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Introduction by the Organizers

The workshop Algebraic Structures in Statistical Methodology, organised by Math-
ias Drton (München), Thomas Kahle (Magdeburg), Seth Sullivant (Raleigh) and
Caroline Uhler (Zürich) was attended by an international group of researchers
from algebraic statistics. With 24 participants, there was a strong thematic focus.

The week started off with a stimulating lecture by Steffen Lauritzen who pre-
sented two open problems in the area of graphical models. Discussions about these
problems, in particular about distributions whose support is a distributive lattice,
could be heard over dinner, on the hike, and next to several blackboards. Over
the course of the week, each participant gave exactly one talk. The themes of the
meeting and these talks can be roughly grouped as follows.

Conditional independence, graphical models and causality. The concept
of conditional independence is fundamental to statistical modeling and inference
in general. The logical structures that underlie conditional independence have
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been the subject of intense investigation. Seminal work of Pearl and Verma pro-
posed the semi-graphoid axioms for an axiomatization of conditional independence,
which later was proven impossible. Natural axiom systems like semi-graphoids and
gaussoids have since become objects of independent interest both from a statisti-
cal and logical inference perspective. Conditional independence also plays a key
role in the area of graphical models, notably in the development of algorithms for
inferring a causal network from data. Generally, the combinatorics and algebra
related to modeling with graphs arose in many different talks.

Geometry of models and likelihood. One of the pillars on which algebraic
statistics rests is the observation that statistical models are often algebraic varieties
and that this perspective provides insights into the behavior of estimation/testing
methods. Several talks in this meeting focused on the complexity of the likelihood
method, measures of distance to models and non-parametric estimation through
log-concavity assumptions.

Applications. Algebraic statistics continuously draws inspiration from novel ap-
plications in biology, genomics, economics, game theory, theoretical physics, etc.
The talks of Solus, Kubjas, Portakal and Zwiernik drew inspiration/showcased
some of these applications and introduced them to the community.

The atmosphere at the workshop was very lively and engaging. Many participants
expressed relief to be on such a productive and inspiring meeting after another year
that was still influenced by the remnants of the COVID19-pandemic. The hike was
well attended despite chilly weather. In the evenings there were foosball matches
and football watching (a world cup took place this winter!). The participants
also enjoyed browsing through (online) archives of activities at Oberwolfach. Par-
ticipants Steffen Lauritzen and Milan Studený shared memories from a similarly
themed 1995 workshop organized at MFO by Friedrich Pukelsheim and Michael
Perlman: Algebraic Methods in Multivariate Statistical Analysis. It is nice to see
that key ideas from this time are carried forward by a diverse, energetic and open
community.

Upon conclusion of the workshop, Thomas Kahle and Carlos Améndola agreed
to write a snapshot about an exciting and accessible topic from algebraic statistics.
Elizabeth Gross (Hawaii) was a Simons visiting professor at TUMunich and Serkan
Hoşten (San Francisco) at OvGU Magdeburg.

The workshop was a key event for the community of algebraic statistics. We
are looking forward to much new research and many new collaborations emerging
from the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting Elizabeth Gross and Serkan Hoşten in the
“Simons Visiting Professors” program at the MFO.

https://www.mfo.de/occasion/9527/www_view
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Abstracts

Two open problems in graphical models of algebraic nature

Steffen Lauritzen

Factorization of totally positive Markov distributions. Let X = {0, 1}V

where V is a finite set and G = (V,E) be a simple, undirected graph with V as
vertex set. We further let xA = (xv)v∈A denote the coordinate projections from
X to XA = {0, 1}A for subsets A ⊆ V . Recall that a probability distribution
P ∈ P(X ) is said to be (globally) Markov with respect to G if for all finite and
disjoint subsets A,B,C of V it holds that

A⊥GB |C =⇒ XA ⊥⊥XB |XC

where ⊥G denotes separation in G.
We let M(G) denote the set of Markov probability distributions on X . Further

we let M+(G) denote the strictly positive elements of M(G). A distribution P is
said to factorize with respect to G if there are functions ψA : XA 7→ R such that
the density p of P with respect to counting measure has the form

p(x) =
∏

A∈A

ψA(xA),

where A denotes the set of subsets that are complete with respect to G, i.e. u ∼ v
for all u 6= v ∈ A. The set of Markov distributions that factorize shall be denoted
MF (G). Finally, we letME(G) denote the distributions that are extended Markov
with respect to G, i.e. the pointwise topological closure of MF (G) or, equivalently,
of M+(G). It is well-known ([3], p. 42 ff.) that

M+(G) ⊆MF (G) ⊆ME(G) ⊆M(G).

All inclusions are strict for a generic graph. We shall also be interested in the
subclass of Ising models MI(G) ⊆ MF (G), which are those that factorize using
only pairs, i.e. edges of G; in other words those that have the form

p(x) =
∏

e∈E

ψe(xe).

The article [1] gives general conditions for P ∈ ME(G) to factorize, chiefly
formulated in terms of a condition on the support of P .

Now consider a distribution P that is multivariate totally positive of order two,
i.e. its density p satisfies

(1) p(x ∨ y)p(x ∧ y) ≥ p(x)p(y) for all x, y ∈ X ,

where the maximum and minimum are taken coordinatewise. Let M2(G) denote
the Markov distributions that also satisfy (1).

Conjecture 1. MI(G) ∩M2(G) is closed under pointwise limits.

Conjecture 2. M2(G) ⊆MF (G).
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The results in [1] clearly indicate that conditions for factorization of P ∈M(G)
only relate to the support of P it is worth noting that (1) clearly implies that the
support of a totally positive distribution is a lattice, it seems natural to strengthen
the conjectures further to

Conjecture 3. If the support of P is a lattice and P ∈M(G), then P ∈MF (G).

See also [4] for details on binary totally positive distributions.

Convergence of neighbourhood coordinate descent. The direct maximum
likelihood problem for a Gaussian graphical model may be formulated as follows,
where S denotes the empirical covariance matrix.

(2)
maximize

K
ℓ(K) = log det(K)− tr(KS)

subject to K ∈ Sd×d
≻ (G),

where Sd×d
≻ (G) denotes the set of positive definite matrices K with Kuv = 0 for

all uv /∈ E(G). The dual of this optimization problem is ([5])

(3)
minimize

Σ
ℓ∗(Σ) = − log det(Σ)− d

subject to Σ ∈ Sd×d
≻ , Σuv = Suv for all uv ∈ E(G)

It holds that Σ is the unique optimizer of (3) if and only if K = Σ−1 is the unique
optimizer of (2). Algorithms for solving (3) typically work by coordinate descent,
for example by choosing u ∈ V and writing

(4) detΣ = detΣ\u,\u

{

Σuu − Σu,\u(Σ\u,\u)
−Σ\u,u

}

,

where (Σ\u,\u)
− is any generalized inverse to Σ\u,\u and then optimizing the sec-

ond factor by letting

Σ̃bdc(u),u = Σbdc(u),bd(u)(Σbd(u),bd(u))
−Sbd(u),u.

We shall refer to this as the NCD algorithm (neighbourhood coordinate descent).
This algorithm is convergent if S has full rank. After the update we then have

det Σ̃ =
{

Σuu − Su,bd(u)(Σbd(u),bd(u))
−Sbd(u),u

}

det Σ\u,\u.

If detΣ\u,\u = 0, we will still have detΣ = 0 after the update. However, since

rankΣ = rankΣ\u,\u + rank
{

Σuu − Σu,\u(Σ\u,\u)
−Σ\u,u

}

then if

Σuu − Σu,\u(Σ\u,\u)
−Σ\u,u = 0 < Σuu − Su,bd(u)(Σbd(u),bd(u))

−Sbd(u),u,

we would have
rank Σ̃ = rankΣ\u,\u + 1,

so if rank(Σ\u,\u) = rank(Σ), the rank will increase by one.
Gross and Sullivant show in [2] that if rank(S) ≥ n and the n-core of G is

empty, then the MLE exists. The question is whether

Conjecture 4. If rank(S) ≥ n and the n-core of G is empty, then the NCD
algorithm converges to the MLE.
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This conjecture is probably more risky than those concerning multivariate total
positivity but we have no empirical evidence to the contrary.
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Combinatorial and algebraic perspectives on the marginal
independence structure of Bayesian networks

Pratik Misra

Directed acyclic graphs (DAGs) are commonly used in modern data science and
artificial intelligence to represent the conditional independence structure, and even
the causal relations, underlying complex systems of jointly distributed random
variables. In recent years, DAG models have become a cornerstone of the field of
causal inference, in which one aims to learn the cause-effect relations in a given
complex system and then estimate the causal effect of one variable within the
system on another. The first step in such a causal analysis is the process of
causal discovery in which one aims to infer a DAG to which the data-generating
distribution is Markov. Such a DAG then serves as an estimate for the underlying
causal structure of the system. However, based on observational data alone, one
can only learn an equivalence class of DAGs that contain the causal structure,
known as a Markov equivalence class.

In many practical applications, such as in the medical and biological sciences,
once a Markov equivalence class is learned, additional data is collected via in-
terventional experiments (such as randomized controlled trials), which can then
be used to distinguish the true causal system from within its Markov equivalence
class. Such experiments typically target a subset of variables in the system, and
the choice of these targets affects the number of elements within the class that
can be rejected as candidates for the true causal system. Since such experiments
are costly, it is desirable to have effective methods for identifying good candidates
for targeting. One such method is to identify a single set of targets for individual
intervention by estimating a set of possible source nodes in the true underlying
causal system. Since Xv |=Xw in a distribution Markov to a DAG D for any two
source nodes v, w of D, it is reasonable to identify the collection of all marginally
independent nodes in the system; i.e., all pairs v, w for which Xv |=Xw. In a
DAG model, the set of all such nodes fulfilling any such marginal independence
statements will form a disjoint union of sets A1, . . . , Ak, each containing a unique
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source node. Hence, identifying the marginal independence structure of a DAG
model will yield a good set of targets for interventional experiments.

We consider the problem of estimating the marginal independence structure
of a Bayesian network from observational data. A typical approach as seen in
popular causal discovery algorithms (like the Greedy Equivalence Search) is to
divide the space of DAGs into Markov Equivalence classes and then learn the
essential graph representative of the class. We divide the space of DAGs with n
nodes into unconditional equivalence classes (UECs), where two DAGs are said
to be unconditionally equivalent if they have the same marginal independence
statements. Now, for any DAG D, the unconditional dependence graph (UDG) of
D is the undirected graph U having the same number of vertices as D, and (u, v)
is an edge in U if and only if there exists a trek between u and v in D. Each UEC
can be uniquely represented by a UDG.

The unconditional dependence graphs can be uniquely characterized by using
some graphical properties called intersection and independence number. We prove
that an undirected graph is a UEC representative if and only their intersection
and independence number are equal. This result allows us to provide a monomial
representation to any UEC representative U as

U = xi1|A1
xi2|A2

· · ·xik|Ak
,

where k is the number of cliques in the minimal edge clique cover of U and ij
are the vertices which lie in exactly one maximal clique ij ∪ Aj . We define a
monomial homomorphism φ which maps each xi|A to a product of indeterminants
corresponding to the index i|A. We then obtain a Grobner basis for ker(φ) by
constructing a meet-join ideal corresponding to φ. The motive behind this con-
struction is that the binomials obtained in the Grobner basis can be used to move
between any two graphs within a fiber. Now, in order to explore the space of UEC
representatives beyond a given fiber, we introduce some new moves (binomials)
which we name as out-of-fiber add, out-of-fiber delete, merge and split. The main
result is as follows:

Theorem 1. Let Un be the collection of all the undirected graphs on n nodes
representing nonempty UECs. Then for any two graphs U and U ′ in Un, there
exists a sequence of within fiber, out-of-fiber, and/or merge and split moves that
connects U and U ′.

