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Real enumerative invariants relative to the
anti-canonical divisor and their refinement

Ilia Itenberg Eugenii Shustin

Abstract

We introduce new invariants of the projective plane (and, more generally,
of certain toric surfaces) that arise from appropriate enumeration of real el-
liptic curves. These invariants admit a refinement (according to the quantum
index) similar to the one introduced by Grigory Mikhalkin in the rational case.
We also construct tropical counterparts of the refined elliptic invariants under
consideration and establish a tropical algorithm allowing one to compute, via
a suitable version of the correspondence theorem, the above invariants.

MSC-2010 classification: Primary 14N10, Secondary 14J26, 14P05, 14T90

1 Introduction

Refined enumerative geometry, initiated in [2, 10], became one of the central topics
in enumerative geometry with important links to closed and open Gromov-Witten
invariants and to Donaldson-Thomas invariants. In a big part of known examples,
refined invariants appear as one-parameter deformations of complex enumerative
invariants (see, for example, [2, 6, 9, 10]). In his ground-breaking paper [22] G.
Mikhalkin proposed a refined invariant provided by enumeration of real rational
curves and related this invariant to the refined tropical invariants of F. Block and
L. Göttsche [2]. Namely, he introduced an integer-valued quantum index for real
algebraic curves in toric surfaces. To have a quantum index, a real curve should
satisfy certain assumptions: it has to intersect toric divisors only at real points and
to be irreducible and separating; the latter condition means that, in the complex
point set of the normalization of the curve, the complement of the real part is
disconnected, i.e., formed by two halves exchanged by the complex conjugation (in
fact, the quantum index is associated to a half of a separating real curve, while the
other half has the opposite quantum index; for detailed definitions, see Section 2.2).
Mikhalkin [22] showed that the Welschinger-type enumeration of real rational curves
(cf. [33]) in a given divisor class and with a given quantum index can be directly
related to the numerator of a Block-Göttsche refined tropical invariant (represented
as a fraction with the standard denominator).
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The main goal of the present paper is to extend Mikhalkin’s results to the case
of elliptic curves. We follow the ideas of [29] and choose constraints so that every
counted real elliptic curve appears to be a maximal one (i.e., it has two global
real branches), and hence is separating. More precisely, given a toric surface with
the tautological real structure and a very ample divisor class, we fix maximally
many real points on the toric boundary of the positive quadrant, where elliptic
curves from the given linear system must be tangent to toric divisors with prescribed
even intersection multiplicities, and we fix one more real point inside a non-positive
quadrant as an extra constraint. There are finitely many real elliptic curves matching
the constraints and all these curves are separating. Their halves have quantum index,
and we equip each curve with a certain Welschinger-type sign.

The first main result of the paper is as follows. For some toric surfaces (in-
cluding the projective plane), we prove that the signed enumeration of (halves of)
real elliptic curves that match given constraints, belong to a given linear system,
and have a prescribed quantum index does not depend on the choice of a (generic)
position of the constraints (the precise statement can be found in Section 2.3, The-
orem 2.11). The resulting invariants are said to be refined elliptic. In particular, we
get new real enumerative invariants (without prescribing values for quantum index)
in genus one.

The second main result of the paper concerns tropical counterparts of the above
invariants. We introduce tropical invariants arising from enumeration of certain
elliptic plane tropical curves counted with multiplicities depending on one parameter.
Using an appropriate version of Mikhalkin’s correspondence theorem (see [21] and
Theorem 3.21 in Section 3.6), we prove that these tropical invariants give rise to
generating functions for refined elliptic invariants described above.

The introduced tropical elliptic invariants have two interesting features. The mul-
tiplicity of each tropical curve under enumeration is not a product of multiplicities
of vertices (contrary to many previously considered tropical invariants); see Theo-
rem 4.28. Another particularity of these invariants is their semi-local invariance; see
Section 4.5.

The paper is organized as follows. In Section 2, we define refined invariants aris-
ing in enumeration of real rational curves (slightly generalizing Mikhalkin’s refined
rational invariants) and of real elliptic curves in toric surfaces with constraints de-
scribed above. In Section 3, we present a version of Mikhalkin’s correspondence
theorem adapted to our purposes. Section 4 is devoted to the tropical counterparts
of refined elliptic invariants; it contains, in particular, a tropical formula for these
invariants. In Section 5, we suggest a combinatorial algorithm for computation of
the tropical invariants introduced in Section 4 (and, thus, of refined elliptic invari-
ants). The algorithm is similar to the one in [3], used for a tropical calculation of
Mikhalkin’s refined rational invariants.

Acknowledgements. We started this work during our stay at the Mittag-
Leffler Institute, Stockholm, in April 2018 and during the visit of the second author
to the École Normale Supérieure, Paris, in June 2019, and we completed the work
during our research stays at the Mathematisches Forschungsinstitut Oberwolfach in
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July 2021 and March 2022 (in the framework of Research-in-Pairs program) and in
February - March 2023 (in the framework of Oberwolfach Research Fellows program).
We are very grateful to these institutions for the support and excellent working
conditions. The first author was supported in part by the ANR grant ANR-18-
CE40-0009 ENUMGEOM. The second author has been partially supported from
the Israeli Science Foundation grant no. 501/18, and by the Bauer-Neuman Chair
in Real and Complex Geometry.

2 Real refined invariants of toric surfaces

2.1 Preparation

2.1.1 Convex lattice polygons and real toric surfaces

Consider the lattice Z2 and its ambient plane R2 = Z2 ⊗ R. Let P ⊂ R2 be a
non-degenerate convex lattice polygon. For a lattice segment σ ⊂ R2 (respectively,
a vector a ∈ Z2 \ {(0, 0)}), denote by ‖σ‖Z (respectively, ‖a‖Z) its lattice length,
i.e., the ratio of the Euclidean length and the minimal length of a non-zero parallel
integral vector.

Denote by Tor(P ) the complex toric surface associated with P I. Let Tor(P )× '
(C2)× (respectively, Tor(∂P )) be the dense orbit (respectively, the union of all toric
divisors) of Tor(P ). The toric surface Tor(P ) has the tautological real structure,
and the real part TorR(P ) of Tor(P ) contains the positive quadrant TorR(P )+ '
(R>0)2. The closure Tor+

R(P ) of TorR(P )+ (with respect to the Euclidean topology)
is diffeomorphically taken onto P by the moment map. We pull back the standard
orientation and the metric of P ⊂ R2 to Tor+

R(P ) and induce an orientation and a
metric on the boundary ∂Tor+

R(P ) of Tor+
R(P ); in particular, we get a cyclic order

on the sides of P ; we call this order positive. Denote by LP the tautological line
bundle over Tor(P ); the global sections of LP are spanned by the monomials zω,
z = (z1, z2), ω ∈ P ∩ Z2.

For each edge σ ⊂ ∂P , we consider the toric curve Tor(σ), its dense orbit Tor(σ)×,
the real part TorR(σ) of Tor(σ), and the positive half-axis TorR(σ)+ ⊂ Tor(σ)× ∩
TorR(σ). The closure Tor+

R(σ) of TorR(σ)+ coincides with Tor(σ) ∩ ∂Tor+
R(P ).

2.1.2 Toric degree and Menelaus condition

A multi-set ∆ ⊂ Z2 \ {(0, 0)} is said to be

• balanced if the sum of vectors in ∆ is equal to 0,

• non-degenerate if the vectors of ∆ span R2,

IWe always skip the subindex C when speaking about complex surfaces, while for toric surfaces
over other fields F, we use the notation TorF.
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• even if ∆ ⊂ (2Z)2.

A balanced non-degenerate multi-set ∆ ⊂ Z2 \ {(0, 0)} is called a (toric) degree.
Any vector a in a degree ∆ is of the form a = ‖a‖Z ·u, where u a primitive integral
vector, that is, a non-zero integral vector whose coordinates are relatively prime.

Let ∆ ⊂ Z2 \ {(0, 0)} be a non-degenerate balanced multi-set. For each vector
a ∈ ∆, denote by ǎ the vector obtained from a by the counter-clockwise rotation
by π/2. The vectors ǎ can be attached to each other so that the next vector starts
at the end of the preceding one in order to form a simple broken line bounding a
convex lattice polygon. The latter polygon is denoted by P∆; it is determined by ∆
up to translation. For a convex lattice polygon δ we set A(δ) to be the Euclidean
area and I(δ) to be the number of integer points in the interior of δ. In the case of
P∆, we shortly write A(∆) and I(∆).

The elements of ∆ are denoted by

aσi , i = 1, . . . , nσ,

where σ ranges over the set P 1
∆ of sides of the polygon P∆, and nσ is the number of

vectors in ∆ that are outer normals to σ.

From now on, assume that ∆ is even; for each σ ∈ P 1
∆ and each i = 1, . . . , nσ, put

2kσi = ‖aσi ‖Z. The notation 1
2
∆ stands for the degree obtained from ∆ by dividing

all its vectors by 2.

Definition 2.1 For each σ ∈ P 1
∆, consider a sequence wσ of nσ points in Tor(σ)×,

and denote by w the double index sequence (the upper index being σ ∈ P 1
∆ and

the lower index being i = 1, . . . , nσ) formed by the sequences wσ. We say that the
sequence w satisfies the Menelaus ∆-condition (cf. [22, Section 5.1]) if there exists
a curve C ∈ |LP∆

| such that C does not contain toric divisors as components and,
for each σ ∈ P 1

∆, the scheme-theoretic intersection of C and Tor(σ) coincides with∑nσ

i=1 2kσi w
σ
i .

Lemma 2.2 The sequences w satisfying the Menelaus ∆-condition form an alge-
braic hypersurface M(∆) ⊂

∏
σ∈P 1

∆
Tor(σ)n

σ
.

Proof. We present an explicit equation of M(∆). Consider a linear functional
λ : R2 → R which is injective on Z2. The maximal and the minimal points of λ on
P∆ divide the boundary ∂P∆ of P∆ into two broken lines P′,P′′, and the maximal
and minimal points of λ on each side σ define its orientation. An automorphism
of Z2, which takes an oriented side σ of P onto the naturally oriented segment
[0, ‖σ‖Z] of the first axis of R2, defines an isomorphism of Tor(σ)× with C×. Denote
by ξσ = (ξσi )n

σ

i=1 the sequence of images in C× of the points of wσ. Then, M(∆) is
given by the equation

∏
σ⊂P′

nσ∏
i=1

(ξσi )2kσi =
∏
σ⊂P′′

nσ∏
i=1

(ξσi )2kσi .
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The hypersurface M(∆) is said to be Menelaus. Notice that M(∆) is reducible.
More precisely, M(∆) splits into 2k0 components, where

k0 = gcd{kσi : i = 1, ..., nσ, σ ⊂ ∂P∆}.

Denote by M(∆)red the component given by the equation

∏
σ⊂P′

nσ∏
i=1

(ξσi )k
σ
i /k0 =

∏
σ⊂P′′

nσ∏
i=1

(ξσi )k
σ
i /k0 . (1)

Note that the above isomorphism Tor(σ)× ' C× takes TorR(σ)+ onto R>0 ⊂ C×.
For any τ > 0, denote by M τ

R(∆) the part of M(∆)red specified by the condition
that, for each σ ∈ P 1

∆, all points of the subsequence wσ belong to Tor+
R(σ) and lie

at the distance ≥ τ from the endpoints of Tor+
R(σ).

Lemma 2.3 For a sufficiently small τ > 0, the (metric) closure M
τ

R(∆) ⊂∏
σ⊂∂P (Tor+

R(σ))n
σ

is diffeomorphic to a convex polytope.

Proof. Since M τ
R(∆) is given by equation (1) with positive variables ξσi satis-

fying restrictions of the form 0 < const1 ≤ ξσi ≤ const2 < ∞, the coordinate-wise
logarithm takes M

τ

R(∆) onto a hyperplane section of a convex polytope. 2

2.1.3 Curves on toric surfaces

Given a morphism Φ : Ĉ → Tor(P∆) of a curve Ĉ to Tor(P∆), we denote by

• Φ∗(Ĉ) the scheme-theoretic push-forward, i.e., the one-dimensional part of the
image, whose components are taken with the corresponding multiplicities;

• Φ(Ĉ) the reduced model of Φ∗(Ĉ), where all components are taken with mul-
tiplicity one;

• Φ∗(D), where D ⊂ Tor(P∆) is a divisor intersecting Φ(Ĉ) in a finitely many

points, the divisor on Ĉ which is the pull-back of the scheme-theoretic inter-
section D ∩ Φ∗(Ĉ).

Denote by Mg,m(Tor(P∆),LP∆
) the space of isomorphism classes of maps Φ :

(Ĉ,p) → Tor(P∆), where Ĉ is a smooth curve of genus g and p ⊂ Ĉ is a

sequence of m distinct points, such that Φ∗(Ĉ) ∈ |LP∆
|. Correspondingly, by

Mg,m(Tor(P∆),LP∆
) we denote the compactification of the above moduli space ob-

tained by adding isomorphism classes of stable maps Φ : (Ĉ,p)→ Tor(P∆), where Ĉ

is a connected nodal curve of arithmetic genus g and p ⊂ Ĉ \ Sing (Ĉ) is a sequence

of m distinct points, such that Φ∗(Ĉ) ∈ |LP∆
|. In what follows, we work with certain

5



subspaces of these moduli spaces specified for genus g = 0 in Section 2.2, and for
genus g = 1 in Section 2.3. For any subset M ⊂ Mg,m(Tor(P∆),LP∆

), denote by
M the closure of M in the compactified moduli space Mg,m(Tor(P∆),LP∆

).

We denote by (C1 · C2)z the intersection multiplicity of curves C1, C2 ⊂ Tor(P∆)
at a smooth point z of Tor(P∆). By C1C2 we mean the total intersection multiplicity
of the curves C1, C2 ⊂ Tor(P∆). Given a local branch B of a curve germ (C, z) ⊂
Tor(P∆), we denote by ordB the intersection multiplicity of B with a generic smooth
curve through z.

Recall that deformations of a morphism Φ : Ĉ → Tor(P∆) of a smooth curve Ĉ

are encoded by the normal sheaf on Ĉ (see, for instance, [11]):

NΦ := Φ∗T Tor(P∆)/T Ĉ

(where T denotes the tangent bundle). In the case of an immersion, NΦ is a line
bundle of degree

degNΦ = c1(Tor(P∆))c1(LP∆
)− 2. (2)

Let ∆ = (aσi , i = 1, ..., nσ, σ ∈ P 1
∆) be a toric degree as introduced in Section

2.1.2. Fix a non-negative integer g ≤ I(∆) and a non-negative integer n(σ) ≤ nσ

for each σ ∈ P 1
∆ such that

∑
σ∈P 1

∆
n(σ) <

∑
σ∈P 1

∆
nσ. Put n∂ =

∑
σ∈P 1

∆
n(σ) and

nin = n− n∂, where

n =
∑
σ∈P 1

∆

nσ + g − 1.

Choose a sequence w of n distinct points in Tor(P∆) splitting into two subsequences:

• w∂ consisting of n∂ points in general position on Tor(∂P∆) so that, for each
side σ ∈ P 1

∆, exactly n(σ) points lie on Tor(σ);

• win consisting of nin points in general position in (C×)2 ⊂ Tor(P∆).

Introduce the subset Mg,n(∆,w) ⊂ Mg,n(Tor(P∆),LP∆
) consisting of the ele-

ments
[
Φ : (Ĉ,p)→ Tor(P∆)

]
such that

• the sequence p is split into disjoint subsequences p∂ and pin containing n∂ and
nin points, respectively, and Φ(p∂) = w∂, Φ(pin) = win;

• for each σ ∈ P 1
∆, one has

Φ∗(TorK(σ)) = 2
nσ∑
i=1

kσi p
σ
i ∈ Div(Ĉ),

where Φ(pσi ) = wσi for all pσi ∈ p∂ and wσi ∈ w∂, σ ∈ P 1
∆, 1 ≤ i ≤ n(σ), and

pσi , n(σ) < i ≤ nσ, are any points of Ĉ.

The proof of the following lemma is found in Section 3 after Theorem 3.9.
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Lemma 2.4 Suppose that the sequence w is in general position subject to the loca-
tion with respect to the toric divisors as indicated above. Then, the spaceMg,n(∆,w)

is finite. Moreover, for each element
[
Φ : (Ĉ,p)→ Tor(P∆)

]
∈ Mg,n(∆,w), the

map Φ takes Ĉ birationally onto an immersed curve C = Φ(Ĉ) that, for each σ ∈ P 1
∆,

intersects the toric divisor Tor(σ) at nσ distinct points and C is smooth at each of
these intersection points.

A map Φ : (Ĉ,p) → Tor(P∆) such that [Φ : (Ĉ,p) → Tor(P∆] ∈ Mg,n(∆,w) is
said to be real if

(i) the sequence w is invariant with respect to the tautological real structure on
Tor(P∆),

(ii) (Ĉ,p) is equipped with a real structure, and

(iii) Φ : (Ĉ,p)→ Tor(P∆) commutes with the real structures in the source and in
the target.

The set of equivalence classes of such real maps Φ : (Ĉ,p) → Tor(P∆) taken up
to equivariant isomorphism is denoted by MR

g,n(∆,w). We say that an element

[Φ : (Ĉ,p) → Tor(P∆)] ∈ MR
g,n(∆,w) is separating if the complement in Ĉ to the

real points set RĈ is disconnected, i.e., consists of two connected components. The
choice of one of these halves induces the so-called complex orientation on RĈ as well

as on Φ(RĈ) (in case of Φ birational onto its image). Denote by
−→
MR

g,n(∆,w) the

set of separating elements [Φ : (Ĉ,p) → Tor(P∆)] ∈ MR
g,n(∆,w) equipped with a

choice of a half Ĉ+ of Ĉ \ RĈ.

Following [22], we assign to each element ξ = ([Φ : (Ĉ,p) → Tor(P∆)], Ĉ+) ∈
−→
MR

g,n(∆,w) its quantum index

QI(ξ) =
1

π2

∫
Ĉ+

Φ∗
(
dx1 ∧ dx2

x1x2

)
, x1 = |z1|, x2 = |z2|, (3)

with z1, z2 coordinates in the torus (C×)2 ' Tor(P∆)× such that the form dx1 ∧ dx2

agrees with the orientation of Tor+
R(P∆) defined in Section 2.1.1. By [22, Theorem

3.1], if all intersection points of Φ(Ĉ) with the toric divisors are real, then QI(ξ) ∈ 1
2
Z

and |QI(ξ)| ≤ A(∆).

2.2 Refined rational invariants

In the notation of Section 2.1.3, assume that

g = 0, nin = 0, n∂ = n =
∑
σ∈P 1

∆

nσ − 1, and w = w∂ ⊂ ∂Tor+
R(P∆).
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In particular, for all σ ∈ P 1
∆ but one, n(σ) = nσ, and for the remaining edge τ ,

we have n(τ) = nτ − 1. Note that for a given w, there exists a unique point
wτnτ ∈ ∂Tor+

R(P∆) such that the sequence ŵ := w ∪ {wτnτ} belongs to the Menelaus
hypersurface M(∆).

Denote by M0 the subset of M(∆) formed by the above sequences ŵ such that
M0,n(∆,w) satisfies the conclusions of Lemma 2.4. The closure⋃

ŵ∈M0

MR
0,n(∆,w)

is naturally fibered over the space of sequences w ⊂ ∂Tor+
R(P∆), and for the sake of

notation, we denote the fibers by MR
0,n(∆,w).

Consider the subset MR,+
0,n (∆,w) ⊂ MR

0,n(∆,w), formed by the elements [Φ :
(P1,p) → Tor(P∆)] such that Φ(RP1) ⊂ Tor+

R(P∆) II. For every [Φ : (P1,p) →
Tor(P∆)] ∈ MR,+

0,n (∆,w), the curve C = Φ(P1) intersects each toric divisor Tor(σ)
in points wσi , 1 ≤ i ≤ nσ. Hence, each element ξ of the set

−→
MR,+

0,n (∆,w) ={([Φ : (P1,p)→ Tor(P∆)],P1
+) ∈

−→
MR

0,n(∆,w) :

[Φ : (P1,p)→ Tor(P∆)] ∈MR,+
0,n (∆,w)}

possesses a quantum index QI(ξ) ∈ 1
2
Z.

Furthermore, if ŵ ∈ M0, then (see [16, Section 1.1]), there is a well-defined
Welschinger sign

W0(ξ) = (−1)e+(C) ·
∏

σ∈P 1
∆, 1≤i≤nσ

kσi ≡ 0 mod 2

ε(ξ, wσi ) , (4)

where e+(C) is the number of elliptic nodes of C = Φ(P1) in the positive quadrant
Tor+

R(P∆) that arise from a real nodal equigeneric deformation of all singular points
of C in Tor+

R(P∆), and ε(ξ, wσi ) equals 1 or −1 according as the complex orientation
of RC = Φ(RP1) at wσi agrees or not with the fixed orientation of ∂Tor+

R(P∆).

For each κ ∈ 1
2
Z such that |κ| ≤ A(∆), put

W κ
0 (∆,w) =

∑
ξ∈
−→
MR,+

0,n (∆,w)
QI(ξ)=κ

W0(ξ) .

Theorem 2.5 For each κ ∈ 1
2
Z such that |κ| ≤ A(∆), the value W κ

0 (∆,w) does
not depend on the choice of a generic sequence w ⊂ Tor+

R(P∆).

We prove this theorem in Section 2.4.

Remark 2.6 Theorem 2.5 slightly generalizes the statement of [22, Theorem 5].

IINote that MR,+
0,n (∆,w) ( MR

0,n(∆,w) when there exists a connected component of

TorR(P∆)× \ TorR(P∆)+ such that the boundary of the component coincides with ∂Tor+
R (P∆).
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Definition 2.7 Following Theorem 2.5, we introduce the numerical invariants

W κ
0 (∆) := (−1)I( 1

2
∆)(−1)(A(∆)−κ)/4W κ

0 (∆,w), where κ ∈ 1

2
Z, |κ| ≤ A(∆),

and the refined invariant

G0(∆) :=
∑

κ∈ 1
2
Z, |κ|≤A(∆)

W κ
0 (∆)qκ.

Theorem 2.8 Invariants W κ
0 (∆) vanish for all κ 6∈ 2Z and for all κ ∈ 2Z such

that κ 6≡ A(∆) mod 4.

The proof is found in Section 4 after Theorem 4.28. The invariant G0(∆) can be
computed via the formula in [3, Theorem 3.4].

2.3 Refined elliptic invariants

In the notation of Section 2.1.3, assume that

g = 1, nin = 1, n∂ =
∑
σ∈P 1

∆

nσ − 1, w∂ ⊂ ∂Tor+
R(P∆), win = {w0} ⊂ Q,

where Q is an open quadrant in TorR(P∆)× \Tor+
R(P∆). As in the preceding section,

for all σ ∈ P 1
∆ but one, n(σ) = nσ, and for the remaining edge τ , we have n(τ) =

nτ − 1. Note that for a given w, there exists a unique point wτnτ ∈ ∂Tor+
R(P∆) such

that the sequence ŵ∂ := w∂ ∪ {wτnτ} belongs to the Menelaus hypersurface M(∆).

Denote by M1 the set of pairs (ŵ∂, w0) ∈M(∆)×Q such that the setM1,n(∆,w)
satisfies the conclusions of Lemma 2.4. The closure⋃

ŵ∈M1

MR
1,n(∆,w)

is naturally fibered over the space of sequences w ⊂ ∂Tor+
R(P∆)×Q, and we denote

the fibers by MR
1,n(∆,w).

Consider the subset MR,+
1,n (∆,w) ⊂MR

1,n(∆,w), formed by the elements

[Φ : (E,p)→ Tor(P∆)], where E is a smooth elliptic curve,

defining real curves C = Φ(E) ⊂ Tor(P∆) that have a one-dimensional real branch
in Tor+

R(P∆) and that intersect the toric divisor Tor(σ) in wσi , 1 ≤ i ≤ nσ, for all
σ ∈ P 1

∆. It follows from Lemma 2.4 that for (ŵ∂, w0) ∈ M1, the curve C has two
one-dimensional branches, one in Tor+

R(P∆) and the other in the closed quadrant
containing the point w0. This defines a unique real structure on E whose fixed point
set RE consists of two ovals, making Φ : E → C a separating real curve. The choice
of a component of E \ RE defines a complex orientation on the one-dimensional
branches of RC.
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We impose a further restriction to the choice of the quadrant Q ⊃ {w0} dictated
by our wish to avoid specific wall-crossing events that may occur in the proof of the
invariance of the count to be defined below: first, the escape of a real one-dimensional
branch of counted curves out of the positive quadrant and, second, degenerations in
which the union of the toric divisors splits off.

Definition 2.9 We say that the quadrant Q ⊂ TorR(P∆)× satisfies the admissible
quadrant condition (AQC) if the closure Q of Q shares with ∂Tor+

R(P∆) at most one
side.

Example 2.10 Let d, d1 and d2 be positive integers. Condition (AQC) imposes no
restriction on the choice of Q in the case of the triangle conv{(0, 0), (d, 0), (0, d)}
(the convex hull of the points (0, 0), (d, 0), (0, d)) having the projective plane P2 as
associated toric surface, while for the rectangle conv{(0, 0), (d1, 0), (d1, d2), (0, d2)}
which has P1×P1 as associated toric surface, the condition autorizes only the quad-
rant Q defined by the inequalities x1 < 0 and x2 < 0.

Denote by
−→
MR,+

1,n (∆,w) the subset of
−→
MR

1,n(∆,w) formed by the elements

([Φ : (E,p)→ Tor(P∆)],E+)

such that [Φ : (E,p) → Tor(P∆)] ∈ MR,+
1,n (∆,w) and E+ is a half of E \ RE.

According to [22, Theorem 1], each element ξ of
−→
MR,+

1,n (∆,w) has a quantum index
QI(ξ) ∈ 1

2
Z, |QI(ξ)| ≤ A(∆) (defined by formula (3) with the integration domain

E+), and for w such that (ŵ∂, w0) ∈M1, according to the argument in [16, Section
1.1], there is a well-defined Welschinger sign

W1(ξ) = (−1)e+(C) · (−1)h(C,Q) ·
∏

σ∈P 1
∆, 1≤i≤nσ

kσi ≡ 0 mod 2

ε(ξ, wσi ) , (5)

where h(C,Q) is the number of hyperbolic nodes of C = Φ(E) in the quadrant Q
that arise in any real nodal equigeneric deformation of all singularities of C in Q
(here e0(C) and ε(ξ, wσi ) are straightforward analogs of the corresponding ingredients
in formula (4)).

For each κ ∈ 1
2
Z such that |κ| ≤ A(∆), put

W κ
1 (∆,w) =

∑
ξ∈
−→
MR,+

1,n (∆,w)
QI(ξ)=κ

W1(ξ) . (6)

Theorem 2.11 The value W κ
1 (∆,w) does not depend on the choice of a generic w

subject to the following conditions: w∂ ⊂ ∂Tor+
R(P∆) and w0 ∈ Q, where Q is a

fixed non-positive quadrant satisfying (AQC).

We prove this theorem in Section 2.5.
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Definition 2.12 Following Theorem 2.5, we introduce the numerical invariants

W κ
1 (∆, (α, β)) := (−1)I( 1

2
∆)(−1)(A(∆)−κ)/4W κ

1 (∆,w), where κ ∈ 1

2
Z, |κ| ≤ A(∆),

and the couple (α, β) ∈ (Z/2Z)2 is defined via

Q = {(x, y) ∈ R2 | (−1)αx > 0, (−1)βy > 0}. (7)

We introduce also the refined invariant

G1(∆, (α, β)) :=
∑

κ∈ 1
2
Z, |κ|≤A(∆)

W κ
1 (∆, (α, β))qκ.

Theorem 2.13 Invariants W κ
1 (∆, (α, β)) vanish for all κ 6∈ 2Z and for all κ ∈ 2Z

such that κ 6≡ A(∆) mod 4.

The proof is found in Section 4 after Theorem 4.28.

2.4 Proof of Theorem 2.5

Consider two sequences w(0) and w(1) satisfying the hypotheses of Theorem 2.5.
We may assume that ŵ(0), ŵ(1) ∈ M τ

R(∆) for some τ > 0, and we can join these
sequences by a generic path {ŵ(t)}0≤t≤1, entirely lying in M τ

R(∆). To prove Theorem
2.5, we need to verify the constancy of W κ

0 (∆,w(t)) in all possible wall-crossing
events along the chosen path, for all κ.

First, we verify that W κ
0 (∆,w(t)) does not change along intervals t′ < t < t′′

such that

MR,+
0,n (∆,w(t)) =MR,+

0,n (∆,w(t)) and ŵ(t) ∈M0, for all t′ < t < t′′. (8)

To this end, we show that the projection of MR,+
0,n (∆,w(t))t′<t<t′′ to the interval

(t′, t′′) does not have critical points. In such a case, the familyMR,+
0,n (∆,w(t))t′<t<t′′

is the union of intervals trivially covering (t′, t′′), and hence it lifts to a trivial
family of complex oriented curves and the quantum index persists along each of the
components of the latter family.

It is convenient to look at the elements ŵ ∈ M τ
R(∆) as follows: pick some pair

(σ0, i0), where σ0 ∈ P 1
∆ and 1 ≤ i0 ≤ nσ0 , and think of wσ0

i0
as a mobile point, whose

position is determined by the other points wσi ∈ ŵ via the Menelaus condition. Put
C = Φ∗(P1). Observe that the tangent space at C to the family of curves C ′ ∈ |LP∆

|
intersecting Tor(σ) at wσi (where (σ, i) 6= (σ0, i0)) with multiplicity at least 2kσi can
be identified with the linear system {C ′ ∈ |LP∆

| : (C ′ · C)wσi ≥ 2kσi }. In turn, the
tangent space at C to the family of curves C ′ ∈ |LP∆

| intersecting Tor(σ0) at a point
close to wσ0

i0
with multiplicity at least 2kσ0

i0
can be identified with the linear system

{C ′ ∈ |LP∆
| : (C ′ · C)wσ0

i0
≥ 2kσi − 1}. Then, the required transversality amounts

to the following statement.

11



Lemma 2.14 Let ξ = [Φ : (P1,p) → Tor(P∆)] ∈ MR,+
0,n (∆,w(t)) with some t ∈

[0, 1]. Then,

H0

(
P1,NΦ

(
−

∑
σ 6=σ0,i 6=i0

2kσi p
σ
i − (2kσ0

i0
− 1)pσ0

i0

))

= H1

(
P1,NΦ

(
−

∑
σ 6=σ0,i 6=i0

2kσi p
σ
i − (2kσ0

i0
− 1)pσ0

i0

))
= 0.

Proof. We have

degNΦ

(
−

∑
σ 6=σ0,i 6=i0

2kσi p
σ
i − (2kσ0

i0
− 1)pσ0

i0

)
(2)
= −1 > −2.

Thus, the claim of the lemma follows from the Riemann-Roch theorem. 2

The set of elements ŵ ∈ M τ
R(∆) satisfying (8) is a dense semialgebraic subset

of full dimension dimM τ
R(∆) = n. The complement is the union of finitely many

semialgebraic strata of codimension ≥ 1. Since the path {ŵ(t)}0≤t≤1 is generic, it
avoids strata of M τ

R(∆) of codimension ≥ 2 and intersects strata of codimension one
only in their generic points.

