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Introduction by the Organizers

The workshop Analytic Number Theory, organised by Kaisa Matomäki (Turku),
Kannan Soundararajan (Stanford), Robert Vaughan (State College) and Trevor
Wooley (West Lafayette) was well attended with 53 participants from a broad
geographic spectrum, all either distinguished and leading workers in the field or
very promising younger researchers, and notable on this occasion for the diversity
of this participant group.

The workshop was most opportune as there has been quite a number of recent
significant developments in cognate areas by Bhargava, Alpöge and Shnidman,
by Brüdern and Wooley, by Green, and in several directions by Maynard and his
collaborators. There were also very substantial contributions by Bloom, Lichtman,
Peluse, Pratt and Smith who are all extremely young and doing work of the very
highest quality.

Bhargava presented joint work with Alpöge and Shnidman on the density of
integers which are the sum of two rational cubes. There is a long standing belief
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that such numbers have positive density in the integers. They show that a positive
proportion of integers do have such a representation and a positive proportion do
not. Their methods are connected with investigations into the average size of the
2-Selmer group of elliptic curve and they have numerous applications.

Brüdern described for us joint work with Wooley which is the first movement on
the upper bound for G(k) in Waring’s problem for over a quarter of a century, and
Green presented startling progress on a quantitative version of Sárközy’s theorem
for shifted primes.

In a sensational piece of work, Lichtman presented a proof of a famous open
conjecture of Erdős on primitive sets. A set of integers n > 1 is primitive when no
member divides any other. Erdős’s conjecture gives a quantitative expression to
the belief that the primes are the extremal primitive set.

Smith’s talk resolved an old problem on traces of totally real algebraic integers
that goes back to the work of Schur and Siegel. Surprisingly he shows that a long
standing conjecture on these traces is in fact false.

One of the major sources of advances in our area is Maynard, who this summer
was awarded a Fields medal. The myriad impacts of his ideas is illustrated not
only by his own talk but by major presentations by three of his collaborators.

Merikoski showcased joint work with Maynard on a well known open question
of Gordon from 1962 which asks if it is possible to walk to infinity in the complex
plane with bounded steps by using Gaussian primes as stepping stones. The answer
is likely to be no, but then the question arises as to how small can we make each
successive step in terms of the average size of the current stone |p|. Surprisingly
they are able to break the square root barrier, namely that the step size can be
≪ |p| 12−δ for some small fixed δ.

Dietmann presented joint work with Elsholtz, Kalmynin, Konyagin and May-
nard on long gaps between values of a given binary quadratic form. Previous work
in the area dated from more than forty years ago. Significant progress was made
on this. Moreover a result was obtained for forms of arbitrary discriminant D
which has only a mild dependence on D.

Dartyge described her impressive work with Maynard on the largest prime factor
of quartic polynomials with cyclic and dihedral Galois groups.

In addition Maynard gave a talk on joint work with Heath-Brown and Pratt
which suggests that it might be possible to make highly significant progress on
the distribution of primes without a major breakthrough in our knowledge of the
distribution of zeros of the Riemann zeta function. The idea would be to deal
with various special distributions of zeros which collectively might cover the worst
cases. He then showed how it is possible to proceed with one of these distributions.

Several other presentations were made on topics connected with the Riemann
zeta-function and it generalizations. Florea described joint work with Hung Bui
on new bounds for negative moments of the Riemann zeta function, and Devin
spoke on work with Fiorilli and Södergren on extending the unconditional support
for the one-level density of zeros in an Iwaniec-Luo-Sarnak family.
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There was an intriguing presentation by Harper on the typical size of charac-
ter sums which, based on probabilistic arguments, made some thought provoking
suggestions which could mould future work in the area. Kowalski and Mangerel
also presented interesting results on character and exponential sums. In a differ-
ent direction Peluse presented joint work with Soundararajan on the divisibility of
elements in the character table for the symmetric group, which resolved a recent
conjecture of Miller. In yet another direction Pratt made interesting progress on
an irrationality question of Erdős and Kac.

In addition significant progress was reported by Blomer, Bloom, Browning and
Hochfilzer on questions related to special cases of the local to global principal or
applications of the circle method. There were also reports on a spectrum of other
questions across the field by Chow (joint with Chapman), Gun (joint with Bilu
and Naik), Matomäki (joint with Teräväinen), Rodgers (joint with Gorodetsky
and Mangerel), Salberger, and Swaenepoel.

On Tuesday evening participants were invited to give 10 minute presentations
in an informal session made particularly energetic by the contributions of the
promising younger researchers. This led to some interesting and lively reactions.
On Thursday evening Montgomery led a problem session where a large number
of interesting unsolved questions were presented and stimulated further lively dis-
cussions.

There was a general feeling among the participants that the quality of research
reported upon and discussed at the workshop made the meeting one of the very
strongest and most stimulating that they had attended.
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Abstracts

Integers expressible as the sum of two rational cubes

Manjul Bhargava

(joint work with Levent Alpöge, Ari Shnidman)

It has long been known which numbers can be expressed as the sum of two rational
squares. As was first observed by Girard in 1625 and Fermat in 1638, and finally
proven by Euler in 1749 [5, pp. 227–231], they are those positive integers whose
prime factorizations have all primes p ≡ 3 (mod 4) occurring with even exponent.
Using this precise description, we see that a density of 0% of integers are the sum
of two rational squares. Moreover, an integer is the sum of two rational squares if
and only if it is the sum of two integer squares.

In contrast, the integers that are the sum of two rational cubes do not seem to
follow any simple pattern:

1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, . . .

It is conjectured that these integers have positive density; indeed, based on pre-
dictions of Goldfeld [6], Katz and Sarnak [10], and Bektemirov, Mazur, Stein and
Watkins [3], it is natural to conjecture that the integers that can be expressed as
the sum of two rational cubes should have natural density exactly 1/2. However,
it has not previously been known whether this density is even greater than 0 or
even less than 1.

We prove that a positive proportion of integers are expressible as the sum of two
rational cubes, and a positive proportion are not so expressible. More generally,
we prove that a positive proportion (in fact, at least one sixth) of elliptic curves in
any cubic twist family have rank 0, and a positive proportion (in fact, at least one
sixth) of elliptic curves with good reduction at 2 in any cubic twist family have
rank 1.

Our method involves proving that the average size of the 2-Selmer group of
elliptic curves in any cubic twist family, having any given root number, is 3. We
accomplish this by generalizing a parametrization, due to the second author and
Ho, of elliptic curves with extra structure by pairs of binary cubic forms. We
then count integer points satisfying suitable congruence conditions on a quadric
hypersurface in the space of real pairs of binary cubic forms in a fundamental
domain for the action of SL2(Z) × SL2(Z), using a combination of geometry-of-
numbers methods and the circle method, building on earlier work of Ruth and the
first author. We give a new interpretation of the singular integral and singular
series arising in the circle method in terms of real and p-adic integrals with respect
to a natural (SL2 ×SL2)-invariant measure. A uniformity estimate and sieve then
shows that the average size of the 2-Selmer group over the full cubic twist family
is 3.

After suitably partitioning the subset of curves in the family with given root
number, we execute a further sieve to show that the root number is equidistributed



2902 Oberwolfach Report 50/2022

and that the same average, now taken over only those curves of given root number,
is also 3. Finally, we apply the p-parity theorem of Dokchitser–Dokchitser [4] and
a p-converse theorem of Burungale–Skinner to conclude.

We prove the following theorems

Theorem 1. When ordered by their absolute values, a positive proportion of in-
tegers are the sum of two rational cubes, and a positive proportion are not.

More precisely, we prove that

(1) lim inf
X→∞

# {n ∈ Z : |n| < X and n is the sum of two rational cubes}
# {n ∈ Z : |n| < X} ≥ 2

21

and

(2) lim inf
X→∞

# {n ∈ Z : |n| < X and n is not the sum of two rational cubes}
# {n ∈ Z : |n| < X} ≥ 1

6
.

In fact we will prove the stronger claim that among the cubic twists x3 + y3 = nz3

of the Fermat cubic, at least 1/6 of twists have rank 0 and at least 2/21 have rank
1. More generally, we consider general families of cubic twists of elliptic curves.

Theorem 2. Fix d 6= 0. Then, when n varies ordered by |n|, at least 1/6 of the
elliptic curves in the cubic twist family Ed,n : y2 = x3 + dn2 have rank 0, and
at least 1/6 of the elliptic curves Ed,n with good reduction at 2 have rank 1. In
particular, if the squarefree part of d is congruent to 1 (mod 4), then a proportion
of at least 1

212r−1 of the curves Ed,n have rank 1, where r is the least residue of
v2(d)/2 modulo 3.

We prove Theorem 2 via a determination of the average size of the 2-Selmer
group of elliptic curves satisfying any finite—or any acceptable infinite—set of
congruence conditions in a cubic twist family.

This bound on the average rank can be improved via an analysis of root num-
bers. Indeed, for any fixed d 6= 0, we prove that the set of n such that the elliptic
curve Ed,n has a given root number is a countable union of acceptable sets. More-
over, a density of 1/2 of elliptic curves Ed,n have root number +1 and 1/2 have
root number −1.

Theorem 3. Fix d 6= 0. The density of elliptic curves in the cubic twist family
Ed,n that have root number +1 (resp. −1) is 1/2. The average size of the 2-Selmer
group of just those elliptic curves Ed,n having root number +1 (resp. −1) is 3.

Theorems 1 and 2 are deduced from Theorem 3, using the p-parity theorem
of Dokchitser–Dokchitser [4]1 and the p-converse theorem of Burungale–Skinner
established in an Appendix.

Theorem 3 also implies the following bounds on (the limsup and the liminf of)
the average rank of elliptic curves in cubic twist families:

1Many important cases of the p-parity theorem were proved by Kim [11] and by Nekovář [14];
in fact, we only use the case p = 2 which was proved by Monsky [13].



Analytic Number Theory 2903

Theorem 4. Fix d 6= 0, and let Σ ⊂ Z be any acceptable subset. The average
rank in the cubic twist family of elliptic curves Ed,n (n ∈ Σ) is at most 4/3. Fur-
thermore, if the squarefree part of d is congruent to 1 (mod ∗)4, then the average
rank in the cubic twist family of elliptic curves Ed,n (n ∈ Z) is at least 1

212r−1,
where r is the least residue of v2(d)/2 modulo 3.

Theorem 4 shows, for the first time, the boundedness (and, in many cases,
the positivity) of the average rank in cubic twist families. The question of the
boundedness of the average rank in twist families of elliptic curves has been studied
extensively. The unique sextic twist family was handled by Elkies and the second
and third authors [1]. The quadratic case has been studied by many authors
(see, e.g., [7, 15, 17, 2, 16, 8, 12]), and most recently by Smith [18], whose work
covers most quadratic twist families. Meanwhile, significant progress on the unique
quartic twist family was made by Kane and Thorne [9].

One may also ask which positive integers can be expressed as the sum of two
positive rational cubes.

Theorem 5. A positive proportion of positive integers are expressible as the sum
of two positive rational cubes, and a positive proportion are not.

Indeed, the same lower bounds on the proportions as in (1) and (2) hold for
Theorem 5

Our methods also imply the following result about integers that are the product
of three rational numbers in arithmetic progression:

Theorem 6. A positive proportion of integers are expressible as the product of
three rational numbers in arithmetic progression, and a positive proportion are
not.

Again, by the same arguments, the same lower bounds on the proportions in
Theorem 6 hold as in (1) and (2); and the same lower bounds on the proportions
hold for the set of positive integers that are the product of three positive rational
numbers in arithmetic progression.

More generally, our results imply that a positive proportion of integers cannot
be represented by any given reducible binary cubic form over q.

Theorem 7. Let f(x, y) be any binary cubic form over q with a linear factor.
Then, when ordered by absolute value, a positive proportion of integers cannot be
expressed as f(x, y) with x, y ∈ Q. Furthermore, if the squarefree part of Disc(f)
is 1 (mod 4), then a positive proportion of integers can be expressed as f(x, y) with
x, y ∈ Q.

Theorems 1 and 6 are the special cases of Theorem 7 where we set f(x, y) = x3+y3

and f(x, y) = x(x + y)(x + 2y), respectively. Theorem 7 follows from Theorem
2, since the elliptic curve f(x, y) = n is isomorphic to the curve Ed,n where d =
16 Disc(f).

When f(x, y) is irreducible, the curve f(x, y) = nz3 is not necessarily an elliptic
curve, as it then often fails to even have local points. Indeed, in the irreducible
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case, the density of integers n, such that f(x, y) = n has points everywhere locally,
is 0. More precisely:

Theorem 8. Let f(x, y) be an irreducible binary cubic form over q. The number
of integers n with |n| < X such that the curve f(x, y) = n has points everywhere

locally is on the order of either X/ log1/3X or X/ log2/3X, depending on whether
Disc(f) is or is not a square.
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Additive problems with almost prime squares

Valentin Blomer

(joint work with Lasse Grimmelt, Junxian Li, Simon Rydin Myerson)

In an influential paper [4], Hardy and Littlewood stated that a formal application
of the circle method predicts that the number of representations of a large integer
n in the form

(1) n = p+ x21 + x22

with p prime, x1, x2 ∈ Z is πS(n)Li(n) for the singular series

S(n) =
∏

p

(
1 +

χ−4(p)

p(p− 1)

)∏

p|n

(p− 1)(p− χ−4(p))

p2 − p+ χ−4(p)

associated with this problem. Hooley [5] gave the first proof conditional on GRH,
while Linnik [7] a few years later provided the first unconditional proof. A simpler
and more modern treatment based on the Bombieri-Vinogradov theorem can be
found in [6, Chapter V]. The best error term, saving an arbitrary power of logn,
has been obtained recently in [1], using the full force of the spectral theory of
automorphic forms as well as estimates for multi-dimensional exponential sums.

Here we reconsider the problem with multiplicative restrictions on x1, x2 and
require that they are almost primes, cf. [2].

Theorem 1. There exists a constant C > 0 such that every sufficiently large
integer n ≡ 1, 3 mod 6 can be represented in the form (1), where p is a prime and
x1, x2 are integers all of whose prime factors are greater than n1/C . The number
of such representations is ≫ S(n)n(log n)−3.

The congruence condition on n is necessary to guarantee solutions to (1) with
(x1x2, 6) = 1 and p a prime greater than 3. At the cost of slightly more work it
is possible to remove the condition modulo 6 if x1, x2 are permitted to have the
small primes 2 and 3 as factors. A similar analysis leads to

Theorem 2. There exists a constant C > 0 such that the number of solutions to
the equation

(2) p = x21 + x22 + 1

in primes p ≤ x and x1, x2 all of whose prime factors are greater than p1/C is
≫ x(log x)−3. In particular, there are infinitely many primes shifted by one that
can be written as two squares of almost primes.

This should be compared with a beautiful recent result of Friedlander-Iwaniec
[3] who considered (2) for a prime x1 and an almost prime x2, but without the
additive shift.

