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Introduction by the Organizers

The workshop Low-dimensional Topology (2023) was organized by Stefan Friedl
(Regensburg),YoavMoriah (Haifa), Jessica Purcell (Melbourne) and Saul Schleimer
(Coventry). The workshop was attended by nearly 50 researchers from countries
including Australia, Canada, France, Germany, India, Israel, UK, and USA.

This was a follow up workshop to one that was held in February of 2020, just
before Oberwolfach shut down due to the Covid-19 pandemic. For almost all of our
participants, the 2020 workshop was the last that they attended before lockdowns
across the globe. For many participants in 2023, this was the first workshop
they attended in person since lockdowns ended. Everyone appreciated being back
in person. There were many mathematical discussions over meals, in corridors,
meeting rooms, in the library and during hikes. Many people commented on the
excellent atmosphere, and the ability to be immersed in interesting mathematical
research again with a community.



152 Oberwolfach Report 3/2023

We had twenty-two research talks across multiple areas of low-dimensional
topology. Also, we had two survey talks on 3-manifolds and computational low-
dimensional topology. Finally we had three lively sessions of five-minute talks.
The five minute talks gave a venue in which all participants could share their
recent results, open problems, and mathematical challenges.

Although the talks covered a wide range of topics, the speakers established
connections between the various subfields of low-dimensional topology.
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Abstracts

Lens Space Recognition and Seifert Fiber Spaces

Kate Petersen

(joint work with Neil Hoffman)

The Lens space recognition problem is the problem of deciding if a given 3–
manifold is a lens space (including S3). A decision problem is said to lie in NP if
an affirmative solution can be verified via certificate in polynomial time relative
to the input size (of a triangulation in this case) and we say that a problem lies
in coNP if a negative solution can be verified by such a certificate. That is, the
Lens space recognition problem lies in coNP if given a manifold M that is not
a lens space, there is a certificate (for example, an explicit homomorphism to a
non-cyclic group that can be written down from a triangulation of M) which can
be checked in polynomial time.

Lackenby and Schleimer [2] proved that Lens space recognition is in NP. Zentner
[5, Theorem 11.2] proved that the S3 recognition problem is in coNP provided
the Generalized Riemann Hypothesis (GRH) is true. Our work shows that if the
input is a Seifert fiber space, then Lens space recognition is in coNP, uncondition-
ally.

Theorem 1. For a Seifert fiber space M with non-abelian fundamental group,
the Lens space recognition problem lies in coNP. In particular, there is a
polynomial time verifiable certificate to distinguish M from S3.

All of our certificates are either (non-trivial) non-abelian representations or non-
cyclic abelian representations, we also distinguish these manifolds from S1ˆS2 and
so we state the following direct corollary.

Corollary 2. For a Seifert fiber space M with non-abelian fundamental group,
the S1 ˆ S2 recognition problem lies in coNP.

There are no non-orientable 3–manifolds with finite fundamental groups. There
is a polynomial time algorithm (relative to the size of the triangulation) to de-
termine if a triangulation represents an orientable or non-orientable 3–manifold.
Therefore, we can distinguish non-orientable 3–manifolds from lens spaces (in-
cluding S3) in polynomial time. Using work of Haraway and Hoffman [1] and
an understanding of Seifert fiber spaces and their groups, we reduce the scope
of the problem to distinguishing small, prime Seifert fiber spaces with non-cyclic
fundamental groups from lens spaces. The only non-prime Seifert fiber space is
RP

3#RP
3. Since its fundamental group is isomorphic to Z{2Z ˚ Z{2Z, it surjects

the dihedral group of order 6 and we use this as our certificate in this case.
The small, prime, non-cyclic Seifert fiber space groups surject triangle groups

Tn1,n2,n3
where nk ą 1 are integers for k “ 1, 2, 3. We demonstrate that for

most of these triangle groups there is a particularly nice integral representation
into PSLp2,Kq where K is a number field which is “almost” the cyclotomic field
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Qpζ2n1n2n3
q. The trace field of this representation has degree 1

2
φp2n1n2n3q. We

then use Linnik’s theorem (as improved by Xylouris [4, 3]) to find a “small” prime
that splits completely in K and show that in the natural quotient the representa-
tion stays non-abelian. This gives us a non-abelian representation of these Seifert
fiber space groups into PSLp2,Fq where |F| is bounded above by a polynomial func-
tion of n1n2n3; explicitly there is a constant c so that |F | ď c lcmpn1, n2, n3q10.
(This covers most cases, and for the remaining cases we get a compatible bound.)

We then convert this upper bound to an upper bound in terms of t, the number
of tetrahedra in a triangulation. We accomplish this in two main steps. First,
we show that for any 3–manifold with a triangulation with t tetrahedra, there
is a presentation for π1pMq where the number of generators, relations, and their
length is governed by t. Then we translate those complexity bounds for π1pMq
into upper bounds for the degree of the trace field of a 0-dimensional component
of the PSLp2,Cq character variety in terms of t. We use this to show that the
degree of the trace field is at most 2t´136t.

Finally, we reconcile these bounds. Our explicit representations of the trian-
gle groups have trace fields of degree 1

2
φp2n1n2n3q and we use this to translate

our upper bounds for |F| from a dependence on n1n2n3 to a dependence on t, as
needed. (This plan covers most cases, and we handle the remaining cases sepa-
rately.) Explicitly, we show the following which gives our certificate when M is an
orientable, closed, small, non-cyclic Seifert fiber space.

Theorem 3. Assume that M is an orientable, closed, small, non-cyclic Seifert
fiber space admitting a triangulation with t tetrahedra. Then either π1pMq sur-
jects a non-cyclic abelian group of order at most 24t324t or π1pMq surjects a
(non-trivial) non-abelian subgroup of PSLp2,Fq where |F| ă cp220t3120tq for some
effectively computable c ą 0.

Although not Seifert fiber spaces, we point out that only one Sol manifold has
cyclic homology. In the one case of cyclic homology, the double cover has homology
Z{5ZˆZ. So ifM admits Sol geometry, the homology of the manifold or its double
cover serves as a certificate that M is neither a lens space nor S1 ˆ S2.
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A proposal for sweep-outs and the Hempel distance of a trisection

Alex Zupan

(joint work with Jeffrey Meier)

Trisections were introduced by Gay and Kirby [GK16] as a novel way to study
smooth 4-manifolds, a 4-dimensional analogue of Heegaard splittings of 3-mani-
folds. A general motivating problem in the theory of trisections is to adapt 3-
dimensional tools to the context of dimension four. The narrative we seek to
adapt here is that of the Hempel distance of a Heegaard splitting. In dimension
three, the story goes back to Haken’s Lemma, which asserts that every Heegaard
splitting of a reducible 3-manifold Y is reducible [Hak68]. In other words, if Y
contains a 2-sphere S that does not bound a 3-ball in Y and if Y “ H0 YΣ H1 is
a Heegaard splitting of Y , then there exists an essential simple closed curve in Σ
that bounds disks in both H0 and H1.

For an arbitrary 3-manifold Y with Heegaard splitting Y “ H0YΣH1, the notion
of reducibility was extended to define the Hempel distance of the splitting [Hem01]
via the curve complex CpΣq of Σ. Vertices in CpΣq represent essential simple closed
curves in Σ, and edges represent pairs of disjoint curves. The Hempel distance
dpΣq is then defined as the length of a shortest path in the curve complex CpΣq
connecting the disk sets D0 and D1, where Di is the subcomplex of CpΣq spanned
by those curves bounding compressing disks in Hi. In this setting, a Heegaard
surface Σ is reducible if and only if dpΣq “ 0.

Haken’s Lemma was generalized to tori by Hempel, who proved that if Y con-
tains an essential torus, then for any Heegaard surface Σ in Y , we have
dpΣq ď 2 [Hem01]. This bound was further generalized in the following theorem
of Hartshorn.

Theorem 1. [Har02] Let Y be a 3-manifold containing an essential surface S. If
Σ is any Heegaard surface for Y , then dpΣq ď 2g.

An alternate proof of this theorem provided by Li uses the idea of a sweep-out
arising from a Heegaard splitting Y “ H0 YΣ H1 [Li07]. A sweep-out is a map
h : Y Ñ r0, 1s with the following properties:

(1) h´1p0q is a spine for H0;
(2) h´1p1q is a spine for H1; and
(3) For any t P p0, 1q, h´1ptq is a surface isotopic to Σ.

Here, we provide a sketch of Li’s proof of Hartshorn’s Theorem by listing several
main ingredients: First, assume Y is irreducible (otherwise, Haken’s Lemma would
apply) and observe that if S is an essential surface in Y , then hpSq “ r0, 1s (if
not, S would be isotopic into a handlebody and as such would be compressible).
Second, note that for all t P p0, 1q, the level set h´1ptq must intersect S in at least
one essential curve. Finally, after perturbing S so that it meets the spines h´1p0q
and h´1p1q transversely and so that h|S is Morse, we can use S to construct a
path in CpΣq from some curve c0 in h´1pεq X S to some curve c1 P h´1p1 ´ εq,
where ci P Di and the length of this path is at most 2gpSq.
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It is this story we seek to modify to see what we can learn in the context of
4-manifold trisections. A trisection of a smooth 4-manifold X is a decomposition
of X into X0 Y X1 Y X2, where each Xi is a 4-dimensional 1-handlebody, each
pairwise intersection Hi “ Xi X Xi`1 (with indices modulo 3) is a 3-dimensional
handlebody, and the triple intersection Σ “ X0 X X1 X X2 is a surface. A key
feature is that X is uniquely determined up to diffeomorphism by the union of
the 3-dimensional components, H0 Y H1 Y H2. As such, trisections provide a
natural venue for importing techniques from Heegaard splittings into dimension
four. For example, the authors used the Wave Theorem [HOT80], a combinatorial
assertion about Heegaard splittings of S3, as a key ingredient in their proof that
any 4-manifold admitting a trisection of genus two is among a small finite family
of standard examples [MZ17].

The most straightforward attempt to generalize Haken’s Lemma to trisections
encounters immediate problems. The unresolved Schönflies conjecture leaves open
the possibility that even the standard 4-ball could contain a 3-sphere Y that does
not bound a ball. If this were the case, we would have no hope of understanding
this notion of reducibility via trisections, since X could have a trisection in which
Y and the union H0 Y H1 Y H2 fail to interact. In order to get a better grasp of
what might be possible, we first adapt the idea of a sweep-out to dimension four
via trisections.

Let ∆ be a 2-simplex, with vertices vi and edges ei connecting vi and vi`1,
where i P t0, 1, 2u. Given a trisection of X with components notated as above, a
compatible sweep-out is a map h : X Ñ ∆ with the following properties:

(1) For each i, h´1pviq is a spine for Xi;
(2) For any t P intpeiq, h

´1ptq is a spine for Hi; and
(3) For any s P intp∆q, h´1psq is a surface isotopic to Σ.

In addition, we require that for ti P intpeiq and ti`1 P intpei`1q sufficiently close
to the vertex vi, the spines h

´1ptiq and h
´1pti`1q are standard spines, in the sense

that the boundaries of two collections of disks dual to each spine yield a standard
Heegaard diagram for BXi`1, which is #kpS1 ˆ S2q for some k. We prove

Proposition 2. Let X be a smooth 4-manifold with a trisection X “ X0YX1YX2.
There exists a compatible sweep-out h : X Ñ ∆.

Analogous to the three-dimensional setting, for i P t0, 1, 2u we let Di denote
the disk set in CpΣq associated to the handlebody Hi. In order to circumvent
the immediate issues discussed above, we replace the essential surface from the
3-dimensional setting with a non-separating 3-manifold Y embedded in X . This
allows us to deduce

Theorem 3. Let X be a smooth 4-manifold with a trisection X “ X0 YX1 YX2

and compatible sweep-out h : X Ñ ∆, and let Y Ă X be a non-separating 3-
manifold. Then the following are true:

(1) hpY q “ ∆;
(2) For every s P intp∆q, the intersection h´1psq X Y contains a curve that is

essential in Σ;
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(3) For every s P intp∆q sufficiently close to ei, the intersection h´1psq X Y con-
tains a curve in Di; and

(4) Y induces a loop in D0 Y D1 Y D2 that meets all three disk sets.

The proof uses many ingredients of the 3-dimensional argument, with the ad-
ditional observation that if Y avoids a surface isotopic to Σ, then the inclusion of
Y into X factors through a 2-complex, contradicting the fact that this inclusion
induces an injection H3pY q ãÑ H3pXq. Moreover, if Y meets some surface h´1psq
in only a collection of trivial curves, these intersections can be surgered away by
ambient 2-handle attachments to produce a 3-manifold Y 1 homologous to Y in X
but such that Y 1 X h´1psq “ H, another contradiction to the above argument.

The theorem, of course, motivates the titular “proposal for Hempel distance”
associated to a trisection. For a given trisection of X with components labeled as
above, define the distance dpΣq to be the length of a shortest loop in D0 YD1 YD2

meeting all three disk sets. As in the 3-dimensional case, the trisection is reducible
if and only if dpΣq “ 0. We conclude with a problem and a conjecture for further
examination.

Problem 4. Suppose that X is a smooth 4-manifold containing a non-separating
3-manifold Y , and let Σ be the central surface of a trisection of X. Use the topology
of Y and the induced loop in D0 Y D1 Y D2 to give an upper bound on dpΣq.

Conjecture 5. If X is a smooth 4-manifold containing a non-separating 3-sphere,
then every trisection of X is reducible.
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Homeo`pS1q representations and the L-space conjecture

Steven Boyer

(joint work with Cameron McA. Gordon and Ying Hu)

Throughout we take M to be a closed, connected, oriented, irreducible rational
homology 3-sphere.

In this talk we discussed how Homeo`pS1q-representations of π1pMq arising
from foliations and flows onM can be used to verify the left-orderability of π1pMq
in a number of interesting situations. We also discussed the extent to which the
analogous results for the existence of taut foliations on M hold, as predicted by
the L-space conjecture. Here are the details.

The obstruction to lifting a non-trivial representation ρ : π1pMq Ñ Homeo`pS1q
to HomeoZpRq “ tf P Homeo`pRq | fpx ` 1q “ fpxq ` 1u, the universal covering
group of Homeo`pS1q, is an element epρq P H2pMq called the Euler class of ρ.

HomeoZpRq Homeo`pRq

π1pMq Homeo`pS1q

ď
D ?

