Maw-Shang Chang, Chuan Yi Tang, and Richard C. T. Lee. 20-relative neighborhood graphs
are Hamiltonian. J. Graph Theory, 15(5):543–557, 1991.

[9] Michael B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf.
Process. Lett., 25(3):149–151, 1987.

[10] Michael B. Dillencourt. Toughness and Delaunay triangulations. Discrete Comput. Geom.,
5:575–601, 1990.
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The space of monotone paths of a linear program

Jesús A. De Loera

Given a polytope P and linear function f (this pair makes a linear program). We
investigate the possible monotone paths inside the oriented graph of P (oriented
by the objective function f). As we look at all monotone paths put together we
see a rich topological CW-space structure which was first studied by Billera and
Sturmfels in their theory of Fiber polytopes and can be used to count how many
monotone path are there or to generate them randomly. Our main enumerative
results include bounds on the number of monotone paths, and on the the diameter
of the CW-complex of monotone paths (how far are two monotone paths from
each other?). The picture is fairly complete in dimension three, but plenty of open
problems remain for high dimensional polytopes.

Theorem 1. Let µ(P, f) be the number of monotone paths on polytope P with
objective function f .

• For all 3-dimensional polytopes P with n vertices,
⌈n

2

⌉

+ 2 ≤ µ(P, f) ≤ Tn−1,

where Tn is the Tribonacci numbers defined by the recurrence T0 = T1 = 1,
T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

• For all d-dimensional (d ≥ 4) polytopes P on n vertices,
⌈
dn

2

⌉

+ 2− n ≤ µ(P, f) ≤ 2n−2.

Theorem 2. Let G(P, f) be the flip graph of polytope P on objective function f .
For any 3-dimensional polytope P on n vertices.

⌈ (n− 2)2

4
⌉ ≤ diamG(P, f) ≤ (n− 2)⌊n− 1

2
⌋.

These new theorems presented in my talk come from joint work with Christos
Athanasiadis (U. Athens) and Zhenyang Zhang (UC Davis) available at the Arxiv.

Continuous dependence of curvature flow on initial conditions in

the sphere.

Michael Gene Dobbins

The space of all curves in the sphere is a metric space with Fréchet distance.
We prove that a weak form of curvature flow restricted to curves that bisect the
sphere depends continuously on initial conditions. As a consequence, this gives an
O3-equivariant strong deformation retraction from the space of all bisectors of the
sphere to the space of great circles. Some motivations for this work are to con-
struct a SO3-equivariant strong deformation retraction from the homeomorphism
group of the projective plane to SO3, and to show that earlier work by the au-
thor on spaces of pseudocircle arrangements also holds analogously for pseudoline
arrangements [2].
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Level-set flow, the weak form of curvature flow above, is defined for any simple
closed curve γ0 on the sphere as the compliment of the union of the evolution of
all smooth curves that are initially disjoint from γ0. In set notation, the level-set
flow starting from γ(0) = γ0 is

γ(t) = S2 \ {α(t) : α evolves by curvature flow, α(0) ∩ γ0 = ∅}.
Joseph Lauer showed that as long as the initial curve γ0 has Lebesgue area 0,
γ(t) is a smooth solution to curvature on some interval t ∈ (0, T )[3]. By bisector,
we mean a simple closed curve in S2 that divides the sphere into 2 regions that
each have area 2π. Importantly, this means a bisector must itself have Lebesgue
area 0. Lauer further showed that the level-set flow starting from a bisector is a
solution to curvature flow for all positive time and converges to a great sphere. The
intuition behind level-set flow and Lauer’s work build on work of Sigurd Angenent
who showed that for a pair of smooth closed curves that are initially distinct, the
number of intersection points is finite and decreasing for positive time [1].

The present work shows that, given a sequence of bisectors γk(0) → γ∞(0)
converging in Fréchet distance and tk → t∞ ∈ [0,∞], we have γk(tk) → γ∞(t∞)
in Fréchet distance where γk(t) is the level-set flow at time t starting from γk(0).
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The topological Tverberg problem beyond prime powers

Florian Frick

(joint work with Pablo Soberón)

A 1959 result of Bryan Birch [3] asserts that for any straight-line drawing of the
complete graph K3q with 3q vertices in the plane, there is a partition into q vertex-
disjoint 3-cycles that all surround a common point in the plane. It is natural to
wonder whether this results holds more generally if the edges are not assumed to
be straight-line segments, but only continuous arcs. This question and its natural
generalizations to higher dimensions have turned out to be surprisingly resistant.

The natural generalization of Birch’s result to dimension d holds: Any q(d+1)
points in Rd may be partitioned into q sets X1, . . . , Xq of size d+ 1 such that the
simplices spanned by the Xi all intersect in a common point. In fact, generically
this intersection of simplices will be full-dimensional, and one can save d points;
Helge Tverberg [11] proved that any (q−1)(d+1)+1 points in Rd can be partitioned
into q sets whose convex hulls all share a common point.

The continuous generalization of Birch’s result, and more generally Tverberg’s
result, has been proved for q a power of a prime [4, 10, 12]. More precisely,
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any continuous map f : ∆(q−1)(d+1) → Rd from the (q − 1)(d + 1)-dimensional

simplex to Rd identifies q points from pairwise disjoint faces, provided that q is
a power of a prime. For a linear map f this is precisely Tverberg’s theorem.
Perhaps surprisingly, the condition that q be a prime power is indeed crucial for
this continuous generalization: For any q with at least two distinct prime divisors
and d sufficiently large there is a continuous map f : ∆(q−1)(d+1) → Rd that never
maps q points from pairwise disjoint faces to the same point; see [2, 6, 8, 9]. In
fact, Avvakumov, Karasev, and Skopenkov [1] showed that there is such a map
f : ∆n → Rd for n = q(d+1)− q⌈d+2

q+1 ⌉−2, provided that q is not a power of prime

and d ≥ 2q.
However, this leaves open the question whether there is a continuous general-

ization of Birch’s original result. Here we prove this generalization and its higher-
dimensional versions beyond prime powers; see [7] for details:

Theorem 1. Let q ≥ 2 and d ≥ 1 be integers. Let n = q(d + 1) − 1. For any
continuous map f : ∆n → Rd there are points x1, . . . , xq in q pairwise disjoint
faces of ∆n with f(x1) = f(x2) = · · · = f(xq).

As a simple consequence of this we obtain a continuous generalization of Birch’s
theorem:

Corollary 2. For any continuous drawing of K3q in the plane, where each 3-cycle
is embedded, there is a partition of the vertex set into q triples such that the induced
3-cycles all surround a common point.

Here we require 3-cycles to be embedded since then, by the Jordan curve theo-
rem, each 3-cycle surrounds a well-defined interior region.

Let p be a prime. The p-fold join of a continuous map f : ∆n → Rd is a
Z/p-equivariant map F : (∆n)

∗p → (Rd+1)p. Let

D = {(y1, . . . , yp) ∈ (Rd+1)p : y1 = y2 = · · · = yp}
denote the diagonal in (Rd+1)p. The preimage F−1(D) consists of all ordered p-
tuples of (not necessarily distinct) points that f maps to the same point, that is,
F (λ1x1 + · · ·+λpxp) ∈ D if and only if λi =

1
p for all i and f(x1) = f(x2) = · · · =

f(xp). Since for p a prime the Z/p-action shifting coordinates of (Rd+1)p is free
away from the diagonal D, a result of Dold [5] now implies that F−1(D) intersects
any Z/p-invariant subcomplex Σ ⊂ (∆n)

∗p that is homotopically [(p−1)(d+1)−1]-
connected. The subcomplex Σ ⊂ (∆n)

∗p that consists only of p-fold joins of
pairwise disjoint faces is (n−1)-connected, so for n = (p−1)(d+1) this proves the
continuous generalization of Tverberg’s theorem, provided that q = p is a prime.

The key idea for the proof of Theorem 1 now is to construct for a given integer
q ≥ 2 and a large prime of the form p = kq + 1 a Z/p-invariant subcomplex
Σ ⊂ (∆q(d+1))

∗p that is [(p− 1)(d+1)− 1]-connected and such that the Z/p-orbit
of any vertex contains q consecutive vertices that are pairwise not adjacent. Since
Σ is highly connected it follows as before that there are x1, . . . , xp ∈ ∆q(d+1) with

f(x1) = f(x2) = · · · = f(xp) and such that 1
px1 + · · ·+ 1

pxp ∈ Σ. By construction

of Σ the points x1, x2, . . . , xq are in pairwise disjoint faces.
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This can be used to prove a weaker variant of Theorem 1 for n = q(d + 1). To
prove the stronger version for n = q(d + 1) − 1, one can add a dummy vertex
to instead argue for ∆q(d+1) as above. Then observe that for any set I ⊂ Z/p
of q consecutive numbers modulo p, the points xi, i ∈ I, are in pairwise disjoint
faces of ∆q(d+1), and the dummy vertex cannot obstruct all of these collections of
points, since otherwise q would divide p.

The technical core of the proof of Theorem 1 consists of the construction of
suitable complexes Σ, which are highly connected (thus dense) while having large
independent sets in each Z/p-orbit (and thus are locally sparse). The construction
given in [7] is optimal in the sense that in any Z/p-symmetric [(p− 1)(d+1)− 1]-
connected subcomplex of (∆q(d+1))

∗p the largest independent set in some Z/p-orbit
has size at most q.
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Coloring hypergraphs defined on ordered vertex sets

Balázs Keszegh

(joint work with Eyal Ackerman, Dömötör Pálvölgyi)

Given a family of hypergraphs H and a positive integer c, let m(H, c) denote the
least integer such that the vertices of every hypergraph H ∈ H can be colored with
c colors such that every hyperedge of size at least m(H, c) is non-monochromatic
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(i.e., contains two vertices with different colors). In other words, for every hyper-
graph H ∈ H the sub-hypergraph of H that consists of all the hyperedges of size
at least m(H, c) is c-colorable. We denote by χm(H) the least integer c for which
such a finite m(H, c) exists (otherwise, define χm(H) = ∞).

A family of geometric (or topological) regions F and a set of points S naturally
define a hypergraph H(S,F) whose vertices are the points in S and whose hyper-
edge set consists of every subset S′ ⊆ S for which there is a region F ′ ∈ F such
that S′ = F ′ ∩ S. The family of (finite) hypergraphs H(F) defined by a family
of geometric regions F consists of all the hypergraphs H(S,F) for some (finite)
point set S.

Typically, one is interested in determining whether it holds that χm(F) = 2 or
at least χm(F) < ∞ for a given family of geometric regions F .

When χm(F) = 2 then we are in addition interested in polychromatic k-colorings,
which are k-colorings such that every hyperedge (region) contains points of all k
colors. The following such result of Smorodinsky and Yuditsky about halfplanes
is the starting point of our work:

Theorem 0.1. [3] We can color any set of points in the plane with k colors such
that every halfplane containing at least 2k − 1 points contains all colors.

We denote by (AB)l the alternating sequence of letters A and B of length 2l.
For example, (AB)1.5 = ABA and (AB)2 = ABAB.

Definition 1 ((AB)l-free hypergraphs).

(1) Two subsets A,B of an ordered set of elements form an (AB)l-sequence
if there are 2l elements a1 < b1 < a2 < b2 < . . . < al < bl such that
{a1, a2, . . . , al} ⊂ A \B and {b1, b2, . . . , bl} ⊂ B \A.

(2) A hypergraph with an ordered vertex set is (AB)l-free if it does not contain
two hyperedges A and B that form an (AB)l-sequence.

(3) A hypergraph with an unordered vertex set is (AB)l-free if there is an
order of its vertices such that the hypergraph with this ordered vertex set
is (AB)l-free.