It will come as no surprise that the first step in the proof of Theorem 1 consists
in implementing a lower bound sieve in order to detect almost primes. There are
two obvious difficulties to overcome:
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a) the sieve requires an analysis of representations of integers by the form

(3) d21x
2
1 + d22x

2
2

which will typically not have class number one (and not even genus number one);
b) even if a good understanding of the previous problem was available, the sieve

weights are supported on d1, d2 ≪ nκ for some small κ > 0, but the best error
term in the asymptotic formula for (1) is only on a logarithmic scale.

To understand the numbers m ∈ N represented by the quadratic form (3), we
use the arithmetic of the non-maximal order Z + d1d2Z[i] and in particular linear
combinations of class group characters to identify the relevant numbers m. If the
class group character is non-real, i.e. has order > 2, this amounts to summing
Hecke eigenvalues over shifted primes:

∑

p<n

λ(n− p),

which is reminiscent of work of Pitt [8]. If the class group character is real, then
it factors through the norm, and one obtains a familar convolution formula that
can be used to extract the desired main term. Here it is important to carry the
sieve weights directly through the Bombieri-Vinogradov type estimate in order to
deal with problem b) mentioned above.

In some sense dual to prime numbers are smooth numbers, and we also discuss
the equation

(4) n = m+ x21 + x22

where m satisfies P+(m) ≤ g(n) for some function g(n) and x1, x2 are almost
primes. In this respect we prove [2]:

Theorem 3. There exist constants C,D > 0 such that for any function g with
(log n)D ≤ g(n) ≤ n, every sufficiently large integer n can be represented in the
form (4) with P+(m) ≤ g(n) and integers x1, x2 all of whose prime factors are
greater than n1/C . The number of such representations is

≫ F(n, g(n))Ψ(n, g(n))(log n)−2.

Here Ψ(n, y) = #{m ≤ n | P+(m) ≤ y} and

F(n, y) =
∏

p|n

(
1 − χ−4(p)

p

)∏

p|n
p≤y

(
1 +

χ−4(p)

pα

)

where α = α(n, y) is the unique positive solution to the equation

∑

p≤y

log p

pα − 1
= logn.

For the proof we replace Vaughan type identities with Buchstab’s identity. An
extra complication arises from the fact that the number of representations of n
as m + d21x

2
1 + d22x

2
2 with m smooth is not multiplicative in d1, d2, which makes

the application of a sieve problematic. Again we have to carry the sieve weights
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explicitly through the computation and postpone the sum over m to the very last
moment.
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Unit fractions with unit summation

Thomas F. Bloom

An Egyptian fraction decomposition of 1 is a solution to

(1) 1 =
1

n1
+ · · · +

1

nk

with 1 < n1 < n2 < · · · < nk distinct positive integers. (We stress that there is
no restriction on k.) The study of such solutions is an old topic in number theory,
and we are in particular concerned with the question of whether solutions can be
found with the denominators ni taken from a prescribed set A ⊂ N.

There are no congruence restrictions (i.e. solutions can be found in any infinite
arithmetic progression, as first shown by van Albada and van Lint [1]). There
is an obvious trivial size requirement: if

∑
n∈A

1
n < 1 then A cannot contain any

solutions. For example, there are no solutions in [N, 2N ] for large N . Nonetheless,
Croot [3] has shown that for large intervals this is the only constraint, so that for
any ε > 0 and N = N(ε) large enough A = [N, (e+ ε)N ] contains a solution.

Given the absence of any non-trivial obvious arithmetic obstructions, it is natu-
ral to conjecture that (1) has a Ramsey-type property, in that any finite colouring
of the integers contains a non-trivial solution to (1). This was conjectured many
times by Erdős and Graham (see for example [5]) and was finally proved in a
breakthrough paper of Croot [4].

Given this colouring statement, it is also natural to speculate whether in fact the
largest colouring class always suffices, and that any A ⊂ N with positive density
contains a solution to (1). This stronger statement was also conjectured by Erdős
and Graham [5].
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In this talk we discuss a proof of this conjecture, contained in the preprint [2],
in a strong form: any A ⊂ N with positive upper density contains a solution to
(1). Our methods also yield a quantitative form of a logarithmic density version:
there exists a constant C > 0 such that if A ⊂ [1, N ] is a set of integers with

∑

n∈A

1

n
≥ C

log log logN

log logN
logN

then A contains a solution to (1).
We build upon the methods of Croot, who used a variant of the circle method to

count solutions to (1). In brief, if A ⊂ [N, 2N ] is a finite set of positive integers with∑
n∈A

1
n < 2 then a simple application of orthogonality shows that the number of

solutions to (1) with ni ∈ A is

1

P

∑

−P/2<h≤P/2

∏

n∈A

(1 + e(h/n)) − 1.

Provided all n ∈ A have no very large prime divisors (> N/ logN , say) the term
h = 0 contributes 2(1−o(1))|A|. The contribution from small h (say |h| ≤ N)
can be shown to be non-negative. To prove the existence of solutions to (1) it
suffices, therefore, to show that the contribution from h with N < |h| ≤ P/2
is small. Croot proves such a bound via an elegant, yet elaborate, combinatorial
procedure concerning the distribution of multiples in intervals, that is too involved
to summarise here.

Croot’s original method in [4] in fact delivers a density result for sets A with a
sufficiently strong ‘smoothness’ property, essentially that any n ∈ A is not divisible
by any prime power q ≥ n1/4−o(1). This suffices to deduce the colouring result,
since of course any finite colouring of all integers must produce a monochromatic
set of such smooth integers with positive density.

For the new unrestricted density result Croot’s smoothness exponent must be
raised from 1/4−o(1) to 1−o(1). In brief, this is accomplished by replacing an L∞

estimate for the ‘minor arcs’ with an L1 estimate. This L1 estimate is established
by a modification of Croot’s combinatorial procedure, allowing local information
from large prime divisors to be carried throughout the argument. This allows for
the requisite milder smoothness assumption, and the resulting L1 estimate is still
strong enough for the ‘major arc’ contribution to dominate.
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Bateman-Horn, Chowla and the integral Hasse principle for
random polynomials

Tim Browning

(joint work with Efthymios Sofos, Joni Teräväinen)

The average behaviour of arithmetic functions evaluated at polynomials f ∈ Z[t]
has long been a central pursuit in analytic number theory. For the von Mangoldt
function Λ, this encodes the fundamental question of when polynomials capture
their primes. Here, Dirichlet’s theorem allows us to handle linear polynomials, but
polynomials such as f(t) = t2 + 1 remain out of reach.

For the Liouville function λ, cancellation is predicted by the Chowla conjecture
precisely when the polynomial is not proportional to the square of a polynomial.
This also seems out of reach for irreducible polynomials of degree at least two.
For the arithmetic function r that counts representations of an integer as a sum
of two squares, this relates to deep questions about the solubility of the equation
u2 + v2 = f(t) in integers. Current techniques prevent us from treating such
equations when deg(f) ≥ 3.

Inspired by recent work of Skorobogatov and Sofos [2], the purpose of this paper
is to resolve all of these questions by introducing averaging over the coefficients of
polynomials of a given degree.

Define the set of coefficient vectors

Sd(H) =

{
c = (c0, . . . , cd) ∈ Zd+1 : max

0≤i≤d
|ci| ≤ H, c0 > 0

}
,

parameterising polynomials fc(t) = c0t
d + · · · + cd ∈ Z[t] with positive leading

coefficient. Our first result shows that we typically obtain a polynomial lower
bound on the number of prime values that a polynomial takes.

Theorem 1. Let d ≥ 1 and ε > 0 be fixed. Then, for 100% of degree d polynomials
f ∈ Z[t] with coefficients in Sd(H) and no fixed prime divisor, we have

# {n ∈ N : f(n) is prime} ≥ H5/(19d)−ε.

We are also able to treat Chowla’s conjecture on average. Let λ be the Liouville
function, which we extend to Z in the obvious way. The polynomial Chowla
conjecture [1] states that, for any f ∈ Z[t] that is not of the form cg(t)2 with c ∈ R

and g ∈ R[t], we have

∑

n≤x

λ(f(n)) = o(x).

Despite recent progress due to Tao and Teräväinen [3, 4, 5], concerning the case
of polynomials that factor into linear factors, this conjecture remains wide open
for any f that is irreducible and of degree at least 2. However, we can treat if on
average, as in the following result.
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Theorem 2. Let d ≥ 1 and let x = H
1

100d . Then, for 100% of degree d polynomials
f ∈ Z[t] with coefficients in Sd(H), we have

∑

n≤x

λ(fc(n)) ≪ x

(log x)100
.

Finally we are also able to study the Hasse principle on average for a certain
Diophantine equation defined using norms. Let K/Q be a finite extension of
number fields of degree e ≥ 2 and fix a Z-basis {ω1, . . . , ωe} for the ring of integers
of K. We will denote the corresponding norm form by NK(x) = NK/Q(x1ω1 +
· · · + xeωe), where x = (x1, . . . , xe) and NK/Q is the field norm.

Our final result concerns the probability that the equation

NK(x) = f(t)

is soluble over Z, for a randomly chosen degree d polynomial f ∈ Z[t]. These
surfaces are sometimes called generalised Châtelet surfaces. Put Sloc

d (H) for the
set of c ∈ Sd(H) such that NK(x) = fc(t) is soluble over Zp for all primes p. Then
we prove the following result.

Theorem 3. Let d ≥ 1 and let K/Q be any number field of degree e. Then

#
{
c ∈ Sloc

d (H) : NK(x) = fc(t) is soluble over Z
}

#Sloc
d (H)

= 1 +Od,K

(
1

(logH)100

)
,

where the implied constant depends only on d and K.

In other words, as degree d polynomials are ordered by height, the integral
Hasse principle holds for 100% of generalised Châtelet surfaces.
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Major arc moments of smooth Weyl sums

Jörg Brüdern

(joint work with Trevor D. Wooley)

Since the arrival of Hardy and Littlewood’s circle method a century ago, progress
on Waring’s problem was considered the benchmark test for new devices added to
their toolbox. Hardy and Littlewood themselves obtained G(k) ≤ (k− 2)2k−1 + 5
where G(k), as usual, is the smallest number s such that all large natural numbers
are the sum of s k-th powers of natural numbers. This was improved rapidly over
the next decades, culminating in 1959 with Vinogradov’s bound

G(k) ≤ 2k(log k + 2 log log k +O(log log log k))

(see [7]). In 1989 Vaughan [4] introduced smooth numbers to the subject. This
made it possible to preserve homogenenity to a larger extent than was possible by
older routines. In this way, Vinogradov’s bound was refined to

G(k) ≤ 2k(log k + 2 log log k +O(log log log k))

Soon afterwards Wooley’s efficient differencing enhanced the smooth numbers ap-
proach considerably. His bound is roughly half that of Vinogradov, showing that

G(k) ≤ k(log k + log log k + 2 +O(log log k/ log k))

(see [8] and [10, Theorem 1.4]). This bound remained unimproved ever since.

Theorem 1. For all k ∈ N, one has G(k) ≤ ⌈k(log k + 4.20032)⌉.
For very large k one can do slightly better. Let ω be the unique real solution,

with ω ≥ 1, of the transcendental equation

ω − 2 − 1/ω = logω.

Then put

C1 = 2 + log(ω2 − 3 − 2/ω) and C2 =
ω2 + 3ω − 2

ω2 − ω − 2
.

The decimal representations of these numbers are

ω = 3.548292 . . . , C1 = 4.200189 . . . and C2 = 3.015478 . . . .

Theorem 2. For all k ∈ N, one has G(k) < k(log k + C1) + C2.

For smaller values of k, this may be refined further, and then our method
improves on existing bounds for G(k) for all k ≥ 14.

In part III of their famous series Partitio Numerorum, Hardy and Littlewood
made a number of conjectures concerning representations of intergers as the sum
of a prime and a number of k-th powers. In this direction, let H(k) denote the
smallest number s such that all large natural numbers are the sum of a prime and
s k-th powers of natural numbers. One easily proves that in this problem one
needs no more than about half as many k-th powers as are required in Waring’s
problem when studied by the methods underlying the results in Theorems 1 and
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2. The next theorem shows that much more is true. Let r = 4 or 5, and let cr be
the unique solution of the transcendental equation

2cr = 2 + log(rcr − 1)

in the interval [1,∞). The decimal representations are c5 = 2.134693 . . . and
c4 = 1.961969 . . ..

Theorem 3. One has H(k) ≤ c5k + 4. If the Riemann hypothesis is true for all
Dirichlet L-functions, then H(k) ≤ c4k + 4.

This is the first unconditional proof that H(k)/k remains bounded. Again, re-
finements are possible for smaller k, and our method performs better than existing
technology for all k ≥ 6, under the Riemann hypothesis for Dirichlet l-functions
also for k = 5.

The proofs of these results all depend on a new method for bounding major arc
moments of smooth Weyl sums. When 1 ≤ R ≤ P , let A(P,R) denote the set of
integers n ∈ [1, P ], all of whose prime divisors are at most R. Let

f(α;P,R) =
∑

x∈A(P,R)

e(αxk),

where, as usual, we write e(z) to denote e2πiz. The work of Wooley [9] and Vaughan
and Wooley [5, 6] supplies, for every real t ≥ 2, relative small numbers ∆t with
the property that for any fixed positive real number ε there exists a positive real
number η such that, whenever 1 ≤ R ≤ P η, one has

∫ 1

0

|f(α;P,R)|t dα≪ P t−k+∆t+ε.

Now let Q be a real number with 1 ≤ Q ≤ P k/2, and let M = M(Q) denote the
union of the intervals {α ∈ [0, 1] : |qα − a| ≤ QP−k} with 0 ≤ a ≤ q ≤ Q and
(a, q) = 1. In this notation, and under the same conditions, one has

∫

M(Q)

|f(α;P,R)|t dα ≪ P t−k+εQ2∆t/k.

This bound is a versatile pruning device of great utility in various problems in ad-
ditive number theory, well beyond those discussed here. A related bound appears
in recent work of Liu and Zhao [3], but they work with a set of smooth numbers
consisting solely of products of primes in a dyadic range, they have major arcs
that are much narrower than ours, and their estimate is valid only when t ≥ k+ 1
is an even integers. These restrictions rule out some applications, and make it
difficult to combine their method with breaking convexity devices.

When combined with a new slicing method for minor arcs that is too technical to
be described here in detail, the above major arc moment estimate suffices to arrive
at Theorem 3. The results on Waring’s problem depend on a further development
where the t-th moment is restricted to localized major arcs M(2Q)\M(Q) in order
to extract the most of Weyl type bounds for smooth numbers.
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Generalised Rado and Roth criteria

Sam Chow

(joint work with Jonathan Chapman)

Roth [11] showed that x+y = 2z is density regular, i.e. if A ⊆ N has positive upper
density then there exist x, y, z ∈ A distinct solving the equation. The equation
x+ y = z is not density regular, for it has no solution in odd numbers. However,
Schur (1916, see [4]) showed that it has the weaker property of being partition
regular, i.e. if N = C1 ∪ · · · ∪ Cr then there exist j ∈ [r] and x, y, z ∈ Cj solving
the equation.

Let d ≥ 2 be an integer, and define

s1(d) =





5, if d = 2,

9, if d = 3,

d2 − d+ 2⌊
√

2d+ 2⌋ + 1, if d ≥ 4.

