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Route planning for bacter ia
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Bacteria have been fascinating biologists since their
discovery in the late 17th century. By analysing
their movements, mathematical models have been
developed as a tool to understand their behaviour.
However, adapting these models to real situations can
be challenging, because the model coefficients cannot
be observed directly. In this snapshot, we study this
question mathematically and explain how the idea
of “route planning” can be used to determine these
model coefficients.

1 Route planning

Imagine you are meeting with a friend in an hour from now. The direct path
from your place to theirs takes 40min, so if you leave now, you will be early.
However, the sun is shining and you do not want to wait 20min before leaving.
You instead decide to go for a walk and combine that with the trip to your
friend. To do so, you choose a direction and start walking. Assuming you walk
at a constant speed, when do you need to change your direction towards your
friend’s place to be on time?

In order to formulate this question mathematically, we first need to state as-
sumptions and clarify notation. For simplicity, we consider your neighbourhood
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as the flat plane R2 and assume that there are no obstacles (such as buildings)
in your way, so you can walk in a straight line in any direction. Additionally,
we suppose you walk with a constant speed of 6km/h. The set of all possible
directions you can choose is the unit circle given by

V = {w ∈ R2 | ∥w∥ = 1}.

Here ∥w∥ :=
√

w ◦ w :=
√

w2
1 + w2

2 denotes the length of a vector w =
(w1, w2) ∈ R2 and x ◦ y := x1 · y1 + x2 · y2 denotes the scalar product of
two vectors x = (x1, x2), y = (y1, y2) ∈ R2.

The reader can readily check, using only the properties of addition and mul-
tiplication, that the scalar product is symmetric and linear in each component,
that is, the following calculation rules hold for all λ, µ ∈ R and x, y, z ∈ R2:

1. (symmetry) x ◦ y = y ◦ x.
2. (linearity) x ◦ (λ · y + µ · z) = λ · (x ◦ y) + µ · (x ◦ z).

Here the multiplication λ · x of a scalar λ ∈ R with a vector x = (x1, x2) ∈ R2

works componentwise, that is, λ · x = (λ · x1, λ · x2).
The problem may now be formulated mathematically in the following way:

Question. Consider a starting point s ∈ R2 (your house) and a destination
d ∈ R2 (your friend’s house) which is to be reached in time T = 1 hour. Assume
you walk at a constant speed of 6km/h and the distance between your house and
your friend’s house is ∥d − s∥ = 4km. If v ∈ V is the first direction you walk in
after leaving your house, find the time tc ∈ [0, 1] and the point c ∈ R2 at which
you need change direction and walk towards your friend.

When convenient, we will leave out all units to make the calculations cleaner.
It is implicitly assumed that lengths and coordinates are scaled in kilometers
(km), times in hours (h) and velocities in kilometers per hour (km/h).

The following observation allows us to rephrase the above problem as a
purely geometrical question. In one hour, you will walk 6km in total to reach a
destination that is 4 km away. Since you only change direction once, the starting
point s, the destination d and the turning point c form a triangle such that your
walking path coincides with the sides joining s to c and c to d (see Figure 1).
We are interested in finding the turning point c or, equivalently, the time tc at
which you reach c and need to change direction. Geometrically, the task is to
find the vertex c of a triangle with two other vertices, s and d, such that the
length of your walking path (that is, the sum of the lengths l1 = ∥c − s∥ and
l2 = ∥d − c∥ of the two shorter sides of the triangle) satisfies l1 + l2 = 6. The
direction of c from s is your initial direction v.

At first, you can ask yourself whether this problem is solvable at all and in case
it is, whether the solution is unique or if there are multiple possibilities. It turns
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Figure 1: The triangle with vertices s, c and d.

out, knowledge of the initial direction v and the fact that l1+l2 = 6 ≥ 4 = ∥d−s∥
guarantees a unique solution.