(4) The family of all (AB)l-free hypergraphs is denoted by (AB)l-free.

(AB)l-free hypergraphs were introduced in [2].
A pseudoline arrangement is a finite collection of x-monotone bi-infinite curves

such that any two of the curves intersect at most once. Such curves cut the plane
into a top and a bottom component. A family of pseudo-halfplanes is the family
of top and bottom components defined by a pseudoline arrangement. A family of
upwards pseudo-halfplanes is the family of top components defined by a pseudoline
arrangement.

In [2] it was shown that ABA-free hypergraphs are equivalent to hypergraphs
defined by upwards pseudo-halfplanes. E.g., a finite set of translates of an un-
bounded convex set on a finite point set defines an ABA-free hypergraph. Using
this connection, we could generalize Theorem 0.1 to pseudo-halfplanes:



20 Oberwolfach Report 30/2020

Theorem 0.2. [2] Given a finite family of pseudo-halfplanes and a set of points
in the plane, we can color the points with k colors such that every halfplane
containing at least 2k − 1 points contains all colors.

For k = 2 this implies that χm(ABA-free) = 2. The first main component
of the proof is a generalization of the notion of convex hull vertices to ABA-free
hypergraphs. The second is the notion of shallow hitting sets:

Definition 2. A set R is a c-shallow hitting set of the hypergraph H if for every
hyperedge h ∈ H we have 1 ≤ |R ∩ h| ≤ c.

In particular, it was proved that ABA-free hypergraphs admit 2-shallow hitting
sets using only vertices that are on the ‘convex hull’ of the hypergraph.

It turns out that ABAB-free hypergraphs also have a nice geometric meaning.
First, in [1] it was shown that these are the hypergraphs that can be defined on
points by upwards pseudo-parabolas, i.e., the top components defined by a family
of x-monotone bi-infinite curves that intersect pairwise at most twice. In addition,
these are also the hypergraphs that can be defined on points by stabbed pseudo-
disks. A family of Jordan-regions is a family of pseudo-disks if the boundaries of
every pair of regions intersect at most twice. We say that a family of regions is
stabbed if their intersection is non-empty.

It was also proved in [2] that χm(ABAB-free) > 2:

Theorem 0.3 ([2]). For every m ≥ 2 there exists an ABAB-free m-uniform
hypergraph which is not 2-colorable.

In [1] we have shown that in fact χm(ABAB-free) = 3:

Theorem 0.4. Every ABAB-free hypergraph is proper 3-colorable.

Going one step further, we have shown that χm(ABABA-free) = ∞:

Theorem 0.5. For every c ≥ 2 andm ≥ 2 there exists an ABABA-freem-uniform
hypergraph which is not c-colorable.

One can also regard the dual question, when instead of the vertices of the hyper-
graph we color the hyperedges. Our aim is to find an m such that we can always
color the hyperedges in such a way that every vertex that is contained in at least
m hyperedges is contained in hyperedges of different colors. The polychromatic
coloring problem can be phrased similarly. Note that hyperedge coloring problems
are equivalent to the vertex coloring problems on the dual of the hypergraph.

In this direction our results are the following:
The dual of an ABA-free hypergraph is also ABA-free and thus the same is true

about them. About pseudo-halfplane hypergraphs the following holds, again gen-
eralizing the respective result of Smorodinsky and Yuditsky [3] about halfplanes:

Theorem 0.6. [2] Given a finite family of pseudo-halfplanes and a set of points in
the plane, we can color the pseudo-halfplanes with k colors such that every point
contained by at least 2k − 1 pseudo-halfplanes is contained by pseudo-halfplanes
of all colors.
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The main tool for this result is a common generalization of hypergraphs defined by
pseudo-halfplanes and their dual, which we call pseudo-hemisphere hypergraphs.
In particular, we show that pseudo-hemisphere hypergraphs admit 4-shallow hit-
ting sets while dual pseudo-halfplane hypergraphs admit 3-shallow hitting sets.
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The Universality of the Resonance Arrangement

Lukas Kühne

1. Introduction

The main object considered in this talk is the resonance arrangement:

Definition 1. For a fixed integer n ≥ 1 we define the hyperplane arrangementAn

as the resonance arrangement in Rn by setting An := {HI | ∅ 6= I ⊆ [n]}, where
the hyperplanes HI are defined by HI :=

{∑

i∈I xi = 0
}
.

Figure 1. The resonance arrangement A3 projected onto the
hyperplane H{1,2,3}. There are 16 chambers visible and another
16 antipodal chambers hidden. Thus, A3 has 32 chambers in
total.

The term resonance arrangement was coined by Shadrin, Shapiro, and Vain-
shtein in their study of double Hurwitz numbers stemming from algebraic geome-
try [9]. Billera, Billey, Rhoades, and Tewari proved that the product of the defining
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linear equations of An is Schur positive via a so-called Chern phletysm from rep-
resentation theory [2]. Recently, Gutekunst, Mészáros, and Petersen established a
connection between the resonance arrangement and the type A root polytope [5].

The arrangementAn is also the adjoint of the braid arrangement. It was studied
under this name by Liu, Norledge, and Ocneanu in its relation to mathematical
physics [8]. The relevance of the resonance arrangement in physics was also demon-
strated by Early in his work on so-called plates, cf. [4].

In earlier work, the arrangement An was called (restricted) all-subsets arrange-
ment by Kamiya, Takemura, and Terao who established its relevance for applica-
tions in psychometrics and economics [6].

2. Universality of An

A first contribution presented in this talk is a universality result of the resonance
arrangement for rational hyperplane arrangements:

Theorem 2. Let B be any hyperplane arrangement defined over Q. Then B is a
minor of An for some large enough n, that is B arises from An after a suitable
sequence of restriction and contraction steps. Equivalently, any matroid that is
representable over Q is a minor of the matroid underlying An for some large
enough n.

The proof is constructive. We gave an example of this construction in the talk.

3. Chambers of An

The chambers of An are the connected components of the complement of the
hyperplanes in An within Rn. We denote by Rn the number of chambers of the
arrangement An. The arrangement A3 for instance has 32 chambers as shown
in 1.

Billera, Tatch Moore, Dufort Moraites, Wang, and Williams observed that the
chambers of An are also in bijection with maximal unbalanced families of order
n + 1. These are systems of subsets of [n + 1] that are maximal under inclusion
such that no convex combination of their characteristic functions is constant [1].

The values of Rn are only known for n ≤ 8, cf. also the entry A034997 in the
OEIS. There is no exact formula known for Rn. The recent work of Gutekunst,
Mészáros, and Petersen [5] yields log2(Rn) ∼ n2.

Due to a theorem of Zaslavsky the number of chambers of any arrangement
over R equals the sum of all Betti numbers of the arrangement [10]. The Betti
numbers are the absolute values of the coefficients of the characteristic polynomial
χ(An; t) of an arrangement A. The polynomial χ(An; t) is only known for n ≤ 7
as computed in [6].

The second result presented in this talk proves that the Betti numbers bi(An)
for any fixed i > 0 can be computed for all n > 0 from a fixed finite combination of
Stirling numbers of the second kind S(n, k) which count the number of partitions
of n labeled objects into k non-empty blocks. The proof is based on Brylawski’s
broken circuit complex [3].

https://oeis.org/A034997
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Theorem 3. [7] There exist some positive integers ci,k for all i ≥ 0 and i + 1 ≤
k ≤ 2i such that for all n ≥ 1,

bi(An) =
2i∑

k=1

ci,kS(n+ 1, k),

The first two trivial cases of this theorem are b0(An) = S(n+ 1, 1), and b1(An) =
S(n+ 1, 2). The next two cases can be determined via the broken circuit complex:

(i) b2(An) =2S(n+ 1, 3) + 3S(n+ 1, 4) and

(ii) b3(An) =9S(n+ 1, 4) + 80S(n+ 1, 5) + 345S(n+ 1, 6)+

840S(n+ 1, 7) + 840S(n+ 1, 8).

Example 4. Using 3 we can compute χ(A3; t) as

χ(A3; t) = t3 − 7t2 + 15t− 9.

Thus, the above mentioned result by Zaslavsky again yieldsR3 = 1+7+15+9 = 32.

Remark 5. The formula for b2(An) in 3 was also found earlier by Billera (personal
communication).

Determining the coefficients ci,k from 3 for i > 3 could help developing a better
understanding of the exact number Rn for larger n. This however could be quite
difficult. The author was not able to discover any pattern in the coefficients ci,k
for i = 1, 2, 3 yet.
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Extremal question for unit distance graphs

Andrey Kupavskii

(joint work with Nora Frankl)

Determining the maximum possible number of pairs ud(n) at distance 1 apart in
a set of n points in Rd for d = 2 is one of the central questions in combinatorial
geometry, known as the Erdös Unit Distance problem. The question dates back
to 1946, and despite much effort, the best known upper and lower bounds are still
very far apart. For some constants C, c > 0, we have

n1+c/ log logn ≤ u2(n) ≤ Cn4/3,

where the lower bound is due to Erdös [3] and the upper bound is due to Spencer,
Szemerédi and Trotter [7]. Recently, there has been great progress in a closely
related problem of determining the minimum number of distinct distances between
n points on the plane due to Guth and Katz, but the powerful algebraic machinery
they used has not yet given any improvement for the unit distance question.

The contents of the first part of this extended abstract are based on [5]. This
research can be seen as an effort to find generalisations of the Unit Distance prob-
lem that are within the reach of our current methods. In what follows, we describe
the generalisation that we work with.

Palsson, Senger and Sheffer [6] suggested the following question. Let δ =
(δ1, . . . , δk) be a fixed sequence of k positive reals. A (k + 1)-tuple (p1, . . . , pk+1)
of distinct points in Rd is called a k-chain if ‖pi − pi+1‖ = δi for all i = 1, . . . , k.
For every fixed k determine Cd

k (n), the maximum number of k-chains that can be
spanned by a set of n points in Rd. We do not include δ in the notation, since our
results do not depend on δ up to the order of magnitude. The authors of [6] give
the following lower bound on C2

k(n):

C2
k(n) = Ω

(

n⌊(k+1)/3⌋+1
)

.

They also provided upper bounds in terms of the maximum number of unit dis-
tances.

Proposition 1 (Palsson, Senger, and Sheffer [6]).

C2
k(n) =







O
(
n · u2(n)

k/3
)

if k ≡ 0 (mod 3),

O
(
u2(n)

(k+2)/3
)

if k ≡ 1 (mod 3),

O
(
n2 · u2(n)

(k−2)/3
)

if k ≡ 2 (mod 3).

If u2(n) = O(n1+ε) for any ε > 0, which is conjectured to hold, then the
upper bounds in the proposition above almost match the lower bound given above.
However, as we have already mentioned, determining the order of magnitude of
u2(n) has proved to be a very hard problem and is very far from its resolution.
Thus, it is interesting to obtain “unconditional” bounds, that depend on the value
of u2(n) as little as possible. In [6], the following “unconditional” upper bounds
were proved in the planar case.
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Theorem 2 (Palsson, Senger, and Sheffer [6]). C2
2 (n) = Θ(n2), and for every

k ≥ 3 we have

C2
k(n) = O

(

n2k/5+1+γk

)

,

where γk ≤ 1
12 , and γk → 4

75 as k → ∞.

In our main result, in two-third of the cases we almost determine the value of
C2

k(n), no matter what the value of u2(n) is, by matching the lower bounds given
in Theorem 2. Further, we show that in the remaining cases determining C2

k(n)
essentially reduces to determining the maximum number of unit distances.

Theorem 3. For every integer k ≥ 1 we have 1

C2
k(n) = Θ̃

(

n⌊(k+1)/3⌋+1
)

if k ≡ 0, 2 (mod 3),

and for any ε > 0 we have

C2
k(n) = Ω

(

n(k−1)/3u2(n)
)

and C2
k(n) = O

(

n(k−1)/3+εu2(n)
)

if k ≡ 1 (mod 3).

