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Abstract. Combinatorics is an area of mathematics primarily concerned
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arise in many areas of mathematics, such as algebra, geometry, probability
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questions were often studied using ad hoc arguments. However, over the last
few decades, the development of general and powerful methods have elevated
combinatorics to a thriving branch of mathematics with many connections
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experts and the brightest young talents from different parts of this very broad
area in order to discuss the most exciting recent developments, current themes
and trends, and the most promising new directions for future research.
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Introduction by the Organizers

The Combinatorics workshop, co-organised by Peter Keevash (Oxford), Wojciech
Samotij (Tel Aviv), and Benny Sudakov (Zürich), commenced during the first
week of January of 2023. Among the 51 participants that started the New Year
at Oberwolfach, there were mathematicians from Canada, several European coun-
tries, Israel, the United Kingdom, and the United States. Four additional re-
searchers could participate with the help of the Zoom video conferencing software.
The program of the workshop comprised eleven 50-minute-long plenary lectures
and fifteen shorter, 25-minute talks. In order to provide a platform for younger re-
searchers, we have accommodated all of them who wanted to speak at the meeting.
A lively, one-hour-long problem session, led by Nati Linial (Jerusalem) was held
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on Tuesday evening. Last but not least, the daily, individual discussions between
various sets of attendees were commonplace and often stretched well into the night.
It was a real pleasure to see how well the community has already recovered from
the COVID pandemic.

This report contains extended abstracts of all the lectures given at the meeting
as well as a summary of the problems presented at the aforementioned open prob-
lem session. The lectures covered a diverse range of topics that not only spanned
the broad field of combinatorics, but also ventured into several adjacent fields such
as algebra, theoretical computer science, probability theory, and complex analysis.
The quality of the lectures was exceptionally high and this brief introduction, as
well as the extended abstracts that follow, can hardly give justice to the strength
of the results presented by our colleagues. To support our overwhelmingly postive
evaluation of the scientific part of the workshop, we now briefly highlight three of
the most spectacular developments that were communicated during the workshop.

The first highlight is the work of Richard Montgomery on the Ryser–Brualdi–
Stein conjecture. A Latin square of order n is an n-by-n grid filled with n symbols
in such a way that every symbol appears exactly once in each column and each
row. A transversal of a Latin square is a collection of cells that share no column,
no row, and are filled with distinct symbols. Interesting examples of Latin squares
are multiplication tables of finite groups. This narrow class of examples already
shows that one cannot expect every order n Latin square to admit a transversal
of size n when n is even. More than fifty years ago, Ryser conjectured that every
Latin square of odd order n does admit a transversal of size n, while Brualdi and
Stein independently conjectured that each Latin square of even order n admits a
transversal of size n ´ 1.

Numerous researchers attempted to solve the conjectures of Ryser, Brualdi, and
Stein, obtaining stronger and stronger lower bounds on the guaranteed largest size
of a transversal in Latin squares of large order. Prior to the work of Montgomery,
the state-of-the-art was the result of Keevash, Pokrovskiy, Sudakov, and Yepre-
myan, who showed that every Latin square of order n has a transversal of size
n´Oplog n{ log log nq; this improved on the lower bound of n´Oplog2 nq proved
by Shor almost forty years earlier.

In his lecture, Montgomery presented a sketch of the proof of his resolution of
the Brualdi–Stein conjecture for all sufficiently large n.

Theorem 1 (Montgomery). There is some n0 such that every Latin square of
order n ě n0 contains a transversal of size n´ 1.

One of the key insights of Montgomery that allows him to prove this beautiful
result is separate treatment of Latin squares that are, in some well-defined sense,
similar to multiplication tables of finite groups.

Our second highlight is the work of Oleg Pikhurko (joint with  Lukasz Grabowski,
András Máthé, and Jonathan Noel) on the (nearly) one-hundred-years-old Tarski’s
Circle Squaring Problem. Tarski’s problem asks whether a disc and a square of the
same area in R

2 are equidecomposable, that is, whether they can be partitioned
into the same finite number of pieces so that the pieces are pairwise isometric.
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This question was answered only in 1990 by Laczkovich, who showed that it is
possible to partition a disc of unit area into a finite number of pieces and use
them to assemble a unit square using translations only. A somewhat unfortunate
feature of Laczkovich’s proof is that it crucially relies on the Axiom of Choice;
consequently, the pieces of his circle squaring cannot be even guaranteed to be
(Lebesgue) measurable.

Several years ago, a ‘graph-theoretical’ approach to the Circle Squaring Problem
was pioneered by Grabowski, Máthé, and Pikhurko, who proved that there exists
a circle squaring with measurable pieces. Then, Marks and Unger proved that
the pieces can be even made Borel. A recent work of Noel, Máthé, and Pikhurko
decreased the Borel complexity of the pieces (each piece is a Boolean combination
of countable unions of closed sets) and ensured that the boundary of each piece is
‘small’ in the sense that its upper Minkowski dimension is strictly less than two.
The gripping and lucid lecture of Pikhurko gave a high-level outline of the proof
of this result.

Our third highlight is the work of István Tomon, joint with János Nagy and
Péter Pál Pach, on special coverings of Fn

p by hyperplanes and their surprising
connections with several longstanding open problems in algebra.

A covering of the finite vector space Fn
p by a collection H of hyperplanes is called

irredundant if no proper subcollection H1 Ĺ H covers the whole space. Tomon
and his coauthors are interested in bounding the smallest size of an irredundant
covering of Fn

p by a collection H of hyperplanes whose normal vectors span the
whole n-dimensional space, which we will henceforth denote by fppnq. Whereas
it is easy to find, for every prime p and all positive integers n, an irredundant
covering of Fn

p by p hyperplanes (which is clearly the smallest size of any covering),
the additional condition makes the problem of fppnq decidedly more difficult and
interesting.

An elementary dimension argument yields the lower bound fppnq ě n ` 1 and
an easy blow-up type construction provides the upper bound fppnq ď rpn{2s ` 1;
no other bounds were previously known. The main result of the work of Tomon
and his co-authors is the stronger lower bound fppnq ě c log p{ log log p ¨n for some
(explicit) positive constant c.

It turns out, very surprisingly, that improving the lower bound on fppnq by
a small multiplicative factor would have several surprising consequences, one of
which is a resolution of the Along–Jaeger–Tarsi conjecture from the late 1980s.
This conjecture states that every invertible n-by-n matrix A over Fp admits a
vector v P Fn

p such that neither v nor Av has a zero coordinate. In his lecture,
Tomon presented a short proof of the fact that fppnq ą 2n implies the conjecture
and thus one of the corollaries of the main result of his work is that the conjecture
holds for all p ě 67, with the exception of p “ 79.

Acknowledgement: First and foremost, the organisers thank the wonderful staff of
the Mathematisches Forschungsinstitut Oberwolfach for all the help before, during,
and after the workshop. Additionally, the MFO and the workshop organisers would
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like to thank the Simons Foundation for supporting József Balogh in the ‘Simons
Visiting Professors’ program at the MFO.
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Hyperplane covers of finite spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



10 Oberwolfach Report 1/2023

Van Vu
Roots of random functions: Recent progress and open questions . . . . . . . . 46
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József Solymosi (joint with Josh Zahl)
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Abstracts

Brambles, stack number and topological overlap

Sergey Norin

(joint work with David Eppstein, Robert Hickingbotham, Laura Merker,
Micha l T. Seweryn and David R. Wood )

A (strict) bramble B in a graph G is a collection of connected subgraphs of G
closed under taking union. The order of a bramble B is the smallest size of a set
of vertices that intersect the vertex set of each of its elements. Brambles have long
been part of the graph minor theory toolkit, in particular, because a bramble of
high order is an obstruction to existence of a low width tree decomposition [1].

We discuss high dimensional analogues of brambles which extend some of the
properties of graph (1-dimensional) brambles. In particular, we show that a d-
dimensional bramble of high order in a d-dimensional simplicial complex X is an
obstruction to existence of a low multiplicity continuous map from X to Rd (and
more generally to any d-dimensional contractible complex). This can be seen as a
qualitative variant of Gromov’s topological overlap theorem [2].

Let us now be more precise with the definitions. Let X be an abstract d-
dimensional simplicial complex. A collection B of subcomplexes of X is a (d-
dimensional) bramble if

‚ B is closed under taking unions,
‚ HipBq is trivial for every 0 ď i ď d ´ 1 and 0 ď i ď d ´ 1.

In particular, 1-dimensional brambles are exactly strict brambles in graphs, and
2-dimensional brambles are union-closed collections of simply connected subcom-
plexes of a 2-dimensional complex.

The following discrete theorem about simplicial maps implies the above men-
tioned continuous result.

Theorem 1. Let f : X Ñ Y be a simplicial map between d-dimensional simplicial
complexes such that HdpY q is trivial, and let B be a d-dimensional bramble in X.
Then

XBPBfpBq ‰ H.

We modify the definition of an order }B} of a bramble B to be equal to the
smallest size of a set d-dimensional faces that intersect all elements of the bramble.
A refinement of Theorem 1 implies that under the same conditions some point of
Y belongs to an image of at least }B}, d-dimensional faces of B.

Theorem 1 can be applied to lower bound stack number of graphs, which we
now define. For a graph G and ordering pv1, . . . , vnq of V pGq, two edges vivj , vkvℓ P
EpGq cross with respect to pv1, . . . , vnq if i ă k ă j ă ℓ. An s-stack layout of G
consists of an ordering pv1, . . . , vnq of V pGq together with a function φ : EpGq Ñ
t1, . . . , su such that for each a P t1, . . . , su no two edges in φ´1paq cross with
respect to pv1, . . . , vnq. Each set φ´1paq is called a stack. The stack-number snpGq
of a graph G is the minimum s for which there exists an s-stack layout of G.
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In [3] we use a variant of Theorem 1 derived from Gromov’s topological overlap
theorem [2] to show the following.

Theorem 2. snpPn b Pn b Pnq “ Θpn1{3q, where Pn denotes the n-vertex path
and b is the strong product.

Theorem 2 provides the first explicit example of a graph family with bounded
maximum degree and unbounded stack-number. It is also the first example of a
bounded degree graph with bounded queue-number and unbounded stack-number.
The proof of the lower bound proceeds by considering the natural two-dimensional
complex associated with PnbPnbPn with a 2-face corresponding to each triangle.
This complex contains a bramble of order n and so Theorem 1 implies that a map
from the complex to the plain associated to an s-stack layout will contain a point
coverted by n triangles. A short pigeonhole argument then implies that s ě n1{3.

Theorem 1 further implies the asymptotically tight bound of Gromov on over-
lap number of complete 2-dimensional complex, i.e. that for every map from a
complete 2-dimensional complex ∆2

n to the plane there is a point that belongs to
the image of 2

9

`
n
3

˘
` opn3q triangles via the following lemma.

Lemma 3. Let B be a set of subcomplexes of ∆2
n which can be obtained by taking

unions of cones of the graphs G Ď Kn satisfying the following

‚ |V pGq| ą 2{3n,
‚ for every X Ď V pGq with |X | ď 1

2
|V pGq|, there are more than 1

2
|X |pn ´

|X |q edges in G from X to |V pGq| ´X.

Then B is a bramble and }B} “ 2
9

`
n
3

˘
` opn3q

The questions of obtaining brambles of order matching Gromov’s bounds on
overlap numbers of complete complexes in higher dimensions, and obtaining fur-
ther high-dimensional extensions of structural results about brambles remain open.
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Common graphs with arbitrary chromatic number

Daniel Král’

(joint work with Jan Volec and Fan Wei)

Ramsey’s Theorem [10] started a a significant amount of research on the presence
of well-behaved substructures in large structures. In one of its simplest forms,
the Ramsey’s Theorem asserts that for every complete graph Kn, there exists
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an integer N such that any 2-edge-coloring of the complete graph KN contains a
monochromatic copy of Kn. We are concerned with the quantitative version of this
problem asking how many monochromatic copies of a graph H necessarily exist
in any 2-edge-coloring of the complete graph KN vertices and when the bound
coming from the random construction is optimal.

Goodman’s Theorem [5] states that the number of monochromatic copies of
the triangle K3 is asymptotically minimized by the random 2-edge-coloring, i.e.,
when each edge of a complete graph is colored randomly with one of two colors
with probability 1{2. Inspired by this result, we say that a graph H is common
if the number of monochromatic copies of H is asymptotically minimized by the
random 2-edge-coloring of a complete graph. In particular, K3 is common and
more generally every cycle is common as proven in [13].

In 1962, Erdős [3] conjectured that every complete graph is common, and later
Burr and Rosta [1] conjectured that every graph is common. However, both of
these conjectures turned out to be false. In the late 1980s, Sidorenko [12, 13]
showed that a triangle with a pendant edge is not common, and Thomason [14]
showed that K4 is not common. More generally, any graph containing K4 is not
common [8].

A characterization of the class of common graphs is an intriguing open problem
and there is even no conjectured description of the class. This problem is closely
related to the famous conjecture of Sidorenko [11] and of Erdős and Simonovits [4],
which asserts every bipartite graph H has the Sidorenko property, i.e., the number
of copies H in any graph is asymptotically at least the number of its copies in the
random graph with the same density. Since every graph H with the Sidorenko
property is common, as the number of copies of H in each color class is at least
the expected number of its copies in the random edge-coloring, the conjecture,
if true, would imply that all bipartite are common. Hence, families of bipartite
graphs known to have the Sidorenko property provide examples of bipartite graphs
that are common.

Common graphs that are not bipartite, i.e., their chromatic number is larger
than two, are rare. In particular, Jagger, Št’ov́ıček and Thomason asked whether
there exists a common graph with chromatic number at least four. While odd
cycles and even wheels [8, 13] are examples of 3-chromatic common graphs, also
see [6], the existence of a common graph with chromatic number at least four
was open until 2012 when the 5-wheel was proven to be common [7]. The ques-
tion whether there exist common graphs with arbitrarily large chromatic number
has been reiterated in [7], and also by Conlon, Fox and Sudakov in their survey
paper [2, Problem 2.28].

Problem 1. Do there exist common graphs of all chromatic numbers?

We solve this problem by establishing the following.

Theorem 2. For every ℓ P N, there exists a connected common graph with chro-
matic number ℓ.
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Our techniques would however not yield the existence of a 3-connected high-
chromatic common graph. So, it is natural to ask whether there exists an ℓ-
chromatic k-connected common graph for all ℓ ě 2 and every k ě 3. Ko and
Lee [9] answered this in the affirmative by combining our construction and the
book product of graphs.
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[4] P. Erdős and M. Simonovits: Supersaturated graphs and hypergraphs, Combinatorica 3
(1983), 181–192.

[5] A. W. Goodman: On sets of acquaintances and strangers at any party, Amer. Math.
Monthly 66 (1959), 778–783.
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Geodesic Geometry on Graphs

Nati Linial

(joint work with Daniel Cizma)

The idea of viewing graphs from a geometric perspective has been immensely
fruitful. Most of the existing connections between graph theory and differential
geometry concern the eigenvalues of graphs. Here we study graphs from the per-
spective of geodesic geometry. Our main discovery is that for the vast majority of
graphs the geodesic theory is way richer than the metric one.

Here is the main object that we study. In a graph G “ pV,Eq we consider a
system of paths P “ tPu,v|u, v P V u where Pu,v connects vertices u and v. This
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system is said to be consistent if it is closed under taking subpaths. Namely, P has
the property that whenever vertices y, z are in Pu,v, the sub-path of Pu,v between
them coincides with Py,z. A map w : E Ñ p0,8q is said to induce P if for every
u, v P V the path Pu,v is w-geodesic. The map w strictly induces P if in addition,
for every u, v P V , the path Pu,v is the unique w-shortest path between them. We
say that G is metrizable (resp. strictly metrizable) if every consistent path system
is induced by some such w.

Here are our main findings:

‚ Metrizability is rare: E.g., (i) Every large 2-connected metrizable graph is
planar, (ii) No large 3-connected graph is metrizable.

‚ However, arbitrarily large 2-connected metrizable graphs do exist: E.g.,
every outerplanar graph is metrizable.

‚ We reveal some of the structural underpinnings of metrizability. The class
of metrizable graphs is closed under the topological minor relation and is
characterized by finitely many forbidden topological minors.

‚ On the computational side, metrizability can be decided in polynomial
time.

The role of computers in this work: All of the results that we present can be verified
by hand, although this research would not be carried out without our use of the
computer. Initially, we proved by hand that Petersen’s graph is non-metrizable,
but it quickly transpired that we needed a larger supply of such graphs. To this
end we wrote a brute-force search program that found eleven such graphs and
gave certificates that they are indeed non-metrizable. These certificates are easily
verifiable by hand. Our proofs make substantial use of these graphs.

Some Examples. Not all path systems are metrizable. Figure 1 exhibits a non-
metrizable path system in the Petersen graph Π.

1

2

34

5

6

7

89

10

Figure 1. Non-metrizable path system in the Petersen Graph

If uv P EpΠq, then the path Puv is comprised of the single edge uv. Between any
two nonadjacent vertices x, y P V pΠq there is a unique path of length 2. For most
such pairs this is taken to be Px,y. There are 5 exceptional pairs of nonadjacent
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x1

x2 x3

y1

y2 y3

Figure 2. A graph which has path system which is a metrizable
but not strictly metrizable

vertices, those which are connected by a colored path in Figure 1. For example,
P1,7 “ 1, 5, 10, 7. It is easily verified that this path system is consistent, and as
we show next, this path system is nonmetrizable. If w is a weight function that
induces it, then by considering the colored paths, the following inequalities must
hold:

w1,2 ` w1,6 ` w6,8 ď w2,3 ` w3,8

w2,3 ` w2,7 ` w7,9 ď w3,4 ` w4,9

w3,4 ` w3,8 ` w8,10 ď w4,5 ` w5,10

w4,5 ` w4,9 ` w6,9 ď w1,5 ` w1,6

w1,5 ` w5,10 ` w7,10 ď w1,2 ` w2,7

which implies

w6,8 ` w7,9 ` w8,10 ` w6,9 ` w7,10 ď 0,

showing a weight function inducing these paths cannot be strictly positive.
Figure 2 shows a metrizable path system which is not strictly metrizable.

Namely, every edge is the chosen path between its two vertices. For i “ 1, 2, 3,
let Pxi,yi`1

“ xiyiyi`1 and Pyi,xi`1
“ yixixi`1, with incides taken mod 3. It

is easy to see that the constant weight function induces this path system. If a
weight function w strictly induces this system, then for i “ 1, 2, 3 the following
inequalities must hold:

wpxiyiq ` wpyiyi`1q ă wpxixi`1q ` wpxi`1iyi`1q

and

wpyixiq ` wpxixi`1q ă wpyiyi`1q ` wpyi`1ixi`1q
Summing the first inequality for i “ 1, 2, 3 and canceling identical terms yields

3ÿ

i“1

wpyiyi`1q ă
3ÿ

i“1

wpxixi`1q.
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Similarly, adding up the second inequality gives

3ÿ

i“1

wpxixi`1q ă
3ÿ

i“1

wpyiyi`1q,

a contradiction.

Combinatorics of Circle Squaring

Oleg Pikhurko

(joint work with András Máthé and Jonathan A. Noel)

1. Introduction

Tarski’s Circle Squaring Problem [12] from 1925 asks if a circle (i.e., a circular disk)
and a square of the same area in R2 are equidecomposable, that is, whether we can
partition the circle into finitely many pieces and apply some isometry to each piece
to get a partition of the square. This question was answered affirmatively some
65 years later by Laczkovich who showed in a deep and groundbreaking paper [5]
that, in fact, it is possible to square a circle using translations only.

The Axiom of Choice plays a crucial role in his proof and, consequently, the
pieces of his circle squaring could not be guaranteed to have any discernible reg-
ularity properties. A notable problem (mentioned by e.g., Wagon [13, Appen-
dix C] or Laczkovich [5, Section 10]) has been to determine whether there exist
circle squarings using “better structured” pieces. Recently, Grabowski, Máthé
and Pikhurko [1] proved that the pieces of a circle squaring can simultaneously be
Lebesgue measurable and have the property of Baire. Then, Marks and Unger [9]
proved that the pieces can be made Borel. (Let us assume in this paper that the
disk and the square are closed and thus Borel sets.) In fact, Marks and Unger [9,
Section 7] showed that the pieces of a circle squaring can be chosen to be in BpΣ0

4q,
where Σ0

i is the i-th additive class of the standard Borel hierarchy (see e.g., [4,
Section 11.B]) and BpFq denotes the algebra generated by F (that is, the family
of all Boolean combinations of elements from F).

Shortly after his circle-squaring paper, Laczkovich [7, 6] proved a far-reaching
generalisation. Before stating it, let us set up some notation. Fix k ě 1. Let λ
denote the Lebesgue measure on Rk and let BX denote the (topological) boundary
of X Ď Rk. Recall that the upper Minkowski dimension, sometimes called box or
grid dimension, of X Ď R

k is

(1) dim˝pXq :“ lim sup
δÑ0`

logpNδpXqq
logpδ´1q ,

where NδpXq is the number of boxes from the regular grid in Rk of side-length δ

that intersect X .