Using these moves, we implement an MCMC method called GrUES (Gröbner-
based Un-conditional Equivalence Search) and applied to synthetic Gaussian data.
We obtain that GrUES recovers the true marginal independence structure via a
BIC-optimal or a MAP estimate at a higher rate than simple independence tests
while also yielding an estimate of the posterior, for which the 20% HPD credible
sets include the true structure at a high rate for graphs with density at least 0.5.
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Towards standard imsets for maximal ancestral graphs

Robin Evans

(joint work with Zhongyi Hu)

Background. Imsets, introduced by Studený (see [5] for details), are an algebraic
method for representing conditional independence models. Formally an imset is
an integer-valued vector, with entries indexed by the power set of a collection of
random variables V . The conditional independence XA ⊥⊥ XB | XC is represented
by the semi-elementary imset u〈A,B|C〉 := δC − δA∪C − δB∪C + δA∪B∪C, where δW
is an imset with an entry 1 for the set W , and 0 elsewhere. An imset is said to be
structural if, after multiplication by some natural number, it can be written as a
sum of these semi-elementary imsets. In this case we say that the imset represents
a model defined by the corresponding conditional independences.

Imsets have many attractive properties, and they can represent arbitrary proba-
bilistic conditional independence models. They are particularly nice when applied
to directed acyclic graph (DAG) models. These are models represented by graphs
in which the vertices represent variables, and all edges are directed (→) such that
there are no directed cycles. Independences arise when an edge is not present
between two vertices. DAG models are useful for causal inference, but have a dis-
advantage that two distinct DAGs may represent the same independence model;
this issue is referred to as Markov equivalence.

In particular, the so-called standard imset for a DAG represents the model
implied by that DAG exactly, and is invariant to the particular DAG that was
used to generate it. Hence, the standard imset is also a label for the Markov
equivalence class of the graph. An alternative label for the Markov equivalence
class is the characteristic imset, which is given by a Möbius transform of the
standard imset. It separately has the nice property that all the entries are either
0 or 1 for any DAG model.

Standard Imsets for Ancestral Graphs. DAGs are commonly used in causal in-
ference, but a drawback is that they assume causal sufficiency, i.e. that all the
causally important variables are observed. Maximal ancestral graphs are an ex-
tension to DAGs with an additional bidirected (↔) edge type, and they represent
the conditional independence model induced by a DAG when some variables are
unobserved. They are therefore very common in causal inference, because it is gen-
erally much more plausible not to assume that the system under study is causally
sufficient. An example of this is shown in Figure 1. We present a proposed exten-
sion to standard imsets for MAG models, by first defining the characteristic imset
using the parametrizing set representation of [3]. This is a very natural thing to
do, because the two representations coincide for DAGs. Since the parametrizing
set is also a label for the Markov equivalence class of a MAG, that property is
retained by the new characteristic and standard imsets.
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For the MAG in Figure 1, the standard imset turns out to be

uG = δ∅ − δ{1,2} − δ{1,3} + δ{1,2,3} − δ{3,4} + δ{1,3,4}

=
{

δ∅ − δ{1,2} − δ{3} + δ{1,2,3}
}

+
{

δ{3} − δ{1,3} − δ{3,4} + δ{1,3,4}
}

= u〈12,3〉 + u〈4,1|3〉,

where sets are abbreviated in the obvious way. The two independences X1, X2 ⊥⊥
X3 and X4 ⊥⊥ X1 | X3 are precisely the same as the MAG model that the graph
G implies.

We show that the same pattern holds for many such graphs, though there is
a subclass for which the method fails. We show that if the resulting imset is
structural, then it always defines a subset of the independences implied by the
graph. We also prove that the models are the same for what we term simple
MAGs ; that is, MAGs where any triple of the form i↔ k ↔ j has a directed path
between i and j. It also works for a large class of purely bidirected models.

Scoring and Search. Andrews et al. [1] show that the maximum log-likelihood of
a MAG model can be approximated by taking the inner-product of the vector of
entropies over all subsets of variables, and our standard imset. Consequently, we
can approximately compute the BIC in a much more efficient manner than would
be possible by calculating the MLEs exactly. Given that the standard imset for
simple MAGs represents precisely the model that the graph itself does, we develop
a greedy score-based algorithm over this subclass.

The equivalence class of MAGs is determined by three things: which pairs of
vertices are adjacent; which unshielded triples i, k, j (i.e. with k adjacent to i, j
but i, j not adjacent) are colliders (i.e. both the edges have an arrowhead at k);
and discriminating paths, which can determine the orientation of certain shielded
triples. Therefore our search considers two graphs to be neighbours if they differ
either by a single adjacency, or by whether an unshielded triple is a collider or not.
If such a change creates a new discriminating path, then the two possible statuses
for the shielded triple are also considered, and this recurses if necessary. Our
results show that we do considerably better then a similar algorithm introduced
by [2]. That algorithm involves computing the MLEs exactly, and their search
is restricted in that, initially at least, it only allows new unshielded triples to be
non-colliders.

1

2

0

4

3 1

2 4

3

Figure 1. Left: a DAG with five vertices, where 0 represents a
latent variable. Right: the MAG that corresponds to this DAG
with 0 removed.
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Algebraic methods for 3D genome reconstruction

Kaie Kubjas

(joint work with Diego Cifuentes, Jan Draisma, Oskar Henriksson and
Annachiara Korchmaros)

The three-dimensional (3D) genome structure plays an important role in gene reg-
ulation. One of the main approaches to infer the 3D genome structure is from
contact matrices that record interactions between different regions (loci) of the
genome. In the case of diploid organisms the contact data is often unphased,
which means that one cannot differentiate between contacts for homologous chro-
mosomes. This talk is about partially-phased population contact data. Partially-
phased contact data means that for some loci one can assign contacts to a maternal
or paternal homolog. These loci are called unambiguous loci and the rest of the
loci are called ambiguous loci. Population data means that the data is from a
collection of cells.

We model the chromosome as a string of beads such that in the diploid case
there is a pair of beads corresponding to one locus. We call a bead unambiguous
(resp. ambiguous) if the corrsponding locus is unambiguous (resp. ambiguous).
We assume that there is a power law cij = dαij , where α < 0, between the pairwise
distances dij between beads and corresponding contacts cij . The first main result
of our work states that given positions of at least six unambiguous beads and a
rational negative α, there are finitely many possibilities for the rest of the beads up
to rigid transformations that give the observed contacts. A similar result holds if
the contacts are noisy. We conjecture that in the noiseless case, knowing locations
of seven unambiguous beads one can uniquely recover the locations of the rest of
the beads.

In the fully ambiguous case when there are no unambiguous loci, we prove
a similar result in the noiseless case for α = −2. Namely, we show that given
positions of at least twelve pairs of ambiguous beads, there are finitely many
possibilities for the rest of the beads up to rigid transformations that give the
observed contacts. The fully ambiguous case when α = 2 was studied in [1].

https://arxiv.org/abs/2207.08963
https://arxiv.org/abs/2207.08963
https://arxiv.org/abs/2208.10436
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In the second part of the talk, I discuss an algorithm to obtain a 3D reconstruc-
tion when α = −2. This algorithm consists of four steps:

(1) A semidefinite programming based approach to recover the locations of
unambiguous beads.

(2) A homotopy continuation based approach to recover the locations of am-
biguous beads.

(3) A local optimization step with the initialization taken from step 2.
(4) A clustering step to disambiguate between beads in a bead pair.

The first steps solves the well-studied Euclidean distance geometry problem. We
use the ChromSDE method from [2] to solve it. The second step uses local infor-
mation from several sets of six unambiguous beads to reconstruct the ambiguous
beads, motivated by the earlier finiteness result. In this step we choose several
sets of six beads and use them to find all finitely many positions for the rest of the
beads. When choosing different sets of six beads, then in general we get different
solution sets for the ambiguous beads, but there is one solution that is similar in
all these solution sets. This is the solution that one is looing for. Since the second
step uses only local information, then we also run one step of local optimization
with the initialization from the second step. The benefit of the third step is that
it uses global information, but in general it can be difficult to find good initial-
izations. Finally we use the observation that homologous chromosomes occupy
different cell nucleus territories to assign beads in an ambiguous bead pair to a
maternal or paternal chromosome.
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On various (combinatorial) ways to describe faces of the cone of
supermodular functions

Milan Studený

The motivation for this research is a long-term (ambitious) goal to characterize
extreme rays of the cone of standardized supermodular functions in a combinatorial
way so that one is able to determine/compute them in case of six or more basic
variables, which is impossible by standard polyhedral-geometry-based procedures.

What was presented in the talk was the first gradual step on the way to the
intended alternative computational procedure. The message is that the extreme
rays of that cone do have relevant combinatorial interpretation. In fact, they admit
several mutually equivalent combinatorial descriptions, which can be extended to
all non-empty faces of the cone of supermodular functions.
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Let N be a finite non-empty basic set of variables, intentionally regarded as an
unordered set, while [n] := {1, . . . , n} denotes an ordered set of integers between
1 and n ∈ N, where n = |N |. There are deeper reasons to distinguish N and [n].
The symbol P(N) := {A : A ⊆ N} will denote the power set of N .

Definition 1. An enumeration of N is a one-to-one mapping ε : [n] → N from
[n] onto N . A record of the form | ε(1) | . . . | ε(n) | can specify such an enumeration.
It can be interpreted as a total order on N in two ways: ε(1) ≺ . . . ≺ ε(n) is the
ascending way, while ε(1) ≻ . . . ≻ ε(n) is the descending way. The set of (all)
enumerations of N will be denoted by Υ(N). Notice that Υ(N) is not a group,
unlike the set of permutations of N or the set of permutations of [n].

The rank vector for an enumeration ε is the vector [ε−1(ℓ)]ℓ∈N in RN , denoted by
ρε in a geometric context (of RN ). The permutohedron in RN , denoted by Π(N),
is the convex hull of the rank vectors for (all) enumerations of N :

Π(N) := conv ( {ρε : ε ∈ Υ(N)} ) .

Every non-empty face of the permutohedron Π(N) corresponds to an ordered par-
tition of the basic set N into non-empty blocks [1].

Say that enumerations ε, η ∈ Υ(N) differ by an adjacent transposition if there
exists 1 ≤ i < n such that ε(i) = η(i + 1), ε(i + 1) = η(i) and ε(k) = η(k) for
remaining k ∈ [n] \ {i, i + 1}. This is equivalent to the condition that [ρε, ρη] is
a geometric edge (= 1-dimensional face) of Π(N). One can interpret Υ(N) as
an undirected permutohedral graph (over N) in which edges are determined by
adjacent transpositions. This is a connected undirected graph and the following
graphical concepts make sense for it. A geodetic between nodes ε, η ∈ Υ(N) is a
walk between ε and η which has the shortest possible length among such walks. We
say that a node σ ∈ Υ(N) is between nodes ε ∈ Υ(N) and η ∈ Υ(N) if σ belongs
to some geodetic between ε and η. A set S ⊆ Υ(N) is named geodetically convex
if, for any ε, η ∈ S, all nodes between them belong to S.

Using the method of Galois connections one is able to introduce a lattice of enu-
meration sets interpretable as posets on N . If ε : [n] → N is an enumeration of
N and (u, v) ∈ N ×N then we say that u strictly precedes v in ε and write u ≺ε v
if ε−1(u) < ε−1(v). A set S ⊆ Υ(N) belongs to the posets-based lattice if either
S = ∅ or there exists a (strict version of a) partial order ≺ on N such that

S = { ε ∈ Υ(N) : u ≺ε v whenever u ≺ v } .

Theorem 2. [7] A set belongs to the posets-based lattice iff it is geodetically convex.

Definition 3. A set function over N is a map w : P(N) → R, that is, w ∈ RP(N).
A (transferable-utility coalitional) game is modeled by a set function w over N
satisfying w(∅) = 0. Given w ∈ RP(N) and a triplet (A,B|C) of pairwise disjoint
subsets of N , the respective “supermodular” difference expression is

∆w (A,B|C) := w(A ∪B ∪ C) + w(C) − w(A ∪ C)− w(B ∪ C) .
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A supermodular function w over N can equivalently be defined by the condition
∆w (A,B|C) ≥ 0 for each triplet (A,B|C) of pairwise disjoint subsets of N . The
cone of supermodular games over N will be denoted by ♦(N).