We also obtain similar results in the three-dimensional case.
Finally, we note that for d ≥ 4 we have Cd

k (n) = Θ(nk+1). Indeed, we clearly
have Cd

k (n) = O(nk+1). To see that Cd
k (n) = Ω(nk+1), take two orthogonal circles

of radius 1/
√
2 centred at the origin and choose n/2 points on each of them. Then

any sequence of k + 1 points that alternate between the two circles forms a path
in which all edges have unit length. The exact value of ud(n) for large n and even
d ≥ 4 was determined by Brass (d = 4) and Swanepoel (d ≥ 6), by using stability
results form extremal graph theory.

The second part of this extended abstract is based on a yet unpublished work
with Nora Frankl and is devoted to the following question. Denote by USk,d(n) the
maximum number of unit k-vertex simplices that can be determined by a set of n
points in Rd. Erdős and Purdy [4] conjectured that USk,d(n) = Θ(min{nk, nd/2}
for even d ≥ 4, and later Agarwal and Sharir [2] extended this conjecture to the
case of odd d ≥ 5, suggesting that USk,d(n) = Θ(min{nk, nd/2−1/6} in that case.
They also proved it for d ≤ 7 and k ≤ d− 1.

Later, Agarwal, Apfelbaum, Purdy, and Sharir [1] proved that USk,d(n) =
O(nd−c) for some small constant c, and k = d, d− 1. We have managed to obtain
the first significant improvement of the exponent.

Theorem 4. USk,d(n) = Õ(n3d/4 for any k, d.

Actually, the works [4, 2] addressed congruent simplices, and [1] studied similar
simplices, but our result is extendable to these settings as well.

1f(n) = Θ̃(g(n)) means that there exist positive constants c, C such that C−1 log−c n ≤

f(n)/g(n) ≤ C logc n.
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On the geometric hypothesis of Banach

Luis Montejano

The following is known as the geometric hypothesis of Banach: let V be an m-
dimensional Banach space (over the real or the complex numbers) with unit ball B
and suppose all n-dimensional subspaces of V are isometric (all the n-sections of
B are affinely equivalent). In 1932, Banach conjectured that under this hypothesis
V is a Hilbert space (the boundary of B is an ellipsoid). Gromow proved in 1967
that the conjecture is true for n = even and Dvoretzky and V. Milman derived
the same conclusion under the hypothesis n = ∞. We prove this conjecture for
n = 4k+1, with the possible exception of V a real Banach space and n = 133. [1]
for the real case and [2] for the complex case.

The ingredients of the proof are classical homotopic theory, irreducible repre-
sentations of the orthogonal group and convex geometry. For the real case, suppose
B is an (n+ 1)-dimensional convex body with the property that all its n-sections
through the origin are affinity equivalent to a fixed n-dimensional body K. Using
the characteristic map of the tangent vector bundle to the n-sphere, it is possible
to prove that if n =even, then K must be a ball and using homotopical properties
of the irreducible representations we prove that if n = 4 + 1 then K must be a
body of revolution. Finally, we prove, using convex geometry and topology that,
if this is the case, then there must be a section of B which is an ellipsoid and
consequently B must be also an ellipsoid. The strategy for the complex case is
similar but but taking into account the technical complexities of the case.
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Shard polytopes

Arnau Padrol

(joint work with Vincent Pilaud and Julian Ritter)

Any lattice congruence ≡ of the weak order on the symmetric group Sn is com-
pletely determined by the permutations with a single descent it contracts [13].
These are naturally encoded by arcs, which are quadruples α :=(a, b, A,B) with
a < b and A ⊔ B = ]a, b[. If we say that α forces α′ if every congruence that
contracts α also contracts α′, then each lattice congruence ≡ of the weak order
corresponds to an upper ideal A≡ of the forcing order among arcs.

Geometrically, the arcs correspond to pieces of hyperplanes, called shards, that
partition the braid arrangement. Namely, the arc α :=(a, b, A,B) corresponds to
the shard S(α) defined as the piece of the hyperplane xa = xb given by the inequal-
ities xa′ ≤ xa = xb ≤ xb′ for all a′ ∈ A and b′ ∈ B. In [11], N. Reading proved
that each lattice congruence ≡ of the weak order defines a complete fan F≡, called
quotient fan, whose dual graph is the Hasse diagram of the lattice quotient Sn/≡.
The chambers of F≡ can be seen either by glueing together the chambers of the
braid fan that belong to the same congruence class, or as the connected compo-
nents of the complement of the union of the shards S(α) for all arcs α in the
ideal A≡.

In [9], V. Pilaud and F. Santos showed that this quotient fan is the normal fan
of a polytope, called quotientope. These realizations were obtained by a careful
but slightly obscur choice of right-hand sides defining the inequalities normal to
the rays of the braid fan.

We propose an alternative approach to construct polytopal realizations of this
quotient fan, using Minkowski sums of elementary polytopes called shard polytopes,
which have remarkable combinatorial and geometric properties.

To illustrate the idea, let us start with a simple construction. For any arc α,
denote by Aα the arc ideal generated by α. The corresponding congruence ≡α is
a Cambrian congruence [12] and the corresponding quotient fan Fα is a Cambrian
fan of [16]. It is the normal fan of the α-associahedron Assoα of [4]. Our motivating
observation is the following statement.

Theorem 1. Let ≡ be a lattice congruence of the weak order, and let α1, . . . , αp

denote the arcs generating the ideal A≡. Then the quotient fan F≡ is

• the common refinement of the Cambrian fans Fα1 , ...,Fαp
, and

• the normal fan of the Minkowski sum of the associahedra Assoα1 , ...,Assoαp
.

Note that this approach has the advantage of transfering all the geometric
difficulty into the construction of the α-associahedra, which was already done in [4].
We push this idea further by decomposing the α-associahedra into Minkowski sums
of more elementary (indecomposable) pieces, called shard polytopes.

Theorem 2. For any arc α, there is a Minkowski indecomposable polytope SP(α),
called the shard polytope of α, such that the union of the walls of the normal fan
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of SP(α) contains the shard S(α) and is contained in the union of the shards S(α′)
for all arcs α′ forcing α.

This property enables to construct quotientopes as Minkowski sums of shard
polytopes. The idea now is that each shard polytope SP(α) will be responsible
for the shard S(α) to appear in the normal fan of the Minkowski sum, without
introducing unwanted walls.

Corollary 3. For any lattice congruence ≡ of the weak order and any positive coef-
ficients sα > 0 for α ∈ A≡, the quotient fan F≡ is the normal fan of the Minkowski
sum SP(A≡) :=

∑

α∈A sαSP(α) of the shard polytopes SP(α) of all arcs α ∈ A≡.

This construction recovers relevant realizations of specific quotient fans. For
example, for the sylvester congruence, we obtain the classical associahedron of [6].
More generally, for the α-Cambrian congruence, we get the α-associahedron of [4].
Moreover, all the quotientopes constructed by V. Pilaud and F. Santos [9] can be
obtained this way.

The Minkowski indecomposability of shard polytopes can be rephrased in the re-
alization spaces of the quotient fans. The space of all polytopes whose normal fan
coarsens a given fan F is a cone under Minkowski addition, called (closed) type cone
by P. McMullen [7] or deformation cone by A. Postnikov [10]. Theorem 1 affirms
that for each arc α ∈ A≡, the shard polytope SP(α) is a representative of a ray of
the type cone of the quotient fan F≡. Type cones of Cambrian fans have recently
received particular attention with the works of [2, 3, 5, 8]. Their results imply that
shard polytopes can be interpreted as Newton polytopes of F -polynomials of clus-
ter variables of acyclic type A cluster algebras [2], and brick polytope summands
of certain sorting networks [5]. Furthermore, each shard polytope SP(α) is (up to
a translation) a series-parallel matroid polytope.

As their normal fans coarsen the braid fan, shard polytopes belong to the class
of deformed permutahedra [10]. It thus follows from [1] that they decompose
uniquely as a signed Minkowski sum of faces of the standard simplex. We prove
that, conversely, any deformed permutahedron has a unique decomposition as a
Minkowski sum and difference of dilated shard polytopes (up to translation).

Besides containing and explaining the construction of [9], the motivation for this
new construction is the possibility to extend it to lattice quotients of the poset
of regions of hyperplane arrangements beyond the braid arrangement. Indeed,
there is a natural geometric realization of lattice quotients of tight arrangements
via polyhedral fans [14, 15]. However, no general polytopal realization is known.
We achieve the first step in this perspective by constructing quotientopes for any
lattice quotient of the weak order of the type B Coxeter group. In contrast to
type A, no systematic construction of type B quotientopes was known so far.

The join-irreducible elements of Bn are in bijection with the so-called B-arcs
and B-shards. Lattice congruences ≡b of the type B are then in correspondence
with upper ideals Ab

≡b of the forcing order among B-arcs. Each congurence de-
fines a quotient fan F b

≡b , whose chambers are the connected components of the
complement of the union of the B-shards for all B-arcs in Ab

≡b [11].
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Proposition 4. For any B-arc β, there exists a shard polytope SP(β) such that
the union of the walls of its normal fan contains the shard S(β) and is contained
in the union of the shards S(β′) for β ≺ β′.

This property provides the first proof that all type B quotient fans are polytopal,
recovering some known realizations, such as the cyclohedra of [4].

Corollary 5. For any lattice congruence ≡b of the type B weak order and any
positive coefficients sβ > 0 for β ∈ Ab

≡b , the quotient fan F b
≡b is the normal fan

of the Minkowski sum SP(Ab
≡b) :=

∑

β∈Ab sβSP(β) of the shard polytopes SP(β) of

all B-arcs β ∈ Ab
≡b .

The existence of shard polytopes for arbitrary hyperplane arrangements with a
lattice of regions is still wide open.
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Domes over curves

Igor Pak

(joint work with Alexey Glazyrin)

The study of polyhedra with regular polygonal faces is a classical subject going
back to ancient times. It was revived periodically when new tools and ideas have
developed, most recently in connection to algebraic tools in rigidity theory. In this
paper we study one of most basic problems in the subject – polyhedral surfaces
in R3 whose faces are congruent equilateral triangles. We prove both positive and
negative results on the types of boundaries these surfaces can have, suggesting a
rich theory extending far beyond the current state of the art.

Formally, let γ ⊂ R3 be a closed piecewise linear (PL-) curve. We say that γ is
integral if it is comprised of intervals of integer length. Now, let S ⊂ R3 be a PL-
surface realized in R3 with the boundary ∂S = γ, and with all facets comprised
of unit equilateral triangles. In this case we say that S is a unit triangulation or
dome over γ, that γ is spanned by S, and that γ can be domed.

Question 1 (Kenyon [5]). Is every integral closed curve γ ⊂ R3 spanned by a
unit triangulation? In other words, can every such γ be domed?

For example, the unit square and the (unit sided) regular pentagon can be
domed by a regular pyramid with triangular faces. Of course, there is no such
simple construction for a regular heptagon. Perhaps, surprisingly, the answer to
Kenyon’s question is negative in general.

A 3-dimensional unit rhombus is a closed curve ρ ⊂ R3 with four edges of unit
length. This is a 2-parameter family of space quadrilaterals ρ(a, b) parameterized
by the diagonals a and b, defined as distances between pairs of opposite vertices.

Theorem 2. Let ρ(a, b) ⊂ R3 be a unit rhombus with diagonals a, b > 0. Suppose
ρ(a, b) can be domed. Then there is a nonzero polynomial P ∈ Q[x, y], such that
P (a2, b2) = 0.