Theorem 1 (Laczkovich [7, 6]). If k ě 1 and A,B Ď Rk are bounded sets such
that λpAq “ λpBq ą 0, dim˝pBAq ă k and dim˝pBBq ă k, then A and B are
equidecomposable by translations.
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The subsequent papers [1, 9] on circle squaring in fact prove appropriate “con-
structive” versions of Theorem 1 and derive the corresponding circle squaring
results as special cases. Very recently, Noel, Máthé and Pikhurko [11] decreased
the Borel complexity of the pieces by two hierarchy levels and ensured that the
boundary of each piece is “small” in a strong sense:

Theorem 2. In R2, a closed disk and square of the same area can be equide-
composed using translations so that every piece has boundary of upper Minkowski
dimension at most 1.987, belongs to BpΣ0

2q (i.e., is a Boolean combination of Fσ

sets), and has positive Lebesgue measure.

Recall that a subset X Ď Rk is Jordan measurable if its indicator function is
Riemann integrable. An equivalent definition is that X is bounded and λpBXq “ 0.
It easily follows that any bounded set X Ď Rk with dim˝pBXq ă k is Jordan mea-
surable. Therefore, Theorem 2 implies that circle squaring is possible with Jordan
measurable pieces, which addresses questions by Laczkovich [8] and Máthé [10,
Question 6.2]. An advantage of a Jordan measurable circle squaring is that an
arbitrarily large portion of it can be described in an error-free way with finitely
many bits of information. Namely, for every ε ą 0, if n is large enough, then
at most εn2 boxes of the regular n ˆ n grid on the equidecomposed unit square
can intersect more than one piece and thus Opn2q bits are enough to describe our
equidecompostion up to a set of measure at most ε. (Furthermore, the dimension
estimate of Theorem 2 shows that ε, as a function of n Ñ 8, can be taken to
be n´0.013`op1q.)

Theorem 2 is obtained as a special case of the following general result. For a
set A Ď Rk, let TA :“ tA ` t : t P Rku consist of all its translations. For a family
F of sets, let ΣpFq be the collection of all countable unions of sets in F . Also,
recall that Σ0

1 stands for the collection of open sets in Rk.

Theorem 3. If k ě 1 and A,B Ď R
k are bounded sets such that λpAq “ λpBq ą

0, dim˝pBAq ă k and dim˝pBBq ă k, then A and B are equidecomposable by
translations so that all the following statements hold simultaneously:

(a) for some explicit ζ “ ζpk, dim˝pBAq, dim˝pBBqq ą 0 the topological bound-
ary of each piece has upper Minkowski dimension at most k ´ ζ,

(b) each piece belongs to BpΣpBpΣ0
1 Y TA Y TBqqq,

(c) if

(2) λ
` 
t P R

k : pA ` tq XB ‰ H and λ ppA ` tq XBq “ 0
(˘

“ 0

(that is, the set of vectors t P Rk such that pA ` tq X B is non-empty
and Lebesgue-null has measure 0), then each piece has positive Lebesgue
measure.

If the sets A and B in Theorem 3 are Borel, then, by Part (b), all pieces of the
equidecomposition can be taken to be Borel with a good control over their Borel
complexity.

On the other hand, if k ě 3 and one allows all orientation-preserving isometries
of Rk, then the obvious necessary conditions for a set to be equidecomposable to a
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cube using Lebesgue (resp. Baire) measurable pieces turn out to be sufficient, see
Grabowski, Máthé and Pikhurko [2, Corollary 1.10]. However, nothing like this is
known for Borel and Jordan measurable equidecompositions.

2. Some Proof Ideas

Let us give a very high-level outline of the proof of Part (a) of Theorem 3.
Like in the previous work, we assume that A and B are subsets of the torus

Tk :“ Rk{Zk and do all translations modulo 1. We pick a suitable (somewhat
large) integer d and vectors x1, . . . ,xd P Tk satisfying certain conditions (that are
satisfied with positive probability by random vectors). Let Gd be the graph on Tk

where we connect u to u ` řd
i“1 nixi for each non-zero pn1, . . . , ndq P t´1, 0, 1ud.

Assuming that x1, . . . ,xd do not satisfy any linear dependencies with rational
coefficients, each component of Gd is a p3d ´ 1q-regular graph on a copy of Zd.

Our aim is to “construct” a bijection from A to B such that, for some constant
r, each element of A is moved by the bijection by distance at most r within the
graph Gd. Such a bijection naturally gives an equidecomposition between A and
B that uses at most p2r`1qd pieces. As was observed by Marks and Unger [9], the
problem of finding such a bijection can be reduced to finding a uniformly bounded
integer-valued flow within the graph Gd, where the demand is 1 on A, ´1 on B

and 0 elsewhere.
As one of the first steps of their proof, Marks and Unger [9] constructed a real-

valued (i.e. not necessarily integer-valued) flow f8 which satisfies these demands.
The flow f8 is defined to be a pointwise limit of a sequence of flows fm that are
locally constructed from A and B. Since the collection of bounded subsets of Rk

with boundary of upper Minkowski dimension at most k´ ζ is not a σ-algebra, we
should not use the values of f8 if we want to produce pieces with this structure.
Instead, we work with the locally defined approximations fm.

For flow rounding (that is, making all flow values integer), we construct Jordan
measurable subsets J1, J2, . . . of Tk such that their union

Ť8
i“1 Ji is co-null in

Tk and pJiq8
i“1 is a toast sequence, roughly meaning that each Ji induces only

finite (in fact, uniformly bounded) components in Gd and the graph boundaries
of all components arising this way are well separated from each other. In fact,
each set Ji is a finite union of “strips,” i.e., sets of the form ra, bq ˆ r0, 1qk´1;
in particular, it is Borel and has a pk ´ 1q-dimensional boundary. The idea of
using toast sequences to construct satisfying assignments was previously applied
to many problems in descriptive combinatorics (with the exact definition of “toast
sequence” often being problem-specific). For a systematic treatment of this idea
for general actions of Zd, we refer the reader to Greb́ık and Rozhoň [3].

We can view the toast sequence pJ1, J2, . . .q as a process where, at time i,
vertices of the set Ji arrive and our algorithm has to decide the value of the final
integer flow f on every edge with at least one vertex in this set. We are not allowed
to look into the future nor modify any already defined values of the flow f . We
prove that, if all things are set up carefully, then this is indeed possible to do
and, in fact, there are some constants mi and Ri such that the value of f on any
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edge xy P EpGdq intersecting Ji can be computed only from the current picture
in the Ri-neighbourhood of tx, yu in Gd and the values of the approximation fmi

of f8 there. Here, a key challenge is that, when we round the flow on Ji, we have
only incomplete information (namely, the flow fmi

which meets the demands only
within some small error). The idea that allows us to overcome this difficulty is that,
if the cumulative error of fmi

on each component of Ji is small, then whenever
our algorithm encounters some inconsistency, it can round it to the nearest integer
and produce values that are in fact perfectly compatible with all past and future
choices of the algorithm.

The proof coming from the above arguments, with a careful choice of how the
size of the components of Ji can grow with i, produces a partial equidecomposition
between A and B so that the topological boundaries of the pieces as well as the
unmatched part of A and of B have upper Minkowski dimension less than k. Thus
if we can extend this equidecomposition to all of A and B (even by using the
Axiom of Choice), then we can achieve Part (a) of Theorem 3.
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Anticoncentration in Ramsey graphs and a proof of the
Erdős–McKay conjecture

Mehtaab Sawhney

(joint work with Matthew Kwan, Ashwin Sah, Lisa Sauermann)

We call a graph G on n-vertices, C-Ramsey if G contains no clique or independent
set (e.g. homogenous set) of size C log2pnq. For the purposes of this abstract, we
will imagine C as a fixed constant therefore we are considering graphs with “nearly-
optimal” Ramsey behavior. In particular, the fundamental bound of Erdős and
Szekeres [8] on diagonal Ramsey numbers implies that no graph is 1{2-Ramsey
and the famous probablistic construction of Erdős [7] implies that for n ě 3 their
exist graphs G which are 2-Ramsey.

Despite significant effort (see for example [2, 16] and references therein), there
are no known non-probabilistic constructions of graphs with comparably small
homogeneous sets. Therefore Erdős and collaborators posed a series of questions
which probe the extent to which C-Ramsey graphs are “random”-like, in particular
by asking the extent to which the induced subgraphs of a C-Ramsey graph G

are diverse. The first result in this direction, due to Erdős and Szemerédi [9],
proved there is εC ą 0 such that for every C-Ramsey graph G on n vertices we
have epGq ě εC

`
n
2

˘
ě εCn

2{4. Subsequently Prömel and Rödl [20] (answering a
conjecture of Erdős and Hajnal) proved that G is δC logn universal, Shelah [21]
(answering a conjecture of Erdős and Rényi) proved that G contains 2δCn non-
isomorphic induced subgraphs, Kwan and Sudakov [14] (answering a conjecture
of Erdős, Faudree, and Sós) proved that G contains δCn

5{2 subgraphs that can
be distinguished by looking at their edge and vertex numbers; and by Jenssen,
Keevash, Long, and Yepremyan [13] proved (improving on a conjecture of Erdős,
Faudree, and Sós proved by Bukh and Sudakov [3]) that G contains an induced
subgraph with δCn

2{3 distinct degrees (all for some δC ą 0 depending on C).
Only one of Erdős’ conjectures (on properties of C-Ramsey graphs) from this

period has remained open: Erdős and McKay (see [10]) ambitiously conjectured
that there is δC ą 0 such that for any C-Ramsey graph G with n vertices and any
integer 0 ď x ď δCn

2, there is an induced subgraph of G with exactly x edges.
Erdős reiterated this problem in several collections of his favorite open problems
in combinatorics [10, 11] (also in [12]), and offered one of his notorious monetary
prizes ($100) for its solution (see [11, 6, 5]).

Progress on the Erdős–McKay conjecture has come from four different direc-
tions. First, Calkin, Frieze and McKay [4] (answering questions raised by Erdős
and McKay) proved that for any constants p P p0, 1q and η ą 0, a random graph
Gpn, pq typically contains induced subgraphs with all numbers of edges up to
p1 ´ ηqp

`
n
2

˘
. Second, improving on initial bounds of Erdős and McKay [10], it was

proved by Alon, Krivelevich, and Sudakov [1] that there is αC ą 0 such that in a
C-Ramsey graph on n vertices, one can always find an induced subgraph with any
given number of edges up to nαC . Third, improving on a result of Narayanan, Sa-
hasrabudhe, and Tomon [19], Kwan and Sudakov [15] proved that there is δC ą 0
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such that in any C-Ramsey graph on n vertices contains induced subgraphs with
δCn

2 different numbers of edges (without making any guarantee on what those
numbers of edges are). Finally, Long and Ploscaru [17] recently proved a bipartite
analog of the Erdős–McKay conjecture.

As our first result, we prove a substantial strengthening of the Erdős–McKay
conjecture.

Theorem 1. Fix C ą 0 and η ą 0, and let G be a C-Ramsey graph on n vertices,
where n is sufficiently large with respect to C and η. Then for any integer x with
0 ď x ď p1 ´ ηqepGq, there is a subset U Ď V pGq inducing exactly x edges.

Given prior results due to Alon, Krivelevich and Sudakov [1], Theorem 1 is ac-
tually a simple corollary of the following deeper result on edge-statistics in Ramsey
graphs.

Theorem 2. Fix C, λ ą 0, let G be a C-Ramsey graph on n vertices and let
λ ď p ď 1 ´ λ. Then if U is a random subset of V pGq obtained by independently
including each vertex with probability p, we have

sup
xPZ

PrrepGrU sq “ xs ď KC,λn
´3{2

for some KC,λ ą 0 depending only on C, λ. Furthermore, for every fixed A ą 0,
we have

inf
xPZ

|x´p2epGq|ďAn3{2

PrrepGrU sq “ xs ě κC,A,λn
´3{2

for some κC,A,λ ą 0 depending only on C,A, λ, if n is sufficiently large in terms
of C, λ and A.

The proof of Theorem 2 involves a range of tools from Fourier analysis, random
matrix theory, the theory of Boolean functions, probabilistic combinatorics, and
low-rank approximation. To give a sense of the starting point of our analysis, let
us consider epGrU sq as a random variable and let A denote the adjacency matrix
of G. Let v denote the indicator vector of the set U and xu “ 2vu ´ 1 for all
u P V pGq. We then see

epGrU sq d.“ xTAx

2
d.“ epGq

4
` 1

4

ÿ

vPV pGq
degGpvqxv ` 1

4

ÿ

uvPEpGq
xuxv.

Given this rewriting of the random variable (which is essentially the Fourier Walsh
expansion) we have that epGrU sq breaks into understanding a linear contributionř

vPV pGq degGpvqxv and a quadratic contribution 1
4

ř
uvPEpGq xuxv. A straightfor-

ward computation proves that

Varp
ÿ

vPV pGq
degGpvqxvq — n3, Varp

ÿ

uvPEpGq
xuxvq — n2.

Therefore a standard quantitative central limit theorem implies that epGrU sq sat-
isfies a bulk-central limit theorem; the first obstacle in our proof is that this does
not necessarily hold down to the finest scale.
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To see this, consider a random pn{2q-regular graph G (which with high proba-
bility is 100-Ramsey). It follows that

ř
vPV pGq degGpvqxv P pn{2qZ; this unfortu-

nately is problematic as the remaining randomness in
ř

uvPEpGq xuxv can be seen

to not provide a sufficient smoothing to even have a “local” central limit theorem.
(In particular the distribution of epGrU sq exhibits spikes within its distribution.)
This phenomenon is quantified via the regularized least common denominator
(RLCD) introduced by Vershynin [22] in the context of random matrix theory.
In the case when the RLCD is suitably large, one can essentially prove a local
central limit theorem and when the RLCD is sufficiently small the degrees of the
graph G can be grouped into a small number of buckets such that the degree are
essentially equal within a bucket. In this case it turns out to be fruitful to consider
the distribution when the number of vertices chosen in a bucket is fixed and for
the sake of simplicity when G is regular it suffices to consider a single bucket.

At this point the key issue is to understand the distribution of
ř

uvPEpGq xuxv
conditional on

ř
uPV pGq xu. For the sake of simplicity, when xu are independent (al-

though the conditional problem poses additional technical difficulties). The crucial
property we would require for the quadratic part to “smooth” out the distribution
of the linear part would be that

ř
uvPEpGq xuxv is both anti-concentrated and has

an unbounded tail in at least one direction. At this point, both Boolean functions

and low-rank approximation enter as
ř

uvPEpGq xuxv “ xTAx
2

has the same bulk

distribution as when x is replaced by z „ N p0, 1qbn due to Gaussian invariance
principle of Mossel, O’Donnell, and Oleszkiewicz [18]. Given this, and rotational
invariance of the Gaussian ensemble, the bulk distribution is determined by the
eigenvalues values of A. In particular, we prove under the assumption that A is
not well approximated by low-rank matrices in Frobenious norm, the quadratic
Gaussian polynomial associated to A satisfies the necessary anticoncentration and
tail behavior under the assumption and that the adjacency matrices of Ramsey
graphs are not well-approximated by low-rank forms. (In fact for our proof we re-
quire the stronger property that the matrices are not well approximated by block
low-rank forms which is substantially more involved.)

Even at this point the remainder of the proof is still rather involved; in particular
this summary omits how one proves via decoupling that the distribution is smooth
at all other scales, how one integrates the above distribution for a fixed size sample
to obtain Theorem 2 among a host of other technical issues.
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Product free sets in groups

Noam Lifshitz

(joint work with Peter Keevash and Dor Minzer)

1. Erdős–Ko–Rado type theorems

A family F Ď
`rns

k

˘
is said to be intersecting if A X B ‰ H for all A,B P F . One

example of an intersecting family is the dictator
"
A P

ˆrns
k

˙
: i P A

*
.

The Erdős–Ko–Rado theorem [5] says the following.

Theorem 1. Let k ă n
2
. The extremal intersecting family in

`rns
k

˘
is the dictator.
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The Erdős–Ko–Rado theorem opened a whole sub-field of extremal combina-
torics concerning extremal problems whose solution is a dictator. The terminol-
ogy stems from the theory of Boolean functions, where the dictators are given
by the functions f pxq “ xi. The dictators are special case of juntas. A function
f : t0, 1un Ñ t0, 1u is said to be a j-junta if it depends on j variables. The corre-

sponding notion for a family of sets is given by setting F Ď
`rns

k

˘
to be a j-junta if

there exists a set J of size j, such that the question whether a set A belongs to F

or not depends only on AX J. Dinur and Friedgut showed that every intersecting
family is essentially contained in an intersecting junta. Keller and Lifshitz then
showed that the solution to various long standing Erdős–Ko–Rado type theorems
is indeed a dictator by proving a similar approximation by junta theorem and then
upgrading the rough junta structure into an exact extremal result. In this talk
we concern a similar phenomenon where a rough junta structure is upgraded into
an exact extremal solution by a dictator, but this time the problem comes from
group theory and additive combinatorics.

2. Product free sets in groups

Let G be a group. A subset A Ď G is said to be product free if for all a, b in A

the group element ab is not in A. On 1985 Babai and Sós [1] posed the following
problem.

Problem 2. Let A Ď An be a produduct free subset of the alternating group.
What’s the largest possible value of |A|?

This problem will turn out to be an Erdős–Ko–Rado type problem, where the
extremal solution is a dictator of sorts. What are dictators in An? By analogy
from Boolean functions and set systems it makes sense to define A Ď An to be a
dictator if there exists x P rns, such that the question whether σ belongs to A or
not depends only on σ pxq . In other words, the dictators are the sets of the form

Dx,I “ tσ P An : σ pxq P Iu .
The only problem with this definition is that the dictators are no longer product
free. This led Kedlaya to give the following modification of the dictator

Kx,I “ tσ P Dx,I : σ pIq Ď Icu
which is easily seen to be product free. The optimal value of I is of order Θ p?

nq
and for such size of I the condition that σ pIq Ď Ic occurs with a constant probabil-
ity. Babai and Sós conjectured that there exists a much larger product free subset
A Ď An of density Ω p1q . This was refuted by Gowers [7] who showed in 2008

that if A Ď An is product free, then |A|
|An| ď pn´ 1q

1
3 . This was later improved by

Eberhard [4] to
|A|

|An| ď n´1{2O
´

log
7
2 n

¯
.

We completely solve this problem when n is sufficiently large.

Theorem 3 (Keevash, L. and Minzer). There exists n0, such that for all n ě n0

the extremal product free set in An is of the form Kx,I for some x, I.
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3. Symmetry and pseudorandomness

The problem of determining the largest product free sets is closely related to the
study of pseudorandomness in Cayley graphs. Indeed, a set A is product free if and
only if in the Cayley graph Cay pG,Aq the set A is independent when viewed as a
set of vertices. Such a large independent set shouldn’t exist in a random graph.
Now the symmetries of the Cayley graph Cay pG,Aq contain the right action of
the group G on the set of vertices. Indeed, this follows from the fact that right
multiplication commutes with multiplication from the left. We are used to think of
symmetry and randomness as contradictory properties. However, the paradoxical
idea in Gowers proof, (which originated in the work of Sarnak and Xue) is that
symmetry can sometimes imply pseudorandomness.

Definition 4. We say that a graph G “ pV,Eq is ǫ-mixing if for each two set

A,B of densitities α :“ |A|
|V | , β :“ |B|

|V | ě ǫ we have

Prtv,uu„E rv P A, u P Bs
αβ

P p0.99, 1.01q .

We say that a group G is ǫ-mixing if each Cayley graph Cay pG,Aq of density
|A|
|G| ě ǫ is ǫ-mixing.

Gowers then coined the notion of a quasirandom group. A group G is said to
be D-quasirandom if the minimal dimension of an irreducible representation of G
is ě d. Let us write ǫ pGq for the minimal ǫ for which G is ǫ-mixing and D pGq
for the minimal dimension of an irreducible representation of G. Gowers Showed

that if G is D-quasirandom, then it is O
´
D´ 1

3

¯
-mixing. Nikolov and Pyber used

the classification of finite simple groups to show that some converse of this holds
and actually D pGq and 1

ǫpGq are polynomially related for every finite group G. It

is a remarkable fact that the combinatorial quantity 1
ǫpGq and the representation

theoretic quantity are actually polynomially equivalent.