This is essentially the number of variables currently needed for the asymptotic
formula in Waring’s problem [13].

Theorem 1. Let s ≥ s1(d), let a1, . . . , as ∈ Z \ {0}, and let P (x) ∈ Z[x] have
degree d. Then the diophantine equation

∑

i≤s

aiP (xi) = 0

is
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• DR iff
∑

i ai = 0;
• PR iff

–
∑

i ai = 0 or

– ∗ there exists non-empty I ⊆ [s] such that
∑

i∈I ai = 0 and

∗ P is intersective (has a root modulo any q ∈ N).

We further generalise to
∑

i aiP (xi) = b, and show that there are at least

a positive constant times Xs−d dense/monochromatic solutions up to height X .
Note that if

∑
i ai = 0 then we can replace P (x) by the intersective polynomial

P (x) − P (0). Thus, intersectivity characterises partition regularity of these equa-
tions, much like with the Furstenberg–Sárköky problem [7].

Previously:

• Rado [10] characterised PR in the case P (x) = x.
• Roth [12] characterised DR in the case P (x) = x.
• Green [5] established Roth’s theorem over the primes.
• Browning and Prendiville [1] characterised DR for P (x) = x2, when s ≥ 5.
• C. [2] characterised DR for P (x) = xd, including over the primes, when
s ≥ (1 + o(1))s1(d).

• C., Lindqvist and Prendiville [3] characterised PR for P (x) = xd, when
s ≥ (1 + o(1))d log d, using smooth numbers.

We use the Fourier-analytic transference principle [9] to linearise some of the
variables. This requires Fourier decay, which is ensured by the W -trick. How-
ever, a naive application of the W -trick falsifies the other key input required for
transference to succeed, namely Fourier restriction (tight estimates for mean val-
ues of weighted exponential sums). To solve this, we deploy a two-step W -trick in
tandem with Lucier’s auxiliary intersective polynomials [8].

A further difficulty arises in the colouring problem. In the case of homogeneous
equations, this aspect was solved in [3] using homogeneous sets. The equations
dealt with in the present work are, in general, inhomogeneous. We resolve the
issue by choosing the colour class which has the largest intersection with a certain
polynomial Bohr set that arises from an application of the arithmetic regularity
lemma [6].
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On the largest prime factor of quartic polynomial values: the cyclic
and dihedral cases

Cécile Dartyge

(joint work with James Maynard)

Let P ∈ Z[X ] be an irreducible polynomial with no fixed divisor. Are there infin-
itely many integers n such that P (n) is a prime number? Schinzel and Sierpiński [5]
have formulated a general and quantitative conjecture associated to this question.

When P (X) has degree one, Dirichlet’s Theorem on prime numbers in arith-
metic progressions, provides a positive answer but this problem is still open for
polynomials of degree ≥ 2. A natural approach is to try to find polynomial values
with a large prime factor.

Let P+(n) denote the largest prime factor of the integer n. Chebyshev proved
that

lim
x→∞

1

x
P+
( ∏

n≤x

(n2 + 1)
)

= +∞.

The best general result was obtained by Tenenbaum [6] who proved that if
f(X) ∈ Z[X ] is irreducible with degree ≥ 2 then for α ∈]0, 2 − log 4[,

P+
( ∏

n≤x

f(n)
)
≥ x exp((log x)α), (x ≥ x0(α, f)).

When the degree of f is small it is possible to have better lower bound. In
this talk we focus on quartic polynomials. Dartyge [2] has handled the case of
the twelfth cyclotomic polynomial Φ12(X) = X4 − X2 + 1. Her result has been
generalised by La Bretèche [1] to monic, even, irreducible quartic polynomials with
Galois group isomorphic to Z/2Z × Z/2Z. In this talk we present the following
Theorem:

Theorem 1 (C. Dartyge and J. Maynard). Let P ∈ Z[X ] be monic, irre-

ducible, quartic, with Galois group isomorphic to C4 := Z/4Z or D4 := Z/4Z ∝
Z/2Z. Then there exists cP > 0 such that for x > x0(P ), we have:

♯{x < n ≤ 2x : P+(P (n)) ≥ x1+cP } ≫ x.

The first step of the proof is an adaptation of Heath-Brown’s method [3] for
detecting large prime factors of some polynomial values.
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Let r1 be a root of the polynomial P , NP the norm in the Q-extension Q(r1).
The arguments of Heath-Brown imply that if we can find δ1, δ2 strictly positif
such that for all x large enough

♯{n ∈ [x, 2x] :
∏

P|(n−r1)
NP (P)≤x

NP (P) ≥ x1+δ1} ≥ δ2x,

then there exists cP = cP (P, δ1, δ2) > 0 satisfying Theorem 1.
To achieve this we introduce a set of ideals J of the integer ring of Q(r1) formed

by principal ideals (α), α = a0 + a1r1 + a2r
2
1 + a3r

3
1 , where (a0, a1, a2, a3) ∈ Z4

are required to satisfy several technical conditions, in particular, we impose that
P+(NP (α)) ≤ x and X1+α0/2 ≤ NP (α) ≤ X1+α0 .

We need thus to understand the congruence n − r1 ∈ (α). We prove that this
congruence can be reformulated as a congruence between some integers. A crucial
step of the proof is then to obtain non trivial bound of exponential sums of type

∑

(a1,a2,a3)∈C

∑

A≤a≤A+B
(B14,q)=1

exp
(2iπhB13(a0, a1, a2, a3)B14(a0, a1, a2, a3)

q(a1, a2, a3)

)
,

where B13(a0, a1, a2, a3), B14(a0, a1, a2, a3) and q(a1, a2, a3) are some polynomials
with integer coefficients.

This sum is bounded with a q-analogue Van der Corput’s result obtained by
Heath-Brown [3] provided the modulus q(a1, a2, a3) has only small prime factors.

It remains to prove that there exists a positive proportion of (a1, a2, a3) such
that q(a1, a2, a3) has a suitable factorisation.

La Bretèche and Mestre [1] have clarified the shape of the form q. Their result
applied to quartic polynomials P implies that

q(a1, a2, a3) = ±
∏

1≤i<j≤4

a(ri) − a(rj)

ri − rj
,

where r1, r2, r3, r4 are the roots of P , and a(r) = a0 + a1r + a2r
2 + a3r

3.
Let G denotes the Galois group of P . If G is the Klein group, G = Z/2Z×Z/2Z

as in [1] and [2], then q(a1, a2, a2) has a nice factorisation:

q(a1, a2, a3) = q1(a1, a2, a3)q2(a1, a2, a3)q3(a1, a2, a3),

where q1, q2, q3 are three ternary quadratic forms. It is then possible by using
lattice counting points arguments, to prove that q(a1, a2, a3) don’t have too large
prime factors.

If G = C4 or D4 then we can order the roots of P such that r1r2 + r3r4 ∈ Q.
In this case q(a1, a2, a3) has the factorisation

q(a1, a2, a3) = q1(a1, a2, a3)q2(a1, a2, a3),

where now q1(a1, a2, a3) is an irreducible form of degree 4 and q2(a1, a2, a3) is a
quadratic form.
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The methods of [1], [2] doesn’t work in this case. However in our case, the form
q1 is not arbitrary. We prove that q1(a1, a2, a3) is an incomplete norm form:

q1(a1, a2, a3) = NQ(r1+r3)/Q(a1 + a2(r1 + r3) + a3(r21 + r1r3 + r23)).

Maynard [4] has obtained asymptotic formulae for the number of prime numbers
represented by incomplete norm forms. Let f(X) ∈ Z[X ] be monic, irreducible of
degree n and θ be a root of f . Maynard’s Theorem says that for n ≥ 4k we have:

♯
{

(a1, . . . , an−k) ∈ [1, X ]n−k : NQ(θ)/Q

( n−k∑

i=1

aiθ
i−1
)}

= (C(f) + o(1))
Xn−k

n logX
,

with

C(f) =
∏

p

(
1 − ν(p)

pn−k

)(
1 − 1

p

)−1

ν(p) = ♯
{

1 ≤ a1, . . . , an−k ≤ p : NQ(θ)/Q

( n−k∑

i=1

aiθ
i−1
)
≡ 0 mod p

}
.

When k = 1, this Theorem can be used for polynomials of degree at least 4.
An important part of the proof of Theorem 1 consists to generalise Maynard’s
ingredients for the type II sums in [4] in order to find a positive proportion of
(a1, a2, a3) such that q1(a1, a2, a3) and q2(a1, a2, a3) have a factorisation compati-
ble to Heath-Brown’s bound for very short exponential sums.
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Extending the unconditional support in an Iwaniec–Luo–Sarnak family

Lucile Devin

(joint work with Daniel Fiorilli, Anders Södergren)

In [6], Katz and Sarnak conjectured the existence of symmetry groups that de-
scribe the distribution of the zeros close to the real line for L-functions in certain
families. This conjecture is far from being proven, but many partial results have
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been obtained. More precisely, given a family F of L-functions ordered by con-
ductor, they conjecture that for all even Schwartz functions φ with compactly
supported Fourier transform, the one-level density

1

|F(Q)|
∑

f∈F(Q)

∑

γ
L( 1

2+iγ,f)=0

φ
(
logQ
2π γ

)

converges as Q → ∞ and the limit depends only on the symmetry type of the
family (which can be Orthogonal, Orthogonal odd, Orthogonal even, Symplectic
or Unitary). The limit is then given by the limiting distribution of eigenvalues
close to 1 for random matrices in the corresponding group.

In their famous paper [5], Iwaniec, Luo and Sarnak studied the one-level density
for families of L-functions attached to holomorphic newforms. Among many other
results, they proved the Katz–Sarnak prediction for the family of L-functions at-
tached to newforms of fixed even weight k and square-free level tending to infinity,

under the condition that the Fourier transform φ̂ of the test function has com-
pact support included in (− 3

2 ,
3
2 ). Moreover, assuming the Generalized Riemann

Hypothesis, they were able to extend this admissible support to (−2, 2). In [1],
we extend the unconditional admissible support in the harmonically weighted one-
level density of the low-lying zeros of L-functions in this family with level tending
to infinity through the primes.

To be more precise, let us introduce some notation. We fix a basis B∗
k(N) of

Hecke eigenforms of the space H∗
k (N) of newforms of prime level N and weight k.

Each of these forms has Fourier expansion f(z) =
∑∞

n=1 λf (n)n
k−1
2 e2πinz, where

we fix λf (1) = 1. We use the harmonic weights defined as

ωf (N) :=
Γ(k − 1)

(4π)k−1(f, f)N
; where (f, f)N :=

∫

Γ0(N)\H
yk−2|f(z)|2dxdy,

and observe that by [2, 3], these are essentially constant of size |B∗
k(N)|−1. The

harmonically weighted one-level density for this family is defined as

D∗
k,N (φ;N) :=

1

Ωk(N)

∑

f∈B∗

k(N)

ωf(N)
∑

γf

φ
( log(k2N)

2π
γf

)
,

where ρf = 1
2 + iγf runs through the non-trivial zeros of L(s, f) (note that γf is

allowed to be non-real), φ is an even Schwartz function whose Fourier transform
is compactly supported, and the total weight is given by

Ωk(N) =
∑

f∈B∗

k(N)

ωf (N) = 1 +Ok(N−1).

We prove the following result ([1, Theorem 1.1]).

Theorem 1. Let φ be an even Schwartz function for which supp(φ̂) ⊂ (−Θk,Θk),
where

Θk :=

{
1 +

√
3
2 if k = 2;

2
(
1 − 1

10k−5

)
if k ≥ 4.
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Then, for N running through the set of prime numbers, we have the estimate

(1) D∗
k,N (φ;N) =

∫

R

W (O)(x)φ(x)dx + oN→∞(1),

where W (O)(x) = 1 + 1
2δ0(x).

The novelty in our approach is that we use zero density estimates for Dirichlet
L-functions after applying the Petersson formula. This extends the unconditional
support that was obtained previously by using only the Weil bound for Kloost-
erman sums. The specific result we use is [4, Theorem 10.4], giving zero density
estimates on average for a family of Dirichlet L-functions. We also show that the
Grand Density Conjecture would lead to an admissible support of (−2, 2), thus
recovering the support previously obtained under the stronger assumption of the
Generalized Riemann Hypothesis.
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Longer gaps between values of binary quadratic forms

Rainer Dietmann

(joint work with Christian Elsholtz, Alexander Kalmynin, Sergei Konyagin
and James Maynard)

Let s1, s2, . . . be an arithmetically interesting sequence of positive integers, ar-
ranged in increasing order, for example the sequence of primes or the sequence of
integers that are sums of two squares. A natural question is the behaviour of the
gaps sn+1 − sn, in particular regarding short and longs gaps. This problem has
been extensively studied for the primes. In this talk we consider numbers that
are sums of two squares, or more generally numbers that are represented by any
binary quadratic form of fixed fundamental discriminant D. As short gaps are
well understood here, we want to focus on long gaps. For the sequence s1, s2, . . .
of numbers that are sums of two squares, Erdős [2] obtained

sn+1 − sn ≫ log sn√
log log sn
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for infinitely many n. This was improved by Richards [3] who showed that for
fixed fundamental discriminant D, for the sequence of positive integers s1, s2, . . .
represented by any binary quadratic form of discriminant D we have

(1) lim sup
n→∞

sn+1 − sn
log sn

≥ 1

|D| .

Note that the special case D = −4 corresponds to the sequence of numbers that
are sums of two squares. This result held the record for the past 40 years. We
recently obtained the following improvement [1], both in the special case D = −4
as well as for general D.

Theorem 1. For D = −4, the 1
4 in (1) can be replaced by

390

449
= 0.868 . . .

Theorem 2. In general, the 1
|D| in (1) can be replaced by

|D|
2ϕ(|D|)(log |D| +O((log log |D|)3))

,

where ϕ denotes Euler’s totient function.

The dependence on |D| now has become very mild in Theorem 2, which for
convenience is only stated in its asymptotic form.

Our proof follows the basic idea of Richards, but introduces two new refine-
ments, a modular and a probabilistic one, which we briefly sketched in our talk
in the context of Theorem 1: Numbers in an interval of given length k are ex-
cluded to be sums of two squares by imposing suitable congruence conditions on
the starting point y of the interval, and the modular and probabilistic refinements
allow to make these conditions fewer and milder than in Richards’ original work,
which leads to a smaller y in terms of k.
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Negative moments of the Riemann zeta-function

Alexandra Florea

(joint work with Hung Bui)

This report is concerned with the study of negative moments of the Riemann zeta-
function. Positive moments of ζ(s) are relatively well-understood. For example,
lower bounds and upper bounds (conditional on RH) of the right order of magni-
tude establish the rate of growth of all the positive moments. Much less is known
about the negative moments, even conjecturally.

For k > 0 and 0 < α ≤ 1, let

(1) I−k(T ) =
1

T

∫ 2T

T

∣∣∣ζ(1/2 + α+ it)
∣∣∣
2k

denote the negative 2kth moments of ζ(s) with the shift α. A conjecture of Gonek
[3] predicts the size of the negative moments in different ranges.