In order to get some intuition for why this is the case, consider the situation
where you have not yet chosen your initial direction v ∈ V , but still want to
go from s to d on a path of total length 6 while changing directions only once.
The set of all possible turning points y ∈ R2 is given by an ellipse E having foci
s and d and major axis length 6. In mathematical notation, this is represented
by the set

E := {y ∈ R2 | ∥y − s∥ + ∥d − y∥ = 6},

where ∥y − s∥ gives the length of the side joining s and y. As Figure 2a shows,
there are multiple solutions to the problem when no initial direction is specified,
namely every y ∈ E.

(a) The ellipse E. (b) The triangle is uniquely determined
by v.

Figure 2: Geometrical intuition for why c is uniquely determined.

If, however, the initial direction v is known, then the turning point c is
unique. This is because c has to lie on the half line starting at s in direction v
as well as on E. In other words, c is the unique intersection point of this line
with the ellipse E (see Figure 2b).

Now let us solve the original problem by deriving explicit expressions for
c and tc. If you arrive at c at time T = 1, then, as illustrated in Figure 1,
we must have that the displacement vector from s to d is the sum of the
displacement vector from s to c and the displacement vector from c to d. Since
displacement is the product of velocity and time, we know that c − s = v · 6 · tc

and d − c = v′ · 6 · (1 − tc) where v′ denotes the direction in which you walk
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after turning at c. Altogether,

d = s + (c − s) + (d − c) = s + v · 6 · tc + v′ · 6 · (1 − tc).

Rearranging this equation yields

v′ = 1
6 · (1 − tc) (d − s − v · 6)︸ ︷︷ ︸

=:b

+v. (1)

Note that the vector b in the brackets is the path one would have to walk if you
forgot to change direction in c and continued walking in direction v for the full
1h.

Since v′ is a direction in V , we know that

1 = ∥v′∥2 = v′ ◦ v′ = 1
36 · (1 − tc)2 ∥b∥2 + 2

6 · (1 − tc)b ◦ v + v ◦ v

= 1
36 · (1 − tc)2 ∥b∥2 + 2

6 · (1 − tc)b ◦ v + 12.

Solving this quadratic equation for the variable λ = 1/(1 − tc) yields two
solutions: λ1 = 0, which is impossible since 0 ≤ tc ≤ 1, and

1
1 − tc

= λ2 = −2b ◦ (6 · v)
∥b∥2 .

Rearranging this equation, substituting b and noting that ∥d − s∥ = 4 gives the
following expression for the turning time

tc = 1 + ∥b∥2

2b ◦ (6 · v) = 62 − ∥d − s∥2

2 · (62 − (d − s) ◦ (6 · v))

= 20
2 · (62 − (d − s) ◦ (6 · v)) = 10

6 · (6 − (d − s) ◦ v) . (2)

From this, we can compute the location of the turning point c using

c = s + tc · v = s + 10
6 · (6 − (d − s) ◦ v) · v.

Substituting this back into (1) shows that the direction in which you must turn
at c is given by

v′ = 1
1 − tc

(d − s − v · 6) + v.

In the next section, we will investigate how the above route planning calculation
is used in the study of bacterial movement.
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2 Bacter ia l movement

Bacteria such as Escherichia coli (E. coli) move autonomously by moving whip-
like structures called flagella. Flagella can be considered a miniature “motor”
with two gears: one moves clockwise and the other moves counter-clockwise
(see Figure 3a). Counter-clockwise movement makes the flagella form a bundle
that works like a rotor propelling the bacterium forward. Clockwise movement
untangles the bundle making the bacterium stop and “tumble” around. In this
tumbling process, the bacterium chooses the next direction in which to run. The
movement of bacteria consists of alternating phases of running in a direction
and then tumbling to find a new one (see Figure 3b).

(a) Two modes: running (left) and tum-
bling (right).

(b) Path of a single bacterium.

Figure 3: Bacterial movement by run-and-tumble.