4. Analysis of Boolean functions

Let f : t´1, 1un Ñ R. The Fourier expansion of f is given by

f “
ÿ

SĎrns

pf pSqχS ,

where χS “ ś
iPS xi. Given x P t´1, 1un the ρ-noisy distribution is given by

choosing y P t´1, 1un according to the following process. Independently for each
i we remember xi with probability ρ and set yi “ xi, and with probability 1 ´ ρ

we forget xi and choose yi „ t´1, 1u uniformly at random.
The noise operator Tρ on the Boolean cube is given by

Tρf pxq “ Ey„Nρ
rf pxqs .
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The noise operator has the following Fourier formula

Tρf “
ÿ

SĎrns
ρ|S|f̂ pSqχS .

One of the central results in the analysis of the Boolean cube is the Bonami–Gross–
Beckner hypercontractive inequality [3, 8, 2]

}Tρf}q ď }f}p

for all ρ ď
b

p´1
q´1

and q ą p. It is called hypercontractivity since the Lq-unit

ball is always contained in the Lp-unit ball. The hypercontractive inequality then
says that the noise operator squeezes the large Lp ball into the small Lq-ball.
Hypercontractivity immediately implies that if f is a homogeneous polynomial of

degree d, then }f}4 ď
?

3
d}f}2. On the other hand when f “ 1A and E rf s “

α we have }f}4 “ α´ 1
4 }f}2. This shows that indicators of small sets and low

degree functions behave very differently. In fact, one can use the hypercontractive
inequality to deduce that small sets are essentially orthogonal to all low degree
functions. Here the degree of a function is meant to be its degree as a multilinear
polynomial.

5. Going beyond quasirandomness via hypercontractivity

When studying product free sets our idea is to incorporate the above tools from
the Boolean world into the symmetric group. It turns out that this plan fits
perfectly with the representation theory of the alternating group. In L2 pAnq we
also have a degree decomposition. We write Vďd for the linear space spanned
by products of d dictators. We then write V“d “ Vďd X V K

ďd´1. The space V“d

is an An-bimodule. Moreover, it turns out that all its sub-representations have

dimension ě
`
cn
d

˘d
. This shows that the higher the degree is the higher of a

minimal dimension of an irreducible representation is. Our idea is now to say that
our product free sets A satisfies that 1A is essentially orthogonal to all the low
degree representations and effectively our group should behave like a group with a
much better quasirandomness parameter D pGq. The problem with this approach
is that hypercontractivity no longer holds in the symmetric group. Instead Filmus,
Kindler, Lifshitz, and Minzer [6] proved a refined notion called hypercontractivity
for global functions in the symmetric group. Their bound lies in the base of our
approach. The work of Filmus et al is based on an earlier works of Keevash,
Lifshitz, Long, and Minzer [9].
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The space of triangulations of a planar point set

Uli Wagner

(joint work with Anna Lubiw, Zuzana Masárowá, and Emo Welzl)

Let P Ă R2 be a set of n points in general position (no collinear triples). A
triangulation of P is a maximal straight-edge embedded plane graph with vertex
set P . If P is fixed, we may identify a triangulation with its set of edges, which is
an inclusion-maximal subset T of segments spanned by pairs of points in P such
that any two segments in T are non-crossing (they are either disjoint or share
a common endpoint). Two triangulations T and T 1 of P differ by a flip (also
called edge flip or diagonal flip) if their symmetric difference T ‘ T 1 consists of
two segments e P T and e1 P T 1 that form the diagonals of a convex quadrilateral
whose interior does not contain any points of P .

The flip graph of P is the abstract graph whose vertices are the triangulations
of P , and two triangulations are connected by an edge in the flip graph if they
differ by a flip. It has been well-known since the work of Lawson [4] that the
flip graph is connected. In joint work with Welzl [7], we strengthen this and
determine the vertex connectivity of the flip graph. A trivial upper bound for
the vertex connectivity of any graph is its minimal degree. Hurtado, Noy, and
Urrutia [3] showed that the minimum degree δpP q of the flip graph of a set P of
n points in general position is at least rn´4

2
s (i.e., any triangulation of P contains

at least that many flippable edges), and this is tight in the worst-case. We show
that this upper bound is sharp (provided n is sufficiently large).

Theorem 1 (W.–Welzl). There exists an integer n0 such that the flip graph of
any set P of n ě n0 points in general position in R2 is δpP q-vertex connected,
where δpP q ě rn´4

2
s of the flip graph. Moreover, the flip graph is always at least

rn´4
2

s-vertex connected (without any assumption on n).

A flip from a triangulation T to a triangulation T 1 that exchanges diagonal e P T
and e1 P T 1 naturally induces a bijection T Ñ T 1 between the two sets of edges, by
mapping e to e1 and mapping every other edge to itself. Thus, every walk T  T 1

in the flip graph starting at some triangulation T and ending at a triangulation
T 1 induces a bijection T Ñ T 1, by composing the bijections corresponding to in-
dividual flips. Which bijections are realizable by flips in this way? In joint work
with Masárová and Lubiw[5] we answer this question. Affirming a conjecture of
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Bose, Lubiw, Pathak, and Verdonschot [1], we show that the following necessary
condition is also sufficient (which also yields a polynomial-time algorithm for test-
ing whether a given bijection is realizable by flips). Given a bijection π : T Ñ T 1

between the edge sets of two triangulations of a point set P , let us say that π is
locally realizable edge by edge if, for every edge e P T and its image e1 “ πpeq P T 1,
there is a walk T  T 1 in the flip graph such that the induced bijection maps e
to e1 (but may differ from π on other edges).

Theorem 2 (Lubiw-Masárová-W.). Given two triangulations T and T 1 of a finite
point set P Ď R2 and a bijection π : T Ñ T 1, the bijection π is realizable by flips
if and only if π is locally realizable edge by edge.

The following fact plays a central role in proofs of both Theorems 1 and 2. In
the special case where P is a set of n points in convex position, it is well-known
that the flip graph of P is the 1-skeleton of an pn ´ 3q-dimensional polytope,
the associahedron An´3 (see, e.g., the book [2] for more background and further
references). For general point sets, the flip graph is no longer the graph of a
convex polytope, but it can be seen as 1-skeleton of a higher-dimensional polytopal
complex FpP q, called the flip complex, which is contractible. This follows from
results of Orden and Santos [6] (and, unaware of this, we rediscovered this and
gave a different proof in [5]). Moreover, the faces of the flip complex have a
very simple description: We say that a set S of pairwise non-crossing segments
spanned by points in P is a subdivision of P if S contains all convex hull edges
the geometric graph pP, Sq is connected, and every bounded region of R2zp

Ť
Sq is

convex. Every subdivision S naturally corresponds to a product of associahedra,
one for each convex region determined by S, and these products of associahedra
are the faces of the flip complex.
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Decomposing cubic graphs into linear forests

Shoham Letzter

(joint work with Gal Kronenberg, Alexey Pokrovskiy, and Liana Yepremyan)

1. Introduction

A well-known conjecture, due to Akiyama, Exoo, and Harary [2] (1980), dubbed
the Linear arboricity conjecture, asserts that every graph G can be decomposed

into at most ∆pGq`1

2
linear forests.

This conjecture is open in general, but is known when ∆pGq P t2, 3, 4, 5, 6, 8, 10u,
and for various families of graph G, such as complete and complete bipartite
graphs, trees, planar graphs, and graphs with high girth. It is also known to
hold, with high probability, for random graphs and random regular graphs. Fi-
nally, it is known asymptotically: Lang and Postle (2020) showed [9] that ∆

2
`

Op∆1{2polylog∆q linear forests suffice for decomposing a graph with maximum
degree ∆, improving previous asymptotic results by Alon [4] (1988) and Ferber,
Fox and Jain [6] (2020).

While the conjecture appears to be hard in general, it actually has quite an
easy proof when ∆pGq “ 3 (due to Akiyama and Chvátal [1] 1981). In particular,
it shows that every cubic graph can be decomposed into two linear forests (in fact,
this statement is equivalent to the linear arboricity conjecture for ∆pGq “ 3). It
is thus interesting to try and impose more structure on the two linear forests.

One such strengthening is due to Thomassen [10] (1999), who showed that every
cubic graph can be decomposed into two linear forests with components of length
at most 5. This proved a conjecture of Bermond, Fouquet, Habib, and Péroche
[5] (1984) and improved on results due to Jackson and Wormald [7] (1996) and
Aldred and Wormald [3] (1998).

A different direction was considered by Wormald (1987), who conjectured [11]
that every cubic graph on 4n vertices can be decomposed into two isomorphic
linear forests. Prior to our work, the conjecture was known to hold only for some
specific families of cubic graphs. We prove [8] Wormald’s conjecture for large
connected cubic grpahs.

Theorem 1. Every connected cubic graph on 4n vertices, where n is large, can be
decomposed into two isomorphic linear forests.

2. Proof sketch

We now give an overview of our proof. The main idea is to first colour a small
part of the graph in a very structured way, so that it can later be used to make
small fixes to the full colouring, and then colour the rest of the graph in a random
way, while guaranteeing that the monochromatic components are (not too long)
paths. Using the randomness, we show that the two colour classes are almost
isomorphic. We then use the pre-coloured graph to fix the imbalance and make
the colour classes isomorphic, thus completing the proof.
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2.1. The approximate result. While this is not the first step in the process, we
now describe an approximate solution of Wormald’s conjecture, and later explain
how to obtain an appropriate partial pre-colouring. For the purpose of this ex-
planation, our task is to red-blue colour a (large) given cubic graph such that the
colour classes are “almost” isomorphic, that is, the difference between the number
of red and blue components isomorphic to a path of length t is small, for all t. For
this, we wish to colour the graph randomly, while maintaining certain properties
(such as the monochromatic components being paths).

Our random colouring will consist of three steps. For the first step, we use
Thomassen’s result about the existence of a 2-colouring where each monochromatic
component is a path of length at most 5; we denote the two colours here by purple
and green. The first random step colours each purple or green component by one of
the two possible alternating red-blue colourings, chosen uniformly at random and
independently. Notice that this random red-blue colouring of G has no vertices
incident with three edges of the same colour. Moreover, the symmetry between
the colours and the bound on the lengths of purple and green paths would allow us
to show that the colours are, in some sense, close to being isomorphic. However,
there is nothing preventing the appearance of cycles, and we could not rule out
the existence of very long monochromatic paths, a complication for concentration
and for the final rebalancing.

This brings us to the second random step, which will be broken into two parts,
and whose purpose is to eliminate monochromatic cycles. Here, we first do some-
thing very intuitive: we simply flip the colour of one edge eC of each monochro-
matic cycle C, choosing the edge uniformly at random and independently. Un-
surprisingly, while this breaks all monochromatic cycles that existed before the
first step, new monochromatic cycles can appear. Luckily, a small fix saves us and
eliminates all monochromatic cycles. The fix essentially consists of reswapping
the colour of eC for some originally monochromatic cycles C, and swapping the
colour of a neighbouring edge of eC in C, while making choices randomly and
independently.

The next and final random step is designed to break long paths. Here the idea is
less intuitive. We let each monochromatic path P choose one of its boundary edges
(namely, edges of the opposite colour that touch an end of P ) uniformly at random
and independently. Then, for each edge e that was chosen by two paths, we flip
the colour of e. This somewhat strange process has several benefits: first, with
high probability, it swaps an edge of each monochromatic path of length at least
1000 logn; second, it creates no monochromatic cycles; and, third, it does not allow
more than two monochromatic paths to join up (more precisely, monochromatic
paths in the new colouring have at most one edge whose colour was swapped).

Finally, we analyse the resulting random colouring, and show that its colour
classes are almost isomorphic. We accomplish this goal via McDiarmid’s inequality,
using the independence of the various random decisions, as well as the fact that
each decision has a small impact on the resulting graph.
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2.2. Gadgets. Next, we wish to balance the number of red and blue components
isomorphic to Pt, for every t, so as make the two colour classes isomorphic. For
this, the main idea is to pre-colour a small part of the graph, thereby creating
many gadgets that can later be used for balancing the number of paths in each
length.

We define a blue ℓ-gadget in a cubic graph G to be a red-blue subgraph H Ď G,
which has a recolouring H 1, so that for every red-blue colouring of G that extends
H (and whose monochromatic components are paths), if we recolour H according
to H 1, the monochromatic component counts change as follows (where bpPtq and
rpPtq are the numbers of, respectively, blue and red components that are paths of
length t): bpPℓq decreases by exactly 1; bpPtq with t ă ℓ changes only slightly; bpPtq
with t ą ℓ and rpPtq with any t do not change. Such a gadget (and its counterpart
with roles of colours reversed) will be used to equalise rpPtq and bpPtq, and we
balance the paths from the longest to the shortest.

Finding gadgets is the most technical and lengthy part of our proof, which we
do not elaborate on here. Very roughly speaking, we start from a long enough
geodesic (that is why our proof only works for large connected cubic graphs), and
find a gadget within a small radius of the geodesic.

2.3. Exact result. Our work on gadgets shows that in large enough connected
cubic graphs we can find many gadgets of length up to ε logn (for some small
ε ą 0). We incorporate those in the random colouring described above, to obtain
a red-blue colouring where the two components are almost isomorphic linear forests
with components of length at most 104 logn, and which contains many gadgets of
each length up to m :“ 104

?
logn. We use a different argument to balance the

number of gadgets of length longer than m, and then use the gadgets to balance
the remaining lengths.
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Hamilton cycles in pseudorandom graphs

David Munhá Correia

(joint work with Stefan Glock and Benny Sudakov)

1. Introduction

A Hamilton cycle in a graph G is a cycle passing through all the vertices of G. If it
exists, then G is called Hamiltonian. Being one of the most central notions in graph
theory, it has been extensively studied by numerous researchers. In particular, the
problem of deciding Hamiltonicity of a graph is known to be NP-complete and
thus, finding general conditions which ensure that G has a Hamilton cycle is one
of the most popular topics in Graph Theory. For instance, two famous theorems of
this nature are the celebrated result of Dirac [11], which states that if the minimum
degree of an n-vertex graph G is at least n{2, then G contains a Hamilton cycle,
and the criterion of Chvátal and Erdős [8] that a graph is Hamiltonian if its
connectivity number is at least as large as its independence number.

In fact, most of the classical criteria for Hamiltonicity focus on rather dense
graphs. A prime example of this is clearly Dirac’s theorem stated above, but
also the Chvátal-Erdős condition requires the graph to be relatively dense, of
average degree Ωp?

nq. In contrast, sufficient conditions that ensure Hamiltonicity
of sparse graphs seem much more difficult to obtain. A natural starting point
towards this topic is to consider sparse random graphs, to which a lot of research
has been dedicated in the last 50 years. In a breakthrough paper in 1976, Pósa [20]
proved that the Erdős-Renyi random graph model Gpn, pq with p ě C logn{n for
some large constant C almost surely contains a Hamilton cycle. In doing so, he
invented the influential rotation-extension technique for finding long cycles and
paths, which has found numerous further applications since then. In parallel,
significant attention has also been given to the Hamiltonicity of the random d-
regular graph model Gn,d - it is known that Gn,d almost surely contains a Hamilton
cycle for all values of 3 ď d ď n ´ 1 (for this result, the reader is referred to the
papers of Cooper, Frieze and Reed [9] and Krivelevich, Sudakov, Vu and Wormald
[14] and their references).

Given the success of the study of Hamilton cycles in sparse random graphs, it
became natural to then consider pseudorandom graphs, which are deterministic
graphs that resemble random graphs in various important properties. A convenient
way to express pseudorandomness is via spectral techniques and was introduced
by Alon. An pn, d, λq-graph is an n-vertex d-regular graph whose second largest
eigenvalue of G in absolute value, λpGq, is such that λpGq ď λ. Roughly speaking,
λpGq is a measure of how “smooth” the edge-distribution of G is, and the smaller
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its value, the closer to “random” G behaves. The reader is referred to [16] for
detailed survey concerning pseudorandom graphs.

In a rather influential paper, Krivelevich and Sudakov [15] employed Pósa’s
rotation-extension technique to prove the very general result that pn, d, λq-graphs
are Hamiltonian, provided λ is significantly smaller than d. Precisely, they showed
that if n is sufficiently large, then

d{λ ě 1000 lognplog log lognq
plog lognq2(1)

guarantees that any pn, d, λq-graph contains a Hamilton cycle. This result has
found numerous applications in the last 20 years towards some well-known prob-
lems, some of which we will discuss later. Given its significance and generality, it
leads to the very natural and fundamental question of whether a smaller multi-
plicative ratio of d{λ is already sufficient to imply Hamiltonicity. Krivelevich and
Sudakov [15] conjectured that it should suffice that d{λ is only a large enough
constant.

Conjecture 1. There exists an absolute constant K ą 0 such that any pn, d, λq-
graph with d{λ ě K contains a Hamilton cycle.

Despite the plethora of incentives, there has been no improvement until now on
the Krivelevich and Sudakov bound. We make significant progress towards Con-
jecture 1 in two ways. First, we improve on the Krivelevich and Sudakov bound
in general by showing that a spectral ratio of order plognq1{3 already guarantees
Hamiltonicity.

Theorem 2. There exists a constant C ą 0 such that any pn, d, λq-graph with

d{λ ě Cplog nq1{3 contains a Hamilton cycle.

The proof of the above result relies on Pósa’s rotation-extension method with
various new twists. Namely, we needed to develop some techniques in order to use
this method in a robust manner.

Secondly, we confirm Conjecture 1 in full when the degree is polynomial in the
order of the graph. More generally, we prove the following result.

Theorem 3. There exists a constant C ą 0 such that any pn, d, λq-graph with
d ě plog nq5 and d{λ ě C logd n contains a Hamilton cycle.

In particular, this implies Conjecture 1 when d is polynomial in n.

Corollary 4. For every α ą 0 there exists K ą 0 such that any pn, d, λq-graph
with d ě nα and d{λ ě K contains a Hamilton cycle.

In fact, Theorem 3 is a corollary of a more general statement that we prove which
informally states that pn, d, λq-graphs with many vertex-disjoint cycles are Hamil-
tonian.



Combinatorics 35

2. Applications and related problems

Both Theorem 2 and Corollary 4 immediately yield improvements in several ap-
plications which made use of the Krivelevich and Sudakov result. One application
is an important special case of a famous open question of Lovász [17] from 1969
concerning the Hamiltonicity of a certain class of well-behaved graphs (see e.g.,
[10] and its references for more background on the problem).

Conjecture 5. Every connected vertex-transitive graph contains a Hamilton path,
and, except for five known examples, a Hamilton cycle.

Since Cayley graphs are vertex-transitive and none of the five known exceptions
in Lovász’s conjecture is a Cayley graph, the conjecture in particular includes the
following, which was asked much earlier in 1959 by Rapaport-Strasser [21].

Conjecture 6. Every connected Cayley graph is Hamiltonian.

For these conjectures, a proof is currently out of sight. Given this, it is natural to
consider the “random” version of Conjecture 6. Indeed, Alon and Roichman [2]
showed that in any group G, a random set S of Oplog |G|q elements is such that the
Cayley graph generated by them, ΓpG,Sq, is almost surely connected. Therefore,
a particular instance of Conjecture 6 is to show that ΓpG,Sq is almost surely
Hamiltonian, which itself is also a conjecture of Pak and Radoičić [19]. In fact,
this relates directly to Conjecture 1 since it can be shown, generalizing the result
of Alon and Roichman, that if |S| ě C log |G| for some large constant C, then
ΓpG,Sq is almost surely an pn, d, λq-graph with d{λ ě K for some large constant
K. Hence, Conjecture 1 would imply the Hamiltonicity of ΓpG,Sq. Improving on

several earlier results [6, 15, 18], we use Theorem 2 to prove that if |S| ě log5{3 n,
then ΓpG,Sq is almost surely Hamiltonian.

Another application of our results concerns one of the central themes in Additive
Combinatorics, the interplay between the two operations sum and product. A well-
known fact in this area is that any multiplicative subgroup A of the finite field Fq

of size at least q3{4 must contain two elements x, y such that x ` y also belongs
to A. Motivated by this, Alon and Bourgain [1] studied the emergence of more
complex additive structures in such subgroups. In particular, they proved that
when A as above has size |A| ě q3{4plog qq1{2´op1q, then there is a cyclic ordering
of the elements of A such that the sum of any two consecutive elements is also
in A. Using Corollary 4, we can improve on Alon and Bourgain’s result, showing
that the additional polylog-factor can be avoided. This shows that when |A| is of
order q3{4, not only do there exist x, y P A such that x`y P A but also much more
complex structures.