Given w ∈ ♦(N), its core is a (bounded) polyhedron in RN defined by

C(w) := { [xℓ]ℓ∈N ∈ RN :
∑

ℓ∈N

xℓ = w(N) &
∑

ℓ∈S

xℓ ≥ w(S) for any S ⊆ N } .

A classic result in game theory by Shapley [4] is the characterization of the set
ext (C(w)) of vertices of the core of w ∈ ♦(N) through enumerations. Given
w ∈ ♦(N) and ε ∈ Υ(N), the respective marginal vector in RN is given by

ϕw(ε) = [xℓ]ℓ∈N , where xε(i) := w (
i
⋃

j=1

ε(j) ) − w (
i−1
⋃

j=1

ε(j) ) for i ∈ [n] .

Lemma 4. [4],[6] Given w ∈ ♦(N), one has ext (C(w)) = {ϕw(ε) : ε ∈ Υ(N) }.

Definition 5. Given w ∈ ♦(N), the rank test induced by w is

Υ(w) := {ϕw
−1(x) : x ∈ ext (C(w)) }, being a partition of Υ(N).

If x ∈ RN then T w
x := {S ⊆ N :

∑

ℓ∈S xℓ = w(S) } denotes the respective
tightness class. The core structure induced by w is defined by

T(w) := { T w
x : x ∈ ext (C(w)) }, being a covering of P(N).

Finally, the independence structure induced by w is

I(w) := { (A,B|C) : ∆w (A,B|C) = 0 },

being a class of triplets of pairwise disjoint subsets of N.

Here are some characterizations of inclusion of faces of ♦(N).

Theorem 6. [7] Given m, r ∈ ♦(N), the following conditions are equivalent:

(i) the face of ♦(N) generated by m is included in the face generated by r,
(ii) the normal fan of C(r) (in RN ) refines the normal fan of C(m),
(iii) the rank test Υ(r) refines Υ(m) : ∀S ∈ Υ(r) ∃T ∈ Υ(m) : S ⊆ T ,
(iv) the core structure T(r) refines T(m) : ∀ T ∈ T(r) ∃S ∈ T(m) : T ⊆ S,
(v) I(r) ⊆ I(m): ∆r (A,B|C) = 0 ⇒ ∆m (A,B|C) = 0 for any (A,B|C).

Thus, various combinatorial objects allow one to describe (non-empty) faces of
♦(N). It seems that the most appropriate ones from the “computational” point of
view are the rank tests, alternatively be viewed as subgraphs of the permutohedral
graph. The future research plan consists of three steps (= research directions):

(1) Characterize in combinatorial terms those rank tests Υ for which a super-
modular game w ∈ ♦(N) exists such that Υ = Υ(w).

(2) Characterize sub-maximal such ranks tests: these precisely correspond to
the extreme rays of the standardized supermodular cone.

(3) Propose an algorithm for generating all such sub-maximal rank tests.
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Several partial results in this context have already been achieved. For example, it
was shown that S ⊆ Υ(N) can occur as a component of Υ(w) for w ∈ ♦(N) iff it
is geodetically convex. Additionally, a simple efficient linear criterion to recognize
sub-maximal rank tests formulated in terms of core structures in available [6].

Results by Morton et al. [3] say that (supermodular) rank tests correspond to
particular independence structures, namely semi-graphoids, known as structural
semi-graphoids. A related question from [5] was whether every sub-maximal semi-
graphoid is structural. Nevertheless, Hemmecke et al. [2] showed that this is not
the case in case of 5 basic variables. As a part of the talk an even more specific
(and relevant) open question was raised:

Question 7. Is it true that every sub-maximal structural semi-graphoid over N ,
where |N | = 5, is also a sub-maximal semi-graphoid?

The question was answered negatively by Tobias Boege with help of his com-
puter programme. The supermodular game w over N = {a, b, c, d, e} inducing the
counter-example is as follows: w(N) = 7, w(S) = 4 for S ⊆ N with |S| = 4,

• w(S) = 1 for S of the form {a, b, c}, {a, b, d}, {a, b, e}, {a, e}, {b, c}, {b, d},
• w(S) = 2 for other S ⊆ N with |S| = 3, and
• w(S) = 0 for the remaining sets S ⊆ N .

Acknowledgements. The work on this topic has been supported from a former
GAČR project n. 19-04579S.

References

[1] L. J. Billera, A. Sarangarajan. The combinatorics of permutation polytopes. In Formal
Power Series and Algebraic Combinatorics, DISMACS Series in Discrete Mathematics and
Theoretical Computer Science 24, AMS, Providence 1996, pp. 1–23.

[2] R. Hemmecke, J. Morton, A. Shiu, B. Sturmfels, O. Wienand. Three counter-examples on
semi-graphoids. Combinatorics, Probability and Computing 17 (2008) 239–257.

[3] J. Morton, L. Pachter, A. Shiu, B. Sturmfels, O. Wienand. Convex rank tests and semi-
graphoids. SIAM Journal on Discrete Mathematics 23 (2009) 1117–1134.

[4] L. S. Shapley. Cores of convex games. International Journal of Game Theory 1 (1971/72)
11–26.
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The singular locus for linear compartment models and structural
equation models

Elizabeth Gross

(joint work with Mark Curiel, Nicolette Meshkat, and Anne Shiu)

Mathematical models, whether deterministic or probabilistic, are often paramet-
ric with parameter values that need to be inferred from the data. The parameter
identifiability problem concerns the question of which parameters can be deter-
mined uniquely from data. In this talk, we explore identifiability for two types
of models used in epidemiology [3] that are described by directed graphs: linear
compartment models and structural equation models. This talk is based on joint
work with Nicolette Meshkat and Anne Shiu [2] and preliminary work with Mark
Curiel and Nicolette Meshkat.

Linear compartment models are systems of parameterized linear ordinary differ-
ential equations. They are described by an underlying directed graph, where the
vertices represent compartments and edges represent exchanges or flows between
compartments, and two distinguished subsets of vertices, one subset representing
inputs and, the other, outputs. In epidemiology, the compartments may represent
groups of infected, susceptible, and recovered individuals, and the edges represent
progression between the compartments.

For linear compartment models, using standard differential algebra techniques,
the question of whether a given model is generically locally identifiable is equivalent
to asking whether the Jacobian matrix of a certain coefficient map, arising from
input-output equations, is generically full rank. A natural next step is to study the
set of parameter values where the Jacobian matrix drops in rank, which we refer to
as the locus of non-identifiable parameter values, or, for short, the singular locus.
In this talk, we discuss how a defining equation of the singular locus can be used
to determine when submodels are generically locally identifiable. We also give the
singular-locus equation for two families of linear compartmental models, cycle and
mammillary (star) models with input and output in a single compartment. We
also state a conjecture for the corresponding equation for a third family: catenary
(path) models [2].

Conjecture 1. Assume n ≥ 2. For the n-compartment catenary (path) model in
Figure 1, the equation of the singular locus is:

an−1
12 (a21a23)

n−2(a32a34)
n−3 . . . (an−1,n−2an−1,n) .(1)

After exploring the singular locus for linear compartmental models, we then turn
to structural equation models, another class of models used to understand causal
processes [1]. Linear structural equation models are multivariate statistical models
encoded by mixed graphs. For structural equation models, the local identifiabilty
question amounts to testing if the parameters of the model can be determined from
the covariance matrix, or more precisely, if the mapping from the parameters to
the covariance matrix entries is generically finite-to-one. This amounts to checking
the rank of the Jacobian of this mapping evaluated at a generic point. However, we
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1 2 3 . . . n
a12 a23 a34 an−1,n

a21 a32 a43 an,n−1

in

a01

Catenary

Figure 1. The catenary (path) model with n compartments, in
which compartment 1 has an input, output, and leak.

can ask the same question that we asked for linear compartment models: for what
parameter values does this Jacobian matrix drop in rank? Analogously to linear
compartment models, we can define the singular locus, whose defining equations
are given by the determinant of the Jacobian matrix when it is square, or more
generally, by its minors. We conclude the talk by considering some families of
graphs and finding the corresponding formulas for the singular locus equations.
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Likelihood Geometry of Correlation Models

Carlos Améndola

(joint work with Piotr Zwiernik)

We consider centered Gaussian models M ⊂ Sn
+ where Sn

+ denotes the set of n×n
positive definite matrices, so that Σ ∈ M represents a Gaussian correlation matrix,
i.e., a covariance matrix with Σii = 1 for i = 1, . . . , n. We study the geometry
of the maximum likelihood estimation problem for the model M consisting of
all n × n correlation matrices as well as linear submodels that encode additional
symmetries.

The bivariate case n = 2 of M =

{(

1 ρ
ρ 1

)

| −1 < ρ < 1

}

is classical in statis-

tics, e.g. [2, 3]. If the sample covariance matrix S =

(

a b
b a

)

then we determine

exactly when the likelihood function has three real critical points (regions I, II, IV
in Figure 1) and precisely when they are positive definite (region I in Figure 1).
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Figure 1. Likelihood geometry of the bivariate correlation model.

The ML degree for n = 2 is 3, but the dual ML degree is only 2. We also
introduce the SSL degree as a new measure of algebraic complexity, which is 4 for
n = 2. The following table shows these degrees for small n.

n 1 2 3 4 5 6 7 8 9

SSL degree 1 4 28 292 ? ? ? ? ?

ML degree 1 3 15 109 1077 13695 ? ? ?

dual ML degree 1 2 5 14 43 144 522 2028 8357

A natural open question is, can we find a (recursive) formula for these se-
quences?

We also prove that for the equicorrelation model all three degree invariants
remain constant with n.

More details about this talk are found in the joint work with Piotr Zwiernik
(University of Toronto) [1].
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Toric Ideals of Characteristic Imsets via Quasi-Independence Gluing

Benjamin Hollering

(joint work with Joseph Johnson, Irem Portakal, and Liam Solus)

Given a directed acyclic graph (DAG) G = ([n], E) with vertices [n] := {1, . . . , n}
and edges E and a collection of jointly distributed random variables (X1, . . . , Xn)
with probability density function f(x1, . . . , xn), we say that f(x1, . . . , xn) isMarkov
to the DAG G if

f(x1, . . . , xn) =

n
∏

i=1

f(xi|xpaG(i)),

where paG(i) = {j ∈ [n] : j → i ∈ E} is the set of parents of i in G. A central
problem in causal discovery is to recover an unknown DAG whose joint distribution
best represents observational data but it is well known that two different DAGs
may encode the same set of conditional independence statements, in which case
the DAGs are called Markov equivalent. Recently, a new geometric perspective on
causal discovery algorithms has emerged which uses characteristic imsets (CIM)
[4] to embed DAGs in Euclidean space in the following way.

Definition 1. Given a DAG G = ([n], E), the characteristic imset of G is

cG : {S ⊆ [n] : |S| ≥ 2} −→ {0, 1};

cG : S 7−→

{

1 if there exists i ∈ S such that S \ {i} ⊆ paG(i),

0 otherwise.

As is discussed in [2, 3], characteristic imsets allow us to rephrase the problem
of causal discovery as a linear programming problems over the polytope

CIMn := conv(cG ∈ R2n−n−1 | G = ([n], E) a DAG).

In my talk I introduced the characteristic imset ideal IG which is the toric ideal
associated to the lattice polytope CIMG = conv(cG : G has skeleton G) where
G = ([n], E) is an undirected graph. We introduced and studied this object
because the algebraic structure of a toric ideal can be helpful for understanding the
polyhedral structure of the associated polytope. Our main focus was to determine
a Gröbner basis for the ideal IG. To do this we introduced a new operation on
homogeneous ideals called a quasi-independence gluing (QIG) which generalizes
the toric fiber product.

Definition 2. Let Q ⊂ [r]× [s] and I ⊂ K[xj | j ∈ [r]] and J ⊂ K[yk | k ∈ [s]] be
homogeneous ideals. The quasi-independence gluing of I and J with respect to Q
is

I ×Q J := φ−1
Q (I + J)

where φQ is the map

φQ : K[zjk | (j, k) ∈ Q] → K[xj , yk | j ∈ [r], k ∈ [s]]

zjk 7→ xjyk.
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We showed that under a technical combinatorial condition called Q-homogeneity,
that a Gröbner basis for I ×Q J can be computed by lifting the Gröbner bases of
I and J which generalizes Sullivant’s similar results for toric fiber products [5].