Conjecture 1. Let k > 0 be fixed. Uniformly for 1
log T ≤ α ≤ 1,

I−k(α, T ) ≍
( 1

α

)k2

,

and uniformly for 0 < α ≤ 1
log T ,

I−k(α, T ) ≍





(logT )k
2

if k < 1/2,

(log e
α log T )(log T )k

2

if k = 1/2

(α(log T ))1−2k(log T )k
2

if k > 1/2.

More recent random matrix theory (RMT) computations due to Berry and
Keating [1] and Forrester and Keating [2] provide an alternative way of predicting
formulas for negative moments. However, when 0 < α ≤ 1

log T and k ≥ 3/2, RMT

predictions diverge from Conjecture 1, and suggest certain “transition regimes” in
the asymptotic formulas for k = (2n+ 1)/2, and n a positive integer.

Under RH, Gonek [3] proved lower bounds of the conjectured order of magnitude
for all k > 0 and 1

log T ≤ α ≤ 1 and for k < 1/2 and 0 < α ≤ 1
log T .

In forthcoming work with Hung Bui, under RH, we obtain upper bounds for
the negative moments in certain ranges of the shift α. Firstly, when the shift
α ≫ (log logT )ak/(logT )

1
2k (where ak is an explicit constant depending on k),

we obtain almost sharp upper bounds (consistent with Conjecture 1), up to some
log logT factor. We also further refine the upper bound in this range to obtain
an asymptotic formula for the negative moments. For example, we obtain an
asymptotic formula for (1) when α≫ (log logT )8/(logT ), and k < 1/2. Secondly,

we obtain non-trivial upper bounds for (1) when α = o((log logT )ak/(logT )
1
2k )

and log(1/α)/ log logT ≪ 1. As an application, we slightly improve a conditional
bound of Soundararajan [4] on averages of the Möbius function.

The techniques used draw on ideas of Soundararajan and Harper on obtaining
conditional sharp bounds for the positive moments of the Riemann zeta-function.
However, while the contribution from zeros of ζ(s) turns out to be quite benign
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in the case of positive moments, more care is needed to deal with the possibly
large contributions from zeros in the case of negative moments. To obtain upper
bounds for (1), one needs to use an a priori bound for the negative moments,
which is done first by employing a pointwise bound for ζ(s)−1. In certain ranges,
one is able to then use a recursive, self-improving bound to strengthen the results
previously obtained.
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On Sárközy’s theorem for shifted primes

Ben Green

A set S ⊂ N is called intersective if, for any set A ⊆ N with positive upper density,
we have (A−A)∩S 6= ∅, that is to say some two elements of A differ by an element
of S.

Solving a conjecture of Lovász, Sárközy and Furstenberg independently showed
in the 1970s that the squares are intersective. They used rather different methods:
Sárközy used the circle method in the spirit of Roth’s proof that sets of positive
density contain 3-term progressions, while Furstenberg used methods of ergdic
theory.

Answering a conjecture of Erdős, Sárközy used similar methods to show that
the set {p − 1 : p prime} is intersective. (Simple examples such as the set of
multiples of 4 show that the primes themselves are not intersective.)

My talk concerns quantitative versions of this latter result. Denote by A(N) the
size of the largest subset of {1, . . . , N} not containing distinct elements a, a′ with
a−a′ = p−1, p a prime. Then Sárközy showed that A(N) ≪ N(log logN)−2+o(1).
This was subsequently improved by Lucier, and then by Ruzsa and Sanders, before

Zoe Wang showed in 2020 that A(N) ≪ Ne−C(logN)1/3 .
The main result of my talk is that A(N) ≪ N−c for some positive constant

c. A detailed proof of this result may be found in the manuscript [1]. Assuming
GRH, c can be taken to be any constant less than 1

12 .
Previous approaches to the problem have used a mode of argument called den-

sity increment, which was introduced by Roth in his 1953 paper [3] on progressions
of length 3. Assuming that A ⊂ {1, . . . , N} is a set of density α which does not
contain any pair of elements differing by p − 1, some Fourier-analytic arguments
are used to show that there is some large subprogression P ⊂ {1, . . . , N} on which
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the density of A is appreciably larger than α. Iterating this kind of argument
eventually leads to a contradiction.

To prove the main result stated above, a different kind of argument is used: the
shifted primes are shown to have a property called the van der Corput property,
which is strictly stronger than being an intersective set. For the shifted primes,
what this means is that there exists a function Φ : {1, . . . , N} → R which is
supported on the shifted primes ≤ N , which has average value 1, and which
satisfies the Fourier positivity property

∑

n≤N

Φ(n) cos(2πθn) ≥ −N1−c

for all θ ∈ R/Z.
It is not hard (though not obvious) to show that this property implies the

bound A(N) ≪ N1−c mentioned above (Montgomery’s book [2, Chapter 2] is a
good source for this.)

Constructing Φ is a substantial task and only a brief sketch can be given in a
talk. It may be noted that the bound A(N) ≪ N1−c implies Linnik’s theorem on
the least prime ≡ 1 (mod q), and so any construction must include a proof of this
theorem or else use it as a black box. The former option applies here, so zero-
density and exceptional zero repulsion estimates come into the analysis, alongside
various other ideas from sieve theory and the circle method.
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On non-archimedean analogue of a question of Atkin and Serre

Sanoli Gun

(joint work with Yuri F Bilu and Sunil L Naik)

Let f be a cusp form of integer weight k for Γ0(N), where N ≥ 1 is an integer.
Let the Fourier expansion of f be given by

f(z) =

∞∑

n+1

af (n)qn,

where z ∈ C with ℑ(z) > 0 and q = e2iπz . When f is a normalized Hecke eigen
cusp form of weight k ≥ 4 and without complex multiplication, a question of
Atkin-Serre [9] predicts that

|af (p)| ≥ c(ǫ)p
k−3
2 −ǫ
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for any real number ǫ > 0. In particular, when f = ∆, where

∆(z) =

∞∑

n=1

τ(n)qn = q

∞∏

n=1

(1 − qn)24,

this conjecture predicts that

|τ(n)| ≥ c(ǫ)p
9
2−ǫ

for any ǫ > 0. An oft-quoted conjecture of Lehmer suggest that τ(p) 6= 0 for
all primes p and Serre [10] in 1981 showed that this conjecture is true for almost
all primes p. There are several refinements of Serre’s 1981 result but Lehmer’s
conjecture still remains elusive.

In 1987, R. Murty, K. Murty and Shorey [8] showed that there exists a constant
c > 0 such that

|τ(n)| ≥ (log n)c

provided τ(n) 6= 0 is odd. It is easy to observe from Jacobi’s triple product identity
or by a Theorem of Tate about non-existence of non-trivial Galois representation
from Galois group of Q/Q to GL2(F2) which is ramified only at 2 that τ(p) is
always even. One year later, R. Murty, K. Murty and Saradha [7] showed that
there exists a constant c > 0 such that

|af (p)| ≥ (log p)c

for almost all primes p. The best known result in this direction is Gafni, Thorner
and Wong [3]. They showed that

af (p) ≥ 2p11/2
log log p√

log p

for almost all primes p.
In 2022, Bennett, Gherga, Patel and Siksek [1] considered a non-Archimedean

analogue of the question of Atkin and Serre and showed that for any prime p and
integer m ≥ 2, the largest prime factor P (τ(pm)) of τ(pm) satisfies

P (τ(pm)) > α · log log(pm)

log log log(pm)

provided τ(p) 6= 0. Here α is an absolute positive constant and P (n) denotes the
largest primes factor of n with the convention that P (0) = P (±1) = 1. In joint
works with Bilu and Naik [2] and with Naik [4], we show that for any ǫ > 0 and
integer m ≥ 1, the largest prime factor of the p-th Fourier coefficient af (p) of f ,
denoted by P (af (p)), satisfies

P (af (pm)) > (log p)1/8(log log p)3/8−ǫ

for almost all primes p. Here f is a non-CM normalized Hecke eigen cusp forms of
weight k, level N with integer Fourier coefficients. The results in [2] and [4] can
be strengthened if we assume Generalized Riemann hypothesis.
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The typical size of character sums

Adam J Harper

I discussed the following theorem, which improves and generalises a result I dis-
cussed in an earlier Oberwolfach meeting (1744a).

Theorem 1. Let r be a large prime. Then uniformly for any 1 ≤ x ≤ r, any
0 ≤ q ≤ 1, and any multiplicative function h(n) that has absolute value 1 on
primes and absolute value at most 1 on prime powers, we have

1

r − 1

∑

χ mod r

|
∑

n≤x

h(n)χ(n)|2q ≪
(

x

1 + (1 − q)
√

log log(10L)

)q

,

where L = Lr := min{x, r/x}.
Two important cases covered by the theorem are h(n) ≡ 1, where it becomes

a low moment bound for incomplete character sums; and h(n) = µ(n). One has

an analogous result for the integral averages 1
T

∫ T

0
|∑n≤x h(n)nit|2qdt, with Lr

replaced by LT := min{x, T/x}.
Theorem 1 is motivated by a corresponding result for random multiplicative

functions. Thus if f(n) is a Steinhaus (or Rademacher) random multiplicative
function, then Theorem 1 of Harper [2] asserts that

E|
∑

n≤x

f(n)|2q ≍
(

x

1 + (1 − q)
√

log log x

)q

∀ 0 ≤ q ≤ 1.

Notice that this is an order of magnitude result, rather than just an upper bound.
In the case where h(n) ≡ 1, there is a well known duality between the char-

acter sum
∑

n≤x χ(n) and the character sum
∑

n≤r/x χ(n), arising from Poisson
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summation (alternatively known, in this context, as the approximate functional
equation or the Pólya Fourier expansion). Indeed, roughly speaking we have
1√
x
|∑n≤x χ(n)| ≈

√
x
r |
∑

n≤r/x χ(n)|. This means that the quantity log log(10L)

appearing in Theorem 1 is a natural substitute for the quantity log log x in the ran-
dom multiplicative setting, and so it seems reasonable to conjecture that Theorem
1 is sharp when h(n) ≡ 1 and x ≤ 0.99r, say. (For non-principal χ, if 0.99r < x ≤ r
we can observe that

∑
n≤x χ(n) = −∑x<n≤r χ(n) = −∑1≤n<r−x χ(r − n) =

−χ(−1)
∑

1≤n<r−x χ(n), and then get a stronger moment bound by applying The-

orem 1 to these sums instead.)
In the case where h(n) = µ(n) there is no duality, and it seems reasonable

to conjecture that one should be able to replace log log(10L) simply by log log x
in Theorem 1, as well as substantially relaxing the restriction that x ≤ r. This
would be in the spirit of a recent paper of Gorodetsky [1], who conjectured (based
on function field considerations) that for all natural number exponents q < log r,
the moments 1

r−1

∑
χ mod r |

∑
n≤x µ(n)χ(n)|2q should be asymptotic to the corre-

sponding random multiplicative moments as x and r become large. In particular,
I conjecture that for any 0 ≤ q ≤ 1 and any fixed A > 0, we should have

1

r − 1

∑

χ mod r

|
∑

n≤x

µ(n)χ(n)|2q ≪ (
x

1 + (1 − q)
√

log log x
)q ∀ x ≤ rA,

and

(1)
1

2T

∫ T

−T

|
∑

n≤x

µ(n)nit|2qdt≪ (
x

1 + (1 − q)
√

log log x
)q ∀ x ≤ TA.

Whilst I do not know how to prove this conjecture, it seems plausibly attackable (at
least assuming standard conjectures like the Riemann Hypothesis), and if true it
would have significant arithmetic consequences. Standard arguments with Perron’s
formula imply that

∣∣∣∣∣∣

∑

x<n≤x+y

µ(n)

∣∣∣∣∣∣
≈

∣∣∣∣∣∣
1

2πi

∫ i(x/y)

−i(x/y)

(
∑

n≤2x

µ(n)

ns
)
xs((1 + y/x)s − 1)

s
ds

∣∣∣∣∣∣

.
y

x

∫ x/y

−x/y

|
∑

n≤2x

µ(n)

nit
|dt,

and so (1) (if true) would deliver a bound |∑x<n≤x+y µ(n)| .
√
x

(log log x)1/4
provided

y ≤ x1−ǫ, say. Thus we could deduce there is cancellation in sums of the Möbius

function in all short intervals of length y ≫
√
x

(log log x)1/4
. It is a major open

problem to go below, or even to reach, the squareroot interval barrier in problems
of this kind. See e.g. the recent beautiful work of Matomäki and Radziwi l l [3],
which (among many other results) establishes the existence of positive and negative
Möbius values (or, strictly speaking, values of the closely related Liouville function)
in intervals of length C

√
x, for a large constant C.



Analytic Number Theory 2927

References

[1] O. Gorodetsky, Magic squares, the symmetric group and Möbius randomness, preprint avail-
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On a question of Davenport and diagonal cubic forms over Fq(t)

Leonhard Hochfilzer

(joint work with Jakob Glas)

Let (k,O) ∈ {(Q,Z), (Fq(t),Fq[t])} and consider a homogeneous, non-singular cu-

bic form F ∈ k[x1, . . . , xn]. Denote by X ⊂ Pn−1
k the variety defined by F = 0.

One way to try and understand X(k) and whether the Hasse principle holds is to
consider the counting function

N(P ) = # {x ∈ On : F (x) = 0, |xi| ≤ |P | for i = 1, . . . , n} ,
where P ∈ O and when k = Fq(t) we consider the absolute value given by |f/g| =

qdeg(f)−deg(g). If n ≥ 5 then one expects

N(P ) ∼ c|P |n−3,

where c > 0 if and only if X(kv) 6= ∅ for all completions kv. Therefore proving
a result of this shape implies the Hasse principle for X . If n ≤ 4 the situation
becomes more complicated. For example, if n = 4 then the contribution from
rational lines to N(P ) is at least |P |2 provided they exist. Thus it is more inter-
esting to study the counting function No(P ), which only counts solutions away
from rational lines. According to Manin’s conjecture one expects

No(P ) ∼ |P | log|P |ρ−1,

where ρ is the rank of the Picard group of X .
What is known about this problem? If k = Q and n ≥ 9 then across a series

of papers written 1988–2013 Hooley showed the asmyptotic formula of the above
shape and thus the Hasse Principle (cf. [8, 9, 10, 11]). If n = 8, Hooley manages to
establish the same, however he needs to assume the Riemann hypothesis for certain
Hasse-Weil L-functions arising in this context for his argument to go through
(cf. [12]). Assume now that F is diagonal, that is, it can be written as follows
F (x) =

∑n
i=1 Fix

3
i . This problem was tackled by Heath-Brown in a small number

of variables [7]. If n = 6 he could establish the upper bound N(P ) ≪ε |P |3+ε,
which only just about misses out on the expected order of N(P ). Moreover he
could show No(P ) ≪ε |P |3/2+ε if n = 4. Both results are conditional on Riemann
hypotheses on certain Hasse-Weil L-functions.
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By virtue of Deligne’s seminal work [4] this raises the natural question whether
one can unconditionally prove these results if k = Fq(t). Browning and Vishe
considered this question and could successfully show an asymptotic formula for
N(P ) if n = 8, provided char(Fq) > 3 and thus establish weak approximation for
cubic hypersurfaces in n ≥ 8 variables. Recall that weak approximation states
that

X(k) ⊂
∏

v

X(kv),

is dense, where we consider the product with respect to the product topology.
Analogously to Heath-Brown’s approach Jakob Glas and I unconditionally showed
the following [5].