Finally, we also use the methods in the proof of Theorem 3 for a problem related
to Conjecture 6 concerning the existence of Hamiltonian Cayley graphs ΓpG,Sq
with a small set of generators S. Motivated by this conjecture, Pak and Radoičić
[19] showed that every group G has a set of generators S of size at most log2 |G|
such that the Cayley graph ΓpG,Sq is Hamiltonian, which is optimal since there
are groups that do not have generating sets of size smaller than log2 |G|. Since
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their proof relies on the classification of finite simple groups, they asked to find
a classification-free proof of their result. Using the methods we developed for the
proof of Theorem 3 we give a classification-free proof that there is always such a
set S with |S| “ Oplog nq.
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The Exact Rank of Sparse Random Graphs

Matthew Kwan

(joint work with Margalit Glasgow, Ashwin Sah, and Mehtaab Sawhney)

A foundational theorem in combinatorial random matrix theory, due to Komlós [16,
17], says that discrete random matrices with i.i.d. entries are typically nonsingular
(over R). In particular, let B be an n ˆ n random matrix with i.i.d. Bernoullippq
entries (meaning that each entry Bij satisfies PrrBij “ 1s “ p and PrrBij “ 0s “
1 ´ p). For constant p P p0, 1q and n Ñ 8, such a random matrix is nonsingular
with high probability (“whp” for short): that is, limnÑ8 PrrB is singulars “ 0.

A huge number of strengthenings and variations of Komlós’ theorem have
been considered over the years. Two particular highlights include a result of
Tikhomirov [19] that for constant 0 ă p ď 1{2, the singularity probability is
p1 ´ p ` op1qqn, and a result of Costello, Tao, and Vu [9] that symmetric dis-
crete random matrices are also nonsingular whp. A symmetric binary matrix can
be interpreted as the adjacency matrix of a graph, so the Costello–Tao–Vu theo-
rem has an interpretation in terms of random graphs: for constant p P p0, 1q, an
Erdős–Rényi random graph G „ Gpn, pq has nonsingular adjacency matrix whp1.
Actually, Komlós’ theorem can be interpreted in graph-theoretic terms as well:
the random matrix B described above can be interpreted as the biadjacency ma-
trix of a bipartite Erdős–Rényi random graph G „ Gpn, n, pq (where one of the
parts corresponds to the rows of the matrix, and the other part corresponds to the
columns).

If p decays too rapidly with n (in particular, if p ď p1 ´ εq logn{n for some
constant ε ą 0), then for reasons related to the coupon collector problem, a typ-
ical outcome of G „ Gpn, pq (respectively, G „ Gpn, n, pq) has isolated vertices,
meaning that its adjacency matrix (respectively, biadjacency matrix) has all-zero
rows and is therefore singular. In fact, logn{n is a sharp threshold for singularity,
in the sense that if p ě p1 ` εq logn{n (and p is bounded away from 1) then a typ-
ical G „ Gpn, pq (respectively, G „ Gpn, n, pq) has nonsingular adjacency matrix
(respectively, nonsingular biadjacency matrix). This seems to have been first case
observed by Costello and Vu [11]2, and refinements and generalisations were proved
by Basak and Rudelson [3] and Addario-Berry and Eslava [1]. In particular, the
latter authors proved a sharp hitting time type result: if we consider the random
graph process where we start with the empty graph on n vertices (or the empty
bipartite graph with n`n vertices) and add random edges one-by-one (respecting
our bipartition, in the bipartite case), then whp at the very same moment where
the last isolated vertex disappears our graph becomes nonsingular.

1There is a slight difference between a random symmetric Bernoulli matrix and the adjacency
matrix of a random graph: namely, the adjacency matrix of any graph has zeroes on the diagonal.
However, the same techniques usually apply to both settings, and we will not further concern
ourselves with this detail.

2The Costello–Vu proof was only written for Gpn, pq, but it can be easily adapted to Gpn, n, pq;
alternatively, see [14] for a very simple proof in the Gpn, n, pq case.
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Below the threshold logn{n, it is natural to ask whether the only obstacles for
singularity are “local dependencies” such as isolated vertices. In their aforemen-
tioned paper, Costello and Vu [11] actually proved that for p ě p1{2 ` εq logn{n,
whp the subgraph obtained from Gpn, pq by deleting isolated vertices is non-
singular. In follow-up work Costello and Vu [10] considered the regime where
p ě c logn{n for any constant c ą 0; this necessitated the consideration of more
sophisticated types of “local dependencies” than isolated vertices. The most ob-
vious example is cherries : pairs of degree-1 vertices with the same neighbour.
More recently, DeMichele, the first author, and Moreira [13] gave a combinato-
rial description of the rank of G „ Gpn, pq and G „ Gpn, n, pq, in terms of a
procedure that iteratively deletes local dependencies, which holds whp whenever
limnÑ8 np “ 8 (i.e., when p asymptotically dominates 1{n).

The most challenging regime is where p “ c{n for constant c. An asymp-
totic for the typical rank of Gpn, c{nq was conjectured by Bauer and Golinelli [5]
(motivated by statistical physics considerations), and was later proved by Borde-
nave, Lelarge, and Salez [6]. In his lecture at the 2014 International Congress of
Mathematicians [21] (also in [20]), Vu asked whether one can also give a precise
combinatorial characterisation of the rank in this regime.

The main purpose of this work is to provide an answer to Vu’s question, and
the analogous question for Gpn, n, c{nq, exactly characterising the rank of sparse
random graphs (and in the process, providing a linear-time algorithm to compute
the rank).

To state our main theorem, we need to introduce the Karp–Sipser leaf removal
algorithm, which was introduced in 1981 by Karp and Sipser [15] as a tool to
study matchings in random graphs (in a paper which kickstarted the differential
equations method for random graph processes; see [22]), but is now also of great
importance in statistical physics, theoretical computer science, and random matrix
theory (see for example [5, 4, 18, 6, 7]).

Definition 1 (Karp–Sipser leaf removal). Starting from a graph G, choose an
arbitrary degree-1 vertex and delete it together with its neighbour. Repeat this
“leaf-deletion” until no further degree-1 vertices remain. Let ipGq be the number
of isolated vertices in the resulting graph. If G is bipartite, let i1pGq and i2pGq be
the number of isolated vertices on the two sides of the given bipartition V1, V2. Let
coreKSpGq be the graph of remaining non-isolated vertices (the Karp–Sipser core).
One can check that ipGq and coreKSpGq (and i1pGq, i2pGq, if G is bipartite) do
not depend on the order that the leaf-deletions are performed (see for example the
appendix of [4]).

It is easy to check that a single step of leaf-removal decreases rankApGq by ex-
actly 2, and ifG is bipartite, decreases rankBpGq by exactly 1. It is then easy to de-
duce that rankApGq ď n´ipGq ifG has n vertices (i.e., corankApGq ě ipGq), and if
G is bipartite with n vertices on each side then rankBpGq ď n´maxpi1pGq, i2pGqq
(i.e., corankBpGq ě maxpi1pGq, i2pGqq). We will refer to these two bounds as the
Karp–Sipser bounds for the rank of ApGq and BpGq, respectively. We remark that
there is a one-sided version of the Karp–Sipser bound for BpGq (where leaves are
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only removed from one of the two sides of our bipartite graph), sometimes called
the 2-core bound in the computer science and statistical physics literature [8, 2, 12].

The Karp–Sipser process takes care of “tree-like” local dependencies. In ran-
dom graphs Gpn, pq or Gpn, n, pq with np Ñ 8, these are whp the only types of
dependencies that exist (see [13, 10]); that is, the Karp–Sipser core is nonsingular,
so the Karp–Sipser bound is sharp.

However, in the case p “ Op1{nq, there may be “cycle-like” local dependencies
in the Karp-Sipser core, such as pairs of degree-2 vertices with the same neigh-
bourhood. We capture dependencies of this type in the following definition.

Definition 2 (Special cycles). Say an induced cycle in a graph G is special if its
length is divisible by 4, and if every second vertex has degree 2 in G. In particular,
an isolated cycle is a cycle in which every vertex has degree exactly 2 (i.e., it is its
own connected component), so isolated cycles with length divisible by 4 are special
“in two different ways”. Let spGq be the number of special cycles in G, where we
count each isolated cycle twice.

If G is bipartite, say an induced cycle in G is 1-special (respectively, 2-special)
if its length is divisible by 4, and every vertex in V1 (respectively, every vertex in
V2) has degree 2. Let s1pGq and s2pGq be the numbers of 1-special and 2-special
cycles in G, respectively.

Our main theorem says that for c ‰ e, the rank of a sparse random graph
Gpn, c{nq or Gpn, n, c{nq can be described in terms of the Karp–Sipser bound and
the special cycles within the Karp–Sipser core.

Theorem 3. Fix a constant c ‰ e.

(A) Let G „ Gpn, c{nq. Then whp corankApGq “ ipGq ` spcoreKSpGqq.
(B) Let G „ Gpn, n, c{nq. Then whp

corankBpGq “ max
`
i1pGq ` s1pcoreKSpGqq, i2pGq ` s2pcoreKSpGqq

˘
.

Our proof of Theorem 3 involves a wide range of tools and ideas, both origi-
nal and adapted from existing work. This includes analysis of degree-constrained
random graphs and of the Karp–Sipser leaf-removal algorithm, robust analysis of
random walks, spectral convergence machinery for locally convergent graphs, a
“rank-boosting” technique, and some special-purpose notions of matrix pseudoin-
verses and “minimal kernel vectors”. To try to give a rough impression of the most
fundamental difficulty compared to previous work: note that the rank of a matrix
can be interpreted as the size of its largest nonsingular submatrix. In the set-
ting of most previous work, maximum nonsingular submatrices are in some sense
“robustly” nonsingular (in particular, the corresponding subgraphs have good ex-
pansion properties, which turn out to play a crucial role) and one can use fairly
lossy estimates. However, in our situation the largest nonsingular submatrices are
in some sense “only barely nonsingular”, with essentially the weakest possible ex-
pansion a nonsingular submatrix can have, and there is almost no room to make
any kind of lossy approximation.
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Once one has a characterisation of the rank in terms of explicit combinatorial
structures, it becomes possible to prove further results about the rank via combi-
natorial tools. Indeed, as corollaries of our main theorem and its proof, we are able
to show a number of additional theorems: we compute the asymptotic singularity
probability of the 2-core, we obtain a very strong bound on the difference between
the matching number and the rank, and we prove a central limit theorem for the
rank of Gpn, c{nq.
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On vertex Ramsey graphs with forbidden subgraphs

Michael Krivelevich

(joint work with Sahar Diskin, Ilay Hoshen, and Maksim Zhukovskii)

A graph G is said to be r-vertex Ramsey for a graph A is every r-coloring of V pGq
has a monochromatic copy of A. Which graphs can be vertex-Ramsey for a given
graph A? A classical result due to Nešetřil and Rödl [1] states that given a finite
family of graphs F , a graph A and a positive integer r, if every graph B P F has
a 2-vertex-connected subgraph which is not a subgraph of A, then there exists an
F -free graph which is vertex r-Ramsey with respect to A.

Our main result shows that the above sufficient condition is also necessary. We
say that B is an A-forest of size ℓ if B “ Yℓ

i“1Bi, where for every 1 ď i ď ℓ, Bi is

isomorphic to a subgraph of A, and for every i ě 2,
ˇ̌
V pBiq X V

`
Yi´1

j“1Bj

˘ ˇ̌
ď 1.

Clearly, B is an A-forest if and only if every 2-connected subgraph B0 of B is a
subgraph of A. We then have:

Theorem 1. Let ℓ ą 0 be an integer. Let B be an A-forest of size ℓ. Let r ą 0
be an integer such that r ě ℓ p2p|V pAq| ´ 1qp|V pBq| ´ 2q ` 1q, and let G be an
r-vertex Ramsey graph with respect to A. Then G contains a copy of B.
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Towards the Erdős–Hajnal Conjecture

Matija Bucić

(joint work with Pablo Blanco and Tung Nguyen, Alex Scott and Paul Seymour)

A graph G contains a graph H if H is isomorphic to an induced subgraph of G,
and G is H-free otherwise. Erdős and Hajnal [6, 7] proposed in 1977 the following
well-known conjecture, stating that unlike in arbitrary graphs where we can only
guarantee a clique or a stable set of polylogarithmic size if we impose even a little
bit of structure on the graph, by say forbidding some fixed graph H as an induced
subgraph, we are suddenly guaranteed a polynomial-size clique or an independent
set.

Conjecture 1. For every graph H there exists c ą 0 such that every H-free graph
G contains a clique or an independent set of order at least |G|c.
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The conjecture attracted a great deal of attention over the years with two large
surveys [9, 2] focusing exclusively on it. The one due to Gyárfás from the late ’90s
[9] raised the question of trying to prove the conjecture for specific small graphs.
There seem to be two major motivating factors behind this. The first one is that
it is easier to think about the conjecture with a fixed small forbidden structure in
mind and we may hope the ideas developed might apply in much more generality.
The second is a classical result due to Alon, Pach and Solymosi [1] that the class
of graphs satisfying the Erdős–Hajnal Conjecture is closed under the substitution
operation, in particular, this implies that proving the conjecture for any new fixed
graph immediately implies it for an infinite family of graphs. In particular, the
last remaining case explicitly raised by Gyárfás is the five-vertex path, which is
also the smallest open case of the Erdős–Hajnal Conjecture.

In terms of general results, the best result until now which applies to all graphs
H dates back to the original paper of Erdős and Hajnal where they proved the
following:

Theorem 2. For every graph H there exists c ą 0 such that every H-free graph

G contains a clique or an independent set of order at least 2c
?

log |G|.

We prove the first numerical improvement of this result, which applies for all
graphs H , since it was announced, over 45 years ago:

Theorem 3 (B., Nguyen, Scott, Seymour). For every graph H there exists c ą 0
such that every H-free graph G contains a clique or an independent set of order

at least 2c
?

log |G| log log |G|.

While it might seem like a modest improvement our new improved bound is a
very natural “intermediate” point between the theorem and conjecture of Erdős
and Hajnal. Indeed it was raised by Conlon, Fox and Sudakov as an intermediate
goal in [5]. In addition, preceding the very recent resolution of Conjecture 1 in the
case of H “ C5 by Chudnovsky, Scott, Seymour and Spirkl [4] the same group of
authors together with Fox previously proved Theorem 3 in this special case in [3].

In a certain sense the main reason behind the bound in Theorem 3 appearing as
a natural milestone when one tries to prove Conjecture 1 is rooted in the original
approach of Erdős and Hajnal yielding Theorem 2. In fact, it arises as a natural
“barrier” for this approach. Our second result manages to break this barrier in
the smallest open case of the conjecture, namely when H “ P5, the five vertex
path.

Theorem 4 (Blanco, B.). There exists c ą 0 such that every P5-free graph G

contains a clique or an independent set of order at least 2cplog |G|q2{3

.

We also manage to extend the substitution result of Alon, Pach and Solymosi to
apply for the class of graphs which satisfy the weaker bound above, in particular
implying that we obtain the same improvement for an infinite family of graphs.

Over the years there have been a number of results closely related to the Erdős–
Hajnal Conjecture (namely Conjecture 1). Our proof methods allow us to improve
the bounds in a number of these results.
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The first one of these is an often very useful theorem of Rödl [11] which states
that:

Theorem 5. For every graph H and all ε ą 0, there exists δ ą 0 with the following
property. For every H-free graph G, there exists S Ď V pGq with |S| ě δ|G| such
that one of GrSs, GrSs has at most ε

`|S|
2

˘
edges.

The second one is a “supersaturation” type strengthening of Theorem 5 due to
Nikiforov [10]:

Theorem 6. For every graph H and all ε ą 0, there exists δ ą 0 such that if
G is a graph containing less than pδ|G|q|H| induced copies of H, then there exists

S Ď V pGq with |S| ě δ|G| such that one of GrSs, GrSs has at most ε
`|S|

2

˘
edges.

A very natural question which arises given this result and actually directly
connects it to the Erdős–Hajnal Conjecture, is how large can we take δ as a
function of ε? Rödl’s original proof gave a tower-type bound because it used
the regularity lemma, but Fox and Sudakov [8] made a significant improvement,
showing a common generalisation of both Theorem 2 and Theorem 6:

Theorem 7. There exists c ą 0 such that for every graph H and all ε P p0, 1{2q,
setting δ “ 2´c|H|plog 1

ε q2

satisfies Theorem 6.

We obtain a strengthening of Theorem 7, which is in turn, an improvement over
Theorem 6 and Theorem 5. In addition, this result has our new general bound on
the Erdős–Hajnal Conjecture, namely Theorem 3, as an immediate corollary.

Theorem 8 (B., Nguyen, Scott, Seymour). For every graph H there exists c such
that, if ε P p0, 1{2q and

δ “ 2´cplog2 1
ε q2{ log log 1

ε ,

and G is a graph containing less than pδ|G|q|H| induced copies of H, then there

exists S Ď V pGq with |S| ě δ|G| such that one of GrSs, GrSs has at most ε
`|S|

2

˘

edges.
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Hyperplane covers of finite spaces

István Tomon

(joint work with János Nagy, Péter Pál Pach)

Let p be a prime. What is the minimum number of hyperplanes in a covering H

of the finite space Fn
p? Clearly, without further assumptions on H, the answer

is p, as one can take the p translates of any hyperplane H , and this is minimal.
Therefore, one would like to impose certain restrictions to avoid this triviality.
Problems of this sort are extensively studied, one of the classical results in the
area is due to Alon and Füredi [1]. They show that removing a single point
of Fn

p changes the answer drastically, the minimal number of hyperplanes in a
covering becomes exactly pp ´ 1qn (to be more precise, in [1] they considered
coverings of rksnztp1, . . . , 1qu over R, however, their arguments extend easily to
the aforementioned finite field variant). Here, we consider a different variation of
this problem.

A covering of a set with a collection of its subsets is irredundant, if no proper
subcollection forms a covering. Given a hyperplane H in Fn

p , we denote by HK

the normal vector of H . That is, if H is given by the equation xv, xy ` t “ 0 with
some v P Fn

p zt0u and t P Fp, we have HK “ v (note that v is unique only up to
scaling, but this will cause no issues later). Equipped with these definitions, we
are interested in the minimal number of hyperplanes in an irredundant covering
H of Fn

p such that the vectors tHK : H P Hu span the whole space. We denote
this minimum by fppnq. The motivation for studying this function comes from
surprising connections with several long-standing conjectures in linear algebra and
group theory, which we discuss later.

Let us first make some simple observations about fppnq. To begin with, fpp1q “
p and fpp2q “ p ` 1. While the former is trivial, the latter requires some expla-
nation. Consider the p ` 1 lines in F2

p going through the origin. These form an
irredundant covering, and the normal vectors trivially span the whole space, show-
ing that fpp2q ď p ` 1. On the other hand, as every line in F2

p covers exactly p

points, the only covering with p lines is the one which consists of the p translates of
a fixed line, in which case the normal vectors only span a 1-dimensional subspace.
Therefore, fpp2q ě p` 1. In general, a blow-up type construction gives the upper
bound fppnq ď r pn

2
s`1, and this is the best upper bound we are aware of for every

prime p and n ě 2. From below, it is easy to show that fppnq ě n ` 1. Indeed, if
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the vectors tHK : H P Hu span Fn
p , then there are at least n of them. But if they

are linearly independent, it is easy to show that H cannot be a covering.
One might notice that in case p “ 2, the lower and upper bounds coincide, so

we have f2pnq “ n ` 1. The problem becomes interesting when p ě 3. It turns
out that proving a lower bound of the form fppnq ě p1 ` εpqn with some εp ą 0 is
already difficult, with several surprising consequences.

‚ Given A Ă F and a multiset B Ă Fn
p , say that B is an A-basis if every

v P Fn
p can be expressed as v “ ř

bPB cbb, where cb P A for every b P B.
Also, B is an additive basis, if B is a t0, 1u-basis. The Additive Basis
conjecture [2] of Alon, Linial and Meshulem states that for every p there
exists some k “ kppq such that union of k linear basis in F

n
p is an additive

basis. This conjecture is wide open for every p ě 3. It turns out that if
f3pnq ě p1 ` εqn for some ε ą 0, then the Additive basis conjecture holds
for p “ 3.

Szegedy [8] proposed a weakening of the Additive basis conjecture: there
exists some k1 “ k1ppq such that the union of k1 linear basis is an pFpzt0uq-
basis. The statement fppnq ě p1 ` εpqn for some εp ą 0 implies this
conjecture.

‚ The Alon-Jaeger-Tarsi conjecture [3, 4] states the following. Let p ě 5
and let M P Fnˆn

p be an invertible matrix. Then there exists x P Fn
p such

that neither x, nor Mx has a zero coordinate. In [3], it was proved that
the conjecture holds if p is a proper prime power, however, it remained
open for every prime p until recently. Nagy and Pach [5] proved that the
conjecture holds if p ě 67, p ‰ 79. Surprisingly, if p satisfies fppnq ą 2n,
then the Alon-Jaeger-Tarsi conjecture holds for p.

‚ Let G be an abelian group, and let H1x1, . . . , Hkxk be an irredundant
covering of G with cosets, where H1, . . . , Hk ă G. Pyber [7] proposed the

conjecture that |G :
Ş

iPrks Hi| “ 2Opkq. This conjecture is implied by the

statement fppnq “ Ωpn log pq.
Building on the ideas of [5], we establish the following lower bound in [6].

Theorem 1. There exists c ą 0 such that fppnq ě c log p
log log p

¨ n. Also, there exists

ε ą 0 such that if p ě 5, then fppnq ě p1 ` εqn.