ρ

The Euler class is non-zero in general, though if zero, Theorem 1.1 of [BRW] implies
that π1pMq is left-orderable, that is, it admits a total order which is invariant under
left-multiplication. This is a property of special interest as the L-space conjecture
contends that the following conditions are equivalent for M :

‚ M is LO. That is, π1pMq is non-trivial and is a left-orderable group.
‚ M is CTF . That is, M admits a co-oriented, taut foliation.
‚ M is NLS. That is, M is not a Heegaard Floer L-space.

Various structures on M determine a non-trivial acton of π1pMq on the circle. Of
particular interest to us are

‚ Thurston’s universal circle action ρF : π1pMq Ñ Homeo`pS1q associated to a
co-oriented taut foliation F on M ([CD]);

‚ the asymptotic circle actions ρΦ : π1pMq Ñ Homeo`pS1q associated to a pseudo-
Anosov flow Φ on M ([CD], [Ca], [Fe]).

In these cases the Euler class of the associated representations are given by

epρq “

"
epTFq if ρ “ ρF and TF is the tangent bundle of F
epνΦq if ρ “ ρΦ and νΦ is the normal plane bundle to Φ

Given a non-trivial ρ as above, epρq automatically vanishes when M is an integer
homology 3-sphere and therefore M is LO. Conjecturally then, M is also NLS
and CTF . Regarding this case, we have the following conjecture of Ozsváth and
Szabó.
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Conjecture (Ozsváth-Szabó). If M is an integer homology 3-sphere then M is
NLS if and only if M is neither S3 nor the Poincaré homology sphere Σp2, 3, 5q.

This is known to hold in many cases, for instance Eftekhary showed that M is
NLS if it is toroidal ([Eft]). Our first result uses Thurston’s universal circle
representation to prove that it is also LO, as predicted by the L-space conjecture.

Theorem 1 ([BGH1]). A toroidal integer homology 3-sphere M is LO.

To prove the theorem, express M as the union M1 YT M2 of two knot manifolds
M1,M2 along their common boundary T . (A knot manifold is a compact, con-
nected, orientable, irreducible 3-manifold whose boundary is an incompressible
torus.) Since M is an integer homology 3-sphere, both M1 and M2 are integer
homology solid tori and their longitudinal slopes λ1, λ2 are of distance 1 on T .

Certain slopes on the boundary of a knot manifold, called LO-detected slopes,
are singled out using left-orders ([BC2]). For instance, the longitudinal slope of
a knot manifold is always LO-detected, so in particular λ2 is LO-detected in M2.
One of the main results of [BGH1] shows that it is also LO-detected in M1.

Theorem 2 ([BGH1]). Suppose that M1 is a knot manifold integer homology solid
torus. Then any slope of distance 1 from its longitudinal slope is LO-detected.

The proof of Theorem 2 depends on a detailed analysis of a universal circle action
of the fundamental group ofM1 related to a finite depth foliation onM1. Theorem
1 is now a consequence of the following LO-gluing theorem:

Theorem 3 ([BC2]). Suppose that M “ M1 YT M2 is the union of two knot
manifolds M1,M2 along their common boundary T . If there is a slope on T which
is LO-detected in both M1 and M2, then M is LO.

A notion of slope detection, called CTF -detection, can also be defined using co-
oriented taut foliations ([BGH1]), and there is a gluing theorem analogous to
Theorem 3:

Theorem 4 ([BGH1]). Suppose that M “ M1 YT M2 is the union of two knot
manifolds M1,M2 along their common boundary T . If there is a slope on T which
is CTF -detected in both M1 and M2, then M is CTF

Since longitudinal slopes are CTF -detected, if we knew that the analogue of The-
orem 2 held for CTF -detection, then toroidal integer homology 3-spheres would
be CTF . Such an analogue has been proven when M1 is fibred ([BGH1]), but is
open in general.

Conjecture 5. Suppose that M1 is a knot manifold which is an integer homology
solid torus. Then any slope of distance 1 from its longitudinal slope is CTF -
detected.

There is also a notion of NLS-detection ([BC1], [RR]) together with a gluing
theorem analogous to Theorems 3 and 4 ([HRW]). Moreover, the NLS analogue
of Theorem 2 holds, so arguing as above leads to a proof that toroidal integer
homology spheres are NLS. (This argument is due to Hanselman-Rasmussen
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and Watson [HRW]). The following conjecture is closely related to the L-space
conjecture for toroidal manifolds. See §2.3 of [BGH1].

Conjecture 6. The sets of LO-detected slopes, CTF -detected slopes, and NLS-
detected slopes on the boundary of a knot manifold coincide.

Here is an application of the detection-gluing method to surgery on satellite knots.

Theorem 7 ([BGH2]). If the JSJ graph of a satellite knot K is not an interval
and r P Q is not the slope of a cabling of K, then Kprq is NLS and LO. Moreover,
if meridional slopes of non-trivial knots in the 3-sphere are CTF -detected, then
Kprq is CTF .

It is a result of Krcatovic that L-space knots are prime ([Krc]). We recover this
result as a corollary of Theorem 7 and deduce LO and CTF analogues.

Corollary 8. All rational surgeries on a composite knot are LO and NLS. They
would also be CTF if the meridional slopes of non-trivial knots in the 3-sphere are
CTF -detected. �

The LO results discussed above depend on the existence of Homeo`pS1q-represen-
tations of the fundamental groups of knot manifolds obtained through Thurston’s
universal circle construction. In [BGH3] we prove LO results using representa-
tions ρΦ : π1pMq Ñ Homeo`pS1q associated to pseudo-Anosov flows. Here is an
example of what we prove.

Theorem 9 ([BGH3]). Let L be a hyperbolic link in an integer homology 3-sphere
M whose complement admits a cusped pseudo-Anosov flow none of whose degener-
acy loci are meridional. Then given any orientation on L and n ě 2, the standard
n-fold cyclic branched cover ΣnpLq has a left-orderable fundamental group.

The proof of this result, which applies to much more general cyclic branched covers,
uses the cusped pseudo-Anosov flow to construct an infinite family of Homeo`pS1q-
representations of π1pMzLq with prescribed peripheral values. More precisely,
let K1,K2, . . . ,Km be the components of L and µ1, µ2, . . . , µm P π1pMzLq their
meridional classes. We show that there are representations ρr˚

: π1pMzLq Ñ
Homeo`pS1q with infinite, non-cyclic image parameterised by a dense subset D Ă
r0, 1sm of points r˚ “ pr1, r2, . . . , rmq with rational coordinates, where ρr˚

pµiq is
conjugate to a rotation of angle 2πri for each i.

Corollary 10. All cyclic branched covers of fibred strongly quasipositive hyperbolic
knots in the 3-sphere are LO. In particular, this holds for hyperbolic L-space
knots. �

It is known that the n-fold cyclic branched cover ΣnpKq of a hyperbolic L-space
knot K is NLS if n ě 4 by [BBG] and n “ 3 by [FRW]. It is expected that
ΣnpKq is NLS when n “ 2 (cf. the L-space conjecture), but this is still open.
The results for CTF are much weaker, the best to date being that ΣnpKq is CTF
if n ě 2p2gpKq ´ 1q, due essentially to Rachel Roberts. See the discussion in the
introduction of [BH].
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How not to study low-dimensional topology

Sarah Blackwell

(joint work with Robion Kirby, Michael Klug, Vincent Longo, Benjamin Ruppik)

A correspondence, by way of Heegaard splittings, between closed oriented 3-
manifolds and pairs of surjections from a surface group to a free group has been
studied by Stallings, Jaco, and Hempel [12, 7, 5]. A Heegaard splitting of a closed
3-manifold M3 is a pair of handlebodies H1 and H2 embedded inside of M with
boundaries a common genus g surface Σg such that M “ H1 YΣg

H2. Every
such 3-manifold admits a Heegaard splitting. By choosing a basepoint on Σg, we
then obtain the following pushout diagram between fundamental groups, where
the maps are induced by inclusion.
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π1pΣg, ˚q π1pH1, ˚q

π1pH2, ˚q π1pM, ˚q

Note that π1pH1, ˚q and π1pH2, ˚q are both free groups of rank g, and the maps are
surjections. Jaco proved that given a surjective homomorphism φ : π1pΣg, ˚q Ñ Fg,
there is a unique handlebodyHpφq with BHpφq “ Σg such that the map induced on
π1 by inclusion of Σg as the boundary agrees with φ [6]. From this, it follows that
a pair of surjective homomorphisms pφ1, φ2q with φi : π1pΣg, ˚q Ñ Fg determines a
3-manifold Hpφ1q YΣg

Hpφ2q, and that every closed 3-manifold arises in this way.
Jaco referred to these pairs of maps as splitting homomorphisms.

One concrete application of this is the following group-theoretic recasting of
the 3-dimensional Poincaré conjecture. Writing π1pΣg, ˚q “ xa1, b1, . . . , ag, bg |
ra1, b1s ¨ ¨ ¨ rag, bgs “ 1y, there is a surjective homomorphism

π1pΣg, ˚q Ñ xx1, . . . xgy ˆ xy1, . . . ygy

ai ÞÑ pxi, 1q

bj ÞÑ p1, yjq.

The Poincaré conjecture is equivalent to the statement that this is the unique sur-
jective homomorphism of these groups modulo pre-composing with automorphisms
and post-composing with products of automorphisms [5]. Thus by Perelman’s work
[11] this result follows, and we are left in the state where the only known proof of
this perhaps innocent-looking group-theoretic result involves a careful analysis of
Ricci flow.

In addition to the observation that every closed 3-manifold admits a Heegaard
splitting, there is a corresponding uniqueness theorem called the Reidemeister-
Singer theorem, which states that any two Heegaard splittings of a fixed 3-manifold
differ by a sequence of simple inverse geometric operations called stabilization
and destabilization. Jaco proposed a way of incorporating the Reidmeister-Singer
theorem into the construction of 3-manifolds from appropriate pairs pφ1, φ2q to
obtain a bijective correspondence [7].

More recently, a 4-dimensional analogue of Heegaard splittings, called trisec-
tions, together with a corresponding uniqueness theorem has been introduced by
Gay and Kirby [3]. A trisection of a closed 4-manifold X4 is a decomposition
X “ X1 YX2 YX3 into 4-dimensional 1-handlebodies Xi, which pairwise intersect
in genus g handlebodies Hg, and with triple intersection a genus g surface Σg.
Every smooth, closed, connected, oriented 4-manifold admits a trisection, which is
unique up to a stabilization operation [3]. The inclusion maps between the various
components of a trisection of a 4-manifold induce maps between their fundamental
groups, which produces the following commutative diagram, where every face is a
pushout and every homomorphism is surjective.
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π1pHg, ˚q π1pX1, ˚q

π1pΣg, ˚q π1pHg, ˚q

π1pX3, ˚q π1pX4, ˚q

π1pHg, ˚q π1pX2, ˚q

In [1], Abrams, Gay, and Kirby noticed that the analogue of being able to
recover a 3-manifold from a pair of surjective homomorphisms pφ1, φ2q holds in
dimension four via trisections. Namely, given three surjective homomorphisms
pφ1, φ2, φ3q with φi : π1pΣg, ˚q Ñ Fg such that the pairwise pushout of any pair φi
and φj is a free group Fk, then since #kpS1 ˆ S2q is the unique closed, orientable
3-manifold with fundamental group Fk (by Perelman’s work [11]), we obtain a
closed 4-manifold by realizing three handlebodies Hpφiq, gluing them along their
common boundary Σg, and filling in their pairwise unions, which are diffeomorphic
to #kpS1 ˆ S2q, with three 4-dimensional 1-handlebodies (uniquely by [8]). They
called these triple of maps a group trisection, where the object being trisected is
the group resulting from pushing out the three maps into a cube (in this case,
π1pX4, ˚q).

Additionally in [1], Abrams, Gay, and Kirby use the uniqueness theorem for
tisections to obtain results analogous to those previously mentioned in dimension
three. Namely, they obtain a group-theoretic statement that is equivalent to the
smooth 4-dimensional Poincaré conjecture and, by modding out the set of such
triples pφ1, φ2, φ3q, they obtain a bijection between a group-theoretically defined
set and the set of all smooth, closed, connected, oriented 4-manifolds.

Not only can every 3-manifold be split into a union of two handlebodies, but
additionally, given a link L Ă M we have a Heegaard splitting M “ H1 YΣg

H2

such that the tangles T1 “ LXH1 and T2 “ LXH2 are trivial (that is, consist of
arcs that can all be simultaneously isotoped in Hi into Σg). This is called a bridge
splitting of L Ă M . Note that the complement of L in each handlebody is again
a handlebody and hence has free fundamental group.

One dimension up, a similar story emerges. A knotted surface is a closed (poten-
tially non-orientable or disconnected) surface smoothly embedded in a 4-manifold.
Meier and Zupan showed that given a knotted surface in a trisected 4-manifold, it
can always be isotoped to be in bridge position, meaning that it intersects the tri-
sected 4-manifold in such a way that the surface inherits its own trisection, called
a bridge trisection [9, 10]. This is unique up to a stabilization operation [9, 4].
Given the existence and uniqueness of such a decomposition in this setting, it is
natural to wonder whether knotted surfaces in 4-manifolds can also be given such
a group-theoretic framework.
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In this talk, which is a report on a recent preprint of the authors [2], we unify
the previous work done for closed 3- and 4-manifolds, and generalize this corre-
spondence to the case of links in closed, oriented 3-manifolds and links of knotted
surfaces in smooth, closed, connected, oriented 4-manifolds. Just as the cases of 3-
and 4-manifolds are facilitated by Heegaard splittings and trisections, respectively,
our result for links in 3-manifolds and surfaces in 4-manifolds use bridge splittings
and bridge trisections, respectively. The algebraic manifestations of these four
subfields of low-dimensional topology (3-manifolds, 4-manifolds, knot theory, and
knotted surface theory) are all strikingly similar, and this correspondence perhaps
elucidates some unique character of low-dimensional topology.
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Highly twisted diagrams

Nir Lazarovich

(joint work with Yoav Moriah, Tali Pinsky)

As knot theorists we aim to extract topological information about a knot directly
from its diagram. One instance of this is the following theorem of Menasco about
the hyperbolicity of alternating knots.

Theorem 1 (Menasco [5]). Let K be a prime knot with an alternating diagram,
then K is either a torus knot, or a hyperbolic knot.
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Figure 1. A 3-highly twisted diagram with its twist-regions
highlighted in red (left), and a non-hyperbolic link with a 2-highly
twisted diagram (right).

