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Introduction by the Organizers

The workshop Homogeneous Structures: Model Theory meets Universal Alge-
bra, organised by Manuel Bodirsky (Dresden), Joanna Ochremiak (Talence) and
Michael Pinsker (Vienna/Prague), was held 2021, January 3-9. Due to the COVID-
19 restrictions, the 54 participants had to meet virtually. The program featured 3
tutorials, each consisting of two talks, 12 one-hour talks as well as an open problem
session.

Many fundamental mathematical first-order structures, such as the order of
the rational numbers or the random graph, are homogeneous in the sense that
isomorphisms between finite or finitely generated substructures can be extended
to automorphisms of the entire structure. Homogeneous structures can be built
systematically as limits of classes of finite structures. That way, a class of finite
structures is stored in a single homogeneous structure, and can be investigated
via that structure from the viewpoint of model theory or, more recently, universal
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algebra. This perspective has found many applications in computer science, for
example in constraint satisfaction, automata theory, and verification.

Because of their high degree of symmetry, homogeneous structures tend to
have large automorphism groups. Their abstract and topological properties make
these groups an extremely interesting topic in topological dynamics with many
recent developments, for example the connection between extreme amenability
and the Ramsey property of classes of finite structures due to Kechris, Pestov,
and Todorčević.

For some of the applications of homogeneous structures in computer science, the
automorphism group does not store enough information about the homogenous
structure, and one has to instead study the richer polymorphism clone of the
structure. This is the place where universal algebra enters the picture.

Universal algebra has achieved a series of milestone results in the past years
regarding the equational structure of polymorphism clones of finite structures.
This development culminated in 2017 in a proof of the Feder-Vardi dichotomy
conjecture from theoretical computer science, obtained independently by Bulatov
and Zhuk. Their result states that every finite structure either has a constraint
satisfaction problem that can be solved in polynomial time, or is NP-complete. A
similar conjecture exists in the context of homogeneous structures, but is open in
spite of emerging results on the structure of their polymorphism clones.

The aim of the workshop was to carry the recent successful structural advances
of universal algebra from finite structures to infinite structures with large auto-
morphism groups. Such an enterprise requires a joint effort of model theory and
universal algebra.

The addition of universal algebra to model theory allows for a finer distinction
between structures than is classically envisaged in model theory. Such a finer-
grained analysis of structures is, on the one hand, necessary for applications of
homogeneous structures in theoretical computer science, but has on the other
hand also led to the development of new useful methods for obtaining results
which belong to classical model theory, such as the classification of reducts of a
fixed structure.

Conversely, model theoretic concepts and methods appear naturally in universal
algebra when investigating the equational structure of infinite algebras rather than
finite ones. This is, in particular, true for the polymorphism algebras which are
naturally induced by homogeneous structures.

Finally, very recent results have shown that the equations which hold in the
polymorphism clone of a structure are directly linked to the structure of its au-
tomorphism group. In other words, the connection between model theory and
universal algebra not only consists of applications of one field in the other one,
but certain seemingly unrelated properties of structures from the two fields turn
out to be tied closely together. This tight connection is an astonishing new dis-
covery whose full meaning is yet to be unveiled.
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Achieving the fusion between model theory and universal algebra has many
facets, touching infinite permutation groups, topological dynamics, Ramsey theory,
and core questions in universal algebra.

The following is a list of key concepts which defined the scope of the workshop:

• Equational theory of polymorphism clones of homogeneous structures;
• Equations as fixed points of certain actions of algebras (so-called “loop
lemmata”); possible links with fixed point phenomena of group actions;

• Connections between the equational theory of polymorphism clones of a
structure and the structure of its automorphism group;

• Reconstruction of the topology of automorphism groups, endomorphism
monoids, and polymorphism clones of homogeneous structures;

• Classifications of homogeneous structures in various restricted signatures;
• Precompact Ramsey expansions of homogeneous structures ;
• First-order reducts of homogeneous structures with finite relational signa-
ture;

• Classifications of structures with small orbit growth.

Three tutorials brought together the two communities assembled by the work-
shop: L. Barto outlined the fundamental concepts of universal algebra as well as
more sophisticated tools which were frequently used or referenced in subsequent
talks. P. Simon covered the model theory side, focusing on the concept of ω-
categorical structures (which becomes central as soon as algebraic methods are to
be employed) and in particular on NIP structures which are homogeneous in a
finite language and hence ω-categorical. The third tutorial given by M. Bodirsky
and M. Pinsker already showcased the interplay between the two fields, introducing
oligomorphic clones: The notion of a clone is an algebraic one, whereas oligomor-
phicity can be seen as arising from model theory via ω-categorical structures. If
the clone additionally contains the automorphism group of a structure which is
homogeneous in a finite language, particularly strong results arise.