In my talk, I give a rough outline of the proof of this theorem. As one can
see, Theorem 1 resolves the conjecture of Szegedy [8] about weak additive bases
for p ě 5, and it implies the Alon-Jaeger-Tarsi conjecture for sufficiently large
primes. Actually, by studying properties of irredundant coverings (therefore, not
by directly by looking at the function fppnq), we [6] can also establish the following
strengthening of the weak additive basis conjecture: for every p, there exists A Ă
Fp of size Oplog pq such that the union of p basis is an A-basis in Fn

p . In the case of
coset covers of groups, we get the following bound. This improves an old result of
Tomkinson [9] for abelian groups, and is only a bit short of the conjectured bound
of Pyber.
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Corollary 2. Let G be an abelian group, and H1x1, . . . , Hkxk be an irredundant
coset cover of G. Then

|G :
č

iPrks
Hi| ď 2Opk log log kq.
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Roots of random functions: Recent progress and open questions

Van Vu

One of the key question in mathematics is: Where are roots of a function ?

In this work, we focus on the case when the function in question is generated
randomly. Random functions have been studied for almost 100 years in many
fields of mathematics, from probability to analysis to combinatorics.

A function is typically written down in a base fpxq “ řn
i“0 aihipxq, where h0, h1,

h2, ¨ ¨ ¨ form a base.

Example. hipxq “ xi (Taylor expansion), hipxq cos ix (Fourier expansion) etc.

Random functions. To obtain a random function, one sets ai be independent
random variables. For normalization, we write ai “ ciξi where ci are scalar coeffi-
cients and ξ are independent random variables with mean 0 and variance 1. These
ξi are not necessarily idd.

Example. Consider the Taylor base hipxq “ xi; in this case we talk about random
polynomials. Within this class, there are already many different ensembles which
play important roles in different fields. For instance,
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ci “ 1; Kac polynomials

ci “ 1?
i!

; Weyl polynomials

ci “
b`

n
i

˘
; Binomial polynomials.

While our study also treats complex roots, in the rest of the abstract we con-
centrate on real roots. Apparently, the number of real roots is a random variable.

Problem 1. What can we say about its mean, variance, and limiting distribution
of this real random variable ?

The series of papers by Kac and Littlewood-Offord in the 1940s on this question
is the starting point of the theory of random functions. However, after more than
80 years, many very basic questions are still open. Let us start with

Kac polynomials. The simplest ensemble when all ci “ 1

Pnpxq “
nÿ

i“0

ξix
i,

where ξi are i.i.d copies of a random variable ξ with mean 0 and variance 1. Let
Nn,ξ denote the number of real roots of Pn.

Theorem 2 (Littlewood-Offord; 1943). For ξ being Rademacher, Gaussian, or
uniform on r´1, 1s, we have with probability 1 ´ op1q

logn

log logn
ď Nn,ξ ď log2 n.

In the proof of this theorem, Littlewood and Offord introduced their famous
anti-concentration inequality. At about the same time, Kac discovered a general
formula for the expectation

(1) ENn,ξ “
ż 8

´8
dt

ż 8

´8
|y|ppt, 0, yqdy,

where ppt, x, yq is the joint density for pPn,ξptq, P 1
nptqq at the point px, yq.

In the Gaussian case, the RHS can be computed explicitly and Kac showed

(2) ENn,Gauss “ 1

π

ż 8

´8

d
1

pt2 ´ 1q2 ` pn` 1q2t2n
pt2n`2 ´ 1q2 dt “ 2

π
logn` oplog nq.

The RHS of Kac’s formula is not easy (in many cases impossible) to compute if
ξ is not Gaussian. In particular, the Rademacher (˘1) case was a real challenge.
10 years after Kac’s paper, Erdos-Offord (1956) showed (using an entirely new
argument) that

(3) ENn,Rademacher “ 2

π
logn ` oplognq.
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In the late 1960s and early 1970s, Ibragimov and Maslova successfully gener-
alized Erdös-Offord’s method to handle any general random ξ with mean 0 and
variance 1, showing that

(4) ENn,ξ “ 2

π
logn` oplog nq.

Thus, it takes 3 decades and the join effort of many leading mathematicians to
settle this very first case. Now, we state the general problem

Problem 3. Determine the expectation ENn,ξ for general random polynomials or
even general random functions.

A notable fact here is that Kac’s formula (or more advanced methods on Gauss-
ian processes) allows us to obtain a precise answer in the case when ξ is Gaussian.
Much less has been known for other variables. Until recently, there was no analogue
of Erdös-Offord’s result for other classes of random polynomals (listed above), as
their proof used the fact that all ci “ 1 in a critical way. Now we introduce our
new method

The Universality method. This is a method to prove asymptotics results con-
cerning one ensemble by comparison to another ensemble whose behavior is known.

A simple example is the basic central limit theorem for the sum Sn “ 1?
n

ř
i ξi,

of i.i.d random variables ξi with mean zero and unit variance. We can prove
this theorem by first noticing that the statement holds for the case when ξi are
Gaussian (in this case Sn is itself Gaussian). Next, we show that when we switch
each Gaussian variable to a general ξ, the distribution of Sn does not deviate too
much. This seems to be an overkill, as one can prove the CLT in more direct
ways. However, for many subtle quantities, this is essentially the only efficient
method at the moment. An early combinatorial application in this spirit is the
Sandwiching argument (initiated by Kim and Vu, around 2003) which compares
random regular graphs with Erdos-Renyi graphs by switching edges. In 2009, Tao
and Vu successfully used the Universality approach for many problems in random
matrix theory (leading to, along others, the Four moment theorem).

In 2015, Tao and Vu managed to use this method to study the number of real
roots of Weil polynomial and Binomial polynomial with ξ being Rademacher. By
a direct comparison with the Gaussian case, we obtained, for a general variable ξ

ENn,ξ “ p1 ` op1qqENn,Gauss.

In both cases, the expectation is of order Θp?
nq. The method also works

for Kac’s polynomials (reproving Erdos-Offord result), but the details are quite
technical, with a heavy use of Inverse Littlewood-Offord theory.

Moving from Taylor expansion to Fourier expansion, researchers have been con-
sidering functions of the form
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Fnpxq “
nÿ

i“0

ciξi cos ix,

or, more generally,

Fnpxq “
nÿ

i“1

ciξi cos ix` diηi sin ix.

These are called random trigonometric polynomials. The behavior of the Kac
polynomial, Weyl polynomial, and trigonometric polynomials are very different.
The first has (typlically) Θplognq real roots, the second Θp?

nq, and the third
Θpnq. Moreover, the methods researchers used to treat these three ensembles
have been usually very technical and completely different. Furthermore, the uni-
versality arguments from Tao-Vu’s paper do not apply for random trigonometric
polynomials, and relatively little was known beyond the Gaussian setting.

A new, unified, universality frame work. In 2017, O. Nguyen and Vu found a
new universality argument which gives a unified treatment of all discussed classes of
random functions and many others. Our result provides a general condition which
guarantees that two ensembles can be compared. In all known cases, checking the
validity of the condition is straightforward. This way, we deduced new proof of
many complicated results in a few pages, via routine computation. We can also
prove several new results. The proof of the master (universality) theorem itself is
also new, much shorter and simpler than the proofs of the universality theorem in
any individual case; see our paper (Roots of random functions: a framework for
local universality, American Journal of Mathematics 144(01), 2022, 1-74) for more
details.

For variance and limiting distributions, we only have results for few special en-
sembles. Most of the problem is still open, and is at the very heart of the theory.

Nearly all k-SAT functions are unate

Yufei Zhao

(joint work with József Balogh, Dingding Dong, Bernard Lidický,
and Nitya Mani)

We establish the following result, originally conjectured by Bollobás, Brightwell,
and Leader [4].

Theorem 1. Fix k ě 2. The number of k-SAT functions on n Boolean variables

is p1 ` op1qq2n`pn
kq.

Equivalently: a 1 ´ op1q fraction of all k-SAT functions on n Boolean variables
are unate.

Here a k-SAT function is a function f : t0, 1un Ñ t0, 1u of the form fpx1, . . . , xnq “
C1^C2^¨ ¨ ¨^Cm, where each clause Ci has the form z1_¨ ¨ ¨_zk with z1, . . . , zk P
tx1, x1, . . . , xn, xnu. (This is the CNF version of the problem; it is also equivalent
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to consider the DNF version.) We call such a function unate if it is monotone after
first negating some subset of variables, or equivalently, each variable xi appears
only positively (as xi) or only negatively (as xi). For fixed k ě 2, an easy argument

shows that the number of unate k-SAT functions is p1 ` op1qq2n`pn

kq.
Bollobás, Brightwell, and Leader [4] proved a weaker version of this conjecture

for k “ 2: the number of 2-SAT functions on n Boolean variables is 2p1`op1qqpn2q.
The conjecture for k “ 2 was proved by Allen [1] and k “ 3 by Ilinca and Kahn [6].
Our work [2, 5] settles the conjecture completely.

We obtain a slightly stronger conclusion. Here a minimal k-SAT formula is a
formula where deleting any clause changes the function.

Theorem 2. For k ě 2. A 1 ´ op1q fraction of all minimal k-SAT formulae on n
Boolean variables are unate.

Our work has two parts. The first part [5] (joint with Dong and Mani) re-
duces the Bollobás–Brightwell–Leader conjecture to a Turán problem on partially
directed hypergraphs. I presented this part in an April 2022 Oberwolfach meeting
(workshop 2217: Combinatorics, Probability and Computing). Balogh, who was
also present at the meeting, and also Lidický, later joined the effort, and together
with all the coauthors, we solved the Turán problem, thereby fully resolving the
Bollobás–Brightwell–Leader conjecture.

Next we state our Turán result on partially directed hypergraphs. We refer to

[5] for the definitions of a k-PDG and ~Tk.

Theorem 3. Fix k ě 2. There exists θ ą log2 3 such that every ~Tk-free n-vertex
k-PDG with α

`
n
k

˘
undirected edges and β

`
n
k

˘
directed edges satisfies

α` θβ ď 1 ` onÑ8p1q.
We prove the inequality by providing a short sum-of-squares certificate. We

were assisted by the use of the flag algebra method, which helped us solve the
problem for small values of k, and from which we could extrapolate to general k
by hand. This is an interesting application of the flag algebra method for which
the computer played a crucial assistive role in finding the form of the answer, but
ultimately the proof is quite clean and does not require substantial computation.

There several interesting open directions. What happens when k grows with
n? Bollobás and Brightwell [3] conjectured that as long as k “ kpnq ď p1{2 ´ cqn
for any constant c ą 0, the number of k-SAT functions is 2p1`op1qqpn

kq. Our proof
method allows k to grow slowly with n, but the quantitative dependencies are far
worse than linear in n. It would be interesting to investigate the threshold kpnq
below which a typical k-SAT function is unate.

In a different direction, what about sparser formulae? Consider a uniformly
chosen minimal k-SAT formula with n variables and m clauses. For a fixed k,
what is the threshold mpnq above which a typical minimal k-SAT formula is unate?
And when the typical formula is not unate, what is its typical structure? These
questions are analogous to well-studied questions in random graphs concerning the
typical structure of a triangle-free graph at various edge densities.
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Large Cliques in Graphs with High Chromatic Number

Penny Haxell

(joint work with Colter MacDonald)

The classical theorem of Brooks [2] tells us that the chromatic number χpGq of
every graph G with maximum degree ∆pGq ě 3 attains the simple greedy upper
bound χpGq “ ∆pGq ` 1 only when G contains a clique of size ∆pGq ` 1 (and
hence G “ K∆pGq`1 if it is connected). The very natural question therefore arises:
if G has chromatic number ∆pGq, or more generally very close to ∆pGq, what can
we say about G? In particular, is it necessarily true that it must contain a large
clique?

In 1977, Borodin and Kostochka [1] took a first step in this direction, and
conjectured that if ∆pGq ě 9 and χpGq “ ∆pGq then G should contain a clique
with ∆pGq vertices. The condition ∆pGq ě 9 is necessary due for example to the
graph C5p3q formed by replacing each vertex of a 5-cycle by a triangle, and each
edge by a K3,3. The maximum degree of C5p3q is 8, it does not contain a K8 (or
even a K7), and it is not 7-colourable since it has 15 vertices and no independent
set of size 3.

Despite substantial work on the problem by many authors, the Borodin-
Kostochka Conjecture remains open in general. In their original paper, Borodin
and Kostochka [1] showed the existence of a clique on tp∆pGq`1q{2u vertices when
∆pGq ě 7. This was improved by Mozhan [18], who showed the existence of a
clique on tp2∆pGq`1q{3u vertices when ∆pGq ě 10. A breakthrough was achieved
by Kostochka who improved the clique size to ∆pGq ´ 28 in [16]. This line of work
was continued in Mozhan’s Ph.D thesis (which is not easily available, see [20]),
where he proved the existence of a p∆pGq ´ 3q-clique for ∆pGq ě 31. The best
known result is currently ∆pGq´3 for ∆pGq ě 13 due to Cranston and Rabern [7].
There has also been significant progress in proving the Borodin-Kostochka Con-
jecture for special classes of graphs, for example claw-free graphs [6] and graphs
without induced copies of P5 or C4 [9]. Reed [20] proved the very strong result that
the conjecture holds for all graphs of sufficiently large maximum degree (where the
bound implied by the proof is about 1014, but it is remarked in the paper that
this could be brought down substantially, perhaps as low as 106 or even 103).
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Graphs G for which χpGq “ ∆pGq ´ t for t in the range 1 ď t ď 5 were studied
by Farzad, Molloy and Reed [8], who proved that if ∆pGq is at least some (large
unspecified) constant, then such graphs must contain one of a very specific set of
subgraphs, all of which contain a large clique. For example, in the simplest case
t “ 1, if χpGq ě ∆pGq ´ 1 then G contains a p∆pGq ´ 1q-clique or a p∆pGq ´ 4q-
clique joined to a C5 (which itself contains a p∆pGq ´ 2q-clique). When t “ 4 the
list consists of 420 subgraphs, and when t “ 5 it grows to at least 17000.

Our main result is the following.

Theorem 1. Let t be a nonnegative integer. Then every graph G with χpGq “
∆pGq ´ t and ∆pGq ě 6t2 ` 20t` 16 contains a clique of size ∆pGq ´ 2t2 ´ 6t´ 3.

(We remark that we do not attempt to obtain the best lower bound for ∆pGq,
and the expression 6t2 ` 20t ` 16 can be somewhat improved with extra work.)
Theorem 1 generalizes the result of Cranston and Rabern [7] and Mozhan [18],
and also in spirit the result of Farzad, Molloy and Reed [8], with a weaker lower
bound for the clique size for 1 ď t ď 5 but with a small and concrete lower bound
condition on ∆pGq. It also makes a step towards the resolution of a long-standing
question of Reed [21], who addressed the more general problem of proving the
existence of large cliques in graphs G in which χpGq is large in terms of ∆pGq. He
conjectured that the maximum size ωpGq of a clique in any graph G should satisfy

χpGq ď r
1

2
p∆pGq ` 1 ` ωpGqqs.

(The graph C5psq obtained by replacing each vertex of C5 with a Ks is a tight
example for every value of s.) Interpreting Reed’s Conjecture for χpGq “ ∆pGq´ t

gives that a clique of size at least ∆pGq ´ 2t ´ 2 should exist in G. Our result
provides a weaker form of this statement, with a quadratic expression in t instead
of the linear quantity 2t` 2.

This related conjecture has also generated much interest, for example, see [5,
11, 13, 14, 15, 19, 21, 22].

The main tool we use is the method of Mozhan partitions. This important
technique was introduced by Mozhan in [18], and further developed and used
extensively by Cranston and Rabern in e.g. [6, 7] to make significant progress on
the Borodin-Kostochka Conjecture. In particular this machinery was key in their
proof of the best current bound for the general version of the problem. Typically
a graph will have many Mozhan partitions, and the method involves a scheme
called a move sequence for exploring the set of all such partitions to find one that
is particularly favourable. While we use this same basic approach in our proof,
our choice of move sequence is quite different from that used by Cranston and
Rabern in [7], and in particular provides a simpler proof of their result as well as
the generalization given by Theorem 1. We remark that the specific case t “ 1
was addressed in [17] using an argument parallel to that of [7], and gave a lower
bound of ∆pGq ´ 17 on the clique size.
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On the Ryser–Brualdi–Stein conjecture

Richard Montgomery

The study of transversals in Latin squares dates back at least to the 18th century
when Euler considered Latin squares which can be decomposed into full transver-
sals [5]. A Latin square of order n is an n by n grid filled with n symbols, so that
every symbol appears exactly once in each row and each column. A transversal
of a Latin square of order n is a collection of cells in the grid which share no row,
column or symbol, while a full transversal is a transversal with n cells.

Key examples of Latin squares include the addition tables of finite groups, which
easily provide examples that, if n is even, then there are Latin squares of order
n with no full transversal (e.g., the addition table for Z2). In 1967, Ryser [11]
conjectured that there are no such Latin squares of order n when n is odd (see
also [1]), while Brualdi [3] and Stein [13] later independently conjectured that
every Latin square of order n has a transversal with at least n ´ 1 cells. The
following combined form of these conjectures, known as the Ryser–Brualdi–Stein
conjecture, has become the most widely known open problem on transversals in
Latin squares.

Conjecture 1 (The Ryser–Brualdi–Stein conjecture). Every Latin square of order
n has a transversal with n´ 1 cells, and a full transversal if n is odd.

Towards Conjecture 1, increasingly large transversals were shown to exist in
any Latin square by Koksma [8], and Drake [4], before Brouwer, De Vries and
Wieringa [2] and Woolbright [14] independently showed that every Latin square of
order n has a transversal with at least n´?

n cells. In 1982, Shor [12] showed that

a transversal with n´Oplog2 nq cells exists in any Latin square of order n, though
the proof had an error that was only noticed and corrected by Hatami and Shor in
2008 [6]. This bound (essentially) stood for several decades until the breakthrough
work of Keevash, Pokrovskiy, Sudakov and Yepremyan [7] in 2020, which showed
that every Latin square of order n has a transversal with n ´ Oplog n{ log lognq
elements.

In this talk, I will discuss the following result.

Theorem 2. There is some n0 P N such that every Latin square of order n ě n0

contains a transversal with n´ 1 cells.

The bound Oplog n{ log log nq in the result by Keevash, Pokrovskiy, Sudakov
and Yepremyan [7] is a natural barrier, and it seems likely this is the best bound
that can be achieved with methods that approach each Latin square in the same
manner. Thus, for Theorem 2, we introduce the first techniques to identify and
exploit the possible algebraic properties behind the entries in a Latin square.

To study transversals in Latin squares, it is common to work on an equivalent
formulation in properly coloured bipartite graphs (see, for example, [7]). Let G be
a complete bipartite graph with n vertices in each class which is properly coloured
using n colours. To prove Theorem 2, it is equivalent to show that, when n is
large, G contains a rainbow matching with n ´ 1 edges. That is, a matching in
which each edge has a different colour.
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Under this equivalence, the possible algebraic properties behind the entries in
a Latin square become the possible algebraic properties of the colouring of G.
To identify some rough algebraic properties in the colouring, we consider pairs of
colours c, d which, for practical purposes, we can consider to be equivalent when
constructing a rainbow matching. Two colours c, d are considered to be equivalent
if we can robustly find small rainbow matchings M1 and M2 in G with the same
vertex class and with exactly the same colours, except M1 uses the colour c and M2

uses instead the colour d. If we are building a rainbow matching constructively, we
can add M1 to the growing matching. Then, instead of finding a rainbow matching
using exactly the unused vertices and unused colours, we need only find a rainbow
matching using exactly the unused vertices and all of the unused colours, except
now we want such a matching using exactly one colour in tc, du. If the colour c is
used in this matching, then we can switch M2 with M1 to get a rainbow matching
overall.

This is a small example of how colours c and d can be considered ‘equivalent’. In
the full proof, classes of colours are developed, where each class consists of colours
for which any pair can be considered equivalent. These classes are developed so
that they have a rough algebraic structure, inspired in part by extremal examples
for Conjecture 1.

To prove Theorem 2, we then use a combination of the semi-random method and
the absorption method. We use an implementation of the semi-random method in
this setting from work of the author with Pokrovskiy and Sudakov [9], and therefore
all the main novelty occurs in our use of absorption. Since its codification in 2008
as a general approach by Rödl, Ruciński and Szemerédi [10], absorption has been
a critical tool in turning approximate results into exact results. We aim to set
aside some special ‘absorber’ which can be extended into a rainbow matching with
p1´op1qqn edges in our properly coloured bipartite graphG using the semi-random
method. The aim is that the absorber should have some special properties to turn
this into a rainbow matching with n ´ 1 edges.