We recall that a knot is hyperbolic if its complement can be endowed with a
complete Riemannian metric of constant negative sectional curvature, and a knot
diagram is alternating if when following the knot the crossings alternate between
over and under crossing. In the same spirit, we proved:

Theorem 2 (Lazarovich-Moriah-Pinsky [4] for 3-highly twisted diagrams, and
Futer-Purcell [2] for 6-highly-twisted). Let K be a connected, prime, twist-reduced,
3-highly twisted link diagram with at least 2 twist regions, then K is hyperbolic.

Let P be the projection plane, and consider the diagram of a knot K on P . A
twist region is a maximal subdiagram D in which KXD is a simple twisting of two
strands of the knot, as the highlighted regions in Figure 1. The diagram is k-highly
twisted if every twist region has at least k crossings. The definition of prime and
twist-reduced is better summarized in a picture than in words, see Figure 2. Note
that one can always assume that a diagram is twist-reduced by performing flypes.
We remark that Theorem 2 is sharp as there are 2-highly twisted links which are
not hyperbolic, such as the one in Figure 1.

Figure 2. The diagram conditions: prime (top) and twist-
reduced (bottom).

While the proof of Futer-Purcell uses the 6-surgery Theorem of Agol [1] and
Lackenby [3], our proof is closer to Menasco’s proof and relies on studying the
intersection of surfaces with the plane P . We outline it here:

Let K be a knot as in the theorem, and letM “ S3 ´N pKq be its complement.
To prove that M is hyperbolic we will use the following theorem of Thurston.

Theorem 3 (Thurston [6]). If a 3-manifold M is connected, compact, oriented,
irreducible, atoroidal, with non-empty incompressible, acylindrical torus bound-
aries, then M is hyperbolic.
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The underlined properties are all related to the non-existence of proper essential
spheres, tori, disks and annuli in M (respectively). Let us focus on proving that
M is irreducible and atoroidal. That is we have to show that every sphere in
M is inessential, and every incompressible torus in M is boundary parallel. By
contradiction assume that S is an essential sphere or a torus in M “ S3 ´K.

For every crossing of the knot K consider a little sphere, “bubble”, centered
at the point of crossing on the plane P . Let P` (resp. P´) be the plane P in
which we replace the small disks cut by the bubbles by their upper (resp. lower)
hemispheres. The knot can be placed on P` Y P´, and we may assume that the
surface S intersects each of P` and P´ transversely. Since S is a closed embedded
surface, the intersection S X P˘ is a collection of disjoint simple closed curves on
P˘.

Using the assumption that S is essential, we show that, up to homotoping S,
one can compute the Euler characteristic of S using the intersection curves as
follows: For each curve c in SXP˘ define its contribution to be χ`pcq “ 1´ 1

4
Jpcq

where Jpcq is the number of bubbles c meets (counted with multiplicities). Then,

(1) χpSq “
ÿ

c

χ`pcq

where the sum is taken over all curves in S X P` and S X P´.
In view of (1), it would have been extremely convenient if χ`pcq ď 0 for all

curves. This is indeed the case if the diagram is alternating, however in our setting
there are curves for which Jpcq “ 2, and so χ`pcq “ 1

2
ą 0. The strategy of proof

is therefore to redistribute the positive contributions of “positively contributing”
curves among the “negatively contributing” curves. To do so, we define a new
contribution χ1pcq for all intersection curves c, such that

(2) χpSq “
ÿ

c

χ1pcq and χ1pcq ď 0.

The precise definition is too involved for this abstract. However, the mere existence
of such a function already suffices to deduce that χpSq ď 0 and hence S is not a
sphere. When S is a torus, (2) implies that χ1pcq “ 0 for all intersection curves.
By analyzing the possible cases in which this happens one arrives to the conclusion
that the torus S is, in fact, boundary parallel.
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Triangulations of Seifert fibered spaces

Adele Jackson

One common approach to algorithmic problems in a 3-manifold M is to show that
a certain surface or curve of interest has a small normal representative in any
triangulation of M . We present some results in this vein from a recent paper [1].

Theorem 1. Let M be a Seifert fibered space with non-empty boundary and let T
be a (material) triangulation of M . The collection of singular fibres of M that are
not of multiplicity two have disjoint simplicial representatives in T p79q, the 79th

barycentric subdivision of T . Furthermore, in T p82q, these simplicial singular fibres
have disjoint simplicial solid torus neighbourhoods such that there is a simplicial
meridian curve of length 48 for each such neighbourhood.

We sketch the proof of this result. First, replace the triangulation of M by its
dual handle structure. Take normal surface representatives of a disjoint collec-
tion of annuli that separate neighbourhoods of the singular fibres from M . We
introduce the idea of the parallelity bundle, which is the collection of the regions
lying between parallelity elementary discs, and naturally has an I-bundle struc-
ture. We analyse this bundle for cutting along one of the separating annuli to
conclude that it consists of I-bundles over discs, annuli, and Möbius bands. Show
that I-bundles over Möbius bands are impossible when the singular fibres is not
of multiplicity two, remove the bundles over annuli and some of those over discs,
and replace the remaining I-bundles over discs with 2-handles. We then invoke a
result of Lackenby to give a singular fibre representative which runs only through
the 0- and 1-handles, so avoids the parallelity bundle entirely, and has controlled
intersection with these handles [2]. Finally, we use these bounds to make this core
curve simplicial in the 79th barycentric subdivision.

This result is the main technical tool in the proof of a theorem about the
triangulation complexity of a Seifert fibered space. The triangulation complexity
∆pMq of a 3-manifold M is the minimal number of tetrahedra in a triangulation
of M . It is known for some specific families such as the lens spaces Lp2n, 1q and
prism manifolds, and to within multiplicative bounds for elliptic and sol geometries
and hyperbolic mapping tori, and there is a lower bound on it from the simplicial
volume of M . In general, it is quite hard to determine.

Definition 1. For 0 ă q ă p, let

q

p
“ a0 `

1

a1 ` 1
a2` 1

¨¨¨`
1

an

be the unique continued fraction expansion with ai ą 0. The continued fraction
norm ‖q{p‖ is

ř
i ai.

Theorem 2. There exists k ą 0 such that for any Seifert fibered manifold M

with non-empty boundary other than the solid torus, whose Seifert data is
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rΣ, p1{q1, . . . , pn{qns with (without loss of generality) 0 ă qi ă pi for each i,

1

k

˜
|χpΣq| `

nÿ

i“1

‖qi{pi‖ ` 1

¸
ď ∆pMq ď k

˜
|χpΣq| `

nÿ

i“1

‖qi{pi‖ ` 1

¸
.
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Selectively searching the Pachner graph

Alexander He

(joint work with Ben Burton)

Lackenby and Schleimer [1] recently used core curves—curves γ embedded in
a lens space such that removing a regular neighbourhood of γ leaves behind a
solid torus—to show (among other things) that lens space recognition is in NP.
Roughly, the idea is to find a core curve in the 1-skeleton of a given triangulation
T ; however, they need to perform 86 barycentric subdivisions on T before they
can guarantee the existence of such a simplicial core curve.

It is natural to wonder whether it is really necessary to perform so many sub-
divisions. Even more optimistically, we might hope that if we are given any one-
vertex triangulation T of a lens space, then we can find a simplicial core curve in
T without needing to subdivide even once. In other words, could every one-vertex
triangulation T of a lens space contain at least one core edge—an edge that
realises a core curve? The answer turns out to be “no”: we used a targeted search
algorithm to find a 20-tetrahedron one-vertex 3-sphere with no core edges (for the
3-sphere, another way to say this is that we have a one-vertex triangulation whose
edges are all non-trivially knotted).

Before we describe how our search algorithm works, it is worth emphasising
that the “targeted” part of this algorithm is critical to making it feasible to find
this counterexample. To illustrate why, consider the census of all triangulations
with up to 10 tetrahedra, which contains 422 533 279 one-vertex triangulations of
the 3-sphere. We needed over 22 hours of wall time, running on 12 threads in
parallel, to certify that all of these 3-spheres have at least one core edge (we also
performed a more exhaustive test that required over 53 hours to certify that all
of these 3-spheres have at least two core edges). Since the number of possible
triangulations will grow exponentially as we increase the number of tetrahedra
beyond 10, there is little hope that it would be feasible to simply use a brute-force
search to find a one-vertex 3-sphere with no core edges.

Our search algorithm uses 2-3 and 3-2 moves to generate new triangulations;
these moves are illustrated in Figure 1. Notice that a 3-2 move begins with a
configuration of three distinct tetrahedra arranged around an edge e; moreover, if
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e happens to be a core edge, then notice that performing this 3-2 move has the
effect of removing this core edge, but otherwise leaving the 1-skeleton untouched.

2-3

3-2

Figure 1. The 2-3 and 3-2 moves.

With this in mind, the main idea of our algorithm is to search for a triangulation
in which one of the core edges can be removed using a 3-2 move. Provided that
the search never uses an intermediate 2-3 move that introduces a new core edge,
we can (at least in principle) run this search repeatedly until we have removed all
of the core edges from our initial triangulation.

For the reasons we have already mentioned, running such a search using an
exhaustive approach is unlikely to be feasible. What we do instead is perhaps
obvious in hindsight: since a core edge e can be removed using a 3-2 move if and
only if e has degree 3 and actually meets three distinct tetrahedra, we can try to
minimise how “far away” the following two quantities are from what we want:

(1) the degree dpeq of e (the number of tetrahedra that meet e, counted with
multiplicity); and

(2) the number npeq of distinct tetrahedra that meet e.

More precisely, if we are given a t-tetrahedron triangulation containing core edges
e1, . . . , ek, where k > 1, then our search algorithm seeks to minimise the following
complexity with respect to the lexicographical ordering:

ˆ
k, max

16i6k
pdpeiq ´ npeiqq , max

16i6k
|dpeiq ´ 3|, t

˙
.

This targeted approach proved to be remarkably effective: our search algorithm
only needed to enumerate 2256 triangulations to find a 22-tetrahedron one-vertex
3-sphere with no core edges (we were subsequently able to simplify this to a 20-
tetrahedron triangulation without introducing any core edges). For contrast, recall
that even up to just 10 tetrahedra, we already have over 400 million one-vertex
triangulations of the 3-sphere, and it is almost an understatement to say that the
number of such triangulations up to 22 tetrahedra would be much larger than this.
Because our algorithm was able to hone in on such a small portion of the search
space, it terminated very quickly: even running on a laptop with an Intel Core
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i5-7200U processor, which has just two physical cores divided into four logical pro-
cessors, we only needed about 94 seconds of walltime to find our counterexample.

To conclude, we note that the key ideas of our targeted search extend beyond
core edges. A relatively immediate extension is that we can replace core edges
with some other type of interesting edge. In particular, we have adapted our
search algorithm to find:

(1) ideal triangulations of various knots with tunnel number equal to one, such
that none of the edges of these triangulations realise tunnel arcs; and

(2) a one-vertex triangulation of a small Seifert fibre space such that none of the
edges of this triangulation are isotopic to Seifert fibres.

More ambitiously, the success of our targeted search suggests that, with the right
heuristics, it may be possible to dramatically speed up other applications of 2-3
and 3-2 moves, such as:

‚ using such moves to improve triangulations with respect to important measures
of complexity, like the number of tetrahedra or the treewidth; or

‚ finding sequences of such moves that connect two given triangulations, in order
to prove that these triangulations are homeomorphic.
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Strongly quasipositive knots are concordant to infinitely many

strongly quasipositive knots

Paula Truöl

This talk provides context on the following result.

Theorem 1 ([16]). Every strongly quasipositive knot other than the unknot is
smoothly concordant to infinitely many pairwise non-isotopic strongly quasipositive
knots.

A similar result holds for links, but for the purposes of this presentation we focus
on knots. A knot in the 3-sphere S3 is a non-empty, connected, oriented, closed,
smooth 1-dimensional submanifolds of S3, considered up to ambient isotopy. Two
knots K and J are called concordant if there exists an annulus A – S1 ˆ r0, 1s
smoothly and properly embedded in S3 ˆ r0, 1s such that BA “ Kˆ t0u YJ ˆ t1u
and such that the induced orientation on the boundary of the annulus agrees with
the orientation of K, but is the opposite one on J . Slice knots are those knots
that are concordant to the unknot. Knots up to concordance form a group, the
concordance group C, with the group operation induced by connected sum. Isotopic
knots are concordant, but the converse is in general not true as any nontrivial slice
knot shows.

We are particularly interested in families of knots for which concordance does
imply isotopy. Consider the following set of inclusions [7, 13, 11]:
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tpositive torus knotsu Ă talgebraic knotsu Ă tpositive knotsu

Ătstrongly quasipositive knotsu Ă tquasipositive knotsu.

The superordinate set of quasipositive knots considered here arises in algebraic
geometry as the set of those knots that are transverse intersections of complex
algebraic curves in C2 with the 3-sphere S3 Ă C2. This provides a geometric
characterization of these knots [14, 5]. Litherland [10] showed that algebraic knots
— knots of isolated singularities of complex algebraic curves in C2 — are isotopic if
they are concordant. In particular, every concordance class in C contains at most
one algebraic knot. Positive torus knots Tp,q for coprime positive integers p, q
form a well-known example of algebraic knots; they arise as V pfqXS3

ε Ă S3
ε Ă C2,

where V pfq denotes the zero-set of f : C2 Ñ C, px, yq ÞÑ yp´xq, and S3
ε a 3-sphere

of radius ε ą 0 centered at the origin in C2. Moreover, Baader, Dehornoy, and
Liechti [3] showed that every concordance class in C contains at most finitely many
positive knots, which are those knots that admit a diagram in which all crossings
are positive. It is an open question whether concordance implies isotopy for the
set of positive knots.

Theorem 1 stands in contrast to these results as it states that each equivalence
class in the concordance group C of a non-trivial strongly quasipositive knot con-
tains infinitely many such knots. A knot is called strongly quasipositive if it is
the closure of a strongly quasipositive braid β P Bn for some n ě 1. Here Bn

denotes the braid group on n strands which can be presented by n´ 1 generators
σ1, . . . , σn´1 and relations

σiσj “ σjσi if |i ´ j| ě 2 and σiσi`1σi “ σi`1σiσi`1 [2].

An n-braid is called strongly quasipositive if it is a (finite) product of certain
conjugates of the positive Artin generators σi of Bn, namely of the positive band
words σi,j , where

σi,j “ pσi ¨ ¨ ¨σj´2qσj´1 pσi ¨ ¨ ¨σj´2q
´1

for 1 ď i ă j ď n.