P. Mayr talked about the connection between varieties generated by finite sim-
ple Mal’cev algebras and Boolean powers as well as about Boolean powers arising
as Fräıssé limits. S. Braunfeld surveyed several results in which cellular structures
form a dividing line in combinatorial problems and reported on connections to
other model-theoretic properties. Ramsey classes were treated by J. Hubička who
gave new conditions for a class of structures to be Ramsey or to at least have a
Ramsey expansion. M. Valeriote’s talk was algebraic in nature treating a corre-
spondence between near unanimity terms and systems of projections of a single
subalgebra of a direct product, and also giving an application in constraint satis-
faction. I. Kaplan reported on additional evidence to support a positive answer
to a question by D. Macpherson about the connection between NIP and the strict
order property of a structure and its automorphism group not having ample gener-
ics. Equationally complete theories were taken up by K. Kearnes who surveyed
several new results, in particular partial classifications. A. Mottet presented a new
technique in the algebraic approach to constraint satisfaction problems on infinite
templates and showed how it can be used to confirm the dichotomy conjecture for
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certain classes of structures as well as to recognise within those classes the CSPs
solvable by local consistency checking. A. Pongrácz suggested tackling the Thomas
Conjecture – any countable homogeneous structure has only finitely many reducts
up to first-order interdefinability – by looking at the stronger assertion that the
number of reducts up to existential interdefinability be finite as well. G. Paolini
spoke about the reconstruction of structures from their automorphism groups and
gave an overview of results involving the strong small index property. Returning
to computational problems, A. Bulatov’s talk focused on the Ideal Membership
Problem and showed how the algebraic approach to CSPs can be translated to
IMPs. D. Zhuk explained how strong subalgebras, a central notion in his proof
of the CSP dichotomy conjecture, can be used to obtain results about the com-
plexity of CSPs as well as universal algebraic results not directly related to CSPs.
Finally, D. Macpherson reported on a Fräıssé construction of a specific type of
Jordan permutation group which has not been exhibited before.
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Abstracts

Tutorial on Universal Algebra (2 talks)

Libor Barto

The aim of the tutorial is to explain the fundamental concepts and theorems of
universal algebra, and to sketch main ideas of the more advanced tools. The selec-
tion of material is heavily biased toward the mathematics of constraint problems
over finite templates.

The first part of the tutorial is devoted to the basics. We start by discussing
two viewpoints on the subjects: universal algebra can be regarded as model the-
ory without relational symbols (this is the standard, textbook presentation) but
also as a generalization of the permutation group theory from unary functions to
functions of higher arity. We focus on the second viewpoint and describe some
fundamental concepts and theorem in this language: clones, free algebras, the
connection between clones and pp-definitions, and the connection among clone
homomorphisms, algebraic constructions, and pp-interpretations [2].

The second part of the tutorial introduces the main concepts and ideas of four
more advanced tools: the tame congruence theory [4] that studies the structure
of algebras using small images of unary polynomial operations, the commutator
theory [5] that generalizes concepts related to abelianess from group theory to
general algebras, Bulatov’s theory [3] that studies algebras via their two-generated
subalgebras, and the absorption theory [1] that is based on a concept resembling
ideals in rings.

References

[1] Libor Barto and Marcin Kozik. Absorption in universal algebra and CSP. In The constraint
satisfaction problem: complexity and approximability, volume 7 of Dagstuhl Follow-Ups,
pages 45–77. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.
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The constraint satisfaction problem: complexity and approximability, volume 7 of Dagstuhl
Follow-Ups, pages 1–44. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.

[3] Andrei A. Bulatov. Graphs of relational structures: Restricted types. In Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, page
642–651, New York, NY, USA, 2016. Association for Computing Machinery.

[4] David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contem-
porary Mathematics. American Mathematical Society, Providence, RI, 1988.

[5] Keith A. Kearnes and Emil W. Kiss. The Shape of Congruence Lattices, volume 222 of
Memoirs of the American Mathematical Society. American Mathematical Society, 2013.
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Tutorial on Model Theory of ω-categorical Structures (2 talks)

Pierre Simon

The study of ω-categorical structures is an important topic in model theory that
has led to many important developments in pure model theory, in particular geo-
metric stability theory and simplicity theory. This tutorial focussed on the clas-
sification of structures homogeneous in a finite relational language that are NIP.
In this context, the NIP property can be defined simply as saying that the num-
ber of orbits under the automorphism group fixing a finite subset of size n grows
polynomially in n. If the theory furthermore does not interpret an infinite linear
order, then it is stable.

Stable finitely homogeneous structures are very well understood, due to work of
Cherlin, Harrington, Lachlan and Hrushovski [1], [2], [3]. It is known in particular
that there are countably many (up to inter-definability) and that they are all in-
terpretable in dense linear order. We know much less about finitely homogeneous
NIP structures, though it is conjectured that there are also countably many. We
do have results for the case where the structure is interpretable in a binary homo-
geneous structure. In particular, primitive structures in this class are classified.
They are essentially built from linear and circular orders [4].