Theorem 3. [1] Let F ⊆ I be a weakly Q-homogeneous Gröbner basis for I with
respect to the weight ω1 and G ⊆ J be a weakly Q-homogeneous Gröbner basis for
J with respect to the weight ω2. Then

Lift(F ) ∪ Lift(G) ∪HQ

is a pseudo-Gröbner basis for I ×Q J with respect to the weight ωTBQ where

BQ ∈ Z(r+s)×#Q is the matrix of exponents of the map φQ and ω = (ω1, ω2).

Lastly, we showed that this operation can be used iteratively compute a Gröbner
basis for the characteristic imset ideal IG when G is a tree and thus one can quickly
compute a Gröbner basis for IG via repeated lifting.

Theorem 4 ([1]). Let T = ([p], E) be a tree, e = u − v be a non-leaf edge of
T .Then IT = ITu

×Q ITv
where Q is the set Q = {part(T , e) | T ∈ Pat(T )}.

Corollary 5 ([1]). The Gröbner basis of IT for any tree T can be quickly deter-
mined via iterated quasi-independence gluing of star tree ideals.
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Non-independent component analysis

Piotr Zwiernik

(joint work with Geert Mesters)

Consider the equation AY = X , where X,Y are random vectors in Rd and
A ∈ Rd×d is an invertible matrix. Here the random variable X is not-directly
observed but we assume that its components are independent. Moreover, without
loss of generality we can assume EX = 0 and var(X) = Id. In practice the goal is
to recover the matrix A from the observations of Y . Therefore, the fundamental
identifiability question is whether it is possible to identify A knowing the distri-
bution of Y . For example, knowing the covariance var(Y ) = Σ of Y allows us to
write

A⊤A = Σ−1,

https://arxiv.org/abs/2209.07579
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which shows that from the second order moments of Y we can identify A up to

{QA : Q is orthogonal}.

However, if Y has Gaussian distribution then we cannot do better.
A seminal result in the literature on the Independent Component Analysis states

that, if at most one component of X is Gaussian, then A is identified up to sign
and permutation from the distribution of Y (Comon, 1994). This means that we
are not able to exactly identify A but we identify the finite set

{QA : Q is a signed permutation}.

This is satisfactory because all matrices in this finite set look similar.
Our study of this problem was motivated by relaxing the independence assump-

tion on the components of X . There is a big gap between X having uncorrelated
components (var(X) = Id) and these components being independent. As we noted,
in several interesting situations independence is rather special. For example, in
elliptical distributions if some components are independent it follows that the un-
derlying vector must be Gaussian (Kelker 1970).

In this paper we replace the independence assumption with restrictions on the
higher order moments/cumulants of X . Conceptually the idea is simple. Using
the covariance of Y we know that every candidate for A is of the form QA for
an orthogonal matrix Q. Since AY = X , for QA to remain a valid candidate
we need that in the equation (QA)Y = QX the random vector QX satisfies the
given conditions on X . Clearly E(QX) = 0 and var(QX) = Id so the two basic
assumptions are always satisfied. The idea now is to impose restrictions on higher
order moments/cumulants ofX so that QX will not satisfy these restrictions unless
Q is a signed permutation matrix. In this way we can recover a more algebraic
version of Comon’s result.

Let T ∈ Sr(Rd) be a symmetric d × · · · × d real tensor of order r. Here T will
represent the tensor of all moments/cumulants of X of order r. It is important
to note that the moments/cumulants of QX are obtained from T by the standard
multilinear action, and so they are equal to (Q, . . . , Q) · T , where

[(Q, . . . , Q) · T ]i1···ir =
∑

j1,...,jr

Qi1j1 · · ·QirjrTj1···jr .

We consider zero restrictions on T . This can be motivated in various ways. For
example, if the components of X are independent then T must be a diagonal
tensor. If the components of X are mean independent (E(Xi|Xj) = Xi for all
i 6= j) then the cumulant tensor T satisfies Tij···j = 0 for all i 6= j. So the basic
question is as follows: Suppose that V ⊂ Sr(Rd) is a linear subspace defined by
some coordinates being zero. Let T be a generic element of V . For which V the
equation (Q, . . . , Q) · T ∈ V holds only for sign permutation matrices? We show
that this property holds, for example, when V is the set of diagonal tensors. In
this case the genericity condition on T requires that at most one diagonal entry
of T is zero. Another example is given by, what we call, reflectionally invariant
tensors. These are the tensors W ⊂ Sr(Rd) such that T ∈ W if and only if
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(D, . . . , D) · T ∈W for every signed diagonal matrix D (note that r must be even
for this set to be non-trivial).

Triangulations of Cosmological Polytopes

Liam Solus

(joint work with Martina Juhnke-Kubitze, and Lorenzo Venturello)

Arkani-Hamed, Benincasa and Postnikov [1] introduced the cosmological polytope
of a connected, undirected graph G = (V,E), where V is a finite set of vertices and
E is a finite collection of edges ; i.e., pairs ij such that i, j ∈ V . From the perspec-
tive of physics, the graph G can be interpreted as a Feynman diagram, in which
case the cosmological polytope provides a geometric model for the computation of
the contribution of the system G to the wavefunction of certain cosmological mod-
els. Such models permit us to assume that the graph G is connected. However,
no additional constraints need to be placed on G. For instance, E can be a finite
multiset of edges; that is, G need not be simple.

The cosmological polytope of the graph G is a convex polytope residing in the
real-Euclidean space R|V |+|E|, for which we denote the standard basis vectors as
xi and xe for all i ∈ V , e ∈ E. The cosmological polytope of G is then defined as

CG = conv{xi + xj − xe, xi − xj + xe,−xi + xj + xe : e = ij ∈ E}.

The relevance of the polytope CG to the computation of wavefunctions for cos-
mological models arises via a recently established connection between scattering
amplitudes and a generalization of convex polytopes called positive geometries [2].
Positive geometries (and hence convex polytopes) admit a unique differential form
having only logarithmic singularities along the boundary of the positive geometry
[2]. This form is called its canonical form. We denote the canonical form of a
positive geometry X by ΩX . In the case of the cosmological polytope, having
the canonical form of CG is sufficient to compute the contribution of the Feynman
diagram G to the wavefunction of interest. Hence, it is desirable to have methods
for computing the canonical form of CG for any graph G.

One approach to computing the canonical form of a positive geometry X that
has been applied successfully in various settings is to consider a subdivision of X ,
say Y1, . . . , Ym [4] . We then have that

ΩX = ΩY1
+ · · ·+ΩYm

.

In the case that X is a convex polytope, the subdivision Y1, . . . , Ym is a polyhedral
subdivision of X . Hence, to compute the canonical form of CG one could identify
a subdivision of this polytope.

From the algebraic perspective, perhaps the most natural approach to finding
such a subdivision for every G is to identify a Gröbner basis for the toric ideal
associated to the lattices points in the polytope CG. The initial terms of the gener-
ators in such a basis correspond to the minimal non-faces of a regular unimodular
triangulation of CG [5]. A triangulation also has the advantage that all facets



Algebraic Structures in Statistical Methodology 3143

Y1, . . . , Ym of the subdivision are simplices. This feature turns out to be useful as
it implies that the canonical form of each Yi may be expressed as

ΩYi
=

ω

f1 · · · fr
,

where f1, . . . , fr are the facet-defining equations of the simplex Yi, and ω is an
associated regular form [2]. Since the facet-defining equations of Yi are easily
recoverable from its set of vertices, the above results give a quick recipe for com-
puting the canonical form of the polytope CG.

In this talk, we present the following results relevant to this method.

Theorem 1. The cosmological polytope CG of any undirected, connected graph G
has a regular unimodular triangulation.

The proof of Theorem 1 is constructive. We identify a family of term orders,
called good term orders, that can be shown to exist for every G. For such term or-
ders we recover a Gröbner basis for the toric ideal associated to CG with squarefree
initial ideal.

While this approach yields the existence of such a triangulation, the presentation
is in the form of the minimal non-faces, as opposed to an explicit characterization
of the facets of the triangulation. The latter is needed in order to compute the
desired canonical forms. We show that such characterizations can be found in
terms of certain decorated graphs for special instances, including the path graph,
cycles and trees. In the case of paths and cycles, the characterizations admit
straightforward enumeration, allowing us to recover the normalized volume of the
polytope CG for these graphs.

Theorem 2. The normalized volume for the cosmological polytope CIn+1
for the

path on n+1 vertices is 4n, and the normalized volume of CCn
for the n-cycle Cn

on n vertices is 4n − 2n.

These formulas tell us the number of summands in our computation of the
canonical form of CG. In the case of the path, this result recovers the formula
previously identified by Kühne and Monin [3]. The formula for the n-cycle extends
their results.

A note on the connection to statistics. While the results in this talk per-
tain mainly to quantum physics, the results are presented at this workshop in
hopes to stimulate interest in this topic related to possible causal interpretations
of these polytopes. In [1], it is noted that, instead of interpreting G as a Feyn-
man diagram, one could interpret the graph as a discretized representation of the
intersection of light cones. The notion of causation in physics is typically studied
from this perspective; where an event may have a causal effect on another event if
the first event lies in the past light cone of the second. The interpretation of the
cosmological polytope from this perspective is presented in [1]. Given that the sta-
tistical community has made substantial progress in the last few decades towards
an ever-improving probabilistic theory of causality, one may hope that statisticians
studying causal inference find use for the cosmological polytope. Such uses may
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provide insights into a long-standing endeavour in quantum physics: explaining
how causation is embedded in a Feynman diagram.
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Moment Varieties of Linear Non-Gaussian Graphical Models

Alexandros Grosdos

(joint work with Carlos Améndola, Mathias Drton, Roser Homs,
and Elina Robeva)

Featuring prominently in a variety of applications, directed graphical models
(DAGs) [2] capture intuitive cause-effect relations among a set of random vari-
ables by hypothesizing that each variable is a noisy function of its causes. For a
number of statistical tasks, such as model selection, it has proven useful to obtain
insights about the algebraic structure of the moments of the joint distributions
in the graphical model for a given graph [1]. A prominent example are results
on algebraic relations among second moments, i.e., covariances, in models that
postulate linear functional relationships among the variables [4]. This is a first
systematic study on algebraic relations that also involve higher moments of such
a model.

Let G = (V,E) be DAG, and let (Xi, i ∈ V ), be a collection of random variables
that represent statistical observations indexed by the vertices in V . The graph G
gives rise to the linear structural equation model consisting of the joint distributions
of all random vectors X = (Xi, i ∈ V ) such that

Xi =
∑

j∈pa(i)

λjiXj + εi, i ∈ V,

where the εi are mutually independent random variables representing stochastic
errors. The errors are assumed to have expectation E[εi] = 0, finite variance

ω
(2)
i = E[ε2i ] > 0, and finite third moment ω

(3)
i = E[ε3i ]. The coefficients λji are

unknown real-valued parameters, and we fill them into a matrix Λ = (λji) ∈ RV ×V

by adding a zero entry when (j, i) /∈ E.
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The model. The covariance matrix S and the third moment tensor T of X are
given by

S = (sij) = (I − Λ)−TΩ(2)(I − Λ)−1,

T = (tijk) = Ω(3) • (I − Λ)−1 • (I − Λ)−1 • (I − Λ)−1,

where Ω(2) is a diagonal matrix in the set PD(V ) of positive-definite matrices and
similarly Ω(3) ∈ Sym3(V ) is a diagonal symmetric tensor. Here • denotes the
Tucker product, see [3].