In other words, for a, b > 0 algebraically independent over Q, the corresponding
unit rhombus cannot be domed, giving a negative answer to Kenyon’s question.
The proof is based on the theory of places [3] (see also [6, §41]). In fact, our tools
give further examples of a unit rhombi which cannot be domed, such as ρ

(
1
π ,

1
π

)
.

Our next result is a positive counterpart to the theorem. We show that the set of
integral curves spanned by a unit triangulation is everywhere dense within the set
of all integral curves.

Let γ, γ′ ⊂ R3 be two integral closed curves of equal length. We assume the
vertices of γ, γ′ are similarly labeled

[
v1, . . . , vn

]
and

[
v′1, . . . , v

′
n

]
, giving a pa-

rameterizations of the curves. The Fréchet distance |γ, γ′|F in this case is given
by

|γ, γ′|F = max
1≤i≤n

|vi, v′i|.



Discrete Geometry 31

Theorem 3. For every integral curve γ ⊂ R3 and ε > 0, there is an integral
curve γ′ ⊂ R3 of equal length, such that |γ, γ′|F < ε and γ′ can be domed.

The proof is an involved explicit argument in part based on the Steinitz Lemma
(1913), see [1, 2] We conclude with one interesting special case:

Theorem 4. Every regular integral n-gon in the plane can be domed.

This gives a new infinite class of regular polygon surfaces, comprised of one
regular n-gon and many unit triangles.

In [4], Gaifullin and Gaifullin studied the case of doubly periodic surfaces homeo-
morphic to the plane. In this case they proved the following result:

Theorem 5 ([4, Thm 1.4]). Every embedded doubly periodic triangular surface
homeomorphic to a plane has at most one-dimensional doubly periodic flex.

By a doubly periodic flex of the triangular surface S we mean a continuous rigid
deformation {St, t ∈ [0, δ)} for some δ > 0, which preserves double periodicity,
i.e. invariant under the action of G = Z ⊕ Z (the action of G can also depend
on t). The continuity of S is meant with respect to all dihedral angles. Here we
identify deformations modulo changes of parameter t and ask for the dimension of
the space of flexing at t = 0, i.e. when S0 = S.

In [4, Question 1.5], the authors asked if Theorem 5 can be extended to surfaces
which are not homeomorphic to a plane. We give a negative answer to this question
by an explicit construction.

Theorem 6. There is a doubly periodic triangular surface whose doubly periodic
flex is three-dimensional.

The proof is also based on an explicit construction which arises in the analysis
of the inductive topological argument in the proof of Theorem 2.
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Helly numbers of disconnected sets

Pavel Paták

Given a finite family F of sets with empty intersection, it is natural to search for
the smallest subfamily G whose intersection is still empty. The smallest size of
such subfamily is called the Helly number of F and denoted h(F). If

⋂F 6= ∅, we
define h(F) := 0.

Any upper bound on h(F) which is valid for a whole class of families F has sig-
nificant algorithmic applications, as exemplified by the original Helly’s theorem [3]:
For a family F of convex sets in Rd, h(F) ≤ d+ 1.

What to do if the sets are not convex? Or more generally, if the sets do not
live in Rd, but instead in some topological space X that has no natural notion of
convexity? Such considerations naturally occur for example when considering line
transversals, since they live in the Grassmanian.

To partially answer these questions, we show that if F is a set system in a d-
dimensional manifold such that

⋂G has at most b path-connected components for
every G ⊆ F , and each of these components is

⌈
d
2

⌉
-connected, the Helly number of

F is bO(d). This is a vast improvement over the previous result of Jǐŕı Matoušek [7].

Let us now establish the essential ingredients of the proof. Given a family F of
sets in a topological space X , we can turn F into a closure operator cl on X as
follows. For a set S ⊆ X we set

cl(S) :=
⋂

F∈F
S⊆F

F,

where we define clS = X , if no F ∈ F contains S.
The Radon number r(cl) of a closure operator cl is defined as the smallest

number r such that for every set S ⊆ X with r elements, there are two disjoint
subsets A,B ⊆ S with cl(A) ∩ cl(B) 6= ∅. If the closure operator cl is obtained
from a finite set system F , we have h(F) + 1 ≤ r(cl), see e.g. the proof of Helly’s
theorem by Radon [11], or its abstract form [6]. As it turns out, Radon’s number
is one of the most important parameters of the closure operator, since it implies
almost all other “convexity theorems”: It provides (linear) bounds for Tverberg’s
numbers [5],[8], gives fractional Helly theorem [4] and establishes existence of weak
ε-nets and (p, q)-theorems [1] for the considered families.

Probably the most general theorem in this direction is the following result ob-
tained by Patáková [10]: For every b and d, there is a number r(b, d) such that
the following holds. Let cl be a closure operator on Rd such that the Betti numbers
βk(cl(S);Z/2Z) are upper bounded by b for all k = 0, 1, . . . ,

⌈
d
2

⌉
−1 and all S ⊆ Rd.

Then r(cl) ≤ r(b, d).
The proof uses hypergraph Ramsey theorem and hence the values of r(b, d) are

usually too huge to be of practical importance.

Let us now sketch how certain non-embeddability results establish bounds for
Radon numbers and the ideas that lead to the improvement of Matoušek’s bound.
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Let cl be a closure operator on R2, for which cl(S) is simply-connected for every
S ⊆ R2. Then r(cl) ≤ 4. Indeed, consider any set S of 4 points, say p1, p2, . . . , p4.
Since cl{p1, p2} is path-connected, there is a path p12 that connects p1 to p2 and
lies entirely in cl{p1, p2}. Continuing this way we obtain a drawing of K4. Now we
may look at the triangle p12p23p31. Since cl{p1, p2, p3} is simply connected, this
triangle can be filled. Continuing this way, we obtain a continuous map from the
2-skeleton of 3-simplex into R2. It is well known that in any such map there will
be two disjoint faces, whose images intersect. These faces then correspond to the
desired sets A and B.

In general, assuming that the set S is sufficiently large, we want to find a drawing
of Kn and assignments e 7→ Se for each edge e ∈ E(Kn) such that

• each vertex of Kn is a point in S,
• Se ⊆ S \ Ve, where Ve are the endpoints of e,
• each edge e is drawn inside cl(Se ∪ Ve),
• for disjoint edges e and f , the sets Se and Sf are disjoint, and
• each set Se is disjoint with V (Kn).

We call such drawing constrained. If we suceed we may use the connectivity
assumptions and continue by filling triangles, tetrahedra, and so on, until we
arrive at some complex that is not “embeddable” into our target space.

Let us recall that we assume that cl(S) has at most b path-connected com-
ponents. The new technique that allows us to improve the bounds relies on the
following facts:

(1) The definition of constrained drawing carries over to arbitrary graphs.
(2) If we want to find a constrained drawing of the star K1,k, it suffices if S

contains
(
b+1
2

)
(k − 1) + b+ 1 points.

(3) Complete graphs can be built inductively: If t points suffice to find Kn−1

and x points suffice to find K1,t, then x vertices are enough for Kn.

This naturally opens new questions.

(1) How many points are actually needed to find K1,k? (Conjecture: kb+ 1)
(2) Can one obtain better bounds for Kn?
(3) Can the approach be adapted to deal with non-trivial homology/homotopy

in higher dimensions?
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Barycentric cuts through a convex body

Zuzana Patáková

(joint work with Martin Tancer, Uli Wagner)

Let K be a convex body in Rn (i.e., a compact convex set with nonempty interior).
Given a point p in the interior of K, a hyperplane h passing through p is called
barycentric if p is the barycenter of K ∩ h. In 1961, Branko Grünbaum [4] raised
the following questions:

Q1: Does there always exist an interior point p ∈ K ⊆ Rn, n ≥ 3, which admits
at least n+ 1 distinct barycentric hyperplanes?

Q2: If so, is this true for the barycenter of K?

Seemingly, Question 1 was answered affirmatively by Grünbaum himself [5, §6.2]
two years later, by using a variant of Helly’s theorem to show that there are at
least n + 1 barycentric cuts through the point of K of maximal depth. However,
when working on Question 2, which remains open, we noticed that one of the
auxiliary claims in Grünbaum’s proof is incorrect. We provide a counterexample
to this claim and hence reopen Question 1.

In order to describe the problematic part, we first need several definitions. For a
unit vector v in the unit sphere Sn−1 ⊆ Rn, let hv = hp

v := {x ∈ Rn : 〈v, x−p〉 = 0}
be the hyperplane orthogonal to v and passing through p, and let Hv = Hp

v :=
{x ∈ Rn : 〈v, x − p〉 ≥ 0} be the half-space bounded by hv in the direction of
v. Given p, we define the depth function δp : Sn−1 → [0, 1] via δp(v) = λ(Hv ∩
K)/λ(K), where λ is the Lebesgue measure in Rn. The depth of a point p in K is
defined as depth(p,K) := infv∈Sn−1 δp(v). It is easy to see that δp is a continuous
function, therefore the infimum in the definition is attained at some v ∈ Sn−1.
Any hyperplane hv through p such that depth(p,K) = δp(v) is said to realize the
depth of p. Finally, a point of maximal depth in K is a point p0 in the interior of
K such that depth(p0,K) := maxdepth(p,K) where the maximum is taken over
all points in the interior of K. We note that the point of maximal depth always
exists and it is unique.

We remark that the depth function is a special case of the (Tukey) depth of a
probability measure in Rd, a well-known notion in statistics [7, 2].
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The incorrect claim in the affirmative answer to Question 1 was that through
the point of maximal depth, there are always at least n + 1 distinct hyperplanes
realizing the depth. However, we construct a convex body in R3 with only three
such hyperplanes. Our construction is quite simple, it is ∆× [0, 1], where ∆ is an
equilateral triangle.

It follows from known results that for n ≥ 2, there are always at least three distinct
barycentric cuts through the point p0 ∈ K of maximal depth. Using tools related
to Morse theory we are able to improve this bound: four distinct barycentric cuts
through the point p0 are guaranteed if n ≥ 3. For more details we refer to [6].

Let us finish with a stronger version of Question 2 attributed to Karel Löwner
[1, A8], [3, Problem 28]:

Q3: Are there always at least 2n − 1 distinct barycentric hyperplanes with
respect to the barycenter of a convex body K ⊂ Rn?

The simplex shows that this is the best possible bound one can hope for.
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Enclosing depth and other depth measures

Patrick Schnider

Medians are an important tool in the statistical analysis and visualization of data.
Due to the fact that medians only depend on the order of the data points, and
not their exact positions, they are very robust against outliers. However, in many
applications, data sets are multidimensional, and there is no clear order of the
data set. For this reason, various generalizations of medians to higher dimensions
have been introduced and studied. Many of these generalized medians rely on
a notion of depth of a query point within a data set, a median then being a
query point with the highest depth among all possible query points. Several such
depth measures have been introduced over time, most famously Tukey depth [4]
(also called halfspace depth), simplicial depth, or convex hull peeling depth (see,
e.g., [1]). In particular, all of these depth measures are combinatorial, i.e., they do
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not depend on the coordinates of the data points but only on their relative positions
(their order type). In this abstract, we consider general classes of combinatorial
depth measures, defined by a small set of axioms, and prove relations between
them and concrete depth measures, such as Tukey depth (TD)1 and Tverberg
depth (TvD)2. We further introduce a new depth measure, called enclosing depth,
which gives a lower bound for all considered combinatorial depth measures, and
we prove that there is always a point whose enclosing depth is linear in the size of
the data set.

Let SRd

denote the family of all finite sets of points in Rd. A depth measure is a

function ̺ : (SRd

,Rd) → R≥0 which assigns to each pair (S, q) consisting of a finite
set of data points S and a query point q a value, which describes how deep the
query point q lies within the data set S. A depth measure ̺ is called combintorial
if it depends only on the order type of S ∪ {q}. We further want that it defines
the standard depth in R1 (and thus gives a correct median)3

The first set of depth measures that we consider are additive depth measures.