References

[1] G. Cherlin and L. Harrington and A.H. Lachlan, ω-Categorical, ω-stable structures, Annals
of Pure and Applied Logic 28 (1985), vol 28, 103–135.

[2] A. H. Lachlan, On countable stable structures which are homogeneous for a finite relational
language, Israel Journal of Mathematics, 49 (1984), 69–153.

[3] E. Hrushovski, Totally categorical structures, Trans. Am. Math Soc., 313-1 (1989).

[4] P. Simon, NIP ω-categorical structures: the rank 1 case, preprint.

On varieties generated by finite simple groups

Peter Mayr

A variety is a class of algebraic structures (algebras for short) of the same type that
is defined by equations. By Birkhoff’s Theorem the variety generated by a class
of algebras C is the class of all homomorphic images of subalgebras of products of
elements in C. We refer to [4] for background on general algebra.

Varieties generated by a finite simple group have been studied by Neumann [9],
Apps [1] and others. Many of the applied techniques carry over from groups to
Mal’cev algebras in general. Here an algebra A is Mal’cev if it has a ternary term
operation m satisfying m(x, x, y) = y = m(y, x, x). Note that groups, loops, rings
as well as their expansions are all Mal’cev.

For the remainder let A be a finite simple non-abelian Mal’cev algebra (see [7]
for a generalization of the commutator theory from groups to algebras). Let V

denote the variety generated by A, Vfin the class of its finite members, and W the
variety generated by all proper subalgebras of A. Then
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• every element in Vfin is isomorphic to some Ak ×B for k ≥ 0 and B ∈ W

(cf. [9] for groups, [6] for primal algebras);
• if A is a group (loop, ring), then the countable free algebra in V has a
normal subgroup (subloop, ideal) isomorphic to the Boolean power AR0

for R0 the countable atomless Boolean ring without 1 (cf. [3]) and a com-
plement isomorphic to the countable free algebra in W .

Note that Vfin has the joint embedding property (JEP) and the hereditary property
(HP) but in general not the amalgamation property (AP). On the other hand its
subclass K of finite direct powers of A has JEP and AP but in general not HP.

Still by a generalization of Fräıssé’s Theorem [8] there exists a unique (up to
isomorphism) countable algebraD such that (i) every finitely generated subalgebra
of D embeds into some element of K, (ii) D is a direct limit of algebras in K,
and (iii) every isomorphism between subalgebras of D that are isomorphic to some
element in K extends to an automorphism of D. We call such a D the Fräıssé
limit of K and denote it by Flim(K).

Then Flim(K) is ω-categorical, universal for Vfin and is isomorphic to a filtered
Boolean power as defined by Arens and Kaplansky [2] (see also [5]).

Theorem. Let A be a finite simple non-abelian Mal’cev algebra with n ≥ 0 single-
ton subalgebras generated by a1, . . . , an ∈ A, respectively. Let X be the Stone space
of the countable atomless Boolean algebra, and let x1, . . . , xn ∈ X be distinct.

Then Flim({Ak : k ≥ 1}) is isomorphic to the subalgebra of AX with universe

{f : X → A : f is continuous and f(x1) = a1, . . . , f(xn) = an},

where A is endowed with the discrete topology.

References

[1] A. B. Apps. Boolean powers of groups. Math. Proc. Cambridge Philos. Soc., 91(3):375–395,
1982.

[2] R. F. Arens and I. Kaplansky. Topological representation of algebras. Trans. Amer. Math.
Soc., 63:457–481, 1948.

[3] R. M. Bryant and J. R. J. Groves. On automorphisms of relatively free groups. J. Algebra,
137(1):195–205, 1991.

[4] S. Burris and H. P. Sankappanavar. A course in universal algebra. Springer, New York
Heidelberg Berlin, 1981. Available from
https://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra2012.pdf.

[5] D. M. Evans. Examples of ℵ0-categorical structures. In Automorphisms of first-order struc-
tures, Oxford Sci. Publ., pages 33–72. Oxford Univ. Press, New York, 1994.

[6] A. L. Foster. Generalized “Boolean” theory of universal algebras. I. Subdirect sums and
normal representation theorem. Math. Z., 58:306–336, 1953.

[7] R. Freese and R. N. McKenzie. Commutator theory for congruence modular varieties, vol-
ume 125 of London Math. Soc. Lecture Note Ser. Cambridge University Press, 1987. Avail-
able from http://math.hawaii.edu/~ralph/Commutator/comm.pdf.

[8] W. Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge, 1993.
[9] H. Neumann. Varieties of groups. Springer-Verlag New York, Inc., New York, 1967.