However, the extremal examples showing a full transversal may not always
exist (when n is even) demonstrate the challenge of using the absorption method
in this setting. In these examples, the algebraic properties behind the equivalent
colourings prevent the existence of the typical absorbers used for an application of
the absorbing method. To prove Theorem 2, we instead use the colour classes that
we develop to create an ‘absorption structure’ with a very restricted absorption
property. We then introduce an ‘addition structure’ with much less restrictive
requirements, which is able to identify the pair of vertices we will leave out of the
rainbow matching, leaving a set of uncovered vertices and colours that satisfies the
restrictive property required for absorption.

In summary, then, we identify some rough algebraic structure in the colouring
of G and use this to construct an absorption structure and an addition structure,
both of which we set aside. Then, we use the semi-random method method to find
a large rainbow matching using the unused vertices and colours, before applying



56 Oberwolfach Report 1/2023

the addition structure and then the absorption structure to turn this into a rainbow
matching with n ´ 1 edges.
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Rainbow matchings in hypergraphs

Lisa Sauermann

(joint work with Cosmin Pohoata, Dmitrii Zakharov)

Motivated by classical questions about transversals in Latin Squares such as the
famous Ryser–Brualdi–Stein Conjecture, there has been a lot of work on find-
ing rainbow matchings in properly edge-colored graphs (see e.g. [6, 11] and the
references therein). In a properly edge-colored graph every color class is a match-
ing, so these questions amount to finding a rainbow matching among a collection
of matchings of different colors. Similar questions have also been studied in the
setting of hypergraphs, which was the focus of this talk.

A matching in an r-uniform hypergraph is a collection of pairwise disjoint edges
(and the size of the matching is the number of edges it consists of). Given match-
ings M1, . . . ,MN in some r-uniform hypergraph, where we think of each matching
as colored in a different color, a rainbow matching is a matching consisting of edges
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e1 P Mi1 , . . . , eℓ P Miℓ with distinct indices i1, . . . , iℓ P t1, . . . , Nu (in other words,
a matching consisting of edges with distinct colors).

The following problem goes back to Aharoni and Berger [1].

Problem 1. LetM1, . . . ,MN be matchings of size t in some r-uniform hypergraph.
How large does N need to be (in terms of t and r), such that it is always possible
to find a rainbow matching of size t? In other words, how large does N need to
be such that it is always possible to find distinct indices i1, . . . , it P t1, . . . , Nu and
pairwise disjoint edges e1 P Mi1 , . . . , et P Mit?

We remark that there may be edges belonging to more than one of the matchings
M1, . . . ,MN , in which case we can think of such edges having more than one color.
To form a rainbow matching, one may choose which color to use these edges with.

Equivalently to Problem 1, one may ask about the maximum possible number of
matchings of size t in some r-uniform hypergraph without a rainbow matching of
size t. Denoting this maximum possible number by F pr, tq, the answer to Problem
1 is precisely N “ F pr, tq ` 1.

It is also natural to ask about Problem 1 with the additional restriction that
the underlying r-uniform hypergraph is r-partite. This was in fact the original
version of the problem proposed by Aharoni and Berger in [1]. Let fpr, tq be
the maximum possible number of matchings of size t in some r-partite r-uniform
hypergraph without a rainbow matching of size t. We clearly have the inequality
fpr, tq ď F pr, tq.

In the case of uniformity r “ 2, i.e. in the case of graphs, Aharoni and Berger
[1] proved that fp2, tq “ 2t ´ 2 (relying on previous ideas of Drisko [8]). For
F p2, tq the best known bounds are 2t ´ 2 “ fp2, tq ď F pr, tq ď 3t ´ 3 due to
Aharoni–Berger–Chudnovsky–Howard–Seymour [2]. In general, Glebov–Sudakov–
Szabó [10] conjectured that fpr, tq is upper-bounded by a linear function of t for
any fixed r ě 2 (or stated more formally, that for any fixed r ě 2 there is a constant
cprq such that fpr, tq ď cprq ¨ t holds for all t). Alon [4] had also already asked
in 2011 whether this is true, based on an intriguing connection with the Erdős–
Ginzburg–Ziv problem from additive combinatorics. For the fractional version of
Problem 1 (where M1, . . . ,MN are fractional matchings and one is looking for
a rainbow fractional matching), such a bound was recently proved by Aharoni,
Holzman and Jiang [3], using tools from topology.

Nevertheless, it turns out that the conjecture of Glebov–Sudakov–Szabó [10] is
actually false: We showed that for any fixed uniformity r ě 3, the functions fpr, tq
and F pr, tq are in fact on the order of tr (up to constant factors depending on r).

Theorem 2. For any fixed uniformity r ě 3, there exist positive constants cr and
Cr such that

crt
r ď fpr, tq ď F pr, tq ď Crt

r

holds for all t ě 2.

Note that for fixed uniformity r ě 3, this theorem determines fpr, tq and F pr, tq
up to constant factors. In other words, Theorem 2 essentially (up to constant
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factors) solves Problem 1 (as well as its r-partite analogue) in the setting of fixed
uniformity r ě 3.

The best previous lower bounds for both fpr, tq and F pr, tq were linear in t.
The best previous upper bound for both fpr, tq and F pr, tq was pt ´ 1q

`
tr
r

˘
due to

Munhá Correia, Sudakov and Tomon [7], stated in the following theorem. This
upper bound is on the order of tr`1 for fixed r, so Theorem 2 improves both the
known lower and upper bounds in this regime.

Theorem 3 ([7]). For any t ě 2 and r ě 2, we have

fpr, tq ď F pr, tq ď pt ´ 1q
ˆ
tr

r

˙
.

This upper bound due to Munhá Correia, Sudakov and Tomon [7] improved
upon previous upper bounds of Alon [4] and Glebov–Sudakov–Szabó [10]. Their
proof of F pr, tq ď pt ´ 1q

`
tr
r

˘
is of a linear algebraic nature, using exterior power

algebras.
Our proof of the upper bound in Theorem 2 is purely combinatorial, and is

motivated by arguments that first appeared in the context of the famous sunflower
problem [12, 5] and were later used in the resolution of the fractional Kahn–
Kalai conjecture by Frankston–Kahn–Narayanan–Park [9]. For the lower bound
in Theorem 2 we gave an explicit construction.

It is also interesting to study the functions fpr, tq and F pr, tq in the opposite
regime, where t ě 2 is fixed and r is large. For example, Alon [4] explicitly asked
about studying the function fpr, tq in the case of t “ 3 and large r, i.e. about
understanding the growth behavior of fpr, 3q as a function of r.

For fixed t ě 2 and large r, the upper bound pt ´ 1q
`
tr
r

˘
for F pr, tq due to

Munhá Correia, Sudakov and Tomon is (up to constant factors depending on t) on
the order of ptt{pt ´ 1qt´1qr{?

r, i.e. it is exponential in r with base tt{pt ´ 1qt´1

(which, for relatively large t, is roughly et). We proved that this upper bound is
tight up to sub-exponential factors in r.

Theorem 4. For any fixed t ě 2, and any large r, we have

F pr, tq ě
ˆ

tt

pt´ 1qt´1

˙r´Op?
rq
.

Here, the implicit constant in the O-notation may depend on t.
For fpr, tq, i.e. in the setting of r-partite graphs, an easy adaptation of the proof

of Munhá Correia–Sudakov–Tomon yields fpr, tq ď pt ´ 1q ¨ tr. Again, we proved
that for fixed t ě 2 and large r, this is tight up to sub-exponential factors in r.

Theorem 5. For any fixed t ě 2, and any r ě 2, we have

tr´Op?
rq ď fpr, tq ď pt ´ 1q ¨ tr.

Again, the implicit constant in the O-notation may depend on t.
Theorem 5 in particular answers a question of Glebov–Sudakov–Szabó [10],

asking whether fpr, tq can be upper-bounded by a function of the form αtβ
r (where
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αt may depend on t, but β is an absolute constant). The lower bounds in Theorems
4 and 5 can be proved via a probabilistic argument with some ingredients from
additive combinatorics. Note that Theorems 4 and 5 (together with the upper
bound F pr, tq ď pt ´ 1q

`
tr
r

˘
due to Munhá Correia–Sudakov–Tomon) determine

the functions fpr, tq and F pr, tq for fixed t ě 2 up to lower-order terms (i.e. up to
sub-exponential terms in r). Recall that in the opposite regime, for fixed r ě 3,
Theorem 2 determines these functions up to constant factors (depending on r).
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Ascending subgraph decompositions

Alexey Pokrovskiy

(joint work with Kyriakos Katsamaktsis, Shoham Letzter, Benny Sudakov)

Since
`
m
2

˘
“ 1 ` 2 ` ¨ ¨ ¨ ` m ´ 1, every graph G with

`
m
2

˘
edges can be (edge)-

decomposed into subgraphs H1, . . . , Hm´1 such that epHiq “ i. This talk was
about studying whether any extra structure can be imposed in such a decomposi-
tion. When G is complete, then a well-known conjecture of Gyárfás predicts that
the graphs Hi can be picked to be any prescribed trees. On the other hand Alavi
et al. predicted that some additional structure can be imposed on the graphs
H1, . . . , Ht even when G is a general graph with

`
m
2

˘
edges [1].
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Conjecture 1 (Alavi, Boals, Chartrand, Erdos, Oellermann, [1]). Every graph
G with

`
m
2

˘
edges has a decomposition into subgraphs H1, . . . , Hm´1 such that

epHiq “ i and for each i, Hi is isomorphic to a subgraph of Hi`1.

A decomposition of G as in the above conjecture is called an ascending subgraph
decomposition. This conjecture was known to hold for a variety of host graphs G.
Alavi et al. proved it for path/cycle forests and also bounded degree forests[1].
Gárfás, Faudree, and Schelp proved it for star forests. Fu and Hu proved it for
regular graphs. Fu proved it for graphs with maximum degree ď m{2. Additionally
there’s been a lot of interest in proving stronger conclusions for various host graphs
G. For example, the result of Fu produces an isomorphic matching decomposition
— this could be seen as a variant of edge-colouring. Ma, Zhou, Zhou proved that
star forests with stars of size ě m have an ascending star decomposition [4]. This
is equivalent to the following purely number-theoretic fact:

Theorem 2 (Ma, Zhou, Zhou, [4]). Let x1, . . . , xt ě m be numbers summing to`
m
2

˘
. Then the interval rm ´ 1s “ t1, . . . ,m ´ 1u can be partitioned into disjoint

sets S1, . . . , St with
ř
Si “ xi for all i.

We point to Chapter 8 of the book [2] for a detailed survey of ascending de-
compositions. In this talk a proof of Conjecture 1 for sufficiently large m was
presented.

Theorem 3 ([3]). For sufficiently large m, every graph with
`
m
2

˘
has an ascending

subgraph decomposition.

The graphs in the ascending decomposition produced by this theorem have
a very special structure — each Hi consists of a vertex disjoint union of one
(potentially large) star S together with a lot of components of bounded size. An
important intermediate step in the proof of constructing ascending decompositions
in this theorem is to first construct isomorphic decompositions of graphs. In this
direction the following lemma is proved.

Lemma 4 ([3]). Let k P rm{100, 100ms, and let G be a graph with ď m2 edges.
Then all, except opm2q, edges of G can be decomposed into k graphs H1, . . . , Hk

which are all isomorphic to each other.
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From Sparse To Dense Random Graphs: Using Sparsity to Prove
Results About Mean Field Models

David Gamarnik

(joint work with Yatin Dandy, Lenka Zdeborová)

Friendly bisections. Background and the main results

A partition of nodes rns of a simple graph into two subsets A,B Ă rns, A Y B “
rns, AXB “ H is called “friendly” if for each node u P rns the number of neighbors
of u on the same side as u is at least as large as the number of neighbors on the
opposite side of u. Namely, dApuq ě dBpuq,@u P A and dBpuq ě dApuq,@u P B,
where dSpuq denotes the number of neighbors of u in the set S Ă rns. We call a
partition asymptotically friendly if the relation above holds for all by opnq many
nodes (as such this definition is only applicable to sequences of graphs as opposed
to a fixed graph). We study the existence of friendly or asymptotically friendly
partitions in dense random graphs sequences Gpn, 1{2q which are also bisections,
in the sense that |A| and |B| are equal when n is even, or differ by at most 1,
when n is odd. A conjecture by Füredy [Für88] also included as Problem 20 in
Green’s [Gre] list of 100 open problems, postulates the existence of such bisections
with high probability (w.h.p.) as n increases. This conjecture was confirmed
recently by Ferber et al [FKN`21]:

Theorem 1. Asymptotically friendly bisections exist in Gpn, 1{2q w.h.p. as n Ñ
8.

The proof of the theorem above is constructive and is based on analyzing a
carefully crafted stochastic process which ends in an asymptotically friendly bisec-
tion.

In this work we offer an alternative proof of Theorem 1 which is also a general-
ization of the theorem. To state the theorem we fix h ě 0. A bisection pA,Bq of
rns is called h-friendly if

dApuq ´ dBpuq?
n

ě h, @ u P A,

dBpuq ´ dApuq?
n

ě h, @ u P B.

The definition of pA,Bq being asymptotically h-friendly is similar. The scaling
¨{?

n will be justified next. We establish the following result, which generalizes
Theorem 1.

Theorem 2. An asymptotically h-friendly partition of Gpn, 1{2q exists w.h.p. if
h ă h˚ « 0.175 and does not exist w.h.p. if h ą h˚.

The proof approach for Theorem 2 is unfortunately non-constructive. In fact
we provide an evidence that a constructive approach for the case when h is strictly
positive might not exist in the sense that polynomial time algorithms for finding
h-friendly asymptotic partitions might not exist. We comment on in the next
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section. For now we provide a brief overview of the proof approach. The proof is
based on (a) establishing a similar result in a sparse random graph setting, namely
for the graph Gpn, c{nq where c is a sufficiently large constant, and (b) utilizing
a powerful probabilistic invariance methods also known as Lindeberg’s method
which allows one to substitute one randomness (in our case symmetric Bernoulli
with parameter 1{2) with another randomness (in our case biased Bernoulli with
parameter c{n).

The proof of the existence of an asymptotically friendly bisections in sparse
graphs Gpn, c{nq (with an appropriate modification of the notion of the underlying
asymptotics) is done following the methods in Gamarnik and Li [GL18]. There 2-
dimensional large deviations method are used coupled with a configuration model
of a random graph to argue the existence of an asymptotically friendly partition
(though not called that way in the paper). The Lindeberg’s method follows the
lines used earlier for connecting optimization problems in sparse and dense random
graphs, such as [DMS17],[Sen18],[Pan18],[CGPR19]. An interesting feature of our
work is that all of the known to us prior papers on the invariance principle used
random graphs coupled with the invariance method as a proof method in order to
establish a result in sparse graphs, which is usually considerably harder. Namely, it
followed the ”dense-to-sparse” path as a proof technique. Somewhat surprisingly,
in our setting the direction is the opposite ”sparse-to-dense” one: while we did
not succeed in proving the result for dense graphs Gpn, 1{2q directly, we managed
to prove it in sparse graphs (following the work already done in [GL18]) and then
translate it to the case of dense graphs by the invariance. The advantage of working
with sparse graphs, which is not readily available in the dense graph setting, is
the existence of a configuration model which provides an important decoupling of
the underlying probabilistic dependencies.

Algorithmic implications

We now briefly discuss potential algorithmic implications of our findings. As men-
tioned earlier the case h “ 0 was addressed in Theorem 1 by Ferber et al [FKN`21]
constructively, specifically by building an algorithm which results in an asymptot-
ically friendly bisection. This raises the question as to wether a similar algorithm
exists for h ą 0. While we do not provide a definitive answer to this question one
way or the other, we provide below an indirect suggestion that fast (polynomial
time) algorithms might not exist. This is done by studying the solution space
geometry of friendly partitions and verifying in particular that the model exhibits
an Overlap-Gap-Property (OGP) for some 0 ă h ă h˚. The presence of OGP is a
barrier to large classes of algorithms [Gam21] and in most studied models coincides
with the onset of an apparent algorithmic hardness evidenced by failure to find a
constructive solution. The theorem below states that the OGP indeed takes place
in our setting for some h. For the purposes of giving a formal statement of the the-
orem it is convenient to think about bisections as functions σ : rns Ñ t´1, 1u with
A “ h´1p1q and B “ h´1p´1q. As a result σ is a bisection if

ř
j σpjq P t´1, 0, 1u,
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and it is h-friendly if p1{?
nqřj Jijσiσj ě h, where J “ pJij , i, j P rnsq is the

adjacency matrix of the underlying graph.

Theorem 3 (Overlap Gap Property). There exists (numerically) 0 ă hOGP ă h˚

such that @ h P phOGP, h
˚q D 0 ă ν1 ă ν2 ă 1 with the following property: for

every two h-friendly bisections σ, τ , it holds p1{nqdpσ, τq P r0, ν1s Y rν2, 1s, w.h.p.
as n Ñ 8.

Here dp¨, ¨q denotes the Hamming distance. Namely, every two friendly bisec-
tions have to be either “close” (at most distance nν1) from each other or “far”
(at least nν2) distance from each other. The presence of this gap can be used to
rule out classes of algorithms exhibiting some form of stability/noise insensitivity,
as outlined in [Gam21]. Whether the algorithm constructed in [FKN`21] exhibits
such stability remains an interesting open question.

Admittedly, Theorem 3 provides some evidence of algorithmic non-existence
only for some positive h, specifically for h which is at least the OGP threshold
hOGP. We do believe however that the problem might remain algorithmically hard
for all strictly positive h. An evidence of this is found in the following theorem
established by Behrens et al [BAKZ22], which we state informally.

Theorem 4 (Informally). OGP holds in random r-regular graphs Grpnq for every
h ą 0.

The proof uses the expander property of random regular graphs in a very im-
portant way and so it is not easily transferable to the Erdős-Rényi case Gpn, c{nq
or Gpn, 1{2q. The existence of such a translation and in general the presence of
the OGP for all h ą 0 is another interesting open question, which we leave for
future research.
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tative partitions on random regular graphs, arXiv preprint arXiv:2202.10379 (2022).

[CGPR19] Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman, Subop-
timality of local algorithms for a class of max-cut problems, The Annals of Probability
47 (2019), no. 3, 1587–1618.

[DMS17] Amir Dembo, Andrea Montanari, and Subhabrata Sen, Extremal cuts of sparse ran-
dom graphs, The Annals of Probability 45 (2017), no. 2, 1190–1217.

[FKN`21] Asaf Ferber, Matthew Kwan, Bhargav Narayanan, Ashwin Sah, and Mehtaab Sawh-
ney, Friendly bisections of random graphs, arXiv preprint arXiv:2105.13337 (2021).
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A note on Pseudorandom Ramsey graphs

Jacques Verstraëte

(joint work with Dhruv Mubayi)

The Ramsey number rpF, tq is the minimum N such that every F -free graph on
N vertices has an independent set of size t. When F “ Ks we simply write rps, tq
instead of rpF, tq. The current best available bounds for rps, tq as as follows: for
s ě 3, there exist constants c1psq, c2psq ą 0 such that

(1) c1psq t
s`1

2

plog tq s`1

2
´ 1

s´2

ď rps, tq ď c2psq ts´1

plog tqs´2
.

The upper bound is due to Ajtai, Komlós and Szemerédi [1], and the lower bound
is due to Bohman and Keevash [7], using the random Ks-free process. For s “ 3,
the lower bound was proved in a celebrated paper of Kim [13] and the upper bound
was proved by Shearer [19] with c2p3q “ 1 ` op1q. In particular, recent results of
Bohman and Keevash [6] and Fiz Pontiveros, Griffiths and Morris [12] together
with the bound of Shearer show as t Ñ 8:

(2) p1
4

´ op1qq ¨ t2

log t
ď rp3, tq ď p1 ` op1qq ¨ t2

log t
.

In this note, we show that if certain density-optimal Ks-free pseudorandom
graphs exist, then rps, tq “ ts´1`op1q. An pn, d, λq graph is an n-vertex d-regular
graph such that the absolute value of every eigenvalue of its adjacency matrix,
besides the largest one, is at most λ. We refer the reader to Krivelevich and
Sudakov [15] for a survey of pn, d, λq-graphs. Sudakov, Szabo and Vu [22] show
that a Ks-free pn, d, λq-graph satisfies

(3) λ “ Ωpds´1{ns´2q

as n Ñ 8. For s “ 3, if G is any triangle-free pn, d, λq-graph with adjacency
matrix A, then

(4) 0 “ trpA3q ě d3 ´ λ3pn ´ 1q.