Each knot K that is the closure of a strongly quasipositive braid β comes equipped
with a canonical Seifert surface associated to β [12] and by work of Bennequin [6]
and Rudolph [15] — the latter building on Kronheimer and Mrowka’s proof of
the local Thom conjecture [9] — these surfaces realize the genus and the smooth
4-genus of K. Since the 4-genus is a concordance invariant and the unknot is the
only knot of genus zero, this implies that there is only one strongly quasipositive
slice knot and thus the nontriviality assumption in Theorem 1 is necessary.

Theorem 1 shows that the following conjecture by Baker is not true in a very
strong sense if the assumption of fiberedness is dropped. A knot K is called fibered
if its complement in S3 is the total space of a locally trivial fiber bundle whose
fiber is a Seifert surface for K.

Conjecture 2 ([4]). Concordance implies isotopy for strongly quasipositive, fibered
knots.
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Baker showed that either Conjecture 2 is true or the slice-ribbon conjecture is
false. The slice-ribbon conjecture goes back to a question asked by Fox in the
1960s [8] and asserts that every slice knot is ribbon, i.e. bounds an immersed disk
in S3 with only ribbon singularities.
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End-periodic homeomorphisms and volumes of mapping tori

Marissa Loving

(joint work with Elizabeth Field, Heejoung Kim, Autumn Kent, and
Christopher Leininger)

An incredibly fruitful relationship in low dimensional topology is the interplay
between the dynamics and topology of surface homeomorphisms, and the geometric
structure of their associated mapping tori. For example, a fundamental theorem
of Thurston established that if f : Σ Ñ Σ is a homeomorphism of a finite-type
surface and Mf is its associated mapping torus, then Mf is hyperbolic if and only
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if f is pseudo Anosov. It is natural to ask how much this connection can be refined.
In particular, given finer dynamical data about f : Σ Ñ Σ, can we obtain finer
geometric data about Mf , e.g. its volume?

Some examples of finer dynamical data come from the action of the mapping
class group MappΣq (the group of isotopy classes of orientation preserving home-
omorphisms of Σ) on Teichmüller space T pΣq (the space of equivalence classes of
marked hyperbolic structures on Σ). Depending on the metric we place on T pΣq
we obtain two different pieces of dynamical data related to a homeomorphism
f : the Teichmüller translation distance of f , logpλpfqq, and the Weil–Petersson
translation distance of f , τWPpfq. When f : Σ Ñ Σ is a pseudo Anosov homeo-
morphism, both logpλpfqq and τWPpfq yield information about the volume of Mf .
There are many results of this kind, but here are two particularly illustrative ones.

First is a theorem proven independently by Kojima–McShane [KM18] and
Brock–Bromberg [BB16] which relates the volume ofMf to the Teichmüller trans-
lation distance of f . Second is a theorem of Brock relating the volume of Mf to
the Weil–Petersson translation distance of f .

Theorem 1 (Brock–Bromberg, Kojima–McShane). If f : Σ Ñ Σ is a pseudo-
Anosov, then

logpλpfqq ě
1

3π|χpΣq|
VolpMf q.

Theorem 2 (Brock). Let f : Σ Ñ Σ be pseudo Anosov. Then there is some
K ą 0 so that

1

K
τpfq ď VolpMf q ď Kτpfq,

where K depends only on the surface Σ.

A key step in the proof of Brock’s theorem is showing that when T pΣq is
equipped with the Weil–Petersson metric, T pΣq is quasi-isometric to the pants
graph PpΣq with the standard word metric. Here, we define PpΣq to be the graph
with vertices given by isotopy classes of pants decompositions of Σ (e.g. maximal
collections of pairwise disjoint simple closed curves), and edges defined by so-called
elementary moves, described in Figure 1.

The motivation question for my work is to ask if similar relationships between
the dynamics and topology of surface homemorphisms and the geometry of their
associated mapping tori hold for other “interesting” surface homeomorphisms.
Namely, for dynamically rich homeomorphisms of infinite-type surfaces. One class
of such homeomorphisms arise in the setting of depth-one foliations of 3-manifolds.

Consider a taut, depth-one foliation F of a closed, hyperbolic 3-manifold M .
Any noncompact leaf S of F is an infinite-type surface with finitely many ends all
accumulated by genus. This leaf is dense in an open submanifold Mf Ď M , which
is the mapping torus of an end-periodic homeomorphism f : S Ñ S. See Figure 2
for an example of such a homeomorphism. This mapping torus Mf is the interior

of a compact irreducible 3-manifold Mf with incompressible boundary [FKLL23,
Proposition 3.1]. When f is irreducible (a notion introduced in unpublished work
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Figure 1. Elementary moves on pants decompositions come in
two types depending on whether the pants curve being flipped
lives in a one-holed torus or four-holed sphere

of Handel-Miller), Mf is atoroidal [FKLL23, Proposition 3.4]. When f is strongly
irreducible Mf is also acylindrical [FKLL23, Lemma 3.5].

Figure 2. The homeomorphism given by the composition of the
Dehn twists about the blue and red curves with a handle shift is
an irreducible end-periodic homeomorphism [Fen97].

Thus, in many ways irreducible and strongly irreducible end-periodic homeo-
morphisms serve as the infinite-type analogue of pseudo-Anosov homeomorphisms
of finite-type surfaces. Other important connections along these lines has been
developed in work of Handel–Miller (unpublished), Fenley [Fen89, Fen92, Fen97],
Cantwell–Conlon [CC16], Cantwell–Conlon–Fenley [CCF21], and Landry–Minsky–
Taylor [LMT21].

We extend Theorem 2 to the infinite-type setting as follows:

Theorem 3 (in progress). For f : S Ñ S a strongly irreducible end-periodic
homeomorphism with finitely many ends, all accumulated by genus, we have

Kτpfq ď VolpMf q ď Voctτpfq,
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where K is an integer depending only on f and Voct is the volume of a regular
ideal octahedron.

The upper bound is proved in joint work with Field, Kim, and Leininger
[FKLL23] while the lower bound is proved in forthcoming joint work with Field,
Kent, and Leininger.

Our strategy to prove the lower bound is to adapt Brock’s proof to the infinite-
type setting, which requires developing some new machinery that we will men-
tion briefly. We first discuss some key ideas from Brock’s proof. The overar-
ching mantra is to control the volume by controlling the existence and location
of bounded length curves. This yields a lower bound on volume, as the Mar-
gulis Lemma tells us that each of these bounded length curves makes a definite
contribution to volume. The main tool to control the existence and location of
bounded length curves is by building an interpolation of the infinite cyclic cover of
the mapping torus through simplicial hyperbolic surfaces (Canary [Can96], Bona-
hon [Bon86]) with bounded length curves corresponding to a path in the pants
graph. This argument makes extensive use of Brock’s work on volumes of con-
vex cores of quasi-fuchsian 3-manifolds [Bro03], as well as work of Masur–Minsky
[MM99, MM00] to relate the number of bounded length curves to distance in the
pants graph.

So what breaks in this proof when f is end-periodic? We need a notion of
pleated surfaces and simplicial hyperbolic surfaces in the infinite-type setting. We
also need a way to control the action of f on its cores (i.e. where the action
happens). Our first step in this direction is to introduce the notion of a well-
pleated surface, which is essentially a pleated surface that interacts well with some
core for f (or a power of f).

This work represents one piece of progress towards the authors’ larger goal
to bound volumes of 3-manifolds that admit depth-one foliations in terms of the
structure of their foliations (e.g. the translation length of their associated mon-
odromy).
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On canonical knots in tangent bundles

Andrew Yarmola

(joint work with Tommaso Cremaschi, Jake Intrater,
José Andrés Rodriguez-Migueles)

We study 3-manifolds that arise as knot and link complements in unit and pro-
jective tangent bundles UT pSq and PT pSq of an orientable surface S, where the
link pκ is the set of tangents to a collection of closed curves κ on S. We call these
canonical knots and links. In recent years, there has been a lot of interest in such
links as they include the class of links realized by periodic orbits of a geodesic flow
on the unit tangent bundle of a surface. Classically, Ghys [Ghy07] showed that the
periodic orbits of the geodesic flow over the modular surface Σmod correspond to
Lorenz links in S3, which are periodic orbits of the Lorenz attractor. Lorenz links
enjoy lots of nice properties, they are prime, positive, fibered, hence amphicherical,
and moreover both the genus and their braid index can be studied combinatorially,
see [BW83] for more details. Our class of interest is dramatically larger than this.
Indeed, in the PT pSq setting, we allow of piecewise-smooth closed curves κ on S
where the non-smooth points are cusps. We call such closed curves cusp-smooth.
Such loops can be interepreted as Legendrian diagrams on S, since PT pSq has a
canonical contact structure. Our first observation about such link complements is
that they are just as abundant as links in S3.

Proposition 1. Every closed orientable connected 3-manifold M is a Dehn filling
of PT pΣ0,nqzpκ for some n and a collection κ of smooth closed curves on Σ0,n.
Allowing κ to have cusps, one can take n “ 1.

In the case of knots, there are also analogues of classical theorems. In particular,
a version of the Gordon–Luecke theorem holds in our context. LetMκ “ PT pSqzpκ,
then:

Theorem 1. Let S1, S2 be orientable surfaces and χpS1q ă ´1. Consider cusp-
smooth loops κ1 Ă S1, κ2 Ă S2. If Mκ1

–` Mκ2
where the κ1 end maps to the

κ2 end, then S “ S1 – S2 and κ1, κ2 are equivalent under Diffeo`pSq, Legendrian
Reidemeister moves, and adding/removing cusps.
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A version of the above theorem was first proven by Rodriguez-Migueles [RM1],
where the κi are in minimal position, smooth, and one of them is homologically
non-trivial on S. Our proof makes use of both algebra and topology, requiring
several results about one-relator surface groups and uniqueness of S1-fibrations for
circle bundles over hyperbolic surfaces.

Another interesting aspect of this construction is how it relates to geometry.
For example, when κ is a single closed curve, an application of geometrization
quickly gives that Mκ is hyperbolic if and only if κ is filling on S, see [FH13] for
details. In particular, we should expect a connection between invariants of κ and
invariants of Mκ. Let volpMκq denote the volume of the hyperbolic pieces of the
JSJ decomposition.

Theorem 2. [CM19] Let v3 denote the volume of the regular ideal hyperbolic
tetrahedron, then

volpMκq ď 8v3ipκ, κq.

Theorem 3. [BPS17] Assume χpSq ă 0 and fix a hyperbolic metric X on S. Then
there is a constant CX such that for any minimal position smooth closed curve κ
on S one has

volpMκq ď CXℓXpκq.

While the first result generalized a classical fact, the second result is quite
surprising. One important technicality, which forces the minimal position hypoth-
esis above, is that Mκ is not invariant under classical Reidemeister moves, but is
invariant under Legendrian ones.

Lower bounds on volume can also benefit from this surface perspective. Some
recent results include:

Theorem 4. [RM1] Given any simple multicurve η on S and collection κ of closed
curves,

volpMκq ě
v3

2
p#tisotopy classes of κ-arcs on Szηu ´ 3q.

Theorem 5. [CKMV] Assume χpSq ă 0 and fix a hyperbolic metric X on S.

There is a notion of randomness for geodesics on X, such that volpMγq —
a
ℓXpγq

for a random geodesic γ.

Allowing for links that arrise from collections of simple multicurves, we can do
even better. Similar to results of Brock for volumes of convex cores, one can show
that the volume of our link complements is linearly asymptotic to both distance
in the pants graph and Weil-Petersson distance on TeichpSq.

Theorem 6. [CMY21] Let κ “ tα, βu a filling pair of simple multicurves, then

volpMκq — inf
Pα,Pβ

dPpSqpPα, Pβq — dWP pTα, Tβq,

where PpSq is the pants graph, Pγ denotes a pants decomposition containing the
simple multicurve γ, dWP is Weil-Petersson distance, and Tγ Ă B TeichpSq is the
boundary strata with γ pinched.
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Many outstanding challenges remain. For example, are cusp-shapes of Mκ

dense? An approach to this problem could be to study Lorenz knots in more
detail. Connecting back to Dehn surgery, another interesting challenge if to see if
our knot complements admit characterising slopes, see [Lac19] for details in the
S3 case? The most difficult question appears to be the search for a combinatorial
estimate for volpMκq when κ is a closed curve. One approach could be to look
for polynomial invariants where κ is treated as knot diagram on a surfaces and
connecting them to volume.
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[CMY21] T. Cremaschi, J.A. Rodŕıguez Migueles and A. Yarmola. On volumes and filling col-
lections of multicurves. Journal of Topology, 2022.

[FH13] P. Foulon and B. Hasselblatt. Contact anosov flows on hyperbolic 3-manifolds. Geom-
etry and Topology, pages 1225–1252, 2013.
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Comparing Legendrian knots: a general algorithm and

practical solutions

Ivan Dynnikov

The present work is motivated by an attempt to extend the monotonic simpli-
fication theorem of [2] to general links. The theorem says that any rectangular
diagram of the unknot can be transformed into the simplest possible one by a
sequence of elementary moves not including stabilizations. For a non-trivial topo-
logical link type, there may exist many different representations by rectangular
diagrams that do not admit any simplification. However, it could be true that the
number of such representations is always finite.

To understand which rectangular diagrams admit a simplification it turns out to
be very useful to explore the strong connection between the rectangular diagram
formalism and contact topology. Namely, with every rectangular diagram of a
link one associates two equivalence classes of Legendrian links, one is Legendrian
with respect to the standard contact structure ξ`, and the other with respect
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to the mirror image ξ´ of ξ`. We denote these classes by L`pRq and L´pRq,
respectively, where R is the given rectangular diagram. Figure 1 illustrates the
idea.

L`pRq R L´pRq

Figure 1. Legendrian types L˘pRq

Elementary moves preserving the rectangular diagram’s complexity, which are
called exchange moves, also preserve the associated Legendrian types L˘. We
call the set of all diagrams obtained from R by a sequence of exchange moves the
exchange class of R.

It was proved in [3] that a rectangular diagram of a linkR admits a simplification
if and only if one of the Legendrian types L˘pRq admits a Legendrian destabiliza-
tion. It was also shown that, for any two rectangular diagrams R1, R2 representing
topologically equivalent links, there is a diagram R such that L`pRq “ L`pR1q
and L´pRq “ L´pR2q. Using our recent results we can now characterize the set
of all such diagrams viewed up to exchange moves as follows.