14 Oberwolfach Report 1/2021

Cellularity and Beyond

Samuel Braunfeld

(joint work with Michael C. Laskowski)

Cellular structures are a class of very simple ω-categorical structures that yield
a dividing line in many combinatorial problems concerning hereditary classes
and countable structures, such as when counting the number of structures bi-
embeddable with a given countable structure [2], or counting the finite substruc-
tures of a homogeneous structure [1]. We will discuss where cellularity appears and
its relation to the more general model-theoretic properties of mutual algebraicity,
monadic stability, and monadic NIP.

The main intuition for cellular structures is that their ages encode neither an
infinite linear order nor an infinite equivalence relation (i.e. an equivalence rela-
tion with infinitely many infinite classes). The first part of the intuition can be
formalized by the fact that cellular structures are stable, while the latter will be
partially formalized by the next theorem.

Theorem. [3, 4] If M is mutually algebraic but non-cellular, there is N ≻ M

adding infinitely many new pairwise-isomorphic infinite components.
If M is not mutually algebraic, there is N ≻ M such that infinitely many

quantifier-free k-types over N support infinite arrays.

Thus we may prove that cellularity is a dividing line in the following steps,
exploiting our main intuition by passing through mutual algebraicity.

(1) If M is unstable, we encode (Q, <) in an age-preserving extension and
reproduce its wild behavior.

(2) If M is stable but non-mutually algebraic, we use the infinitely many
infinite arrays to mimic the classes of an infinite equivalence relation.

(3) If M is mutually algebraic but non-cellular, we do the same with the
infinitely many pairwise-isomorphic infinite components.

A technical complication in this strategy is caused by the configurations possibly
appearing on tuples instead of singletons. Passing through the even more general
property of monadic stability allows us to encode configurations on singletons in
a unary expansion. This would be useful, if it could first be shown that if a unary
expansion of T is on the bad side of a dichotomy, then so is T itself. But we know
of few cases where this can be done.

Finally, we mention that monadic stability has appeared in a dichotomy about
growth rates of homogeneous structures, allowing a description of the subexponen-
tial growth rates [1]. There is some evidence that monadic NIP will correspond to
the condition of at most exponential growth rate.

References

[1] Samuel Braunfeld, Monadic stability and growth rates of ω-categorical structures, arXiv
preprint arXiv:1910.04380 (2019).

[2] Samuel Braunfeld and Michael C Laskowski, Counting siblings in universal theories, arXiv
preprint arXiv:1910.11230 (2019).
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Tutorial on Oligomorphic Clones, Part 1 of 2

Michael Pinsker

This is the first part of a tutorial the second part of which is delivered by Manuel
Bodirsky. We discuss which results about finite algebras discussed in Libor Barto’s
tutorial on universal algebra can be lifted to algebras on a countably infinite do-
main.

If we wish to investigate an infinite algebra A via its invariant relations (e.g.,

its congruences), then we really study the closure Clo(A) of the set Clo(A) of its
term functions in the topology of pointwise convergence; this topology is discrete
in the finite case. The object Clo(A) forms a topological clone [BPP17]. It bears
an algebraic structure, provided by composition of functions or equivalently, the
equations that are satisfied between the functions of the clone, as well as a topolog-
ical structure given by pointwise convergence. In the countable case, this topology
is induced by a complete metric. Every closed function clone is the polymorphism
clone Pol(A) of a relational structure A, just like every closed permutation group
is the automorphism group of a relational structure. Polymorphism clones allow
for a finer-grained study of relational structures than automorphism groups.

If A is a countable ω-categorical structure, then Pol(A) is oligomorphic, i.e., it
contains (among its unary functions) a permutation group which acts with finitely
many orbits on n-tuples, for all n ≥ 1. In this case, a lot of the basic theory for
finite clones applies: the relations invariant under Pol(A) are precisely those which
have a primitive positive definition in A, and primitive positive interpretations in
A as well as primitive positive constructions can be characterized via the structure
of Pol(A) [BP15, BOP18, BN06].

Some of the deepest results on finite algebras have been obtained under the
assumption of idempotency, which requires the unary functions of the term clone to
contain only the identity function. This assumption is in stark contradiction with
oligomorphicity for clones on countable sets, a fact we refer to as the First dilemma
of the infinite sheep. For closed oligomorphic function clones, an approximation
to the notion of idempotency is that of a model-complete core: a structure A is a
model-complete core if the unary functions of Pol(A) consist only of the closure
of its automorphism group. If A is ω-categorical, then it is homomorphically
equivalent to a model-complete core A′, and A′ is again ω-categorical and unique
up to isomorphism [Bod07].