When a bacterium attempts to reach a destination, such as a food source, it
is not able to run directly there. Bacteria cannot “see” well and so only sense
the environment very close to them. To overcome this, bacteria develop a kind
of “memory”. Instead of looking at locations they could go to in the future, they
look at the places they have been in the past. If the place where the bacterium
is now provides more food than where it was before, it might be a good choice
to keep going in this direction with the hope of coming even closer to the food
source. In this case, the bacterium would tumbles less frequently and continue
in its current direction for a longer period of time. Conversely, if the place
where it is now offers less food, the bacteria would tumble more frequently and
thus change direction more often.

This behaviour can be modelled mathematically as the following classical
kinetic partial differential equation [1, 7]:

∂tf(x, t, v) + v ◦ ∇xf(x, t, v)︸ ︷︷ ︸
run

=
∫

V

K(x, v, v′)f(x, t, v′) − K(x, v′, v)f(x, t, v) dv′︸ ︷︷ ︸
tumble

. (3)
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In this equation, the movement of bacteria is described in terms of the bacteria
density function, denoted f , which represents the full bacteria population rather
than just a single bacterium. The bacteria density is a function of space x ∈ R2,
time t and direction v ∈ V on the unit circle with f(x, t, v) being the proportion
of the bacteria population located at x at time t which is running in direction v.

Let us now take a closer look at each term in the partial differential equa-
tion (3) so as to see how it provides a mathematical description of bacterial
movement.

• Time derivative: The first term, ∂tf(x, t, v), is the derivative of the bacterial
density function with respect to time. It represents the change in bacterial
density (over time) for bacteria at location x who are running in direction v.

• Run component: The second term, v ◦ ∇xf(x, t, v), represents the change
in bacterial density at location x due to bacteria running in direction v.
Mathematically, this term can be interpreted as the (directional) derivative
of the bacterial function with respect to location at the point x in the
direction v. Note that, if moved to the right-hand-side of eqrefchemotaxis,
this term has a negative coefficient representing the fact that bacteria at
location x who are running is direction v contribute a decrease to bacterial
density at x.

• Tumble component: The integral on the right-hand-side of eqrefchemotaxis
represents the total change in bacterial density at location x due to tumbling
that occurs at the point x. Here the tumbling coefficient, K(x, v, v′), stands
for the probability of bacteria changing their running direction from v′ ∈ V
to v ∈ V at location x. Thus, the first term in the integral thus represents a
gain in the bacteria density f(x, t, v) due to bacteria originally running in
direction v′ that change their running direction to v at (x, t). Similarly, the
second term in the integral represents a loss in the bacteria density f(x, t, v)
due to bacteria that run in direction v′ after tumbling at (x, t). In order to
consider contributions from all possible tumble directions, the integral is
taken over all directions v′ ∈ V .

Altogether, we see that (3) expresses the idea that the evolution of bacterial
density at (x, t, v) is given by the sum of two components: the change in
bacteria density due to bacteria running in direction v at (x, t), and the change
in bacteria density due to bacteria tumbling at (x, t).

We refer the interested reader to [10, Chapter 3] for a more detailed ex-
planation of partial derivatives and the gradient, and to [14, Chapter 1.3] for
an explanation of the transport characteristics of the right hand side of (3).
For further information on the model, the interested reader is referred to [12,
Chapter 5]. However, we point out that this work does not use the more
complex coupled system model presented there, but rather a simpler model
based solely on the equation for the bacterial movement with an independent
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chemoattractant. We stress that there are also various other possibilities to
model bacterial movement. For example, one can consider a random walk of
single bacterium on the microscopic level [5, 2] or the Keller–Segel model [8, 11]
on the macroscopic level, where the information on the direction of movement
is lost. Also on the kinetic scale, more refined models were developed [13, 4].