Denote by ΛpR1, R2q the set of all exchange classes of rectangular diagrams R
with L`pRq “ L`pR1q and L´pRq “ L´pR2q. Denote also by MorpR1, R2q
the set of morphisms from R1 to R2, where by a morphism we mean a con-
nected component of the space orientation-preserving self-homeomorphisms of S3

taking the link represented by R1 to the one represented by R2. The symme-
try group MorpR,Rq is denoted by SympRq, and the two subgroups of SympRq
consisting of elements realized by a ξ`- or ξ´-Legendrian isotopy by Sym`pRq
and Sym´pRq, respectively.

Theorem 1. There is a bijection between ΛpR1, R2q and the following set

Sym´pR2qzMorpR1, R2q{Sym`pR1q.

Since the set ΛpR1, R2q is always finite and consists of (exchange classes of)
diagrams of equal complexity, this theorem can be used to distinguish Legen-
drian links for which the symmetry group is known. In particular, it allows to
resolve in the positive most of the conjectures in the Atlas of Legendrian knots by
W.Chongchitmate and L.Ng [1]. Even when the symmetry group is unknown, one
can still compute algorithmically a generating set for it, which allows to establish
the following result.
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Theorem 2. There is an algorithm to decide, given two rectangular diagrams of
a link R1 and R2, whether or not L`pR1q “ L`pR2q.

Acknowledgement. The work is supported by the Russian Science Foundation
under grant 22-11-00299.
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Orbits of homeomorphisms of T 2 and fibrations of the Whitehead link

Tali Pinsky

(joint work with Bronek Wajnryb, Eiko Kin)

Our aim is to present a curious example relating the idea of a forcing relation from
dynamical systems and three manifolds having different fibrations over S1.

Given a surface X , a periodic point x0 for a self homeomorphism f0 and a
periodic point x1 for a homeomorphism f1, we say that x0 is isotopic to x1 if f0
is isotopic to f1 and for any t P r0, 1s ft has a periodic point xt so that xt is a
continuous arc in X . It follows that x1 and x2 have isotpoic braids defined in
the suspension X ˆ r0, 1s{ „, or equivalently that the actions of f0 and f1 on the
complements of the orbits are isotopic and thus represent the same group element
in the punctured surface that is the complement of each orbit.

Thus specifying an orbit up to isotopy is equivalent of specifying a mapping
class group element up to isotopy, which is equivalent of specifying the action of
the diffeomorphism on a graph that is a spine for the surface punctured at the
orbit. We are interested in forcing relations, i.e. when does the existence of an
orbit x imply the existence of another orbit y, generalizing the Sharkovskii order
for continuous maps on R to two dimensional systems [1].

For X “ T 2 we define a simple pair to be a pair of orbits, with the action of the
diffeomorphism class on the complement given by the graph map in the following
figure:

For each such orbit we can define a rational rotation number, and in a joint
work with Bronek Wajnryb we have shown that for x and y to be a simple pair
their rotation numbers have to be Farey neighbors, and the mapping class group
element defined by the above graph map is pseudo-Anosov. Furthermore, denoting
the simple pair corresponding to Farey neighbors p and q by p_ q, we prove that
p _ q forces r _ s whenever r and s are Farey neighbors between p and q [2].

In the Whitehead link complement, there is a fibration corresponding to any
surface Sn,m “ pmλ1`nλ2q where λ1 and λ2 represent each a once punctured torus
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with boundary a longitude on one of the link components [3]. In a recent work
with Eiko Kin we show that the fiber corresponding to λ1`λ2 is a twice punctured
torus that is exactly the 0_ 1 simple pair (i.e., the action of the monodromy on a
graph in the torus minus the two punctures is exactly as in the figure above).

We use this to inductively show that the fiber corresponding to mλ1 ` nλ2 has
the monodromy of the simple pair s _ t where s and t are the Farey parents of
m{n. Thus we have an explicit representation for all monodromies of all different
fibrations of the Whitehead link complement.
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In search of the Margulis constant

David Futer

(joint work with David Gabai and Andrew Yarmola)

Consider a hyperbolic 3–manifold M “ H3{Γ. The Margulis number µpMq is the
largest ǫ such that for every non-commuting pair ϕ, ψ P Γ, and for every x P H3,
one of ϕ, ψ moves x by distance at least ǫ. In symbols,

µpMq “ suptǫ : @ϕ, ψ P Γ, if dpx, ϕxq ă ǫ and dpx, ψxq ă ǫ, then rϕ, ψs “ 1u.

This number controls the thick–thin decomposition of M . Here, the ǫ–thin part,
denoted Măǫ, is the set of all points lying on an essential loop of length less than
ǫ. The ǫ–thick part is the complementary set Měǫ “ M rMăǫ. Then µpMq is
the largest number ǫ such that Măǫ is a disjoint union of cusps and tubes.

The Kazhdan–Margulis theorem [13] is the profound insight that the infimal
value

ǫ3 “ inftµpMq :M is a hyperbolic 3–manifoldu

is strictly positive. This value ǫ3 is called the (3–dimensional) Margulis constant.
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The Kazhdan–Margulis result is a fundamental tool in structural theorems
about hyperbolic manifolds. The fact that Măǫ has standard topology for every
ǫ ď ǫ3 leads to the result of Jørgensen and Thurston that all hyperbolic mani-
folds of volume less than V are Dehn fillings of finitely many surgery parents. The
thick–thin decomposition is also a critical tool in the construction of combinatorial
bi-Lipschitz models for the geometry of 3–manifolds based on fibrations [16, 4] and
Heegaard splittings [3, 17]. Making the results effective, with explicits estimates
on geometry, requires some estimate on ǫ3.

Indeed, most quantitative results in hyperbolic geometry require some estimate
on the Margulis constant. A sample of recent results in this vein includes the work
of Cooper, Futer and Purcell on unknotting tunnels [5], the work of Detcherry
and Kalfagianni relating hyperbolic volume to Turaev–Viro invariants [6], and the
work of Aougab, Patel, and Taylor on curve complexes [2]. All of these papers use
an estimate of Meyerhoff [14] from 1987, namely that ǫ3 ě 0.104. Knowing the
value of ǫ3, or even substantially improving Meyerhoff’s estimate on it [14], would
substantially improve these quantitative results.

In this ongoing project with Gabai and Yarmola, we are seeking to prove

Conjecture 1. The 3–dimensional Margulis constant ǫ3 is uniquely realized by
the Weeks manifold MW . In particular, ǫ3 “ µpMW q “ 0.774 . . ..

The method of attack is to first bound the possibilities to a compact domain,
and then rigorously analyze that domain by computer.

Parameter methods. Over the past 25 years, mathematicians have developed
considerable expertise in proving difficult theorems about hyperbolic 3–manifolds
using extensive computer assistance. For instance, Gabai, Meyerhoff, and N.
Thurston [10] proved that any homeomorphism f : M Ñ N between hyperbolic
3–manifolds is isotopic to an isometry (whereas Mostow rigidity only says f is
homotopic to an isometry). Gabai, Meyerhoff, and Milley [11, 15] showed that
the Weeks manifold MW is the hyperbolic 3–manifold of smallest volume, mean-
ing volpMq ě volpMW q for every M . Gabai, Haraway, Meyerhoff, N. Thurston,
and Yarmola [9] proved that every cusped M (apart from the figure–8 knot com-
plement) has at most 8 exceptional Dehn fillings. In all of these projects, the
technique has been to first prove the result for all M above a certain explicit level
of topological or combinatorial complexity, and then to perform a parameter space
analysis that covers all M below that level of complexity. The analysis might di-
rectly produce a list of explicit manifolds that optimize some property, or provide
further geometric and/or topological restrictions that allow one to prove the final
desired result.

The parameter space analysis works as follows. One considers all 2–generator
subgroups xϕ, ψy Ă Isom`pH3q, where the matrices representing ϕ and ψ are
constrained to lie in a compact domain. (In certain contexts, e.g. [11], a third
generator is also present.) The bounds on the compact domain come from the
previous work on manifolds above a particular complexity. The compact domain
is then subdivided into millions of tiny boxes, where each coordinate of ϕ and ψ is
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very tightly constrained within each box. Within each tiny box, some particular
word in Γ “ xϕ, ψy shows that the group is not discrete (contradiction), or con-
tains torsion (contradiction), or that the desired result holds anyway. The entire
computer-assisted search runs with rigorous arithmetic. See Gabai, Meyerhoff,
Thurston, and Yarmola [12] for an excellent survey of the method.

Conjecture 1 is well adapted to this kind of analysis. Since the manifold MW

is known to have µpMW q ă 0.775, the search for the Margulis constant can be
restricted to non-commuting isometries ϕ and ψ that translate some chosen base-
point x P H3 by distance ď 0.775. For a given basepoint x, the set of such
isometries is compact. However, this set has a needlessly large dimension (even
after quotienting by symmetries, the dimension is 9).

A more efficient parametrization runs as follows. One can show using the work
of Adams on waist sizes [1] that for small Margulis numbers, the isometries ϕ, ψ
must be loxodromic. Thus it suffices to know the (complex) translation lengths
of ϕ, ψ along their invariant axes, in addition to the (complex) distance between
the axes. This was the parametrization used in [10]. With some effort, we can
bound the distance between the axes, constraining the search to a compact 6–
dimensional domain. We currently have code running on the 240–core Polar cluster
at Princeton that adaptively breaks up the parameter space into tiny boxes and
tries to find a contradiction in each box.

The symmetric case. The parameter space analysis turns out to be particularly
tractable in the presence of an additional symmetry, where ϕ and ψ are assumed
conjugate in Isom`pH3q. Given M “ H3{Γ, the symmetric Margulis number of M
is

µsympMq “ sup tǫ : @ϕ, ψ P Γ that are conjugate in Isom`pH3q,

if dpx, ϕxq ă ǫ and dpx, ψxq ă ǫ then rϕ, ψs “ 1u.

We prove the following symmetric case of Conjecture 1:

Theorem 2. The lowest value of the symmetric Margulis number is uniquely re-
alized by the Weeks manifold MW . In particular, µsympMq “ µpMW q “ 0.774 . . ..

The symmetric setting of Theorem 2 is easier than the general case for two
reasons. First, the parameter space has a lower dimension (real dimension 4 instead
of 6). Second, in many boxes in the parameter space, the program finds a relation
in ϕ, ψ. If ϕ, ψ are conjugate in Isom`pH3q and generate a discrete group Γ, then
they are conjugate in a finite extension of Γ. Common conjugation turns one
relation into a second relation. With two generators and two relations, we are
looking at a point in the character variety of a closed 3–manifold group, which
turns out to be isomorphic to π1pMW q. Using the volume rigidity theorem for
representations [7, 8], and the enumeration of lowest-volume manifolds [9], we can
conclude that this is actually the discrete-faithful representation of MW .

Toward the general case. To identify the Margulis constant ǫ3, we need to
study a 6–dimensional parameter space of pairs of isometries ϕ, ψ that are not
necessarily conjugate. Here, the symmetric result of Theorem 2 provides a powerful
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elimination criterion. Indeed, suppose that ϕ, ψ generate an indiscrete group.
(This will typically be the case, but we need a rigorous certificate of indiscreteness.)
In this situation, there must be a word w P Γ such that ϕ and wϕw´1 have axes
that are extremely close. Both axes are moved by a small distance, so a common
point in between is moved by a small distance. By Theorem 2, we know that
either Γ is a known group (so we are happy), or Γ must be indiscrete (providing a
certificate that eliminates a box in the search). The conjugating word w tends to
be fairly short in practice, enabling extensive use.

Completely apart from its application toward Conjecture 1, Theorem 2 provides
very strong estimates on the radius of an embedded tube about a short geodesic.
The best estimates available to date, due to Meyerhoff [14], only work for geodesics
shorter than about 0.114. By contrast, the proof of Theorem 2 gives results for
geodesics up to length about 0.845.
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Canonical decompositions and algorithmic recognition of

spatial graphs

José Pedro Quintanilha

(joint work with Stefan Friedl, Lars Munser and Yuri Santos-Rego)

Spatial graphs extend the classical notions of knots and links by allowing not only
embedded unions of circles in a 3-sphere, but arbitrary compact 1-dimensional
complexes (throughout, all spaces live in the piecewise-linear category). Specif-
ically, a spatial graph is a triple Γ “ pS, V, Eq, with S an oriented 3-sphere,
V Ă S a finite set (of “vertices”) and E a finite set of “edges”, each edge being
a subspace of S homeomorphic to an interval or a circle and satisfying natural
conditions on its intersection with V . An isomorphism of spatial graphs is then
an orientation-preserving homeomorphism of the ambient 3-spheres inducing bi-
jections on the sets of vertices and edges.

The aim of my talk was to present the proof of the following result [1]:

Theorem 1 (Algorithmic recognition of spatial graphs). There exists an algorithm
that takes as input two spatial graphs and decides whether they are isomorphic.

The basic idea is to encode each spatial graph as a manifold with boundary

pattern, that is, a compact 3-manifold together with a compact 1-dimensional
sub-complex of its boundary, and then appeal to the following theorem, written
down in detail by Matveev building on work of Haken [2, Theorem 6.1.6]:

Theorem 2 (Recognition Theorem). There is an algorithm that takes as input
two Haken manifolds with boundary pattern and decides whether they are homeo-
morphic (respecting boundary patterns).

Before explaining the crucial “Haken” condition, let us sketch the construction
of a manifold with boundary pattern encoding a given spatial graph Γ. We remove
a small open neighborhood of the vertices and edges of Γ in its ambient 3-sphere S,
and mark the boundary of the resulting 3-manifold XΓ with a pattern that allows
for reconstructing Γ; see Figure 1 for the basic idea.

 

Figure 1. A spatial graph, and its exterior marked with a bound-
ary pattern.
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The complete boundary pattern PΓ (see Section 6.1 of the manuscript) also
indicates which regions of BXΓzPΓ correspond to vertices/edges, as well as the
orientation of XΓ induced from S. The resulting pXΓ, PΓq, which we call the
marked exterior of Γ, thus gives a perfect encoding:

Proposition 2 (Encoding via marked exteriors). Two spatial graphs are isomor-
phic if and only if their marked exteriors are homeomorphic.

Were it not for the “Haken” hypothesis in Theorem 2, and Theorem 1 would
follow immediately. A manifold with boundary pattern pM,P q is Haken if it sat-
isfies three conditions – a technical one that is easily dealt with in our setting, and
two requiring more attention: irreducibility and boundary-irreducibility. pM,P q
is irreducible if M itself is irreducible, that is, every embedded 2-sphere in M

bounds an embedded 3-ball. It is boundary-irreducible if for every properly
embedded disk D Ă M disjoint from P , its boundary BD bounds a disk in BM
disjoint from P .