Now we characterize elements ξ ∈MR,+
0,n (∆,w(t))0≤t≤1 \MR,+

0,n (∆,w(t))0≤t≤1 and
specify those of them which are generic elements of strata of dimension n− 1.

Lemma 2.15 (1) The following elements ξ = [Φ : (Ĉ,p)→ Tor(P∆)] cannot occur

in MR,+
0,n (∆,w(t))0≤t≤1 \MR,+

0,n (∆,w(t))0≤t≤1:

(1i) Ĉ is a reducible connected curve of arithmetic genus 0 with a component
mapped onto a toric divisor;

(1ii) Ĉ is a reducible connected curve of arithmetic genus 0 with at least three irre-
ducible components.

(2) If ξ = [Φ : (Ĉ,p) → Tor(P∆)] ∈ M0,n(∆,w(t∗)), where ŵ(t∗) is a generic
element in an (n− 1)-dimensional stratum in M τ

R(∆) \M0, then ξ is of one of the
following types:

(2i) ŵ(t∗) consists of n + 1 distinct points, Ĉ ' P1, the map Φ is birational onto
its image and satisfies the following: either it is smooth at ŵ(t∗), but has
singular branches in Tor(P∆)× or it is an immersion everywhere but at one
point wσi (t∗), where it has a singularity of type A2m, m ≥ kσi , and, furthermore,

C = Φ(Ĉ) is smooth at each point of ŵ(t∗) \ {wσi (t∗)};

(2ii) two points of the sequence ŵ(t∗) coincide (wσi (t∗) = wσj (t∗) for some σ ∈ P 1
∆

and i 6= j) and Ĉ ' P1, the map Φ being an immersion such that the point
wσi (t∗) = wσj (t∗) is a center of one or two smooth branches;

12



(2iii) ŵ(t∗) consists of n+ 1 distinct points, Ĉ = Ĉ1 ∪ Ĉ2, where Ĉ1 ' Ĉ2 ' P1 and

Ĉ1 ∩ Ĉ2 is one point p, each map Φ : Ĉi → Tor(P∆), i = 1, 2, is either an
immersion smooth along Tor(∂P∆), or a multiple covering of a line intersecting
only two toric divisors, while these divisors correspond to opposite parallel sides
of P∆ and the intersection points with these divisors are ramification points of
the covering; furthermore, either Φ(p) ∈ Tor(P∆)× and then all intersection

points of the curves C1 = Φ(Ĉ1), C2 = Φ(Ĉ2) are ordinary nodes, or w =

Φ(p) ∈ w(t∗), and in the latter case at least one of the maps Φ : Ĉi → Tor(P∆)

is birational onto its image and the curves C1 = Φ(Ĉ1), C2 = Φ(Ĉ2) do not
have common point in ŵ(t∗) \ {w};

(2iv) P∆ is a triangle, n = 3, two points of the sequence ŵ(t∗) coincide, the curve
C = Φ(P1) is rational and smooth at ŵ(t∗), and Φ : P1 → C is a double
covering ramified at two distinct points of ŵ(t∗).

Proof. (1i) A toric divisor Tor(σ) cannot split off alone, since, otherwise, in the
deformation along the path {ŵ(t)}0≤t≤1, the intersection points with the neighboring
toric divisors would yield points on these toric divisors on the distance less than τ
from the corners of Tor+

R(P∆). For the same reason we obtain that only all toric
divisors together may split off, while their intersection points must smooth out in
the deformation. However, this contradicts the rationality of the considered curves.

(1ii) First, note that Φ(Ĉ) intersects Tor(∂P∆) only at ŵ(t∗). Furthermore, if

the images of two irreducible components Ĉ1, Ĉ2 of Ĉ contain the same point wσi (t∗)

that is different from any other point wσj (t∗), j 6= i, then wσi (t∗) = Φ(Ĉ1 ∩ Ĉ2) (cf.
Lemma 2.4). Due to the genus restriction, it follows that the sequence ŵ(t∗) satisfies
at least three Menelaus conditions, which cuts off M τ

R(∆) a polytope of dimension
≤ n− 2, contrary to the dimension n− 1 assumption.

Let ξ satisfy the hypotheses of item (2).

(2i) Let Ĉ ' P1 and ŵ(t∗) consist of n + 1 distinct points. If all points wσi (t∗)
are smooth, then we get the case (2i).

Suppose that C = Φ(P1) is singular at some point wσi (t∗). Note that ξ must
be unibranch at each point of ŵ(t∗). Since ξ is a genetic element of an (n − 1)-
dimensional family in M0,n(∆), fixing the position of wσi , we obtain a family of
dimension ≥ n− 2. Applying [16, Inequality (5) in Lemma 2.1], we obtain

∑
σ⊂∂P

‖σ‖Z ≥ 2 +

(∑
σ⊂∂P

‖σ‖Z − n

)
+ (n− 3) +

∑
B

(ordB − 1)

=
∑
σ⊂∂P

‖σ‖Z − 1 +
∑
B

(ordB − 1) ,

where B ranges over all singular branches of ξ, and hence ξ has a unique singular
branch, and this branch is centered at wσi (t∗) and has multiplicity 2. Thus, the type
of the singularity must be A2m, m ≥ kσi .
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(2ii) Suppose that Ĉ ' P1 and some of the points of the sequence ŵ(t∗) coincide.
For the dimension reason, the number #(ŵ(t∗)) of points in ŵ(t∗) is equal to n− 1
(i.e., wσi (t∗) = wσj (t∗) = w for some σ ⊂ ∂P and i 6= j), and all these n − 1 ≥ 2
points are in general position subject to the Menelaus relation (1). If n − 1 = 2,
then the claim of item (2ii) is fulfilled by [28, Lemma 3.5]. Assume that n− 1 ≥ 3.

If C = Φ(Ĉ) is unibranch at each point of w(t∗), then, by Lemma 2.4, the curve C
is immersed and smooth along the toric divisors. If C is not unibranch at w, then
by Lemma 2.4 it has two local branches at w; furthermore, C must be unibranch
at each point wσ

′

i′ (t
∗) 6= w and, in addition, smooth if kσ

′

i′ ≥ 2 due to Lemma 2.4
and claim (1ii). Let us show that C is immersed. Fixing the position of w and the
position of one more point w′ ∈ w(t∗) \ {w}, we obtain a family of dimension at
least n− 3 ≥ 1; thus, [16, Inequality (5) in Lemma 2.1] applies:

c1(Tor(P∆))c1(LP∆
) ≥ 2 + (c1(Tor(P∆))c1(LP∆

)− n+ 2) +
∑
B

(ordB − 1) + (n− 4)

= c1(Tor(P∆))c1(LP∆
) +

∑
B

(ordB − 1) ,

where B runs over all singular local branches of C in Tor(P∆)×∪{w,w′}, and hence
C is immersed.

(2iii) We are left with the case of Ĉ = Ĉ1 ∪ Ĉ2, where Ĉ1 ' Ĉ2 ' P1 and

Ĉ1 ∩ Ĉ2 = {p} is one point. For the dimension reason, the points of ŵ(t∗) are
in general position subject to exactly two Menelaus conditions (induced by the

components of Ĉ), and they are all distinct. Each of the curves C1, C2, which
passes through at least three points of ŵ(t∗), is immersed and smooth along the
toric divisors and has even intersection multiplicity with Tor(∂P∆) at any point, by
Lemma 2.4. If C1 or C2 passes through exactly two points of ŵ(t∗), then it is a
multiple covering of a line as described in item (2iv). Let Φ(p) ∈ Tor(P∆)×. Then,
by Lemma 2.4, the curves C1 and C2 do not share points in ŵ(t∗), and we claim that
all their intersection points are ordinary nodes. Due to the genericity assumptions
for ŵ(t∗), we have to study the only case of both C1 and C2 immersed. If we
freely move the points of C1 ∩ ŵ(t∗) so that the corresponding Menelaus condition
induced by C1 retains, and fix the curve C2, then the persisting tangency condition
of a germ Φ : (Ĉ1, q)→ Tor(P∆) to the curve C2 would yield that the tangent space
to the considered family of curves in the linear system |C1| would be contained in

H0(Ĉ1,OĈ1
(d1)), where

degd1 = C2
1 − (C2

1 − c1(Tor(P∆))[C1] + 2)− (c1(Tor(P∆))[C1]−#(w(t∗) ∩C1))− 1

= #(ŵ(t∗) ∩ C1)− 3 > −2 ,

and hence, by the Riemann-Roch theorem,

h0(Ĉ1,OĈ1
(d1)) = #(ŵ(t∗)∩C1)− 3 + 1 = #(ŵ(t∗)∩C1)− 2 < #ŵ(t∗)∩C1)− 1 ,

which is a contradiction.
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(2iv) Suppose that Φ : P1 → Tor(P∆) is an s-multiple covering onto its image,
s ≥ 2. For the dimension reason, the sequence ŵ(t∗) contains at least n distinct
points. If ŵ(t∗) consists of n−1 distinct points, then at each point of ŵ(t∗) we have
the ramification index s; hence, by the Riemann-Hurwitz formula, we get

2 ≤ 2s− (s− 1)(n+ 1), (9)

which gives n ≤ 1; the latter inequality contradicts the fact that n + 1 is bounded
from below by the number of sides of P∆. If the sequence ŵ(t∗) contains only n
distinct points, we have n ≥ 3. Note that Φ has an irreducible preimage in at least
n − 1 points of ŵ(t∗) with ramification index s, and hence n = 3 (cf. (9)). It also
follows that there are no other ramifications and that s = 2, since the remaining
point of ŵ(t∗), where Φ is not ramified, lifts to at most two points in P1. Thus, we
are left with the case described in item (2iv) of the lemma. 2

We complete the proof of Theorem 2.5 with the following lemma.

Lemma 2.16 Let {ŵ(t)}0≤t≤1 be a generic path in M τ
R(∆), and let t∗ ∈ (0, 1) be

such that MR
0,n(∆,w(t∗)) contains an element ξ as described in one of the items

of Lemma 2.15(2). Then, for each κ ∈ 1
2
Z such that |κ| ≤ A(∆), the numbers

W κ
0 (t) = W κ

0 (∆,w(t)) do not change as t varies in a neighborhood of t∗.

Proof. We always can assume that in a neighborhood of t∗, the path {ŵ(t)}0≤t≤1

is defined by fixing the position of some n − 1 points of w(t∗), while the other
two points remain mobile (the choice of the two mobile points may depend on the
considered degeneration). We also notice that, in the degenerations as in Lemma
2.15(2i,2ii), the source curve and its real structure remain fixed, which implies that
the quantum index is constant in these wall-crossings. Except for the case of Lemma
2.15(2iii) describing reducible degenerations, we work with families of curves which
are trivially covered by families of complex oriented curves so that the quantum
index persists along each component of the family of oriented curves.

(1) Suppose that ξ ∈ MR,+
0,n (∆,w(t∗)) is as in Lemma 2.15(2i) and, moreover,

if it has a singular branch at wσi (t∗), then kσi = 1. We derive the constancy of
W κ

0 (t), |t − t∗| < δ from [15, Lemma 15] and [16, Lemma 2.4(1)]. To this end,
we have to establish the following transversality statement (cf. [15, Lemma 13]).
Choose a sufficiently large integer s. For each point z ∈ Sing (C)∩Tor(P∆)×, we set
Iz = Icond(C, z)/ms

z ⊂ OC,z/ms
z, the quotient of the conductor ideal by the power

of the maximal ideal, which can be viewed as the tangent cone to the stratum
parameterizing equigeneric deformations (see [5, Theorem 4.15]). For each point
w = wσi (t∗), where C is smooth and which is fixed, respectively, mobile, we set

Iw = {ϕ ∈ OC,w : (ϕ · C)w ≥ 2kσi }/ms
w ⊂ OC,w/ms

w ,

respectively, Iw = {ϕ ∈ OC,w : (ϕ · C)w ≥ 2kσi − 1}/ms
w ⊂ OC,w/ms

w ,

which can be viewed as the tangent space to the stratum parameterizing deforma-
tions that keep the intersection number with Tor(σ) at w, respectively, in a nearby
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point on Tor(σ). For each point w = wσi (t∗) with kσi = 1, where C is singular (i.e.,
has a singular branch of type A2m, m ≥ 1) and which is fixed, respectively, mobile,
we set

Iw = {ϕ ∈ OC,w : (ϕ · C)w ≥ 2 + 2m}/ms
w ⊂ OC,w/ms

w ,

resp. Iw = {ϕ ∈ OC,w : (ϕ · C)w ≥ 1 + 2m}/ms
w ⊂ OC,w/ms

w ,

which can be viewed as the tangent cone to the stratum parameterizing equigeneric
deformations with the fixed intersection multiplicity 2 with Tor(σ) at w, respectively,
at a nearby point on Tor(σ) (see [16, Lemma 2.4(1)] and [30, Lemma 3(1)]). The
required transversality is as follows: the natural image of the germ of the linear
system |LP∆

| at C to
∏

z∈Sing (C)∩Tor(P∆)× OC,z/ms
z ×

∏
w∈w(t∗)OC,w/ms

w intersects

there transversally with
∏

z∈Sing (C)∩Tor(P∆)× Iz ×
∏

w∈w(t∗) Iw. The cohomological
reformulation amounts to

H1(P1,OP1(d)) = 0 , (10)

which holds in view of

degd = C2 −
∑

z∈Sing (C)∩Tor(P∆)×

dimOC,z/Iz −
∑

w∈w(t∗)

dimOC,w/Iw

= C2 − (C2 − c1(Tor(P∆))c1(LP∆
) + 2)− (c1(Tor(P∆))c1(LP∆

)− 2) = 0 > −2 .

The established transversality reduces the constancy of W κ
0 (t) to the constancy

of the count of Welschinger signs when varying germs (C, z) and (C,w) for z ∈
Sing (C) ∩ Tor(P∆)× and w ∈ Sing (C) ∩ ŵ(t∗). Thus, the constancy in the former
variation follows from [15, Lemma 15] (see also [15, Lemma 13]), while the constancy
in the latter variation follows from the fact that the equigeneric stratum, which we
consider in OC,w/ms

w, is smooth (see [30, Lemma 3(1)] and [16, Lemma 2.4(2)]), and
the local count of Welschinger signs is invariant by [16, Lemma 2.4(1)].

(2) Suppose that ξ ∈MR,+
0,n (∆,w(t∗)) is as in Lemma 2.15(2i) with a singularity

at a point wσi (t∗) of type A2m, m ≥ kσi . We can assume that the path {ŵ(t)}|t−t∗|<ε
is such that n − 1 points of ŵ(t), including wσi (t), stay fixed, whereas the other
two points move keeping the Menelaus condition. We claim that the germ at ξ

of the family {MR,+
0,n (∆,w(t))}|t−t∗|<ε is smooth and regularly parameterized by

t ∈ (t∗ − ε, t∗ + ε). By [5, Theorem 4.15 and Proposition 4.17(2)] and [30, Lemma
3(1)], it is sufficient to prove that

H1(C,JZ/C(C)) = 0 , (11)

where C = Φ(P1) and JZ/C ⊂ OC is the ideal sheaf of the zero-dimensional scheme
Z ⊂ C concentrated at ŵ(t∗) ∪ Sing (C) and given (cf. Step (1) of the proof)

• by the ideal Iw = {ϕ ∈ OC,w : ordϕ
∣∣
w
≥ 2kσ

′

i′ } at each point w = wσ
′

i′ (t
∗) ∈

ŵ(t∗) \ {wσi (t∗)}, which is fixed as |t− t∗| < ε,

• by the ideal Iw = {ϕ ∈ OC,w : ordϕ
∣∣
w
≥ 2kσ

′

i′ −1} at each point w = wσ
′

i′ (t
∗) ∈

ŵ(t∗) \ {wσi (t∗)}, which moves as |t− t∗| < ε,
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• by the ideal Iw = {ϕ ∈ OC,w : ordϕ
∣∣
w
≥ 2kσi + 2m} at the point w = wσi (t∗)

(here, in the notations of [30, Lemma 3(1)], s = 2kσi and δ(C,w) = m),

• by the conductor ideal IcondC,z at each point z ∈ Sing (C) \ {wσi (t∗)} (for the
definition of the conductor ideal see, for instance, [5, Section 1, item (iii)] and
[12, Section I.3.4, item “Semigroup and Conductor”]).

Thus, the desired relation (11) turns into

H1(P1,OP1(d)) = 0 ,

(cf. (10)), where the divisor d has degree

degd = C2 −
∑

z∈Sing (C)\w(t∗)

dimOC,z/Iz −
∑

w∈w(t∗)

dimOC,w/Iw

= C2 − (C2 − c1(Tor(P∆))c1(LP∆
) + 2)− (c1(Tor(P∆))c1(LP∆

)− 2) = 0 > −2 ,

which, finally, confirms (11).

In suitable conjugation-invariant local coordinates x, y in a neighborhood U ⊂
Tor(P∆) of w := wσi (t∗), we have w = (0, 0), Tor(σ) = {y = 0}, Tor+

R(P∆) = {y ≥ 0}.
Since the real part of the germ (C,w) lies in Tor+

R(P∆), without loss of generality we
can suppose that (C,w) = {F (x, y) := y2− 2xky+ x2k + h.o.t. = 0}, where k := kσi .
Set t1 = t − t∗. Then, the germs [Φt(P1), w], where ξt = [Φt : (P1,pt) → Tor(P∆)]

ranges over the germ at ξ of the family {MR,+
0,n (∆,w(t))}|t−t∗|<ε, are given by an

equation

Ft1(x, y) := F (x, y) +
k−1∑
j=0

t
(k−j)γ
1 (aj1 +O(t1))xjy +

∑
p+kq≥2k

bpq(t1)xpyq = 0 , (12)

where a01 6= 0 and bpq(0) = 0 for all p, q in the range. The tropical limit of the
germs [Φt(P1), w] as t → t∗ or, equivalently, t1 → 0 (for the detailed description
of the tropical limit, see Section 3.2 below) defines the subdivision of the Newton
polygon P (Ft) of Ft(x, y) into the triangle T1 = conv{(0, 1), (0, 2), (2k, 0)} and the
Newton polygon P (F ) of F (see Figure 1(a)). Note that, since the curves Φt(P1)
are rational, the triangle T1 is not subdivided further, and the corresponding limit
curve

C1 :=

{
k−1∑
j=0

aj1x
jy + y2 − 2xky + x2k = 0

}
(13)

is rational. Moreover, since the curve C is unibranch at w, the limit curve CF defined
by the polynomial F in the surface Tor(P (F )) is unibranch at the intersection point
with the toric divisor Tor([(0, 2), (2k, 0)]). Hence, C1 is unibranch at its intersection
point with the toric divisor Tor([(0, 2), (2k, 0)]), because otherwise, the union of the
limit curves C1 and CF would deform into a non-rational curve contrary to the fact
that the curves Φ(P1) are rational. By [28, Lemma 3.5], the curve C1 is smooth at
the intersection points with the toric divisors.
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Figure 1: Proof of Lemma 2.16, part (2), I

We perform the modification of the above tropicalization along the toric divisor
Tor([(0, 2), (2k, 0)]) (see the details in Section 3.3). Recall that the curve C has
singularity of type A2m at w, and hence there exists a coordinate change

x = x′, y = y′ + (x′)k +
∑

k<j≤m

cj(x
′)j , (14)

which converts the polynomial F (x, y) into a polynomial

F ′(x′, y′) = (y′)2 + a2m+1,0(x′)2m+1 + h.o.t., a2m+1,0 6= 0 .

There exists a deformation of the coordinate change (14)

x = x′, y = y′ + (1 +O(t1))xk +
∑

k<j<m

(cj +O(t1))xj , (15)

which turns the family of polynomials Ft1(x, y), |t1| < ε, into the family

F ′t1(x′, y′) =
k−1∑
j=0

t
(k−j)a
1 (aj1 +O(t1))(x′)jy′ +

2m∑
j=2k−1

t
ν(j)
1 (aj0 +O(t1))(x′)j

+(y′)2(1 +O(t1)) + (x′)2m+1(a2m+1,0 +O(t1)) + h.o.t. (16)

The tropical limit of the latter family of polynomials defines the subdivision of the
Newton polygon P (F t1) into the triangles

T1 = conv{((0, 2), (0, 1), (2k − 1, 0)}, T3 = conv{(0, 2), (2k − 1, 0), (2m+ 1, 0)} ,

and the Newton polygon P (F ′) (see Figure 1(b)). Moreover, in principle, the triangle
T3 can be subdivided further. Taking into account that all limit curves associated
with the considered tropical limit must be rational and that the coefficients of F ′t1 at
the interior integral points of T3 vanish, the triangle T3 can be subdivided only into
triangles of type conv{(0, 2), (2j′ − 1, 0), (2j′′ + 1, 0)} with some k ≤ j′ ≤ j′′ ≤ m.
The function ν : {2k − 1, 2k, ..., 2m + 1} → Z in the exponents of t1 in (16) (with
the extra value ν(2m + 1) = 0) extends to a convex piecewise-linear function on
the whole segment [(2k − 1, 0), (2m + 1, 0)] with linearity domains induced by the
subdivision of the triangle T3. We make two remarks.
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• Since the germ at ξ of the family {MR,+
0,n (∆,w(t))}|t−t∗|<ε is smooth and reg-

ularly parameterized by t1 (see the beginning of Step (2)), we derive that
µ(2m) = 1.

• Since the linearity domains of ν are segments of even length, the value ν(2k−1)
is even. On the other hand, formulas (15) yield that ν(2k − 1) = α, and
hence all exponents of t1 in the leading terms of the coefficients of Ft1 at xjy,
0 ≤ j ≤ 2k − 1, are even (see (12)). This means, in particular, that the limit
curve C1 given by (13), contributes to the curves Φt(P1) the same collection of
real nodes with the same location with respect to Tor(σ) both for t < t∗ and
for t > t∗. Hence, these singularities contribute the same factor to W0(ξt) for
t < t∗ and for t > t∗ (cf. formula (4)).

Now we analyze the contribution of the limit curves associated with the fragment
T3, and we consider the only case when T3 is not subdivided. The other cases can
be treated similarly. So, we have the limit curve

C3 =

{
(y′)2 +

2m+1∑
j=2k−1

aj0(x′)j = 0

}
,

which must be rational, and this yields that

2m+1∑
j=2k−1

aj0(x′)j = a2m+1,0(x′)2k−1Q(x′)2, degQ = r := m− k + 1 ,

while the nodes of C3 are (λj, 0), j = 1, ..., r, with the numbers λj being the roots of
Q. Denote by r+ (respectively, r−) the number of positive (respectively, negative)
roots of Q. Without loss of generality we can assume that a2m+1,0 < 0. Then, the
curve C3 has r+ hyperbolic nodes and r− elliptic nodes. In view of formulas (15),
the nodes of C3 yield the nodes

(t1(λj +O(t1)), tk1(λkj +O(t1))), j = 1, ..., r ,

of the curve Φt(P1), where t1 = t− t∗: for t1λj > 0 a hyperbolic node, for t1λj < 0
an elliptic one.

Thus, if k is odd, then, for t > t∗ (respectively, t < t∗), the curve Φt(P1) gets
r+ (respectively, r−) hyperbolic nodes in Tor(P∆)+ and r− (respectively, r+) elliptic
nodes outside Tor(P∆)+. None of these nodes contributes to the right-hand side of
(4), and hence W0(ξt) remains constant as 0 < |t− t∗| < ε.

If k is even, then the curve Φt(P1) gets r+ hyperbolic and r− elliptic nodes in
Tor(P∆)+ if t1 > 0, and gets r− hyperbolic and r+ elliptic nodes in Tor(P∆)+ if
t1 < 0. Suppose that r is even. Then r+ ≡ r− mod 2, and hence the first product
in the right-hand side of formula (4) for W0(ξt) remains constant. In turn, the
orientation of the real local branch of Φt(P1) at w remains the same (see Figure
2(a,b)), and hence the second product in the right-hand side of (4) remains constant
as well. Suppose that r is odd. Then r+ ≡ r− + 1 mod 2, and hence the first
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Figure 2: Proof of Lemma 2.16, part (2), II

product in the right-hand side of formula (4) for W0(ξt) changes sign as t passes
through t∗. However, the orientation of the real local branch of Φt(P1) at w changes
(see Figure 2(c,d)), which causes the change of sign in the second product in the
right-hand side of (4).

Thus, W κ
0 (t) remains constant in the considered bifurcation.

(3) Suppose that ξ is as in Lemma 2.15(2ii). Here we choose a path {ŵ(t)}0≤t≤1

defined in a neighborhood of t∗ so that the point wσi (t) is fixed and the point wj(t
∗)

is mobile (together with some other point of ŵ(t)). Since C is immersed, we extract
the required local constancy of W κ

0 (t) from the transversality relation (10) and the
smoothness of the two following strata in OC,w/ms

w:

• one stratum parameterizes deformations of a smooth branch intersecting
Tor(σ) at w with multiplicity 2(kσi + kσj ) into a smooth branch intersecting
Tor(σ) at w with multiplicity 2kσi and in a nearby point with multiplicity 2kσj ,

• the other stratum parameterizes deformations of a couple of smooth branches
intersecting Tor(σ) at w with multiplicities 2kσi and 2kσj , respectively, into a
couple of smooth branches, one intersecting Tor(σ) at w with multiplicity 2kσi
and the other intersecting Tor(σ) in a nearby point with multiplicity 2kσj .

Both smoothness statements are straightforward.

(4) Suppose that ξ is as in Lemma 2.15(2iii) and Φ(p) ∈ TorR(P∆)×+. We closely
follow the proof of [22, Theorem 5], providing here details for the reader’s conve-
nience. Consider the path {ŵ(t)}0≤t≤1 locally obtained from ŵ(t∗) by moving one
point of w(t∗) ∩ C1 and one point of w(t∗), while fixing the position of the other
points of w(t∗). Then, we obtain a smooth one dimensional germ inM0,n(∆), which

locally induces a deformation of the hyperbolic node Φ(Ĉ, p) equivalent in suitable
local coordinates in a neighborhood of z = Φ(p) to uv = λ(t) with λ a smooth
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Figure 3: Proof of Lemma 2.16, part (4)

function in a neighborhood of t∗ such that λ(t∗) = 0 and λ′(t∗) > 0 (see Figure
3(a)). The smoothness and the local deformation claims are straightforward from
the (standard) considerations in the proof of [15, Lemma 11(2)], which reduce both
claims to the following h1-vanishing (cf. [15, Formula (16) and computations in the
first paragraph in page 251]):

h1(Ĉs,OĈs(ds)) = 0, s = 1, 2 , (17)

where

degds = C2
s − (C2

s − c1(Tor(P∆))[Cs] + 2)− (c1(Tor(P∆))[Cs]− 1) = −1 > −2 ,

and hence (17) follows.

Now we analyze the change of quantum and pass to consideration of complex
oriented curves. Denote by Ĉ±1 and Ĉ±2 the connected components of Ĉ1 \ RĈ1

and Ĉ2 \ RĈ2, respectively. When t varies around t∗, the curve Ĉ1 ∪ Ĉ2 turns

into P1, and we encounter two types of deformations: either Ĉ+
1 , Ĉ

−
1 glue up with

Ĉ+
2 , Ĉ

−
2 , respectively, or Ĉ+

1 , Ĉ
−
1 glue up with Ĉ−2 , Ĉ

+
2 , respectively. The type of the

deformation agrees with the local complex orientation of the central curve as shown
in Figure 3(b). This means that if for t < t∗ one encounters a deformation of the first
type, then for t > t∗ it is of the second type, and vice versa. In terms of the quantum
indices, this means that, on one side of the path {ŵ(t)}|t−t∗|<ε, where 0 < ε� 1, we

have two elements of
−→
MR,+

0,n (∆,w(t)) with quantum indices κ1 +κ2, −κ1−κ2, while

on the other side, κ1−κ2, κ2−κ1, where κs = QI(Φ : (Ĉs, Ĉ
+
s )→ Tor(Σ)), s = 1, 2.

We intend to show that, along the path {ŵ(t)}|t−t∗|<ε, we simultaneously observe

several bifurcations of the elements of
−→
MR,+

0,n (∆,w(t)) on each side of the path, each
value of the quantum index κ1 + κ2,−κ1 − κ2, κ1 − κ2, κ2 − κ1 appears exactly r
times, where r is either the half of the number of hyperbolic nodes in C1 ∩ C2 if
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Φ
∣∣
Ĉ1
,Φ
∣∣
Ĉ2

both are immersions, or the number of hyperbolic nodes in C1∩C2 if one

of Φ
∣∣
Ĉ1
,Φ
∣∣
Ĉ2

is a multiple covering, or 2 if Φ
∣∣
Ĉ1
,Φ
∣∣
Ĉ2

both are multiple coverings.

Note that, for the given C1, C2 and multiplicities of the covering (if any), we have

2r distinct maps Φ : Ĉ1 ∪ Ĉ2 → Tor(P∆) with the images Φ(Ĉs) = Cs, s = 1, 2,
that are distinguished by the choice of a hyperbolic node in C1 ∩ C2 which is the
image of p = Ĉ1 ∩ Ĉ2. In case of both Φ

∣∣
Ĉ1
,Φ
∣∣
Ĉ2

immersions, with the induced

by Ĉ+
1 and Ĉ+

2 complex orientations, we can compute the intersection multiplicity
RC1 ◦ RC2 = 0 by summing up the local multiplicities at the hyperbolic nodes in
C1 ∩ C2. This yields, first, that the number of these hyperbolic nodes is even and
that the numbers of positive and negative intersections of RC1,RC2 equal r. Let
Φ : Ĉ1 ∪ Ĉ2 → Tor(P∆) deforms into Φ(t) : P1 → Tor(P∆) as t∗ < t < t∗ + ε.

Then for any point p′ 6= p = Ĉ1 ∩ Ĉ2 the germ Φ(Ĉ, p′) never intersects with
the corresponding deformed germ Φ(t)(P1, p′t) except for the two cases when p′ is
mapped to one of the mobile points of w(t∗). Further on, the curves C1 ∪ C2 and
C(t) = Φ(t)(P1) do not intersect in a neighborhood of the hyperbolic node z = Φ(p).
This is a consequence of the Bézout’s bound and [13, Theorem 2] (see also [12,
Lemma II.2.18]): in a neighborhood of each singular point z′ of C1 ∪ C2 except
for z, we have at least 2δ(C1 ∪ C2, z

′) intersections (which is twice the sum of
pairwise intersection multiplicities of distinct local branches at z′), at each fixed
point wσi (t∗) at least 2kσi intersections, and in a neighborhood of a mobile point
wσi (t∗) at least 2kσi − 1 intersections, which altogether amounts to c1(LP∆

)2. That
is, the geometry of the deformation Φ(t) : P1 → Tor(P∆), 0 < t < t + ε, is as
follows: starting in a neighborhood of the mobile point wσi (t∗) ∈ C1, the immersed
circle RC(t) goes in a neighborhood of RC1 always on the same side of RC1 (with
respect to the coorientation of RC1 induced by the complex orientation), say, in the
positive side as shown in Figure 3(c) (where RC(t) is designated by the dashed line),
until it arrives to a neighborhood of the smoothed out node z ∈ C1 ∩ C2, where
we observe a deformation as shown in Figure 3(c). It follows that if z carries the
positive intersection multiplicity, then the complex orientations of C(t) correspond
to a pair of quantum indices κ1−κ2, κ2−κ1, and if z carries the negative intersection
multiplicity, then the complex orientations of C(t) correspond to a pair of quantum
indices κ1 +κ2,−κ1−κ2. This completes the proof of the constancy of the numbers
W κ

0 (t) along the path {ŵ(t)}|t−t∗|<ε.
The cases when one or both maps Φ

∣∣
Ĉ1
,Φ
∣∣
Ĉ2

are multiple coverings of their images
can be treated in the same way, we leave the details to the reader.