There exist so far basically two general algebraic results on polymorphism clones
of ω-categorical structures that go beyond the basic theory. Both results concern
the characterization of different notions of triviality for clones, and are of partic-
ular interest in the context of applications to Constraint Satisfaction Problems,
where they often describe the border between tractability and NP-completeness.
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The first result states that if A is an ω-categorical model-complete core, then
some stabilizer of Pol(A) has a continuous clone homomorphism to the clone Proj
of projections on a Boolean domain if and only if Pol(A) does not satisfy the
pseudo-Siggers equation [BP16, BP20]. The second result states that if the num-
ber of orbits of the action of the automorphism group of A on n-tuples grows
less than doubly exponentially in n, then the above is moreover equivalent to
Pol(A) having a uniformly continous mapping to Proj which preserves equations
of height 1 [BKO+19, BKO+17].
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Ramsey classes using parameter spaces

Jan Hubička

Given (relational) structures A and B, we denote by
(

B

A

)

the set of all embeddings

from A to B. We write C −→ (B)Ak to denote the following statement: For every

colouring χ of
(

C

A

)

with k colours, there exists an embedding f : B → C such that

χ is constant on
(

f(B)
A

)

. Class K of finite structures is Ramsey if for every A,B

there exists C such that C −→ (B)A2 .
The most versatile technique to prove that a given class is Ramsey is the partite

construction developed by Nešetřil and Rödl in series of papers (see, for example,
[NR89, HN19]). While alternative proof techniques exists [Prö13, PTW85, Maš18]
they can not be applied for classes with forbidden substructures (such as for the
class of ordered triangle-free graphs).
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We discuss a new technique based on parameter spaces [Hub20] that can be
applied to triangle-free graphs, metric spaces with additional triangle constraints
and other examples. This technique originates in recent developments in infinitary
structural Ramsey theory [Dob20a, Dob19, Dob20b, Zuc19, Zuc20] and leads to
further consequences such as the upper bounds on big Ramsey degrees.

This is a joint project with Martin Balko, Natasha Dobrinen, David Chodounský,
Matěj Konečný, Jaroslav Nešetřil, Stevo Todorcevic, Lluis Vena and Andy Zucker.
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[Maš18] Dragan Mašulović. Pre-adjunctions and the Ramsey property. European Journal of

Combinatorics, 70:268–283, 2018.
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Tutorial on Oligomorphic Clones, Part 2 of 2

Manuel Bodirsky

I will present some techniques to study closed oligomorphic clones that contain
the automorphism group of a finitely homogeneous structure. A central concept
in this context are canonical functions. I will discuss links with topics that have
been studied intensively in model theory, such as Thomas’ conjecture, the small
index property, and the Ramsey expansion conjecture. An additional interesting
finiteness condition that is of particular relevance for the study of the CSP are
finitely bounded homogeneous structures.
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Near unanimity terms and the Baker-Pixley Theorem

Matt Valeriote

(joint work with Libor Barto, Marcin Kozik and Johnson Tan)

Given a subalgebra A of a direct product
∏

i≤n Ai of algebras Ai from some variety

V , one can consider Projk(A), the system of projections of A onto all k-element
sets of coordinates. In general, A is not uniquely determined by Projk(A), but if
V happens to have a (k + 1)-near unanimity term, then Kirby Baker and Alden
Pixley show that this is the case [1]. They also show that if a variety V satisfies
this uniqueness property for all subalgebras of direct products of its members, then
it must have a (k + 1)-ary near unanimity term.

In this talk I will consider the following existence question: Given a system
of k-fold projections Γ over some direct product

∏

i≤n Ai of algebras Ai from a

variety V , under what circumstances will there exist a subalgebra A of
∏

i≤n Ai

such that Γ = Projk(A)? An answer will be given that settles a question posed by
George Bergman [3].

This is joint work with Libor Barto, Marcin Kozik, and Johnson Tan [2].
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On the automorphism group of the universal homogeneous meet-tree

Itay Kaplan

An element g of a Polish group G is generic if the conjugacy class gG is comeager
in G. There are some nice corollaries of having a generic element, for instance
having no non-trivial normal subgroup of index < 2ℵ0 . Having ample generics is
much stronger: for every n < ω there is a comeager orbit in the action of G on Gn

given by conjugation coordinate-wise. This implies in particular the small index
property. We are interested in the case where G = Aut (M) where M is some
ω-categorical ultrahomogeneous structure (and the topology is that of pointwise
convergence). There are many examples of natural homogeneous structures which
have ample generics such as the random graph or the infinite set, but order seems
to be an obstacle:

Example 1. Aut (Q, <) has a generic automorphism (and there is a precise de-
scription of the generic automorphism) [Tru92][KT01]. But does not have a generic
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pair of automorphisms by [Tru07] (based on a proof of Hodkinson), and reproved
by Siniora [Sin17].

Example 2. Let (P,<) be the generic poset. Then Aut (P ) has a generic auto-
morphism [KT01] but no generic pair [KP20].

These examples lead to a very natural question by Macpherson: assuming that
M has the strict order property (M has a definable partial order with infinite
chains), then is it true that M has no ample generics? This is not true, since the
countable atomless Boolean algebra does have ample generics (and the strict order
property) [Kwi12], so we may try to rephrase the question by adding NIP.