Given a spatial graph Γ, irreducibility of XΓ is equivalent to Γ being non-

split, that is, there being no embedded 2-sphere S in the ambient 3-sphere S with
vertices of Γ on both sides. This suggests implementing a topological analogue of
the disjoint union operation on abstract graphs, leading to the definition of the
disjoint union of spatial graphs (here we use the orientations of the ambient
3-spheres). Designating non-empty, non-split spatial graphs by pieces, we have:

Proposition 3 (Unique factorization into pieces). Γ can be expressed as a disjoint
union of finitely-many pieces Γ –

Ů
iPI Λi. Any two such decompositions have

pairwise-isomorphic pieces.

Proposition 3 reduces the task of testing if two spatial graphs are isomorphic, to
decomposing them as a disjoint union of pieces (which one can do using standard
machinery for finding reducing spheres in 3-manifolds) and testing whether those
are pairwise-isomorphic. Since pieces have irreducible exteriors, we are one step
closer to being able to apply Theorem 2.

Next we ask when the marked exterior of a piece Γ is boundary-irreducible, and
this condition again translates into a natural property. Call a vertex v of Γ cut if
there is an embedded sphere S in the ambient sphere S, containing v but otherwise
disjoint from the vertices and edges of Γ, such that there are edges on both sides
of S. It turns out that pXΓ, PΓq is boundary-irreducible precisely if Γ has no cut
vertices and Γ does not consist of two vertices joined by one edge.

Inspired by Proposition 3, we now seek an operation for which every piece
uniquely factorizes into pieces without cut vertices. Indeed one can define such
an operation, the vertex sum, which takes as input two spatial graphs with
a distinguished vertex pΓ1, v1q, pΓ2, v2q, and whose output consists of Γ1 and Γ2

“glued along the distinguished vertices”.
In pursuing a unique factorization result for the vertex sum, one is faced with

the difficulty of even specifying iterated vertex sums, as one needs to package the
combinatorics of what vertices are to be glued. To that end, we introduce the
notion of a tree of spatial graphs T , which consists of:
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(1) a tree T with vertices in two alternating colors, green and blue, with all blue
vertices having degree at least 2,

(2) for each green vertex, a spatial graph, and
(3) for each edge of T , a vertex of the spatial graph at its green endpoint, with

no two edges corresponding to the same vertex.

This data gives a blueprint for putting together the spatial graphs at the green
vertices of T by gluing two such vertices whenever they correspond to edges of T
meeting at a blue vertex (“blue rhymes with glue!”). The resulting spatial graph
is called the realization of T . We illustrate in Figure 2.

 

Figure 2. A tree of spatial graphs and its realization.

Define a block to be a piece without cut vertices and which does not consist of
one vertex. By a tree of blocks, we mean a tree of spatial graphs whose spatial
graphs at the green vertices are blocks. We then have:

Proposition 4 (Unique factorization into blocks). Every piece Γ other than a one-
vertex graph is isomorphic to the realization of a tree of blocks. In any two trees
of blocks for Γ, the underlying trees are isomorphic and the blocks are pairwise-
isomorphic via isomorphisms respecting the vertices to be glued.

Using Proposition 4, we can further reduce the isomorphism problem from pieces
to blocks. Since their marked exteriors are Haken (except for a few easy special
cases), we can apply the Recognition Theorem (Theorem 2), proving Theorem 1.

Using a more sophisticated boundary pattern PΓ, we can prove Theorem 1 even
for spatial graphs decorated with vertex/edge colorings or with edge orientations.
Vertex colorings are in fact used in an essential way for encoding the requirement
that block isomorphisms respect the combinatorics of the trees of blocks.
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On a structure theorem of Legendrian knots

Rima Chatterjee

(joint work with John Etnyre, Hyunki Min and Anubhav Mukherjee)

A contact structure ξ on a 3-manifold M is a no-where integrable 2-plane field.
A contact 3-manifold pM, ξq is a 3-manifold equipped with a contact structure
ξ. There are two types of contact structures´tight and overtwisted. If one can
find an overtwisted disk (a disk is overtwisted if the contact planes are tangential
along its boundary) embedded in a contact manifold, we call it overtwisted. While
tight contact structures still remain a mystery, overtwisted contact structures are
completely classified by Eliashberg’s fundamental result.

Theorem 1 (Eliashberg [3]). Overtwisted contact structures (up to isotopy) are
in one-to-one correspondence with 2-plane fields (up to homotopy).

A knot is Legendrian if it is everywhere tangent to the contact planes. A Leg-
endrian knot has two classical invariants ´ the Thurston-Bennequin invariant(also
known as tb) and the rotation number. A knot is called Legendrian simple if it
can be completely classified by its classical invariants. For this talk we focused on
Legendrian knots in an overtwisted manifold with tight complements (also known
as non-loose or exceptional knots).

It is natural to ask how a Legendrian knot behaves under certain topological
constructions. For the purpose of this talk we stick to cabling. A pp, qq cable
Kpp, qq of a knot type K is a pp, qq curve on the tubular neighborhood of the knot
representing K. Etnyre–Honda proved the following statement in tight manifolds.

Theorem 2 (Etnyre-Honda [5]). Let K be a knot type which is Legendrian simple
and satisfies the UTP. Then Kpp, qq is Legendrian simple and admits a classifica-
tion in terms of the classification of K.

UTP or the Uniform Thickness Property is a special property for knots in
tight manifolds. A knot is said to satisfy UTP if its maximum tb is same as its
contact width. For details check [5]. It turns out that UTP is not very common
among knot types. As an example, the unknot does not satisfy UTP. UTP is
necessary for the above theorem as there are Legendrian simple knot types whose
cables are not Legendrian simple as they do not satisfy UTP [6]. Later Tosun
[7], Etnyre-LaFountain-Tosun [6] and recently Chakraborty-Etnyre-Min [1] relaxed
this condition. All of these results are in tight contact manifolds.

The motivation of our project was to have a similar structural result for non-
loose Legendrian knots in any overtwisted 3-manifold. The following is out main
result:

Theorem 3 ([2]). Suppose K is a knot type in an overtwisted contact 3-manifold
pM, ξq. Suppose L be a Legendrian representative of K in pM, ξq. Then for q

p
ą

tbpLq, the standard pp, qq cable Lpp, qq of L is non-loose if and only if L is non-
loose.
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As a standard neighborhood of a cable is contained in the standard neighbor-
hood of the underlying knot, one direction is obvious. To prove the other direction
we mainly relied on Colin and Honda’s state transition technique.

Our next theorem states a condition on non-looseness when q
p

ă tbpLq.

Theorem 4 ([2]). Let pM, ξq be an overtwisted contact 3-manifold and L be a
Legendrian knot in it. Suppose q

p
P ptbpLq ´ 1, tbpLqq. Then the standard cable

Lpp, qq is non-loose if and only if S˘pLq is non-loose. Here S˘pLq denotes the
positive (resp. negative) stabilization of L.

Notice, this tells us that a non-loose left handed trefoil can never arise as the
p´2, 3q cable of the non-loose unknot in the same contact structure. Note that,
non-loose unknot can only live in pS3, ξ´1q [4] where ξ´1 denotes the unique over-
twisted contact structure on S3 with Hopf invariant ´1.

While we shed some light on cabling of non-loose knots, our future goal will be
to answer similar questions on other topological constructions. For example:

Question: Suppose K1 and K2 be two non-trivial non-loose knots in an over-
twisted contact 3-manifold pM, ξq. Is K1#K2 non-loose?

Currently, we have examples that if one of Ki’s is trivial then the connected
sum operation does not preserve tightness of the complement.

A similar question can also be asked for other satellite constructions as well.
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Endperiodic maps via pseudo-Anosov flows

Michael P. Landry

(joint work with Yair N. Minsky, Samuel J. Taylor)

Let L be an infinite-type surface with finitely many ends and without boundary.
A homeomorphism g : L Ñ L is endperiodic if each end of L is either attracting or
repelling under a power of g, and atoroidal if it fixes no finite essential multicurve
up to isotopy.
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Such maps appear naturally in Thurston’s work [Thu86] on fibered compact
3-manifolds: a fiber S can be “spun” around a sufficiently nice surface Σ yielding
a foliation in which Σ is a compact leaf and its complement is fibered by parallel
copies of a non-compact surface L, so that the monodromy of this fibering is an
endperiodic map of L, which must be atoroidal when M is hyperbolic.

In this work we reverse this process, obtaining any atoroidal endperiodic map
from some fibration by a spinning operation in a suitable hyperbolic fibered 3-
manifold. More importantly, the construction can be performed so that the re-
sulting foliation is transverse to the canonical pseudo-Anosov flow associated to
the fibration (see [Fri79]), and the stable and unstable foliations of this flow induce
a similar structure on L. We call the return map of such a construction a spun
pseudo-Anosov (spA) map.

This construction has the following consequences:

‚ We recover, directly from the pseudo-Anosov structure, the dynamical lamina-
tions of Handel–Miller theory [CCF19].

‚ We identify dynamical growth rates of the spun pseudo-Anosov map: the spA
map minimizes the exponential growth rate of periodic points among all homo-
topic endperiodic maps. Further, this rate is equal to the exponential growth
rate of intersection numbers of curves under iteration and its log is the topolog-
ical entropy (suitably defined) of the spA map.

‚ The compactified mapping torus of the endperiodic map is a manifold N with
boundary, which can admit a variety of depth one foliations whose compact
leaves are BN . These foliations are parameterized by the foliation cones of
Cantwell–Conlon [CC99, CC17], which are analogous to the cones on fibered
faces of Thurston’s norm. This analogy can be made explicit by the spinning
construction, and we show that the foliation cones are exactly the pullbacks of
Thurston fibered cones by the inclusion of N into a certain fibered manifold M .
From this we can show that topological entropy defines a continuous, convex
function on each foliation cone. This mirrors the corresponding picture, due to
Fried and McMullen, for Thurston’s fibered cones [Fri82, McM00].
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Short decompositions of graphs embedded on surfaces

Arnaud de Mesmay

Given two graphs G1 and G2 embedded on a compact surface, the joint crossing
number of G1 and G2 is the minimum number of crossings of these two graphs over
all possible homeomorphic reembeddings of one of them. Intuitively, it quantifies
the best way to simultaneously embed both graphs on the same surface so as
to minimize the number of crossings. If, say, the first graph, is interpreted as a
discrete metric, this amounts to looking for the shortest embedding of the second
graph. Computing the joint crossing number is NP-hard [7], and this talk focused
on the problem of merely finding simultaneous embeddings with an upper bound
on the number of crossings, which is a problem that arises naturally in various
settings:

‚ In applied settings, when one is given two surface meshes, it is often useful to
compute a parameterization, i.e., a homeomorphism between them. One natural
way to do this involves first cutting them both along a specific auxiliary graph
so as to obtain disks, which can then be put in correspondence. Controlling the
deformations occurring during this process involves controlling the intersections
between the mesh and the cutting graph.

‚ In order to represent a graph embedded on a surface, a common way is to first
cut it into a disk and represent the resulting planar drawing with the boundary
identifications of the polygon. The readability of this representation will be
directly tied to the intersections of the graph with this cutting graph (see, e.g.,
Duncan, Goodrich and Kobourov [2]).

‚ By graph duality, controlling the intersections of two one-vertex, one-face graphs
can be recast as the problem of controlling the size of words involved in switch-
ing between different one-relator presentations of the fundamental group of a
surface.

‚ Some variants of this problem on surface with boundaries also occur in algorithm
design: for instance in the problem of deciding whether a given 2-complex em-
beds into R3 [10, 11], as well as in the problem of finding explicit upper bounds
on the algorithms arising from graph minor theory [5].

A seminal result of Lazarus, Pocchiola, Vegter and Verroust [9] shows that if
the surface is orientable and one of the graphs is a canonical system of loops,
i.e., a one-vertex, one-face graph whose boundary identifications are of the form
a1b1a

´1
1 b´1

1 . . . agbga
´1
g b´1

g , one can always embed both graphs so that each pair
of edges cross at most four times. Furthermore, the proof is readily algorithmic.

Strikingly, such a bound is unknown for more general graphs, and a conjecture
of Negami [12] posits that the joint crossing number can always be upper bounded
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by Op|EpG1q||EpG2q|q, where the constant in the Op¨q is independent of the genus.
The best known bound on this general problem is Opg|EpG1q||EpG2q|q, also due
to Negami [12]. See also [1] and [14] for more results around this conjecture.

In this talk, I first presented a recent result obtained with Niloufar Fuladi and
Alfredo Hubard [4], where we proved an analogue of the orientable theorem of [9]
in the case of non-orientable surfaces, for the non-orientable canonical system of
loops a1a1 . . . agag:

Theorem 1. There exists a polynomial time algorithm that, given a graph cellu-
larly embedded on a non-orientable surface, computes a non-orientable canonical
system of loops such that each loop in the system intersects any edge of the graph
in at most 30 points.

The techniques involved differ significantly from those of [9] and rely instead
on an embedding technique of Schaefer and Stefankovič [15], as well as an a priori
unexpected connection with the problem of computing the signed reversal dis-
tance between two signed permutations, which is a very well known problem in
computational genomics [6].

A second part of the talk surveyed an earlier attempt to attack the conjecture of
Negami using geometric techniques. For a given surface S, a universal shortest path
metric is a (Riemannian) metric on S such that any simple graph embeddable on
S can be embedded so that the edges are shortest paths. Since shortest paths cross
generically at most once, the existence of such a metric would provide a satisfying
geometric proof of the conjecture of Negami. In a joint work with Alfredo Hubard,
Vojtěch Kaluža and Martin Tancer [8], we provided such metrics for the sphere, the
projective plane, the torus and the Klein bottle, but proved that asymptotically,
as the genus goes to infinity, a random (for the Weil-Petersson metric) hyperbolic
metric on an orientable surface is not a universal shortest path metric.