Theorem 1. (Glas–H.) Let F =
∑n

i=1 Fix
3
i be a diagonal cubic form where

Fi ∈ Fq(t) for i = 1, . . . , n. Assume that char(Fq) 6= 3. If n = 6 then we have

N(P ) ≪ε |P |3+ε.

If n = 4 and char(Fq) > 3 then we have

No(P ) ≪ε |P |3/2+ε,

and if char(Fq) = 2 then we have

N(P ) ≪ε |P |2+ε.

In particular, this affirmatively answers a question of Davenport who in a 1964
letter to Keith Matthews asked whether one can establish the mean value bound

(1) #
{
x ∈ Fq[t]

6 : x31 + x32 + x33 = x34 + x35 + x36
}
≪ |P |3+ε.

We prove this result adapting the circle method in the spirit of the methods devel-
oped by Heath-Brown [6] as was previously similarly done by Browning–Vishe [1].
Usually when the circle method is used in the context of cubic forms, Weyl dif-
ferencing produces a factor of 6. Thus it is often difficult to obtain results when
char(Fq) = 2 or 3. We can avoid this issue since we essentially replace Weyl differ-
encing by Poisson summation. We also remark that the case char(Fq) = 3 is in a
way not particularly interesting since solving a diagonal cubic form then reduces
to a system of linear equations.

The mean value estimate (1) together with Weyl’s inequality enables us to
significantly Waring’s problem in this context (in characteristic 2, Weyl’s inequality
was shown by Car [2]). Write Jq[t] for the additive closure of cubes in Fq[t] and

denote by G̃q(3) the smallest number n such that we obtain an asymptotic formula
for

Rn(P ) = #

{
x ∈ Fq[t]n :

n∑

i=1

x3i = P, |xi| ≤ q⌈ deg P
3 ⌉

}
,

where |P | → ∞ for P ∈ Jq[t]. Trivially, G̃3h(3) = 1. Further, Kubota [13] showed

G̃q(3) ≤ 9 if q is odd. The case of even characteristic has been analysed by Car

and Cherly [3] who showed G̃2h(3) ≤ 11. In [5] we establish the following. Note
that there is no restriction on the characteristic.
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Theorem 2. (Glas–H.) We have G̃q(3) ≤ 7. That is, if n ≥ 7 then there exists an
asymptotic formula for Rn(P ). In particular Rn(P ) ≥ 1 for all sufficiently large
P .

Finally, using (1) we can also deduce weak approximation for diagonal cubic
forms in at least 7 variables.

Theorem 3. (Glas–H.) Let X be the variety defined by
∑n

i=1 Fix
3
i = 0, where

Fi ∈ Fq(t). If n ≥ 7 and if char(Fq) > 3 then weak approximation holds for X.

We expect that one can show the result Theorem 3 in the case of even charac-
teristic by adjusting the techniques in [2] in order to obtain Weyl’s inequality in
this context.
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Twisted multiplicativity and exponential sums

Emmanuel Kowalski

(joint work with K. Soundararajan)

For a polynomial f ∈ Z[X ] (or in Z[X,X−1], or ...), a squarefree integer q ≥ 1
and an integer a coprime to q, define

Wf (a; q) =
1√
q

∑

x mod q

e
(af(x)

q

)
.

Extend Wf (a; q) to other values of q and a by putting Wf (a; q) = 0. These
exponential sums satisfy the “twisted-multiplicativity” property

Wf (a; q1q2) = Wf (aq̄1; q2)Wf (aq̄2; q1),
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which reflects the fact that a 7→Wf (a; q) is the discrete Fourier transform modulo q
of the counting function of solutions of f(y) = x, and this counting function is
“compatible with the Chinese Remainder theorem”.

The “trivial” individual bound for these sums is provided by the Weil bound,
namely |Wf (a; q)| ≤ (deg(f) − 1)ω(q). We are interested in obtaining bounds for
averages

∑

q≤x

Wf (a; q)

where a is a fixed non-zero integer. However, there are currently no known tech-
nique to do this in a robust way, except by using the triangle inequality

∣∣∣
∑

q≤x

Wf (a; q)
∣∣∣ ≤

∑

q≤x

|Wf (a; q)|

and using a method going back to Hooley [1964].

Theorem 1. Suppose that deg(f) ≥ 3, and that f is indecomposable (i.e. that
f 6= f1 ◦ f2 with deg(fi) ≥ 2). Fix a 6= 0 in Z.

(a) We have

(1)
∑

q≤x

|Wf (a; q)|2 ≪ x(log log x)(d−1)2

for x ≥ 2.
(b) There exists δ > 0, depending only on deg(f) such that

(2)
∑

q≤x

|Wf (a; q)| ≪ x

(log x)δ

for x ≥ 2.

Problem 1. Find other methods to estimate sums of twisted-multiplicative func-
tions, without modulus.

Problem 2. Obtain lower-bounds for the same quantities (with modulus).

Remark. Estimates for sums of this kind were obtained by Hooley [1964] for
Kloosterman sums (f = X + X−1) and generalized by Fouvry and Michel [2003]
for “generic” rational functions. However, for the bound (2), they obtained an
upper bound of size x(log log x)cf for some constant cf > 0. Thus Theorem 1
provides the qualitatively new information that the average of Wf (a; q) goes to
zero.

The proof of Theorem 1 involves two fairly different steps:

Step 1. Adapting the method of Hooley and Fouvry–Michel (based on splitting
q as sf where s is suitably sifted and f friable), one obtains an analytic bound
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∑

q≤x

|W (a; q)| ≪ x

log x
exp
(∑

p≤x

1

p

(1

p

∑

(a,p)=1

|W (a; p)|
))

(log log x)M

for any twisted-multiplicative function W (a; q) bounded by some real number M ≥
0. This reduces the proof of Theorem 1 to that of understanding the moments

1

p

∑

(a,p)=1

|Wf (a; p)|2, 1

p

∑

(a,p)=1

|Wf (a; p)|

modulo primes.

Step 2. We prove a dichotomy of independent interest for the fourth moment.

Theorem 2. Assume that d = deg(f) ≥ 3. Either

lim
p→+∞

1

p

∑

(a,p)=1

|Wf (a; p)|4 = 2

or there exists δ > 0 depending only on d and a set of primes of natural density
≥ δ such that for such primes, we have

1

p

∑

(a,p)=1

|Wf (a; p)|4 ≥ 3 +O(p−1/2).

Using this, it is not too difficult to deduce Theorem 1 by exploiting the fact
that if the second moment is equal to 1 (which is almost always true for f inde-
composable), then the fourth moment is strictly larger than the second, hence the
first moment is strictly smaller (in a quantitative way). For the general indecom-
posable case, a result of Shao on the average over p of the second moment is also
used.

The proof of Theorem 2 depends in essential ways on the theory and formalism
of Deligne and Katz for exponential sums over finite fields.

Problem 3. Can one prove special cases of Theorem 2 (say for f = X3+X) using
more elementary means? (E.g., not beyond the Chebotarev Density Theorem.)

Remark. In the work of Fouvry and Michel, the generic polynomials are defined
(following results of Katz) as the Morse–Sidon polynomials, where:

– A polynomial is Morse if the derivative f ′ is squarefree and f separates
the roots of f ′;

– A polynomial is Sidon if the values f(α) of f at zeros α of f ′ form a Sidon
set in C: if a, b, c, d are four such numbers and a + b = c + d, then
a ∈ {c, d}.

Our next fairly natural problem is an attempt to show that if f and g are “unre-
lated” in some sense, then the exponential sums Wf (a; q) and Wg(a; q) are uncor-
related. The limitations about methods to handle sums of twisted-multiplicative
functions mean that we cannot compare

∑

q≤x

Wf (a; q)Wg(a; q)
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with ∑

q≤x

|Wf (a; q)|2

as we would like, but we can prove the following.

Theorem 3. Suppose that deg(f) ≥ 3, deg(g) ≥ 3 and that f and g are Sidon–
Morse polynomials. Assume that we do not have

g(X) = αf(βX + γ) + δ

for some (α, β, γ, δ) ∈ C4.
Fix a 6= 0 in Z. There exists δ > 0, depending only on deg(f) and deg(g), such

that

(3)
∑

q≤x

|Wf (a; q)Wg(a; q)| ≪ x

(log x)δ

for x ≥ 2.

Remark. In the absence of matching lower bounds in (1), we cannot conclude
that f and g are uncorrelated.

Finally, this result suggests a question:

Problem 4. Suppose that f and g are polynomials such that |Wf (a; p)| =
|Wg(a, p)| for (a, p) = 1, either for one large prime p, or for all primes p large
enough. What are the relations, if any, between f and g?

Implicitly (and explicitly within the proof), Theorem 3 shows that this condition
implies that f and g are “linearly related” if they are both Sidon–Morse of degree
≥ 3. In work in progress, we are attempting to extend this result to a larger class
of polynomials.

We note a formal analogy with a problem attributed by Fried to Davenport: if
f and g are integral polynomials such that

f(Fp) = g(Fp)

for all p large enough, does it follow that f and g are linearly related?
The link is that one can understand (by methods of Fried in particular) the

polynomials f and g with µf,p = µg,p for large p, where

µf,p =
1

p

∑

x mod p

δf(x), µg,p =
1

p

∑

x mod p

δg(x)

are probability measures on Fp, and this condition is equivalent to Wf (a; p) =
Wg(a; p) for all a. Davenport’s question asks about relations between f and g if
only the support of the measures is remembered, while Problem 4 asks for relations
if the phase of the discrete Fourier transform of the measures is discarded.

Remark. Most of the results reported here are proved in Kowalski & Soundarara-
jan [2022].
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A proof of the Erdős primitive set conjecture

Jared Duker Lichtman

A set of integers A ⊂ Z>1 is primitive if no member in A divides another. For
example, the integers in a dyadic interval (x, 2x] form a primitive set. Similarly
the set of primes P is primitive, along with the set P(k) of numbers with exactly
k prime factors (with multiplicity), for each k ≥ 1. Another well-known example
is the set of perfect numbers. Since Ancient Greece, a number n is classified as
‘perfect,’ ‘abundant,’ or ‘deficient,’ depending on whether the sum of its proper
divisors equals n, is greater than n, or is less than n, respectively.

The study of primitive sets emerged in the 1930s as a generalization of one spe-
cial problem. A classical theorem of Davenport asserts that the set of abundant
numbers has a positive asymptotic density. This was originally proved by sophis-
ticated analytic methods, but Erdős soon found an elementary proof by using
primitive abundant numbers. (More precisely, primitive non-deficient numbers).
The proof ideas led people to introduce the abstract definition of primitive sets
and study them for their own sake. See Hall [9] or Halberstam–Roth [8, §5] for
detailed introductions to the subject.

There are a number of interesting and sometimes unexpected theorems about
primitive sets. For instance, in 1934 Besicovitch [3] showed that the upper as-
ymptotic density of a primitive set can be arbitrarily close to 1/2, whereas in 1935
Behrend [2] and Erdős [5] proved the lower asymptotic density is always 0. In fact,
Erdős proved the stronger result that

f(A) :=
∑

a∈A

1

a log a
< ∞,

uniformly over all primitive sets A. Later in 1988 Erdős famously asked if the
maximum is attained by the primes P .

Conjecture 1 (Erdős primitive set conjecture). For any primitive set A, f(A) ≤
f(P).

The prime sum is f(P) =
∑

p 1/(p log p) = 1.6366 · · · after computations of

Cohen [4]. In 1993, Erdős and Zhang [7] proved the bound f(A) < 1.84 for all
primitive A. Recently in 2019, Lichtman and Pomerance [11] improved the bound
to f(A) < eγ = 1.781 · · · , where γ is the Euler-Mascheroni constant. Note the tail
of the series for f(P) converges quite slowly O(1/ log x), and moreover there are
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sets A ⊂ [x,∞) for which f(A) ∼ 1 as x → ∞ (in this connection see Conjecture
2 below). As such, Conjecture 1 is not susceptible to direct attack by computing
partial sums up to x.

We note a natural analogue of Conjecture 1 for the translated sum f(A, h) =∑
a∈A 1/a(log a + h) is false. Namely, there are primitive A for which f(A, h) >

f(P , h) once h ≥ 1.04 [10]. This suggests that the original conjecture (when
h = 0), if true, is only ‘barely’ so.

Nevertheless we answer Conjecture 1 in the affirmative.

Theorem 1 (L., 2022). For any primitive set A, we have f(A) ≤ f(P).

Another question related to Conjecture 1, in 1968 Erdős, Sárközy, and Sze-
merédi posed the following [6, eq. (11)].

Conjecture 2 (Erdős–Sárközy–Szemerédi). We have

lim
x→∞

sup
A⊂[x,∞)

A primitive

f(A) ≤ 1.

The methods in this paper also enable the following initial progress towards
Conjecture 2.

Theorem 2 (L., 2022). We have

lim
x→∞

sup
A⊂[x,∞)

A primitive

f(A) ≤ eγ
π

4
≈ 1.399.
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[5] P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London
Math. Soc. 10 (1935), 126–128.
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Large order Dirichlet characters and an analogue of a conjecture
of Vinogradov

Alexander P. Mangerel

Let q be a large prime, and let nq denote the least quadratic non-residue modulo q.
It is a classical problem to obtain upper bounds for nq as a function of q. Viewing

the event
(

n
q

)
= ±1 as an outcome of a fair coin toss, probabilistic heuristics

suggest that nq ≪ǫ (log q)1+ǫ, a suggestion bolstered by a result of Ankeny [1],
conditional on the Generalized Riemann Hypothesis (GRH), that nq ≪ (log q)2.
More modestly, a still open conjecture of I.M. Vinogradov posits that nq ≪ǫ q

ǫ for
any ǫ > 0, a claim that is known to hold for “almost all” q (in a precise sense) as a
consequence of the large sieve and zero-density estimates for Dirichlet L-functions.

In this connection, the best unconditional result nq ≪ǫ q
1

4
√
e
+ǫ

, due to Burgess
[2], makes crucial use of bounds for short character sums

∑

n≤x

(
n

q

)
, x > q1/4+ǫ.

Improvements in the range of x, e.g., to any x > qǫ, in such an estimate would
immediately resolve Vinogradov’s conjecture in the affirmative.

By analogy, given χ a primitive character modulo a prime q, define nχ to be
the least n for which χ(n) 6= 0, 1. It is of interest to determine sufficient conditions
on χ and q, independent of the distribution of zeros of corresponding L-functions,
that guarantee that, in analogy to Vinogradov’s conjecture, nχ ≪ǫ q

ǫ for any
ǫ > 0. Going further, it is of interest to show, for suitable χ and q, significant
variation in the values of χ(n) for n ≤ qǫ, and for χ(p) when p ≤ qǫ is prime. One
would also hope to improve the range of Burgess’ estimate in such cases.