(5) Suppose that ξ is as in Lemma 2.15(2iii) and Φ(p) = wσi (t∗) =: w. Observe
that (Φ

∣∣
Ĉs

)∗(w) = 2lsp, s = 1, 2, where l1 + l2 = kσi . Suppose that Φ
∣∣
Ĉ1
,Φ
∣∣
Ĉ2

both
are immersions and that l1 ≤ l2.

Define the path {ŵ(t)}|t−t∗|<ε by picking one mobile point in C1∩ŵ(t∗)\{wσi (t∗)}
and the other in C2 ∩ ŵ(t∗) \ {wσi (t∗)}. It defines a one-dimensional subvariety of

M0,n(∆), and let [Φt : (Ĉ(t),pt) → Tor(P∆)], |t − t∗| < ε, represents one of the

irreducible germs of that variety at ξ, where Ĉ(t) ' P1 as t 6= 0. The one-dimensional
family F of curves C(t) = Φt(Ĉ

(t)) ∈ |LP∆
|, |t−t∗| < ε, has a tangent cone at C1∪C2

spanned by C1 ∪ C2 and some curve C∗ ∈ |LP∆
| \ {C1 ∪ C2}. We show that F is
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smoothly parameterized by t.

We start with describing the local behavior of C∗ at the point w. Choose local
equivariant coordinates x, y in a neighborhood of w so that w = (0, 0), Tor(σ) =
{y = 0}, Tor+

R(P∆) = {y ≥ 0}, Cs = {y = ηsx
ls + h.o.t.} with ηs > 0, s = 1, 2,

where without loss of generality we assume η1 6= η2. Thus, the equation of C1 ∪ C2

has the Newton diagram k at w as shown in Figures 4(a,b) by fat lines. We claim
that C∗ has under k the monomial x2l1−1y with a nonzero coefficient and no other
monomials. Since C∗ can be taken close to C1 ∪ C2, its Newton diagram either
coincides or lies below k. The coincidence is not possible for the following reason.
The curve C∗ passes through C1 ∩ C2 ∩ Tor(P∆)× (which consists of only nodes
by Lemma 2.15(2iii)) and, in case C∗ has Newton diagram k at w, intersects C1

at w with multiplicity ≥ 2l1 = (C1 · C2)w. Hence, by the Noether’s fundamental
theorem, C∗ lies in the subspace of |LP∆

| spanned by the curves of type C1 ∪ C ′2,
C ′2 ∈ |C2|, and C ′1 ∪ C2, C ′1 ∈ |C1|. However, the Bézout type restriction dictates
that C ′1 = C1 and C ′2 = C2: for example, at each point z ∈ Sing (C1), the curve C ′1
must induce in OC1,z an element of the conductor ideal (cf. [5, Theorem 4.15]), and
hence (C ′1 ·C1)z ≥ 2δ(C1, z), at each fixed point wσ

′

i′ (t
∗) of ŵ(t∗)∩C1 (including w),

we have (C ′1 ·C1)wσ′
i′ (t∗) ≥ 2kσ

′

i′ , and at last, at the mobile point wσ
′

i′ (t
∗) ∈ ŵ(t∗)∩C1,

we have (C ′1 · C1)wσ′
i′ (t∗) ≥ 2kσ

′

i′ − 1, which altogether amounts to∑
z∈Sing (C1)

δ(C1, z) + c1(LP∆
)[C1]− 1 = C2

1 + 1 .

Further on, a monomial in an equation of C∗ below k cannot be xs, 0 ≤ s < 2(l1+l2),
since (C∗ · Tor(Σ))w ≥ 2(l1 + l2), and it cannot be xsy with 0 ≤ s ≤ 2l1 − 2. For
the latter claim, we observe that each curve C(t), t 6= 0, has 2l1 − 1 nodes in a
neighborhood of w and satisfies C(t) ·Tor(σ))w = 2(l1 + l2). Thus, if the tangent line
at C(t) to the considered family of curves is spanned by C(t) and (C∗)(t), then C(t) and
(C∗)(t) intersect in a neighborhood of w with multiplicity ≥ 2(2l1− 1) + 2(l1 + l2) =
4l1 + 2l2− 2. Hence, C∗ and C1 ∪C2 intersect at w with multiplicity ≥ 4l1 + 2l2− 2,
which leaves the only possibility of the extra monomial x2l1−1y.

If l1 = l2 = l, we can write down an equation of C(t) in a neighborhood of w in
the form

y2(1+O(t>0
1 ))−(η1+η2+O(t>0

1 ))x2ly+x4l(η1η2+O(t>0
1 ))+h.o.t.+

2l−1∑
r=0

ar1(t1)xry = 0,

where h.o.t. designates the terms above the Newton diagram, and

t1 = t− t∗, ar1(0) = 0 for all r = 0, ..., 2l − 1 .

Consider the tropical limit at t1 → 0 (see Section 3.2). It includes a subdivision of the
triangle T = conv{(0, 1), (4l, 0), (02)} and certain limit curves in the toric surfaces
associated with the pieces of the subdivision. Since locally C(t) is an immersed
cylinder, we obtain that the union of the limit curves is a curve of arithmetic genus

23



(a) (b)

(c) (d)

2l 4l

1

2

1

2

2l1 2l1 + 2l2

l1 = l2 = l l1 < l2

Figure 4: Proof of Lemma 2.16, part (5), I

zero, which finally allows the only following tropical limit: the triangle T is the
unique piece of the subdivision, and

ar1(t1) = t
λ(2l−r)
1 (a0

r1 +O(t>0
1 )), r = 0, ..., 2l − 1 ,

where a0
2l−1,1 6= 0 in view of the above conclusion on the Newton diagram of C∗, and

in addition, the limit curve with Newton triangle T given by

y2 − (η1 + η2)x2ly + η1η2x
4l +

2r−1∑
r=0

a0
r1x

ry = 0 (18)

is rational. It also follows, that F is smooth, regularly parameterized by t1 (i.e.,
λ = 1), and its real part submersively projects onto the path {ŵ(t)}|t−t∗|<ε. By the
patchworking theorem [27, Theorems 3.1 and 4.2], we uniquely restore F as long as
we compute the coefficients a0

r1, 0 ≤ r ≤ 2l1 − 2 (here a0
2l−1,1 is determined by C∗).

The rationality of the curve (18) can be expressed as follows. Write equation (18)
in the form y2 − 2P (x)y + η1η2x

4l = 0, then resolve with respect to y:

y = P (x)±
√
P (x)2 − η1η2x4l = P (x)± x2l

√
Q(1/x)2 − η1η2, degQ = 2l .

The rationality means that the expression under the radical has 2l− 1 double roots
(corresponding to the nodes of the curve). This means that Q is a modified Cheby-
shev polynomial:

Q(u) = λ1Cheb2l(u+ λ2) + λ3, Cheb2l(u) = cos(2l · arccosu) ,

where λ1, λ2, λ3 can be computed out of η1, η2, and a0
2l−1,1. As noticed in [28, Proof

of Proposition 6.1], there are exactly two real solutions, one corresponding to a
curve with the real part, shown in Figure 4(c) by lines inside the four Newton
triangles designating four real quadrants, and this curve has one hyperbolic node
and 2l − 2 non-real nodes, while the other curve, shown in Figure 4(d), has 2l −
1 elliptic nodes. Bringing the complex orientations to the play, we see that the
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former solution appears when the local real branches (RC1, w) and RC2, w) are
cooriented, while the latter solution corresponds to the case when these real branches
have opposite orientations, see Figures 4(c,d). That is, on both sides of the path

{w(t)}|t−t∗|<ε we encounter four elements of
−→
MR,+

0,n (∆,w(t)) having quantum indices
κ1 + κ2,−κ1 − κ2, κ1 − κ2, κ2 − κ1. It remains to notice that the Welschinger signs
(4) of the elements with quantum indices κ1+κ2,−κ1−κ2 are the same on both sides,
since the modified limit curves (see lemma 3.4(3)) shown in Figure 4(c) for t > t∗

and t < t∗ are obtained from each other by reflection with respect to the vertical
axis. The same holds for the elements with quantum indices κ1 − κ2, κ2 − κ1. This
completes the proof of the constancy of the numbers W κ

0 (t) in the considered case
l1 = l2.

In the case l1 < l2, an equation of C(t) in a neighborhood of w takes the form

(1+O(t>0
1 ))y2−(η1+O(t>0

1 ))x2l1y+(η1η2+O(t>0
1 ))x2(l1+l2)+

2l−1∑
r=0

ar1(t1)xry+h.o.t. = 0,

where t1 = t− t∗, ar1(0) = 0 for all r = 0, ..., 2l − 1, and h.o.t. stands for the terms
above the Newton diagram. In this situation, due to the condition of arithmetic
genus zero, the tropical limit is defined uniquely: the area under the Newton diagram
is divided into two triangles

conv{(0, 1), (2l1, 1), (2(l1 + l2), 0)} and conv{(0, 1), (2l1, 0), (0, 2)}

(see Figure 5(a)), while the monomials on the segment [(0, 1), (2l1, 1)] sum up to
η1(x+λt1)2l1y, where λ is uniquely determined by the coefficient a0

2l1−1,1 coming from
C∗. The two limit curves have branches intersecting each other with multiplicity 2l1
along the toric divisor Tor([(0, 1), (2l1, 0)]) (see Figure 5(b)). The genuine geometry
of C(t) can be recovered when we deform that intersection point into 2l1 − 1 nodes.
The modification (see Section 3.3) describes such a deformation as a replacement of
the intersection point by one of the 2l1 modified limit curves in the sense of Lemma
3.4(3), among which exactly two are real, and their real parts are shown in Figure
5(c,d) (cf. Figures 4(c,d)): one of them has a hyperbolic node and 2l1 − 2 non-real
nodes, and the other 2l1−1 elliptic nodes. As in the preceding paragraph, the former
modified limit curve fits the case when the local real branches (RC1, w), (RC2, w)
are cooriented, which means that on each side of the path {ŵ(t)}|t−t∗|<ε we have

two elements of
−→
MR,+

0,n (∆,w(t)) with quantum indices κ1 + κ2,−κ1 − κ2, while all
four elements have the same Welschinger sign (4) since the constructions for t > t∗

and t < t∗ are symmetric with respect to the vertical axis. Hence, the constancy of
the numbers W κ

0 (t). The same holds in the case of the opposite orientation of the
branches (RC1, w), (RC2, w) with the use of the second modified limit curve.

The remaining case is as follows: Φ : Ĉ1 → Tor(P∆) is an 2l1-multiple covering

of a line through w and Φ : Ĉ2 → Tor(Σ) is an immersion onto a rational curve
having a smooth branch at w intersecting Tor(σ) with multiplicity 2l2. Here we
remove the restriction l1 ≤ l2. We extend the range of the coordinate system x, y
to a neighborhood of the line C1 = Φ(Ĉ1), assuming that the axis {x = 0} is the
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Figure 5: Proof of Lemma 2.16, part (5), II

whole line C1. Then the Newton diagram of Φ∗(Ĉ) in this neighborhood of C1 is
as shown in Figure 6(a) by fat lines, where s = C1C2. Following the recipe used
in the preceding cases, we obtain that the tropical limit of the family {C(t)}|t−t∗|<ε
as t1 := t − t∗ → 0 includes the triangle conv{(0, 1), (2l1, 1), (2(l1 + l2), 0)} and
the rectangle conv{(0, 1), (0, s + 1), (2l1, 1), (2l1, s + 1)} (see Figure 6(b)), and, in
addition, the part of the equation of C(t) restricted to the union of these polygons
is as follows:

y · ((x− λ1t1)2l1 − a(x− λ2t1)2l1y)
s−1∏
j=1

(y − yj)− ηx2(l1+l2) = 0 ,

where y1, ..., ys−1 are the coordinates of the points C1∩C2\{w}, λ1 6= 0 is determined
by C∗, λ2t1 6= 0 is the current coordinate of the mobile point from C1∩ ŵ(t∗) \ {w},
and a, η > 0 are determined by C2. Again the two limit curves have intersection
of multiplicity 2l1 in a point on the toric divisor Tor([(0, 1), (2l1, 1)]). The genuine
geometry of C(t) in a neighborhood of w is obtained by deforming this tangency
point by means of the two real modified limit curves (see Lemma 3.4(3)), which we
used in the preceding paragraph. Then, the argument from the preceding paragraph
in the same manner completes the proof of the constancy of the numbers W κ

0 (t) in
the considered wall-crossing bifurcation.

(6) Suppose that ξ is as in Lemma 2.15(2iv). Without loss of generality we can
suppose that

P = conv{(0, 2m), (2p, 0), (2q, 0)}, 0 ≤ p < q, m < q ,

and that Φ is ramified at the points of ŵ(t∗) on the toric divisors associated with the
segments [(0, 2m), (2p, 0)] and [(0, 2m), (2q, 0)], while the two points wσ1 (t), wσ2 (t) ∈
w(t) on the toric divisor Tor(σ), where σ = [(2p, 0), (2q, 0)], merge to one point as
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Figure 6: Proof of Lemma 2.16, part (5), III

t→ t∗. Then C = Φ(P1) admits a parametrization

x = aθm, y = bθp(θ − 1)q−p, θ ∈ C ,

and correspondingly Φ is given by

x = aθ2m, y = bθ2p(θ2 − 1)q−p, θ ∈ C .

Assuming that the path {ŵ(t)}|t−t∗|<ε, is defined by fixing the point wσ1 , associated
with θ = 1, and the point of ŵ(t∗) on Tor([(0, 2m), (2q, 0)]), we obtain a one-
parameter deformation of Φ

x = aθ2m, y = bθ2p(θ − 1)q−p(θ + 1 + λ)q−p, |λ| � 1 . (19)

This deformation is regularly parameterized by the difference of the x-coordinates
of wσ2 (t) and wσ1 (t) equal to 2maλ + O(λ2). It follows from formulas (19) that the

corresponding element ξ(t) ∈ MR,+
0,n (∆,w(t)) has the same orientations at a point

on the toric divisor Tor([(0, 2m), (2p, 0)]) for λ < 0 and for λ > 0, and so does
for the point on the toric divisor Tor([(0, 2m), (2q, 0)]), while the local branches at
wσ1 (t), wσ2 (t) have opposite orientations with respect to the orientation of TorR(σ).
Furthermore, ξ(t) has exactly two elliptic nodes in a neighborhood of each elliptic
node of C. Thus, the constancy of W κ

0 (t) follows. 2

2.5 Proof of Theorem 2.11

Take two sequences w(0) = (w∂(0), w0(0)) and w(1) = (w∂(1), w0(1)), satisfying
the conditions of Theorem 2.11. We may assume that ŵ∂(0), ŵ∂(1) ∈ M τ

R(∆) for
some τ > 0. Then, we join these sequences by a generic path {ŵ∂(t)}0≤t≤1, in
M τ

R(∆) and the points w0(0), w0(1) by a generic path {w0(t)}0≤t≤1 in Q, and verify
the constancy of W κ

1 (∆,w(t)) in all possible wall-crossing events, for all κ.
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Similarly to the proof of Theorem 2.5, we start with the verification of the
fact that W κ

1 (∆,w(t)) does not change along intervals t′ < t < t′′ such that

M R
1,n(∆,w(t)) = M R

1,n(∆,w(t)) for all t′ < t < t′′ (that is, the elements of
M R

1,n(∆,w(t)) do not degenerate as long as t′ < t < t′′). To this end, it is enough
to show that the projectionM R

1,n(∆,w(t))t′<t<t′′ → (t′, t′′) has no critical points (cf.
the proof of Theorem 2.5). This requirement amounts to the following statement
(cf., Lemma 2.14 and [29, Lemma 2.3]).

Lemma 2.17 Let ξ = [Φ : (E,p)→ Tor(P∆)] ∈M R
1,n(∆,w(t)). Then

H0

(
E,NΦ

(
−p0 −

∑
σ 6=σ0,i 6=i0

2kσi p
σ
i − (2kσ0

i0
− 1)pσ0

i0

))
= 0. (20)

Proof. We proceed along the lines of the proof of [29, Lemma 2.3]. Assume that
H0 6= 0 in (20). Then, there exists a real curve C ′ ∈ |LP∆

| \ {C}, where C = Φ∗(E),
which intersects C

• at each point q ∈ Sing (C) with multiplicity ≥ 2δ(C, q),

• at each point wσi , (σ, i) 6= (σ0, i0) with multiplicity ≥ 2kσi ,

• at wσ0
i0

with multiplicity ≥ 2kσ0
i0
− 1,

• and at w0.

Since C has in Q a null-homologous immersed circle S, there must be an additional
intersection point w′ ∈ C ′ ∩ S, not mentioned in the above list. However, then

C ′C ≥ 2
∑

q∈Sing (C)

δ(C, q) +
∑
σ∈P 1

∆

nσ∑
i=1

2kσi − 1 + 2

= (C2 − c1(Tor(P∆)[C])) + c1(Tor(P∆)[C]− 1 + 2 = C2 + 1,

which is a contradiction. 2

The set of elements (ŵ∂, w0) ∈M τ
R(∆)×Q satisfying

MR
1,n(∆,w) =MR

1,n(∆,w) and (ŵ∂, w0) ∈M1,

is a dense semialgebraic subset of full dimension dimM τ
R(∆) × Q = n + 1. The

complement is the union of finitely many semialgebraic strata of codimension ≥ 1.
Since the path {(ŵ∂(t), w0(t))}0≤t≤1 is generic, it avoids strata of M τ

R(∆) × Q of
codimension ≥ 2 and intersects strata of codimension one only in their generic
points.

Now, we study the strata S of the dimension n in (M τ
R×Q) \M1 in terms of the

geometry of elements ξ ∈M R
1,n(∆,w(t)) \M R

1,n(∆,w(t)), 0 ≤ t ≤ 1.
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Lemma 2.18 (1) The following elements ξ = [Φ : (Ĉ,p)→ Tor(P∆)] cannot occur

in M R
1,n(∆,w(t)) \M R

1,n(∆,w(t)), 0 ≤ t ≤ 1, as (ŵ∂(t), w0(t)) ∈ S:

(1i) Ĉ is a reducible curve of arithmetic genus 1 with a component mapped onto a
toric divisor;

(1ii) Ĉ is a connected curve of arithmetic genus 1 either with at least three irre-
ducible components, or with two rational irreducible components and no other
components.

(2) If ξ = [Φ : (Ĉ, p̂) → Tor(P∆)] ∈ M1,n(∆,w(t∗)), where (ŵ∂(t
∗), w0(t∗)) is a

generic element in an n-dimensional stratum in (M τ
R ×Q) \M1, then ξ is of one of

the following types:

(2a) either w0(t∗) is a singular point of the curve C = Φ∗(Ĉ), and the following
holds:

(2i) ŵ∂(t
∗) consists of n distinct points, the curve Ĉ is smooth elliptic, Φ is an

immersion onto a curve C that is smooth along the toric divisors, while w0(t∗)
is a center of at least one real local branch;

(2b) or w0(t∗) is a smooth point of the curve C = Φ(Ĉ), and one of the following
holds:

(2ii) ŵ∂(t
∗) consists of n distinct points, the curve Ĉ is smooth elliptic, Φ is bira-

tional onto its image, but not an immersion; furthermore, C = Φ(Ĉ) is smooth
at w0(t∗) and at each point wσi (t∗) with kσi ≥ 2, and is unibranch at each point
wσi (t∗) with kσi = 1;

(2iii) wσi (t∗) = wσj (t∗) for some σ ∈ P 1
∆ and i 6= j, the curve Ĉ is smooth elliptic,

and the map Φ is an immersion such that the point wσi (t∗) = wσj (t∗) is a center
of one or two smooth branches;

(2iv) ŵ∂(t
∗) consists of n distinct points, Ĉ = Ĉ1 ∪ Ĉ2, where Ĉ1 ' P1 and Ĉ2

is a smooth elliptic curve, the intersection Ĉ1 ∩ Ĉ2 consisting of one point
p; the map Φ : Ĉ1 → Tor(P∆), s = 1, 2, is either an immersion, smooth
along Tor(∂P∆), or a multiple covering of a line intersecting only two toric
divisors, while these divisors correspond to opposite parallel sides of P∆ and the
intersection points with these divisors are ramification points of the covering;
the map Φ : Ĉ2 → Tor(P∆) is an immersion, smooth along Tor(∂P∆); the point

p either is mapped to Tor(P∆)×, and then the curves C1 = Φ(Ĉ1), C2 = Φ(Ĉ2)
intersect only in Tor(P∆)× and each of their intersection point is an ordinary

node, or p is mapped to some point wσi (t∗), and the curves Ci = Φ(Ĉi), i = 1, 2,
do not have other common point in ŵ∂(t

∗);

(2v) ŵ∂(t
∗) consists of n distinct points, Ĉ is an irreducible rational curve with

one node p, the map Φ is an immersion that sends p to some point wσi (t∗),
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center of two smooth branches intersecting Tor(σ) with odd multiplicities 2l1 +
1, 2l2 + 1, where l1 + l2 + 1 = kσi , and intersecting each other with multiplicity
min{2l1 +1, 2l2 +1}, furthermore, each of the other points of ŵ∂(t

∗) is a center
of one smooth branch;

(2vi) Ĉ is a smooth elliptic curve, ŵ∂(t
∗) consists of n = 4 points, the curve C =

Φ(P1) is rational and smooth at ŵ∂(t
∗), and Φ : Ĉ → C is a double covering

ramified at ŵ∂(t
∗).

Proof. (1i) In such a case, we must have Ĉ = Ĉ ′ ∪ Ĉ ′′, where Ĉ ′ is a connected

curve of arithmetic genus one suhc that Ĉ ′ is mapped onto the union of all toric
divisors, and Ĉ ′′ is a non-empty (due to w0 ∈ Tor(P∆)×) union of connected curves of

arithmetic genus zero, each one joined with Ĉ ′ in one point (cf. the proof of Lemma

2.15(1i)). Let Ĉ ′′0 be a connected component of Ĉ ′′ such that w0(t∗) ∈ Φ(Ĉ ′′0 ). Note

that all local branches of Φ : Ĉ ′′0 → Tor(P∆) centered on toric divisors, except for

Φ : (Ĉ ′′0 , p) → Tor(P∆), where p = Ĉ ′ ∩ Ĉ ′′0 , are, in fact, centered at some points of
ŵ∂(t

∗). Observe that either C ′′0 intersects at least three toric divisors of Tor(P∆),
or it intersects two toric divisors corresponding to parallel sides of P∆. However, in
the both cases we reach a contradiction with (AQC).

(1ii) In the case of at least 3 irreducible components, we follow the lines of the

proof of Lemma 2.15(1ii). If Ĉ contains an elliptic component and at least 2 rational
components, then we similarly obtain at least three independent Menelaus type
conditions for ŵ∂(t

∗), which bounds from above the dimension of the considered
stratum by (n−3)+2 = n−1 < n, a contradiction. If all irreducible components of

Ĉ are rational, then we encounter at least two independent Menelaus conditions on
ŵ∂(t

∗) as well as a condition on the position of the point w0(t∗) due to the finiteness
statement of Lemma 2.4, which altogether bounds from above the dimension of the
considered stratum by (n− 2) + 1 = n− 1 < n.

(2a) Let w0(t∗) be a singular point of C. Then, for the dimension reason, ŵ∂(t
∗)

must be a generic element of M τ
R. This implies, in particular, that Ĉ is irreducible

and ŵ∂(t
∗) consists of n distinct points. Furthermore, Ĉ cannot be a rational

curve with a node. Thus, Ĉ is a smooth elliptic curve. Then (see Lemma 2.4) we

derive that Φ : Ĉ → Tor(P∆) is an immersion and C is smooth along the toric
divisors. Since w0(t∗) turns into a real smooth point in the deformation along the
path {(ŵ∂(t), w0(t))}0≤t≤1, it must be a center of at least one real local branch.

(2b) From now on we can assume that w0(t∗) is a smooth point of C = Φ∗(Ĉ).

Suppose that Ĉ is a smooth elliptic curve and ŵ∂(t
∗) consists of n distinct points.

Then, we obtain the claim (2ii) due to Lemma 2.4 and the claim (1ii) above.

Suppose that some of the points of the sequence ŵ∂(t
∗) coincide. For the dimen-

sion reason, we immediately get that ŵ∂(t
∗) consists of n − 1 distinct points, and

all these points must be in general position subject to the unique Menelaus relation
(1). Hence, Ĉ must be irreducible. Moreover, Ĉ cannot be rational, since other-
wise, by Lemma 2.4, one would get the total dimension of the considered stratum
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≤ (n− 2) + 1 = n− 1 < n, a contradiction. Thus, Ĉ is a smooth elliptic curve. We
have wσi (t∗) = wσj (t∗) = w for some σ ⊂ ∂P and i 6= j. If C is unibranch at each
point of ŵ∂(t

∗), then, by Lemma 2.4, the curve C is immersed and smooth along
the toric divisors. Otherwise, the curve C has two local branches at w. Moreover,
it must be unibranch at each point wσ

′

i′ (t
∗) 6= w and, in addition, smooth if kσ

′

i′ ≥ 2
due to Lemma 2.4 and the claim (1ii). Let us show that C is immersed. Fixing the
position of w0(t∗) and the position of one more point w′ ∈ ŵ∂(t

∗) \ {w}, we obtain
a family of dimension ≥ n− 2 ≥ 2; hence, [16, Inequality (5) in Lemma 2.1] applies:

c1(Tor(P∆))c1(LP∆
) ≥ (c1(Tor(P∆))c1(LP∆

)− n+ 2) + 1 +
∑
B

(ordB − 1) + (n− 3)

= c1(Tor(P∆))c1(LP∆
) +

∑
(ordB − 1) ,

where B runs over all singular local branches of C in Tor(P∆)× ∪ {w,w′}. That is,
C is immersed, and we finally fit the requirements of claim (2iii).

Thus, we are left with the case of ŵ∂(t
∗) consisting of n distinct points and Ĉ

either consisting of two components, or being a rational curve with a node. Observe
that the case of two rational components is not possible, since by Lemma 2.4, the
dimension of such a stratum would not exceed (n− 2) + 1 = n− 1 < n.

Suppose that Ĉ is as in item (2iv). For the dimension reason, the sequence
ŵ∂(t

∗) is in general position subject to exactly two Menelaus type relations, while
w0(t∗) is in general position in Q. Thus, by Lemma 2.4, we obtain the immersion
and smoothness statements as required. The rest of the argument literally coincides
with the corresponding part of the proof of Lemma 2.15(2iii).

Suppose that Ĉ is a rational curve with a node p. Then, this node cannot be
mapped to Tor(P∆)×, since otherwise one would encounter a real rational curve with
two one-dimensional branches, one in Tor+

R(P∆) and the other in Q. Hence the node
is mapped to w ∈ ŵ∂(t

∗), and for the above reason, the intersection multiplicities of

the two branches of C = Φ(Ĉ) at w are odd. Observe that Φ′ : P1 → Ĉ → Tor(P∆)
is not a multiple covering of the image. Indeed, in such a case, one would have that
P is a triangle, l1 = l2 = l, and C = Φ(Ĉ) is a rational curve intersecting at least
two of the toric divisors with odd multiplicity, the double covering being ramified
at the two points of ŵ∂(t

∗) \ {w}. With an automorphism of Z2, we can turn the
Newton triangle of C (which is 1

2
P∆) into the triangle

conv{(0, s), (r, 0), (r + 2l + 1, 0)}, gcd(s, r) ≡ 1 mod 2 ,

with w ∈ Tor([(r, 0), (r + 2l + 1, 0)]) and C given by a parametrization (in some
affine coordinates x, y)

x = aθs, y = bθr(θ − 1)2l+1, a, b ∈ R× .

Since x(1) > 0, we get a > 0, and hence x > 0 as 0 < θ � 1. Then y > 0 for
0 < θ � 1, and hence b < 0. Thus, if r and s are odd, we obtain x > 0, y < 0
as θ → +∞, and x < 0, y < 0 as θ → −∞. If r is even and s is odd, we get
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x > 0, y < 0 as θ → +∞, and x < 0, y > 0 as θ → −∞. In both cases, it follows
that the intersection point with the toric divisor Tor([(0, s), (r + 2l + 1, 0)]) is out
of ∂Tor+

R(P∆) against the initial assumption. If r is odd and s is even, we get that

the segment of RC in the quadrant {x > 0, y < 0} touches all three toric divisors,
which contradicts the condition (AQC). Thus, a multiple covering is excluded. The
rest of claims can be derived in the same way as the statement of Lemma 2.15(2ii)
with one exception: we shall show that the local branches of C at w intersect each
other with multiplicity min{2l1 + 1, 2l2 + 1}. For l1 6= l2, this is immediate. Suppose
that l1 = l2 = l. If n = 3, then P is a triangle and, in the above setting, we get the
parametrization of C in the form

x = aθ2s, y = bθ2r(θ − 1)2l+1(θ − θ0)2l+1, θ0 6= 1, a, b ∈ R× .

Since x(1) = x(θ0), we obtain the only real solution θ0 = −1, and hence y =
bθ2r(θ2 − 1)2l−1 is a function of θ2 as well as x is, which means that this is a double
covering, forbidden above.

Suppose now that Ĉ is a smooth elliptic curve and Φ : Ĉ → Tor(P∆) is a multiple

covering of its image. Since the preimages of at least n − 2 points of ŵ∂(t
∗) in Ĉ

are irreducible, the map Φ : Ĉ → C ⊂ Tor(P∆) is ramified, and hence C cannot be
elliptic by the Riemann-Hurwitz formula. Thus, C is rational, which for dimension
reason implies that ŵ∂(t

∗) consists of n points in general position subject to one
Menelaus condition. In particular, C is smooth at each point of ŵ∂(t

∗), and Φ has
ramification index s at all points of ŵ∂(t

∗). By the Riemann-Hurwitz formula,

0 ≤ 2s− (s− 1)n.

Hence, n ≤ 2s
s−1

, that is, s = n = 3 or s = 2, 3 ≤ n ≤ 4. If n = s = 3, the rational
curve C intersects toric divisors with even multiplicity at each point of ŵ∂(t

∗); thus,
the one-dimensional real branch of C entirely lies in the quadrant Tor+

R(P∆) and
cannot hit the point w0(t∗), which is a contradiction. The case of s = 2 and n = 3
is not possible either. Indeed, then P must be a triangle, and RC contains an
immersed segment in Q joining points on two sides of ∂Q, but this contradicts the
condition (AQC). The remaining option is a stated in item (2vi). 2

We complete the proof of Theorem 2.11 with the following lemma.