This work started as an attempt to find a counterexample to Macpherson’s
question (inspired also by the fact that examples with trees can exhibit strange
phenomenons in the model theoretic study of NIP, e.g., [KS14]) but turned out to
give yet another evidence to it.

Definition 3. A tree is a partially ordered set (A,≤) which is semilinear (that
is, for every a0 ∈ A, the set A≤a0

= {a ∈ A | a ≤ a0} is linearly ordered) and such
that every pair of elements has a common lower bound.

A meet-tree (or ∧-tree) (A,≤,∧) is a tree which is also a lower semilattice, i.e
a tree (A,≤) together with a binary (meet or infimum) function ∧ : A2 → A such
that for every a, b ∈ A, a ∧ b is the largest element of A≤a ∩ A≤b.

Fact 4. The class of all finite meet-trees is a Fräıssé class (in the language of
meet-trees). Consequently, there is a countable generic meet-tree, T, which is ω-
categorical and ultrahomogeneous.

The main result of this talk is the following:

Theorem 5. Aut (T) has a generic automrophism but no generic pair.

To prove the first part we used a characterization of having a generic automor-
phism established by Ivanov [Iva99] and [KR07] given in terms of the amalgamation
property in a class of structures with partial automorphisms. Following [KT01], we
define determined partial automorphism and prove that they form amalgamation
bases. We then prove their existence borrowing ideas from the model theoretic
notion of existential closeness: these will be finite partial automorphisms in which
any behavior appearing in an extension, already appears (in a precise sense). This
involves classifying the possible types of oribts of automorphisms in meet-trees,
and studying their behavior in detail.

To prove that there is no generic pair, we use the fact that for any point a ∈ T,
T≤a is densely and linearly ordered, which allows us to adapt the proof from the
case of Aut (Q, <) (as presented in [Sin17]).

References

[Iva99] Aleksander A. Ivanov. “Generic expansions of ω-categorical structures and semantics of
generalized quantifiers”. In: J. Symbolic Logic 64.2 (1999), pp. 775-789. ISSN: 0022-
4812. DOI: 10.2307/2586500

https://doi.org/10.2307/2586500


20 Oberwolfach Report 1/2021

[KP20] Aleksandra Kwiatkowska and Aristotelis Panagiotopoulos. The automorphism group of
the random poset does not admit a generic pair. 2020. arXiv: arXiv:2012.04376

[KR07] Alexander S. Kechris and Christian Rosendal. “Turbulence, amalgamation, and generic

automorphisms of homogeneous structures”. In: P. Lond. Math. Soc. 94.2 (2007),
pp. 302-350. DOI: 10.1112/plms/pdl007.

[KS14] Itay Kaplan and Saharon Shelah. “Examples in dependent theories”. In: J. Sym-
bolic Logic 79.2 (2014), pp. 585-619. DOI: 10.1017/jsl.2013.11.

[KT01] Dietrich Kuske and John K. Truss: “Generic Automorphisms of the Univer-
sal Partial Order”. In: P. Am. Math. Soc. 129.7 (2001), pp. 1939-1948. DOI:
10.1090/S0002-9939-00-05778-6.

[Kwi12] Aleksandra Kwiatkowska. “The group of homeomorphisms of the Cantor set has ample
generics”. In: Bulletin of the London Mathematical Society 44.6 (2012), pp. 1132-1146.
DOI: 10.1112/blms/bds039.

[Sin17] Daoud N. Siniora. “Automorphism Groups of Homogeneous Structures”. PhD Thesis.
University of Leeds, 2017.

[Tru07] John K. Truss. “On notions of genericity and mutual genericity”. In: J. Symbolic Logic
72.3 (2007), pp. 755-766. DOI: 10.2178/jsl/1191333840.

[Tru92] John K. Truss. “Generic Automorphisms of Homogeneous Structures”. In:
P. Am. Math. Soc. s3-65.1 (1992), pp. 121-141. DOI: 10.1112/plms/s3-65.1.121 .

Can we classify equationally complete theories?

Keith Kearnes

In this talk we discuss the problem of classifying equationally complete theories
Σ, or equivalently the problem of classifying minimal varieties V = Mod(Σ).

We begin by referencing the result in [11], which describes an algorithm to
decide whether a finite algebra A in a finite language generates a minimal variety.
This algorithm gives no information about A. We next survey the results in
[6, 7, 12, 13, 14]. The paper [6] describes a new algorithm for deciding if a finite
algebra in a finite language generates a minimal variety, and provides structural
information about the variety. This work is based on [12], which classifies the
clones of finite term minimal algebras. The papers [6, 7, 12, 13, 14] include a
complete classification of minimal abelian varieties containing a finite nontrivial
member. The paper [10] introduces a modification of the construction in [9] to
show that the general problem of determining if a finite algebra in a finite language
generates a minimal variety is 2EXPTIME complete.