This led us to the third part of the talk, where we considered the following
question. Given an orientable surface S of genus g, we say that a family of closed
curves Γ realizes all types of pants decompositions if for any pants decomposition
P of S, there is a homeomorphism sending the curves of P to a subset of the
curves in Γ. In a forthcoming paper with Niloufar Fuladi and Hugo Parlier [3],
we investigate the minimum possible size of such a family of curves, as well as
other variants of this question. The connection to the previous parts is that due
to polynomial upper bounds on the size of families of curves crossing pairwise at
most k times [13], obtaining an exponential lower bound for the size of a family of
curves realizing all types of pants decompositions would show that asymptotically,
no universal shortest path metric exists. We show that while the number of types
of pants decompositions is superexponential in the genus, one can find a family of
curves of singly exponential size realizing all types of pants decompositions. On
the other hand, the only known lower bound is that such a family of curves has at
least superlinear size. This leaves open the innocuous-looking problem of bridging
the gap between the superlinear lower bound and the exponential upper bound.
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Mapping class groups of 1-connected 4-manifolds

Mark Powell

(joint work with Patrick Orson)

I will report on joint work with Patrick Orson on the mapping class groups of
compact, simply-connected 4-manifolds.

Given an oriented, topological manifold X , with (possibly empty) boundary,
we consider Homeo`pX, BXq, the topological group of orientation preserving self-
homeomorphisms that restrict to the identity on the boundary BX , with the
compact-open topology. The set of connected components π0 Homeo`pX, BXq
is the topological mapping class group of X , the group of isotopy classes of orienta-
tion preserving self-homeomorphisms that fix the boundary pointwise. We study
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topological mapping class groups for X a compact, oriented, simply connected
4-manifold.

Let λX : H2pXq ˆ H2pXq Ñ Z be the intersection pairing of X . When BX “
H, it was shown by Perron and Quinn [Qui86, Per86] (cf. Kreck [Kre79, Theo-
rem 1]), that if two orientation preserving self-homeomorphisms of X induce the
same isometry of the intersection form then they are isotopic. Freedman [Fre82,
Theorem 1.5, Addendum] showed that every automorphism of the intersection
form is induced by a homeomorphism. Therefore the results of Perron, Quinn
and Freedman combine to compute the mapping class group of every closed,
simply connected 4-manifold, in the sense of reducing the problem to algebra:

π0 Homeo`pXq
–

ÝÑ AutpH2pXq, λXq; F ÞÑ F˚.
When X has nonempty boundary, we need to consider a refinement of

AutpH2pXq, λXq to capture the algebraic data of a homeomorphism. A map
F P Homeo`pX, BXq determines a homomorphism ∆F : H2pX, BXq Ñ H2pXq
called a variation [Lam75, DK75, Kau74], defined by rxs ÞÑ rx ´ F pxqs. Using
that X has Poincaré-Lefschetz duality, Saeki [Sae06] showed that ∆F satisfies
an additional condition, making it what we call a Poincaré variation. There is
a binary operation on the set of Poincaré variations, together with which they
form a group VpH2pXq, λXq. The map F ÞÑ F˚ factors through this group via
homomorphisms:

π0 Homeo`pX, BXq
F ÞÑ∆FÝÝÝÝÝÑ VpH2pXq, λXq

∆ ÞÑId ´∆˝j
ÝÝÝÝÝÝÝÝÑ AutpH2pXq, λXq,

where j : H2pXq Ñ H2pX, BXq is the quotient map. In general ∆F contains more
information than F˚. Saeki [Sae06] used VpH2pXq, λXq to describe the smooth
stable mapping class group for simply connected 4-manifolds with nonempty, con-
nected boundary.

When BX has more than one connected component and X admits a spin struc-
ture, there is a further invariant that does not appear in the closed case nor when
the boundary is connected. For F P Homeo`pX, BXq we may compare a (topolog-
ical) spin structure s on X with the induced spin structure F˚

s. The two agree
on BX because F fixes the boundary pointwise. There is a free, transitive action
of H1pX, BX ;Z{2q on the set of isomorphism classes of spin structures on X that
agree on BX , and we denote by ΘpF q P H1pX, BX ;Z{2q the class representing the
difference between s and F˚

s.
Our main result shows that these invariants describe the entire topological map-

ping class group.

Theorem 1 (Orson-Powell). Let pX, BXq be a compact, simply connected, ori-
ented, topological 4-manifold.

(1) When X is spin, the map F ÞÑ pΘpF q,∆F q induces a group isomorphism

π0 Homeo`pX, BXq
–

ÝÑ H1pX, BX ;Z{2q ˆ VpH2pXq, λXq.

(2) When X is not spin, the map F ÞÑ ∆F induces a group isomorphism

π0 Homeo`pX, BXq
–

ÝÑ VpH2pXq, λXq.
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Our key contribution is injectivity of the maps in Theorem 1. Let us outline the
proof strategy. First recall that a topological pseudo-isotopy is a homeomorphism
F : XˆI Ñ XˆI such that F |BXˆI “ IdBXˆI . The restrictions F0 “ F |Xˆt0u and
F1 :“ F |Xˆt1u are said to be topologically pseudo-isotopic. In this article we will
classify homeomorphisms of simply connected 4-manifolds with boundary, up to
topological pseudo-isotopy. The strategy builds on that of [Kre79, Proposition 2].
In broad strokes, if we can find a 6-manifold with boundary the (capped off) map-
ping torus of F , such that the 6-manifold is a rel. boundary h-cobordism from
X ˆ r0, 1s to itself, then it follows that F is pseudo-isotopic to the identity. Our
proof consists of an analysis of the obstructions to finding such an h-cobordism,
and uses Kreck’s modified surgery theory [Kre99] as the main technical tool in its
construction. With the pseudo-isotopy classification in hand, the proof that the
maps in Theorem 1 are injective concludes by appealing to Quinn’s result [Qui86,
Theorem 1.4] that topological pseudo-isotopy implies topological isotopy for home-
omorphisms of simply connected, compact 4-manifolds.

Of course, the injectivity in Theorem 1 can be applied to diffeomorphisms of
smooth 4-manifolds, yielding a topological isotopy. This is a important step in the
hunt for exotic diffeomorphisms, which is currently a topic of considerable inter-
est. For example Theorem 1 was applied in this way by Iida-Konno-Mukherjee-
Taniguchi [IKMT22].

When X has nonempty, connected boundary, surjectivity of the map
π0 Homeo`pX, BXq Ñ VpH2pXq, λXq was already known, and is a consequence
of Boyer’s classification of simply connected compact 4-manifolds with connected
boundary, and a subsequent result of Saeki [Boy86, Boy93, Sae06]. To show that
the map in Theorem 1 (1) is surjective, in particular to realise the Θ invariants
topologically, requires a novel geometric construction, again in combination with
Boyer and Saeki’s results [Boy86, Boy93, Sae06].

Dehn twists. An important type of self-homeomorphism of 4-manifolds is the
Dehn twist, which arises as follows. Let φt P π1pSOp4qq be a generator based at
the identity matrix, represented by a smooth map S1 Ñ SOp4q that is constant
near the basepoint. This induces a smooth loop of self-diffeomorphisms of S3,
which generates π1pDiffeo`pS3qq – Z{2, and thence a self-diffeomorphism

Φ: S3 ˆ I
–

ÝÑ S3 ˆ I; px, tq ÞÑ pφtpxq, tq.

Given an embedding of S3 ˆI into a 4-manifold, one can extend the map Φ by the
identity to obtain a self-homeomorphism of the entire 4-manifold, and we call any
self-homeomorphism obtained this way a Dehn twist. If X is smooth to begin with,
and S3 ˆ I is smoothly embedded, then the Dehn twist is a self-diffeomorphism.

Now let X be a closed, simply connected 4-manifold and decompose XzD̊4 as

the union N YS3ˆt1u S
3 ˆ I of a collar neighbourhood of BpXzD̊4q and the closure

of its complement. The diffeomorphism Φ induces a Dehn twist homeomorphism

tX : XzD̊4 Ñ XzD̊4; y ÞÑ

#
Φpx, tq y “ px, tq P S3 ˆ I,

y y P N.
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Corollary 2. For every closed, simply connected, topological manifold X, the
Dehn twist tX is topologically isotopic to Id

XzD̊4 .

An explicit geometric argument of Giansiracusa shows that tCP2 is smoothly
isotopic to the identity [Gia08]. This result can be extended to show that tX
is smoothly isotopic to the identity for any non-spin, smooth, simply connected,
closed 4-manifold X ; this argument was communicated to us by Auckly, Kro-
nheimer, and Ruberman. On the other hand, it was shown independently by
Baraglia-Konno [BK22] and Kronheimer-Mrowka [KM20] that tK3 is not smoothly
isotopic to the identity. This prompts the obvious question.

Question 3. For which closed, spin, simply connected, smooth manifolds X is tX
smoothly isotopic to the identity?

Homeomorphisms not restricting to the identity on the boundary. We
consider the implications of our results when we relax the assumption that home-
omorphisms must fix the boundary pointwise. Let X be a compact, oriented,
simply connected 4-manifold. There is a fibre sequence

Homeo`pX, BXq Ñ Homeo`pXq Ñ Homeo`pBXq.

Consequently there is an exact sequence in homotopy groups, extending to the
left,

π1 Homeo`pBXq Ñ π0 Homeo`pX, BXq Ñ π0 Homeo`pXq Ñ π0 Homeo`pBXq.

Here, the first arrow can be defined by inserting the loop of diffeomorphisms
of BX (based at IdBX) into a collar of the boundary, and extending by the iden-
tity. Taking the basepoint of each group of homeomorphisms to be the respective
identity map, the sequence is an exact sequence of groups. Here the π0 terms are
also groups because they are connected components of topological groups. The
sequence suggests that the problem of whether two homeomorphisms
F1, F2 : pX, BXq Ñ pX, BXq are isotopic in Homeo`pXq can be decomposed into
two stages, as follows.

The first-stage question is purely about 3-manifolds: are F1|BX and F2|BX iso-
topic? This is a highly nontrivial question in general, but thanks to the mod-
ern spectacular understanding of 3-manifolds, we have a good chance of being
able to decide. Self-homeomorphisms of BX must respect the prime decomposi-
tion [Kne29, Mil62] and the JSJ decomposition [JS79, Joh79]; see also [Hat07].
Restricting to geometric pieces it often suffices to understand the isometry groups
(in the sense of Riemannian geometry), by [Gab01, HKMR12, BK21, BK17] and
the references therein. For simple 3-manifolds their mapping class groups were
known earlier. For lens spaces the mapping class groups were computed by Bona-
hon [Bon83], while for Seifert fibred spaces in general see e.g. [BO91]. For Haken
3-manifolds, Hatcher and Ivanov [Hat76, Iva79] showed that the mapping class
group equals the group of homotopy self-equivalences. So with enough work, the
first-stage question can in principle be answered with our current knowledge.
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If there is no isotopy between F1|BX and F2|BX , then certainly F1 and F2 are
not isotopic. So let us assume that the 3-manifold question has been solved affir-
matively. Then, after an isotopy of F1 supported in a collar of BX we can assume
that F1|BX “ F2|BX . We may ask the second-stage question: is G :“ F2 ˝ F´1

1 P
Homeo`pX, BXq in the image of π1 Homeo`pBXq?

In some cases, π1 Homeo`pBXq “ 0 and so it causes no additional complica-
tions. A general condition for this, using work of Gabai, Hatcher, Ivanov, and
Waldhausen [Gab01, Hat76, Iva79, Wal67], is as follows.

Proposition 4. Let X be a compact, simply connected, oriented, topological 4-
manifold and suppose that every connected component of BX is irreducible but not
Seifert fibred. Then π1 Homeo`pBXq “ 0 and so there is exact sequence of groups

0 Ñ π0 Homeo`pX, BXq Ñ π0 Homeo`pXq Ñ π0 Homeo`pBXq.

Theorem 1 describes the left group. The image of the right hand map was
described precisely by Boyer [Boy86, Boy93], for all 3-manifolds. So in the case
that every connected component of BX is irreducible but not Seifert fibred, the
combination of our work with Boyer’s results can be employed to complete the
two-stage process discussed above.

We considered Seifert fibred 3-manifold boundary components, and studied the
problem of realising the invariants in Theorem 1 using loops of diffeomorphisms in
a boundary collar. For S3, lens spaces, and S1ˆS2 we found some success, showing
that for X spin and BX a disjoint union of 3-manifolds of Heegaard genus at most
one, every element of 0 ˆ H1pX, BX ;Z{2q can be obtained by collar insertion.
In addition, if the dimension of H1pBX ;Qq is at most one, then we can identify

VpH2pXq, λXq with a subgroup AutfixB pH2pXq, λXq of AutpH2pXq, λXq. We obtain
the following corollary.

Corollary 5. Let X be a compact, simply connected, orientable, topological 4-
manifold. Suppose that every connected component of BX has Heegaard genus at
most 1, and at most one of the connected components is S1 ˆ S2. Then there is
an exact sequence of groups

0 Ñ AutfixB pH2pXq, λXq Ñ π0 Homeo`pXq Ñ π0 Homeo`pBXq.

Note that this statement is independent of whether or not X admits a spin
structure. Let me end by setting the following challenge.

Challenge. Compute the collar insertion map

π1 Homeo`pBXq Ñ π0 Homeo`pX, BXq

when BX consists of more general Seifert fibred spaces.
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Polynomially many surfaces in a hyperbolic 3-manifold in

terms of volume

Anastasiia Tsvietkova

(joint work with Marc Lackenby)

For a low-dimensional manifold, one often tries to understand its intrinsic topology
through its submanifolds, in particular of co-dimension 1. This is reflected, for
example, in the study of trisections of 4-manifolds by Kirby, Gay and others;
study of surfaces in 3-manifolds by Waldhausen, Haken, and others; study of
curves on surfaces by Mirzakani and others. Among natural questions that arise
is the question about a number of such submanifolds, up to isotopy or homotopy.
For 3-manifolds, a further question, following the Geometrization Theorem by
Thurston and Perelman, is how the topological data, and number of surfaces in
particular, relates to the geometry of the 3-manifold.

The question about number of essential surfaces in a 3-manifold has been stud-
ied in recent years. One can fix the 3-manifold and investigate how the surface
count changes with surface genus or Euler characteristic. The earliest work in this
direction is due to Haken, for embedded normal surfaces, and Kneser, for surfaces
simultaneously embedded in a 3-manifold. Later a related question, about im-
mersed surfaces, was studied by Masters [10], and Kahn and Markovic [8]. There,
it is shown that in a closed hyperbolic 3-manifold, the number of immersed closed
connected surfaces (up to homotopy) of genus g grows like g2g. For embedded
surfaces, the count can be smaller (up to isotopy). In recent work [3] by Dunfield,
Garoufalidis, Rubinstein, it is proved that for a class of hyperbolic 3-manifolds,
the count for closed embedded surfaces is quasi-polynomial in genus for all but
finitely many its values. In all these results, one needs to fix the 3-manifold to
obtain the exact expression for the bound or count.