A closer look at equation (3) shows that bacterial movement, represented
by its density f , is completely charaterized if the tumbling coefficient K is
known. Thus, the problem of understanding bacterial movement amounts to
determining the unknown coefficient K, and it is for this reason that biologist
are very interested in determining it. Because the coefficient cannot be observed
directly, biologists perform experiments which measure it indirectly. First, they
place bacteria on a plate (see Figure 4a) and take a picture of the initial density.
Then they wait for some time, before taking a second picture to see where the
bacteria are now (see Figure 4b). By counting bacteria in certain regions of the
second picture, it is possible to determine the tumbling coefficient using the
mathematical theory of inverse problems.

(a) Initial bacteria density. (b) Bacteria density at time T .

Figure 4: Experiment: Bacteria are placed on a plate at time t = 0, then they
run for some time until at time T the measurement M is taken by
counting all bacteria inside the circle. Darker blue stands for a higher
bacteria density.

In mathematical language, problems in which a quantity is to be reconstructed
from measurements are known as inverse problems. Usually mathematical
models are used in a “forward” way. In the context of bacterial movement, this
means that knowing the tumbling coefficients as well as the initial configuration
of the bacteria, the location of bacteria at a later time T can be computed by
evolving the initial configuration with respect to the model (3) (see Figure 5a).
In contrast, the inverse problem observes the map of initial configuration to the
measurements (containing the unknown model) and tries to infer the model
parameter K from these observations (see Figure 5b).

In our research, we considered the inverse problem of determining the tum-
bling coefficient K from measurements of the bacteria density. In a first study
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(a) Forward problem.
(b) Inverse problem.

Figure 5: Setup of forward and inverse problem. The aim is to determine the
red quantity.

[6], we proved that this is theoretically possible.
As inverse problems are usually difficult, mathematicians have developed a

range of techniques to solve them. An additional difficulty in our setting is that
we aim to reconstruct K(x, v, v′) as a function of incoming direction v′ and
outgoing direction v from direction-independent measurements. To overcome
this, we applied a technique known as singular decomposition, which proved
helpful in similar situations [9, 3]. Assuming certain initiations, this technique
requires measurement of only the proportion of the bacteria that tumbled
precisely once between time 0 and the time of measurement T . An explicit
formula relating the density measurement to the tumbling coefficient can then
be used to reconstruct K at the tumbling point.

To be precise, this technique requires that all bacteria start at the same
point xi in space and run in the same initial direction vi. After a short time T ,
another measurement is taken at another point in space xm. As bacteria run at
constant speed sb, this setup is just the setting of our path finding problem from
Section 1: The bacteria start at point s = xi and have to reach point d = xm

in time T . The initial direction is vi and bacteria run with constant speed.
Figure 6 illustrates the geometrical setup.

When done appropriately, all bacteria counted at time T are bacteria that
tumbled exactly once at a unique tumbling point c and chose the same direc-

Figure 6: Bacterium in the route planning setting.
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tion v′ before heading directly towards xm. From the definition of the tumbling
coefficient, we see that this measurement can be used to determine K(c, v′, vi).

Putting everything together, we can adapt formula (2) by replacing 6km/h
with the bacterial speed sb and calculating the time of tumbling tc as well
as the tumbling point c = xi + vitcsb and the direction after tumbling v′ =
(xm −xi −vi ·sb)/(1− tc)+vi. This is important for the inverse problem because
it tells us the point at which we observed the tumbling coefficient K(c, v′, vi).
This crucial step in our research allowed us to show that it is possible to
determine the tumbling coefficient from indirect experimental measurements.

9



Image credi ts

Figure 3a “Two modes of bacterial movement.”. Authors: Matthew D Egbert,
Xabier E. Barandiaran, Ezequiel Di Paolo. Licensed under Creative
Commons Attribution 4.0 International via Researchgate, https://www.
researchgate.net/publication/49694912_A_Minimal_Model_of_Metab
olism-Based_Chemotaxis/figures, visited on March 28, 2022.
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