Next we turn to minimal abelian varieties with no finite nontrivial members.
The main new results are:

(1) (Reference [3]) Every minimal abelian variety is affine or strongly abelian.
(2) (Reference [4]) The category of affine clones is categorically equivalent to

a variety of 2-sorted structures, and the simple 2-sorted structures are
classified. This effects a classification of minimal affine varieties up to a
determination of finite simple rings.

(3) (Reference [5]) The minimal strongly abelian varieties of finite essential
arity are exactly the varieties categorically equivalent to minimal essen-
tially unary varieties. The proof makes essential use of the fact, proved
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in [8], that minimal strongly abelian varieties of finite essential arity are
Hamiltonian.

(4) (Reference [5]) An essentially unary variety is minimal if and only if it is
definitionally equivalent to the subvariety of the variety of all M -sets that
is axiomatized by 0(x) ≈ 0(y), where M is some simple monoid with 0.

(5) (Reference [5]) A construction from [2] of an infinite dimensional matrix
power can be used to produce minimal strongly abelian varieties unlike
those in any of the above cases. It is proved in [1] that the variety of
Jónsson-Tarski algebras is a minimal variety. This is another example of
a strongly abelian minimal variety unlike those in any of the above cases.
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Smooth approximations

Antoine Mottet

(joint work with Michael Pinsker)

I present the novel machinery of smooth approximations. The method of smooth
approximations gives information about a polymorphism clone D from a subclone
C ⊆ D . When so-called smooth approximations do exist, one obtains information



22 Oberwolfach Report 1/2021

about uniformly continuous actions of D on specific finite clones, such as the clone
of projections on a 2-element set of clones of affine maps over a finite module.
When these approximations do not exist, one obtains information about specific
operations in D . The approximation technique was used recently to confirm the
CSP dichotomy conjecture for first-order reducts of the random tournament, var-
ious homogeneous graphs including the random graph, and for expansions of the
order of the rationals. For all except the last class, the technique was moreover
used to give a characterization of CSPs solvable by local consistency methods.

This talk is based on a joint work with Michael Pinsker [1].
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The existential Thomas Conjecture

András Pongrácz

Simon Thomas conjectured [11] that every countable homogeneous structure over
a finite relational language has finitely many reducts up to first-order interde-
finability. This classical model theoretic problem is open for thirty years, and
the proofs of all partial results make use of an ordered Ramsey expansion of the
structure [8, 11, 12, 9, 6, 2]. To date, there is no counter-example to the strictly
stronger and less understood assertion that there are finitely many reducts up to
existential interdefinability. In my talk, I will argue that it is more natural to
study the stronger statement for ordered Ramsey structures, and potentially eas-
ier to attack. The proposed method is illustrated on a concrete structure, a binary
branching semilinear order, whose reducts are of interest in theoretical computer
science [5, 3, 4].

The method is robust; it is a work in progress to use analogue arguments to
different structures, and some rudimentary general results are also going to be pre-
sented in the talk [10]. We build on a very effective technique introduced by Manuel
Bodirsky, Michael Pinsker and Todor Tsankov [7], which makes it possible to find
reducts systematically by using so-called canonical functions; see also [1]. The
idea is to use a combinatorial lemma, also observed recently by Michael Pinsker
and Antoine Mottet in a different area, which shows that a reduct is either model-
complete or its self-embedding monoid contains a very special type of canonical
function. The existence of such a canonical function reduces the reduct classifica-
tion problem to a similar problem with a simpler input structure. Hence, we can
prove assertions concerning reducts of Ramsey structures by using an inductive
argument. Moreover, it is demonstrated how reduct classification results up to
first-oder interdefinability can be refined to classification up to existential inter-
definability, making use of the Galois connections obtained by universal algebraic
methods, see [7, 3, 1].
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At the end of the talk, plausible open problems are proposed to achieve partial
results in the existential Thomas Conjecture.
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Homogeneous structures, reconstruction theory and non-Archimedean
Polish groups

Gianluca Paolini

(joint work with Saharon Shelah)

We survey some recent results joint with S. Shelah on the problem of reconstruction
of countable structures from their automorphism groups (under suitable assump-
tions). Central to our approach is the notion of strong small index property.

References

[1] Gianluca Paolini and Saharon Shelah. Reconstructing Structures with the Strong Small Index
Property up to Bi-Definability. Fund. Math. 247 (2019), 25-35.

[2] Gianluca Paolini and Saharon Shelah. The Automorphism Group of Hall’s Universal Group.
Proc. Amer. Math. Soc. 146 (2018), 1439-1445.

[3] Gianluca Paolini and Saharon Shelah. The Strong Small Index Property for Free Homoge-
neous Structures. Research Trends in Contemporary Logic, College Publications, London,
2020.