In this talk, based on the article [4], we discuss such questions in the case that
χ has large order, i.e., for minimal d such that χd is principal, d→ ∞ as q → ∞.
Our results show that for any δ, ǫ > 0 there is a (quantitative) d0 = d0(δ, ǫ) such
that whenever d ≥ d0 and x > qδ:

(1) the least n with χ(n) 6= 0, 1 satisfies nχ ≤ qδ, a result proven by K.K.
Norton [5], but for which we give an alternative, elementary proof;

(2) if d is squarefree then the level sets {n ≤ qδ : χ(n) = α}, where αd = 1,
are sparse, i.e., of size ≤ ǫx, and thus no clustering of fixed values of χ(n)
occurs even in the short segment [1, qδ];

(3) the set of prime values χ(p) 6= 1 is substantial in the sense that the sum∑
p≤qδ

χ(p) 6=0,1

p−1 is ≥ 1/ǫ; and

(4) if the least prime factor of d is > 1/ǫ then for all but O(ǫd) choices of
exponents 1 ≤ ℓ ≤ d we may go beyond the Burgess range and obtain
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|Sχℓ(x)| :=

∣∣∣∣∣∣

∑

n≤x

χℓ(n)

∣∣∣∣∣∣
≤ ǫx.(1)

The last of these items is perhaps the most interesting, for at least two reasons.
First, though it is the consequence of an averaging result over the family

{χℓ}dℓ=1, this family could be growing arbitrarily slowly in size (as we make no
assumptions on how quickly d grows with q). Moreover, this family is structured,
whereas e.g., zero density estimates do not provide specific structural information
(outside of information about L-functions) on the characters giving rise to small
partial sums.

Second, the proof invokes results from additive combinatorics, in particular
inverse sumset results, to understand the structure of the set Ξd(ǫ) of exponents
ℓ for which (1) fails to hold. For such “bad” ℓ there is a choice of real number
tℓ ∈ [−1/ǫ, 1/ǫ] such that the prime sum

∑

p≤x

1 − Re(χℓ(p)p−itℓ)

p
= Oǫ(1).

If tℓ = 0 for all ℓ then sieve-theoretic considerations of a different kind allow
us to conversely conclude that the corresponding prime sums are still large, and
hence equivalently that |Sχℓ(x)| is still small as a function of ǫ even when ℓ ∈
Ξd(ǫ). To deduce that, indeed, tℓ = 0 may be taken here, the key idea, arising
from the pretentious theory of multiplicative functions pioneered by Granville and
Soundararajan (as in e.g., [3]), is that, roughly speaking, the map ℓ 7→ tℓ is an
approximate homomorphism on Ξd(ǫ). This property may be extended to all of
Z/dZ by covering the latter cyclic group efficiently (i.e., with m not too large) by
sumsets

mΞd(ǫ) = {ℓ1 + · · · + ℓm : ℓj ∈ Ξd(ǫ)}
(which can be done when d has only large prime factors). As approximate homo-
morphisms on abelian groups are uniformly approximable by genuine homomor-
phisms (see e.g., [6]), and as the only homomorphism Z/dZ → R is identically
zero, we conclude that tℓ is (sufficiently well-approximated by) 0 for each ℓ.
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Pólya-Vinogradov inequality, J. Amer. Math. Soc. 20(2) (2007), 357–384.
[4] A.P. Mangerel, Large sums of high order characters, arXiv: 2207.14377 [math.NT, math.CO]
[5] K.K. Norton, Numbers with small prime factors and the least kth power non-residue, Mem-

oirs of the AMS 106 (1971)
[6] I.Z. Ruzsa, On the concentration of additive functions, Acta Math. Acad. Sci. Hung. 36

(1980), 215–232



Analytic Number Theory 2937

Products of primes in arithmetic progressions

Kaisa Matomäki

(joint work with J. Teräväinen)

For k, q ∈ N and a real number x ≥ 2, write

Ek(x) = {a ∈ Z×
q : a ≡ p1 · · · pk (mod q) for some primes p1, . . . , pk ≤ x},

where Z×
q is the set of reduced residue classes (mod q). We study Ek(x) for

k ∈ {2, 3}.
Erdős conjectured (see [1]) that E2(q) = Z×

q for all large enough primes q. This
can be seen as a multiplicative analogue of the Goldbach conjecture and remains
open even under the Generalized Riemann Hypothesis. In our on-going work we
establish the ternary variant of Erdős’ conjecture:

Theorem 1. (1) Let q ∈ N be cube-free and sufficiently large. Then

E3(q) = Z×
q .

(2) Let ε > 0 and let q ∈ N be sufficiently large in terms of ε. Then

E3(q1+ε) = Z×
q .

Previously it was shown independently by Szabó [3] and Zhao [4] that E6(q) =
Z×
q (Szabó [3] needed to assume that q is prime). On the other hand, several

authors have considered the least x for which E3(x) = Z×
q . The best result before

Theorem 1 was that x = q6/5+ε works for all sufficiently large q due to Szabó [3].
We also note that Klurman, Mangerel and Teräväinen [2] proved that, once

δ > 0 is sufficiently small, E3(q) = Z×
q for all large enough q which are qδ-smooth.

The method in [2] depends on the quality of the zero-free regions available for
Dirichlet L-functions (mod q), and hence it does not work for arbitrary q.

We also consider another approximation toward the conjecture of Erdős, that
is the problem of lower bounding the density of E2(q) inside Z×

q .

Theorem 2. Let ε > 0, and let q ∈ N be sufficiently large in terms of ε. Then

|E2(q)| ≥
(

29

44
− ε

)
ϕ(q).

Here 29/44 ≈ 0.659 whereas the previous record was due to Szabó [3] with
3/8 = 0.375 in place of 29/44 and an additional condition that q is cube-free.

In order to prove Theorem 1(i), we let a ∈ Z×
q and aim to prove that a ∈ E3(q).

The starting point is the identity

(1)
∑

a=p1p2p3

pj≤q

log p1 log p2 log p3 =
1

ϕ(q)

∑

χ (mod q)


∑

p≤q

χ(p) log p




3

χ(a).
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By the prime number theorem, principal characters contribute here (1+o(1)) q3

ϕ(q) .

If we knew that, for every non-principal χ, we have

(2)
∑

p≤q

χ(p) log p≪ q

(log q)10
,

say, the claim would follow quickly using also orthogonality of characters. However,
unfortunately, there are no chances to establish (2) — note that the sum is only
over p ≤ q with q the conductor of the character.

We overcome this obstacle by establishing a dense model theorem for character
sums over primes in the spirit of the transference principle in additive number
theory. More precisely, we show that there exists g : Z×

q → [0, 83 + ε] such that, for
every χ (mod q),

∣∣∣∣∣∣

∑

p≤q

χ(p) log p− q

ϕ(q)

∑

a∈Z
×

q

g(a)χ(a)

∣∣∣∣∣∣
= o(q).

Combining this with (1), the orthogonality of characters and a Halász-Montgomery
type inequality, we can show that

∑

a=p1p2p3
pj≤q

log p1 log p2 log p3 =
q3

ϕ(q)3

∑

a=a1a2a3

aj∈Z×

q

g(a1)g(a2)g(a3) + o

(
q3

ϕ(q)

)
.

Writing A = {a ∈ Z×
q : |g(a)| ≥ εϕ(q)}, we obtain that a ∈ E3(q) if 1A ∗1A ∗1A ≫

ϕ(q)2. Furthermore, by construction, we have

|A| ≥
(

3

8
− 3ε

)
ϕ(q).

Using (popular) Kneser’s theorem, we can show that E3(q) = Z×
q unless A is

essentially stuck in k + 1 cosets of a subgroup H ≤ Z×
q of index 3k + 2, for some

k ∈ {0, 1, 2}, and A ·A is essentially the union of 2k+ 1 cosets. The dense model g
is defined in such a way that this means that also the primes p ≤ q are essentially
stuck in these cosets. To deal with such cases, we apply the dense model theorem
in somewhat different ways. In particular we have to be very careful in case there
exists a quadratic character ψ (mod q) such that ψ(p) = −1 for almost all primes
p ≤ q.
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[3] B. Szabó, On the existence of products of primes in arithmetic progressions,
arXiv:2208.05762.

[4] L. Zhao, On products of primes and almost primes in arithmetic progressions, Acta Arith.
204 (2022), 253–267.



Analytic Number Theory 2939

Half-isolated zeros and zero density estimates

James Maynard

(joint work with Roger Heath-Brown, Kyle Pratt)

Let N(σ, T ) denote the number of zeros of ζ(s) in a box:

N(σ, T ) := #{ρ : ζ(ρ) = 1, ℜ(ρ) ≥ σ, 0 ≤ ℑ(ρ) ≤ T }.
Of course it is believed that N(σ, T ) = 0 whenever σ > 1/2 by the Riemann
Hypothesis, but one can look for weaker bounds which still have implications for
the distribution of primes. Of particular importance is the following conjecture.

Conjecture 1 (Density Hypothesis). For any σ, T > 0 we have

N(σ, T ) < T 2−2σ+o(1).

For many applications, the Density Hypothesis would give results which are
comparably strong to the Riemann Hypothesis. Unconditionally Huxley [1] showed
that N(σ, T ) ≤ T (12−12σ)/5+o(1), which gives essentially the strongest known
bounds for asymptotics for primes in short intervals. Unfortunately applications
are limited by our bounds when σ = 3/4, and the bounds for σ ≤ 3/4 have seen
essentially no improvement for 80 years following Ingham’s work [2].

Our main result is to prove the Density Hypothesis under the assumption of
some constraints on the possible patterns of zeros.

Theorem 1. Assume the non-trivial zeros of ζ(s) lie on finitely many vertical
lines. Then the Density Hypothesis is true.

Corollary 2. Assume the non-trivial zeros of ζ(s) lie on finitely many vertical
lines. Then for any ǫ > 0 we have:

(1) (Primes in short intervals) For y ∈ [x1/2+ǫ, x] we have

#{p ∈ [x, x+ y]} = (1 + o(1))
y

log x
.

(2) (Primes in almost all short intervals) For y ∈ [Xǫ, X ] we have

#{p ∈ [x, x+ y]} = (1 + o(1))
y

log x

for all x ∈ [X, 2X ] outside of a set of measure o(X).

The assumption of finitely many vertical lines could be weakened significantly,
but our method requires some assumption on horizontal rigidity of zeros.

A key concept in our result is ‘half-isolated zeros’. On a given vertical line,
we call a zero ρ = β + iγ of ζ(s) ‘half-isolated’ if there are no other zeros within
(log |γ|)3 of the zero on the same vertical line with smaller imaginary part. We
see that for any line to the right of the critical line, zeros must appear in ‘clumps’
with a half-isolated zero at the bottom of each clump. This is partly inspired
by previous work of Heath-Brown, Ramachandra-Balusubramanian and Conrey-
Iwaniec on ‘isolated’ zeros.

Our key technical proposition is that half-isolated zeros have short zero detect-
ing polynomials.
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Proposition 3. There exists an absolute constant C ≥ 1 and a fixed nonnegative
smooth function w0 supported in [1/2, 2] such that the following holds.

If ρ0 = β0 + iγ0 is a half-isolated zero with γ0 ∈ [T, 2T ], then there exists a real

Y ∈ [T (log log T )3/ log T , T 3/ log log T ] such that
∣∣∣
∑

n

Λ(n)

nρ0
w0(n/Y )

∣∣∣ ≥ (log T )−C .

By combining this proposition with more traditional zero-detecting technology,
we are able to prove Theorem 1. As a proof of principle, we see that by estimating
moments Proposition 3 shows that there are few half-isolated zeros, and so few
‘clumps’ on any vertical line. Therefore there are few zeros on these lines unless
the clumps typically consist of many zeros, in which case the zeros are very con-
centrated on a few short vertical segments, and we have some useful information
that we can hope to exploit.

In turn, the key to proving Proposition 3 is a Turán power sum type lemma. A
simplified version of it is the following:

Lemma 4 (Simple case of power sum inequality). Let θ1 ≤ · · · ≤ θR be real
numbers. There exists an absolute constant B0 ≥ 1 such that the following is true.
For any A > 0, there exists a real t ∈ [A, 2A] such that

∣∣∣
R∑

r=1

exp(itθr)
∣∣∣ ≥ (B0R)−99.

Traditional power-sum methods would yield a lower bound which is exponen-
tially small in R, but for our application it is vital that we have a polynomial lower
bound.

The key barrier to making these results unconditional appears to be showing
that certain configurations which we call ‘bows’ cannot appear frequently. A ‘bow’
of zeros is a set of zeros where the imaginary parts lie in an arithmetic progres-
sion with common difference ≈ 1

log T , and where the real parts of the zeros vary

smoothly between 1
2 and some σ > 1

2 and then back to 1
2 again.
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On the Gaussian moat problem

Jori Merikoski

(joint work with James Maynard)

The Gaussian moat problem (posed by Basil Gordon in 1962) asks if it is possible
to walk to infinity in the complex plane using Gaussian primes as stepping stones
with step size bounded by an absolute constant. While a heuristic suggests that
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the answer is no, we may ask what happens if we let the step size increase with the
size of the Gaussian primes. That is, what is the infimum of exponents θ > 0 such
that there is a sequence of Gaussian primes zj → ∞ satisfying |zj+1−zj| ≪θ |zj |θ?

A simple argument shows that θ ≤ θ′, where θ′ is the best known exponent for
the problem of Gaussian primes in small discs. By the works of Coleman, Baker,
Harman, Kumchev, and Lewis [1, 3, 5, 8] it is known that for all z ∈ C there is a
Gaussian prime p with

|p− z| ≪ |z|θ′

for θ′ = 0.528.

As mentioned, this implies θ ≤ 0.528 for the exponent in the Gaussian moat
problem. Even conditional on GRH the best exponent to date is

θ ≤ θ′ ≤ 1/2 + o(1).

Our main result breaks past this square-root barrier unconditionally for the Gauss-
ian moat problem.

Theorem 1. (Maynard, Merikoski) We have θ ≤ 1/2 − 1/100. Assuming GRH
we have θ ≤ 1/3 + o(1).

This result is still work-in-progress and we will likely improve the saving 1/100
once we optimize our argument. We also prove analogous results for the Gaussian
moat problem with smooth numbers or E3 numbers (which have exactly three
prime factors).

Theorem 2. (Maynard, Merikoski) For the Gaussian moat problem with steps
restricted to |z|ε-smooth Gaussian numbers or E3-numbers we can take θ ≤ 1/3 +
o(1) unconditionally.

Let B(c, S) denote the the disc {|z − c| ≤ S} of radius S centered at c and
let A(R) denote the annulus {R ≤ |z| ≤ 2R}. By a dyadic pigeon-hole argument
Theorem 1 is a consequence of the following result on primes in almost all discs
restricted to a sparse collection of discs.