Let G = (V,E) be a DAG. The third-order moment model of G is the set
M≤3(G) that comprises all pairs of covariance matrices and third moment tensors
that are realizable under the linear structural equation model given by G. That
is,

M≤3(G) =
{(

(I − Λ)−TΩ(2)(I − Λ)−1, Ω(3) • (I − Λ)−1 • (I − Λ)−1 • (I − Λ)−1
)

:

Ω(2) ∈ PD(V ) diagonal, Ω(3) ∈ Sym3(V ) diagonal, Λ ∈ RE
}

.

Furthermore, the third-order moment ideal of G is the ideal I≤3(G) of polynomials
in the entries S = (sij) and T = (tijk) that vanish when (S, T ) ∈ M≤3(G).

Simple Trek Parametrization. By introducing a new set of indeterminates ai,
bi for each vertex in the graph, we obtain the shorter simple trek rule parametriza-
tion:

φG : C[sij , tijk | 1 ≤ i ≤ j ≤ k ≤ n] → C[ai, bi, λij | i→ j ∈ E],

sij 7→
∑

τ∈T (i,j)

atop(T )

∏

k→l∈τ

λkl,

tijk 7→
∑

τ∈T (i,j,k)

btop(T )

∏

m→l∈τ

λml,

where T is the set of all simple treks. Then

Proposition 1 (Simple trek rule). Let G = (V,E) be a DAG, and let φG the
ring morphism above. Then the map φG induces a parametrization of the model
M≤3(G), and, therefore, I≤3(G) = kerφG.

Corollary 2. If G is a polytree, then the ideal I≤3(G) is toric.

Low-Rank Trek-Matrices. Let G be a polytree. Let i, j ∈ V be two vertices
such that a 2-trek between i and j exists. We define the trek-matrix between i
and j as

Ai,j :=

(

sik1
· · · sikr

tiℓ1m1
· · · tiℓqmq

sjk1
· · · sjkr

tjℓ1m1
· · · tjℓqmq

)

,

where

• k1, . . . , kr are vertices such that top(i, ka) = top(j, ka) for a = 1, . . . , r,
and

• (l1,m1),. . . ,(lq,mq) are such that top(i, lb,mb) = top(j, lb,mb) for b =
1, . . . , q.
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The next result explains how to cut out the variety.

Theorem 3. Let G be a polytree and J be the ideal generated by sij such that no
2-trek between i and j exists, tijk such that no 3-trek between i, j and k exists, as
well as all 2-minors of the matrices Ai,j for i→ j ∈ E. Then,

M≤3(G) = V(J) ∩ (PD(V )× Sym3(V )).

To obtain the generators of the ideal one needs further polynomials arising from
minors:

Theorem 4. The third-order moment ideal I≤3(G) of the model M≤3(G) is gen-
erated by the linear generators of I≤3(G) and the minors of matrices Aij for all
i, j such that there exists a trek between them.
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Weak maximum likelihood threshold of colored Gaussian
graphical models

Roser Homs

(joint work with Olga Kuznetsova)

Given an undirected Gaussian graphical model, a very natural question arises: how
many observations do we need to ensure the existence of the maximum likelihood
estimator (MLE)? In 1993, Buhl [1] proved that, when the underlying graph is
chordal, the MLE exists with probability one whenever the sample size is at least
the maximal clique size, and it cannot exist otherwise. However, when the graph
is not chordal, existence of the MLE is not completely understood in general for
a certain range of observations.

In particular, it can occur that its probability is strictly between zero and
one. Given a graph, the minimal number of observations from which the MLE
exists almost surely is called the maximum likelihood threshold (MLT). If we
only require existence with strictly positive probability, we talk about the weak
maximum likelihood threshold (WMLT).
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G:

4

1 2

3

Figure 1. In the graphical model arising from a 4-cycle, the
MLE exists with probability p = 1 for at least 3 observations,
with p ∈ (0, 1) for 2 observations and it does not exist with 1
observation (2 = WMLT(G) < MLT(G) = 3).

Colored graphical models. Colored graphical models are linear concentration
models arising from undirected graphs with a coloring in its vertices and edges.
More formally, a coloring of the graph G = (V,E) with r different colors in the
vertices and s different colors in the edges yields partitions V = V1 ⊔ V2 ⊔ · · · ⊔ Vr
and E = E1 ⊔ E2 ⊔ · · · ⊔ Es. Let KG be the set of all concentration matrices in
the cone of positive definite matrices Sm≻0 that satisfy Kαβ = 0 whenever the edge
α−β is not present in the graph and, additionally, equalities Kαα = Kββ hold for
any pair of vertices α, β in the same vertex color class Vi (resp. Kαβ = Kγδ holds
for any pair of edges α− β, γ − δ in a common color class Ej).

From the statistical perspective, equal colors in the vertices yield equal inverse
partial variances of the corresponding random variables and equal colors in the
edges result in equal conditional independence restrictions. These additional sym-
metries allow for the existence of the MLE with fewer observations than in the
case of the model arising from the corresponding uncolored graph.

G1:

4

1 2

3

G2:

4

1 2

3

G3:

4

1 2

3

Figure 2. Adding symmetries to the vertices of the 4-cycle
yields all remaining combinations of WMLT and MLT in 4-cycles:
WMLT(G1) = MLT(G1) = 2, 1 = WMLT(G2) < MLT(G2) = 2
and WMLT(G3) = MLT(G3) = 1.

Maximum likelihood thresholds have been investigated using algebraic geometry
[2], rigidity theory [3] or the score matching estimator [4] (see [5] for a connection
among different approaches), but remain largely misunderstood.

Geometry of maximum likelihood and the elimination criterion [2]. Given
a graph G = (V,E) with r different colors in the vertices and s different colors in
the edges, and a sample covariance matrix S ∈ Sm�0, its sufficient statistics can be
computed via the projection
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πG : Sm�0 −→ Rr+s

S 7−→





∑

α∈V1

sαα, . . . ,
∑

α∈Vr

sαα,
∑

α−β∈E1

sαβ , . . . ,
∑

α−β∈Es

sαβ



 .

The open convex cone CG := πG (Sm≻0) is known as the cone of sufficient statis-
tics. A consequence of colored graphical models being exponential families is that
the MLE of S exists and is unique if and only if its sufficient statistics lie in CG. In
particular, existence occurs for any positive-definite matrix S (see e.g. [6, Theorem
2.1.14]). All sample covariance matrices are positive semi-definite, hence they will
lie in the (topological) closure of the cone of sufficient statistics. Therefore, the
question in terms of existence of the MLE for a rank-deficient covariance matrix
is whether it is projected into the interior of the cone or right into the topological
boundary ∂CG = πG(S

m
�0)\πG(S

m
≻0).

Algebraic geometry provides tools to study the (Zariski closure of the) projec-
tion πG

(

Sm≤n

)

of matrices of rank at most n.

Definition 1. Let S = (sij) be an (m ×m) symmetric matrix of unknowns and
J(G,n) be the ideal in R[sij , tk] generated by

• ti −
∑

α∈Vi

sαα for i ∈ {1, . . . , r}, tr+j −
∑

αβ∈Ej

sαβ for j ∈ {1, . . . , s};

• (n+ 1)-minors of S.

The ideal of sufficient statistics of rank at most n is the elimination ideal I(G,n) :=
J(G,n) ∩ R[t1, . . . , tr+s].

Theorem 2. [2, Theorem 3.3 - Elimination criterion] If I(G,n) = (0), then the
MLE exists with probability 1 for n observations.

Weak maximum likelihood threshold. We report on preliminary work with
Olga Kuznetsova exploring the case when I(G,n) is not the zero ideal. In this situ-
ation, it is crucial to study the intersection of V (I(G,n)) with the cone of sufficient
statistics CG. More precisely, we need to understand when a tuple (t1, . . . , tr+s)
of sufficient statistics arising from a rank n positive semi-definite matrix S has a
full-rank positive definite completion with the same sufficient statistics. In other
words, whether exists S0 ∈ Sm≻0 such that πG(S0) = πG(S) = (t1, . . . , tr+s). To
this end, it will be helpful to consider the Cholesky decomposition S = LLt.

Proposition 3. Assume I(G,n+1) = (0), I(G,n) = 〈f1, . . . , fu〉 6= (0) and let poly-
nomials fi be expressed in variables lij, where L = (lij) is a lower triangular matrix
with positive values in the diagonal.

• If some fi is a non-vanishing (possibly negative) sum of squares, then
WMLT(G) = MLT(G) = n+ 1.

• If there exists a positive definite S0 ∈ Sm≻0 such that πG(S0) ∈ V (I(G,n)),
then n = WMLT(G) ≤ MLT(G) = n+ 1.
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This result allows us to complete the computation of the probability of existence
of the MLE for n observations of any 4-cycle [2, Table 2], as it is displayed in Fig. 3
for Graph 9 in the previously cited table, and implement algorithms to explicitely
construct rank-deficient matrices for which the MLE exists when such probability
is strictly between 0 and 1.

G9:

4

1 2

3

Figure 3. I(G9,1) = 〈f1, f2〉 with f1 = −4t2t3 + t25+ t26. For any

S = LLt ∈ Sm≻0, −f1 evaluates to 4(−l13l22+ l12l23)2+4(l12l33)
2+

4(−l14l23+ l13l24)2+4(−l14l33+ l13l34)2+4(l13l44)
2+4(l22l33)

2+
4(−l24l33 + l23l34)

2 + 4(l23l44)
2 + 4(l33l44)

2, a non-vanishing
SOS because l11, l22, l33, l44 > 0. Therefore, WMLT(G9) =
MLT(G9) = 2.

Conjecture 4. The two cases in Proposition 3 are the only possible scenarios.
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Staged trees and rational MLEs

Eliana Duarte

The goal of this note is to highlight the role of staged tree models in understanding
the defining equations of certain classes of discrete statistical models and also their
role in the study of toric models with rational MLE.

One principle in Algebraic Statistics is that many statistical models are alge-
braic varieties and we study them by using tools from algebraic geometry, com-
mutative algebra and combinatorics. In this field, toric varieties play a special
role because they correspond to discrete regular exponential families in statistics

https://arxiv.org/abs/2108.02185
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[21]. Many statistical models are defined in terms of polynomial parametrizations,
here we restrict to parametrizations inside a probability simplex, it is of interest to
know what is the prime ideal that defines the closed image of the parametrization
and if such ideal is toric. This is a difficult problem, many times the best hope is to
find an ideal whose vanishing locus intersected with the open probability simplex
is equal to the model. This perspective has been useful to study a wide class of
discrete and Gaussian models [21, 10].

In the study of statistical models that are also varieties, the MLdegree of the
model is an algebraic measure of the complexity of maximum likelihood estima-
tion for that model [17]. The discrete statistical models with MLdegree 1 are of
particular interest because they are the ones for which the maximum likelihood
estimator can be written as a rational function of the data. It is an open problem
to classify (in statistical terms) all discrete statistical models with MLdegree 1,
even in the case where we restrict to toric varieties. A general classification for
complex algebraic varieties was given by Huh [16].

Context-specific conditional independence models. Let (X1, . . . , Xp) be a
vector of discrete random variables and f a joint probability distribution for this
vector, for A,B,C, S disjoint subsets of [p], we say that the subvectors XA, XB are
contextually independent given the subvector XS in the context XC = xC , written
XA |= XB|XS , XC = xc, if for all outcomes (xA,xB,xS) of (XA, XB, XS) and the
fixed outcome xC of XC we have

f(xA|xB,xC ,xS) = f(xA|xC ,xS).

Staged tree models are a generalization of discrete Bayesian networks, they are
useful to encode context-specific conditional independence statements (CSI state-
ments) among random variables like the one just defined [20]. These models are
defined via a recursive factorization property that yields a polynomial parametriza-
tion of the model, similar to discrete Bayesian networks. The defining equations
for staged tree models where first considered in Görgen’s PhD thesis [5]. Sub-
sequently, Duarte and Görgen classified the staged tree models that are defined
by toric ideals [9] and Ananiadi and Duarte constructed Gröbner bases in this
case [1]. The treatment in [9] is a generalization of the framework in [14, Theo-
rem 8]. A characterization of the discrete Bayesian networks that are defined by
toric ideals is given by [15] and a new characterization of these models, in terms
of staged trees, was given in [11].