A combinatorial depth measure ̺ : (SRd

,Rd) → R≥0 is called additive if it satisfies
the following conditions:

(i) for all S ∈ SRd

and q, p ∈ Rd we have |̺(S, q) − ̺(S ∪ {p}, q)| ≤ 1 (sensi-
tivity),

(ii) for all S ∈ SRd

and q ∈ Rd we have ̺(S, q) = 0 for q 6∈ conv(S) (locality),

(iii) for all S ∈ SRd

there is a q ∈ Rd for which ̺(S, q) > 0 (non-triviality),
(iv) for any disjoint subsets S1, S2 ⊆ S and q ∈ Rd we have ̺(S, q) ≥ ̺(S1, q)+

̺(S2, q) (additivity).

It is not hard to show that a one-dimensional depth measure which satisfies
these conditions has to be the standard depth measure and that no three conditions
suffice for this. Further, we can show the following bounds for any additive depth
measure ̺ in Rd:

Observation 1.

TD(S, q) ≥ ̺(S, q) ≥ TvD(S, q) ≥ 1

d
TD(S, q).

Here, the first inequality follows from sensitivity and locality, while the second
follows from non-triviality and additivity. The last inequality follows from the
fact that removing a simplex containing q can decrease the Tukey depth of q by
at most d. In R2, it can be shown that TvD(S, q) = min{TD(S, q), |S|/3}, and
we conjecture that in higher dimensions we have TvD(S, q) ≥ 1

d−1TD(S, q), which
would be tight.

1The Tukey depth of q is defined as the minimum number of points that can be removed from
S such that q is not in the convex hull of the remaining point set

2The Tverberg depth of q is defined as the maximum number of pairwise vertex-disjoint
simplices spanned by points in S that contain q.

3The standard depth in R1 is the one which counts the number of points of S to the left and
to the right of q and then returns the minimum of the two numbers.
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However, there are depth measures that give the standard depth in R1 but which
are not additive. One example is enclosing depth, which we will now define. We
say that a point set S of size (d + 1)k in Rd k-encloses a point q if S can be
partitioned into d + 1 subsets S1, . . . , Sd+1, each of size k, in such a way that
for every transversal p1 ∈ S1, . . . , pd+1 ∈ Sd+1, the point q is in the convex hull
of p1, . . . , pd+1. Intuitively, the points of S are centered around the vertices of a
simplex with q in its interior. The enclosing depth of a point q with respect to a
point set S, denoted by ED(S, q), is now defined as the maximal k for which there
exists a subset of S which k-encloses q.

The fact that enclosing depth is not additive but still gives the standard measure
in R1 indicates that the above conditions are too restrictive. We thus give a new
set of conditions, defining central depth measures. A combinatorial depth measure

̺ : (SRd

,Rd) → R≥0 is called central if it satisfies sensitivity, locality and the
following two conditions:

(iii’) for all S ∈ SRd

and q, p ∈ Rd we have ̺(S ∪ {p}, q) ≥ ̺(S, q) (monotonic-
ity),

(iv’) for every S ∈ SRd

there is a q ∈ Rd for which ̺(S, q) ≥ 1
d+1 |S| (centrality).

It follows from Tverbergs theorem and Observation 1 that every additive depth
measure is also central. Also, it can again be shown that a one-dimensional central
depth measure has to be the standard depth measure and that no three of the above
conditions suffice for this. On the other hand, enclosing depth is also not central,
so while central depth measures are a superset of additive depth measures, they
still do not include all depth measures that give the standard depth in R1. It
would be interesting to find a set of conditions which define exactly those depth
measures.

Similar to above, we can show bounds for central depth measures:

Theorem 2. Let ̺ be a central depth measure in Rd. Then there exists a constant
c = c(d), which depends only on the dimension d, such that

TD(S, q) ≥ ̺(S, q) ≥ ED(S, q)− (d+ 1) ≥ c · TD(S, q)− (d+ 1).

Here the first inequality follows again from sensitivity and locality. As for the
second inequality, we would like to argue that if S k-encloses q then ̺(S, q) = k. By
centrality, there must indeed be a point q′ with ̺(S, q′) = k (note that |S| = k(d+1)
by definition of k-enclosing), but this point can lie anywhere in the centerpoint
region of S and not every point in the centerpoint region is k-enclosed by S.
However, by adding d+ 1 points very close to q, we can ensure that q is the only
possible centerpoint in the new point set, and the second inequality then follows
from sensitivity and monotonicity after removing these points again.

The most involved part of the result is the last inequality:

Theorem 3 (E(d)). There is a constant c = c(d) such that for all S ∈ SRd

and
q ∈ Rd we have ED ≤ c · TD(S, q).

We will denote this statement in dimension d by E(d). Note that E(1) is true
and c(1) = 1. The statement E(d) turns out to be intimately related to a positive
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fraction Radon theorem on certain bichromatic point sets. Let P = R ∪ B be a
bichromatic point set with color classes R (red) and B (blue). We say that B
surrounds R if for every halfspace h we have |B ∩ h| ≥ |R ∩ h|. Note that this
in particular implies |B| ≥ |R|. The positive fraction Radon theorem is now the
following:

Theorem 4 (R(d)). Let P = R∪B be a bichromatic point set where B surrounds
R. Then there is a constant c1 = c1(d) such that there are integers a and b and
pairwise disjoint subsets R1, . . . , Ra ⊆ R and B1, . . . , Bb ⊆ B with

(1) a+ b = d+ 2,
(2) |Ri| = c1 · |R| for all 1 ≤ i ≤ a,
(3) |Bi| = c1 · |R| for all 1 ≤ i ≤ b,
(4) for every transversal r1 ∈ R1, . . . , ra ∈ Ra, b1 ∈ B1, . . . , bb ∈ Bb, we have

conv(r1, . . . , ra) ∩ conv(b1, . . . , bb) 6= ∅.

In other words, the Radon partition respects the color classes. We will denote
the above statement in dimension d by R(d). It can be seen that R(1) can be
satisfied choosing a = 1, b = 2 and c1(1) = 1

3 . To conclude, we will sketch how
R(d− 1) ⇒ E(d). Using the center transversal theorem [3, 5] and the Same Type
Lemma [2] it can be shown that E(d − 1) ⇒ R(d). For space reasons, this proof
has to be postponed to a forthcoming full version. By induction, these two claims
then imply the above theorems.

Lemma 5. R(d− 1) ⇒ E(d).

Sketch of proof. Assume without loss of generality that q is the origin an that the
halfspace h : xd ≤ 0 witnesses TD(S, q) = k. Consider the point set S′ derived from
S by central projection through q to the hyperplane xd = 1, and color all points
from h red and the points from hc blue. Then S′ is a (d − 1)-dimensional point
set where B surrounds R. Further, every Radon partition in S′ which respects the
color classes corresponds to a simplex in S which contains q. �
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On the Average Complexity of the k-Level

Raphael Steiner

(joint work with M.-K. Chiu, S. Felsner, M. Scheucher, P. Schnider, P. Valtr)

Let L be an arrangement of n lines in the Euclidean plane. The vertices of L are the
intersection points of lines of L. Throughout this article we consider arrangements
to be simple, i.e., no three lines intersect in a common vertex. Moreover, we assume
that no line is vertical. The k-level of L consists of all vertices v which have exactly
k lines of L below v. The (≤ k)-level of L consists of all vertices v which have at
most k lines of L below v. We denote the k-level by Vk(L) and its size by fk(L).
Moreover, by fk(n) we denote the maximum of fk(L) over all arrangements L of n
lines, and by f(n) = f⌊(n−2)/2⌋(n) the maximum size of the middle level.

A k-set of a finite point set P in the Euclidean plane is a subset K of k elements
of P that can be separated from P \K by a line. Paraboloid duality is a bijection
P ↔ LP between point sets and line arrangements. The number of k-sets of P
equals |Vk−1(LP ) ∪ Vn−1−k(LP )|.

In discrete and computational geometry bounds on the number of k-sets of a
planar point set, or equivalently on the size of k-levels of a planar line arrange-
ment have important applications. The complexity of k-levels was first studied by
Lovász [6] and Erdős et al. [5]. They bound the size of the k-level byO(n·(k+1)1/2).
Dey [3] used the crossing lemma to improve the bound to O(n · (k + 1)1/3). In
particular, the maximum size f(n) of the middle level is O(n4/3). Concerning
the lower bound on the complexity, Erdős et al. [5] gave a construction showing
that f(2n) ≥ 2f(n) + cn = Ω(n logn) and conjectured that f(n) ≥ Ω(n1+ε). An
alternative Ω(n logn)-construction was given by Edelsbrunner and Welzl [4]. The

current best lower bound fk(n) ≥ n · eΩ(
√
log k) was obtained by Nivasch [8]. The

complexity of the (≤ k)-level in arrangements of lines is better understood. Alon
and Györi [1] prove a tight upper bound of (k + 1)(n− k/2− 1) for its size. For
further information, we recommend the survey by Wagner [11].
Generalized Zone Theorem. In order to define “zones”, let us introduce the
notion of “distances”. For x and x′ being a vertex, edge, line, or cell of an arrange-
ment L of lines in R2 we let their distance distL(x, x′) be the minimum number
of lines of L intersected by the interior of a curve connecting a point of x with
a point of x′. Pause to note that the k-level of L is precisely the set of vertices
which are at distance k to the bottom cell.

The (≤ j)-zone Z≤j(ℓ,L) of a line ℓ in an arrangement L is defined as the set
of vertices, edges, and cells from L which have distance at most j from ℓ. See
Figure 1a for an illustration.

For arrangements of hyperplanes in Rd the (≤ j)-zone is defined similarly. The
classical zone theorem provides bounds for the complexity of the zone ((≤ 0)-
zone) of a hyperplane (cf. [7, Chapter 6.4]). A generalization with bounds for
the complexity of the (≤ j)-zone appears as an exercise in Matoušek’s book [7,
Exercise 6.4.2]. In the proof of Theorem 2 we use a variant of the 2-dimensional
case (Proposition 1).
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(a) (b)

Figure 1. a The higher order zones of a line ℓ. b The corre-
spondence between great-circles on the unit sphere and lines in a
plane. Using the center of the sphere as the center of projection
points on the sphere are projected to the points in the plane.

Proposition 1. Let L be a simple arrangement of n lines in R2 and ℓ ∈ L. The
(≤ j)-zone of ℓ contains at most 2e · (j + 1)n vertices strictly above ℓ.

Arrangements of Great-Circles. Let Π be a plane in 3-space which does not
contain the origin and let S2 be a sphere in 3-space centered at the origin. The
central projection ΨΠ yields a bijection between arrangements of great circles on
S2 and arrangements of lines in Π. Figure 1b gives an illustration.

The correspondence ΨΠ preserves interesting properties, e.g. simplicity of the
arrangements. If ΨΠ(C) = L and L has no parallel lines, then ΨΠ induces a
bijection between pairs of antipodal vertices of C and vertices of L.

As in the planar case, we define the distance between points x, y of S2 with
respect to a great-circle arrangement C as the minimum number of circles of C
intersected by the interior of a curve connecting x with y. The k-level ((≤ k)-level
resp.) of C is the set of all the vertices of C at distance k (distance at most k resp.)
from the south pole. The (≤ j)-zone of a great-circle in S2 is defined similar to
the (≤ j)-zone of a line in R2.