Lemma 2.19 Let {(ŵ∂(t), w0(t))}0≤t≤1 be a generic path in M τ
R ×Q, and let t∗ ∈

(0, 1) be such that MR
1,n(∆,w(t∗)) contains an element ξ as described in one of the

items of Lemma 2.18(2). Then, for each κ ∈ 1
2
Z such that |κ| ≤ A(∆), the numbers

W κ
1 (t) := W κ

1 (∆,w(t)) do not change as t varies in a neighborhood of t∗.

Proof. We always can assume that, in a neighborhood of t∗, the path
{(ŵ∂(t), w0(t))}0≤t≤1 is defined by fixing the position of w0(t∗) and some n − 2
points of ŵ∂(t

∗), while the other two points remain mobile. Except for the case
of Lemma 2.18(2iv) describing reducible degenerations, we work with families of
curves which are trivially covered by families of complex oriented curves so that the
quantum index persists along each component of the family of oriented curves.
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(1) Suppose that ξ is as in Lemma 2.18(2i). Consider the lifts of w0(t∗) upon E
that correspond to real branches of C centered at w0(t∗). Since C is immersed, we
only have to show that each of the lifts induces a germ of a smooth one-dimensional
subfamily in M1,n(Tor(P∆),LP∆

). This follows from the smoothness statements in
[5, Proposition 4.17(2)] and in [30, Lemma 3(1)], [16, Lemma 2.4(2)].

(2) Suppose that ξ is as in Lemma 2.18(2ii). The argument used in step (1)
of the proof of Lemma 2.16 applies, provided we establish a relevant transversality
statement. Here, the transversality condition is similar to (10):

H1(E,OE(d)) = 0 , (21)

where

degd = C2 − (C2 + c1(Tor(P∆))c1(LP∆
))− (c1(Tor(P∆))c1(LP∆

)− 2)− 1 = 1 > 0 .

The latter inequality yields (21) by the Riemann-Roch formula.

(3) The treatment of the case where ξ is as in Lemma 2.18(2iii) literally coincides
with that in step (2) of the proof of Lemma 2.16.

(4) Suppose that ξ is as in Lemma 2.18(2iv). Due to the condition (AQC), the

real part of the rational curve C1 = Φ(Ĉ1) must lie in Tor+
R(P∆), and the real part of

the elliptic curve C2 = Φ(Ĉ2) has two one-dimensional components, one in Tor+
R(P∆)

and the other in Q. Then, the argument proving the constancy of the numbers W κ
1 (t)

literally coincides with that in steps (3) and (4) of the proof of Lemma 2.16, when
we restrict our attention to the real branches of the considered curves located in
Tor+

R(P∆). We only comment on the h1-vanishing conditions analogous to (17): in

our situation, for the rational curve Φ : Ĉ1 → Tor(P∆), it simply coincides with

(17), and for the elliptic curve Φ : Ĉ2 → Tor(P∆), it reads h1(Ĉ2,OĈ2
(d2)) = 0,

where

degd2 = C2
2 − (C2

2 − c1(LP∆
)[C2])− (c1(LP∆

)[C2]− 1)− 1 = 0 .

However, geometrically, d2 = pσi − p0, where Φ(pσi ) = wσi (t∗), the mobile point in

C2∩ŵ∂(t
∗). Since pσi 6= p0 and Ĉ2 is elliptic, we have h0(Ĉ2,OĈ2

(d2)) = 0, and hence

the required vanishing h1(Ĉ2,OĈ2
(d2)) = 0 follows by the Riemann-Roch formula.

(5) Suppose that ξ is as in Lemma 2.18(2v). Since Ĉ is rational, both local

branches B1, B2 of C = Φ(Ĉ) at w = wσi (t∗) are real and each one intersects Tor(σ)
with odd multiplicities 2l1 +1, 2l2 +1, respectively, where 2l1 +2l2 +2 = 2kσi , l1 ≤ l2.
Choose two mobile points of ŵ∂(t

∗) different from w. The one-dimensional stratum

{MR,+
1,n (∆,w(t))}|t−t∗|<ε projects to the germ at C of a one-dimensional variety in

|LP∆
|, and denote by F one of its real irreducible components. Let the tangent line

to F at C be spanned by C and C∗ ∈ |LP∆
| \ {C}. Fix equavariant coordinates x, y

in a neighborhood of w so that w = (0, 0) and Tor(σ) = {y = 0}. Then, C in a
neighborhood of w is given by an equation

(y + η1x
2l1+1)(y + η2x

2l2+1) + h.o.t. = 0, η1, η2 ∈ R× ,
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with the Newton diagram

k = [(0, 2), (2l1 + 1, 1)] ∪ [(2l + 1, 1), (2l1 + 2l + 2 + 2, 0)]

(cf. Figures 5(a,b)). As observed in step (4) of the proof of Lemma 2.16, an equation
of C∗ may have at most the monomial x2l1y below the Newton diagram k. Let us
show that this monomial is present with a nonzero coefficient. Indeed, otherwise,
the intersection of C and C∗ 6= C would violate the Bézout’s bound:

C2 ≥ 2
∑

z∈Sing (C)\{w}

δ(C, z) + (c1(LP∆
)[C]− 2kσi − 2) + (6l1 + 2 + 2l2 + 2) + 1

= (C2−c1(LP∆
)[C]+2−4l1−2)+(c1(LP∆

)[C]−2l1−2l2−4)+(6l1+2l2+4)+1 = C2+1

(the latter summand 1 in each expression comes from (C · C∗)w0(t∗)).

If l1 = l2 = l, then as in step (4) of the proof of Lemma 2.16, we obtain that the
equation of the germ of C(t) ∈ F at w = (0, 0) is as follows:

y2 +P (x)y+ η1η2x
4l+2 + h.o.t. = 0, P (x) = (η1 + η2)x2l+1 +

0∑
j=2l

ajt
2l+1−j
1 xj , (22)

where t1 = t− t∗, and x2l+1P (1/x) = λ1Cheb2l+1(t1x+ λ2) + λ3

with real numbers λ1, λ2, λ3 uniquely determined by η1, η2 and the coefficient of
x2ly in the equation of C∗, and h.o.t. includes higher powers of t1 in the present
monomials and the sum of monomials above k. If η1η2 < 0, then in (22) in a
neighborhood of w we get

y =
1

2

(
−P (x)±

√
P (x)2 − 4η1η2x4l+2

)
+ h.o.t. ,

which means that C(t) has only non-real nodes in a neighborhood of w. If η1η2 > 0,
the latter formula yields 2l elliptic nodes in a neighborhood of w. Observe that the
change of sign of t1 yields the symmetry with respect to the origin for the real part
of C(t) (up to h.o.t.), and hence the Welschinger sign (5) persists along the path
{(ŵ∂(t), w0(t))}|t−t∗|<ε.

If l1 < l2, then again as in step (4) of the proof of Lemma 2.16, we obtain that
the equation of the germ of C(t) ∈ F at w = (0, 0) is as follows:

y2 + η1(x− η0t1)2l1+1y + η1η2x
2l1+2l2+2 + h.o.t. = 0 , (23)

where η0 is determined by C∗, and h.o.t. includes higher powers of t1 in the present
monomials and the sum of monomials above k. It follows that F is smooth and its
real part submersively projects onto the path {(ŵ∂(t), w0(t))}|t−t∗|<ε. The tropical
limit at t1 → 0 (see Section 3.2 for details) includes two triangles

conv{((0, 1), (2l + 1, 1), (2l1 + 2l + 2 + 2, 0)} and conv{(0, 1), (2l1, 1), (0, 2)} ,

and two limit curves each having a smooth branch intersecting the toric divisor
Tor([(0, 1), (2l1 + 1, 1)]) with multiplicity 2l1 + 1 at the same point. The genuine
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geometry of C(t) is obtained by a deformation of this singular point into 2l1 nodes,
which is described via the modification (see Section 3.3) with the unique modified
limit curve that has 2l1 elliptic nodes (see Lemma 3.4(3)). Since the construction
for t1 > 0 and t1 < 0 is symmetric with respect to the coordinate change (x, y) →
(−x,−y), we derive the constancy of the Welschinger sign (5) in the move along F .

Remark 2.20 In equations (22) and (23), the sign of the coefficient of x2l1+2l2+2

remains constant, and the sign of the coefficient of y changes as t1 changes its sign.
Geometrically, this means that, for t1 < 0, the real branch of C(t), which is tangent
to Tor(σ) at w, lies in Tor+

R(P∆), while, for t1 > 0, this real branch lies in Q, or
vice versa.

(6) Suppose that ξ is as in Lemma 2.18(2vi) and that the path
{(ŵ∂(t), w0(t))}|t−t∗|<ε has the point w0(t) and two points w1(t), w2(t) ∈ ŵ∂(t) in a
fixed position, while the other two points w3(t), w4(t) ∈ ŵ∂(t) are mobile. Also, for
the dimension reason, we can assume that w0 = w0(t∗) is in general position with
respect to ŵ∂(t

∗) on the rational curve C, which, in particular, yields the follow-

ing: the point p0 ∈ Ĉ is in general position with respect to the remaining points
pj = Φ−1(wj) ∈ p̂∂ ⊂ Ĉ, j = 1, 2, 3, 4. By Lemma 2.4, the curve C is immersed
and smooth at ŵ∂(t

∗) and w0(t∗). We can assume, in addition, that C is nodal (the
treatment of more complicated immersed singularities is the same with a bit more
complicated notations).

Let ξ(t) = [Φt : (Ĉt,pt) → Tor(P∆)] ∈ MR
1,n(∆,w(t)), |t − t∗| < ε, run over

the germ of a real one-dimensional subfamily of {MR,+
1,n (∆,w(t))}|t−t∗|<ε. It induces

a one-dimensional family V ⊂ |LP∆
| of curves C(t) = Φt,∗(Ĉt) on Tor(P∆), where

C(t∗) = Φ∗(Ĉ) = 2C. Any curve C(t), t 6= t∗, has four nodes in a neighborhood of
each of the (C2 − c1(Tor(P∆)[C])/2 + 1 nodes of C. We show that the remaining
2c1(Tor(P∆)[C] − 4 nodes of C(t) are located in a neighborhood of ŵ∂(t

∗). The
intersection of C(t) with a neighborhood of a point wi(t

∗), 1 ≤ i ≤ 4, is an immersed
disc. Following the lines of part (2) of the proof of Lemma 2.16, introduce local
conjugation-invariant coordinates x, y in a neighborhood of wj(t

∗) such that wi(t) =
(0, 0) (which means that, if wi(t) is mobile, then the coordinate system moves too),
the toric divisor containing wi(t) is Tor(σ) = {y = 0}, and Tor+

R(P∆) = {y ≥ 0}.
Then, the equation Ft1(x) = 0 of Ct, where t1 = t − t∗, is given by formula (12),
where we set k = ki, and correspondingly, the geometry of C(t) in a neighborhood of
wi(t

∗) is described by the real rational affine limit curve C1 given by (13). Observe
that C1 has ki−1 nodes and a global real one-dimensional branch having one vertical
tangent. We then conclude that

• the nodes of C(t) are located in a neighborhood of Sing (C) ∪ ŵ∂(t
∗);

• the parameter γ in (12) must be even, since otherwise, the change of sign of
t1 would lead to the change of the position of that global real branch with
respect to the vertical tangent, but this position is determined by the double
covering Φ : Ĉ → C; in particular, it follows that the change of sign of t1 does
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not change the contribution of the part of C(t) in a neighborhood of wi(t
∗) to

formula (5) for W1(ξt).

Let Span{2C,C ′} and Span{C(t), C ′t} be the lines in |LP∆
| tangent to V at 2C

and C(t), respectively. For t 6= t∗, the curve C ′t intersects C(t) at the point w0, at
each node, at each point wσj (t) with multiplicity 2kσj or 2kσj − 1 according as wσj is
fixed or mobile, and at one more point w′ (follows from the Bézout theorem). Lifting

these points to Ĉ(t) and passing to the limit as t→ t∗, we obtain on Ĉ the divisor

D = p0 + 4Φ∗(Sing (C)) + (4k1− 2)p1 + (4k2− 2)p2 + (4k3− 3)p3 + (4k4− 3)p4 + p′ .

Due to the general position of w0 on C, we get p′ 6∈ p̂∂ ∪ {p0}. We use this to show
that for t′ < t∗ < t′′, the points wi(t

′) and wi(t
′′) are separated on the toric divisor

by the point wi(t
∗), i = 3, 4. Indeed, otherwise, we would get wi(t

′) = wi(t
′′) for,

say, i = 3 and for t′ < t∗ < t′′ depending on each other and converging to t∗. Lifting
intersection C(t′) ∩ C(t′′) upon Ĉt′ , we would obtain on Ĉ the divisor

D′ = p0 + 4Φ∗(Sing (C)) + (4k1 − 2)p1 + (4k2 − 2)p2 + (4k3 − 2)p3 + (4k4 − 3)p4 ,

not linearly equivalent to D, which is a contradiction. Thus, the real part of the
family V homeomorphically projects onto the interval |t − t∗| < ε, and the sign
W1(ξ(t)) remains constant as 0 < |t− t∗| < ε. 2

3 Tropical limits of real nodal curves

In this section, we shortly recall tropical limits of nodal curves in toric surfaces
mainly following [21, 28] (see also [18, Chapter 2]), and explain in details the struc-
ture of the modified tropical limit with emphasis on separating real curves and the
distribution of their nodes in the quadrants of the real torus (R×)2.

3.1 Plane tropical curves

An abstract tropical curve is a finite connected graph Γ such that the complement
Γ = Γ \Γ0

∞ in Γ to the set Γ0
∞ of univalent vertices contains at least one vertex of Γ

and is endowed with a metric satisfying the following property: the compact edges
of Γ are isometric to closed intervals and the non-compact edges of Γ are isometric to
the closed ray [0,∞). The latter edges are called ends of Γ, and their set is denoted
by Γ1

∞. We denote by Γ1 (respectively, Γ0) the set of edges (respectively, vertices) of
Γ. The genus of an abstract tropical curve Γ is the first Betti number b1(Γ) = b1(Γ).

A parameterized plane tropical curve is a couple (Γ, h), where Γ is an abstract
tropical curve and h : Γ→ R2 is a non-constant continuous proper map such that

• for each edge e ∈ Γ1, the restriction of h to e is affine (in the length coordinate)
such that the image of a unit tangent vector of e under the differential D(h

∣∣
e
)

is a vector with integer coordinates;
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• for each vertex v ∈ Γ0, one has the balancing condition:∑
e∈Γ1, v∈∂e

av(e) = 0 ,

where ∂e is the set of vertices in Γ that are adjacent to e and av(e) is the
D(h

∣∣
e
)-image of the unit tangent vector pointing out from v.

The multiset ∆(Γ, h) constituted by the non-zero vectors of the form ave(e), where
e ∈ Γ1

∞ and ve is the vertex of Γ such that e is adjacent to v, is called the degree of
(Γ, h). This multiset is balanced. The vectors a ∈ ∆(Γ, h), appropriately ordered
and counter-clockwise rotated by π

2
form a convex lattice polygon P = P (Γ, h),

called Newton polygon of (Γ, h). Each non-contracted by h edge e of Γ possesses a
positive integral weight wt(e) := ‖av(e)‖Z, where v is a vertex adjacent to e.

We consider parameterized plane tropical curves up to isomorphism (an isomor-

phism between (Γ, h) and (Γ
′
, h′) is an isometry ρ : Γ→ Γ′ such that h = h′ ◦ρ). By

abuse of language, the isomorphism classes of parameterized plane tropical curves
we simply call plane tropical curves. Two isomorphic parameterized plane tropical
curves have the same degree and the same genus (this is the genus of the underlying
abstract tropical curves), so we can speak about the degree and the genus of a plane
tropical curve. A plane tropical curve is said to be embedded if it is represented by
a couple (Γ, h), where h is injective.

Two plane tropical curves represented by (Γ, h) and (Γ
′
, h′) are said to be in

mutually general position if for any two points p ∈ Γ and p′ ∈ Γ′ the equality h(p) =
h′(p′) implies that none of the points p and p′ is a vertex. For such plane tropical
curves and any couple of points p ∈ Γ, p′ ∈ Γ′ with the property h(p) = h′(p′), we
define the tropical intersection multiplicity [(Γ, h)p · (Γ′, h′)p′ ] at p and p′ putting

[(Γ, h)p · (Γ′, h′)p′ ] = |D(h
∣∣
e
)p ∧D(h′

∣∣
e′

)p′ |, where (η,η2) ∧ (ζ1, ζ2) =

∣∣∣∣η1 η2

ζ1 ζ2

∣∣∣∣ ,
and e ∈ Γ1 (respectively, e′ ∈ Γ′,1) is the edge containing p (respectively, p′). The
sum ∑

p∈Γ, p′∈Γ′

h(p)=h′(p′)

[(Γ, h)p · (Γ′, h′)p′ ]

is called the tropical intersection of the considered plane tropical curves. By the
Bernstein-Koushnirenko theorem (see, for instance, [19, Theorem 4.6.8]), one has∑

p∈Γ, p′∈Γ′

h(p)=h′(p′)

[(Γ, h)p · (Γ′, h′)p′ ] = A(P (Γ, h), P (Γ′, h′)),

where A(P (Γ, h), P (Γ′, h′)) is the mixed area of the Newton polygons P (Γ, h) and
P (Γ′, h′).

In this paper, we are particularly interested in rational and elliptic plane tropical
curves, that is, plane tropical curves of genus 0 and 1, respectively.
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If the polygon P = P (Γ, h) is non-degenerate, one can define a tropical toric
surface TP associated with the Newton polygon P (see [19, Section 6.2 and 6.4]
and [23, Section 3.3]). As a (stratified) topological space, TP can be identified
with P . The interior Int(TP ) of TP (identified with the interior Int(P ) of P ) is
a copy of R2 equipped with its standard integer affine structure. The complement
∂TP = TP\Int(TP ) is called the tropical boundary (or the tropical divisor at infinity)
of TP . It is naturally stratified according to the faces of P . Each oriented affine
straight line L in Int(TP ) can be completed by a point in ∂TP ; this point belongs to
the strata corresponding to the face F ⊂ P whose open outer normal cone contains
the direction of L. In particular, there is a continuous extension h : Γ → TP such
that each univalent vertex v∞ ∈ Γ0

∞, which is incident to a non-contracted by h edge
e ∈ Γ1

∞, is mapped to the interior of the strata corresponding to the face F ⊂ P for
which ave(e) 6= 0 (where ve is the only vertex in ∂e) is an outer normal vector.

A marked parameterized plane tropical curve is a triple (Γ, h,ptr), where (Γ, h) is
a parameterized plane tropical curve and ptr is a finite sequence of distinct points
of the graph Γ.

Let (Γ, h) be a parameterized plane tropical curve. The image h(Γ) ⊂ R2 is a con-
nected closed finite one-dimensional polyhedral complex without univalent vertices.
Every edge of this polyhedral complex is of rational slope. We simplify this poly-
hedral complex removing all its bivalent vertices. Each edge E ⊂ h(Γ) is equipped
with the weight wt(E) which is the sum of the weights of the (non-contracted) edges
of Γ intersecting h−1(x), where x ∈ E is a generic point. The resulting weighted
polyhedral complex is called the image of (Γ, h). We can consider an embedded

parameterized plane tropical curve (Γh, ĥ) having the same image as (Γ, h); this
embedded parameterized plane tropical curve is denoted by h∗Γ.

3.2 Parameterized tropical limit of a nodal curve over the
field of Puiseux series

To compute the invariants introduced in Section 2, we include the constraints w,
as well as the counted curves, into one-parameter families over the punctured disk
in the complex case and over a small interval (0, η), η � 1, in the real case. Under
some conditions, it is possible to define limits of these families which allow one to
reduce the enumeration of algebraic curves to enumeration of tropical curves. The
families under consideration can be regarded as objects over the field K of locally
convergent complex Puiseux series, or over its subfield KR of the series with real
coefficients. The field K possesses a non-Archimedean valuation.

val : K→ Q ∪ {−∞}, val

(∑
r

art
r

)
= −min{r, ar 6= 0}, val(0) = −∞.

. For the field K we use notations similar to the ones introduced in the complex
case in Sections 2.1-2.2.
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Let
[
Φ : (Ĉ,p)→ TorK(P∆)

]
∈ MK

g,n(∆,w). The curve C = Φ(Ĉ) ∈ |LP∆
| is

given by a polynomial

F (z1, z2) =
∑

(i,j)∈P∆∩Z2

aij(t)z
i
1z
j
2 =

∑
(i,j)∈P∆∩Z2

(a0
ij +O(t>0))tν(i,j)zi1z

j
2,

where ν : P∆ → R is a convex piecewise-linear function, whose graph defines a
subdivision Σν : P∆ = δ1∪ ...∪δN into linearity domains δ1, ..., δN (which are convex
lattice polygons), and the coefficients aij(t) ∈ K verify the property a0

ij 6= 0 if (i, j)
is a vertex of some δk, 1 ≤ k ≤ N . By a suitable parameter change t 7→ tm1 we make
all exponents of t in aij(t), (i, j) ∈ P∆ ∩ Z2, integral, and make ν(P∆ ∩ Z2) ⊂ Z. In

this setting, the curve C = Φ(Ĉ) defines a germ of a flat analytic family of complex
curves

(C,w) (X,w)

(C, 0) (C, 0)

(24)

where

• X = Tor(OG(ν)) with the three-dimensional lattice polytope

OG(ν) = {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ P∆, x3 ≥ ν(x1, x2)};

here, X \ X0 = Tor(P∆) × ((C, 0) \ {0}), while X0 is the union of the toric
surfaces Tor(δk), k = 1, ..., N , intersecting each other according to intersections
of polygons δk, k = 1, ..., N ;

• the family {C(t)}t6=0 consists of equisingular irreducible curves of genus g, while

C(0) ⊂ X0 is the union of curves C
(0)
k ⊂ Tor(δk), C

(0)
k ∈ |Lδk |, k = 1, ..., N

(called limit curves).

By [31, Theorem 1, page 73] or [4, Proposition 3.3], after another parameter change
t 7→ tm2 , the family C \ C(0) → (C, 0) can be simultaneously normalized

(Ĉ,p)
∣∣
t6=0

(C,w)
∣∣∣
t6=0

(X,w)
∣∣
t6=0

(C, 0) \ {0} (C, 0) \ {0} (C, 0) \ {0}

Φ

(25)

and, furthermore, the latter family extends in a flat manner to the central point:

(Ĉ,p) (C,w) (X,w)

(C, 0) (C, 0) (C, 0)

Φ

(26)

39



where Ĉ(0) is a connected nodal curve of arithmetic genus g (see, for instance [1, The-
orem 1.4.1]), whose non-contracted components are mapped onto the limit curves

C
(0)
i , i = 1, ..., N , and no component is entirely mapped to Tor(σ), σ ∈ P 1

∆.

The central fiber (Ĉ(0),p(0))
Φ−→ (C(0),w(0)) ↪→ (X0,w

(0)) together with the
associated marked parameterized plane tropical curve (Γ, h,ptr) (cf. [32, Section
2]) form the parameterized tropical limit of the given marked parameterized curve

(Ĉ,p)
Φ→ (C,w) ↪→ TorK(P∆). By abuse of language, we use the term tropicaliza-

tion for the tropical limit or for its parts (e.g., marked points etc.). Recall that
the marked parameterized plane tropical curve (Γ, h,ptr) possesses the following
properties:

• the vertices of Γ bijectively correspond to the components of Ĉ(0), while the
univalent vertices in Γ0

∞ correspond to the points of Ĉ(0) mapped to the toric
divisors Tor(σ), σ ∈ P 1

∆;

• the finite edges of Γ bijectively correspond to the intersection points of distinct
components of Ĉ(0), while the infinite edges are incident to the vertices in Γ0

∞
on one side and to components of Ĉ(0) having points mapped to toric divisors
Tor(σ), σ ∈ P 1

∆, on the other side;

• the sequence of tropical marked points ptr ⊂ Γ is in the bijective correspon-
dence with the sequence of marked points p, and q can uniquely be restored
from p via the relations Φ(p) = w and val(w) = x = h(ptr) (here the val-
uation is applied coordinate-wise to each point of the sequence w), provided
that sequence x is in (tropical) general position subject to the distribution of
the points of x on ∂TP∆ and Int(TP∆); for details on the notion of tropical
general position, see [21].

The obtained tropical curve (Γ, h,ptr) has genus g and degree ∆. Furthermore, the
embedded plane tropical curve h∗Γ is supported at the corner locus of the tropical
polynomial

NF : R2 → R, NF (x) = max
ω∈P∆∩Z2

(〈ω, x〉+ val(aω)), x ∈ R2 .

The convex piecewise-linear function ν : P∆ → R is Legendre dual to NF (x), and,
moreover, it is determined by the embedded plane tropical curve h∗Γ uniquely up to
adding an affine function. This yields a geometric duality: the edges of h∗Γ are in
bijective correspondence with the edges of the subdivision Σν , and the weight wt(e)
of an edge e of h∗Γ is the lattice length of the dual edge of the subdivision Σν .

In what follows, whenever we are given a plane tropical curve T of degree ∆, we
denote the corresponding subdivision Σν of P∆ by Σ(T ).

For any marked parameterized plane tropical curve (Γ, h,ptr), denote by
(Γred, hred,ptrred) the marked parameterized plane tropical curve obtained from
(Γ, h,ptr) by contracting the edges of Γ along which h is constant and removing
bivalent vertices V such that hred(V ) is the coordinatewise val-image of a contracted
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component of Ĉ(0). Clearly, h∗Γ = hred,∗Γred. A marked parameterized plane tropi-
cal curve (Γ, h,ptr) which coincides with (Γred, hred,ptrred) is said to be reduced.

Denote by T redg,n (∆,x) the set of reduced marked parameterized plane tropical

curves (Γ, h,ptr) of degree ∆ and genus g and such that h(ptr) = x.

3.3 Geometry of the modified parameterized tropical limit
of a nodal curve

The following genericity statement is a corollary of the completely standard dimen-
sion count (see [21, Lemmas 4.5 and 4.20 and Theorem 7.1], [28, Theorem 3], [18,
Lemma 2.46], and [8, Remark 4.10]).

Lemma 3.1 In the notation and setting of Section 3.2, suppose that the configu-
ration x ⊂ TP∆ is in tropical general position (subject to the condition that the
subconfiguration x∂ is distributed along ∂TP∆). Then, for any plane tropical curve
T = [(Γred, h,ptr)], where (Γred, h,ptr) ∈ T redg,n (∆,x), the graph Γred is trivalent.
Furthermore, the inverse image h−1(p) of any point p ∈ h∗Γred contains at most two
points, and if h−1(p) is formed by two points, then none of them is a vertex of Γred.
2

Lemma 3.1 implies that

• the subdivision Σ(T ) consists of triangles and parallelograms; the curve Γred
has genus g, the trivalent vertices are mapped to the trivalent vertices of h∗Γred,

• each connected component K ⊂ Γred \ ptr is a tree containing exactly one
univalent vertex, and it possesses a unique orientation of the edges such that
the edges incident to marked points are oriented outwards, and at each vertex
of K exactly one edge is outgoing.

Under the assumptions of Lemma 3.1, the embedded tropical curve h∗Γred and
the weights of its edges uniquely determine the map h : Γred → h∗Γred and the
metric on Γred. Furthermore, the reduced curve (Γred, h,ptr) uniquely determines the
(nonreduced) marked parameterized plane tropical curve (Γ, h,ptr) obtained in the
following operation (inverse to the reduction operation introduced above): for each
point x ∈ h∗Γred which has two preimages, we make these preimages the bivalent
vertices. Denote by Tg,n(∆,x) the set of these nonreduced curves (Γ, h,ptr) obtained
from the reduced curves (Γred, h,ptr) ∈ T redg,n (∆,x); we call them nonreduced models.

We call a rational curve Φ′ : P1 → Tor(δ′), where δ′ is a lattice triangle and Φ′

is nonconstant, peripherally unibranch, if Φ(P1) does not hit the intersection points
of the toric divisors, and (Φ′)∗(Tor(σ)) ⊂ P1 is either empty, or concentrated at one
point for each toric divisor Tor(σ) ⊂ Tor(δ′).
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Lemma 3.2 (1) For any triangle δk of the subdivision Σ(T ), the limit curve Ck ⊂
Tor(δk) is a nodal, rational, peripherally unibranch curve in the linear system |Lδk |
which is smooth along the toric divisors of Tor(δk); the corresponding component of

Φ : Ĉ(0) → X0 is an immersion Φ : Ĉ
(0)
k = P1 → Ck ↪→ Tor(δk).

(2) For a parallelogram δk of the subdivision Σ(T ), the reduced limit curve
(Ck)red ⊂ Tor(δk) consists of two smooth rational, peripherally unibranch curves
Ck,1, Ck,2 transversally intersecting each other; each of the components transversally
intersects two disjoint toric divisors of Tor(δk); the corresponding two components

of Φ : Ĉ(0) → X0 are multiple covers

Φ : Ĉ
(0)
k,1 = P1 → Ck,1 ⊂ Tor(δk), Φ : Ĉ

(0)
k,2 = P1 → Ck,2 ⊂ Tor(δk),

ramified at the intersection points with the toric divisors of Tor(δk).

Remark 3.3 Let (Γred, h,ptr) ∈ T redg,n (∆,x) be a reduced marked parameterized

plane tropical curve, and let (Γ, h,ptr) ∈ Tg,n(∆,x) be the nonreduced model (in the
sense of Section 3.3) of (Γred, h,ptr). The parallelograms of the subdivision Σ(T ),

where T = h∗Γ, correspond to pairs of bivalent vertices of Γ. Let e ∈ Γ
1

red contain
bivalent vertices of Γ. The edges Ei = h(ei), i = 1, . . . , s, of the embedded plane
tropical curve T such that Ei ( h(e), i = 1, . . . , s, are dual to the segments σi,
i = 1, . . . , s, of the subdivision Σ(T ) that are parallel sides of a sequence of parallel-
ograms δi, i = 1, . . . , s − 1, so that σi, σi+1 ⊂ δi, for all i = 1, . . . , s − 1. Observe
that the toric divisors Tor(σi), i = 1, . . . , s, are canonically isomorphic, and we call
the corresponding points on these toric divisors canonically identified points.

An additional information, in particular, contracted components of Ĉ(0), can be
recovered via modifications (see details in [28, Sections 3.5 and 3.6], [18, Section
2.5.8], and [23, Chapter 5]III). Tropical modifications are performed along the edges

e ∈ Γ
1

red which have weight ` > 1, either bounded without marked point, or bounded
with an interior marked point, or unbounded with an interior marked point. The
modification procedure starts with a torus automorphism that induces an integral-
affine automorphism of R2 bringing the edge E = h(e) to a horizontal position.
Assume that e does not contain bivalent vertices of the nonreduced curve Γ. The
edge σ of the subdivision Σ(T ) dual to E becomes vertical, and the corresponding
divisor Tor(σ) ⊂ X0 contains the intersection point z with limit curves associated
with the (trivalent) endpoints of e (cf. Lemma 3.2). We then perform the coordinate
change

(x1, x2) = (x′1, x
′
2 + b), (27)

where b is the coordinate of z on Tor(σ). This coordinate change is not toric,
and it transforms both the Newton polygon and its subdivision into a new one
that contains a specific fragment described in Lemmas 3.4, 3.5, and 3.6 below.
This fragment reflects a birational transformation Xmod → X of the family (26)
with the appearance of new components of the central surface and the new limit

IIIThe term “refinement” used in the two former sources is replaced by “modifications” in order
to unify the terminology and to distinguish from the refined invariants discussed in the paper.
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curves in these components (called modified limit curves). The modified limit curves

correspond to the components of Ĉ0 that were contracted in the original family (26).