Motivated by the fact that the class of staged tree models is very flexible and
causal relations are difficult to read from such representations, Duarte and Solus
introduce the notion of a CStree [12]. CStree models are a restricted version of
staged tree models and they can alternatively be represented by a collection of
context DAGs. Duarte and Solus prove that for these models, and their inter-
ventional extensions, model equivalence can be determined in analogous fashion
as for DAG models. Namely, using Verma and Pearl’s criterion that two models
are equivalent if and only if they have the same skeleton and v-structures [22]. In
terms of defining equations, the class of CStree models that are also toric, where
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studied in [8]. Their results show that these class of models, called decomposable
CSmodels, have the same algebraic and combinatorial properties of decomposable
graphical models.

Discrete models with MLdegree 1. From the maximum likelihood perspective,
staged tree models are interesting because they are a wide class of models with
MLdegree 1 [6]. Models with MLdegree 1 can be completely described in terms of
their Horn matrices. These were introduced to Algebraic Statistics by Huh in [16],
but date back to the work of Kapranov [18] and Horn [19]. They were also later
used by Clarke and Cox to characterize the family of polytopes with stritct linear
precision [3]. This family of polytopes appears in Geometric Modeling to construct
parametrized patches of curves, surfaces, and higher dimensional analogs. The
connection between Geometric Modeling and Algebraic Statistics was made earlier
by Garcia-Puente and Sottile [13, Proposition 5.1]. This proposition states that
a polytope together with a choice of weights for the lattice points has rational
linear precision if and only the associated toric model has MLdegree 1. In 2D, the
polytopes with rational linear precision where characterized by [2].

The connection between Algebraic Statistics and Geometric Modeling was fur-
ther exploited in [7]. The authors show that the models in 2D that correspond to
the classification of the polytopes in [2] are all represented by a more general class
of staged tree model. They introduce this type of model formally and identify
the class of such models that are also toric varieties. These results yield a wide
class of examples of polytopes with rational MLE in higher dimensions. Moroever,
the authors also identify polytopes for which the Horn matrices can be described
completely in terms of the lattice distance functions of the faces of the polytope
and the primitive collections of the normal fan.
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Maximum likelihood degrees, Euclidean distance degrees, and the
topology underneath

Jose Israel Rodriguez

Algebraic Statistics: A variety is a model. A mantra of algebraic statistics
is that a statistical model can be realized as the restriction of an algebraic variety
to a semi-algebraic set. For discrete models this semi-algebraic set is the prob-
ability simplex while for Gaussian models it is the positive definite cone. With
this perspective, the statistical inference method maximum likelihood estimation
can be viewed as solving a system of polynomial equations. For discrete models,
the likelihood equations and methods to solve them were introduced by Hoşten,
Khetan, and Sturmfels [4]. These equations are with respect to observed data and
a model. The number of solutions for generic data is called the maximum likeli-
hood (ML) degree of the model. The ML degree bounds the algebraic complexity
of solving MLE.

Moreover, the ML degree is related to the topology of the model’s Zariski closure
with Huh expressing the ML degree of a smooth model as an Euler characteristic
of a variety [5]. This Euler characteristic result was generalized by Rodriguez and
Wang to singular models to prove a conjectured formula [3] for the ML degree of
mixtures of independence models [11]. In the context of graphical models, these
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mixtures are known as a naive Bayes model and are expressed as two observed
variables and one hidden variable, see [6].

Nearest Point Problems. Solving nearest point problems (NPP) is important
for engineering, data science, and physics. They also arise in statistics as a max-
imum likelihood estimate [12, Chapter 7.1] for the general multivariate Gaussian
model. The Euclidean distance (ED) degree [2] gives an algebraic measure of com-
plexity for NPP. Moreover, in [2] they show that the ED degree of a projective
variety, under some assumptions, is the sum of the polar classes [2, Theorem 5.4].
Using CSM classes, [1] derives a formula for the ED degree of a smooth projective
variety. The question on how to express the ED degree of an affine (smooth or
singular) variety as an Euler characteristic is addressed in [7].

Theorem 1 (Maxim-Rodriguez-Wang). For u ∈ Cn, let du(x) :=
∑n

i=1(xi−ui)
2.

If X ⊂ Cn is a smooth affine complex algebraic variety and (u0, u1, . . . , un) ∈ Cn+1

is generic, then

(1) EDdeg(X) = (−1)dimC Xχ(X \Qu),

with Qu := {x ∈ Cn | du(x) = u0}.

This result for smooth varieties is used in a computer vision context to find
the ED degree of n-view triangulation [2, Conjecture 3.4]. Formula (1) relates
the degree of an ideal of critical points to the topology of a variety. The left side
counts solutions to a certain system of equations, while the right side involves the
Euler characteristic χ, a basic topological invariant used in several areas of pure
mathematics and now in applied algebraic geometry.

Thus, solving polynomial systems and determining Euler characteristics give
two distinct approaches for finding ED degrees. Moreover, these methods can
be used in conjunction by having the Euler characteristic tools provide stopping
criteria for monodromy solvers.

Variety of Critical Points: From bidegree to sectional. Monodromy solvers
compute ED degrees by considering the variety of critical points, the closure of

(2) {(x, u) ∈ Cn
x × Cn

u : x is a critical point of du|Xreg
},

as a branched cover of Cn
u. The idea is to use the cover’s monodromy action to

populate the fiber over a point. If the point is general, then the fiber’s size is the
ED degree of X . More broadly, we want information about the closure of (2).

If X is an irreducible affine cone, then the closure of (2) in Pn−1
x ×Pn−1

u is called
the projective ED correspondence of X , denoted EX . The variety EX has bidegree

(3) b0(X)sn−1 + b1(X)sn−2t+ · · ·+ bn−1(X)tn−1 ∈ Z[s, t]/〈sn, tn〉,

where bi(X) is the number of points of intersection of EX with L ×M such that
L,M are general linear subspaces of Pn−1 of dimensions n− 1− i and i. The ED
degree of X is b0(X), and the trailing term of (3) with nonzero coefficient gives
the degree of X . A natural question to ask is, “What information do bidegrees
give us about optimization?”.
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An answer is given in terms of sectional ED degrees. Define the ith sectional ED
degree of X to be the ED degree of X∩L where L is a general codimension i linear
space. Under some conditions, [2] relates the bidegree (3) to the sectional ED de-
grees so that one can be obtained from the other. Such an exchange of information
from bidegree to sectional holds for other objective functions. Recent results prove
this for maximum likelihood estimation [10] and for linear objective functions on
varieties [9]. The next step is to use these results to improve monodromy solvers
and to develop homotopies for specific applications, e.g. phylogenetics.

Non-generic Data: Positive dimensional sets of critical points. For MLE
and NPP, working with non-generic data can lead to having an infinite number
of critical points. For instance, every point on the circle is a critical point of the
distance function when the data is taken to be the circle’s center. In the context
for Euclidean distance degrees, we can write

du+tǫ(x) = du(x) − tℓ(x) + c, t ∈ C, ǫ ∈ Cn,

with ℓ(x) = 2
∑n

i=1 ǫixi, c is a constant with respect to x, and ǫi is generic. We
consider limits of critical points as t is taken to zero. These endpoints may cluster,
tend to infinity or go into possibly positive dimensional components of the set of
critical points of du. Describing the limits of critical points is the content of the
next theorem.

Theorem 2 (Maxim-Rodriguez-Wang). There exists a stratification of X ⊂ Cn

into locally closed irreducible subvarieties X1, . . . , Xs such that

lim
t→0

Crit(du+tǫ|Xreg
) =

s
∑

i=1

ni · Crit(ℓ|Xi
),

where Crit denotes the set of critical points and the numbers ni are positive inte-
gers, or a critical point of du+tǫ|Xreg

tends to infinity as t→ 0.

A stronger version of this statement is proved in [8] where du is any nonconstant
polynomial function and the ni are topological invariants. The power of the state-
ment comes from the fact that the stratification is independent of ℓ and the right
hand side can be calculated without taking a limit. With an array of examples
and motivated by numerical algebraic geometry, this talk will discuss topological
methods to compute ML and ED degrees, leading to this question. Can we use
Euler characteristics to describe the ML degree of multivariate Gaussian models
when the data is a low rank (non-generic) sample covariance matrix.
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[4] S. Hoşten, A. Khetan, and B. Sturmfels. Solving the likelihood equations. Found. Comput.
Math., 5(4):389–407, 2005.



Algebraic Structures in Statistical Methodology 3155

[5] J. Huh. The maximum likelihood degree of a very affine variety. Compos. Math., 149(8):1245–
1266, 2013.

[6] K. Kubjas, E. Robeva, and B. Sturmfels. Fixed points EM algorithm and nonnegative rank

boundaries. Ann. Statist., 43(1):422–461, 2015.
[7] L. G. Maxim, J. I. Rodriguez, and B. Wang. Euclidean distance degree of the multiview

variety. SIAM J. Appl. Algebra Geom., 4(1):28–48, 2020.
[8] L. G. Maxim, J. I. Rodriguez, and B. Wang. A Morse theoretic approach to non-isolated

singularities and applications to optimization. J. Pure Appl. Algebra, 226(3):Paper No.
106865, 23, 2022.

[9] L. G. Maxim, J. I. Rodriguez, B. Wang, and L. Wu. Linear optimization on varieties and
Chern-Mather classes. arXiv preprint https://arxiv.org/abs/2208.09073, 2022.

[10] L. G. Maxim, J. I. Rodriguez, B. Wang, and L. Wu. Logarithmic cotangent bundles, Chern-
Mather classes, and the Huh-Sturmfels Involution conjecture. arXiv preprint https://

arxiv.org/abs/2202.00554, 2022.
[11] J. I. Rodriguez and B. Wang. The maximum likelihood degree of mixtures of independence

models. SIAM J. Appl. Algebra Geom., 1(1):484–506, 2017.
[12] S. Sullivant. Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2018.

Nonlinear Algebra in Game Theory

Irem Portakal

(joint work with Marie Brandenburg, Ben Hollering, Javier Sendra-Arranz, and
Bernd Sturmfels)

Introduction. In 1950, Nash published a very influential two-page paper [6] prov-
ing the existence of Nash equilibria for any finite game. The proof uses an elegant
application of the Kakutani fixed-point theorem (a generalization of Brouwer fixed-
point theorem) from the field of topology. This opened a new horizon not only in
game theory but also in areas such as economics, computer science, evolutionary
biology, quantum mechanics, and social sciences. It has, however, been noted that
in some cases the Nash equilibrium fails to predict the most beneficial outcome for
all players. To address this, another mathematician from knot theory, Aumann,
introduced the concept of correlated equilibria in 1974 [1], which is a generalization
of Nash equilibrium. Still, this solution concept has proved to be inefficient for
certain games, e.g. the prisoner’s dilemma. In this 2-player game, two prisoners
are put in solitary confinement rooms and are offered two choices: cooperate or
defect. If one of them cooperates and the other defects, the one who cooperated
will serve three years in prison and the other will be set free. If both of them
cooperate, they will both serve one year of prison, but if they both defect, they
will both serve two years. Nash equilibrium and correlated equilibrium propose
that both of them should defect. Although mutual defection is a rational outcome
from a self-interested perspective, it is not the most beneficial or Pareto optimal.
If the prisoners had the opportunity to communicate, they would have reached
the decision of mutual cooperation. Ergo, as an attempt to rationalize mutual
cooperation, the dependency equilibrium was proposed by the philosopher Spohn
in 2003. It posits a scenario where there are means of communication between

https://arxiv.org/abs/2208.09073
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all players and the dependency equilibrium occurs as the players maximize their
conditional expected payoffs [9]. The following quote [10] is crucial, as it was the
starting point for the journey to this study:

“The computation of dependency equilibria seems to be a messy
business. Obviously, it requires one to solve quadratic equations in
two-person games, and the more persons, the higher the order of
the polynomials we become entangled with. All linear ease is lost.
Therefore, I cannot offer a well-developed theory of dependency
equilibria.”