Let Π1 and Π2 be two parallel planes in 3-space with the origin between them
and let Ψ1 and Ψ2 be the respective central projections. For a great-circle ar-
rangement C we consider L1 = Ψ1(C) and L2 = Ψ2(C). A vertex v from the
k-level of C maps to a vertex of the k-level in one of L1, L2 and to a vertex of the
(n− k − 2)-level in the other. Hence, bounds for the maximum size of the k-level
of line arrangements carry over to the k-level of great-circle arrangements except
for a multiplicative factor of 2.

The (≤ j)-zone of a great-circle C in C projects to a (≤ j)-zone of a line in
each of L1 and L2. Hence, the complexity of a (≤ j)-zone in C is upper bounded
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by two times the maximum complexity of a (≤ j)-zone in a line arrangement.
Proposition 1 implies that the (≤ j)-zone of a great-circle C in an arrangement
of n great-circles contains at most 4e · (j + 1)n vertices in each of the two open
hemispheres bounded by C.
Higher Dimensions. The problem of determining the complexity of the k-level
admits a natural extension to higher dimensions. We consider arrangements in
Rd of hyperplanes to be simple, meaning that no d + 1 hyperplanes intersect in
a common point. Moreover, we assume that no hyperplane is parallel to the
xd-axis. The k-level of A consists of all vertices (i.e. intersection points of d
hyperplanes) which have exactly k hyperplanes of A below them (with respect
to the d-th coordinate). We denote the k-level by Vk(A) and its size by fk(A).

Moreover, by f
(d)
k (n) we denote the maximum of fk(A) among all arrangements

A of n hyperplanes in Rd.
As in the planar case, there remains a gap between lower and upper bounds;

Ω(n⌊d/2⌋k⌈d/2⌉−1) ≤ f
(d)
k (n) ≤ O(n⌊d/2⌋k⌈d/2⌉−cd),

here cd > 0 is a small positive constant only depending on d. Details and references
can be found in Chapter 11 of Matoušek’s book [7]. In dimensions 3 and 4 improved

bounds have been established. For example, for d = 3, it is known that f
(3)
k (n) ≤

O(n(k + 1)3/2) (see [9]). For the middle level in dimension d ≥ 2 an improved

lower bound f (d)(n) ≥ nd−1 · eΩ(
√
logn) is known (see [10] and [8]).

We call the intersection of Sd with a central hyperplane in Rd+1 a great-(d− 1)-
sphere of Sd. Similar to the planar case, arrangements of hyperplanes in Rd are in
correspondence with arrangements of great-(d− 1)-spheres on the unit sphere Sd

(embedded in Rd+1). The terms “distance” and “k-level” generalize in a natural
way.

1. Our Results

Our first result concerns the average complexity of the k-level in arrangements
of great-circles on S2 when the southpole is chosen uniformly at random among
the cells. This question was raised by Barba, Pilz, and Schnider while sharing a
pizza [2, Question 4.2].

We prove the following bound on the average complexity.

Theorem 2. Let C be a simple arrangement of great-circles. The expected size of
the (≤ k)-level is at most 16e · (k + 2)2 when the southpole is chosen uniformly at
random among the cells of C.

Remarkably the bound is independent of the number n of great-circles in the
arrangement.

Secondly, we investigate arrangements of randomly chosen great-circles. Here we
propose the following model of randomness. On S2 we have the duality between
points and great-circles (each antipodal pair of points defines the normal vector
of the plane containing a great-circle). Since we can choose points uniformly
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at random from S2, we get random arrangements of great-circles. The duality
generalizes to higher dimensions so that we can talk about random arrangements
on Sd for a fixed dimension d ≥ 2. Using the duality between antipodal pairs
of points on Sd and great-(d− 1)-spheres, we determine the exact asymptotics of
the expected size of the k-level in this random model. Again the bound does not
depend on the size of the arrangement.

Theorem 3. Let d ≥ 2 be fixed. In an arrangement of n great-(d − 1)-spheres
chosen uniformly at random on the unit sphere Sd (embedded in Rd+1), the expected
size of the k-level is of order Θ((k + 1)d−1) for all k ≤ n/2.
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Optimal bounds for the colorful fractional Helly theorem

Martin Tancer

(joint work with Denys Bulavka, Afshin Goodarzi)

Our starting point is the Helly theorem:

Theorem 1 (Helly’s theorem [Hel23]). Let F be a finite family of at least d + 1
convex sets in Rd. Assume that every subfamily of F with exactly d+ 1 members
has a nonempty intersection. Then all sets in F have a nonempty intersection.

Helly’s theorem admits numerous extensions and two of them, important in
our context, are the fractional Helly theorem and the colorful Helly theorem. The
fractional Helly theorem of Katchalski and Liu covers the case when only some
fraction of the d+ 1 tuples in F has nonempty intersection.

http://arXiv.org/abs/1904.02502
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Theorem 2 (The fractional Helly theorem [KL79]). For every α ∈ (0, 1] and every
non-negative integer d, there is β = β(α, d) ∈ (0, 1] with the following property.
Given a finite family F of n ≥ d + 1 convex sets in Rd such that at least α

(
n

d+1

)

of the subfamilies of F with exactly d + 1 members have a nonempty intersec-
tion. Then there is a subfamily of F with at least βn members with a nonempty
intersection.

An interesting aspect of the fractional Helly theorem is not only to show the
existence of β(α, d) but also to provide the largest value of β(α, d) with which the
theorem is valid. This has been resolved independently by Kalai [Kal84] and by
Eckhoff [Eck85] showing that the fractional Helly theorem holds with β(α, d) =
1− (1−α)1/(d+1). (There is a simple construction showing that β(α, d) cannot be
improved beyond this bound.)

The colorful Helly theorem of Lovász covers the case where the sets are colored
by d + 1 colors and only the ‘colorful’ (d + 1)-tuples of sets in F are considered.
Given families F1, . . . ,Fd+1 of sets in Rd a family of sets {F1, . . . , Fd+1} is a colorful
(d + 1)-tuple if Fi ∈ Fi for i ∈ [d + 1], where for a non-negative integer n ≥ 1 we
use the notation [n] := {1, . . . , n}. (The reader may think of F from preceding
theorems decomposed into color classes F1, . . . ,Fd+1.)

Theorem 3 (The colorful Helly theorem [Lov74, Bár82]). Let F1, . . . ,Fd+1 be
finite nonempty families of convex sets in Rd. Let us assume that every colorful
(d+ 1)-tuple has a nonempty intersection. Then one of the families F1, . . . ,Fd+1

has a nonempty intersection.

Both the colorful Helly theorem and the fractional Helly theorem with optimal
bounds imply the Helly theorem. The colorful one by setting F1 = · · · = Fd+1 = F
and the fractional one by setting α = 1 giving β(1, d) = 1.

The preceding two theorems can be merged into the following colorful fractional
Helly theorem due to Bárány, Fodor, Montejano, Oliveros and Pór:

Theorem 4 (The colorful fractional Helly theorem [BFM+14]). For every α ∈
(0, 1] and every non-negative integer d, there is βcol = βcol(α, d) ∈ (0, 1] with the
following property. Let F1, . . . ,Fd+1 be finite nonempty families of convex sets in
Rd of sizes n1, . . . , nd+1 respectively. If at least αn1 · · ·nd+1 of the colorful (d+1)-
tuples have a nonempty intersection, then there is i ∈ [d+1] such that Fi contains
a subfamily of size at least βcolni.

Bárány et al. proved the colorful fractional Helly theorem with the value
βcol(α, d) = α

d+1 and they used it as a lemma [BFM+14, Lemma 3] in a proof

of a colorful variant of a (p, q)-theorem. Despite this, the correct bound for βcol

seems to be of independent interest. In particular, the bound on βcol has been
subsequently improved by Kim [Kim17] who showed that the colorful fractional
Helly theorem is true with βcol(α, d) = max{ α

d+1 , 1 − (d + 1)(1 − α)1/(d+1)}. On

the other hand, the value of βcol(α, d) cannot go beyond 1− (1−α)1/(d+1) because
essentially the same example as for the standard fractional Helly theorem applies
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in this setting as well. (Kim [Kim17] provides a slightly different upper bound
example showing the same bound.)

Coming back to the lower bound on βcol(α, d), Kim explicitly conjectured that
1 − (1 − α)1/(d+1) is also a lower bound, thereby an optimal bound for the color-
ful fractional Helly theorem. He also provides a more refined conjecture [Kim17,
Conjecture 4.2] which implies this lower bound. We are able to prove the re-
fined conjecture which therefore indeed gives the optimal bounds for the colorful
fractional Helly theorem.

Theorem 5 (The optimal colorful fractional Helly theorem). Let F1, . . . ,Fd+1 be
finite nonempty families of convex sets in Rd of sizes n1, . . . , nd+1 respectively. If
at least αn1 · · ·nd+1 of the colorful (d + 1)-tuples have a nonempty intersection,
for α ∈ (0, 1], then there is i ∈ [d+ 1] such that Fi contains a subfamily of size at
least (1− (1− α)1/(d+1))ni.

In the proof we follow the exterior algebra approach which has been used by
Kalai [Kal84] in order to provide optimal bounds for the standard fractional Helly
theorem. We have to upgrade Kalai’s proof to the colorful setting. This requires
guessing the right generalization of several steps in Kalai’s proof. However, we
honestly admit that after making these ‘guesses’ we follow Kalai’s proof quite
straightforwardly.
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[BFM+14] I. Bárány, F. Fodor, L. Montejano, D. Oliveros, and A. Pór. Colourful and fractional
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Polygons with Prescribed Angles in 2D and 3D

Csaba D. Tóth

(joint work with Alon Efrat, Radoslav Fulek, and Stephen Kobourov)

We consider the construction of a polygon P with n vertices whose turning an-
gles at the vertices are given by a sequence A = (α0, . . . , αn−1). Straight-line
realizations of graphs with given metric properties have been one of the earliest
applications of graph theory. We extend research on the so-called angle graphs,
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introduced by Vijayan [4] in the 1980s, which are geometric graphs with prescribed
angles between adjacent edges.

In the plane, an angle sequence A is a sequence (α0, . . . , αn−1) of real numbers
such that αi ∈ (−π, π) for all i ∈ {0, . . . , n − 1}. Let P ⊂ R2 be an oriented
polygon with n vertices v0, . . . , vn−1 that appear in the given order along P , which
is consistent with the given orientation of P . The turning angle of P at vi is the
angle in (−π, π) between the vector vi − vi−1 and vi+1 − vi.

The oriented polygon P realizes the angle sequence A if the turning angle of
P at vi is equal to αi, for i = 0, . . . , n − 1. A polygon P is generic if all its self-
intersections are transversal (that is, proper crossings), vertices of P are distinct
points, and no vertex of P is contained in a relative interior of an edge of P .
Following the terminology of Viyajan [4], an angle sequence is consistent if there
exists a generic closed polygon P with n vertices realizing A. For a polygon P that
realizes an angle sequence A = (α0, . . . , αn−1) in the plane, the total curvature of

P is TC(P ) =
∑n−1

i=0 αi, and the turning number (also known as rotation number)
of P is tn(P ) = TC(P )/(2π); it is known that tn(P ) ∈ Z in the plane [3].

The crossing number, denoted by cr(P ), of a generic polygon is the number
of self-crossings of P . The crossing number of a consistent angle sequence A is
the minimum integer c, denoted by cr(A), such that there exists a generic polygon
P ∈ R2 realizing A with cr(P ) = c. Our first main results is the following theorem.

Theorem 1. For a consistent angle sequence A = (α0, . . . , αn−1) in the plane,

cr(A) =

{

1 if
∑n−1

i=0 αi = 0,

|k| − 1 if
∑n−1

i=0 αi = 2kπ and k 6= 0.

The lower bound follows from a result by Grünbaum and Shepard [2, Theo-
rem 6], using a decomposition due to Wiener [5].