Theorem 3. (Maynard, Merikoski) Denote S = R1/2−1/100. Let C ⊆ A(R) ∩ Z[i]
be an S-separated set (that is, for all distinct c, c′ ∈ C we have |c − c′| ≥ S).
Suppose that |C| ≥ RS. Then for all but ≪ |C|/(logR)100 of the points c ∈ C we
have ∑

p∈B(c,S)

1 ≫ S2

logR
,

where the sum runs over Gaussian primes p.

The above theorem states that for almost all c ∈ C we have a correct order lower
bound for the number Gaussian primes in the disc B(c, S). To prove this result
we first use Harman’s sieve method [4] to establish a combinatorial decomposition
for primes as Type I and Type II sums. The Type II sums are handled by a
Cauchy-Schwarz argument, which reduces the task to two parts, a certain lattice
point estimate and the distribution of primes in almost all discs at a smaller scale.
The lattice point problem is solved by using geometry of numbers similarly as in
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the recent work of Heath-Brown [6]. The distribution of primes in almost all discs
is controlled by the work of Coleman [2], which gives a generalization of Huxley’s
work [7] to the Gaussian integers.
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Problem Session

Hugh Montgomery

1. (Proposed by Hugh Montgomery) For an odd prime p, let n2(p) denote the
least positive quadratic nonresidue of p. In 1949, V. R. Friedlander and H. Salié
independently showed that n2(p) = Ω(log p). Turán also observed that this follows
easily from Linnik’s theorem concerning the least prime in an arithmetic progres-
sion. However, this argument is inefficient since it locates a prime in one particu-
lar arithmetic progression modulo a product of many small primes, when actually
many other arithmetic progressions would serve equally well. By averaging over
such residue classes, in 1971 Montgomery showed that GRH implies that n2(p) =
Ω
(
(log p) log log p

)
. The problem now proposed is to show this, or something close

to this, unconditionally. It seems that the result n2(p) = Ω
(
(log p) log log log p

)

due to Graham and Ringrose is the best unconditional one known.

2. (Proposed by Hugh Montgomery) In 1970, Gallagher showed that if λn are
distinct real numbers,

∑
n |an| <∞, ε > 0, and δT ≤ 1 − ε, then

∫ T

−T

∣∣∣∣
∑

n

ane(λnt)

∣∣∣∣
2

dt≪ε δ
−2

∫ ∞

−∞

∣∣∣∣
∑

n
|λn−x|<δ/2

an

∣∣∣∣
2

dx.

It is believed that in most situations this upper bound is of the correct order of
magnitude. It would be useful to have a corresponding lower bound. Gallagher
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achieved the above by appealing to Plancherel’s identity to show that
∫ ∞

−∞

∣∣∣∣
∑

n

ane(λnt)

∣∣∣∣
2( sinπδt

πδt

)2
= δ−2

∫ ∞

−∞

∣∣∣∣
∑

n
|λn−x|<δ/2

an

∣∣∣∣
2

dx.

One might try replacing the kernel on the left hand side above by

(sin πδt)2

(πδt)2(1 − δt)(1 + δt)
,

which minorizes the characteristic function of the interval [−1/δ, 1/δ], but on the
Fourier Transform side this gives rise to a bilinear form whose eigenvalues will
need to be determined. Alternatively, one might construct a minorant that is the
difference of two squares, and apply Phancherel’s identity twice.

3. (proposed by Roger Heath-Brown) Consider the following triple of problems:
A. Express every large N ≡ 2 (mod 4) as N = a + b where p|a =⇒ p ≡ 1

(mod 4), p|b =⇒ p ≡ 1 (mod 4).
B. Express every large N ≡ 0 (mod 4) as N = a + b where p|a =⇒ p ≡ 3

(mod 4), p|b =⇒ p ≡ 1 (mod 4).
C. Express every large N ≡ 0 (mod 2) as N = a + b where p|a =⇒ p ≡ 3

(mod 4), p|b =⇒ p ≡ 3 (mod 4).

4. (proposed by Bob Vaughan) Let d ≥ 1, m ≥ 0 and n = d+m. Further let ψ be
a positive valued function defined on N such that ψ(h) → 0 as h → ∞. Suppose
that f : Rd → Rm. For notational convenience put αd+j = fj(α1, . . . , αd). Let
A(h) denote the set of (α1, . . . , αd) in Rd such that there are q1, ..., qn with qj ≤ h
for which

‖qjαj‖ ≤ ψ(h)

and let A∗ denote the set of (α1, . . . , αd) in Rd which are contained in infinitely
many of the A(h). Is it true that, with suitable “non-degeneracy” conditions on
the f that there is a 0 - 1 law, namely A∗ contains almost no, or almost all
(α1, . . . , αd) in Rd according as

∞∑

h=1

hn−1ψ(h)

converges or diverges.
The case n = 1 is Khinchin’s theorem. There is a considerable body of work

on the metrical theory of simultaneous diophantine approximation. The question
here is an attempt to move away from the restriction that the denominators in the
approximations aj/qj to a given α have to be identical.

An assertion which is likely to be essentially equivalent is as follows. Given a
rational point ρ = (a1/q1, . . . , an/qn) in Qn define the height

H(ρ) = max(|a1|, . . . |an|, |q1|, . . . , |qn).

Then take instead A(h) = {α : |α − ρ| < ψ(h)/h,H(ρ) ≤ h} and ask if the same
conclusion holds.
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5. (proposed by Emmanuel Kowalski) We want γ > 0 and δ > 0 such that if
I ⊆ F×

p is an interval of size |I| ≥ p1/2−γ , then

1

p

∑

a (p)

∣∣∣∣
1√
p

∑

x∈I

e
(ax+ x

p

)∣∣∣∣
4

≪
( |I|
p

)1+δ

.

This would have the following application: It would yield the equidistribution of
Kloosterman paths for Kl2(a; p) instead of Kl2(a, b; p).

6. (proposed by Brian Conrey) Michael Rubinstein has called attention to the
following issue: In 2018, Keating, Rodgers, Roditty-Gershon, Rudnick considered
the k-fold divisor function in short intervals, which led them to consider

∫

U(N)

det(I − xU)k det(I − U∗)k dU =

kN∑

m=0

Ik(m,N)xm.

Subsequently, A. Medjedovic showed that the above is

=
cN,k

(1 − x)k2 det

(
1 − xN+i+j−1

N + i+ j − 1

)k

i,j=1︸ ︷︷ ︸
=:Gk,N (x)

with

cN,k =

k∏

j=1

(N + k − j − 1)!

(j − 1)!2 (N + j − 1)!
.

Rubinstein has conducted experiments that suggest that F := xG′/G seems to
satisfy the following differential equation:

x2(x− 1)2F ′′′ + x(5x− 1)(x− 1)F ′′ + 6x(x− 1)2(F ′)2 + 4(x− 1)(x+ 1)FF ′

+ ((−4k2 − 4Nk −N2 + 4)x2 + (4k2 + 4Nk + 2N2 − 2)x−N2)F ′

+ 2F 2 + (−2k2 − 2Nk)F = 0

The problem is to prove that F does indeed satisfy this differential equation, and
why. The differential equation is an example of a type of ordinary differential equa-
tion known as a Painlevé equation. The further question is why such a differetial
equation should arise in this conext.

7. (proposed by Julia Brandes) In Brandes, Parsell, Poulias, Shakan, Vaughan,
Mathematische Annalen 379(2021), 347–376, arXiv:2001.05629 [math.NT] it is
shown that

sup
α1

∣∣∣
∑

x≤X

e
(
α1(xk + x) + α2x

k
)∣∣∣≫ X3/4

for almost all α2. Also in Brandes and Shparlinski, arXiv:2012.08877 [math.NT]
it is shown that

sup
α1

∣∣∣
∑

x≤X

e
(
α1(f(x) + x) + α2f(x)

)∣∣∣≫ X3/4
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for almost all α2. The challenge now is to find f1, f2 of degree ≥ 2 such that

sup
α1

∣∣∣
∑

x≤X

e
(
α1(f1(x) + f2(x)) + α2f1(x)

)∣∣∣≫ X1/2+τ

for almost all α2, for some τ > 0.

8. (proposed by Trevor Wooley) Apéry showed that ζ(3) /∈ Q. Show that ζ(3) /∈
Q
(√

2
)
. Alternatively find a nonsquare d > 0 such that ζ(3) /∈ Q

(√
d
)
. Finally,

show that
∞∑

n=0

(
n+

√
2
)−2

/∈ Q.

9. (proposed by Trevor Wooley) Suppose that f(x) ∈ Z[x] has degree d ≥ 2. We
say that f is 2-superirreducible if f(g(x)) is irreducible whenever the degree of
g(x) ∈ Z[x] is ≤ 2. In 1967, Schinzel showed that if deg f = d ≥ 3, then there is a
polynomial g of degree d− 1 such that f(g(x)) is reducible. Question: Does there
exist a polynomial of degree 5 that is 2-superirreducible? (This is a question of J.
Bober, D. Fretwell, G. Kopp, L. Du and T. Wooley).

10. (proposed by Trevor Wooley) If G is a finite abelian group, then there exist
integers n and d such that G ∼=

{
zd : z ∈ (Z/nZ)×

}
. Obtain sharp upper bounds

for the parameters n and d in terms of |G|.
11. (proposed by Jori Merikowski) Do there exist polynomials

f, g ∈ Z[x1, . . . , x4, x5]

with f homogeneous of degree 3 and g homogeneous of degree 2 such that

f2 + g3 = N(x1, . . . , x5) = NK/Q(x1ω1 + · · · + x5ω5) ?

12. (proposed by Ben Green) Cover the integers {1, 2, . . . , N} by residue classes
ap (mod p), one residue class per prime.

(1) Can you cover each number twice (meaning at least 2 times each), using
only primes p ≤ N ? (This was asked by Erdős.)

(2) Can you do it with
∑

p 1/p ≤ K ? (This has been considered by Erdős–

Ruzsa and by Hildebrand.)

13. (proposed by Sarah Peluse and Robert Lemke Oliver) In 2000, Daniel Shiu
showed that if (a, q) = 1, then there exist arbitrarily long strings of consecutive
primes ≡ a (mod q). Could something similar be shown for more general patterns
of residue classes, say residues 1, 2, 1, 2, 1, 2, . . . (mod 5)?

14. (proposed by Simon Myerson) Can one develop something like the circle
method, or Weyl sums, or Poisson summation for quaternions?
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Statistical properties of the character table of the symmetric group

Sarah Peluse

(joint work with Kannan Soundararajan)

It is a standard fact that, for all natural numbers n, the irreducible characters of
Sn take only integer values. In 2017, Miller [3] computed the character tables of
Sn for all n ≤ 38 and investigated the statistical properties of these integers as n
grew. He made the following observations:

(1) the density of even entries seemed to be tending to 1,
(2) the density of entries divisible by 3 and the density of entries divisible by

5 also seemed to be increasing as n grew,
(3) about half of the nonzero entries were positive,
(4) and the density of zeros in the character table seemed to be decreasing as

n grew, but not very quickly.

Based on this first observation, Miller conjectured [3, 4] that, as n → ∞, almost
every entry in the character table of Sn is even. Following partial progress due to
McKay [2], Gluck [1], and Morotti [6], I proved this conjecture:

Theorem 1 (P., 2020 [7]). There exists a δ > 0 such that the proportion of odd
entries in the character table of Sn goes to 0 as n→ ∞.

Based on the second piece of evidence mentioned above, Miller also conjectured,
more generally, that for any fixed prime p, almost every entry of the character
table of Sn is a multiple of p as n goes to infinity. Soundararajan and I proved
this conjecture [8] with a bound that is uniform in the prime p:

Theorem 2 (P.–Soundararajan, 2022 [8]). Let n be large and p be a prime with
p ≤ logn/(log logn)2. The proportion of entries in the character table of Sn that
are not divisible by p is at most

O

(
1

n1/12p

)
.

Later Miller conjectured [5], even more generally, that as n → ∞, almost all
entries in the character table of Sn are divisible by any fixed prime power. We
have now proven this most general of Miller’s conjectures:

Theorem 3 (P.–Soundararajan, 2022+). Let n be large and pr be a prime power
with pr ≤ 10−3 logn/(log logn)2. The proportion of entries in the character table
of Sn that are not divisible by pr is at most

O

(
r (pr + 1)

r−1

n1/13pr

)
.

It then follows the union bound that almost every entry of the character table
of Sn is divisible by any fixed integer as n goes to infinity. Our methods don’t
seem to shed any light on Miller’s third and fourth observations.
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The irrationality of a divisor function series of Erdős and Kac

Kyle Pratt

For a positive integer k, let σk(n) be the sum of the kth powers of the divisors of
n. Paul Erdős and Mark Kac [3] conjectured that the number

αk :=
∑

n≥1

σk(n)

n!

is irrational for every k ≥ 1.
The conjecture seems ad hoc, but is related to some important and interesting

mathematics. In particular, the Erdős-Kac conjecture is connected to questions
about irrationality and transcendence of E-functions evaluated at algebraic points.
Introduced by Siegel in 1929 [10], E-functions are generalizations of the exponential
function. They are entire functions given by

f(z) =
∑

n≥1

an
n!
zn,

where the an are algebraic numbers which do not grow too quickly and whose
denominators also do not grow too quickly (see [11, p. 33]). If an E-function f
satisfies a simple differential equation then ideas of Siegel and Shidlovskii [9] allow
one to prove that f(α) is transcendental for all algebraic α except possibly for a
finite number in an explicit set depending on f .

We therefore interpret the Erdős-Kac conjecture to be asserting something
about the E-functions

fk(z) =
∑

n≥1

σk(n)

n!
zn

evaluated at z = 1. This suggests immediate generalizations of the Erdős-Kac con-
jecture. For our purposes here we just note that the E-functions fk(z) seem to lack
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any suitable differential structure, so the ideas of Siegel-Shidlovskii are not avail-
able. Irrationality and transcendence results for E-functions without differential
structure are hard to come by.

It is on the level of an exercise to prove that α1 and α2 are irrational [6, 1].
Schlage-Puchta [8] and Friedlander-Luca-Stoiciu [5] independently proved that α3

is irrational. Their proofs used sieve theory arguments on the level of Chen’s
theorem that infinitely often p+ 2 has at most two prime factors (see [4, Theorem
25.10]). One can prove that αk is irrational for every k if one assumes difficult
conjectures like the Hardy-Littlewood prime k-tuples conjecture [5, Theorem 2] or
Schinzel’s Hypothesis H [8, Theorem].

Going slightly beyond irrationality, Deajim and Siksek [2] proved a criterion
(conditional on Schinzel’s Hypothesis H) for the set {1, α1, α2, · · · , αr} to be lin-
early independent over Q, and showed the criterion holds for r = 50.

We recently proved the following theorem [7].

Theorem 1. The number

α4 =
∑

n≥1

σ4(n)

n!
= 42.30104 . . .

is irrational.

Let us describe some of the ideas in the proof of the theorem. Like the previous
works [5, 8] the proof relies on the machinery of sieve theory, but our proof is
rather more complicated. In fact, it seems we push the methods to the limit, and
that fundamentally new ideas are required to establish cases of the Erdős-Kac
conjecture for k ≥ 5.