Tropically, we replace the original plane R2 with the tropical plane in R3, con-
sisting of three half-planes glued along the line through the edge E. One of the
half-planes contains the new fragment of the tropical curve which is dual to the
fragment of the new subdivision (cf. [23, Chapter 5]).

The three next lemmas present the aforementioned new subdivision fragments
and the new modified limit curves. The proofs and detailed explanations can be
found in [28, Section 3.5], [18, Section 2.5.8], and [7, Section 2.2].

We fix a common initial data for the three lemmas. Let an edge e of Γred of weight
` > 1 do not contain bivalent vertices of Γ. Assume that the edge E = h(e) ⊂ R2 is
horizontal, and the dual edge σ of the subdivision Σ(T ) lies on the vertical coordinate
axis. Denote by z ∈ Tor(σ) ⊂ X0 the unique intersection point Tor(σ)∩C(0) (which
is the intersection point of Tor(σ) with the limit curves attached to the trivalent
endpoints of E). At last, denote by b the coordinate of z on Tor(σ).

Lemma 3.4 Given the above initial data, let e be a bounded edge. Then, the coor-
dinate change (27) yields the new subdivision fragment as shown in Figure 7(a,b)
dual to the fragment of the tropical curve on the modified tropical plane shown in
Figure 7(d,e). The trivalent vertex of the latter fragment is dual to the triangle
δmod(E) = conv{(−1, 0), (1, 0), (0, `)} (see Figure 7(c)). The surface Tor(δmod(E))
is the exceptional divisor of the weighted blow-up Xmod → X. The component
of Ĉ(0) which was contracted to the point z by the map Φ in the family (26),
becomes immersively mapped onto the nodal rational curve by the modified map
Φmod : P1 → Cmod(E) ↪→ Tor(δmod) ⊂ X0,mod. The curve Cmod(E) can be recovered
in ` ways using the intersection points with the toric divisors Tor([−1, 0), (0, `)]),
Tor([(1, 0), (0, `)]) fixed by the limit curves C1 ⊂ Tor(δ1), C2 ⊂ Tor(δ2) (see Figure
7(a)) and the condition of the vanishing coefficient of y`−1 in the defining polynomial.

Lemma 3.5 Given the above initial data, let e be a bounded edge with an interior
marked point ptr. Let v = h(ptr) = (−c, 0), and let the point w ∈ win that tropicalizes
to v have coordinates

w = (a1t
c(1 +O(td)), a2 +O(td)), where a1a2 6= 0, d� 0.

(The requirement d� 0 here and later ensures that the marked point appears in the
tropical modification always on the vertical end directed downward.) The coordinate
change (27) yields a tropical modification shown in Figure 7(f,g) with a pair of
trivalent vertices dual to the pair of triangles

δmod,1(E) = conv{(1, 0), (0, 0), (0, `)}, δmod,2(E) = conv{(0, 0), (−1, 0), (0, `)},

(see Figure 7(h)). Two components of Ĉ(0) mapped to the point z ∈ Tor(σ) after mod-
ification, become isomorphically mapped onto smooth rational curves Cmod,1(E) ⊂
Tor(δmod,1(E)), Cmod,2(E) ⊂ Tor(δmod,2(E)) that intersect the common toric divi-
sor Tor([(0, 0), (0, `)]) in one point z0 with multiplicity `. The curve Cmod,2(E)
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can be recovered in ` ways using the intersection point with the toric divisor
Tor([(−1, 0), (0, `)]) fixed by the limit curve C2 and the intersection point with the
toric divisor Tor([(0, 0), (−1, 0)]) fixed by w. In turn, the curve Cmod,1(E) is uniquely
defined by z0 ∈ Tor([(0, 0), (0, `)]) and the intersection point with Tor([(1, 0), (0, `)])
fixed by the limit curve C1. The second tropical modification along the edge mapped
to the horizontal edge between two new trivalent vertices (as shown in Figure 7(h)) is
performed as described in part (1). It recovers one more previously contracted compo-

nent of Ĉ(0), which then becomes immersed into the exceptional divisor Tor(δmod(E))
of the blow-up of the point z0.

Lemma 3.6 Given the above initial data, let e be an unbounded edge with an in-
terior marked point ptr. Let v = h(ptr) = (−c, 0), and let the point w ∈ win that
tropicalizes to v have coordinates

w = (a1t
c(1 +O(td)), a2 +O(td)), where a1a2 6= 0, d� 0.

The modification similar to that in part (2), see Figure 7(i,j), contains a trivalent
vertex dual to the triangle δmod(E) = conv{(−1, 0), (0, 0), (0, `)}, see Figure 7(k).

The component of Ĉ(0) contracted to the point z turns into a smooth rational curve
Φmod : P1 → Cmod(E) ↪→ Tor(δmod(E)), which can by recovered in ` ways using the
intersection point with the toric divisor Tor([(−1, 0), (0, `)]) fixed by the limit curve
C1 ⊂ Tor(δ1) and using the point in Tor([(0, 0), (−1, 0)]) fixed by w.

Remark 3.7 If the edge e in the above lemmas contains bivalent vertices of Γ, then
we perform almost the same modification procedure: the algebraic modification is
just the same, while the tropical modification contains extra vertical rays (cf. [7,
Figure 2(d,e,f,g)]). The construction of the modified limit curves is not affected by
the presence of bivalent vertices. The reader can find all the details in [28, Section
3.6], [18, Section 2.5.8], and [7, Section 2.2].

3.4 The correspondence theorem

We recall here Mikhalkin’s correspondence theorem [21, Section 7] (see also [28, §3]
and [18, Section 2.5]) adapted to the setting and notation of Sections 3.1-3.3. Then,
we analyze its real version.

Definition 3.8 Let us be given a sequence w ⊂ TorK(P∆) of n distinct points de-
fined as in Section 2.1.3 and a reduced tropical curve (Γred, h,ptr) ∈ T redg,n (∆,x),
where x = val(w) = h(ptr) (see Section 3.2, part (2)). Assume that x is in tropical
general position subject to the restriction x∂ ⊂ ∂TP∆. Denote by δ1, ..., δN all tri-
angles of the subdivision Σ(T ), where T = h∗Γ. We define an admissible collection
of limit curves and an extended admissible collection of limit curves associated with
w and with the nonreduced model (Γ, h,ptr) of (Γred, h,ptr) (see Section 3.3).

(1) An admissible collection is a sequence of nodal rational curves Ci ∈ |Lδi|,
i = 1, ..., N , intersecting each toric divisor in one smooth point; all the curves
C1, ..., CN are subject to the conditions:
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Figure 7: Modification of a multiple edge with and without marked point
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- each curve Ci contains all the points of w(0) belonging to Tor(δi),

- for each pair of triangles δi, δj with a common side σ = δi ∩ δj, the limit
curves Ci ⊂ Tor(δi), Cj ⊂ Tor(δj) intersect Tor(σ) at the same point,

- for each pair of triangles δi, δj with the sides σi ⊂ ∂δi, σj ⊂ ∂δj, dual to the
edges Ei = h(ei) 6= Ej = h(ej), ei, ej ∈ Γ1, such that ei, ej lie on the same
bounded edge e ∈ Γ1

red, the curves Ci, Cj intersect the toric divisors Tor(σi),
Tor(σj) at the canonically identified points (see Remark 3.3).

(2) An extended admissible collection includes an admissible collection (see item
(1)) and a sequence of modified limit curves attached to edges e ∈ Γ1

red of weight
` > 1 and satisfying the conclusions of Lemmas 3.4, 3.5, and 3.6; namely, one
takes

- either a rational curve Cmod ∈ |Lδmod(E)|, which meets the toric divisors
Tor([(−1, 0), (0, `)]) and Tor([(1, 0), (0, `)]) at the points fixed by the curves
C1, ..., CN , and is defined by a polynomial with vanishing coefficient of y`−1,

- or a triple of rational curves Ci,mod ∈ |Lδi,mod(E)|, i = 1, 2, Cmod ∈ |Lδmod(E)|,
which meet the toric divisors Tor([(−1, 0), (0, `)]) and Tor([(1, 0), (0, `)]) at the
points fixed by the curves C1, ..., CN , and such that C1,mod, C2,mod are peripher-
ally unibranch, intersect the toric divisor Tor([(0, 0), (0, `)]) at the same point
and satisfy wmod ∈ C1,mod ∪ C2,mod, while Cmod is as in the preceding item,

- or a rational, peripherally unibranch curve Cmod ∈ |Lδmod(E)| that meets the
toric divisor Tor([(−1, 0), (0, `)]) at the point fixed by the curves C1, ..., CN and
passes through wmod, where δmod(E) = conv{(−1, 0), (0, 0), (0, `)}.

Denote by Ad((Γ, h,ptr),w) (respectively, by EAd((Γ, h,ptr),w)) the set of ad-
missible (respectively, extended admissible) collections associated with a tropical
curve (Γ, h,ptr) ∈ T redg,n (∆,x) and a sequence of n points w ⊂ TorK(P∆). De-

fine MK
g,n((Γ, h,ptr),w) ⊂ MK

g,n(∆,w) to be the set of elements of MK
g,n(∆,w)

tropicalizing to (Γ, h,ptr) ∈ T redg,n (∆,x). In the case w ⊂ TorKR(P∆), the symbols

MKR
g,n((Γ, h,ptr),w) and EAdR((Γ, h,ptr),w) denote the sets of real elements.

The following theorem is a reformulation of Mikhalkin’s correspondence theorem
[21], Section 7] (see also [28, Section 3] for a closer version of the correspondence
theorem).

Theorem 3.9 The natural maps

MK
g,n((Γ, h,ptr),w)→ EAd((Γ, h,ptr),w)

and (in the case w ⊂ TorKR(P∆))

MKR
g,n((Γ, h,ptr),w)→ EAdR((Γ, h,ptr),w)

are bijective, for each (Γ, h,ptr) ∈ T redg,n (∆,x). Moreover, the map z ∈ (K×)2 7→
z(0) ∈ X0 defines a bijection between the set of nodes of an element [Φ : (Ĉ,p) →
TorK(P∆)] ∈MK

g,n(∆,w) and the disjoint union of sets of nodes of the curves in the
corresponding extended admissible collection.
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Proof of Lemma 2.4. The finiteness of MK
g,n(∆,w) follows from Theorem 3.9

and from the finiteness of Tg,n(∆,x) (cf. [21, Proposition 4.13]). The smoothness of

C = Φ(Ĉ) at each intersection point with any toric divisor TorK(σ), σ ∈ P 1
∆, follows

from (a) the fact that all the nσ ends of Γ directed by the vectors a ∈ ∆ that are outer
normals to σ ⊂ ∂P∆ are disjoint from each other, and from (b) the fact that all limit
curves in EAd((Γ, h,ptr),w) are smooth along the toric divisors. The singularities
of C come from the nodes of the limit curves in EAd((Γ, h,ptr),w) and from the
intersection points of the components of the limit curves in the parallelograms of
the subdivision; note that the latter intersection points are centers of smooth local
branches which do not glue up in the deformation of Φ0 : Ĉ(0) → X0 into Φt : Ĉ(t) →
Xt, t 6= 0, in the family (26).

3.5 Real limit curves and their nodes

In this section we specify the statement of Theorem 3.9 considering real separating
curves. Recall that a reduced, irreducible curve over R is said to be separating if
the set of the non-real points in its normalization is disconnected. The choice of a
connected component of this complement defines the so-called complex orientation
of the one-dimensional branches of the real point set. In this connection, we observe
that, for a sequence w ⊂ TorKR(P∆), each curve in a real extended admissible
collection has a one-dimensional global real branch, and hence is separating.

A reduced, irreducible curve over the field KR is said to be separating, if each
curve Φt : Ĉ(t) → Ct ↪→ Tor(P∆) = Xt, 0 < t � 1, in the family (25) is separating.

Choosing a continuous subfamily of halves Φt : Ĉ
(t)
+ → Tor(P∆), 0 < t � 1, we

define a complex orientation on the given curve over KR.

Lemma 3.10 Let δ be a nondegenerate lattice triangle with at least one side of even
lattice length, Φ : P1 → C ↪→ Tor(δ) a real rational, peripherally unibranch curve,
where C ∈ |Lδ|. Then the closure of exactly one quadrant contains an arc of RC
that passes through intersection points with all toric divisors.

Proof. Straightforward. 2

Definition 3.11 Let δ be a nondegenerate lattice triangle with at least one side of
even lattice length, Φ : P1 → C ↪→ Tor(δ) a real rational, peripherally unibranch
curve, where C ∈ |Lδ|. The arc of RC mentioned in Lemma 3.10 is called 3-arc
and is denoted ℵ(C, δ). Furthermore, if ℵ(C, δ ⊂ Tor+

R(δ,then the curve is called
Harnack rational curve. In the case of a Harnack rational curve C ⊂ Tor(δ), where

δ = conv{(0, 0), (2i, 0), (k, l)} ⊂ R2, i, j, k ∈ Z, i, l > 0, (28)

denote by h++(C) and h+−(C) the numbers of elliptic nodes in the open positive
quadrant TorR(δ)+ and in the quadrant {x > 0, y < 0} ⊂ TorR(δ)×, respectively.
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Lemma 3.12 Under the assumptions of Definition 3.11, we have

h++(C) = #(Int(δ) ∩ 2Z2),

h+−(C) = #{(a, b) ∈ Int(δ) ∩ Z2 : a ≡ 1 mod 2, b ≡ 0 mod 2}. (29)

Proof. By [28, Lemma 3.5] the curve C is smooth at the intersection points with
the toric divisors, and is nodal; furthermore, by [21, The last paragraph of Section
8.4], the curve C cannot have hyperbolic nodes. We claim that all the nodes of C
are elliptic. Indeed, the curve C admits a real parametrization

x = λ(τ − 1)l, y = µτ 2i(τ − 1)−k, τ ∈ C, λ, µ ∈ R×. (30)

The nodes appear as solutions to the system

λ(τ1 − 1)l = λ(τ2 − 1)l, µτ 2i
1 (τ1 − 1)−k = µτ 2i

2 (τ2 − 1)−k, τ1 6= τ2,

from which we immediately derive that

|τ1| = |τ2|, |τ1 − 1| = |τ2 − 1|, τ1 6= τ2,

and hence
τ1 = τ 2 ∈ C \ R.

That is, all the nodes of C are elliptic.

Next, we notice that C has in Tor+
R(δ) an arc passing through all three intersection

points of C with the toric divisors. There exists a small deformation of C in the
real part of the linear system |Lδ| which turns each intersection point with a toric
divisor into a bunch of real transversal intersections, and turns each elliptic node
into an oval (this follows, for instance, from [26, Theorem]). The obtained curve C ′

is a smooth M -curve with respect to the triangle δ in the sense of [20, Definition 2].
By [20, Theorem 3] the isotopy type of the real part RC ′ with respect to the toric
divisors of Tor(δ) is uniquely determined, and, moreover, relations (29) follow from
[20, Lemma 11]. 2

Lemma 3.13 (1) Let δ be the lattice triangle (28), and

z1 ∈ Tor+
R([(0, 0), (2i, 0)]), z2 ∈ TorR([(0, 0), (k, l)])

be fixed points disjoint from the intersection points of toric divisors.

(i) A real rational, peripherally unibranch curve C ∈ |Lδ| passing through z1, z2

exists if and only if either l1 := l/ gcd(k, l) is odd, or l1 is even and z2 ∈
Tor+

R([(0, 0), (k, l)]).

(ii) If the local real branch of C at z1 lies in Tor+
R(δ), then C is a Harnack rational

curve, and in such a case one has z2 ∈ Tor+
R([(0, 0), (k, l)]).

(iii) If l1 is odd, then C is defined uniquely.
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(iv) If l1 is even and z2 ∈ Tor+
R([(0, 0), (k, l)]), there exist two suitable curves C:

one is a Harnack rational curve and the other is obtained from a Harnack
rational curve by the coordinate change y 7→ −y.

(2) If additionally we require that the real local branch centered at z1 lies in
the positive quadrant, then C as above exists if anf only of z2 ∈ Tor+

R([(0, 0), (k, l)]).
Moreover, such a curve C is unique, and its real local branch centered at z2 intersects
the positive quadrant.

Proof. (1) To prove claim (i), we need to find conditions of the existence of
parametrization (30) with real λ, µ. Under the given data, (λ, µ) is a solution of the
system

λ(−1)l = ξ, λk1µl1 = η, where k1 =
k

gcd(k, l)
, ξ > 0, η ∈ R×.

Then λ = ξ(−1)l is always real, whereas µl1 = (−1)k1lη/ξk1 . A real root µ exists
precisely under the hypotheses of item (i).

The same computation yields claims (ii), (iii), and (iv) as well.

(2) The additional requirement means that µ(−1)k > 0. Hence, η =
ξk1µl1(−1)k1l = ξk1(µ(−1)k)l1 > 0, that is, z2 ∈ Tor+

R([(0, 0), (k, l)]), and, in such
a case, the corresponding real solution (λ, µ) is unique. For the topological reason,
the real arc of C in the positive quadrant touches all toric divisors. 2

Lemma 3.14 Given a family (26) representing a real nodal curve over the field K,
suppose that the parameterized tropical limit yields a lattice parallelogram δ of the
subdivision Σ(T ) and real limit curves C1, C2 ⊂ Tor(δ) as in Lemma 3.2(2). Suppose
that the intersection points of C1∪C2 with the toric divisors lies in ∂Tor+

R(δ). Denote
by C(t) ⊂ Tor(P∆) the fiber of the family (C,w) in (26) for t ∈ (C, 0). Denote also
by σ1, σ2 two non-parallel sides of δ. Then, one has the following statements.

(i) The intersection point C1∩C2 develops into real hyperbolic nodes and complex
conjugate nodes along the deformation {C(t)}0≤t�1.

(ii) If ‖σ1‖Z · ‖σ2‖Z ≡ 0 mod 2, then the numbers of real hyperbolic nodes desig-
nated in item (i) are even, both in Tor+

R(P∆) and outside Tor+
R(P∆).

(iii) If ‖σ1‖Z · ‖σ2‖Z ≡ 1 mod 2 and A(δ) ≡ 0 mod 2, then the numbers of real
hyperbolic nodes designated in item (i) are odd, both in Tor+

R(P∆) and outside
Tor+

R(P∆).

Proof. Claim (i) is evident. If, for instance, ‖σ1‖Z is even, then the real arc of C1

in each quadrant develops into an even number of local arcs along the deformation
{C(t)}0≤t�1, and hence the statement (ii) holds. Under the hypotheses of item (iii),
the intersection C1∩C2 contains one real point in Tor+

R(δ) and one real point outside
Tor+

R(δ). Then, the required statement follows from the fact that each real arc of
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C1 and C2 in each quadrant develops an odd number of real local arcs along the
deformation {C(t)}0≤t�1. 2

Lemma 3.15 Let δ` = conv{(−1, 0), (1, 0), (0, `)} (see Figure 7(c)), and let
a00, a20, a1` ∈ R×.

(1) Let ` be even. A real polynomial with Newton triangle δ`, defining a real
rational curve and having coefficients a−1,0, a1,0, a0,` at the vertices of δ`, exists if
and only if a−1,0a1,0 > 0. Assuming, furthermore, that a−1,0, a1,0 > 0, a0,` < 0, and
a0,`−1 = 0, one obtains exactly two polynomials as above. These two polynomials
come from the following ones

ψ1,`(x, y) = x+ x−1 − 2 · Cheb`(y), ψ2,`(x, y) := ψ1(x(−1)`/2, y
√
−1), (31)

where Cheb`(τ) = cos(` · arccos τ) is the `-th Chebyshev polynomial, by a suitable
transformation F (x, y) 7→ γ1F (γ2x, γ3y) with γ1, γ2, γ3 > 0. The curve ψ1,` = 0 has
`
2
− 1 elliptic nodes in the half-plane x > 0 and `

2
elliptic nodes in the half-plane

x < 0, while the curve ψ2,` = 0 has a hyperbolic node in the half-plane x > 0 as its
only real singularity.

(2) Let ` be odd. For any real nonzero a−1,0, a1,0, a0,` and a0,`−1 = 0, there exists
a unique real polynomial with Newton triangle T`, defining a real rational curve and
having coefficients a−1,0, a1,0, a0,`, a0,`−1 as specified. In particular, if a1,0 > 0 and
a0,` < 0, each polynomial as above is obtained from one of the following ones

ψ1,`(x, y), ψ2,`(x, y) := −ψ1,`(x(
√
−1)l, y

√
−1), (32)

by a suitable transformation F (x, y) 7→ γ1F (γ2x, γ3y) with γ1,γ2, γ3 > 0: namely,
those with a−1,0 > 0 come from ψ1,`, and those with a−1,0 < 0 come from ψ2,`. The
curve ψ1,` = 0 has the same number `−1

2
of elliptic nodes in the half-plane x > 0 and

in the half-plane x < 0, while the curve ψ2,` = 0 has no real singularities at all.

Proof. Both statements are well known and can easily by derived from [28,
Lemma 3.9 and its proof]). In particular, all real polynomials having Newton triangle
δ` and defining rational curves form orbits of the (R×)3-action

F (x, y) 7→ γ1F (γ2x, γ3y), γ1, γ2, γ3 ∈ R×, (33)

generated by polynomials (31) (` even), or (32) (` odd). The elliptic nodes of
the curve ψ1,` = 0 correspond to the maxima and minima of Cheb`. In turn,
the required properties of the curves ψ2,` = 0 can be derived from the fact that
(
√
−1)`Cheb`(τ

√
−1) = (−1)` cosh(` · arccosh τ). (See the curves given by (31) and

(32) shown in red color in Figure 8(a-d).) 2

3.6 Correspondence theorem for real separating curves

Throughout this section, we assume that w ⊂ TorK(P∆).
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Note that all real limit curves and real modified limit curves in the modified
parameterized tropical limit described in Section 3.3 have an infinite real point set
and the complement to the real point set consists of two connected components, i.e.,
they are separating.

Denote by
−→
MKR

g,n((Γ, h,ptr),w) the set of complex oriented elements of

MKR
g,n((Γ, h,ptr),w) (see Section 3.5. An element of

−→
MKR

g,n((Γ, h,ptr),w) induces
a complex orientation on each limit and modified limit curve of the tropical limit of

that element. Denote by
−→
AdR((Γ, h,ptr),w) (respectively,

−−→
EAdR((Γ, h,ptr),w)) the

set of the induced complex oriented admissible (respectively, extended admissible)
collections, associated with a curve (Γ, h,ptr) ∈ T redg,n (∆,x).

In what follows, we use notations of Definition 3.8.

Lemma 3.16 Given a curve (Γ, h,ptr) ∈ T redg,n (∆,x) and the polygons δ1, ..., δN
forming the dual subdivision of P∆, a sequence of real rational curves Ck ∈ |Lδk |
satisfying the conditions of Definition 3.8(1) yields an element of AdR((Γ, h,ptr),w)
if and only if the following holds:

(i) for each bounded edge e = [vi, vj] ∈ Γ1
red of even weight, the real local branches

of the curves Ci ⊂ Tor(δi), Cj ⊂ Tor(δj) (where δi, δj are dual to h(vi), h(vj),
respectively) centered at the points zi ' zj of the canonically isomorphic (see
Remark 3.3) toric divisors of Tor(δi), Tor(δj) lie in the same closed quadrant
in TorR(δi), TorR(δj), respectively; if, in addition, e contains a marked point
ptr such that h(ptr) = val(w), w = (tc1(a1 + O(td)), tc2(a2 + O(td))) ∈ w,
d� 0, where a1, a2 ∈ R×, then the point (a1, a2) lies in the same quadrant as
the aforementioned real local branches of Ci, Cj;

(ii) for each unbounded edge e ∈ Γ1 of an even weight, incident to a trivalent
vertex vi and containing an interior marked point ptr such that h(ptr) = val(w),
w = (tc1(a1 +O(td)), tc2(a2 +O(td))), where a1, a2 ∈ R×, the point (a1, a2) and
the real local branch of Ci ⊂ Tor(δi) centered on the toric divisor Tor(σ), where
σ is orthogonal to h(e), lie in the same quadrant.

Furthermore, under the above conditions, there are 2m1+m2 elements of
EAdR((Γ, h,ptr)),w) containing the sequence C1, ..., CN , where m1 is the number
of marked points on edges of Γred of even weight, and m2 is the total number of
edges of even weight.

Proof. We have to show that the condition stated in the lemma is necessary and
sufficient for the completion of the sequence C1, ..., CN to a real admissible collection.

First, observe that there is no restriction to find suitable real modified limit curves
in the case of an edge e of odd weight `. One can easily see that this fact reduces
to the following statements.

(1) For any prescribed real nonzero coefficients at the vertices of the triangle δ` =
conv{(−1, 0), (1, 0), (0, `)} (Figure 7(c)), there exists a real polynomial F (x, y)
with Newton triangle δ`, having the above prescribed coefficients, having the
vanishing coefficient of y`−1, and defining a real rational curve.

51



(2) For any prescribed real nonzero coefficients at the vertices of the triangle
δ′` = conv{(−1, 0), (0, 0), (0, `)} (Figure 7(k)), there exists a real Laurent poly-
nomial with the Newton triangle δ′` having the above prescribed coefficients
and defining a peripherally unibranch curve in Tor(δ′`).

Claim (2) is evident. Claim (1) follows from Lemma 3.15(2).

For ` even, the necessary and sufficient condition for the existence of a suitable
real modified limit curve reads a−1,0a1,0 > 0 (see Lemma 3.15(1)). Geometrically,
the latter condition means that the local real branches of Ci, Cj centered at zi, zj,
respectively, lie in the same quadrant. Note that there are two suitable modified
limit curves (see Lemma 3.15(1) and Figures 8(a,b)).

Furthermore, if e contains an interior marked point, then we have an additional
restriction for the coefficients at the vertices of the triangle δ′` (see Figure 7(h,k)):
b00b0` > 0, which geometrically means that the local real branch of Ci centered on
the toric divisor Tor(σ) and the point ini(w) lie in the same quadrant. Note that in
view of b00b0` > 0, there are two real polynomials b0`(y+λ)` matching the condition
b0`λ

` = b00. For each of the choices of λ, there are two suitable real modifications as
mentioned in the preceding paragraph.

The results of the two last paragraphs yield 2m1+m2 possible extensions of the
collection of limit curves C1, ..., CN . 2

Definition 3.17 (1) Let (C1, ..., CN) ∈ AdR((Γ, h,ptr),w), where Ci ∈ |Lδi |, i =
1, ..., N . A complex orientation of (C1, ..., CN) is a complex orientation of each of the
curves C1, ..., CN . We say that a complex orientation of (C1, ..., CN) is coherent if (in
the notation of Lemma 3.16) for each bounded edge e = [vi, vj] ∈ Γ1 of odd weight,
the real local arcs of the curves Ci, Cj, centered at the points zi ' zj, respectively,
and lying in the same quadrant, are oriented so that one of the arcs is incoming and
the other is outgoing. An element (C1, ..., CN) ∈ AdR((Γ, h,ptr),w) equipped with a
coherent complex orientation will be called oriented real admissible collection.

(2) Let (C1, ..., CN) ∈ AdR((Γ, h,ptr),w) be equipped with a coherent complex
orientation, and let an element ξ ∈ EAdR((Γ, h,ptr),w) extend (C1, ..., CN). Choose
a complex orientation of each of the modified limit curves in ξ. We say that a complex
orientation of ξ is coherent if the complex orientation of each modified limit curve is
coordinated with the complex orientations of the corresponding curves Ci, Cj in the
way shown in Figure 8.

Lemma 3.18 (1) The complex orientation of each element of
−−→
EAdR((Γ, h,ptr),w)

is coherent. Each element of EAdR((Γ, h,ptr),w) possessing a coherent complex

orientation belongs to
−−→
EAdR((Γ, h,ptr),w).

(2) Each element of AdR((Γ, h,ptr),w) possessing a coherent complex orienta-

tion belongs to
−→
AdR((Γ, h,ptr),w). Further on, it can be extended to an element of

−−→
EAdR((Γ, h,ptr),w) in 2m ways, where m is the number of edges e ∈ Γ1 having even
weight and containing an interior marked point.
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Figure 8: Complex orientations and modifications

Remark 3.19 Under the assumptions of Sections 2.2 and 2.3 stated over the field
KR, the tropical curves appearing in the tropical limits do not have edges of even
weight with an interior marked point, and hence the statement (2) of lemma 3.18

implies that each element of
−→
AdR((Γ, h,ptr),w) admits a unique extension to an

element of
−−→
EAdR((Γ, h,ptr),w).

Proof of Lemma 3.18. (1) Straightforward from Theorem 3.9.

(2) Let a bounded edge e = [v1, v2] ∈ Γ1 do not contain a marked point. Then,
there exists a unique real modified limit curve Cmod ⊂ Tor(δmod). where

δmod = conv{(0, 0), (2, 0), (1, `)} (cf. Figure 7(c)).

whose complex orientation makes the whole modified fragment coherent: see Figure
8(a,b,c,d) showing in red the curves

Cmod = {ψ1,` = 0} and Cmod = {ψ2,` = 0} (see formulas (31)),

for ` even or odd, respectively. The same holds if e contains a marked point, and
(as we mentioned above in Lemma 3.16) the two choices come from the fact that
there are two real modified limit curves C2,mod(E) with Newton polygon δ2,mod (the
left triangle in Figure 7(h)) and prescribed coefficients at the vertices of δ2,mod (cf.
the proof of Lemma 3.16). 2

Lemma 3.20 (1) Let δk be a triangle of the subdivision Σ(T ), and let Ck ∈ |Lδk |
be a real rational, peripherally unibranch curve equipped with a complex orientation.
Then,

• the intersection of RCk with any closed quadrant is either finite, or contains
a unique one-dimensional arc; the complex orientation of such an arc defines
a cyclic order of the sides of δk, and all these cyclic orders coincide (see an
example of an oriented line in Figure 9);
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• QI(Ck) = ε · ‖δk‖Z, where ε = 1 if the complex orientation of RCk defines the
positive cyclic order of the sides of δk, and ε = −1 otherwise.

(2) Let δk be a parallelogram of the subdivision Σ(T ), and let Ck ∈ |Lδk | be a real
limit curve as in Lemma 3.2(2). Then QI(Ck) = 0.

Proof. Straightforward from [22, Theorem 3.4 and Example 3.5]. 2

Now, we state a version of the correspondence Theorem 3.9 taking into account
real separating curves equipped with the complex orientation.

Theorem 3.21 Under the hypotheses of Theorem 3.9, assume that w ⊂ TorKR(P∆).
Then, for each curve (Γ, h,ptr) ∈ T redg,n (∆,x), the natural map

−→
MKR

g,n((Γ, h,ptr),w)→
−−→
EAdR((Γ, h,ptr),w)

is bijective. Furthermore, in the setting of Section 2.2 or 2.3, the natural map

−→
MKR

g,n((Γ, h,ptr),w)→
−−→
EAdR((Γ, h,ptr),w)→

−→
AdR((Γ, h,ptr),w)

is bijective.