If λ “ Op
?
dq, then this gives d “ Opn2{3q matching (3). Alon [2] constructed

a triangle-free pseudorandom graph attaining this bound, and Conlon [9] more
recently analyzed a randomized construction with the same average degree. The
Alon-Boppana Bound [17, 18] shows that λ “ Ωp

?
dq for every pn, d, λq-graph

provided d{n is bounded away from 1. Sudakov, Szabo and Vu [22] raised the
question of the existence of optimal pseudorandom Ks-free graphs for s ě 4,
namely pn, d, λq-graphs achieving the bound in (3) with λ “ Op

?
dq and d “

Ωpn1´ 1
2s´3 q. We show that a positive answer to this question gives the exponent

of the Ramsey numbers rps, tq via a short proof of the following general theorem,
based on ideas of Alon and Rödl [4]:
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Theorem 1. Let d, n, t be positive integers and t “ r2n log2n{ds. If there exists
an F -free pn, d, λq-graph and n is large enough, then

(5) rpF, tq “ Ω
´n
λ

log2n
¯
.

In particular, if Ks-free pn, d, λq-graphs exist with d “ Ωpn1´ 1
2s´3 q and λ “ Op

?
dq,

then

(6) rps, tq “ Ω
´ ts´1

plog tq2s´4

¯
.

Alon and Krivelevich [3] gave a construction of Ks-free pn, d, λq-graphs with

d “ Ωpn1´1{ps´2qq and λ “ Op
?
dq for all s ě 3, and this was slightly improved

by Bishnoi, Ihringer and Pepe [5] to obtain d “ Ωpn1´1{ps´1qq. This is the current

record for the density of a Ks-free pn, d, λq-graph with λ “ Op
?
dq. The problem

of obtaining optimal Ks-free pseudorandom constructions in the sense (3) with

λ “ Op
?
dq for s ě 4 seems difficult and is considered to be a central open

problem in pseudorandom graph theory. The problem of determining the growth
rate of rps, tq is classical and much older, and it wasn’t completely clear whether
the upper or lower bound in (1) was closer to the truth. Based on Theorem 1, it
seems reasonable to conjecture that if s ě 4 is fixed, then rps, tq “ ts´1`op1q as
t Ñ 8.

Applying Theorem 1 when F is bipartite can give lower bounds on rpF, tq that are
better than those obtained from the F -free process. It is a wide open conjecture
of Erdős that rpC4, tq ď t2´ǫ for some ǫ ą 0, and the cycle complete Ramsey
numbers rpCk, tq appear to be very difficult to determine – the best upper bounds
are provided by Sudakov [21] for odd cycles and Caro, Li, Rousseau and Zhang [8]
for even cycles. The best lower bound for fixed ℓ ě 4 is

(7) rpCℓ, tq “ Ω

ˆ
tpℓ´1q{pℓ´2q

log t

˙

due to Bohman and Keevash [7] by analyzing the Cℓ-free process. Theorem 1
gives rpC4, tq “ Ωpt3{2{ log tq which matches (7), as well as results that exceed the
previous best known bounds of (7) from the random Cℓ-free process for certain
values of ℓ:

Theorem 2. There exists a constant c ą 0 such that as t Ñ 8,

rpC6, tq ě ct5{4{ log1{2 t

rpC10, tq ě ct9{8{ log1{4 t

rpC5, tq ě p1 ´ op1qqt11{8

rpC7, tq ě p1 ´ op1qqt11{9.

The last two statements appear to be the first instances of a graph F containing
a cycle for which random graphs do not supply the right exponent for rpF, tq as
t Ñ 8.
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Improved Elekes–Szabó type estimates using proximity

József Solymosi

(joint work with Josh Zahl)

The Schwartz–Zippel lemma controls the size of the intersection of a Cartesian
product and the zero-locus of a polynomial:

Theorem 1 (Schwartz–Zippel). Let F be a field, let A1, . . . , Ak be subsets of F of
size N , and let f be a non-zero k-variate polynomial with coefficients in F . Then

(1) |pA1 ˆ . . .ˆAkq X Zpfq| ď pdeg fqNk´1.

The bound (1) can be tight, for example, if Zpfq is a union of parallel, axis-
parallel hyperplanes. Motivated by questions in combinatorial geometry, Elekes
and Szabó [11] investigated situations where Inequality (1) can be strengthened.
They were interested in the situation where k and deg f are fixed, and N is large.

Definition 2. Let F be an infinite field. We say a k-variate polynomial f with
coefficients in F has Schwartz–Zippel power saving if there are constants C, c ą 0
so that for all N ě 1 and all subsets A1, . . . , Ak of F of size N , we have

(2) |pA1 ˆ . . . ˆAkq X Zpfq| ď CNd´c, d “ dimZpfq.
If Zpfq is reducible, then f has Schwartz–Zippel power saving if and only if all

of the maximal-dimension irreducible components of Zpfq have Schwartz–Zippel
power saving. Thus it makes sense to consider the case where f is irreducible.
When k “ 2, no polynomials have Schwartz–Zippel power saving. When k “ 3,
however, the situation is quite different. The following result of Elekes and Szabó
[2, Theorem 3] shows that an irreducible polynomial f P Crx, y, zs either must
have Schwartz-Zippel power saving, or it must have a special structure.

Theorem 3 (Elekes–Szabó). Let f P Crx, y, zs be irreducible. Then at least one
of the following is true.

(A) f has Schwartz–Zippel power saving.
(B) After possibly permuting the coordinates x, y, z, we have fpx, y, zq “ gpx, yq,

for some bivariate polynomial g.
(C) f encodes additive group structure.

If either of Items (B) or (C) hold, then Item (A) does not; in fact, for every N ,
there exist sets A,B,C Ă C of size N with

|pA ˆB ˆ Cq X Zpfq| ě pN ´ 2q2{8.

Item (A) has already been defined, and item (B) is self-explanatory; geometrically,
it says that Zpfq is an axis-parallel cylinder above a curve.

We say f encodes additive group structure if for a generic point p P C3, there is a
(Euclidean) neighborhood U of p, a set V Ă C, and analytic functions φ : U Ñ C3

and ψ : V Ñ C, so that ψ ˝ f ˝ φpx, y, zq “ x ` y ´ z. When fpx, y, zq is of
the special form hpx, yq ´ z, then the situation is particularly simple: f encodes
additive structure of and only if h has the form hpx, yq “ apbpxq`cpyqq or hpx, yq “
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apbpxqcpyqq for univariate polynomials a, b, c. This special case was analyzed in an
earlier work by Elekes and Rónyai [1].

We will restrict attention to three dimensions, and characteristic 0. We will be
interested in quantitative versions of Theorem 3, and specifically, we wish to obtain
explicit lower bounds on the size of the Schwartz–Zippel power saving. In this
direction, Raz, Sharir, and de Zeeuw [5] strengthened Theorem 3 by establishing
the explicit power saving c “ 1{6 for Item (A). The proof in [5] generalized several
related arguments that had been previously used to obtain the same power savings
in certain special cases. In the other direction, Makhul, Roche-Newton, Warren,
and de Zeeuw [3] obtained an upper bound on the size of the Schwartz–Zippel
power saving by showing that the polynomial fpx, y, zq “ px´yq2 `x´z only has
Schwartz–Zippel power saving c “ 1{2. Our main result is a version of Theorem
3 in three dimensions for Cartesian products of real numbers, with power saving
c “ 2{7. In what follows, we identify points x P R with the corresponding point
x` 0i P C.

Theorem 4. Let f P Crx, y, zs be irreducible. Then at least one of the following
is true.

(A) For all finite sets A,B,C Ă R with |A| ď |B| ď |C|, we have

(3) |pA ˆB ˆ Cq X Zpfq| À p|A||B||C|q4{7 ` |B||C|1{2,

where the implicit constant depends on the degree of f .
(B) After possibly permuting the coordinates x, y, z, we have fpx, y, zq “ gpx, yq,

for some bivariate polynomial g.
(C) f encodes additive group structure.

Specializing to the case fpx, y, zq “ hpx, yq´z, we record the following corollary.

Corollary 5. Let h P Crx, ys. Then exactly one of the following holds.

(A) For all finite sets A,B Ă R with |A| ď |B|, we have

(4) |hpA ˆBq| Á min
`
|A|3{4|B|3{4, |A|2

˘
.

(B) h has the special form hpx, yq “ apbpxq ` cpyqq or hpx, yq “ apbpxqcpyqq for
univatiate polynomials a, b, c.
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Szabó and Elekes-Rónyai problems. Electron. J. Combin. 27(1), Paper 1.57, 2020.

[4] O. E. Raz, M. Sharir, and J. Solymosi. Polynomials vanishing on grids: The Elekes-Rónyai
problem revisited. Amer. J. Math., 138: 1029–1065, 2016.

[5] O. E. Raz, M. Sharir, and F. de Zeeuw. Polynomials vanishing on Cartesian products: The
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Zeros and computational complexity of combinatorial polynomials

Alexander Barvinok

This a survey talk on combinatorial applications of the following simple result
from complex analysis. In [1], I call it “the interpolation method”, although a
more suitable name would perhaps be “the extrapolation method”.

Lemma 1. Let U Ă C be a connected open set containing 0 and 1. Then there is
a constant γ “ γpUq ą 0 such that the following holds. Let

gpzq “
nÿ

k“0

ckz
k, n ě 2,

be a polynomial such that gpzq ‰ 0 for all z P U . Then up to relative error 0 ă
ǫ ă 1, the value of gp1q is determined by the coefficients ck with k ď γ plnn´ ln ǫq
and can be computed from those coefficients in polynomial time.

Here we say that complex numbers w1, w2 ‰ 0 approximate each other within
relative error ǫ ą 0 if we can write w1 “ ez1 and w2 “ ez2 with |z1 ´ z2| ď ǫ.

Sketch of proof. First, we consider a special case when

U “ Dβ “ tz : |z| ă βu for some β ą 1

is a disc. Let fpzq “ ln gpzq and let

Tmpzq “ fp0q `
mÿ

k“1

f pkqp0q
k!

zk

be the Taylor polynomial of fpzq. It is not hard to show that

|fpzq ´ Tmpzq| ď n

βmpβ ´ 1qpm` 1q provided |z| ď 1

and that the values of f pkqp0q can be computed from ck for k “ 1, . . . ,m in
polynomial time. To ensure that Tmp1q approximates fp1q within additive error
ǫ and hence eTmp1q approximates gp1q within relative error ǫ, it suffices to take
m “ Oβ plnn ´ ln ǫq. For a general set U , we construct an auxiliary disc Dβ for
some β ą 1 and a polynomial map φ : Dβ ÝÑ U such that φp0q “ 0 and φp1q “ 1
and apply the analysis of the special case to the composition gpφpzqq, see Section
2.2 of [1] for details. �

As follows from the proof, the constant γ “ γpUq in Lemma 1 is

γpUq “ O

ˆ
1

β ´ 1

˙

where 1 ă β ă 2 is the radius of the disc Dβ for which there is a holomorphic map
φ : Dβ ÝÑ U such that φp0q “ 0 and φp1q “ 1 (the map φ exists because of the
Riemann Conformal Mapping Theorem). One interesting case is when

U “ Cz tz P R : z ă ´δu
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for some 0 ă δ ă 1. In this case, one can choose

β “ 1 ` Ω

ˆ
1?
δ

˙
and φpzq “ ρ

p1 ´ ξzq2
´ ρ where ξ “ 1 ´

c
ρ

1 ` ρ

for some ρ “ ρpδq. Then, from the Heilmann–Lieb Theorem [7], we obtain the
following corollary.

Theorem 2. For a graph G “ pV,Eq, let mk “ mkpGq be the number of matchings
M Ă E with k edges. Then, up to relative error 0 ă ǫ ă 1, the total number

|V |{2ÿ

k“0

mk

of matchings in G, is determined by the numbers mk with

k ď γ
?

∆ ln
|V |
ǫ

and can be computed from those numbers in polynomial time. Here ∆ “ ∆pGq is
the largest degree of a vertex in G and γ ą 0 is an absolute constant.

As similar result is obtained for the number of independent sets in claw-free
graphs, if one uses the Chudnovsky–Seymour Theorem [6], see [2] for details.
The complexity of the resulting deterministic algorithm for counting matchings in
graphs roughly matches that of the algorithm of Bayati et al. [4], which is based
on correlation decay. See also [8] for counting matchings and other subgraphs of
logarithmic size in bounded degree graphs in polynomial (as opposed to quasi-
polynomial) time.

The bottleneck of the method is in establishing zero-free regions. Here is a
result pertaining to permanents of complex matrices.

Theorem 3. Let A “ paijq be an nˆ n complex matrix such that

|1 ´ aij | ď 0.5 for all i, j.

Then perA ‰ 0.

Sketch of proof. Using the Laplace row expansion for the permanent, we prove by
induction on n the following stronger statement: If A and B are n ˆ n complex
matrices satisfying the condition of the theorem that differ in at most one row,
then perA ‰ 0, perB ‰ 0 and the angle between perA and perB, considered as
vectors in R2 “ C, does not exceed π{2, see Section 3.6 of [1] for details. �

It follows that the permanent of n ˆ n complex matrix A “ paijq can be ap-

proximated within relative error 0 ă ǫ ă 1 in quasi-polynomial nOplnn´ln ǫq time
provided |1 ´ aij | ď 0.49 for all i, j. Similar results can be obtained for other
classes of permanents.

For example, we can allow greater variance of the real part of aij , provided we
restrict the imaginary part:

If

δ ď ℜ aij ď 1 and |ℑ aij | ď 1

2
δ2 for some 0 ă δ ă 1,
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then perA ‰ 0. Consequently perA can be approximated within relative error
0 ă ǫ ă 1 in quasi-polynomial nOplnn´ln ǫq time provided aij are real and satisfy
δ ď aij ď 1 for some δ ą 0, fixed in advance, see Section 3.7 of [1].

Other examples of matrices amenable to this method include diagonally domi-
nant matrices [3] and also matrices where the ℓ1-distance of each row to the row
of 1’s does not exceed γn for some absolute constant γ ą 0, see Section 5.5 of [1].

It is not clear whether the constant 0.5 in Theorem 3 can be improved. We
have

perB “ 0 where B “
ˆ

1`i
2

1´i
2

1´i
2

1`i
2

˙
“ 0,

and hence 0.5 cannot be replaced by
?

2{2 « 0.71. Furthermore, Boris Bukh
noticed [5] that

per pB b J2m`1q “ 0,

where J2m`1 is the p2m ` 1q ˆ p2m ` 1q matrix filled by 1’s and hence there are
complex matrices A “ paijq of an arbitrarily large size such that perA “ 0 and

|1 ´ aij | “
?

2{2 for all i, j.
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The existence of subspace designs

Ashwin Sah

(joint work with Peter Keevash and Mehtaab Sawhney)

A widely circulated problem in the 1970s asked for vector space analogues of com-
binatorial designs, whereby combinatorial designs could be considered as designs
in vector spaces over the ‘field with one element’. This problem arose during an
exciting time in the history of combinatorial designs, when Wilson [14] proved the
graph case of the Existence Conjecture (a problem posed by Steiner in the 19th
century, eventually resolved by Keevash [8]). In an early article on the general
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algebraic problem, Cameron [3] gave his ‘commentary’ on the combined efforts
of many researchers, including Petrenjuk, Wilson, Ray-Chaudhuri, Noda, Ban-
nai, Delsarte, Goethals, and Seidel. Cameron remarked that subspace 1-designs
(spreads) are ‘common’, but there were no known non-trivial subspace t-designs
with t ą 1.

This problem has recently seen considerable progress, following a renewed in-
terest due to its connections with Network Coding and advances in techniques,
including computational methods for finding explicit examples and probabilistic
methods for obtaining general results. To discuss progress on the problem to date
we require the following definitions. Let Fq be a finite field of order q. Let Grqpn, rq
denote the set of r-dimensional subspaces (‘r-spaces’) of the n-dimensional vector
space Fn

q . An pn, s, r, λqq-design consists of a subset of Grqpn, sq, called blocks,
such that each r-space is contained in exactly λ blocks. This definition captures
the established meaning of ‘subspace design’ in Combinatorics and in Network
Coding, although we remark that there is also a large literature in Theoretical
Computer Science on a similar but weaker notion of ‘subspace design’ (replace
‘exactly’ by ‘at most’) introduced by Guruswami and Xing [6].

There are some parallels between the histories of subspace designs and com-
binatorial designs. Indeed, for combinatorial designs it was a longstanding open
problem, resolved by Teirlinck [12], to show the existence of non-trivial pn, s, r, λq-
designs for all r and some λ (where ‘non-trivial’ means that s ą r and not all
s-sets are blocks). Similarly, the existence of non-trivial pn, s, r, λqq-designs for all
r and some λ was a longstanding open problem, resolved much more recently by
Fazeli, Lovett, and Vardy [4]. This general result was preceded by various explicit
constructions; for details of these we refer to the survey by Braun, Kiermaier, and
Wassermann [2]. While Teirlinck used an explicit construction, the construction
in [4] is probabilistic (adapting a method of Kuperberg, Lovett, and Peled [9]),
and requires λ ě qCrn.

The parallels continue for Steiner systems, where for many years after Teir-
linck’s result the existence of pn, s, rq-designs with s ą r ě 3 was only known in
sporadic cases, and the existence of any examples for r ě 6 was unknown until
the general result of [8]. The situation for pn, s, rqq-designs was even more dire,
and was highlighted by Kalai [7] as one of the most important open problems re-
maining in Design Theory. It was conjectured by Metsch [10] that no such designs

with s ą r ą 1 exist. This was recently disproved by Braun, Etzion, Österg̊ard,
Vardy, and Wassermann [1], who developed improved computational methods to
find p13, 3, 2q2-designs. However, there were no known examples for any other
parameters, let alone any general results.

We remedy this situation by completely answering the question: we show the
existence of pn, s, rqq-designs for any prime power q and s ą r ě 1. Moreover, our
result is analogous to Keevash’s, in that we show the existence of pn, s, rqq-designs
for all sufficiently large n satisfying the necessary ‘divisibility conditions’. Here
recall the Gaussian q-binomial

“
n
k

‰
q
, the number of Fq-subspaces of Fn

q of dimension



Combinatorics 73

k, also given by the formula
„
n

k



q

“ pqn ´ 1q ¨ ¨ ¨ pq1 ´ 1q
pqk ´ 1q ¨ ¨ ¨ pq1 ´ 1qpqn´k ´ 1q ¨ ¨ ¨ pq1 ´ 1q .

Definition 1. Let q be a prime power and let Fn
q be the n-dimensional vector

space over Fq. For s ą r and λ ě 1, an pn, s, r, λqq-design is a multicollection S

of s-dimensional subspaces such that every r-dimensional subspace is contained in
exactly 1 space in S. We say it is simple if there are no repeated s-spaces.

Theorem 2. Fix q, s, r. For n ě n2pq, sq such that
“
s´i
r´i

‰
q

|
“
n´i
r´i

‰
q
for all 0 ď i ď

r ´ 1 there is an pn, s, rqq-design.
Additionally, one can prove an analogue for “sufficiently pseudorandom” col-

lections of r-dimensional subspaces, similar in spirit to [8, Theorem 1.10] (with
certain q-analogues of pseudorandomness conditions).

We also prove a counting version as a simple corollary of the proof.

Corollary 3. Under the assumptions of Theorem 2, for n ě n3pq, sq the number
of pn, s, rqq-designs is

ˆ
p1 ˘ q´c3pr,sqnq

“
n´r
s´r

‰
q

expp
“
s
r

‰
q

´ 1q

˙rnrs
q

{rsrsq
.

The situation when λ ą 1 is very similar, with a few added considerations
regarding simplicity and the approximate covering step.

Theorem 4. Fix q, s, r, λ. For n ě n4pq, s, λq such that
“
s´i
r´i

‰
q

| λ
“
n´i
r´i

‰
q
for all

0 ď i ď r ´ 1 there is a simple pn, s, r, λqq-design.

1. New techniques: absorption in rigid algebraic scenarios

Classic methods such as the Rödl nibble for hypergraph matchings or more recent
results can easily be seen to give an “approximate” version, i.e., a collection of s-
dimensional spaces which cover 1 ´ op1q fraction of the r-spaces exactly once, and
the remainder is uncovered. Therefore, as is typical, the key issue is dealing with
the remainder. The most general form of this is the idea of absorption. One sets
aside some structure before attempting to solve a decomposition problem. Then,
after approximately decomposing everything else, the remainder is small enough
so that it can be handled in conjunction with the absorbing structure (akin to a
sponge absorbing water).

For the problem of constructing Steiner systems and other designs, traditional
“random” absorbers are not sufficient due to the sparsity of usable “local switches”
to work with in such structures. The work of Keevash [8] introduced a powerful
idea of randomized algebraic constructions to use as templates to construct Steiner
systems in general.

In our situation, algebraic structure is already inherently present and hence we
are more restricted in various ways. One can still perform approximate decom-
positions via the Rödl nibble (or the more modern technique of random removal
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processes), since this can be seen purely from a hypergraph matching perspective,
and we develop a framework for working with notions of embedding, pseudoran-
domness, and “typicality” in q-analogues of hypergraphs, which we call q-systems.