As a positive instance of history recurrence, nonlinear algebra promises an inno-
vative way to extend the horizons in game theory and to construct many bridges
between the shores of the big continents in the mathematical world, with new
applications in economics, computer science, and social sciences. The strongest
assurance for this promise is the universality theorems for Nash, correlated and
Spohn conditional independence equilibria [4, 11, 7]. This is a report based on
joint works with Marie Brandenburg, Ben Hollering, Javier Sendra-Arranz, and
Bernd Sturmfels [8, 7, 3], where we observe how (computational) algebraic geome-
try, convex geometry, algebraic statistics, and combinatorics are indispensable for
studying undiscovered territories of game theory.

Results. We work in the setting of n-player normal form games X . The ith
player can select from di pure strategies. The game is specified by n payoff tables
X(1), X(2), . . . , X(n) where each is a tensor of format d1 × d2 × · · · × dn whose

entries are arbitrary real numbers. The entry X
(i)
j1j2···jn

∈ R represents the payoff
for player i if player 1 chooses pure strategy j1, player 2 chooses pure strategy j2,
etc. A joint probability distribution P is a tensor of format d1×d2×· · ·×dn whose
entries are positive reals that sum to 1. The entry pj1j2···jn is the probability that
player 1 chooses pure strategy j1, player 2 chooses pure strategy j2, etc.

A joint probability distribution is called a correlated equilibrium if no player can
raise their expected payoff by breaking their part of the (agreed) joint distribution
while assuming that the other players adhere to their own recommendations. Au-
mann shows [2] that this definition is equivalent to the following: A tensor P in
the probability simplex ∆d1···dn−1 is a correlated equilibrium for a game X if and
only if

d1
∑

j1=1

· · ·
d̂i
∑

ji=1

· · ·
dn
∑

jn=1

(

X
(i)
j1···ji−1kji+1···jn

−X
(i)
j1···ji−1lji+1··· ,jn

)

pj1···ji−1kji+1···jn ≥ 0.

for all k, l ∈ [di], and for all i ∈ [n]. The set of all such equilibria is the correlated
equilibrium polytope PX of the game X . We examine the combinatorial types of
PX for the next unknown case after 2 × 2 games, using oriented matroids and
computations in Mathematica 13.0 and SageMath 9.6. All computations can be
found in MATHREPO [5].

Theorem 1 ([3, Theorem 5.9]). Let X be a (2×3)-game and PX be the associated
correlated equilibrium polytope. Then one of the following holds:
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• PX is a point,
• PX is of maximal dimensional 5 and of a unique combinatorial type,
• There exists a (2× 2)-game X ′ such that PX′ has maximal dimensional 3
is and combinatorially equivalent to PX .

Spohn introduced in 2003 [9] the concept of dependency equilibria where the
players simultaneously maximize their conditional expected payoffs ; appending
communication between players. The conditional expected payoff of Player i, in
case they choose strategy k ∈ [di]:

d1
∑

j1=1

· · ·
d̂i
∑

ji=1

· · ·
dn
∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn
p+···+k+···+

.

A tensor P inside the probability simplex ∆◦
d1···dn−1 is a dependency equilibrium

for X if the conditional expected payoff of each Player i is independent of their
choice k ∈ [di]. For i = 1, 2, . . . , n, we define a matrix with di rows and two
columns:

Mi =











...
...

p+···+k+···+
∑d1

j1=1 · · ·
̂∑di

ji=1 · · ·
∑dn

jn=1X
(i)
j1···k···jn

pj1···k···jn
...

...











Equivalently, the dependency equilibria for X are tensors P ∈ ∆◦
d1···dn−1, where

each Mi has rank one. Let V = Rd1 × · · · × Rdn be the real vector space of all
tensors and let P(V ) denote the corresponding projective space. We write VX for
the projective subvariety of P(V ) that is given by requiring M1, . . . ,Mn to have
rank one. We call VX the Spohn variety of the game X .

Theorem 2 ([8, Theorem 3.2, Theorem 3.4]). For a generic game X, the Spohn
variety VX is irreducible of codimension d1+d2+· · ·+dn−n and degree d1d2 . . . dn.
The intersection of VX with the Segre variety in the open simplex ∆ is precisely
the set of totally mixed Nash equilibria for X. If n = d1 = d2 = 2 then the Spohn
variety VX is an elliptic curve. In all other cases, the Spohn variety VX is rational,
represented by a map onto (P1)n with linear fibers.

To explore the fact that dependency equilibria are abundant, we focus our at-
tention to the intersection of VX with statistical models, more precisely with the
model defined by the conditional independence statements arising from the de-
pendencies of the players of X . The construction of this intersection is explained
in detail in [8, Chapter 6] and we call the resulting variety the Spohn conditional
independence (CI) variety. Consequently, we bring the concept of Nash and de-
pendency equilibrium under the roof of graphical models, i.e. game theory and
algebraic statistics are meeting for the first time. More importantly, this study is
the first attempt at a kind of unification of non-cooperative and cooperative game
theory mentioned in [9, Section 6.3] from the perspective of algebraic statistics as
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well as with methods from computational algebraic geometry. We prove [8, Con-
jecture 6.3] for Spohn CI varieties for one-edge models and a similar universality
theorem as of Datta [4] for Nash equilibrium:

Theorem 3 ([7, Theorem 15]). Let S ⊆ Rn be a real affine algebraic variety
defined by m polynomials with m < n. Then, there exists a N -person game with
binary choices such that an affine open subset of the Spohn CI variety for the
one-edge model is isomorphic to S.
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Dimensions of Higher Order Factor Analysis Models

Muhammad Ardiyansyah

(joint work with Luca Sodomaco)

The factor analysis model is a statistical model where a certain number of hidden
random variables, called factors, affect linearly the behavior of another set of
observed random variables, with additional random noise. In the factor analysis
model, each observed random variable Xi is a linear combination of the hidden
factors Yj with some independent noise, namely

(1) X = ΛY + ε

for some unknown coefficient matrix Λ = (λij) ∈ Rp×m, whose entries are some-
times referred as factor loadings, and for some noise random vector ε ∈ Rp. In
particular, several observed variables Xi might be measures of the same factor Yj .
The factor analysis model may be regarded as a special instance of a much more
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general graphical model, where the components of a certain random vector Z in-
teract with each other, and their interaction is encoded by the edges of a directed
acyclic graph with vertex set equal to the components of Z. In our setting, the
random vector Z is the joint vector (X,Y ), and the interactions between X and
Y are described by a directed bipartite graph where all edges are directed from
elements of Y to elements of X .

The main assumption of the factor analysis model is that the factors and the
noise are Gaussian random variables. This implies that the feasible set lies in the
cone of positive semidefinite matrices. In this paper, we do not assume that the
factors and the noise are Gaussian, hence the higher order moment and cumulant
tensors of the observed variables are generally nonzero. This motivates the notion
of kth-order factor analysis model.

Definition 1. Let k ≥ 2 be an integer. A kth-order factor analysis model is a
family of random vectors X of observed variables that are correlated to another
vector Y of hidden variables (called factors) via equation (1), where ε is a noise
component. The model relies on the following assumptions:

(1) All moment and cumulant tensors of Y and ε exist and are finite up to
order k.

(2) The vectors Y and ε are independent each other.
(3) The components of Y are mutually independent, and similarly for ε.
(4) The vectors Y and ε have mean equal to zero.

Definition 1 has a natural counterpart in terms of cumulant and moment tensors.

Definition 2. Let p, m and k be nonnegative integers with k ≥ 2.

(a) The kth-order cumulant factor analysis model is the subset of tuples
(C(2), . . . , C(k)) of symmetric tensors C(r) ∈ Symr(Rp) that are the cu-
mulant tensors for some random vector X ∈ Rp in the kth-order factor

analysis model. We denote this subset by C
(≤k)
p,m .

(b) The kth-order moment factor analysis model is the subset of tuples
(M(2), . . . ,M(k)) of symmetric tensors M(r) ∈ Symr(Rp) that are the
moment tensors for some random vector X ∈ Rp in the kth-order factor

analysis model. We denote this subset by M
(≤k)
p,m .

These subsets may be described as the image of a polynomial map onto a Carte-
sian product of symmetric tensor spaces. Our goal is to compute its dimension
and we provide conditions under which the image has positive codimension. The
main result is presented in the following theorem.
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Theorem 3. For k ≥ 3, the dimension and the codimension of the kth-order
factor analysis model are

dim(M(≤k)
p,m ) = dim(C(≤k)

p,m ) =min

{

(k − 1)(p+m)+pm−

(

m

2

)

,

(

p+ k

k

)

−p−1

}

(2)

codim(M(≤k)
p,m ) = codim(C(≤k)

p,m ) =
1

k!
max

{

h(k)m (p), 0
}

(3)

where

(4) h(k)m (p) = k!

(

p+ k

k

)

− k!(k +m)p+ k!

[(

m

2

)

− (k − 1)m− 1

]

In particular, the codimension of the kth-order factor analysis model is positive if

(1) m ∈ [2k − 1] and p ≥ p0, where p0 is the unique positive root of the

polynomial h
(k)
m (p).

(2) m ≥ 2k and p ≥ p0, where p0 is the largest positive root of the polynomial

h
(k)
m (p).

(3) m ≥ 2k is sufficiently large and p ≥ 1.

Furthermore, if we assume p ≥ m + 2, then the previous assumptions are auto-
matically satisfied.
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Structured log-concave density estimation

Elina Robeva

(joint work with Kaie Kubjas, Olga Kuznetsova, Pardis Semnani, Luca
Sodomaco, Sharvaj Kubal, and Christian Campbell)

In this talk I discussed two different families of log-concave densities that have
additional structure – log-concave undirected graphical models, and log-concave
densities of random vectors whose coordinates are independent after an orthogonal
transformation.

The first project on log-concave undirected graphical models is joint work with
Kaie Kubjas, Olga Kuznetsova, Pardis Semnani, and Luca Sodomaco. We study
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the problem of maximum likelihood estimation of densities that are log-concave
and lie in the graphical model corresponding to a given undirected graph G. More
precisely, we assume that each density in our family factorizes according to the
graph G and all factors are log-concave. We show that the maximum likelihood
estimate (MLE) is the product of the exponentials of several tent functions, one
for each maximal clique of G. While the set of log-concave densities in a graphical
model is infinite-dimensional, our results imply that the MLE can be found by
solving a finite-dimensional convex optimization problem. We provide an imple-
mentation and a few examples. Furthermore, we show that the MLE exists and
is unique with probability 1 as long as the number of sample points is larger than
the size of the largest clique of G when G is chordal. We show that the MLE is
consistent when the graph G is a disjoint union of cliques. Finally, we discuss the
conditions under which a log-concave density in the graphical model of G has a
log-concave factorization according to G.

The second project on Log-concave Density Estimation with Orthogonal Inde-
pendent Components is joint work with Sharvaj Kubal and Christian Campbell.
We study the problem of estimating a log-concave density on Rd under the assump-
tion that there exists an orthogonal transformation that makes the coordinates of
the random vector independent. While log-concave density estimation is hard both
computationally and statistically, we show that the independence assumption al-
leviates both issues, while still maintaining a large non-parametric class. We show
that under mild assumptions one needs (1ǫ )

2 (up to constants and log factors) sam-
ples for our proposed estimator to be within ǫ of the original density in squared
Hellinger distance. While finding the log-concave maximum likelihood estimate
can be done via a finite-dimensional convex optimization program, it is slow to
compute and impractical in high dimensions. Our estimator can be computed
efficiently, making it more practical to use.

The complexity of Gaussian conditional independence inference

Tobias Boege

1. Gaussian conditional independence

Given a vector of jointly distributed random variables (ξi : i ∈ N) indexed by a
finite set N and disjoint subsets I, J,K ⊆ N , the conditional independence (CI)
statement [I ⊥⊥ J | K] asserts: whenever the outcome of the subvector ξK = xK
is known, the conditional distributions ξI | ξK = xK and ξJ | ξK = xK are
independent.