For each element ξ ∈
−→
MKR

g,n((Γ, h,ptr),w), one has

QI(C) =
N∑
k=1

QI(Ck),

where (C1, ..., CN) ∈
−→
AdR((Γ, h,ptr),w) is the image of ξ.

Proof. Straightforward from Theorem 3.9 and Lemmas 3.16, 3.18, and 3.20. 2

Theorem 3.22 In the setting of Section 2.2 or 2.3 and under the hypotheses of
Theorem 3.9, suppose, in addition, that the curves Ci ⊂ Tor(δi) are Harnack when
δi is a triangle with all sides of even length. Then, the Welschinger sign W1(ξ) (as
defined by formula (5)) can be computed by summing up the contributions of the
curves C1, ..., CN and of the finite edges of the underlying tropical curve (Γ, h,ptr)
to the exponent of (−1) in formula (5). The non-trivial contributions are as follows.
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• The curve Cj ⊂ Tor(δj), where δj is a triangle with at least one side σ of even
length, contributes either h++(Cj) or h+−(Cj) according as the local real arc
of Cj centered on Tor(σ) lies in the positive quadrant, or not; furthermore, Cj
additionally contributes 1 each time when

– δj is dual to a trivalent vertex V = h(v), where v is the trivalent endpoint
of an end e ∈ Γ1

red,

– the side σ ⊂ ∂δj orthogonal to E = h(e) satisfies ‖δj‖Z ≡ 0 mod 4,

– the orientation of RCj at the intersection point with Tor(σ) is opposite to
the orientation of TorR(σ) induced by the given orientation of Tor+

R(δj)
(which in turn, comes from the a priori fixed orientation of Tor+

R(P∆)).

• The curve Cj ⊂ Tor(δj), where δj is a parallelogram with both sides of odd
length and of area ‖δj‖Z ≡ 0 mod 4, contributes 1.

• A pair of triangles δi, δj of the subdivision Σ(T ) which are dual to trivalent
vertices V1 = h(v1), V2 = h(v2) such that v1, v2 ∈ Γ0

red are endpoints of the
same edge of Γred of weight ` > 1 contributes

[
`−1

2

]
, if

– the local arc of RCi touching the toric divisor Tor(σi) ⊂ Tor(δi) and
the local arc of RCj touching the toric divisor Tor(σj) ⊂ Tor(δj) lie in
Tor+

R(δi), Tor+
R(δj), respectively, where the toric divisors Tor(σi), Tor(σj)

either coincide, or are canonically isomorphic in the sense of Remark 3.3,

– the complex orientations of above arcs of RCi, RCj induce opposite ori-
entations of TorR(σi), TorR(σj), respectively.

Proof. Note that, in the rational case (setting of Section 2.2), all triangles δi
have sides of even length, and then the claim follows from Lemma 3.12, Lemma
3.15(1), and Lemma 3.18 (cf. Figure 8(a,b)).

In the elliptic case (setting of Section 2.3), each triangle δi has at least one side
of even length (otherwise, the corresponding limit curve Ci would have real arcs
in three quadrants, while the considered elliptic curves may have real arcs only in
two quadrants. By our assumption, the limit curves in associated with the triangles
having all sides of even length are Harnack, i.e., have a real arc lying in the positive
quadrant. It easily follows that all intersection points of C1, ..., CN with toric divisors
lie in the positive halves of these divisors. Thus, the count of elliptic nodes in the
positive quadrant and hyperbolic nodes outside it, asserted in the lemma, follows
from Lemmas 3.12, 3.14, 3.15, and the coherence condition (cf. Figure 8). 2

Remark 3.23 Recall that the curves in Figure 8 are presented in the coordinates
x1, y1 linked with the main coordinates x, y by formulas (x, y) = (x1, y1 + b), where
b is the second coordinate of the intersection point of C1, C2 with the common toric
divisor of the toric surfaces Tor(δ1),Tor(δ2). That is, the singularities shown in the
half-planes {x1 > 0} and {x1 < 0} in Figure 8 correspond to singularities of the
curves C(t), 0 < t� 1, in the quadrants

{x > 0, y sign(b) > 0} or {x < 0, y sign(b) > 0},

55



respectively.

4 Tropical elliptic invariants

The main purpose of this section is to describe tropical analogs of the refined elliptic
invariants introduced above and to provide a tropical calculation of these invariants.

4.1 Tropical enumerative problem

4.1.1 Tropical constraints

For each vector a ∈ Z2 ⊂ R2, consider the linear form λa : R2 → R whose gradient
ǎ is obtained from a by the clockwise rotation by π/2. If La ⊂ R2 is an affine
straight line directed by the vector a, then λa takes the same value at all points of
La; we denote this value by λa(La).

Let ∆ ⊂ Z2 be a non-degenerate balanced multi-set. Any collection of affine
straight lines {La}a∈∆ in R2 such that, for each a ∈ ∆, the vector a is contained in
the direction of La is called a tropical ∆-constraint.

For a plane tropical curve T represented by a parameterized plane tropical curve
(Γ, h), we say that a given point of R2 belongs to T if this point belongs to the
image of h. We also speak about bounded edges and ends of T : these are images
under h of the bounded edges and the ends of Γ.

Definition 4.1 A tropical ∆-constraint {La}a∈∆ satisfies the tropical Menelaus
condition if there exists a plane tropical curve T of degree ∆ such that for every
a ∈ ∆ the end of T directed by the vector a ∈ ∆ is contained in the line La.

The following lemma is an easy well-known statement (cf., [22]).

Lemma 4.2 A tropical ∆-constraint {La}a∈∆ satisfies the tropical Menelaus con-
dition if and only if ∑

a∈∆

λa(La) = 0 . (34)

Proof. The ‘only if’ part of the statement immediately follows from the balancing
condition for tropical curves. The ‘if’ part can be proved by a straightforward
inductive construction. 2

An elliptic plane tropical curve is a plane tropical curve of genus 1. Any repre-
sentative (Γ, h) of such an elliptic plane tropical curve T has a unique simple cycle.
We call it (respectively, its image under h) the cycle of Γ (respectively, of T ).

Assume that a tropical ∆-constraint {La}a∈∆ satisfies the tropical Menelaus con-
dition, and consider a point x0 ∈ R2. The pair ({La}a∈∆, x0) is called an extended
tropical ∆-constraint. An elliptic plane tropical curve T is said to satisfy the ex-
tended tropical ∆-constraint ({La}a∈∆, x0) if
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• T is of degree ∆,

• for every a ∈ ∆ the end of T directed by the vector a ∈ ∆ is contained in the
line La,

• and x0 ∈ T .

Lemma 4.3 Let (Γ, h) be a representative of an elliptic plane tropical curve T sat-
isfying the extended tropical ∆-constraint ({La}a∈∆, x0). Assume that ∆ is even and
Γ is 3-valent. Then,

• each edge e of Γ such that e does not belong to the cycle of Γ is of even weight;

• either each edge of the cycle of Γ is of even weight, or each edge of the cycle
of Γ is of odd weight and the primitive vectors in the directions of the images
under h of these edges all have the same parity (by the parity of (a, b) ∈ Z2 we
mean (a mod 2, b mod 2) ∈ (Z/2Z)2).

Proof. The statement of the lemma is a straightforward corollary of the balanc-
ing condition. 2

The condition that an elliptic plane tropical curve T , represented by a pa-
rameterized plane tropical curve (Γ, h), satisfies an extended tropical ∆-constraint
({La}a∈∆, x0) can be reformulated in terms of the tropical toric surface TP∆ (cf.
Section 3.1). For any vector a ∈ ∆, the line La oriented by a is completed by a
point xa in the (open) strata Z ⊂ ∂TP∆ corresponding to the side σ ⊂ P∆ having
a as outer normal vector; we equip xa with the weight wt(a) (the weight of a). A
parameterized plane tropical curve (Γ, h) that represents an elliptic plane tropical
curve T satisfying an extended tropical ∆-constraint ({La}a∈∆, x0) gives rise to a
marked parameterized elliptic plane tropical curve (Γ, h,ptr) of degree ∆ such that
(cf., Section 3.1)

• a point ptr ∈ ptr belongs to Γ, the other points of ptr being the univalent
vertices of Γ;

• for any vector a ∈ ∆, one of the univalent vertices in ptr \ ptr is sent to xa by
the extension h : Γ→ TP∆ of h, the weight of the end adjacent to this vertex
being equal to wt(a);

• h(ptr) = x0.

The other way around, forgetting the marking of such a marked parameterized
elliptic plane tropical curve (Γ, h,ptr), we get a parameterized plane tropical curve
(Γ, h) that represents an elliptic plane tropical curve satisfying an extended tropical
∆-constraint ({La}a∈∆, x0).
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4.1.2 Elliptic plane tropical curves of given parity

Fix an even non-degenerate balanced multi-set ∆ ⊂ Z2 and a pair (α, β) ∈ (Z/2Z)2\
{(0, 0)}. We say that ∆ and (α, β) satisfy the admissibility condition if P∆ has at
most one side whose primitive normal vectors are of parity (α, β). This condition is
a reformulation of the admissible quadrant condition (AQC) on the quadrant

Q = {(x, y) ∈ R2 | (−1)αx > 0, (−1)βy > 0}

(see Section 2.3).

An elliptic plane tropical curve T , represented by (Γ, h), of degree ∆, is said to
be of parity (α, β) if Γ has edges of odd weight, the restriction of h on any such edge
is non-constant, and the primitive vectors in the directions of the images under h of
these edges have the parity (α, β). A plane tropical curve, represented by (Γ, h), is
said to be simple if Γ is 3-valent and the inverse image h−1(x) of any point x ∈ R2

contains at most two points; if h−1(x) is formed by two points, none of them is a
vertex of Γ.

Let T be a simple elliptic plane tropical curve of degree ∆ and parity (α, β), and
let (Γ, h) be a parameterized plane tropical curve representing T . Denote by c the
cycle of Γ. Lemma 4.3 implies that the edges of Γ that have an odd weight are
exactly the edges of the cycle c. The graph Γ can be represented as the union of c
and a collection {Γv} of trees formed by edges of even weight, the latter collection
being indexed by the set of vertices of c.

Let Σ(T ) be the subdivision of P∆ that is dual to T . Any polygon of Σ(T ) is
either a triangle, or a parallelogram. A triangle of Σ(T ) (or, equivalently, a vertex of
T ) is called even if its sides are even, that is, have even lattice lengths, and is called
odd otherwise. An odd triangle of Σ(T ) is said to be mobile if the tree Γv adjacent
to the corresponding odd vertex v of Γ satisfies the following property: for each edge
of Γv that is an end of Γ, the primitive integer vectors in the direction of the this
edge are of parity (α, β); in this case, the odd vertex v is also said to be mobile. If
∆ and (α, β) satisfy the admissibility condition, then any mobile odd vertex of Γ
is adjacent to an end such that the primitive integer vectors in its direction are of
parity (α, β).

Example 4.4 Figure 10 shows an example of a subdivision dual to an elliptic plane
tropical curve of parity (α, β) = (0, 1). The subdivision contains one parallelogram,
two even triangles (indicated by the black marks), and five odd triangles. One of the
odd triangles is mobile (it is indicated by the blue mark), the other four odd triangles
are non-mobile (they are indicated by the red marks).

Choose an orientation o of the cycle c. For each vertex v of c, the orientation o
provides a local orientation of R2 at h(v): if e is the even edge adjacent to v and if
e1 and e2 are the edges of c that are adjacent to v and such that e1 precedes e2 in
o, then the above local orientation is given by the following cyclic order: e1, e, e2.
In the dual way, the orientation o provides also an orientation of the triangle dual
to v.
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Figure 10: Example in degree 6

An orientation kit R of T is a choice of an orientation oR of the cycle c and a
choice, for each vertex v of Γ, of a local orientation of R2 at h(v) in such a way
that the local orientations associated to all non-mobile odd vertices of T coincide
with those provided by oR. Alternatively, an orientation kit R of Σ(T ) is a choice
of an orientation oR of c and a choice of an orientation for each triangle of Σ(T ) in
such a way that the orientations of all non-mobile odd triangles of Σ(T ) coincide
with those provided by oR. The collections of orientation kits of T and Σ(T ) are
in a natural one-to-one correspondence. In what follows, we use the both settings
and freely translate notions concerning orientation kits from one setting to the other
without additional explanations. Notice that orientation kits of T can be seen as a
way of encoding of ribbon structures of T .

If ∆ and (α, β) satisfy the admissibility condition (i.e., P∆ has at most one side
whose primitive normal vectors are of parity (α, β)), then the cycle c contains at least
one non-mobile odd vertex. Thus, in this situation, while describing an orientation
kit, we do not specify the choice of an orientation of c, since this orientation is
uniquely restored from the other data in the orientation kit.

For a given orientation kit of T , if the local orientation at a vertex h(v) of T
coincides with the canonical orientation of R2, we say that the vertex v of Γ is
positive; otherwise, we say that v is negative. The switch of the chosen orientation
of the cycle c makes each positive (respectively, negative) non-mobile vertex of c
negative (respectively, positive).

An orientation kit is said to be maximal if all triangles are oriented positively in
this orientation kit. If T admits a maximal orientation kit, such an orientation kit
is unique.

If R is an orientation kit of T , a mobile odd vertex of Γ is said to be R-compatible
(respectively, R-noncompatible) if R and oR provide the same local orientation
(respectively, opposite local orientations) for this vertex. An even vertex of Γ is said
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Figure 11: Simplification

to beR-noncompatible if it belongs to an even tree Γv attached to aR-noncompatible
mobile odd vertex v of Γ; otherwise, the even vertex is said to be R-compatible.
Under the admissibility condition on ∆ and (α, β), all even vertices of Γ are R-
compatible.

The plane tropical curve T may admit a rectification: this is an elliptic plane
tropical curve represented by a parameterized plane tropical curve (Γ

′
, h′), where

the graph Γ
′

is obtained from Γ by replacing each tree Γv of the collection {Γv}
by an edge connecting v to a new one-valent vertex and the map h′ : Γ′ → R2 is
obtained by extending the restriction of h to Γ\Γv in such a way that the balancing
condition at v is satisfied (see Figure 11). A rectification of T has the same parity
as T , but, if the rectification is nontrivial, not the same (even) degree.

A partial rectification of T at an even vertex u1 adjacent to two one-valent vertices
and a vertex u2 of valency bigger than 1 is an elliptic plane tropical curve represented
by a parameterized plane tropical curve (Γ

′′
, h′′), where the graph Γ

′′
is obtained from

Γ by replacing the union U of three edges adjacent to u1 by an edge connecting u2

to a new one-valent vertex and the map h′′ : Γ′′ → R2 is obtained by extending the
restriction of h to Γ\U in such a way that the balancing condition at u2 is satisfied.
Again, a partial rectification of T has the same parity as T , but not the same (even)
degree. A rectification of T can be represented as a result of a sequence of partial
rectifications of elliptic plane tropical curves, the first of these curves being T .

4.1.3 Quantum indices and Welschinger signs of elliptic plane tropical
curves

Fix again a couple (α, β) ∈ (Z/2Z)2 \ {(0, 0)}. Let T be a simple elliptic plane
tropical curve of parity (α, β) and of degree ∆ = ∆(T ), and let (Γ, h) be a param-
eterized plane tropical curve representing T . To each orientation kit R of T we
associate a quantum index and a Welschinger sign. The quantum index κ(R) of R
is A+(R)−A−(R), where A+(R) (respectively, A−(R)) is the total Euclidean area
of positive (respectively, negative) triangles in Σ(T ).

Proposition 4.5 The difference A(∆)− κ(R) is an integer divisible by 4.
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Proof. Denote by Π(T ) the total area of parallelograms in Σ(T ). The difference
A(∆) − κ(R) is equal to 2A−(R) + Π(T ). The Euclidean area of each triangle
in Σ(T ) is an integer and the Euclidean area of each parallelogram in Σ(T ) is an
even integer. So, 2A−(R) + Π(T ) is an even integer. Furthermore, the Euclidean
area of any even triangle in Σ(T ) is an even integer and the Euclidean area of any
parallelogram in Σ(T ) with all sides even is an integer divisible by 4. Denote by
A′−(R) the total area of negative odd triangles in Σ(T ), and denote by Π′(T ) the
total area of parallelograms in Σ(T ) that have an odd side. Our purpose is to prove
that the even integer number 2A′−(R) + Π′(T ) is divisible by 4.

Denote by Ropp the orientation kit obtained from R by reversing the orientation
of c and the orientations of all triangles of Σ(T ).

Lemma 4.6 The integer 2A′−(R)− 2A′−(Ropp) is divisible by 4.

Proof. The statement of the lemma is equivalent to the fact that the integer
A′−(R)+A′−(Ropp) is even. The latter integer is equal to the total Euclidean area of
odd triangles in Σ(T ). Thus, this integer is even, because it is equal to the difference
between A(∆) (which is even) and the total Euclidean area of even triangles and
parallelograms in Σ(T ). 2

Lemma 4.7 Let L ⊂ R2 be a straight line with rational slope. Assume that L
intersects the cycle h(c) of T only at interior points of edges. For each intersection
point of L with an edge h(e) of h(c), consider the integer equal to the Euclidean
area of the parallelogram formed by a primitive vector in the direction of L and a
primitive vector in the direction of h(e). Then, all the integers obtained in this way
from the intersection points of L and h(c) have the same parity.

Proof. This is an immediate corollary of the fact that all primitive vectors in
the directions of edges of the cycle h(c) have the same parity. 2

We prove the statement of the proposition using an induction on the number of
self-intersections of the cycle of T , that is, the number of parallelograms in Σ(T ) that
have all sides odd. Assume that the restriction of h on the cycle of Γ is injective,
that is, the cycle h(c) of T does not have any self-intersection. In this case, the
complement of the cycle h(c) ⊂ R2 has two connected components: the interior
In(c), homeomorphic to an open 2-disc, and the exterior Ex(c).

For any vertex v of c, let Γv be the tree (formed by edges of even weight) adjacent
to v. Exactly one edge of Γv is adjacent to v; denote this edge by ev and denote
by Lv the straight line containing h(ev). The line Lv is divided by h(v) into two
rays. Denote by L+

v the ray containing h(ev), and denote by L−v the other ray. Due
to Lemma 4.6, we can reverse, if necessary, the orientation of c and assume that a
vertex v of c is positive if and only if at h(v) the ray L+

v points towards Ex(c).

For a vertex v of c, let ṽ ∈ c be a generic point sufficiently close to v. Denote by
Lṽ the straight line parallel to Lv and passing through h(ṽ); note that the lines Lv
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•
h(ṽ)L+

ṽ L−ṽ

Figure 12: Rays L+
ṽ and L−ṽ

and Lṽ are different. Denote by L+
ṽ and L−ṽ the rays of Lṽ having h(ṽ) as vertex

and pointing in the same directions as L+
v and L−v , respectively (see Figure 12).

The balancing condition implies that the total area Π′v of the parallelograms
corresponding to the intersection points (different from h(v)) of h(Γv) and h(c)
is congruent modulo 4 to the total area, multiplied by the weight of ev, of the
parallelograms corresponding to the intersection points (different from h(ṽ)) of L+

ṽ

and h(c). Thus, Lemma 4.7 implies that, if the vertex v is negative (respectively,
positive), then the integer 2A(v)+Π′v (respectively, Π′v) is divisible by 4, where A(v)
is the Euclidean area of the triangle dual to v. This proves the required statement
in the case where the cycle h(c) of T does not have any self-intersection.

Assume now that the cycle h(c) of T has a self-intersection ι. Then, we can
consider the surgery of T at ι. This is a pair of elliptic plane tropical curves T1 and
T2 defined as follows. Denote by e and f the two edges of Γ whose images contain
ι, and denote by ιe and ιf the inverse images of ι in e and f , respectively. Cut
the edge e at ιe into two segments −→e (oriented towards ιe) and ←−e (oriented from

ιe). In a similar way, cut the edge f at ιf into two segments
−→
f and

←−
f . Each of

the segments −→e , ←−e ,
−→
f , and

←−
f has a distinguished vertex sent by h to ι. Identify

the distinguished vertices of −→e and
←−
f , and attach to the resulting vertex v1 a new

edge g1. Similarly, identify the distinguished vertices of
−→
f and ←−e , and attach to

the resulting vertex v2 a new edge g2 (see Figure 13). This procedure gives rise to
two respective graphs Γ1 and Γ2. Denote by Γ1 (respectively, Γ2) the complement
in Γ1 (respectively, Γ2) of univalent vertices. The restriction of h to Γ1 \ g1 admits a
unique extension h1 to Γ1 such that (Γ1, h1) is a parameterized plane tropical curve.
Denote by T1 the corresponding plane tropical curve. In a completely similar way,
we define a parameterized plane tropical curve (Γ2, h2) and the corresponding plane
tropical curve T2. Let L be the straight line containing the rays h1(g1) and h2(g2).
Slightly modifying, if necessary, the elliptic plane tropical curves Ti, i = 1, 2, we can
assume that the inverse image under h of any point of L is not a vertex of Γ and the
only point of L having two inverse images under h is ι. Thus, T1 and T2 satisfy all
conditions for simple elliptic plane tropical curves of parity (α, β). The orientation
kit R induces orientation kits of T1 and T2, so we can apply to these curves the
induction hypothesis.
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Figure 13: Surgery of T at ι

It remains to notice that the quantity 2A′−(R) + Π′(T ) is congruent modulo 4
to the sum of the corresponding quantities for T1 and T2. Indeed, exactly one of
the vertices v1 and v2 is negative, and for any vertex vi, i = 1, 2, the Euclidean
area of the triangle dual to vi in the subdivision Σ(Ti) dual to Ti is equal to the
half of the Euclidean area of the parallelogram dual to ι in the subdivision Σ(T ).
In addition, the tropical intersection number of T1 and T2 is divisible by 4, and
the tropical intersection number of T and L is divisible by 2 (for the definition of
tropical intersection number, see, for example, [19, Definition 3.6.5]). 2

In order to define the Welschinger sign w(R) of R, let us introduce the following
notions and notations. For any vertex p of Γ, denote by (θ1(p), θ2(p)) the parity
of each of the vertices of the triangle δp dual to h(p) if p is even and the parity
of each of the vertices adjacent to the even edge of δp if p is odd. The Harnack
number H(p) (respectively, the twisted Harnack number H(α,β)(p)) of a vertex p of Γ
is the number of integer points in the interior of δp that have the parity (θ1(p), θ2(p))
(respectively, the parity (θ1(p) + β, θ2(p) + α)). The content `(e) of an edge e of Γ
is the integer part of (wt(e)− 1)/2, where wt(e) is the weight of e. A bounded edge
of Γ is said to be R-coherent (respectively, R-noncoherent) if it connects vertices
having the same sign (respectively, opposite signs) inR. An end of Γ is said to beR-
coherent (respectively,R-noncoherent) if the adjacent vertex is positive (respectively,
negative) in R.

Consider the following quantities:

• the number of self-intersections π(T ) of the cycle of T , that is, the number of
parallelograms in Σ(T ) that have all sides odd,

• the sum ζeven,com(R) of Harnack numbers of R-compatible even vertices of Γ,
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• the sum ζeven,ncom(R) of twisted Harnack numbers of R-noncompatible even
vertices of Γ,

• the sum ζodd,nmob(T ) of Harnack numbers of non-mobile odd vertices of Γ,

• the sum ζodd,com(R) of Harnack numbers of R-compatible mobile odd vertices
of Γ,

• the sum ζodd,ncom(R) of twisted Harnack numbers of R-noncompatible mobile
odd vertices of Γ,

• the sum τbound(R) of contents of R-coherent bounded edges of Γ,

• the sum τends(R) of contents of R-noncoherent ends of Γ.

Note that π(T ) and ζodd,nmob(T ) depend only on T (and not on the choice of R).

The Welschinger sign w(R) of R is (−1)s(R), where

s(R) = I
(

1

2
∆

)
+
A(∆)− κ(R)

4
+ π(T ) + ζeven,com(R) + ζeven,ncom(R)

+ζodd,nmob(T ) + ζodd,com(R) + ζodd,ncom(R) + τbound(R) + τends(R).

Lemma 4.8 One has

I
(

1

2
∆

)
=
A(∆)

4
− P(∆)

4
+ 1,

where P(∆) is the lattice perimeter of P∆, i.e., the sum of lattice lengths of the sides
of P∆.

Proof. This is an immediate consequence of Pick’s formula. 2

Due to Lemma 4.8, the expression for s(R), appearing in the definition of the
Welschinger sign w(R), can be rewritten in the following form:

s(R) =
A(∆)

2
− P(∆) + κ(R)

4
+ π(T ) + ζeven,com(R) + ζeven,ncom(R)

+ζodd,nmob(T ) + ζodd,com(R) + ζodd,ncom(R) + τbound(R) + τends(R) + 1.

4.1.4 Correspondence

Fix an even non-degenerate multi-set ∆ and a couple (α, β) ∈ (Z/2)2 \ {(0, 0)} sat-
isfying the admissibility condition (that is, P∆ has at most one side whose primitive
normal vectors are of parity (α, β)). Choose in a generic way a tropical ∆-constraint
{La}a∈∆ satisfying the tropical Menelaus condition and a point x0 ∈ R2. Denote
by Tα,β({La}a∈∆, x0) the set of simple elliptic plane tropical curves satisfying the
extended tropical ∆-constraint ({La}a∈∆, x0) and having the parity (α, β). For each
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tropical curve T ∈ Tα,β({La}a∈∆, x0), denote by OK(T ) the set of orientation kits
of T , and put

OKα,β({La}a∈∆, x0) =
∐

T∈Tα,β({La}a∈∆,x0)

OK(T ).

For each vector a ∈ ∆, consider the point xa ∈ ∂TP∆ corresponding to the line La
oriented by a, and attribute to the point xa the lattice length ‖a‖Z of a.

For any couple (ε1, ε2) ∈ (Z/2Z)2, consider the quadrant K2
ε1,ε2

of (K×)2; this
quadrant is formed by the elements (tµ1(x + O(td)), tµ2(y + O(td))) ∈ K2 \ {(0, 0)},
where x, y ∈ R× and d > 0, such that

(−1)ε1x > 0, (−1)ε2y > 0.

The quadrant associated with the zero of (Z/2Z)2 is said to be positive.

Choose a lifting of {xa}a∈∆, x0 to a configuration ŵ of n + 1 real points in
TorK(P∆), where n is the number of elements in ∆, such that the liftings of all
points {xa}a∈∆ belong to the boundary of the positive part of TorK(P∆) and sat-
isfy the Menelaus condition, and the lifting of x0 belongs to the quadrant K2

α,β.
The admissibility condition for ∆ and (α, β) implies that, for any real curve in
MK

1,n+1(∆,w), each real curve C(t) in the corresponding family {C(t)}t6=0 (see Sec-
tion 3.2) has one-dimensional real part formed by two connected components: one in
the closure of the positive quadrant R2

+ = {(x, y) ∈ R2 |x > 0, y > 0} and the other
in the closure of the quadrant R2

α,β = {(x, y) ∈ R2 | (−1)αx > 0, (−1)βy > 0} (cf.

Section 2.3). Thus, the real elliptic curves C(t) are separating and can be equipped
with complex orientations in a continuous way.

Fix a real curve C ∈ MK
1,n+1(∆,w) and a complex orientation O of this curve.

Denote by (Γ, h,ptr) the tropicalization of C, and denote by T the corresponding
elliptic plane tropical curve. Due to Theorem 3.21, the couple (C,O) gives rise
to a complex oriented real admissible collection D of limit curves associated with
(Γ, h,ptr) and ŵ.

Lemma 4.9 The elliptic plane tropical curve T corresponding to (Γ, h,ptr) satisfies
the extended tropical ∆-constraint ({La}a∈∆, x0). In addition, T is simple of parity
(α, β).

Proof. The first part of the statement is immediate. To prove the second
part, note that there are exactly two quadrants in R2 whose closures contain one-
dimensional parts of the real point sets of limit curves in the main part of D: the
positive quadrant R2

+ and the quadrant R2
α,β. Thus, Lemma 3.16 implies that T has

edges of odd weight and they are of parity (α, β). It remains to apply Lemmas 3.1
and 4.3. 2

The observation (concerning the one-dimensional parts of the real point sets of
limit curves in the main part of D) used in the proof of Lemma 4.9 can be made
more precise.
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Lemma 4.10 Let δ be a triangle in Σ(T ), and let Cδ be the corresponding limit real
rational curve belonging to the real admissible collection D.

• If δ is even, then Cδ is Harnack.

• If δ is odd, then Cδ has two arcs in (R×)2: one in the positive quadrant and
one in the quadrant R2

α,β.

• If δ is odd and non-mobile, then Cδ is Harnack.

Proof. Recall that the graph Γ can be represented as the union of the cycle c
and the collection {Γv} of trees formed by edges of even weight, the latter collection
being indexed by the set of vertices of c. Since for any even triangle δ′ in Σ(T ) the
one-dimensional part of the curve Cδ′ is contained in the closure of one quadrant of
R2, Lemma 3.16 implies that, for any vertex v of c, the one-dimensional parts of all
limit curves corresponding to the even vertices of the tree Γv (i.e., the vertices of
Γv that are different from v) are contained in the closure of the same quadrant. If
v is non-mobile, this quadrant is necessarily the positive one. This proves the first
statement of the lemma.

The second statement is immediate. To prove the third statement, it remains to
apply again Lemma 3.16. 2

For each triangle δ of the dual subdivision Σ(T ), the complex orientation of
the corresponding real rational curve Cδ (belonging to the main part of the real
admissible collection D) defines an orientation o(δ) of δ (cf. Lemma 3.20).

Lemma 4.11 The resulting collection of orientations {o(δ)}, indexed by the collec-
tion of triangles of Σ(T ), forms an orientation kit R of T . Furthermore, if δ is a
mobile odd triangle in Σ(T ), then Cδ is Harnack if and only if δ is R-coherent.

Proof. Consider the limit curves in D that correspond to odd triangles in Σ(T ).
For each of these curves, take its arc in the closure of the positive quadrant of
(R×)2, and denote by U the circle which is the union of the taken arcs. A choice of
an orientation of the cycle c of Γ is equivalent to a choice of an orientation of U .

If δ is a non-mobile odd triangle in Σ(T ), Lemma 4.10 implies that the 3-arc
ℵ(Cδ) ⊂ Cδ (see Definition 3.11) is contained in the closure of the positive quadrant
of (R×)2, and thus, ℵ(Cδ) ⊂ U . The oriented arc ℵ(Cδ) gives rise to an orientation
o(δ) of δ. Consider the orientation o of c such that o induces the orientation o(δ)
on δ. The orientation o gives an orientation of U , and the coherency of the com-
plex orientations of the limit curves guarantees that, for any other non-mobile odd
triangle δ′ in Σ(T ), the orientation o induces the orientation o(δ′) on δ′.

If δ is a mobile odd triangle in Σ(T ), the oriented 3-arc ℵδ ⊂ Cδ is contained in
U (in other words, Cδ is Harnack) if and only if δ is R-coherent. 2.