If one instead fixes the genus g or Euler characteristic of the surfaces rather than
fixing a 3-manifold, then upper bounds can be obtained that are universal and
polynomial. By universal we mean that the expression and constants are given by
an explicit general formula for all 3-manifolds. For complements of prime alternat-
ing links in S3, Hass, Thompson and Tsvietkova obtain universal bounds that are
polynomial in n, the number of crossings of a link. This holds for orientable and
non-orientable surfaces, closed surfaces and surfaces with meridianal boundary [6],
as well as spanning surfaces [7]. The result for closed surfaces also holds in all but
finitely many Dehn fillings of alternating links [6]. More recently, these techniques
[11] and results [12] have been extended by Purcell and Tsvietkova to a broad class
of cusped 3-manifolds, called weakly generalized alternating links. These are links
in an arbitrary irreducible 3-manifold, with an alternating projection on some (not
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necessarily incompressible, connected or orientable) embedded surface. This work
gives a universal polynomial bound for embedded essential surfaces that are not
just closed or spanning, but also have other types of boundary.

Here, we give a universal polynomial upper bound that holds for all hyperbolic
3-manifolds. The number of surfaces is at most polynomial in V olpMq. The
connection between the intrinsic topology of a hyperbolic 3-manifold (the number
submanifolds embedded) and its geometry (volume) is perhaps surprising.

Theorem. Let M be an orientable hyperbolic 3-manifold of finite hyperbolic vol-
ume V olpMq, closed or with cusps. The number of π1-injective surfaces with Euler
characteristic χ, up to isotopy, embedded in M , is of the order V olpMqχ. More-
over, there is an explicit universal upper bound for all hyperbolic 3-manifolds that
involves only χ and V olpMq.

The above bound is stated explicitly in our preprint [9]. The theorem includes
surfaces that are closed or have boundary on the cusp boundary of M .

The proof uses a blend of techniques from differential geometry and low-dimen-
sional topology, including Delaunay [2] and thick triangulations [1], ideas from
normal surface theory [5] and stable minimal surfaces [4, 13], and was initially
inspired by the proofs from [6, 7].
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Slice obstructions from genus bounds in definite 4-manifolds

Maggie Miller

(joint work with Paolo Aceto, Nickolas A. Castro, JungHwan Park,
András Stipsicz)

In this talk, I present an alternate proof of a recent theorem of Dai–Kang–Mallick–
Park–Stoffregen [5]. This will appear in an upcoming preprint [1].

Theorem 1 (Dai–Kang–Mallick–Park–Stoffregen [5]). The (2,1)-cable of the fig-
ure eight knot is not smoothly slice.

This theorem is motivated in part by the Slice–Ribbon Conjecture.

Definition 1. A knot in S3 is slice if it bounds a smooth disk into B4. A knot
in S3 is ribbon if it bounds a smooth disk into B4 with the property that radial
height of B4 restricts to the disk as a Morse function with no local maxima.

Conjecture 2 (Slice–Ribbon Conjecture (Fox [6])). Every slice knot is ribbon.

I believe the common consensus in the 4-dimensional topology community is
that the Slice–Ribbon Conjecture is likely false. However, there are not many
potential obstructions to a slice knot being ribbon, as most invariants that could
obstruct a knot from being ribbon also obstruct the knot from being slice. One
notable possible obstruction comes from work of Casson–Gordon [4] for fibered
knots.

Theorem 3 (Casson–Gordon [4]). Let K be a fibered knot in S3, so S3zνpKq “

Σ̊g ˆ I{px, 1q „ pφpxq, 0q for some automorphism φ : Σ̊g Ñ Σ̊g restricting to the

identity on BΣ̊g. Let pφ denote the natural extension of φ to the closed surface Σg.

If K is ribbon, then pφ extends over a 3-dimensional genus-g handlebody with
boundary Σg.

In the statement of Theorem 3, the map φ is known as the monodromy of the
fibered knot K.

Casson–Gordon’s work is actually more general, implying that some fibered
knots are not even homotopy-ribbon, a less restrictive condition than being rib-
bon. Nevertheless, there is currently no reason to believe that the above theorem
applies to arbitrary fibered, slice knots. There are many situations in which we can
compute the monodromy of a fibered knot K and prove that it does not extend
over a handlebody, thus implying that K is not ribbon without proving that K is
not slice. The simplest such family comes from a paper of Miyazaki [10].

Theorem 4 ([10]). Let K be a fibered knot with irreducible Alexander polynomial.
Then no cable of K is ribbon.

Miyazaki points out that ifK is negative-amphicheiral (e.g. K is the figure eight
knot), then for any natural number n the p2n, 1q-cable K2n,1 of K is algebraically
slice yet not ribbon.
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On the other hand, while the figure eight knot K4 is not slice, it does bound
a smooth disk into a smooth rational homology ball W with π1pW q “ Z{2Z [8],

and the connected sum K4#K4 is slice. Thus, the knot K2,1
4 “looks” slice (in an

extremely vague sense). Before the work of [5], the knot K2,1
4 was probably the

most promising potential counterexample to the Slice–Ribbon Conjecture.
Instead of summarizing the Floer-theoretic techniques of Dai–Kang–Mallick–

Park–Stoffregen, I give an alternate argument making use of minimum-genus
bounds for integral second homology classes in definite 4-manifolds coming from
gauge theory. The key fact in this particular proof is due to Bryan [3].

Theorem 5 (Bryan [3]). A smooth surface representing the integral second ho-
mology class p2, 6q of CP2#CP

2 has genus at least 10.

Bryan’s work is a slight improvement over the bound coming from Furuta’s
“10/8+2” theorem [7], whose preprint served as motivation for Bryan. The key
idea is to observe that the homology class p2, 6q is twice a characteristic class.
Therefore, if Σ is a smooth surface representing p2, 6q, the 2-fold cover X of
CP2#CP2 branched along Σ is a smooth, spin 4-manifold. It is simple to work out
that

b2pXq “ 2b2pCP2#CP
2q ` 2gpΣq “ 4 ` 2gpΣq.

An application of the G-signature theorem [2] yields

σpXq “ 2σpCP2#CP
2q ´

1

2
prΣs ¨ rΣsq

“ 4 ´
1

2
p62 ` 22q

“ ´16.

Thus, the “10/8+2” theorem immediately gives us

b2pXq ě
10

8
|σpXq| ` 2

4 ` 2gpΣq ě 20 ` 2

gpΣq ě 9.

Bryan analyzed the covering involution on X to further restrict the genus of Σ
to be at least 10. The techniques in Bryan’s paper are out of the scope of this
talk. Using Theorem 5, we are now in position to prove Theorem 1.

Alternate proof of Theorem 1. In Figure 1 we illustrate an annulus A properly
embedded in CP

2#CP
2zpB̊4 \ B̊4q. We view the ambient manifold as a self-

cobordism of S3 that is built by attaching two 4-dimensional 2-handles to S3 ˆ I

along a 2-component unlink (each with framing `1). In the left of the figure, we
see one boundary C0 of A, which is the p2, 1q-cable of the figure eight knot, i.e.

K
2,1
4 . Moving to the right, we attach the two 2-handles along curves that each

link A geometrically 6 times. We include arrows showing the orientation of A
to see that one of these curves has linking number 6 with A; the other links A
algebraically twice. Moving to the right, the effect of attaching the 2-handles is to
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1

1

1

1

5

5

10
10

Figure 1. The annulus A discussed in the given proof of The-
orem 1. The numbered twist-boxes indicate numbers of whole,
negative twists.

introduce negative twists to the cross-sections of A. We perform further isotopy
to see that the other boundary C1 of A is the (mirror image of, if we are careful
with orientations) torus knot T p2,´19q. Note that T p2,´19q has Seifert genus
p2 ´ 1q ¨ p19 ´ 1q{2 “ 9.

Now suppose thatK2,1
4 is slice. We obtain a smooth, closed surface in CP

2#CP
2

by capping off CP
2#CP

2zpB̊4 \B̊4q with two 4-balls while capping off the annulus
A with a slice disk bounded by C0 in one ball and a genus-9 surface bounded by
C1 in the other ball. The resulting closed, genus-9 surface Σ intersects standard
CP1s in each summand algebraically 2 and 6 times respectively, so Σ represents
the homology class p2, 6q P H2pCP2#CP

2;Zq. This contradicts Theorem 5, so we
conclude that the p2, 1q-cable of the figure eight knot is not slice. �

We end with some remaining open questions.

Question 6. Is the (2,1)-cable of the figure eight knot topologically slice? That
is, does it bound a topological, locally flat disk into the 4-ball?

None of our techniques nor those used by [5] can obstruct topological sliceness.
We remark again that Casson–Gordon [4] and Miyazaki [10] actually show that
the (2,1)-cable of the figure eight knot is not homotopy-ribbon; a topological ver-
sion of the Slice–Ribbon Conjecture asks whether every topologically slice knot is
homotopy-ribbon, so an answer to Question 6 would be of great interest.

Question 7. For n ą 1, is the p2n, 1q-cable of the figure eight knot slice?

Again, neither our techniques nor those of [5] happen to obstruct sliceness for
higher cables, but at least in principal one could hope to use either set of ideas.
The construction in the presented proof of Theorem 1 can be repeated for the
p2n, 1q cable, yielding an annulus in CP

2#CP
2zpB̊4 \ B̊4q cobounded by K

2n,1
4

and the (mirror of the) torus knot T p2n, 1 ´ 20nq, which has Seifert genus

p2n´ 1q ¨ p20n´ 2q

2
“ 20n2 ´ 12n` 1.

Assuming that K2n,1
4 is slice, we obtain a smooth genus-p20n2 ´ 12n` 1q surface

in CP
2#CP

2 representing the homology class p2n, 6nq. Observe that the obvious
surface representing this homology class, obtained from connect-summing complex
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surfaces of degrees 2n, 6n in either summand, has genus

p2n´ 1qp2n´ 2q

2
`

p6n´ 1qp6n´ 2q

2
“ 2n2´3n`1`18n2´9n`1 “ 20n2´12n`2.

This prompts the following question.

Question 8. For n ą 1, is the connected sum of complex surfaces of degrees 2n
and 6n in two copies of CP2 a smoothly minimum-genus surface in CP2#CP2?

Theorem 5 answers Question 7 affirmatively for n “ 1. The above discussion
implies that if the answer to Question 8 is “yes,” then the answer to Question 7
is “no.”

Question 8 is a more specific version of the following well-known question, which
is natural in light of the Thom Conjecture [9].

Question 9. If n,m ą 0, is the connected sum of complex surfaces of degrees n
and m in two copies of CP2 a smoothly minimum-genus surface in CP

2#CP
2?

For n ą 2, it is a simple exercise to check that a degree-n surface in CP
2 does

not give a minimum-genus surface representing the homology class pn, 0q when

included into CP
2#CP

2. The answer to Question 9 is known to be “yes” for some
specific small n,m; see work of Nouh [11] for discussion and possible directions
toward a “no.”
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Approaches to the SSC4

David Gabai

The 4-dimensional smooth Schoenflies conjecture (SSC4) asserts that every em-
bedded smooth 3-sphere in the 4-sphere bounds a smooth 4-ball.

Various 3-dimensional approaches and partial results towards this conjecture
including Property R [G1], generalized Property R [GST], [MZ], and a theorem
of Scharlemann [Sc] were discussed. We then explained an approach via pseudo-
isotopy that has its origins in Barry Mazur’s theorem [Ma] that a smooth 3-sphere
in the 4-sphere bounds a topological 4-ball and the following biproduct of its
proof using [Ce] Cerf that was known to topologists in the 1960’s. Details for
what follows can be found in the recent preprint [G2].

Theorem 1. If SSC4 is false, then there exists a diffeomorphism φ : S1 ˆ S3 Ñ
S1 ˆ S3 such that φ is homotopic to id but φpx0 ˆ S3q is not isotopic to x0 ˆ S3,
even after lifting to any finite sheeted covering of S1 ˆ S3.

We stated the following characterization of Schoenflies balls which uses pseudo-
isotopy theory.

Theorem 2. Every Schoenflies ball has a carving/surgery presentation.

By Schoenflies ball we mean a closed complementary region of a smooth 3-
sphere Σ in S4. A carving/surgery presentation for a Schoenflies ball means that
it is obtained by a finite process starting with the 4-ball, attaching finitely many
2-handles, then carving finitely many 2-handles, then attaching finitely many 2-
handles, etc., with every step happening in the 4-sphere. An attached or carved
2-handle may nest a previously carved or attached 2-handle and so on. Actually we
show that the presentation can be chosen to be of a special type called an optimized
F |W -carving/surgery presentation. See §9 [G2] for details. A key feature of a
F |W -carving/surgery presentation is that when viewed as a 3-dimensional surgery
presentation of the boundary, our Σ is obviously the 3-sphere. On the other hand,
there are many compact 4-manifolds in S4 with carving/surgery presentations.

A diffeomorphism arising from Theorem 1 is pseudo-isotopic to id by [LS] and
[Sa]. Work of Hatcher and Wagoner [HW] and Quinn [Qu] shows that the pseudo-
isotopy has a nested eye structure such that all the data is contained in the middle
middle level. We explained how the flexibility of passing to finite sheeted covers
allows us to construct a one parameter family having a middle middle level such
that the finger and Whitney discs coincide near their boundaries. Theorem 2 relies
on this result. We then indicated that SSC4 is equivalent to a certain interpolation
problem in the universal cover between the Whitney disc family and the finger disc
family, i.e. in the cover there is a third family of Whitney discs that agrees with
the original Whitney discs near ´8 and agrees with the finger discs near `8.

We closed by stating the following slice missing slice disc problem, which was
introduced in an earlier 5 minute talk.

Problem 3. (Slice missing slice disc problem). The knot K Ă S1ˆS2 “ BS1ˆB3

shown in Figure 1 bounds two obvious ribbon discs D1 and D2 such that the simple
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Figure 1. Slice Missing Slice Disc

closed curve α Ă S1 ˆ S2zK (resp. β) slices in S1 ˆB3 with a slice disc disjoint
from D1 (resp. D2). Is it true that for any smooth disc D bounded by K, one of
α or β slices in the complement of D?

A positive solution may lead to the introduction of new techniques to address
the interpolation problem. Conversely, a concrete counter example may suggest
new methods for constructing interesting discs and spheres in 4-manifolds.
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