If ξ follows a multivariate normal (i.e., Gaussian) distribution with mean µ ∈
RN and covariance matrix Σ ∈ PDN , then conditional independence is an algebraic
condition on Σ:

Lemma 1 ([7, Proposition 4.1.9]). For Σ ∈ PDN and any µ ∈ RN defining a
Gaussian random vector ξ we have [XI ⊥⊥ XJ | XK ] if and only if rkΣIK,JK =
|K|.
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The shorthand notation IK for I∪K is customary in the theory of CI structure;
thus ΣIK,JK in the above definition is the submatrix of Σ with rows indexed by
I ∪ K and columns by J ∪ K. We will also liberally identify i ∈ N with the
singleton subset { i } ⊆ N because the marginal vector (ξi) does not differ form
the component ξi for any statistical or algebraic purposes.

It follows from Lemma 1 (and in fact even weaker properties of Gaussian con-
ditional independence known as the semigraphoid, intersection and composition
properties) that

[ξI ⊥⊥ ξJ | ξK ] ⇔
∧

i∈I,
j∈J

[ξi ⊥⊥ ξj | ξK ].

Hence, the conditional independences of a Gaussian are uniquely determined by
the subset where |I| = |J | = 1. We will concentrate on them in the remainder of
this article. The rank condition in Lemma 1 is then equivalent to the vanishing of
a single polynomial Σ[i ⊥⊥ j | K] := detΣiK,jK , which is called an almost-principal
minor of Σ.

In this talk we consider statistical models of Gaussians defined by conditional
independece and dependence assumptions and with positive definite covariance
matrix. Since, according to Lemma 1, the mean µ plays no role in this setting, we
identify a Gaussian distribution with its covariance matrices.

Definition 2. A Gaussian CI model is a subset of PDN defined by conditional
independence and conditional dependence assumptions.

Each conditional independence assumption [ξi ⊥⊥ ξj | ξK ] imposes an equation
Σ[i ⊥⊥ j | K] = 0 on the points in the statistical model; the conditional dependence
assumption ¬[ξi ⊥⊥ ξj | ξK ] the corresponding inequation Σ[i ⊥⊥ j | K] 6= 0.

2. The inference problem

A basic algorithmic problem about CI models is to decide when their specification
is consistent, i.e., when does there exist a covariance matrix at all satisfying all
constraints? This problem is equivalent to the conditional independence inference
problem for Gaussians, in the following sense.

Let P and Q be sets of CI statements. In the inference problem one wishes to
decide if the boolean formula

∧

P ⇒
∨

Q(⇒)

is true for all Gaussian distributions. This implication asserts that every Gaussian
satisfying all the CI assumptions in P must satisfy at least one of the CI conclu-
sions in Q. The model defined by conditional independence assumptions P and
conditional dependence assumptions Q consists exactly of the counterexamples to
the validity of (⇒).

Lemma 3. Deciding if the definition of a CI model is consistent is polynomial-
time equivalent to the problem of deciding if an inference formula is valid.



Algebraic Structures in Statistical Methodology 3163

This reduces a seemingly logical problem to a geometric one of proving or refut-
ing the existence of a point in a semialgebraic set defined by determinants. Hence,
an upper bound on the algorithmic complexity of this task is the existential theory
of the reals, a complexity class commonly encountered in polynomial optimization
and computational geometry. Tarski’s transfer principle and the Positivstellensatz
in real algebraic geometry [1] prove the following “theorem of the alternative”:

Theorem 4. If a CI model is non-empty, then it contains a covariance matrix
with real algebraic entries. If the CI model is empty, there exists a final polynomial
witnessing this.

For the concept of final polynomials, see [2, Section 3.6] and its references. The
bottom line of this theorem is that both possible answers to the consistency prob-
lem for CI models (and hence to the inference problem) have algebraic certificates
which can be stored exactly on a computer and allow verification of the claim in
off-the-shelf computer algebra software.

3. Universality theorems

The reduction of the inference problem to the existential theory of the reals im-
plies upper bounds on its complexity — in an algorithmic sense as well as in an
algebraic sense (no transcendental numbers are required to witness consistency of
a CI model). Unfortunately, these upper bounds are attained. This is the content
of two “universality theorems” for Gaussian CI models proved in [2, Chapter 5]:

Theorem 5. For every finite real extension K of Q there exists a CI model M
such that M 6= ∅ but M∩ PDN (K) = ∅.

Theorem 6. The problem of deciding consistency for CI models is complete for
the existential theory of the reals under polynomial-time many-one reductions.

This means that deciding whether the very special semialgebraic sets that are
Gaussian CI models are empty or not is just as difficult as deciding this for a
general semialgebraic set. Moreover, if the set is non-empty, there is no a priori
upper bound on the complexity of a certificate in the sense of algebraic extension
degree over the rational numbers. This resolves negatively a conjecture by Petr
Šimeček [5] about the existence of rational points in Gaussian CI models.

Proof outline. Both results follow from an encoding of arbitrary (primary basic)
semialgebraic sets into CI models. First notice that an almost-principal minor
[i ⊥⊥ j | xyz] may be used to the effect of storing an inner product with respect
to the inverse of the Σxyz-submatrix into the σij entry, by Schur complement
expansion:

0 = Σ[i ⊥⊥ j | xyz] = σij − Σi,xyzΣ
−1
xyzΣxyz,j .

Afterwards, the almost-principal minor [i ⊥⊥ j] can be used to set this entry to
zero, hence to make the vectors Σi,xyz and Σj,xyz orthogonal with respect to the
inner product given by Σ−1

xyz. Interpreting one of these vectors as the homogeneous
coordinates of a point and the other as coordinates of a line in the projective plane
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(transformed by Σ−1
xyz), this allows the modeling of incidence geometry through

Gaussian conditional independence constraints.
Having a model of the projective plane, the encoding of arbitrary polynomial

constraints is an application of the von Staudt constructions described in detail
in [4, Section 5.6]. �

An analogous conjecture to the one by Šimeček, but for rational points on dis-
crete as opposed to Gaussian CI models, was proposed by Matúš in [3] and is
still open. Unlike the Gaussian case, discrete CI models are infinite-dimensional
because the number of states of each random variable is not prescribed. It would
be interesting to investigate whether universality theorems can be proved for bi-
nary state spaces. As has been demonstrated by Šimeček in his thesis [6], binary
CI equations can be bent under additional assumptions to look very close to the
almost-principal minors of Gaussian CI.
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Linear Causal Disentanglement

Anna Seigal

(joint work with Chandler Squires, and Caroline Uhler)

Causal disentanglement seeks a representation of data involving latent variables
that relate to one another via a causal model. We consider linear causal distan-
glement: observed variables that are a linear transformation of a linear latent
causal model. The setup is identifiable if the linear transformation and the latent
causal model are unique. We show that one intervention on each latent variable
is sufficient and, in the worst case, necessary for identifiability.

1. Setup

We consider p latent variables Z =(Z1, . . . , Zp) observed in contexts k ∈ {0, . . . ,K}.
Context k = 0 is thought of as observational data, while contexts k ∈ [K] are
interventional data. We make the following assumptions.
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(a) Linear latent model: Let G be a DAG with nodes ordered so that an
edge j → i implies j > i. The variables Z follow a linear structural
equation model: in context k, they satisfy

Z = AkZ +Ω
1/2
k ε, Cov(ε) = Ip,

where Ip ∈ Rp×p is the identity matrix, Ωk ∈ Rp×p is diagonal with positive
entries, and Ak ∈ Rp×p has (Ak)ij 6= 0 if and only if there is an edge j → i

in G. In context k we have Z = B−1
k ε, where Bk = Ω

−1/2
k (Ip −Ak).

(b) Single-node perfect interventions: For each k ∈ {1, . . . ,K}, there
exists ik ∈ {1, . . . , p} such that

Bk = B0 + eikc
⊤
k , where ck = λkeik −B⊤

0 eik for some λk > 0.

The intervention zeros the weight on all edges with target ik and changes
the variance at node ik.

(c) Linear observations: There is an invertibleG ∈ Rp×p such thatX = GZ
in every context k. Let H := G−1. Without loss of generality, we set the
entry of largest absolute value in each row of H to 1. If multiple entries in
a row have same absolute value we set the leftmost entry to be positive.
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Figure 1. The setup

The precision (inverse covariance) matrix on X in context k is

(1) Θk := H⊤B⊤
k BkH.

We consider an unknown latent DAG G with unknown weights on its edges, un-
known variances on its nodes, unknown new variances under each intervention,
and an unknown mixing map to the observed variables. That is, our goal is to
decompose the precision matrices {Θk}

K
k=0 to recover G, H , and {Bk}

K
k=0.

2. Main result

We define S(G) to be the permutations on p letters such that σ(j) > σ(i) for all
edges j → i. For example, if G is a complete graph then S(G) contains only the
identity. If G has no edges then S(G) is the group of permutations on p letters.
Our main result is the following.
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Theorem 1. Assume the setup above, with one intervention on each latent node.
Then the graph G, the intervention targets, and the parameters are identifiable up
to S(G): given a solution (B0, . . . , BK , H), the set of solutions is

{(PσB0P
T

σ , . . . , PσBKP
T

σ , PσH) : σ ∈ S(G)}.

For the proof, we introduce a matrix decomposition defined on a partial or-
der. Recall that the RQ decomposition writes H ∈ Rp×p as H = RQ for an
upper triangular R ∈ Rp×p and orthogonal Q ∈ Rp×p. We generalize the RQ
decomposition.

Definition 2 (The partial order RQ decomposition). Given a partial order ≺, the
partial order RQ decomposition writes H ∈ Rp×p as H = RQ, where R ∈ Rp×p

satisfies Rii ≥ 0 and Rij = 0 for i 6� j, and where qi, the i-th row of Q ∈ Rp×p,
is norm one and orthogonal to qj whenever i ≺ j.

Note that this specialises to the usual RQ decomposition if ≺ is the total order
1 < 2 < · · · < p.

The proof of Theorem 1 proceeds by applying the partial order RQ decomposi-
tion to the partial order ≺G coming from the graph G, where i ≺G j if and only if
there is a directed path j → · · · → i in G.

References

[1] A. Seigal, Ch. Squires, and C. Uhler. Linear Causal Disentanglement via Interventions. arXiv
preprint https://arxiv.org/abs/2211.16467, 2022.

Maximizing Divergence to Toric Models

Serkan Hoşten

(joint work with Yulia Alexandr)

Introduction

Let MA be a toric (discrete exponential) model in the probability simplex

∆n−1 =

{

(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n,
n
∑

i=1

pi = 1

}

associated to a d× n matrix

A =

(

1 1 · · · 1
a1 a2 · · · an

)

where ai ∈ Nd−1 for i = 1, . . . , n. For p and q in ∆n−1, the Kullback-Leibler (KL)
divergence is defined as

D(p ‖ q) =
n
∑

i=1

pi log
pi
qi
.

Given any model M ⊂ ∆n−1 and a point p ∈ ∆n−1 the minimizer of D(p ‖ q) for
q ∈M is the maximum likelihood estimate of p. We denote the divergence from p

https://arxiv.org/abs/2211.16467
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to M by D(p ‖M). The main focus of the talk is to understand and compute all
points p ∈ ∆n−1 which maximize D(p ‖MA) to a toric model MA.

Review of Prior Work

The problem was studied first by Ay and Knauf [1] where they gave upper bounds
on the maximum divergence to complete independence models. They characterized
the instances when the bound is attained in this case. Matúš has worked out
necessary and sufficient conditions for the maximizers [2]. He has also considered
the problem for hierarchical loglinear models [3]. Rauh’s PhD thesis [4] is an in-
depth summary and besides other results provides an algorithm to compute the
maximizers based on concepts from oriented matroids.

Contribution

We report on very preliminary joint work with Yulia Alexandr. First, we show
that when M is a linear model, i.e., when M is the intersection of ∆n−1 with an
affine linear space we show that the maximizers are among the vertices log-Voronoi
polytopes corresponding to the vertices of M . Then we present an algorithm
to compute the maximizers of divergence to toric models MA based on Matúš’
characterization of these maximizers and using the chamber complex of A. We
show simple conditions that help to cut down the work in this algorithm. Finally,
we point to further directions to pursue.
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