The template, a special set of r-dimensional subspaces coming from a collec-
tion of s-spaces, is formed via a randomized algebraic process as in [8], but we
are focused on making entire vector spaces play nice with respect to each other.
Furthermore, one must ensure the template is sufficiently generic to work with
and the necessary algebraic constructions may not exist over Fq directly. Thus, we
must pass to a field extension L{Fq and put an L-space structure on Fn

q . In cases
where n is not divisible by any small number, this is not directly possible and we
embed multiple incompatible L-structures on vector spaces of finite codimension.

For the absorption process, after creating an approximate decomposition the
remainder (or leave) is covered using a “bounded signed integral decomposition”
by understanding certain associated lattices, and then using a “subspace exchange
process” to massage this integral decomposition into a form amenable to absorp-
tion using the template structure. The latter bears similarity to the “clique ex-
change” of [8], although the q-analogue and multiple L{Fq-structures pose various
new technical difficulties.

However, the integral decomposition is significantly hampered by the rigidity of
the subspace setting. For Steiner systems, the key associated lattice is defined by
relatively simple divisibility conditions (due to work of Graver and Jurkat [5] and
of Wilson [13]) and it in fact has a particularly natural “bounded” generating set
to work with, formed by certain “octahedral” structures (see e.g. [8, Section 5]).
However, work of Ray-Chaudhuri and Singhi [11] shows that lattices associated
to pn, s, rqq-designs are not nearly so nice. As a result, we work with a greedily
designed bounded approximate generating set, and introduce a way to boost this
approximate behavior by using multiple copies to “cover gaps”.
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Generating random d-regular graphs quickly:
reciprocal rejection sampling

Oliver Riordan

(joint work with Nick Wormald)

Probably the third most natural random graph model, after the binomial and
uniform random graphs Gpn, pq and Gpn,mq, is the random d-regular graph Gn,d,
which is simply a d-regular graph on a given set rns of n vertices chosen uniformly
at random from the set of all such graphs. In contrast to the other two models
mentioned, the task of generating a sample from this model is highly non-trivial,
especially when d grows as a function of n. Our aim here is to describe a simple
new idea, reciprocal rejection sampling, that is one ingredient in efficient generation
of random d-regular graphs, allowing (together with many previous ideas and one
further twist) rapid generation when d “ op?

nq. Concretely, we obtain a relatively
simple algorithm that is linear time in the size Opdnq of the output, improving on
the previous bound of Opdn ` d4q obtained by Arman, Gao and Wormald [1].

As in previous work on this problem, the basic strategy is to first generate a
random d-regular multi-graph G˚

n,d according to the configuration model of Bol-

lobás [2]. This has the property that, conditional on the numbers of loops, double-
edges, triple-edges and so on, it is uniformly distributed on the set of all d-regular
multigraphs with these parameters. So, as in previous work, it suffices to ‘push’
the uniform distribution step-by-step from one such set to another, decreasing the
relevant parameter. The key (most difficult) step is to eliminate double-edges.
Suppressing the dependence on n and d in the notation, let Gk be the set of d-
regular graphs on rns with exactly k double-edges, no loops, and no triple-edges (or
higher multiplicity edges). Then the key tool is an algorithm that, starting with
a uniformly random G P Gk, either ‘fails’ with small probability ηk, or outputs a
uniformly random G P Gk´1.

As in much previous work (see in particular the key paper [4]), we do this
using switchings, replacing a double-edge xy and two single-edges ab and cd in G

with edges ax, xc, by and yd. More precisely, a potential switching consists of a
double-edge xy (with a given order on its vertices) and two single-edges ab and
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cd, and a potential switching is a switching if the edges involved are distinct and
vertex-disjoint, and in G none of the edges ax, xc, by or yd is present. In that case
the resulting graph G1 is indeed an element of Gk´1. Note that from any G P Gk

there are exactly 8ks2 potential switchings, where s “ dn{2 ´ 2k is the number of
single-edges.

For G1 P Gk let dpG1q be the number of switchings from Gk that result in
G1, i.e., the in-degree of G1 in the bipartite graph on Gk and Gk´1 with an edge
pG,G1q for each graph G P Gk and each valid switching from G resulting in G1.
Algorithmically, given G we select a uniformly random potential switching (which
is easy to do). If this is not an actual switching we (in the first formulation) return
‘fail’. If it is, with probability d0{dpG1q we accept the result, where d0 is a lower
bound on mintdpG1q : G1 P Gk´1u; otherwise, we return ‘fail’. This acceptance
probability exactly corrects for the variation in the number of possible ways to
arrive at a given G1, resulting in an exactly uniform distribution on Gk´1.

So far we have described ideas from previous work. The key new idea is that we
can carry out the acceptance/rejection step without calculating dpG1q. This may
seem surprising at first, but here is the key idea. Given a function θ : Gk´1 Ñ r0, 1s,
by a θ-tester we mean an algorithm that, given G1 P Gk´1 as input, efficiently (here
in time Op1q) returns ‘yes’ with probability θpG1q, and ‘no’ otherwise. Note that
the tester has access to G1 but (typically) does not have time to actually calculate
the desired probability θpG1q. A trivial, but key, observation (the reciprocal part)
is that, given a θ-tester for some θ ď 1{2, we may easily construct a 1{p1 ` θq
tester. Simply repeatedly call the θ-tester until the first time ‘no’ is returned, and
then return ‘yes’ or ‘no’ according to whether this is after an odd or even number
of calls: the overall probability of ‘yes’ is

p1 ´ θq ` θ2p1 ´ θq ` θ4p1 ´ θq ` ¨ ¨ ¨ “ 1{p1 ` θq.
The next key ingredient is a θ-tester for some θ proportional to dpG1q´d0; again

it is far from clear that one exists. Fortunately one does, due to the structure of
the set of reverse switchings, which are simply switchings viewed backwards from
G1 P Gk´1. To describe these it is easiest to work in the configuration model,
or equivalently with ‘half-edges’, of which there are exactly d incident with each
vertex. (In other words, we give the two edges in a double-edge distinct identities.)
In these terms an edge aa1 consists of two paired half-edges (treated as ordered).
By a potential reverse switching we simply mean a list of 4 edges aa1, bb1, cc1,
dd1 such that a and b are distinct half-edges in the same vertex, and c and d are
distinct half-edges in the same vertex. We write P for the set of potential reverse
switchings, noting that |P | “ pndpd ´ 1qq2.

Now P P P corresponds to a valid reverse switching if and only if a1a, bb1

and c1c, dd1 are vertex-disjoint two-edge paths, with certain edges missing in G1

(corresponding to those to be added in after deleting a1a, bb1, c1c and dd1). We
now define certain simple ‘bad’ sets Bi Ă P , such that the set of valid switchings
is exactly PzŤi Bi. The key is that we can do this in such a way that (a) each
set Bi has a certain size bi that is the same for all G1 P Gk´1, and (b) given G1

we can quickly sample a uniformly random element of Bi. For example, one such
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set is the set of all P in which a1 and c1 are in the same vertex, which has size
exactly nd2pd ´ 1q2, and which can be sampled by first choosing this common
vertex v, then choosing a1 and c1 independently from the half-edges incident with
v, and working out from there. From this point it is not too hard to construct the
required tester: we set d0 “ |P | ´ ř

i bi, so

dpG1q ´ d0 “
ÿ
bi ´ |

ď
Bi| “

ÿ

i

|B˚
i |

where B˚
i “ Bi X Ť

jăi Bj . Since we can sample from Bi, we can construct a

p|B˚
i |{biq-tester, and these can be combined without difficulty.
Of course, there are further difficulties to be overcome to make the algorithm

work. A key one is that the rejection probability ηk needs to be small enough,
namely Op1{d2q to allow for the Opd2q steps from a typical Gk to G0. For the
‘reciprocal rejection’ outlined above, this is indeed the case. However there is
also the ‘forward rejection’ step where a potential switching that is not an actual
switching is discarded. Here the rejection probability is Θpd{nq, which is too
large. A clever but rather complicated solution to this was found by Gao and
Wormald [3], involving different types of switchings and forward and backward
steps. An alternative, new, solution is to carry out certain forward potential
switchings that are not valid switchings, namely those that create exactly one new
double-edge, but then immediately carry out another switching to eliminate this
new double-edge. This leads to two types of forward switching (1-step and 2-step)
from Gk to Gk´1. It turns out that the reciprocal rejection method can be applied
to both, leading to exact uniform sampling.

Finally, we note that while the method in principle sounds fairly general, it
does not seem so easy to find situations in which it can be applied, due to the
requirement (a) in particular on the ‘bad’ sets. For example, our method does not
obviously work for random graphs with a given non-regular degree sequence. It
would be interesting to find other applications, and even more so to see whether
the method can be modified to work in such more general settings.
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Unit distances and distinct distances (in general norms)

Noga Alon

(joint work with Matija Bucić, Lisa Sauermann)

A d-norm X is a real normed space of dimension d. Let Upn,Xq denote the
maximum possible number of unit distances determined by a set of n distinct points
in X . Let Dpn,Xq denote the minimum possible number of distinct distances
determined by n distinct points in X . We prove the following two main results.

Theorem 1. (i) For every d ě 2 there is a d-norm X so that for every n,

Upn,Xq ď 1

2
dn log2 n.

In fact, this holds for all d-norms but a meagre set in the Bair space of d-norms.

(ii) For every d ě 2 and all n ą n0pdq, and for every d-norm X,

Upn,Xq ě 1

2
pd ´ 1 ´ op1qqn log2 n

where the op1q-term tends to 0 as n tends to infinity.

It is clear that for every d and every d-norm X , Upn,Xq ď n ´ 1 as shown by
a set of n points along an arithmetic progression on a line.

Theorem 2. For every d and every n ě n0pdq, and for every d-norm X but a
meagre set, Dpn,Xq “ p1 ´ op1qqn where the op1q-term tends to 0 as n tends to
infinity.

The results are motivated by old questions of Erdős [2] concerning the above
problems in the Euclidean plane, and by questions of Ulam and Erdős [3] about
general norms. The unit distance problem in the Euclidean plane is wide open, see
[6], [8] for the best known bounds. For Euclidean spaces it is easy in all dimensions
d ě 4, where the function is quadratic in n.

The distinct distances problems in the Euclidean plane is better understood,
and the correct value is known up to a

?
logn factor, as proved by Guth and Katz

[4]. For higher dimensional Euclidean spaces the correct exponent is not known,
see [7] for the known bounds.

Our results above essentially settle the problems of estimating the minimum
possible value of Upn,Xq and the maximum possible value of Dpn,Xq for a d-
norm X . The results settle, in a strong form, problems and conjectures of Brass,
of Matoušek, and of Brass, Moser and Pach. See [1], Chapter 5, and [5] for the
precise formulation of the problems solved.

The proofs combine combinatorial, geometric and probabilistic ideas with tools
from Linear Algebra, Algebraic Topology and Algebraic Geometry.
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Problem Session

Nati Linial (chair)

Reinhard Diestel

Erdős [2] asked whether there is a function f : N2 Ñ N such that every finite
graph G of chromatic number at least fpr, kq has a subgraph of chromatic number
at least k that contains no cycle of length at most r. The following problem
weakens this by providing a local alternative:

Question 1. Is there a function f : N2 Ñ N such that every finite graph G of
chromatic number at least fpr, kq satisfies one of the following two conditions:

(1) G has a subgraph of chromatic number at least k and girth greater than r;
(2) The r-local covering Gr of G has chromatic number at least k.

Here, the r-local covering Gr of G is its covering space with characteristic subgroup
generated by the walks in G from any fixed base point to a cycle of length at most r,
round it, and back along the access path [1] (Fig. 1).

Both statements, (1) and (2), imply χpGq ě k. They may thus be considered
as a purely global, or purely local, reason for χpGq ě k if ‘global’ and ‘local’ are
taken to mean involving cycles of length greater than or at most r, respectively.
My motivation for (2) is also that while it is strong enough to imply χpGq ě k –
notice that any ℓ-colouring of G with ℓ ă k lifts to an ℓ-colouring of Gr – it is
weaker than other natural local reasons for χpGq ě k, such as the following ones.

One natural local reason for χpGq ě k is that Kk Ă G. It was proved by Rödl [3]
that the assertion of our problem holds for r “ 3 with (2) replaced by Kk Ă G, but
the proof does not seem to generalise to larger r. One might try to weaken Kk Ă G

to the statement that G has a subgraph G2 with χpG2q ě k whose cycle space
is generated by cycles of length at most r. However this would still be stronger
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Figure 1. The r-local covering of G for 3 ď r ď 11

than (2) since any such subgraph G2 of G lifts to Gr [1], so that χpGrq ě k too.
Conversely, (2) does not readily imply the existence of such a subgraph G2 of G.
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Mehtaab Sawhney

The following is a discrepancy theory question asked in an online algorithms set-
ting.

Question 2. Consider v1, . . . , vn P R
n with }vi}2 ď 1. Does there exist a ran-

domized online algorithm assigning εi P t˘1u such that }ř εivi}8 ď C
?

logn
whp?

Online means that we decide εi based on v1, . . . , vi having decided the previ-
ous signs. The Komlós conjecture is this problem without the online algorithm
portion, for which the best known bound is C

?
logn due to Banaszczyk [1] (and

the conjecture is a constant, which is not attainable for online settings). This was
made algorithmic by Bansal, Dadush, Garg, and Lovett [2]. This C

?
logn can be

done with εi P t˘1, 2u due to Liu, Sah, and Sawhney [3].
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Matija Bucić

Question 3. Let Mn be the minimum number such that given Mn transpositions
in Sn, one can always find a sequence of distinct elements of this set π1, . . . , πk
such that π1 ¨ ¨ ¨πk “ 1. What is Mn? This is called the additive dimension of the
set of transpositions.

What is known is the following upcoming result.

Theorem 4 (Alon, Bucić, Sauermann, Zakharov, Zamir 2023+). Any n vertex
properly edge-colored graph with 108n logn log logn edges has a rainbow cycle.

This is tight up to the log log n factor. Applying this to a suitable Cay-
ley graph shows that Mn “ Opn log2 nq, and there is a construction for Mn “
Ωpn logn{ log lognq. For the theorem above, a known lower bound is Ωpn lognq,
and this result addresses a question of Keevash, Mubayi, Sudakov, and Ver-
straete [1].
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problems, Combin. Probab. Comput. 16 (2007), 109–126.

Peter Allen

The following guarantees embedding of graphs with maximum degree in a host
given certain pseudorandomness conditions, irrespective of the density regime.

Theorem 5 (Allen, Böttcher, Davies, Hng, Skokan 2021). Given k,∆ there exists
fkp∆q and ε ą 0 such that the following holds. Consider n large, p ą 0 (poten-
tially dependent on n), and G an n-vertex k-uniform hypergraph with the following
property: for all F with at most fkp∆q vertices, then

Ppϕ : V pF q Ñ V pGq is a homomorphismq “ p1 ˘ εqpepF q,

where ϕ is a uniform vertex map, and the same when we condition ϕ to map any
specific vertex of F to any specific vertex of G.

Then G contains any n-vertex graph H with maximum degree ∆pHq ď ∆.

One would like to understand how much is needed for this statement to hold.

Question 6. What is fkp∆q?
We remark that fkp∆q “ Ωp∆q is known by random construction.
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Ehud Friedgut

The parity set has the property that any subcube is half in the set and half out
of the set. However, modulo 3 conditions will only work on sufficiently large
subcubes. Can we find examples on a slice?

Question 7. A sub-balanced slice of dimension 2k is the following set: we fix some
n´ k coordinates 1, some n´ k coordinates 0, and we consider all possibilities for
the remaining 2k coordinates which are half and half between 0, 1.

For all indicator functions f on the slice with Ef “ 1{2, does there exist a
sub-balanced slice of dimension log˚ n (or growing) on which Ef ą 0.51?

Jacques Verstraete

Let G be a graph of edge-density p P r0, 1s. The positive discrepancy of a graph G
is defined by

disc`pGq “ max
!
epXq ´ p

ˆ|X |
2

˙
: X Ď V pGq

)

and the negative discrepancy is

disc´pGq “ max
!
p

ˆ|X |
2

˙
´ epXq : X Ď V pGq

)
.

The discrepancy of G is maxtdisc`pGq, disc´pGqu. Erdős, Goldreich, Pach and
Spencer [2] proved that there exists an absolute constant c ą 0 such that if G is
an n-vertex graph of density p satisfying pp1 ´ pq ě 1{n, then

discpGq ě c
a
pp1 ´ pqn3{2.

This is tight as shown by considering the random graph Gn,p. Bollobás and
Scott [1] proved further that for some absolute constant b ą 0,

disc`pGq ¨ disc´pGq ě bpp1 ´ pqn3.

We propose the following conjecture:

Conjecture 8. For all ε ą 0, there exists a constant a “ apεq ą 0 such that for
any n-vertex graph G of density p satisfying |p´ pi´ 1q{i| ą ε for every i P Z`,

disc`pGq ě a
a
pp1 ´ pqn3{2.

Complete n-vertex balanced multipartite graphs with i parts have density about
pi ´ 1q{i, but their positive discrepancy is Opnq, which explains why we require
separation between p and these densities in the conjecture. In particular, the
conjecture could be extended to say that if p0 ă 1{2 is a constant and 1{n ď
p ď p0, then for any n-vertex graph G of density p, the positive discrepancy of
G is Ωpp1{2n3{2q as n Ñ 8. A similar conjecture could be made for uniform
hypergraphs.
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Charlotte Knierim

Given a digraph D, consider a weighting ω : EpDq Ñ Rě0 so that ω`pvq ě 1 for
all v P V pDq.
Theorem 9 (Knierim, Larcher, Martinsson, Noever 2020 [1]). In the above setup,
we can find a cycle with ωpCq ě log logn{ logn, and this is tight.

For the tightness, take an ℓ-ary tree for k generations, and adding edges from
leaves to all vertices along the path to it from the root. Then put a weight of 1{ℓ
and 1{k appropriately to satisfy the condition and optimize in k and ℓ.

Question 10. What happens if D is Eulerian? What happens if D is strongly
2-connected? Concretely, if D is Eulerian, is there a cycle of weight Ωp1q?

References

[1] Charlotte Knierim, Maxime Larcher, Anders Martinsson, and Andreas Noever, Long cycles,
heavy cycles and cycle decompositions in digraphs, J. Combin. Theory Ser. B 148 (2021),
125–148.

Jacob Fox

This question arises out of current work of Conlon, Fox, Pham, and Yepremyan.

Question 11. Let fpnq be the maximum size (number of elements) of a monochro-
matic (ignoring 0) linear subspace guaranteed in any 2-coloring of the nonzero
elements of Fn

2 . Is fpnq “ Opnq?
By Ramsey methods such as the Finite Union Theorem, fpnq Ñ 8 as n Ñ 8

(log˚ n lower bound, perhaps more recent work gives finitely many logarithms).
Additionally, fpnq “ Opn log nq by considering a random coloring (and it does not
do better). Noga Alon has a conjecture about Ramsey Cayley graphs that implies
this.

Karim Adiprasito

Question 12. Given a graph G and C a collection of cycles, let }C}1 “ ř
γPC |γ| be

the total length. Given a field F and C, glue in the corresponding 2-disks into the
cell complex underlying the graph, and consider the homology over F . Let αF pGq
be the minimum }C}1 such that the F -homology vanishes after this gluing. Let
αZpGq be the same for Z-homology, and απ1

pGq for vanishing the first homotopy
group. Let α8pGq be the same but for vanishing all homotopy groups. We have
αF pGq ď αZpGq ď απ1

pGq ď α8pGq. Is it true that απ1
pGq{αF2

pGq is unbounded?
For the strongest form, one would ask for G of bounded degree.
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For very partial progress, one can force απ1
pGq ´ αF2

pGq Ñ 8 by taking a

(bounded degree) triangulation of RP2 and taking disjoint unions.

Julia Böttcher

Question 13. Do there exist n-vertex graphs Gn which is tC3, C5, . . . , C2k´1u-free
(as subgraphs) with chromatic number χpGnq ě 4 and minimum degree δpGnq ě
fpkqn where fpkq is at least linear in 1{k?

It is known for fpkq “ 3{p2k2`k`1q and it is known to be false for fpkq “ 1{p2kq
when k ą 7000 [1].
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Noga Alon

The following is conjectured in forthcoming work of Alon, Bucić, Sauermann,
Zakharov, and Zamir.

Question 14. For every k ě 2 does there exist cpkq so that for all groups G with
|G| “ n and S Ď G with |S| ě cpkq logn, there are T1, . . . , Tk Ď S pairwise disjoint
and an ordering of each Ti so that each product is the same?

For abelian G it is still not known, but k “ 2 is trivial and k “ 3 follows from
the Erdős-Szemerédi sunflower problem for k “ 3 (similar to cap-set). For all k
and abelian G it is true with an extra log logn factor due to what is currently
known about the Sunflower Conjecture [1]. If every element in S is forced to have
order 2 then it is known up to log logn for nonabelian.
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