As in all irrationality proofs, we begin by assuming for contradiction that α4 =
a/b is rational, where a, b are positive integers. For large x we take a prime p ≍ x
and consider

Np := (p− 1)!
∑

n≥p

σ4(n)

n!
= (p− 1)!

a

b
−
∑

n≤p−1

σ4(n)
(p− 1)!

n!
.

Since the right-hand side is an integer, we must have that Np is an integer. Nat-
urally, we aim to show there is some prime p ≍ x such that Np is not, in fact, an
integer. We can expand out Np in its first few terms, obtaining

Np =
σ4(p)

p
+
σ4(p+ 1)

p(p+ 1)
+

σ4(p+ 2)

p(p+ 1)(p+ 2)
+

σ4(p+ 3)

p(p+ 1)(p+ 2)(p+ 3)

+
∑

j≥4

σ4(p+ j)

p(p+ 1) · · · (p+ j)
.

The sum over j ≥ 4 has size O(x−1) and is negligible. Hence, Np is very close to
the sum of the four terms involving p, p+ 1, p+ 2, and p+ 3. Since integers have
fractional part equal to zero, we succeed in showing that Np is non-integral if we
can find some p such that the fractional part of the sum of the four terms on the
right-hand side deviates significantly from zero. We accomplish this, in turn, by



Analytic Number Theory 2949

controlling three of the terms very precisely, and then showing the last term (the
one involving σ4(p+ 1)) has a fractional part which forces Np to be non-integral.

The term with σ4(p) is nearly integral since p is prime. If we impose the
additional condition that p+3

2 has no prime factors ≤ (log x)100 then the term

with σ4(p+ 3) is 17
16 +O((log x)−200), which is also well-controlled. We control the

term with σ4(p+ 2) by further requiring that p+ 2 has no prime factors ≤ x1/4+ǫ.
(In actuality we need a more subtle argument, but we ignore that for the sake of
this sketch.) This requires some involved sieve theory computations.

The upshot of all this is that Np is equal to some terms with well-understood

fractional parts, plus σ4(p+1)
p(p+1) ≈ σ4(p+1)

(p+1)2 . Essentially, we wish to show that we can

find a prime p such that the fractional part of σ4(p+1)
(p+1)2 is not very close to 15

16 +o(1).

We now utilize the fact that, for almost every p, the shifted prime p + 1 will
have a prime factor q ≈ xǫ. We can then factor p+1 = qm and by multiplicativity
we may write

σ4(p+ 1)

(p+ 1)2
=
σ4(m)

m2
(q2 + q−2).

We use Fourier analysis to control the condition on the fractional part, and we
succeed if we can obtain nontrivial bounds on exponential sums of the form

∑

q≈xǫ

e2πiA(q2+q−2),

where A ≈ x2 is a large real number. These exponential sums can be bounded
using classical techniques of Weyl-van der Corput.
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Limit theorems for squarefrees and B-frees in short intervals

Brad Rodgers

(joint work with Ofir Gorodetsky, Alexander Mangerel)

Let S be the set of squarefree integers, and use the notation NS(x) := |{n ≤ x :
n ∈ S}. It is well known that NS(x) ∼ 6

π2x. The purpose of this talk was to
describe some probabilistic limit theorems proved in the paper [1], regarding the
distribution of squarefrees in short intervals. The theorems have a generalization
to B-free integers, described later in this abstract.

Let NS(n,H) := NS(n + H) − NS(n) be the count of squarefrees in a short
interval of size H . We show that if n is chosen randomly and H is growing slowly
that these counts satisfy a central limit theorem:

Theorem 1: If X → ∞ and H = H(X) → ∞ in such a way that H = Xo(1),
then for any fixed z ∈ R,

lim
X→∞

1

X

∣∣∣
{
n ≤ X :

NS(n,H) − 6
π2H√

AH1/2

}∣∣∣ =
1√
2π

∫ ∞

z

e−t2/2 dt,

where A is a certain arithmetic constant.

In fact we prove the k-th centered moment of NS(n;H) is Gaussian (and thus
of order of magnitude Hk/4) as long as H ≤ X4/(9k)−ε. It would be of interest for
e.g. analyzing gaps between squarefrees to replace the exponents 4/(9k) with ones
that do not decay like O(1/k), but this seems difficult. (One expects Theorem 1
to hold even for H ≤ X1−ε.)

Characterizing the distribution of NS(n,H) answers a question asked by R.R.
Hall in [2], who showed that the k-th centered moment of NS(n,H) is O(H(k−1)/2)
as long as H grows arbitrarily slowly with X . This was recently improved by R.
Nunes [4] who showed for H ≤ X4/(9k)−ε an almost optimal bound that the k-th
centered moment is O(Hk/4+ε). The ideas of Nunes are one important ingredient
in the proof of Theorem 1 as explained below.

One might naively guess that the variance of counts in an interval of length
H should be of size roughly H . That it is of the smaller size H1/2 speaks to
how rigidly the squarefrees are spaced. We elaborate on this idea by proving a
functional limit theorem:

For a random starting point n ≤ X , define random variables ξ1, ξ2, ... in terms
of n by

ξk =

{
1 − 6/π2 if n+ k is squarefree

−6/π2 otherwise,

and define a random function Q : R≥0 → R by setting

Q(τ) :=
τ∑

k=1

ξk,

for τ ∈ N≥0 and linearly interpolating Q between these values for τ /∈ N≥0. The
function Q thus records a random walk which increases at squarefree integers and
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decreases otherwise. Q is a random function because it depends on the random
starting point n.

Theorem 2: Let X → ∞ and H = H(X) → ∞ in such a way that H = Xo(1),
and let n ∈ [1, X ] be a random integers chosen at uniform. Define a rescaled
variant of Q,

WX(t) :=
1√

AH1/2
Q(t ·H).

Then as a random element of C[0, 1], the function WX converges in distribution
to a fractional Brownian motion with Hurst parameter 1/4 as X → ∞.

Fractional Brownian motion is a generalization of classical Brownian motion
which depends on a parameter γ ∈ (0, 1) called the Hurst parameter. (See e.g.
[5] for an introduction.) If γ < 1/2 increments of the process are negatively
correlated; in the context of the squarefrees this has the meaning that if a random
short interval contains a relative abundance of squarefrees, it is likely to be followed
by an interval with a relative paucity of squarefrees.

In fact a central limit theorem and a functional limit theorem of this sort can
be proved for B-free integers, a generalization of the squarefree integers in which
indivisibility by squares of primes is replaced by indivisibility by elements of an es-
sentially arbitrary sparse set B. In general the variance asymptotic AH1/2 and the
Hurst parameter 1/4 for the squarefrees are replaced by quantities which depend
on the sparseness of the set B; further details can be found in [1].

We describe the key features of the proof of Theorem 1 in the language of square-
frees, the proof for B-frees being similar. Using the identity µ(m)2 =

∑
d2|m µ(d)

and finite Fourier analysis, the k-th centered moment of a short interval count of
squarefrees is related to a (weighted) count of solutions to

ℓ1
d21

+ · · · ℓk
d2k

∈ Z with
∥∥∥ ℓi
d2i

∥∥∥≪ 1

H
,

where di and (ℓi, d
2
i ) are squarefree for all i. One expects the dominant contribution

to come from diagonal terms, and this produces Gaussian moments. There is a
technique for bounding off-diagonal contributions to counts of this sort originating
in work of Montgomery-Vaughan [3], but because the main terms here for k-th
moments are of smaller size than usual (Hk/4 rather than Hk/2), additional ideas
are required for a proper bound of off-diagonal contributions.

The first is due to Nunes in [4], who observed that from simple estimates one
may restrict attention in counts above to di which are large in terms of H . The
second is that a (complicated) expression due to Montgomery-Vaughan bounding
off-diagonal contributions can be written as a count (still complicated) of certain
congruence conditions, which can in turn be bounded using the Pólya-Vinogradov
inequality for character sums.

The proof of Theorem 2 involves similar ideas but requires one to consider a
weighted count of squarefrees in short intervals in place of NS(n,H).
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Bounds on 2-torsion in class groups over number fields

Per Salberger

We sketched in our talk a proof of the following result.

Theorem 1. Let K be a number field of degree n and h2(K) the size of the 2-
torsion subgroup of the class group of K. Let OK be the ring of integers in K and
{1, v1, . . . , vn−1} be a Minkowski reduced basis of OK with 1 ≤ |v1| ≤ . . . ≤ |vn−1|
and |v1| = On(|Disc(K)|µ). Then,

h2(K) = On,ε(|Disc(K)| 12− 2
n+µ+ 2

n

√
1−nµ

2 +ε).

This result is an improvement of the bound h2(K) = On,ε(|Disc(K)| 12− 1
n+ε

)
in [1] in case µ ≤ 1

2n . The condition on |v1| is relatively mild for large n as

|v1| = On(|Disc(K)| 1
2(n−1) ).

To prove the theorem, we refine the method in [1] by reducing to a counting
problem for affine surfaces instead of affine curves. This counting problem is
treated with the authors global determinant method [3] and an estimate in [2].
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Algebraic integers with conjugates in a prescribed distribution

Alexander Smith

Take λ to be the maximal positive real number so that, for any ǫ > 0, there are
only finitely many totally positive algebraic integers satisfying

trace(α)

degree(α)
< λ− ǫ.

A simple construction using the roots of unity shows that λ is at most 2. The
trace problem, as codified in [3], is to show that λ = 2.

Smyth developed a method for finding lower bounds on λ that exploited the
fact that, for a given algebraic integer with conjugates α1, . . . , αn, and for any
integer polynomial Q not having these integers as roots, we have

∏
i≤n |Q(αi)| ≥ 1.

By applying this result with about 15 polynomials Q, Smyth was able to prove
λ > 1.7719 [6]. Though this bound has been slightly improved [7], the method for
producing such lower bounds has not advanced.

Serre and Smyth both observed that Smyth’s method could not get close to
proving λ = 2, with Serre showing that Smyth’s method could not prove that
λ ≥ 1.8984 [1, Appendix B]. We give a simple explanation for this result.

Theorem 1 ([5]). We have λ < 1.8984.

To prove this, we characterize which probability measures are expressible as a
limit of the distribution of conjugates for some sequence of totally real algebraic
integers.

Theorem 2 ([5]). Take Σ to be a subinterval of R of length greater than 4. Take µ
to be a probability measure on Σ. Then the following two conditions are equivalent.

(1) There is a sequence of distinct algebraic integers α1, α2, . . . whose conju-
gates all lie in Σ and whose distribution of conjugates weak∗ converge to
µ.

(2) For every nonzero integer polynomial Q,
∫

Σ

log |Q(x)|dµ(x) ≥ 0.

The proof that (2) implies (1) is nonconstructive, relying on abstract existence
results from the geometry of numbers that guarantee the presence of lattice points
in convex bodies. These include Minkowski’s second theorem [4, p. 376] and the
more recent flatness theorem [2, Corollary 2.5].
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Primes and squares with preassigned digits

Cathy Swaenepoel

Let g ≥ 2 be an integer. Any integer k ≥ 0 may be written in base g as

k =
∑

j≥0

εj(k)gj

where, for any j ≥ 0, εj(k) ∈ {0, . . . , g − 1} is the digit of k at the position j in
base g.

In 2015, Bourgain [2] obtained an asymptotic formula for the number of primes
with a proportion c > 0 of preassigned digits in base 2 (c was an absolute constant
not specified). This significantly improved on [1, 3, 4, 5, 7] where fewer digits
could be preassigned. In [6], we generalize Bourgain’s result to any base.

Theorem 1. Let g ≥ 2 be an integer. There is an explicit c0 = c0(g) ∈ [0, 1) with
the following property. For any c ∈ (0, c0), there exists δ = δ(g, c) ∈ (0, 1] such
that for any integer n ≥ 1, for any A ⊂ {0, . . . , n − 1} satisfying {0, n− 1} ⊂ A
and |A| ≤ cn, for any d = (dj)j∈A ∈ {0, . . . , g − 1}A such that gcd(d0, g) = 1 and
dn−1 ≥ 1, we have

|{p < gn : p prime, ∀j ∈ A, εj(p) = dj}| =
gn−|A|

log gn
g

ϕ(g)

(
1 +Og,c

(
n−δ

))
.

Moreover, we provide explicit admissible values for the proportion c0 depending
on g. For instance, Theorem 1 holds with c0(2) = 0.0021 and c0(10) = 0.0047.
Our proof, which adapts, develops and refines Bourgain’s strategy, is based on
the circle method and combines techniques from harmonic analysis with results on
zeros of Dirichlet L-functions due to Iwaniec.

More recently, we obtain a result for squares. Let v2(g) denote the 2-adic val-
uation of g and for m ≥ 1, let Q(m) = {k ∈ Z : k is a square mod m}. The digits
of squares satisfy algebraic constraints. This leads to the following hypothesis:

(1)





{0, 1, 2} ⊂ A, gcd(d0, g) = 1, d2g
2 + d1g + d0 ∈ Q(g3) if v2(g) = 1,

{0, 1} ⊂ A, gcd(d0, g) = 1, d1g + d0 ∈ Q(g2) if v2(g) = 2,
{0} ⊂ A, gcd(d0, g) = 1, d0 ∈ Q(g) otherwise.

For any base we obtain an asymptotic formula for the number of squares with a
proportion c > 0 of preassigned digits:
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Theorem 2. Let g ≥ 2 be an integer. There is an explicit c0 = c0(g) ∈ [0, 1/2)
with the following property. For any c ∈ (0, c0), there exists δ = δ(c) > 0 such that
for any integer n ≥ 4, for any A ⊂ {0, . . . , n−1} and d = (dj)j∈A ∈ {0, . . . , g−1}A
satisfying the condition (1), n− 1 ∈ A, dn−1 ≥ 1 and |A| ≤ cn, we have

|{k < gn : k square, ∀j ∈ A, εj(k) = dj}| = S(g, n,A,d)
(
1 +Og,c

(
n−δ

))

where

S(g, n,A,d) = η(g)
∑

k<gn

∀j∈A, εj(k)=dj

1

2
√
k

with

η(g) =

{
2ω(g) if g is odd,

2ω(g)+1 if g is even.

The order of magnitude of the main term is g
n
2 −|A| as expected. We also provide

explicit values for c0 depending on g: Theorem 2 holds with c0(2) = 0.0058 and
c0(10) = 0.0163. Our proof mainly follows the strategy in [2, 6] for primes with
preassigned digits. Since squares are much sparser than primes, new difficulties
arise. Moreover, we have to deal with new algebraic constraints on the digits. The
proof uses the circle method and combines techniques from harmonic analysis with
arithmetic properties of squares and bounds for quadratic Weyl sums.

References

[1] J. Bourgain, Prescribing the binary digits of primes, Israel J. Math., 194(2013), 935–955.
[2] , Prescribing the binary digits of primes, II, Israel J. Math., 206(2015), 165–182.
[3] G. Harman, Primes with preassigned digits, Acta Arith., 125(2006), 179–185.
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SWEDEN

Prof. Dr. Timothy D. Browning

Institute of Science and
Technology Austria (IST Austria)
Am Campus 1
3400 Klosterneuburg
AUSTRIA

Prof. Dr. Jörg Brüdern
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