The above considerations define a map BT :
−→
AdR((Γ, h,ptr),w) → OK(T ), and

thus, using Theorem 3.21, a map B′T :
−→
MKR

g,n((Γ, h,ptr),w) → OK(T ). We also
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obtain a map B′ :
−→
MKR

g,n(∆,w)→ OKα,β({La}a∈∆, x0), where

−→
MKR

g,n(∆,w) =
∐

[(Γ,h,ptr)]∈Tα,β({La}a∈∆,x0)

−→
MKR

g,n((Γ, h,ptr),w).

Theorem 4.12 For each tropical curve T ∈ Tα,β({La}a∈∆, x0), represented by

(Γ, h,ptr), the map B′T :
−→
AdR((Γ, h,ptr),w) → OK(T ) is a one-to-one correspon-

dence preserving the quantum indices and the Welschinger signs. In particular, the

map B′ :
−→
MKR

g,n(∆,w) → OKα,β({La}a∈∆, x0) is a one-to-one correspondence pre-
serving the quantum indices and the Welschinger signs.

Proof. Consider a tropical curve T ∈ Tα,β({La}a∈∆, x0), represented by

(Γ, h,ptr), and fix an orientation kit R ∈ OK(T ) of T . Let D ∈
−→
AdR((Γ, h,ptr),w)

be an oriented a real admissible collection such that BT (D) = R. Lemmas 4.10 and
4.11 imply that, for each point w ∈ ŵ, the local branch at ini(w) of the real rational
curve Cδ ∈ D incident to ini(w) is not contained in the closure of the first quadrant
if and only if the Newton triangle δ of Cδ is odd, mobile and R-noncoherent. So,
for each unbounded edge e of T we associate a quadrant Q(e) ⊂ R2, where Q(e) is
the positive quadrant unless e is adjacent to an R-noncoherent mobile odd vertex
of T ; in the latter case, Q(e) is the quadrant R2

α,β. The edge of T containing the
point x0 gets a pair of quadrants: the positive one and R2

α,β. Now, each time we
have a triangle δ in Σ(T ) such that two sides of δ have already quadrants associated
to them, Lemma 3.13 uniquely reconstructs a real rational curve with the Newton
polygon δ (and, thus, quadrant(s) for the third side of δ) such that this curve can
be an element of an oriented real admissible collection whose image under BT coin-
cides with R. This proves the uniqueness of an oriented real admissible collection

D ∈
−→
AdR((Γ, h,ptr),w) such that BT (D) = R.

The recursive procedure mentioned above provides also a construction of an ori-
ented real admissible collection D ∈ B−1

T (R). Indeed, the procedure ends with an
odd triangle whose three sides have quadrants associated to them. Again, Lemma
3.13 (applied to the even side of the triangle and to any of its two odd sides) provides
a suitable real rational curve, the result being independent of the choice of an odd
side, since the configuration ŵ satisfies the Menelaus condition.

Equip the real rational curves of the collection obtained with complex orientations
provided byR. Lemma 3.16 implies that this gives rise to an oriented real admissible
collection D ∈ B−1

T (R).

To show that the map B′T :
−→
AdR((Γ, h,ptr),w)→ OK(T ) is a bijection, it remains

to apply Theorem 3.21. This theorem implies also that the bijection B′ preserves
the quantum indices, and Theorem 3.22 implies that B′ preserves the Welschinger
signs. 2
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4.2 Reinterpretation of the Welschinger sign of an orienta-
tion kit

4.2.1 Statement

Fix an even non-degenerate balanced multi-set ∆ ⊂ Z2 and a couple (α, β) ∈
(Z/2Z)2 \{(0, 0)}. Choose in a generic way a tropical ∆-constraint {La}a∈∆ satisfy-
ing the tropical Menelaus condition and a point x0 ∈ R2. Consider a tropical curve
T ∈ Tα,β({La}a∈∆, x0).

The following theorem is a key combinatorial statement of the paper, and the
current section is devoted to the proof of this theorem.

Theorem 4.13 Let R ∈ OK(T ) be an orientation kit of T . Then, the Welschinger
sign w(R) of R coincides with (−1)NT (R), where NT (R) is the number of negative
vertices of T with respect to R.

Consider the following three types of operations on orientation kits of T (re-
spectively, on orientation kits of Σ(T )): reversing of an even triangle, simultaneous
reversing of a mobile odd triangle and all even triangles of its tree, and simultaneous
reversing of all non-mobile odd triangles (here, by ‘reversing’ we mean the change
of the orientation). These operations allow one to obtain all orientation kits of T
starting from one of them.

Lemma 4.14 Let δ ⊂ R2 be a lattice polygon (not necessarily convex). Then, the
lattice area 2A(δ) of δ has the same parity as the number of integer points on the
boundary of δ.

Proof. The statement is an immediate corollary of Pick’s formula. 2

Lemma 4.15 Let R ∈ OK(T ) be an orientation kit of T , and let R′ be the ori-
entation kit obtained from R by reversing one even triangle of Σ(T ). Then, the
Welschinger signs of R and R′ are opposite.

Proof. Let δ be the even triangle reversed. Without loss of generality, we can
assume that the vertices of δ have even coordinates. The change of the orientation
of δ multiplies the Welschinger sign of the orientation kit by (−1)A(δ)/2+P(δ)/2+1,
where, as before, P(δ) is the lattice perimeter of δ. Thus, the statement follows
from Lemma 4.14 applied to the image of δ under the homothety with coefficient
1/2. 2

Lemma 4.16 Let R ∈ OK(T ) be an orientation kit of T , and let R′ be the orienta-
tion kit obtained from R by reversing one mobile odd triangle of Σ(T ) and all even
triangles of the tree of this triangle. Then, the Welschinger signs of R and R′ are
opposite.
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Proof. Let δ be the odd mobile triangle reversed. Without loss of generality,
we can assume that (α, β) = (0, 1) ∈ (Z/2Z)2 and that the second coordinates of
the vertices of δ are even. Denote by v ∈ Γ the vertex dual to δ, and denote by
Ξ the union of all triangles in Σ(T ) that are dual to the vertices of the even tree
Γv (the vertex v included) and all parallelograms in Σ(T ) that correspond to the
intersection points of images by h of edges of Γv. The union Ξ is a lattice polygon
(not necessarily convex): it is homeomorphic to a closed 2-disk, because all but two
sides of Ξ are contained in the boundary of P∆.

Denote by A(Ξ) (respectively, P(Ξ)) the Euclidean area (respectively, the lattice
perimeter) of Ξ, and denote by I2(Ξ) the number of interior integer points of Ξ
that have even second coordinate. Since each parallelogram appearing in Ξ has
Euclidean area divisible by 4, the change of orientations of all triangles appearing in
Ξ multiplies the Welschinger sign of the orientation kit by (−1)A(Ξ)/2+P(Ξ)/2+I2(Ξ).
Thus, the statement follows from Pick’s formula applied to the polygon Ξ considered
in the sublattice Z× 2Z ⊂ Z2 ⊂ R2. 2

Lemma 4.17 Let R ∈ OK(T ) be an orientation kit of T , and let R′ be the orien-
tation kit obtained from R by simultaneously reversing all non-mobile odd triangles
of Σ(T ). Then, the Welschinger sign of R′ is obtained from that of R by the multi-
plication by (−1)a, where a is the number of non-mobile odd triangles of Σ(T ).

Proof. Consider the orientation kit R′′ ∈ OK(T ) obtained from R by revers-
ing the orientations of all triangles of Σ(T ). Due to Lemmas 4.15 and 4.16, it is
enough to prove that the Welschinger sign of R′′ is obtained from that of R by
the multiplication by (−1)b, where b is the number of triangles of Σ(T ), that is, to
prove that b has the same parity as (A+(R′′)−A−(R′′))/2 + Υ(T ), where Υ(T ) is
the sum of contents of boundary edges of Σ(T ). The subdivision of each boundary
edge of Σ(T ) into segments of integer length 2 induces a refinement of Σ, and this
refinement procedure simultaneously changes the parities of b and Υ(T ), so we can
assume that all the boundary edges of Σ(T ) have integer length 2. In this case, one
has Υ(T ) = 0.

The number b has the same parity as the number of boundary edges of Σ(T ),
that is, the same parity as P(∆)/2, where P(∆) is the lattice perimeter of P∆. Due
to Lemma 4.14 applied the image of P∆ under the homothety with coefficient 1/2
(we assume that the vertices of P∆ have even coordinates), the parity of P(∆)/2
coincides with the parity of A(∆)/2. It remains to apply Proposition 4.5. 2

Proposition 4.18 Assume that, for some orientation kit R ∈ OK(T ) of T , the
Welschinger sign w(R) of R coincides with (−1)NT (R). Then, for any orientation
kit R′ ∈ OK(T ) of T , the Welschinger sign w(R′) coincides with (−1)NT (R′).

Proof. The statement immediately follows from Lemmas 4.15, 4.16 and 4.17. 2

We say that a simple elliptic plane tropical curve T ′ of parity (α, β) satisfies the
sign property if, for some (and, thus, for any) orientation kitR of T ′, the Welschinger
sign w(R) of R coincides with (−1)NT ′ (R).
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4.2.2 Trifurcations

Continuously moving the tropical ∆-constraint {La}a∈∆ (always assuming that at
each moment the tropical Menelaus condition is satisfied) and a point x0 ∈ R2, one
can deform the tropical curves of the collection Tα,β({La}a∈∆, x0). If a deformation
of {La}a∈∆ and x0 is supposed to be sufficiently generic, the types of vertices of
tropical curves appearing in the deformation of Tα,β({La}a∈∆, x0) can be classified
(see, for example, [8, Proposition 3.9]).

A typical event in such a deformation is a trifurcation: it is a sufficiently small
neighbourhood (in the deformation) of a plane tropical curve having one 4-valent
vertex (other vertices of the curve being 3-valent). This tropical curve is called
the central curve of the trifurcation. If no two of the edges adjacent to the 4-
valent vertex of the central curve are parallel, there are three combinatorial types
of simple plane tropical curves appearing in the trifurcation (relevant fragments of
their dual subdivisions are shown on Figure 14). The simple plane tropical curves
appearing in a trifurcation are said to be friends. If among the edges adjacent to
the 4-valent vertex there are no parallel edges that are either both even or both odd,
such a trifurcation is said to be non-degenerate and the simple plane tropical curves
appearing in it are called non-degenerate friends. The plane tropical curves having
the same combinatorial type (i.e., same Newton polygon and same dual subdivision)
are said to be similar. The similarity and the friendship (respectively, the similarity
and non-degenerate friendship) generate an equivalence relation F (respectively,
NDF) on the set of simple elliptic plane tropical curves of degree ∆ and parity
(α, β).

A simple elliptic plane tropical curve of parity (α, β) is said to be convex if the
cycle of this curve is a simple broken line forming the boundary of a convex polygon
in R2. We distinguish two particular types of convex simple elliptic plane tropical
curves: triangular (this means that the cycle consists of three edges) and parallelo-
gramic (this means that the cycle consists of four edges forming a parallelogram in
R2).

Lemma 4.19 Any convex simple elliptic plane tropical curve of degree ∆ and parity
(α, β) admits a (unique) maximal kit. The Welschinger sign of this orientation kit
is positive.

Proof. Let T be a convex simple elliptic plane tropical curve of degree ∆ and
parity (α, β). Since the cycle c of T is the boundary of a convex polygon, the positive
orientation of all vertices of c can be induced by an orientation of c. This proves the
existence of a maximal orientation kit R of T . One has

π(T ) = 0, ζeven,ncom(R) = ζodd,ncom(R) = τends(R) = 0,
A(∆)− κ(R)

4
= 0.

The sum ζeven,com(R)+ ζodd,nmob(T )+ ζodd,com(R)+ τbound(R) is equal to the number
of integer points in the interior of P∆ that have the same parities of coordinates as
the vertices of P∆, that is, equal to I(1

2
∆). Thus, the Welschinger sign w(R) of R

is positive. 2

70



Corollary 4.20 Any convex simple elliptic plane tropical curve of parity (α, β) sat-
isfies the sign property. 2

4.2.3 Invariance of the sign condition

This subsection is devoted to the proof of the following theorem.

Theorem 4.21 Let T1 and T2 are two simple elliptic plane tropical curves of parity
(α, β). Assume that T1 and T2 are non-degenerate friends. Then, T1 satisfies the
sign condition if and only if T2 satisfies the sign condition.

Proof. Suppose that T1 and T2 have different combinatorial types, and consider
a non-degenerate trifurcation certifying that T1 and T2 are non-degenerate friends.
Let T0 be the elliptic plane tropical curve appearing in this trifurcation and having
a 4-valent vertex v. Assume, first, that the four edges of T0 that are adjacent to
v have pairwise non-parallel directions. In this case, the polygon dual to v is a
quadrangle with pairwise non-parallel sides; denote it by δ. Denote the vertices of
δ by A, B, C, and D (in a cyclic order). There are three combinatorial types of
simple elliptic plane tropical curves appearing in the trifurcation (see, for example,
[8]). Their dual subdivisions coincide with the dual subdivision of T0 outside of δ.
For one of these combinatorial types, the quadrangle δ is subdivided by the diagonal
AC, for another combinatorial type, the quadrangle δ is subdivided by the diagonal
BD, and for the third combinatorial type, the quadrangle δ is subdivided into a
parallelogram P and two triangles (see Figure 14). Assume that A is a vertex of
the parallelogram P , and denote by G the opposite vertex of P . Denote by E(P )
(respectively, Eint(P )) the number of integer points of P that have even coordinates
and are not contained in the sides AB and AD (respectively, the number of integer
points having even coordinates and belonging to the interior of P ). Denote by Eδ
the number of integer points having even coordinates and contained in the interior
of δ.

Two of the above mentioned combinatorial types are represented by T1 and T2.
Let T3 be a simple elliptic plane tropical curve representing the third combinatorial
type. It is convenient for us to rename the tropical curves T1, T2, and T3. The curve
whose dual subdivision contains the diagonal AC (respectively, BD) is now denoted
by Tb (respectively, Ty). The remaining curve is denoted by Tr.

Orient the cycles of Tb, Ty, and Tr coherently, i.e., so that the orientations co-
incide outside of δ. Let Rb, Ry, and Rr be the orientation kits of Tb, Ty, and Tr,
respectively, such that the orientations of all even triangles are positive and the
orientation of each odd triangle is induced by the chosen orientation of the cycle; in
particular, each mobile odd triangle is Rb- (respectively, Ry-, Rr-) coherent.

For the tropical curves Tb and Ty, there is a natural bijection between their
vertices (respectively, edges) dual to triangles (respectively, segments) not contained
in δ. The same is true for the tropical curves Tb and Tr (and the tropical curves
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Figure 14: Non-degenerate trifurcation without parallel edges

Ty and Tr). These bijections preserve the contributions of vertices and edges to the
Welschinger signs of the orientation kits Rb, Ry, and Rr.

Denote by S1 (respectively, S2, S3, S4, S5, S6) the Euclidean area of the triangle
ABC (respectively, ACD, ABD, BCD, BCG, CDG), and denote by l1 (respec-
tively, l2, l3, l4, l5, l6, l7) the lattice length of the segment AD (respectively, AB,
CD, BC, CG, BD, AC); see Figure 14. For every integer 1 ≤ i ≤ 6, denote by Hi

the Harnack number of the triangle whose area is denoted by Si, and denote by Ei
the number of integer points having even coordinates and contained in the interior
of this triangle.

Each of the sides of δ can be even or odd. There are seven possible collections
of parities, they are shown on Figure 15, where even (respectively, odd) sides of δ
are represented by solid (respectively, dashed) lines. The arrows show the chosen
orientation of the cycle and the induced orientations of odd triangles. The situation
where all the sides of δ are odd is not realisable, because in this case, the tropical
curves T1, T2, and T3 would be of genus bigger than 1. We analyse each of the seven
realisable cases.

Case shown on Figure 15(a). All triangles appearing in the considered sub-
divisions of δ are even and oriented positively. Thus, one has NTb(Rb) = NTy(Ry) =
NTr(Rr). Furthermore, s(Rb) = s(Ry). Assume that A has even coordinates. The
difference s(Rr)−s(Ry) is equal to A(P )−E(P ). Thus, s(Rr) = s(Ry). We obtain
that each of the tropical curves Tb, Ty, and Tr satisfies the sign condition if and only
if one of these tropical curves satisfies the sign condition.

Case shown on Figure 15(b). One has NTb(Rb) = NTy(Ry) = NTr(Rr) − 1.
Furthermore, s(Rb) = s(Ry). The difference s(Rr)− s(Ry) is equal modulo 2 to(

H5 +H6 +
l1
2
− 1 +

l3 − 1

2
− A(P ) + 2S6

4

)
− Eδ.

One has H5 = E5.

Lemma 4.22 Let ∇ ⊂ R2 be a lattice triangle with two odd edges. Assume that the
endpoints of the even edge of ∇ have the same parity as primitive integer vectors of
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Figure 15: Even and odd edges in trifurcation
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the odd edges of ∇; denote this parity by (β, α). Let a be the integer length of the

even edge e(∇) of ∇. Put Ã(∇) = A(∇) if a primitive integer vector of the even

edge of ∇ has parity (β, α), and put Ã(∇) = A(∇) + a/2 otherwise. Then,

H(∇) = E(∇) +
P(∇) + Ã(∇)

2
+ 1 mod 2,

where H(∇) is the Harnack number of ∇ and E(∇) is the number of integer points
with even coordinates that are contained in the interior of ∇.

Proof. Consider the sublattice of Z2 ⊂ R2 (of index 2) formed by the vectors
with even coordinates and the vectors with coordinates of parity (β, α). In both
cases, the required equality follows from Pick’s formula applied to the triangle ∇ in
the sublattice considered. 2

In the setting of Lemma 4.22, we call Ã(∇) the corrected Euclidean area of ∇.

Lemma 4.23 Let ρ ⊂ R2 be a lattice parallelogram with two even sides and two odd
sides. Assume that the endpoints of one of even sides of ρ have even coordinates;
denote this side by σ and its integer length by a. Remove from ρ two neighbouring
sides, and denote by E the number of integer points with even coordinates contained
in the remaining figure. If a primitive integer vector of σ has the same parity as
primitive vectors of odd sides of ρ, then,

E =
A(ρ)

4
.

Otherwise,

E =
A(ρ)− a

4
if the side σ was removed, and

E =
A(ρ) + a

4
,

if the side opposite to σ was removed.

Proof. Denote by (β, α) the parity of primitive integer vectors of odd sides of
ρ. Consider again the sublattice of Z2 ⊂ R2 (of index 2) formed by the vectors
with even coordinates and the vectors with coordinates of parity (β, α). All the
statements of the lemma follow from the following observation (applied to ρ in the
sublattice considered): the half of the lattice area of a lattice parallelogram is equal
to the number of lattice points of the parallelogram that do not belong to two given
neighbouring sides. 2

Using Lemma 4.22, one can rewrite the expression modulo 2 for s(Rr) − s(Ry)
in the following form:

E5 + E6 +
l5 − 1

2
+
S̃6

2
+ 1− A(P ) + 2S6

4
− Eδ.
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where S̃6 is the corrected Euclidean area of the triangle CDG. Now, using Lemma
4.23, we rewrite this expression modulo 2 as

E5 + E6 +
l5 − 1

2
+ 1 + E− Eδ,

where E is the number of integer points having even coordinates and belonging
to the complement in P of the sides AB et AD. The resulting expression is 1.
Thus, w(Ry) = −w(Rr). We obtain that each of the tropical curves Tb, Ty, and
Tr satisfies the sign condition if and only if one of these tropical curves satisfies the
sign condition.

Case shown on Figure 15(c). One has NTb(Rb) = NTy(Ry) = NTr(Rr) − 2.
Furthermore, s(Rb) = s(Ry). Assume that B has even coordinates. The difference
s(Rr)− s(Ry) is equal modulo 2 to(
E5 + E6 +

l1 − 1

2
+
l2 − 1

2
+
l3
2
− 1 +

l4
2
− 1 +

l5 − 1

2
− A(P ) + 2S5 + 2S6

4

)
− Eδ

= E5 + E6 +
l1 − 1

2
+
l2 − 1

2
+
l3
2
− 1 +

l4
2
− 1 +

l5 − 1

2
− S4

2
− Eδ.

Using Pick’s formula, the latter expression for s(Rr) − s(Ry) can be rewritten in
the following form:

Eint(P ) +
l6
2

+ 1.

To show that s(Rr)− s(Ry) is even, it remains to apply the following lemma.

Lemma 4.24 Let ρ ⊂ R2 be a lattice parallelogram whose sides are either all even,
or all odd. Assume that some vertices of ρ have even coordinates. Let d be the length
of one of the diagonals of ρ if all sides of ρ are even, and let d be the length of the
diagonal with even endpoints if all sides of ρ are odd. Let Eint(ρ) be the number of
integer points having even coordinates and belonging to the interior of ρ. Then, the
numbers Eint(ρ) and d/2− 1 have the same parity.

Proof. The statement follows from the fact that, for every integer point j with
even coordinates in the interior of ρ, the point symmetric to j with respect to the
center of ρ also has even coordinates. 2

Thus, w(Ry) = w(Rr). We obtain that each of the tropical curves Tb, Ty, and
Tr satisfies the sign condition if and only if one of these tropical curves satisfies the
sign condition.

Case shown on Figure 15(d). This case is completely similar to the one shown
on Figure 15(b).

Case shown on Figure 15(e). One has NTb(Rb) = NTy(Ry) = NTr(Rr).
Furthermore, s(Rb) = s(Ry). Assume that A has even coordinates. The difference
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s(Rr)− s(Ry) is equal modulo 2 to(
E5 + E6 +

l5 − 1

2
− A(P )

4

)
− Eδ.

The number E(P ) is equal to A(P )/4. Thus, s(Rr)− s(Ry) is even and w(Ry) =
w(Rr). We obtain that each of the tropical curves Tb, Ty, and Tr satisfies the sign
condition if and only if one of these tropical curves satisfies the sign condition.

Case shown on Figure 15(f). One has NTb(Rb) = NTy(Ry) = NTr(Rr) + 1.
Assume that B has even coordinates. The difference s(Rr)− s(Rb) is equal modulo
2 to (

E5 + E6 +
l5
2
− 1 +

l2
2
− 1 +

l3 − 1

2
− A(P )

4

)
−
(
E1 +H2 −

S2

2

)
.

Using Lemma 4.22, the latter expression can be rewritten modulo 2 as follows:(
E(P ) +

l2
2
− 1 +

l3 − 1

2
− A(P )

4

)
−

(
l7 − 1

2
+
P2

2
+
S̃2

2
− 1− S2

2

)
,

where P2 (respectively, S̃2) is the lattice perimeter (respectively, the corrected Eu-
clidean area) of the triangle ACD. If a primitive integer vector of AD has the same
parity as a primitive vector of AB, then Lemma 4.23 implies that E(P ) = A(P )/4

and S̃2 = S2. Otherwise, Lemma 4.23 implies that E(P ) = A(P )/4 + l2/4 and

S̃2 = S2 + l2/2. Thus, in any case, the difference s(Rr)− s(Rb) is equal to 1 modulo
2, i.e., w(Rr) = −w(Rb).

To prove that w(Rr) = −w(Ry), we proceed in a similar way. The difference
s(Rr)− s(Ry) is equal modulo 2 to(

E5 + E6 +
l5
2
− 1 +

l1 − 1

2
+
l2
2
− 1− A(P )

4

)
−
(
E4 +H3 −

S3

2

)
.

Using Lemma 4.22, the latter expression can be rewritten modulo 2 as follows:(
E(P ) +

l1 − 1

2
+
l2
2
− 1− A(P )

4

)
−

(
l6 − 1

2
+
P3

2
+
S̃3

2
− 1− S3

2

)
,

where P3 (respectively, S̃3) is the lattice perimeter (respectively, the corrected Eu-
clidean area) of the triangle ABD. If a primitive integer vector of AD has the

same parity as a primitive vector of AB, then S̃3 = S3. Otherwise, one has
S̃3 = S2 + l3/2. Thus, in any case, the difference s(Rr) − s(Ry) is equal to 1
modulo 2, i.e., w(Rr) = −w(Ry).

We obtain that each of the tropical curves Tb, Ty, and Tr satisfies the sign condi-
tion if and only if one of these tropical curves satisfies the sign condition.
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Figure 16: Trapezoid case

Case shown on Figure 15(g). This case is completely similar to the one shown
on Figure 15(f).

It remains to consider the case where, among the four edges of T0 that are adjacent
to v, there exist an odd edge and an even edge that are parallel. Assume, first, that
the directions of these two edges (oriented from v) are opposite. In such a situation,
the polygon dual to v (in the dual subdivision of T0) is a trapezoid (see Figure 16).
that can be considered as a degenerated version of the case shown on Figure 15(c) or
Figure 15(e), so the arguments presented above (either in the case shown on Figure
15(c), or in the case shown on Figure 15(e)) and concerning the tropical curves Tb
and Ty apply.

Assume that the directions of two parallel edges coincide; denote these edges by
e and e′. In such a situation, the polygon dual to v is a triangle; denote it by δ.
Denote the vertices of δ by A, B, and C so that BC is the side orthogonal to the
directions of e and e′. There are two combinatorial types of simple elliptic plane
tropical curves appearing in the trifurcation; they are represented by T1 and T2. In
T1, the vertex v of T0 is replaced with two vertices, denoted by u1 et u′1. Similarly,
in T2, the vertex v of T0 is replaced with two vertices, denoted by u2 and u′2. There
is a natural bijection between the vertices of T1 that are different from u1 and u′1
(respectively, the edges of T1 that are not adjacent to u1 and u′1) and the vertices
of T2 that are different from u2 and u′2 (respectively, the edges of T2 that are not
adjacent to u2 and u′2). Choose orientations of the cycles of T1 and T2 coherently,
i.e., so that the bijection mentioned above preserves the orientation. Let R1 and
R2 be the orientation kits of T1 and T2, respectively, such that the orientations of
all even triangles are positive and the orientation of each odd triangle is induced by
the chosen orientation of the cycle. Then, the bijection preserves the contributions
of vertices and edges to the Welschinger signs of the orientation kits R1 and R2.

For T1, the triangle δ is subdivided by the segment AN1 (into two triangles dual
to u1 and u′1, respectively); for T2, the triangle δ is subdivided by the segment AN2

(into two triangles dual to u2 and u′2, respectively); see Figure 17. Assume that the
point A has even coordinates, and denote by Eδ the number of integer points having
even coordinates and contained in the interior of δ.

Assume that the point N1 does not belong to the interior of the segment BN2

(otherwise, we can inverse the numeration of T1 and T2). Denote by S1 (respectively,
S2, S3, S4) the Euclidean area of the triangle AN1C (respectively, ABN1, ABN2,
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Figure 18: Even and odd edges in the triangle case

AN2C), and denote by l1 (respectively, l2, l3, l4, l5, l6) the lattice length of the
segment AB (respectively, AC, CN2, BN2, AN2, AN1); see Figure 17. The lattice
length of the segment BN1 is equal to l3 and the lattice length of the segment CN1

is equal to l4. For every integer 1 ≤ i ≤ 4, denote by Hi the Harnack number of the
triangle whose area is denoted by Si, and denote by Ei the number of integer points
having even coordinates and contained in the interior of this triangle.

Consider two cases: l4 is odd (see Figure 18(a)) and l4 is even (see Figure 18(b)).
The arrows show the chosen orientation of the cycle and the induced orientations of
odd triangles.

Case shown on Figure 18(a). One has NT1(R1) = NT2(R2)+1. The difference
s(R2)− s(R1) is equal modulo 2 to

Eδ −
(
H1 + E2 +

l1 − 1

2
− 1 +

l3
2
− 1− S1

2

)
.

Using Lemma 4.22, the latter expression can be rewritten modulo 2 as follows:

l6 − 1

2
+
P1

2
+
S̃1

2
+ 1 +

l1 − 1

2
− 1 +

l3
2
− 1− S1

2
,

78



where P1 (respectively, S̃1) is the lattice perimeter (respectively, the corrected Eu-
clidean area) of the triangle ABN1. Since primitive integer vectors of BN1 and CN1

coincide, one has S̃1 = S1. Thus, the difference s(R2)−s(R1) is equal to 1 modulo 2,
i.e., w(R2) = −w(R1). We conclude that, in this case, each of the tropical curves T1

and T2 satisfies the sign condition if and only if one of these tropical curves satisfies
the sign condition.

Case shown on Figure 18(b). The proof in this case is similar to the one
presented above. One has NT1(R1) = NT2(R2)− 1. The difference s(R2)− s(R1) is
equal modulo 2 to (

H3 + E4 +
l1 − 1

2
+
l4
2
− 1− S3

2

)
− Eδ.

Using Lemma 4.22, the latter expression can be rewritten modulo 2 as follows:

l5 − 1

2
+
P3

2
+
S̃3

2
+ 1 +

l1 − 1

2
+
l4
2
− 1− S3

2
,

where P3 (respectively, S̃3) is the lattice perimeter (respectively, the corrected Eu-
clidean area) of the triangle ABN2. Since primitive integer vectors of BN2 and CN2

coincide, one has S̃3 = S3. Thus, the difference s(R2)− s(R1) is equal to 1 modulo
2, i.e., w(R2) = −w(R1). We conclude that each of the tropical curves T1 and T2

satisfies the sign condition if and only if one of these tropical curves satisfies the
sign condition.

This finishes the list of cases to treat in the proof of Theorem 4.21. 2

4.3 Proof of Theorem 4.13

We start with two lemmas.

Lemma 4.25 Let T be a simple elliptic plane tropical curve of parity (α, β). As-
sume that a partial rectification of T is a simple elliptic plane tropical curve (of parity
(α, β)). Then, T satisfies the sign condition if and only if this partial rectification
of T satisfies the sign condition.

Proof. Let (Γ, h) represents T , and let v be an even vertex of Γ such that v is
connected by edges to two one-valent vertices v1 and v2 and a vertex u of valency
bigger than 1. Denote by T ′′ the partial rectification of T at v, and assume that T ′′

is simple. Denote by ∆ (respectively, ∆′′) the degree of T (respectively, T ′′).

Choose an orientation kit R ∈ OK(T ) such that v and u are oriented positively,
and restrict R to an orientation kit R′′ of T ′′ (forgetting the orientation of v). One
has NT (R) = NT ′′(R′′). Furthermore,

s(R)− s(R′′) =
A(∆)−A(∆′′)

2
− P(∆)− P(∆′′) + κ(R)− κ(R′′)

4
+ζeven,com(T )− ζeven,com(T ′′) + τbound(R)− τbound(R′′).
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Figure 19: 3-leg broken line

The differenceA(∆)−A(∆′′) is an integer divisible by 4, since this number, increased
by the lattice area of the even triangle δ dual to v, can be represented as a difference
of the tropical intersections of T with two tropical curves of even degrees. The
difference P(∆) − P(∆′′) is equal to the lattice perimeter P(δ) of δ diminished by
twice the weight wt(e) of the edge e connecting v and u, and κ(R)− κ(R′′) is equal
to the Euclidean area A(δ) of δ. The difference ζeven,com(T )− ζeven,com(T ′′) coincides
with the Harnack number H(δ) of δ, and τbound(R)− τbound(R′′) coincides with the
content wt(e)/2− 1 of e. Thus, the statement follows from Lemma 4.8. 2

Lemma 4.26 Let A0, A1, A2, A3 be four pairwise distinct points in R2 such that the

vectors
−−−→
A1A2 and

−−−→
A0A3 are not collinear and none of the points A0 and A3 belongs

to the interior of a segment of the broken line A0 −A1 −A2 −A3. Put ai =
−−−−→
AiAi+1

for each i = 0, 1, 2, and put a =
−−−→
A0A3; see Figure 19(a). Then, there exists two

distinct elements i, j ∈ {0, 1, 2} and two positive real numbers λi and λj such that
a = λiai + λjaj.