24 Oberwolfach Report 1/2021

On the Complexity of CSP-based Ideal Membership Problems

Andrei Bulatov

In this paper we consider the Ideal Membership Problem (IMP for short), in

which we are given real polynomials f0, ~fk and the question is to decide whether

f0 belongs to the ideal generated by ~fk. In the more stringent version the task is
also to find a proof of this fact. The IMP underlies many proof systems based on
polynomials such as Nullstellensatz, Polynomial Calculus, and Sum-of-Squares. In
the majority of such applications the IMP involves so called combinatorial ideals
that arise from a variety of discrete combinatorial problems. This restriction makes
the IMP significantly easier and in some cases allows for an efficient algorithm to
solve it.

In 2019 Mastrolilli initiated a systematic study of IMPs arising from Constraint
Satisfaction Problems (CSP) of the form CSP(Γ), that is, CSPs in which the type
of constraints is limited to relations from a set Γ. He described sets Γ on a 2-
element set that give rise to polynomial time solvable IMPs and showed that for
the remaining ones the problem is hard. We continue this line of research.

First, we show that many CSP techniques can be translated to IMPs thus
allowing us to significantly improve the methods of studying the complexity of the
IMP. We also develop universal algebraic techniques for the IMP that have been
so useful in the study of the CSP. This allows us to prove a general necessary
condition for the tractability of the IMP, and three sufficient ones. The sufficient
conditions include IMPs arising from systems of linear equations over GF(p), p
prime, and also some conditions defined through special kinds of polymorphisms.
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Strong Subalgebras and the Constraint Satisfaction Problem

Dmitriy Zhuk

In 2007 it was conjectured that the Constraint Satisfaction Problem (CSP) over
a constraint language Γ is tractable if and only if Γ is preserved by a weak near-
unanimity (WNU) operation. After many efforts and partial results, this conjec-
ture was independently proved by Andrei Bulatov and the author in 2017. In
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this talk we consider one of two main ingredients of author’s proof, that is, strong
subalgebras that allow us to reduce domains of the variables iteratively.

The idea of the approach is that every idempotent algebra has a sualgebra of
one of the following five types: binary absorbing, central, PC, projective or linear.
These subalgebras have additional strong properties, which allow us to reduce
the domain iteratively maintaining some property. Since we consider only finite
algebras, finally we get a one-element subalgebra, for which the required fact is
obvious.

To explain how this idea works we show the algebraic properties of strong
subalgebras and present a simple proof of several important (and known) facts
about the complexity of the CSP. First, we prove that if a constraint language
is not preserved by a WNU operation then the corresponding CSP is NP-hard.
Second, we characterize all constraint languages whose CSPs can be solved by
local consistency checking. Additionally, we characterize all idempotent algebras
not having a WNU term of a concrete arity n, not having a WNU term, having
WNU terms of all arities greater than 2.
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Jordan permutation groups and limits of treelike structures

Dugald Macpherson

(joint work with Asma Almazaydeh)

If G is a transitive permutation group on a set X , then A ⊂ X is a Jordan set
if |A| > 1 and the pointwise stabiliser G(X\A) is transitive on A. It is a proper
Jordan set if it is not the case that |X \ A| = k ∈ N and G is (k + 1)-transitive,
and is a primitive Jordan set if G(X\A) is primitive on A. A Jordan group is a
transitive permutation group with a proper Jordan set.

Finite primitive Jordan groups are 2-transitive, and were classified by Peter
Neumann in [7], with related work around the same time in [6] (with a model-
theoretic application) and by W.M. Kantor. Examples of infinite primitive Jordan
groups include: (i) the automorphism groups of (Q, <) and its reducts (i.e. the
automorphism groups of the corrresponding linear betweenness relation, circu-
lar order, and separation relation); (ii) automorphism groups of certain ‘treelike’
structures (semilinear orders, betweenness relations, C and D relations); (iii) au-
tomorphism groups of projective and affine spaces and more generally of certain
Steiner systems (possibly with infinite block size); and (iv) ‘limits’ of Steiner sys-
tems, betweenness relations, and D-relations.

Adeleke and Neumann in [3] gave a structure theorem for primitive Jordan
groups with primitive Jordan sets (they are of type (i) or (ii) above, or highly
transitive, that is, k-transitive for all k). It was shown in [2] that any primitive
Jordan group preserves a structure of one of the types (i)-(iv) above or is highly
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transitive. Constructions of types (iv) have been given by Adeleke (see [1] for
Jordan groups preserving limits of betweenness and D-relations). In [5] Bhat-
tacharjee and I gave a construction of an oligomorphic group preserving a limit
of betweenness relations (but not a structure of type (i)-(iii)), describing it as the
automorphism group of an ω-categorical treelike object (a Fräıssé limit of finite
trees with vertices labelled by finite betweenenss relations). In this talk I describe
analogous work with Almazaydeh [4] which constructs a Jordan group preserving
a limit of D-relations, built as a Fräıssé limit. These constructions of new treelike
objects may give interesting examples of other phenomena.
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