In d-space, d ≥ 3, the sign of a turning angle no longer plays a role: The
turning angle of an oriented polygon P at vi is in (0, π), and an angle sequence
A = (α0, . . . , αn−1) is in (0, π)n. By the discrete version of Fenchel’s theorem [3,

Theorem 2.4], we have
∑n−1

i=0 αi ≥ 2π if A is realizable in Rd for any d ≥ 2.
The unit-length direction vectors of the edges of P determine a spherical polygon

P ′ in Sd−1. Note that the turning angles of P correspond to the spherical lengths
of the segments of P ′. It is not hard to see that this observation reduces the
problem of realizability of A by a polygon in Rd to the problem of realizability
of A by a spherical polygon in Sd−1, in the sense defined below, that additionally
contains the origin 0 in the interior of its convex hull.

Let S2 ⊂ R3 denote the unit 2-sphere. A spherical polygon P ⊂ S2 is a closed
curve consisting of finitely many spherical segments; and a spherical polygon P =
(u0, . . . ,un−1), ui ∈ S2, realizes an angle sequence A = (α0, . . . , αn−1) if the
spherical segment (ui−1,ui) has (spherical) length αi, for every i. The turning
angle of P at ui is the angle in [0, π] between the tangents to S2 at ui that
are co-planar with the great circles containing (ui,ui+1) and (ui,ui−1). Unlike
for polygons in R2 and R3, we do not put any constraints on turning angles of
spherical polygons (i.e., angles 0 and π are allowed).
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Regarding realizations of A by spherical polygons, we prove the following.

Theorem 2. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists

a generic polygon P ⊂ R3 realizing A if and only if
∑n−1

i=0 αi ≥ 2π and there
exists a spherical polygon P ′ ⊂ S2 realizing A. Furthermore, P can be constructed
efficiently if P ′ is given.

Theorem 3. There exists a constructive weakly polynomial-time algorithm to test
whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a spherical
polygon P ′ ⊂ S2.

A simple exponential-time algorithm for realizability of angle sequences by
spherical polygons follows from a known characterization [1, Theorem 2.5], which
also implies that the order of angles in A does not matter for the spherical realiz-
ability. The combination of Theorems 2 and 3 yields our second main result.

Theorem 4. There exists a constructive weakly polynomial-time algorithm to test
whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a polygon
P ⊂ R3.

It remains an open problem to find an efficient algorithms that computes the
minimum number of crossings in generic realizations. The evidence that we have
points to the following conjecture, whose “only if” part we can prove.

Conjecture 5. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence that can be
realized by a polygon in R3. The sequence A can be realized by a polygon in R3

without self-intersections if and only if n is even or
∑n−1

i=0 (π − αi) 6= π.

It can be seen that Conjecture 5 is equivalent to the claim that every realization
A in R3 has a self-intersection if and only if A can be realized in R2 as a thrackle,
that is, a polygon where every pair of nonadjacent edges cross each other.
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Connectivity of triangulation flip graphs in the plane

Emo Welzl

(joint work with Uli Wagner)

Given a finite point set P in general position in the plane, a full triangulation of
P is a maximal straight-line embedded plane graph on P . A partial triangulation
of P is a full triangulation of some subset P ′ of P containing all extreme points
in P . A bistellar flip on a partial triangulation either flips an edge (called edge
flip), removes a non-extreme point of degree 3, or adds a point in P \P ′ as vertex
of degree 3. The bistellar flip graph has all partial triangulations as vertices,
and a pair of partial triangulations is adjacent if they can be obtained from one
another by a bistellar flip. The edge flip graph is defined with full triangulations
as vertices, and edge flips determining the adjacencies. Lawson [2] showed in the
early seventies that these graphs are connected. Our goal is to investigate the
structure of these graphs, with emphasis on their vertex connectivity.

For sets P of n points in the plane in general position, we show that the edge
flip graph is ⌈n

2 − 2⌉-vertex connected [5], and the bistellar flip graph is (n −
3)-vertex connected [6]; both results are tight and resolve, for sets in general
position, a question asked in [3]. The latter bound matches the situation for the
subfamily of regular triangulations (i.e., partial triangulations obtained by lifting
the points to 3-space and projecting back the lower convex hull), where (n − 3)-
vertex connectivity has been known since the late eighties through the secondary
polytope due to Gelfand, Kapranov & Zelevinsky [1], and Balinski’s Theorem. For
the edge flip-graph, we additionally show that the vertex connectivity is at least
as large as (and hence equal to) the minimum degree (i.e., the minimum number
of flippable edges in any full triangulation), provided that n is large enough.

Our methods also yield several other results: (i) The edge flip graph can be
covered by graphs of polytopes of dimension ⌈n

2 − 2⌉ (products of associahedra)
and the bistellar flip graph can be covered by graphs of polytopes of dimension n−3
(products of secondary polytopes). (ii) A partial triangulation is regular, if it has
distance n−3 in the Hasse diagram of the partial order of partial subdivisions from
the trivial subdivision. (iii) All partial triangulations of a point set are regular iff
the partial order of partial subdivisions has height n−3. (iv) There are arbitrarily
large sets P with non-regular partial triangulations and such that every proper
subset has only regular triangulations, i.e. there are no small certificates for the
existence of non-regular triangulations.

A natural next question in the plane is to show expansion properties of the flip
graphs, ideally yielding rapid mixing of the process of flipping random edges.

The question of whether flip graphs in higher dimensions are connected re-
mained a mystery until Santos [4] showed in 2000, that in dimension 5 and higher,
there exist point sets for which the graph (for bistellar flips) is not connected. The
question is open in dimensions 3 and 4.
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Representability of c-arrangements

Geva Yashfe

(joint work with Lukas Kühne)

A matroid M with rank function r is said to be representable as a c-arrangement
if the polymatroid c · r is representable. Previously, in [2], we studied the rep-
resentability of matroids as c-arrangements, and showed the following problem is
undecidable: Let F be a field. Given a matroid M , decide whether there exists
c ∈ N such that M is representable as a c-arrangement over F. This talk presented
a strengthening of this result ([3]) to limits of polymatroid rank functions, proved
using refinements of the same techniques. We showed the following problem is un-
decidable: Fix a field F. The input is a finite set E and a matroidal rank function
r : 2E → N. The problem is to decide whether there exist representable polyma-
troidal rank functions {ri}∞i=1, where ri : 2E → N, together with a sequence of
integers {ci}∞i=1, such that

∀S ⊆ E : lim
i→∞

ri(S)

ci
= r(S).

One motivation for studying this limit problem is an application to rank inequal-
ities. These are linear inequalities on the values of the rank function which any
representable matroidal (or polymatroidal) rank function satisfies. For example,
Ingleton’s inequalities state that if r is representable, then for any A1, . . . , A4 ⊆ E:

r(A1) + r(A2) + r(A1 ∪ A2 ∪ A3) + r(A1 ∪ A2 ∪ A4) + r(A3 ∪ A4) ≤
r(A1 ∪ A2) + r(A1 ∪ A3) + r(A1 ∪ A4) + r(A2 ∪ A3) + r(A2 ∪ A4).

Kinser [1] asked several general questions about representable polymatroids. We
answer some of these, showing:

• Not every rational polymatroid which satisfies all rank inequalities has a
representable multiple.
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• The set of all rank inequalities cannot be classified into a finite number of
families, each of which is finite when restricted to the ground set [n] and
computable in a suitable sense.

The proof encodes word problems for sofic groups in limit representation problems
for matroids (the decision problems described above). The main construction used
is similar to the one in [2].
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The ǫ-t-Net Problem

Yelena Yuditsky

(joint work with Noga Alon, Bruno Jartoux, Chaya Keller and
Shakhar Smorodinsky)

We study a natural generalization of the classical ǫ-net problem (Haussler–Welzl
1987 [1]), which we call the ǫ-t-net problem: Given a hypergraph on n vertices
and parameters t and ǫ ≥ t

n , find a minimum-sized family S of t-element subsets
of vertices such that each hyperedge of size at least ǫn contains a set in S. When
t = 1, this corresponds to the ǫ-net problem.

We prove that any sufficiently large hypergraph with VC-dimension d admits

an ǫ-t-net of size O( (1+log t)d
ǫ log 1

ǫ ). For some families of geometrically-defined

hypergraphs, we prove the existence of O(1ǫ )-sized ǫ-t-nets. For example the dual
hypergraph defined with respect to points and pseudo-disks in the plane, and more
generally, the dual hypergraph of regions with linear union complexity.

We also present an explicit construction of ǫ-t-nets (including ǫ-nets) for hy-
pergraphs with bounded VC-dimension. In comparison to previous constructions
for the special case of ǫ-nets (i.e., for t = 1), it does not rely on advanced de-
randomization techniques. To this end we introduce a variant of the notion of
VC-dimension which is of independent interest.

Finally, we use our techniques to generalize the notion of ǫ-approximation and
to prove the existence of small-sized ǫ-t-approximations for sufficiently large hy-
pergraphs with a bounded VC-dimension.

We present a few applications for the ǫ-t-nets. For example, for the Turán
problem in hypergraphs, edge colorings of hypergraphs and secret sharing.

References

[1] D. Haussler, E. Welzl: Epsilon-nets and simplex range queries, Discrete and Computational
Geometry 2, (1987), 127–151.
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Cutting cakes with topological Hall

Shira Zerbib

(joint work with Ron Aharoni, Eli Berger, Joseph Briggs, Erel Segal-Halevi,
Shira Zerbib)

An instance of the cake division problem consists of some resource (called cake),
identified with the unit interval, that is to be partitioned into interval parts (called
pieces), with the aim of distributing the parts among agents (sometimes also called
players). A partition of the cake divides it into intervals I1, . . . , In of respective
lengths x1, . . . , xn, from left to right. Since

∑n
j=1 xj = 1, the partition can be

identified with the element ~x = (x1, . . . , xn) in the (n − 1)-dimensional simplex
∆n−1. The interval Ij = Ij(~x) is called the j-th piece.

Each agent i assigns to each partition ~x a nonempty set Li(~x) of indices of pieces
she prefers (that is, finds at least as good as the other pieces). An allocation of
pieces from ~x among the agents is called fair, or envy-free, if every agent i receives
a piece Ij with j ∈ Li(~x), and the pieces the agents receive are distinct.

Let Ai
j = {~x | j ∈ Li(~x)}. Two conditions are assumed for every fixed i:

(a) Ai
j is a closed set for every j.

(b) (“hungry players”) For every partition ~x the set Li(~x) contains at least
one index j with xj 6= 0.

In this talk we are interested in the multiple cake division problem, in which
the resource consists of multiple copies Ci, i ≤ k of the unit interval, that are each
to be partitioned into a number ai of pieces. Each agent is to be given a k-tuple
of pieces, one piece per Ci. Each agent assigns to each k-tuple of partitions a
nonempty set of preferred k-tuples of pieces, at least one of which consists entirely
of nonempty pieces. As we shall see, in the general case it is not always possible
in this case to satisfy all players. But we shall ask how many players can be made
happy. That is — what is the maximum, over all k-tuples of partitions, of the
number of players that can receive a k-tuple of pieces they prefer.

The classical fair division theorem due to Stromquist [7] and Woodall [8], states
that for k = 1 envy-free division into n pieces between n agents is always pos-
sible. This theorem can be proved using topological methods, and Meunier and
Su [4] recently gave a new topological proof of this result. We use their approach
to reduce the fair division problem with k cakes to a problem on matchings in
(k+1)-uniform hypergraphs, where the reduction is one-directional: the existence
of a matching in a hypergraph satisfying certain conditions implies the possibil-
ity of satisfying a large number of agents. We shall use a topological version of
Hall’s theorem Due to Aharoni and Haxell [1], to obtain results on the matchings
problem, and thereby also on fair division of multiple cakes.