Proof. The set

{(λ′1, λ′2, λ′3) ∈ (R≥0)3 | a = λ′0a0 + λ′1a1 + λ′2a2}

is a convex polyhedron (either of dimension 2, or of dimension 1) with non-empty
boundary. Let p = (λ′0, λ

′
1, λ
′
2) be a point belonging to the boundary of this convex

polyhedron. At least one of the coordinates of p is zero. If such a coordinate
is unique, we obtain the statement required. If p has two zero coordinates, then
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Figure 20: Contracting an odd edge

λ′1 = 0 (since the vectors
−−−→
A1A2 and

−−−→
A0A3 are not collinear), and, without loss of

generality, we can assume that λ′2 = 0. Then, a = γa0, where γ > 1 (since A3

does not belong to the segment [A0A1]); see Figure 19(b). In this case, there exist
positive real numbers λ1 and λ2 such that a = λ1a1 + λ2a2. 2

Let T be a simple elliptic plane tropical curve of parity (α, β) represented by a
marked parameterized plane tropical curve (Γ, h,ptr), and let e be a bounded edge
of Γ. We say that e can be contracted if, continuously moving the images of points
of ptr and modifying accordingly (Γ, h,ptr), one can contract the edge e without
contracting other edges of Γ.

Proof of Theorem 4.13. Let T ∈ Tα,β({La}a∈∆, x0) be a tropical curve, and
denote by m the number of edges of the cycle c of T . Assume that m ≥ 4 and
that T is not parallelogramic. Slightly moving {La}a∈∆ and x0 to be able to apply
Lemma 4.25, we can assume that all even edges of T are unbounded.

Choose a representative (Γ, h,ptr) of T and an orientation of the cycle c. Moving
appropriately the configuration {La}a∈∆ and x0, it is possible to contract one of the
edges of c. Indeed, if n ≥ 5, we can choose four consecutive vertices of c, denote them
(respecting the order) by A0, A1, A2, and A3, and slightly moving the configuration

{La}a∈∆ ensure that the vectors
−−−→
A1A2 and

−−−→
A0A3 are not colinear in order to be able

to apply Lemma 4.26. If n = 4, since T is not parallelogramic, we can also choose
four consecutive vertices of c in order to apply Lemma 4.26.

Denote by e an edge of the cycle c such that e can be contracted, and denote by
p1 and p2 its endpoints. Denote by eeven

1 (respectively, eeven
2 ) the even edge adjacent

to p1 (respectively, p2), and denote by eodd
1 (respectively, eodd

2 ) the odd edge adjacent
to p1 (respectively, p2) and different from e. Denote by p0 the vertex adjacent to
eodd

1 and different from p1, and denote by eeven
0 (respectively, eodd

0 ) the even edge
adjacent to p0 (respectively, the odd edge adjacent to p0 and different from eodd

1 );
see Figure 20.

If the images under h of eeven
1 and eeven

2 are not parallel and the images under h
of eodd

1 and eodd
2 are not parallel, then the contraction of e leads to a non-degenerate

trifurcation containing a simple elliptic plane tropical curve whose cycle has n − 1
edges.

81



Assume that either the images under h of eeven
1 and eeven

2 are parallel, or the
images under h of eodd

1 and eodd
2 are parallel. In this case, we replace T with another

simple elliptic plane tropical curve Tcorr with the following properties:

• T and Tcorr have the same parity;

• the cycle ccorr is sufficiently close to c: there is a bijection B between the edges
of c and the edges of ccorr such that B sends each edge different from eodd

0 and
eodd

1 to itself, sends eodd
0 to an edge contained in the same line, and sends eodd

1

to an edge having a slope sufficiently close to that of eodd
1 (but different from

the slope of eodd
1 );

• the edge B(e) can be contracted;

• the even edges adjacent to the extremal points of B(e) are not parallel, and
the odd edges adjacent to the extremal points of B(e) are not parallel,

• T satisfies the sign condition if and only if Tcorr satisfies the sign condition.

The procedure to obtain such a tropical curve Tcorr is as follows. First, we con-
struct a particular simple elliptic plane tropical curve T1 whose rectification is T .
Choose a point r0 in the interior of eeven

0 . This point divides eeven
0 into two segments;

the segment adjacent to p0 is now considered as an edge and the other one is replaced
with two edges f even

0 and geven
0 connecting r0 to two new one-valent vertices of the

new graph Γ1 (the other edges of Γ are kept in Γ1). The map h1 coincides with h
on Γ \ eeven

0 and on the segment connecting p0 and r0; in addition, h1 is chosen in
such a way that the balancing condition at r0 is satisfied, the edges f even

0 and geven
0

are even and the direction of one of them (oriented from r0) is sufficiently close to
the direction of eodd

1 (oriented from p0 to p1); see Figure 21.

The second step is the contraction of the edge connecting p0 and r0 (moving the
images of the one-valent vertices of f even

0 and geven
0 ). It gives rise to a non-degenerate

trifurcation containing a simple elliptic plane tropical curve T2 whose cycle c2 has
m+ 1 edges and the same number of self-intersections as c; see Figure 21.

Finally, in T2, the odd edge that is a small modification of eeven
1 can be con-

tracted. It gives rise to a non-degenerate trifurcation containing a simple elliptic
plane tropical curve Tcorr whose cycle ccorr has n edges; see Figure 21. The fact that
the resulting tropical curve Tcorr satisfies all the desired properties follows from the
construction, Lemma 4.25 and Theorem 4.21.

Once we obtained such a tropical curve Tcorr, the contraction of B(e) leads to a
non-degenerate trifurcation containing a simple elliptic plane tropical curve whose
cycle has m− 1 edges. It remains to apply Theorem 4.21 and Corollary4.20. 2
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Figure 21: Deparallelization

4.4 Refined tropical multiplicity and tropical calculation of
refined elliptic invariants

Fix an even non-degenerate balanced multi-set ∆ and a couple (α, β) ∈ (Z/2Z)2 \
{(0, 0)} satisfying the admissibility condition. Choose in a generic way a tropical ∆-
constraint {La}a∈∆ satisfying the tropical Menelaus condition and a point x0 ∈ R2.
Consider a tropical curve T ∈ Tα,β({La}a∈∆, x0).

Define the refined tropical multiplicity µT (q) of T as the sum µT (q) =∑
R∈OK(T ) w(R)qκ(R) (here, q is a formal variable). Notice that the refined trop-

ically multiplicity µT (q) is determined by the combinatorial type of T , so we can
speak about the refined tropical multiplicity of such a combinatorial type.

Let R be an orientation kit of T such that all even vertices and all odd mobile
vertices of T are oriented positively. Denote by R the orientation kit obtained from
R by reversing local orientations of all non-mobile odd vertices. Denote by AT (R)
(respectively, AT (R)) the signed Euclidean area of non-mobile odd triangles in R
(respectively, R), that is, the difference between the total Euclidean area of positive
triangles under consideration and the total Euclidean area of negative triangles.

The following statement is an immediate corollary of Theorem 4.13.

Corollary 4.27 The refined multiplicity µT (q) of T is equal to

((−1)n(R)qAT (R) + (−1)n(R)qAT (R))
∏

δ∈Even(T )

(qA(δ) − q−A(δ))
∏

δ∈Oddm(T )

(qA(δ) − q−A(δ)),

where n(R) and n(R) are the numbers of negative non-mobile odd triangles in R
and R, respectively, Even(T ) and Oddm(T ) are the collections of even triangles and
odd mobile triangles of T , respectively, and A(δ), as always, stands for the Euclidean
area of δ. 2
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A tropical calculation of the refined elliptic invariants introduced in Section 2.3
is provided by the following theorem.

Theorem 4.28 In the setting of Section 4.1.4, one has

G1(∆, (α, β)) =
∑

T∈Tα,β({La}a∈∆,x0)

µT (q),

where the refined tropical multiplicity µT (q) of T is equal to

((−1)nT (R)qAT (R) +(−1)nT (R)qAT (R))
∏

δ∈Even(T )

(qA(δ)−q−A(δ))
∏

δ∈Oddm(T )

(qA(δ)−q−A(δ)).

Proof. The statement follows from Theorem 4.12 and Corollary 4.27. 2

Proof of Theorem 2.13. Theorem 4.28 and Proposition 4.5 imply that, if the
difference A(∆)− κ is not an integer divisible by 4, then W κ

1 (∆, (α, β)) = 0. 2

Remark 4.29 An analogue of Theorem 4.28 for genus zero holds too, and it can be
viewed as a generalization of Mikhalkin’s theorem [22, Theorem 5.9] to the case of ar-
bitrary even intersections with the toric divisors. The precise statement is as follows.
Let ∆ be an arbitrary even toric degree, {La}a∈∆ a generic tropical ∆-constraint sat-
isfying the tropical Menelaus condition. Denote by T0({La}a∈∆) the set of rational
tropical curves of degree ∆ matching the tropical constraints {La}a∈∆. This set is
finite, consists of rational plane tropical curves whose edges have even weights and
whose dual subdivision is formed by triangles and parallelograms (parallelograms are
not necessarily present in the subdivision). Define the refined multiplicity of any
T ∈ T0({La}a∈∆) to be

µT (q) =
∏
δ

(qA(δ) − q−A(δ)), (35)

where δ ranges aver all triangles in the subdivision Σ(T ). Then,

G0(∆) =
∑

T∈T0({La}a∈∆)

µT (q). (36)

The proof is a simplified version of the proof of Theorem 4.28 in the absence of odd
vertices of the considered tropical curves. As a corollary, we obtain Theorem 2.8.

Since the tropical refined multiplicities µT (q) for rational curves are numerators of
Block-Göttsche polynomilas associated to these tropical curves (see [2]), one obtains,
as another corollary, that, after an appropriate renormalization of G0(∆), the value
at q = 1 corresponds to the number of complex solutions in the enumerative problem
considered (cf. [22]). Unfortunately, we do not know such a connection to the
number of complex solutions in the elliptic case.
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4.5 Semi-local invariance

If the multiset ∆ and the couple (α, β) satisfy the admissibility condition, Theorems
2.11 and 4.28 imply that the Laurent polynomial

∑
T∈Tα,β({La}a∈∆,x0) µT (q), where

((−1)nT (R)qAT (R) +(−1)nT (R)qAT (R))
∏

δ∈Even(T )

(qA(δ)−q−A(δ))
∏

δ∈Oddm(T )

(qA(δ)−q−A(δ)),

does not depend on the choice of generic extended tropical constraint ({La}a∈∆, x0).
This tropical invariance statement admits also a different proof that does not use
the correspondence theorem: one can prove the statement combinatorially following
the tropical approach developed in [8] (and used, for example, in [14] and [17]).
The combinatorial proof allows one to generalize the tropical invariance statement,
namely, to adapt and to extend the statement to the situation where the admissi-
bility condition on ∆ and (α, β) is not satisfied. The approach suggests to prove
local tropical invariance of the quantities considered, that is, the invariance for each
possible trifurcation and for a 2-four-valent-vertices bifurcation, the latter being a
neighbourhood in a generic deformation of a plane tropical curve having exactly two
four-valent vertices (all other vertices of the tropical curve being 3-valent) connected
by exactly two edges. Contrary to the situations described in [8], [14], and [17], in
our case the approach requires a small correction.

For any trifurcation, the combinatorial types of simple elliptic plane tropical
curves appearing in the trifurcation are naturally divided into two groups: combina-
torial types of the same group can be represented by tropical curves satisfying same
tropical constraints. These groups are called the sides of the trifurcation. Each of
the groups contains at most two combinatorial types (and at least one of the groups
is formed by one combinatorial type). Denote by µ+(q) the sum of refined tropical
multiplicities of the combinatorial types of one group and denote by µ−(q) the sum
of refined tropical multiplicities of the combinatorial types of the other group.

We say that a trifurcation is solitary if

• the trifurcation is non-degenerate,

• or the polygon dual to the four-valent vertex of the central curve is a parallel-
ogram,

• or the central curve contains two unbounded edges adjacent to the four-valent
vertex that have the same direction (but not necessarily the same weights).

For any solitary trifurcation, one can prove the equality µ+(q) = µ−(q) using the
arguments similar to those used in the proof of Theorem 4.21 (taking into account
the sides of the trifurcation and the quantum indices of the tropical curves under
consideration). For any 2-four-valent-vertices bifurcation, there are also two sides;
each of them contains one combinatorial type of simple elliptic plane tropical curves,
and the refined tropical multiplicities of these combinatorial types coincide.

For a non-solitary trifurcation, the equality µ+(q) = µ−(q) is not valid in gen-
eral. However, non-solitary trifurcations appearing in a generic path in the space
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of tropical constraints can be paired. Namely, consider a non-solitary trifurcation
such that its central curve T0 contains two parallel edges adjacent to the four-valent
vertex and having opposite directions (and different weights). Then, there exists a
unique non-solitary trifurcation such that its central curve T ′0 contains two parallel
edges adjacent to the four-valent vertex and having the same direction (at least
one of these edges being bounded), and the images of T0 and T ′0 in R2 coincide
as sets. An example of such central curves is shown on Figures 22(a) and (b).
This operation establishes a bijection between the set of non-solitary trifurcations
whose central curve contains two parallel edges adjacent to the four-valent vertex
and having opposite directions and the set of non-solitary trifurcations whose cen-
tral curve contains two parallel edges adjacent to the four-valent vertex and having
same direction. Trifurcations related via this bijection are said to be paired.

Paired trifurcations can be treated together: the sides of one of them are naturally
identified with the sides of the other. One can check that the differences µ+(q) −
µ−(q) for paired trifurcations sum up to 0. This phenomenon of semi-local tropical
invariance, together with the local tropical invariance for the solitary trifurcations
and 2-four-valent-vertices bifurcations lead to a combinatorial tropical proof of the
invariance of

∑
T∈Tα,β({La}a∈∆,x0) µT (q). We omit the details of this proof.

5 Computation of refined elliptic invariants

5.1 Algorithm

In this section, we provide a finite algorithm to compute the refined elliptic invariants
G1(∆, (α, β)) via the tropical formula in Theorem 4.28. It follows the ideas of [3].

5.1.1 Cycle procedure

Let us be given the following data:

• a positive integer r and a sequence of vectors a1, . . . ,ar ∈ Z2 \ {(0, 0)} which
sum up to zero;

• a sequence of signs ε1, . . . , εr ∈ {±1};
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Figure 23: Cycle procedure

• a tropical constraint La1 , ..., Lar ⊂ R2 which is in general position subject to
the tropical Menelaus condition (where the collection a1, . . . ,ar is considered
as degree; cf. Definition 4.1);

• a vector b ∈ Z2 \ {(0, 0)} such that (b −
∑i

j=1 aj) ∧ ai+1 6= 0 for all i =
0, . . . , r − 1;

• a generic point x0 ∈ R2 \
⋃r
i=1 Lai such that the line L through x0 parallel to

b and x0 belongs to the segment cut off on L by La1 , Lar .

The cycle procedure goes as follows.

• In the first step, we consider the ray R(x0, b) emanating from the point x0 in
the direction of vector b. If either R(x0, b) ∩ La1 = ∅, or ε1(b ∧ a1) < 0, we
stop the procedure. Otherwise, we set x1 = R(x0, b) ∩ La1 and b1 = b− a1.

• Suppose we have xk ∈ Lak and bk = b −
∑k

j=1 aj, where 1 ≤ k < r. If
either R(xk, bk) ∩ Lak+1

= ∅, or εk+1(bk ∧ ak+1) < 0, we stop the procedure.
Otherwise, we set xk+1 = R(zk, bk) ∩ Lak+1

and bk+1 = bk − ak+1 (see Figure
23).

Lemma 5.1 Given the above data, suppose that the cycle procedure yields xr and
br = b. Then,

(1) x0 ∈ R(xr, b);

(2) there exists a simple elliptic plane tropical curve T , represented by (Γ, h), of
degree ∆ = {a1, ...,ar} and a point p ∈ Γ such that Γ consists of a cycle
formed by r bounded edges and of r ends, the map h sends

• the point p to x0,

• the bounded edges e1, . . . , er ∈ Γ1 to the segments [x1, x2], . . ., [xr−1, xr],
[xr, x1], respectively, so that the unit tangent vector to ek is taken to ±bk
for each k = 1, . . . , r,
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• and the ends e′1, . . . , e
′
r ∈ Γ1

∞ to the rays R(zi,ak), k = 1, . . . , r, respec-
tively, so that the unit tangent vector to e′k oriented towards the corre-
sponding one-valent vertex is taken to ak for each k = 1, . . . , r.

Proof. The union of the segments [x0, x1], [x1, x2], . . . , [xr−1, xr] together with
the rays R(x0,−b), R(xr, b), and R(xk,ak), i = k, . . . , r, can be seen as the image
of a (rational) parameterized plane tropical curve, for which the tropical Menelaus
condition (34) reads λb(x0)− λb(xr) = 0, whence the first claim. The second claim
is straightforward by construction. 2

5.1.2 Initial data

Fix an even non-degenerate balanced multiset ∆ ⊂ Z2\{(0, 0)} and a parity (α, β) ∈
(Z/2Z)2 \ {(0, 0)}. The other part of the initial data, namely, an extended tropical
∆-constraint ({La}a∈∆, x0), is now chosen in the following restrictive way.

Note that the tropical ∆-constraint {L0
a}a∈∆ consisting of lines through the origin

satisfies the tropical Menelaus condition (see Lemma 4.2). We assume that, for each
a ∈ ∆, the distance between La and L0

a is less than some ρ0 > 0 specified below,
and that {La}a∈∆ is in tropical general position subject to the tropical Menelaus
condition. Observe that, for each non-empty proper subset ∆′ ⊂ ∆ such that
c(∆′) :=

∑
a∈∆′ a 6= 0, there exists a unique oriented line Lc(∆′) directed by the

vector c(∆′) for which the sequence of the directed lines {L−c(∆′)}∪{La}a∈∆′ satisfies
the tropical Menelaus condition. The general position condition yields that Lc(∆′)
differs from the lines La, a ∈ ∆ \∆′, and from each of the lines Lc(∆′′), where ∆′′ is
a non-empty proper subset of ∆ and ∆′′ 6= ∆′.

Now we specify a value of ρ0 > 0 imposing the following requirements:

(r1) all intersection points of non-parallel lines in {La}a∈∆ ∪ {Lc(∆′)}∆′(∆,c(∆′)6=0

lie in the (open) unit disc D1 centered at the origin;

(r2) for any subset ∆′ ( ∆ such that c(∆′) 6= 0, all vertices of rational plane
tropical curves of degree ∆′ ∪ {−c(∆′)} whose ends are contained in the lines
Lc(∆′) and La, a ∈ ∆′, lie in the disc D1 (notice that there are finitely many
such tropical curves).

A choice of ρ0 > 0 is possible, since all the above intersection points and vertices
merge to the origin as ρ0 → 0.

Now we choose a component K of the complement in R2 \ D1 to the tubular
neighborhoods of size 1 of all the lines {L0

a}a∈∆ ∪ {L0
c(∆′)}∆′(∆,c(∆′)6=0. Then, intro-

duce the set V of all vectors b obtained from v1 − v2, where v1, v2 ∈ P∆ ∩ Z2, by
clockwise and counterclockwise rotation by π

2
so that

• they all have the given parity (α, β),
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• each line L ⊂ R2 \D1, parallel to a vector b ∈ V, has a bounded intersection
with K,

• b′∧b > 0 for any vector b′ ∈ R2 \{(0, 0)} such that R(0, b′)∩K is unbounded.

Let Z(K, ρ0,V) ⊂ K be the subset consisting of the points x0 ∈ K such that

• all the lines Lb, b ∈ V, passing through x, are disjoint from D1;

• for any arbitrarily ordered subset

{La1 , ..., Lar}, a1, ...ar ∈ ∆ ∪ {c(∆′)}∆′(∆,c(∆′) 6=0

such that a1 + ...+ar = 0, the cycle procedure starting with x0 ∈ Z(K, ρ0,V)
and an arbitrary vector b ∈ V yields only lines Lbk through xk, 1 ≤ k ≤ r,
which are disjoint from D1.

Lemma 5.2 One has Z(K, ρ0,V) 6= ∅.

Proof. If we shift the lines L1, ..., Lr so that they pass through the origin, the
rays resulting from the cycle procedure would never pass through the origin, since,
due to ∆ ⊂ (2Z)2 and V ∩ (2Z)2 = ∅, the vectors b −

∑k
i=1 ak, 0 ≤ k ≤ r, never

vanish. Then, we obtain a point in Z(K, ρ0,V) when taking a point x0 ∈ K and
shifting it in parallel to a side of K sufficiently far from the origin. 2

Fix a generic extended tropical ∆-constraint ({La}a∈∆, x0) such that {La}a∈∆

satisfies the above restrictions and x0 ∈ Z(K, ρ0,V).

5.1.3 Objects to count

Given the above initial data, we define a set of objects (H,D) to count as follows.

(i) Choose H to be a (possibly empty) set of pairwise disjoint, proper, nonempty
subsets of ∆ such that c(∆′) 6= 0 for each ∆′ ∈ H, and

⋃
∆′∈H ∆′ ( ∆.

(ii) Given such a set H, consider

• the multiset of vectors {c(∆′)}∆′∈H ∪
(
∆ \

⋃
∆′∈H ∆′

)
,

• the multiset of oriented lines {Lc(∆′)}∆′∈H ∪ {La}a∈∆\
⋃

∆′∈H ∆′ ,

• the collection of the signs

ε(c(∆′)) = −1, ∆′ ∈ H, ε(a) = 1, a ∈ ∆ \
⋃

∆′∈H

∆′ .

Let a1, ...,ar be all the above vectors, which are arranged in an arbitrary linear
order, and let L1, ..., Lr and ε1, ..., εr be the respectively ordered oriented lines
and signs.
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(iii) Pick a vector b ∈ V and perform the cycle procedure starting with the data

O :=
{
{ai}ri=1, {Li}ri=1, {εi}ri=1, x0, b

}
, (37)

where x0 ∈ Z(K, ρ0,V) is any chosen point.

We say that the data O is cyclic, if this cycle procedure results in a simple elliptic
plane tropical curve T (O) = (Γ, h) of degree ∆(O) = {a1, ...,ar}.

5.1.4 Refined multiplicities of the objects in count

We define the refined tropical multiplicity of (H,O) as follows:

µH,O(q) =
∏

∆′∈H

G0(∆̂′) · µT (O)(q) ,

where

• G0(∆̂′) is the refined rational invariant associated with the degree ∆̂′ =
{−c(∆′)} ∪∆′, see Definition 2.7;

• µT (O)(q) is the refined tropical multiplicity of the elliptic curve T (O) defined
by the second formula of Theorem 4.28 (notice, that, in our case, only the first
and the third factors are nontrivial).

Theorem 5.3 We have

G1(∆, (α, β)) =
∑
H,O

µH,O(q), (38)

where (H,O) ranges over all possible couples matching the fixed initial data and such
that D is cyclic.

Proof. (1) Each elliptic plane tropical curve T (O) gives rise to a collection
P(O) of elliptic plane tropical curves of degree ∆ matching the extended tropical
∆-constraint ({La}a∈∆, x0). Namely, for each ∆′ ∈ H, there is a finite set P0(∆′) of

rational plane tropical curves of degree ∆̂′, whose ends lie in the lines La, a ∈ ∆′,
and in the line L−c(∆′) (which is Li in the given data O for some 1 ≤ i ≤ r). By
construction, all the vertices of these curves lie in the disc D1. Since the cycle of
the curve T (O) is disjoint from D1, the vertex xi ∈ Li of T (O) lies inside the end
contained in Li of each curve T ∈ T0(∆′). It follows that we can replace the end
R(xi, c(∆

′)) of the curve T (O) with the fragment T \ R(xi,−c(∆′)) of any curve
T ∈ P0(∆′) so that the rest of T (O) is not affected (the operation is opposite to
partial rectification defined in Section 4.1.2).

Thus, in the right-hand side of (38) we count refined tropical multiplicities of all
elliptic tropical curves of degree ∆ that match the extended tropical ∆-constraint
({La}a∈∆, x0) and arise from the elliptic plane tropical curves of the form T (O) that
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are obtained from the couples (H,O) ranging over all possible couples matching the
fixed initial data and such that D is cyclic. It is also easy to see that all counted
elliptic plane tropical curves are pairwise different.

(2) It remains to show that we count all curves in T1(∆, {La}a∈∆, z), whose cycle
edges are directed by vectors of the given parity (α, β).

Pick a tropical curve T ∈ T1(∆, {La}a∈∆, z). The cycle c(T ) contains the point
x0. The complement to c(T ) in T consists of ends or fragments of rational curves
matching pairwise disjoint constraints {La}a∈∆′ for some ∆′ ( ∆ with c(∆′) 6= 0.
Denote by T ′ the rectification of T .

The edge of c(T ) containing x0 is dual to an integral segment inside P∆, whence
is directed by a vector b = (v1− v2)⊥, v1, v2 ∈ P∆ ∩Z2. Due to the choice of ρ0, the
complement Kρ0 to the ρ0-neighborhood of ∂K in K is disjoint from all lines La,
a ∈ ∆, and Lc(∆′), ∆′ ( ∆. Hence, the edge of c(T ) containing x0 has a bounded
intersection with Kρ0 , which also yields that the intersection with K is bounded.
Furthermore, by the definition of the set Z(K, ρ0,V), the lines through the edges of
c(T ) avoid the disc D1.

Number the vertices x1, . . . , xr of c(T ) as they occur when moving along the cycle
in the direction of b from the point x0. Since the ends of T ′ lie on the lines crossing
the ρ0-neighborhood of the origin, we inductively obtain that ~xk ∧ bk > 0 for all
k = 1, . . . , r, where ~xk is the radius-vector of the point xk, and bk = b−a1− . . .−ak
with ai being the directing vector of the end of T ′ emanating from the vertex xi.
It then follows that bk−1 ∧ ak < 0, if ak = c(∆′) with ∆ ( ∆ consisting of more
than one vector: indeed, in this situation, the end R(zk,ak) must cross the ρ0-
neighborhood of the origin. Summarizing the above remarks, we conclude that T
arises from some elliptic plane tropical curve T (O). 2

5.2 Examples

We present here two easy examples of explicite calculations of the invariant
G1(∆, (α, β));

5.2.1 Plane quartics

Consider the multi-set

∆ = {(−2, 0), (−2, 0), (0,−2), (0,−2), (2, 2), (2, 2)}

and the parity (0, 1) ∈ (Z/2Z)2. The corresponding enumerative problem consists
in counting real plane elliptic quartics that are quadratically tangent to each toric
divisor in two fixed points and pass through some point in the quadrant

{(x1, x2) ∈ R2 : x1 > 0, x2 < 0}.
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Figure 24: Counting tropical elliptic quartics

In the notation of the preceding section, all possible vectors c(∆′) 6= 0, ∆′ ( ∆,
belong to the set

±(2, 0), ±(0, 2), ±(2, 2), (2,−2), (4, 2), (2, 4) .

The union of the lines L0
a, a ∈ ∆, and L0

c(∆′), where ∆′ ( ∆ and c(∆′) 6= 0, and

the component K are shown in Figure 24(a). One can easily verify that the given
initial conditions only allow the cyclic data O with H = ∅ and b = (−2,−1), which
henceforth yields the unique elliptic plane tropical curve as shown in Figure 24(b)
(dual to the subdivision of the Newton triangle depicted in Figure 24(c)).

By Theorem 4.28 and formula (38), one has

G1(∆, (0, 1)) = (q2 − q−2)2(q4 + q−4) .

The result differs from the numerator of the corresponding Block-Göttsche refined
invariant, which here is equal to

3(q2 − q−2)2(q − q−1)4 .

This is in contrast to the refined count of real rational curves, where the invariant
G0(∆) coincides with the numerator of the Block-Göttsche invariant [22, Theorem
5.9].

5.2.2 Elliptic curves in the blown-up plane

Consider the multi-set

∆ = {(−2, 0), (0,−2), m× (2, 2), (m− 1)× (−2,−2)}

and the parity (0, 1). The corresponding enumerative problem consists in counting
real elliptic curves in Tor(P∆) that are quadratically tangent to toric divisors (the
number of tangency points on each toric divisor being equal to the half of the lattice
length of the corresponding edge of P∆; see Figure 25(a)) and pass through some
point in the quadrant

{(x1, x2) ∈ R2 : x1 > 0, x2 < 0}.
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Figure 25: Counting tropical elliptic curves in the blow-up plane

The tropical Bézout theorem [25, Section 4] yields that, for each counted elliptic
tropical curve, represented by (Γ, h,ptr), the restriction of h on the cycle c of Γ is
an embedding, and the projection of h(c) to a straight line with the normal vector
(1, 1) is a segment whose interior points have exactly two preimages in h(c). The
vertices V1 and V2 of h(c) that project to the segment endpoints are incident to the
ends directed by the vectors (−2, 0) and (0,−2), respectively. The only possible
sets ∆′ ∈ H are either {(2, 2)}, or {(−2,−2)}. The initial configuration of lines
L0
a, a ∈ ∆ or a = c(∆′), ∆′ ∈ H, is as shown in Figure 25(b), and the cycle is

shaped as shown in Figure 25(c). Pick the domain K as indicated in Figure 25(b)
and denote by C+ the right-upper half of the cycle such that C0 has endpoints
V1, V2 (see Figure 25(c)). Each end attached to an interior vertex of C+ is directed
by either (2, 2), or (−2,−2); denote the number of such ends directed by (2, 2)
(respectively, (−2,−2)) by s+ (respectively, s−). Put b = (−2k,−2l − 1), where
k ≥ 1 and l ≥ 0 are integers. Choose a generic extended tropical ∆-constraint
({La}a∈∆, x0) as described in Section 5.1.2. The cycle procedure applied to a couple
(H,O), matching the initial data, ends up with an elliptic plane tropical curve if
and only if

2 ≤ s+ ≤ m, 0 ≤ s− ≤ s+ − 2, 1 ≤ k = l ≤ s+ − s− − 1 . (39)

So, whenever we fix k, and pick s+ lines La with a = (2, 2) and s− lines La with
a = (−2,−2), all these data subject to restrictions (39), we obtain an elliptic plane
tropical curve, whose refined tropical multiplicity equals

(−1)m−s++s−(q2k − q−2k)(q4s+−4s−−2k−2 + q−4s++4s−+2k+2) ,

and, hence,

G1(∆, (0, 1)) =
m∑

s+=2

s+−2∑
s−=0

s+−s−−1∑
k=1

[(
m

s+

)(
m− 1

s−

)
(−1)m−s++s−

×(q2k − q−2k)(q4s+−4s−−2k−2 + q−4s++4s−+2k+2)

]
.
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