Below, we summarize some of the known results, and our contribution. We
write (n; a1, a2, . . . , ak)  m, for m ≤ n, if for every instance of the fair division
problem with n agents and k cakes, where cake j is partitioned into aj parts, there
exists such a partition of the cakes and an envy-free division to a set of agents of
size m.



Discrete Geometry 51

The Stromquist-Woodall theorem is that

Theorem. For all n ≥ 1: (n;n) n,

For k > 1 the analogous result is false. An example with k = 2 (two cakes),
n = 2 (two agents), and partitions of each cake into 2 pieces, in which there is no
envy-free division satisfying both players, was given in [2]. In our notation, this
result says: (2; 2, 2) 6 2. Some other known results are:

Theorem.

• (2; 2, 3) 2 and (3; 2, 2) 2 [2].
• (3; 5, 5) 3 [3].
• (p;n, . . . , n

︸ ︷︷ ︸

k times

) 
⌈

p
2k(k−1)

⌉
whenever p ≤ k(n− 1) + 1, and

• (p;n, . . . , n
︸ ︷︷ ︸

k times

) 
⌈

p
k(k−1)

⌉
if p divides k(n− 1) + 1 [5].

• In particular, (2n− 1;n, n) n.

The simplest and possibly most attractive case of the  relation is that of
(n;n, ∗), namely when there are n players, and one of the two cakes is partitioned
into n pieces. One question is then into how many pieces should the second cake
be partitioned in order to make all n agents envy free — what p > n guarantees
(n;n, p) n. We show that p = n2 − n/2 suffices, and p = 2n− 2 does not. We
also prove results of the form (n;n, p) m, for various values of p. Additionally,
we show that the result of [5], (2n − 1;n, n)  n, is sharp in the sense that
(2n− 2;n, n) 6 n. Our results are:

• (n;n, rn) 
⌈

⌊2r⌋n
⌊2r⌋+2

⌉

and (n;n, rn) 
⌈

2rn
⌈2r⌉+2

⌉

for every r ≥ 1 such that

rn is an integer. In particular:
– (n;n, n2 − n/2) n (generalizing the result (2, 2, 3) 2 from [2]).
– (n;n,

(
n
2

)
) n− 1.

– (n;n, 2n− 1) max
(⌈

2n−1
3

⌉
,
⌈
3n
5

⌉)
.

• (n;n, n+ 1) 
⌈
n+1
2

⌉
.

• (n; 2n− 1, 2n− 1) n (generalizing the result (3; 5, 5) 3 from [3]).
• (2n−2;n, n) 6 n (showing sharpness of the result (2n−1;n, n) n from
[5]).

• (n;n, 2n− 2) 6 n (generalizing the result (2; 2, 2) 6 2 from [2]).
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Open Problems in Discrete Geometry

Collected by Günter Rote

PROBLEM 1 (Karim Adiprasito). Repeated halving of simplices

Start with a d-dimensional simplex. Subdivide the longest edge and cut the simplex
into two simplices of half the area. Repeat the process recursively with both halves
ad infinitum. (The result is in general not a face-to-face decomposition.)

We assume that the starting simplex is sufficiently generic, so that there is never
a tie in choosing the longest edge.

In dimensions 2 and 3, this process stabilizes after finitely many iterations in
the sense that every new simplex is homothetic to one of the simplices that have
already been seen. In dimension 4, this is true provided that one starts with a
suitable starting simplex: a generically perturbed orthoscheme.

Question. Does this stabilizing behavior occur for any starting simplex, in any
dimension?

Or, on the contrary, can this process lead to arbitrarily badly shaped simplices,
where the ratio between the inradius and the circumradius approaches 0?

The question has applications in scientific computing.

PROBLEM 2 (Gil Kalai). Complicated intersections

Consider a fixed real algebraic variety N in Rd, and real algebraic varieties M of
a certain type.

We are looking for general statement of the form: If all intersections between
M and affine transformations of N are “complicated” then the dimension of the
affine hull of M is “small”.

The model statement for this is the Sylvester–Gallai Theorem: Here, M is a set
of points and N is a line. If all nontrivial intersections have more then 2 points,
then the affine hull of M has dimension 1.

PROBLEM 3 (Tomasz Szemberg). Absolute linear Harbourne constants

Harbourne constants have been introduced in connection with the Bounded Neg-
ativity Conjecture in algebraic geometry [1]. However, they can be considered
purely combinatorially.
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Let K be a field and L be a set of d lines in the projective plane P2(K). Let
{P1, . . . , Ps} be the set of points where at least two lines of L intersect, and let
mi be the number of lines passing through Pi.

The rational number

H(K,L) = d2 −∑s
i=1 m

2
i

s

is the Herbourne constant of the arrangement L.
Taking the minimum over all arrangements of d lines in P2(K), we obtain the

linear Harbourne constant of d lines over K

H(K, d) = min
|L|=d

H(K,L).

Finally, taking the minimum over all fields K we arrive at the absolute linear
Harbourne constant of d lines

H(d) = min
K

H(K, d).

Question. Compute the numbers H(d).

This has been done for 1 ≤ d ≤ 31 and for d of the form d = q2 + q+1 [2]. The
article contains also a conjectural formula for these numbers.

[1] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, and T. Szemberg,
Bounded negativity and arrangements of lines, Int. Math. Res. Not. IMRN 19 (2015), 9456–
9471.

[2] M. Dumnicki, D. Harrer, and J. Szpond, On absolute linear Harbourne constants, Finite
Fields Appl. 51 (2018), 371–387.

PROBLEM 4 (Tomasz Szemberg). Projective plane of order 10

A computer proof of the non-existence of a projective plane of order 10 was an-
nounced in 1989 [1]. Has this proof ever been independently verified?

Note. (Konrad Swanepoel) It seems that the non-existence of a projective plane
of order 10 was independently checked as described in a M.Sc. thesis from 2010 [3].
There are other verifications of parts of the search [2].

Curtis Bright and coworkers are busy using SAT solvers to produce more rig-
orous computer-based proofs, see https://cs.uwaterloo.ca/~cbright/#writings.
There is no complete formal proof yet, but it looks as if this is not very far away. The
most enlightening of his papers is [4].

[1] C. W. H. Lam, L. Thiel and S. Swiercz, The nonexistence of finite projective planes of
order 10. Canad. J. Math. 41 (1989), 1117–1123.

[2] X. Perrott, Existence of projective planes, arXiv:1603.05333, (2016).
[3] D. J. Roy, Confirmation of the non-existence of a projective plane of order 10, Master’s

dissertation, Carleton University, 2010.
[4] C. Bright, A SAT-based Resolution of Lam’s Problem,

https://cs.uwaterloo.ca/~cbright/reports/lams-preprint.pdf, September 2020.

PROBLEM 5 (Luis Montejano). Sections that are bodies of revolution

If all hyperplane sections of a convex body of dimension at least 4 are either single
points or bodies of revolution, prove that the body is itself a body of revolution.

https://cs.uwaterloo.ca/~cbright/#writings
https://doi.org/10.4153/CJM-1989-049-4
http://arxiv.org/abs/1603.05333
https://cs.uwaterloo.ca/~cbright/reports/lams-preprint.pdf
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PROBLEM 6 (Gil Kalai). 4-polytopes with dense graphs

Suppose a simplicial 4-polytope P with n vertices has the property that, among
every three vertices, at least two of them are joined by an edge. Does it follow
that the graph of P contains a “large” complete subgraph, say, of size n/10?

PROBLEM 7 (Arseniy Akopyan).
Unbalanced ham-sandwich cuts for spherical caps

We are given two continuous probability measures on the 2-dimensional sphere
and a parameter 0 < α < 1/2. Is there always a spherical cap (intersection with a
half-space) that has measure α for both measures?

PROBLEM 8 (Raphael Steiner).
Bichromatic triangles in arrangements of pseudolines

A pseudoline is a non-self-intersecting infinite curve in R2 dividing the plane into
two connected components. A simple arrangement of pseudolines is a set of pseu-
dolines such that any two distinct pseudolines intersect in a point, and no point is
contained in three or more pseudolines.

Question. In a simple arrangement of red and blue pseudolines, is there always a
bounded triangular face that is incident to a red and a blue pseudoline?

It is easy to see that this is true for planar line arrangements. It holds also for
the more general class of approaching pseudoline arrangements [1].

[1] Stefan Felsner, Alexander Pilz, and Patrick Schnider, Arrangements of approaching pseudo-
lines. arXiv:2001.08419, (2020).

PROBLEM 9 (Balázs Keszegh). Hereditary polychromatic k-colorings

For a hypergraph H denote by mk the smallest number for which we can k-color
the vertices such that on every hyperedge of size at least mk, all k colors appear.
Denote by m∗

k the maximum of mk over every induced subhypergraph of H.
Berge showed that if for a hypergraph m∗

2 = 2 then m∗
k = k for all k. What

about larger m∗
2? Does m∗

2 = 3 imply that m∗
3 is finite?

PROBLEM 10 (Emo Welzl). Minimum number of partial triangulations

A partial triangulation of a set of n points in the plane is a triangulation of the
convex hull that may use the interior points as vertices, but does not have to use
all of them.

Question. What is the smallest number of partial triangulations that a set of n
points in general position can have? Is it the Catalan number Cn−2 = 1

n−1

(
2n−4
n−2

)
?

For full triangulations, where all interior points have to be used, smallest known

number of full triangulations, roughly
√
12

n
, is obtained by the so-called double

circle, which is constructed by putting an interior point near the midpoint of every
edge of a regular n

2 -gon. By contrast, n points in convex position have Cn−2 ∼ 4n

full (or equivalently, partial) triangulations. Interestingly, the double circle has
exactly the same number Cn−2 of partial triangulations.

http://arxiv.org/abs/2001.08419
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PROBLEM 11 (Karim Adiprasito).
The compact part of a polyhedral subdivision

Take a polyhedral subdivision of R3 into finitely many parts, none of which con-
tains a line, and look at the union of all bounded faces. This set is contractible.
Is it collapsible?

PROBLEM 12 (Stefan Langerman).
The centerpoint constant for complete intersections

For every set of n lines in the plane, there is a point p such that for every halfspace
H containing p there is a subset of at least

√

n/3 of lines all of whose intersections
lie in H . There are examples that show that the bound cannot be improved to
more than

√
n. What is the right constant?

PROBLEM 13 (Gil Kalai). Sets consisting of two convex pieces

Suppose there is a family of sets in d dimensions, each of which is the disjoint union
of two nonempty closed convex sets. Moreover, the intersection of any 2, 3, . . . or
d+1 sets from the family has the same property of consisting of exactly two convex
pieces. Does it follow that the whole family has a nonempty intersection?

Micha Perles constructed an example that shows that the statement is not true
in the plane if the number “two” of convex pieces is replaced by 48.

PROBLEM 14 (Michael Dobbins). Extending piecewise-linear maps from
the boundary to the interior in a continuous manner

Take a fixed reference triangle ABC, and consider a piecewise-linear (PL) one-to-
one map from the boundary of the triangle ABC into the plane (in other words,
a PL parameterization of a simple polygon).

Such a map can be easily extended to a PL one-to-one map from whole trian-
gular area ABC into the plane.

Can this be done in a way that depends continuously on the boundary map?
In other words, is there a continuous function that assigns to every PL one-to-one
map ∂ABC → R2 a PL one-to-one map ABC → R2 extending it?

Reporter: Johanna Kristina Steinmeyer
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Institut de Mathématiques de Jussieu -
Paris Rive Gauche
Sorbonne Université
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11800 Praha 1
CZECH REPUBLIC

Dr. Zuzana Patáková
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