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Introduction by the Organizers

This workshop was fostering the investigation of certain classes of geophysical
models by models stemming from analysis, computation, stochastics and modeling.
The complexity of fluid models taking into account geophysical considerations
showed the need for reliable reduced models.

The mathematical investigation of geophysical flows involves many modern tech-
niques from analysis, stochastics and computation. Of special interest are local
and global well-posedness properties of the associated systems of equations, such
as the primitive equations and boundary layers, their rigorous justification, the
development of numerical and computational schemes, the incorporation of sto-
chastic forces and stochastic boundary conditions as well as non-uniqueness results
by convex integration. A new development in this context is the rigorous mathe-
matical understanding of various sea-ice models. The complexity of these models
requires new analytical and computational methods. A particular challenge is the
investigation of coupled atmosphere-sea ice-ocean models.
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Models from moist atmospheric dynamics including phase transitions also ask
for new analytical and computational tools in order to treat fast time saturation
effects.

A main characteristic of this workshop was bringing together leading experts
form diverse scientific backgrounds such as analysis, modeling, numerics and com-
putations, stochastic analysis and convex integration. The meeting ignited lively
discussions and exchange of ideas. The presence of early career participants and
gender diversity was very visible during the meeting. The workshop also aimed
to encourage early career participants to play an important role in this area of
research.

The lectures presented took 40 minutes which were followed by lively and in-
teractive discussions for about 15 minutes.

All together, the workshop brought together an excellent mixture of various
communities and several leaders from different disciplines met in person for the
first time. Evening sessions attracted special attention, where graduate students
as well as postdoctoral fellows gave excellent presentations about their research
work. We are convinced that the scientific exchange between the participants will
lead to many exciting new developments and collaborations.
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Abstracts

The effect of concavity on the stability of boundary layer flows

David Gerard-Varet

(joint work with S. Iyer, Y. Maekawa, N. Masmoudi)

We investigate the role of concavity in three stability problems related to boundary
layer flows:

• the stability of Prandtl expansions in 2D Navier-Stokes
• the well-posedness of hydrostatic Navier-Stokes equations
• the well-posedness of the triple deck model

On one hand, it is well-known that in the absence of further structural assumptions,
positive results (stability, local well-posedness) are only possible in the analytic
framework. On the other hand, in the absence of diffusion, concavity allows for
Sobolev stability. We show that when considering both diffusion and concavity,
one can obtain results in the intermediate Gevrey setting.

Reduced models for tropical climate dynamics: Influence of the

tropics on extra-tropics

Boualem Khouider

(joint work with H. Shin)

The tropics receive the majority of Earth’s solar energy intake at its surface. To
maintain a balanced climate state this energy is transported poleward through
various atmospheric and oceanic patterns. The complexity of tropical climate
dynamics however, which harbours a wide spectrum of waves and vortices, hin-
ders the clear understanding of the complex interactions between the tropics and
extra-tropics and limits weather and climate predictability. In my talk, I show-
case via the use of basic examples how simple mathematical models of reduced
dynamics can help shed light on some of such interactions. In particular, when
the hydrostatic primitive equations, that govern the planetary atmospheric flow
are projected onto the barotropic, and first baroclinic modes of vertical structure,
a coupled set of two systems of PDE’s, representing the two modes emerges. The
two systems are two-way coupled to each other through non-linear cross advec-
tion terms that allow them to exchange kinetic energy. The barotropic system
which in effect reduces to the 2d incompressible Euler equations is transparent to
thermal perturbations while the baroclinic mode is fully coupled to the tempera-
ture/energy equation. When taken separately, the barotropic mode equations have
the vortical-type planetary Rossby waves as their exact/fundamental solutions
while the barolinic mode equations harbour an infinite spectrum of equatorially
trapped waves including the Kelvin, the mixed Rossby-gravity, and the inertia-
gravity waves. The barotropic Rossby waves propagate westward and poleward
and as such they can transport energy from the tropical to the extra-tropics while
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the equatorially trapped waves remain in the vicinity of the tropics and propagate
in both the eastward and westward directions along the equator. As it has been
amply demonstrated (through both satellite observations and climate models), the
equatorially trapped waves are the main modes through which the tropical atmo-
sphere responds to both sensible and latent heating from clouds and convection in
the tropics. As a proof of concept, it is demonstrated here, through numerical ex-
periments, that when the barotropic equations are taken alone as a forced system,
forced by freely-moving equatorial waves (which is of course a severe simplification,
as the feedback onto those waves is ignored–in reality the two systems are two-way
coupled), a barotopic response consistent of a phase locked response that prop-
agates with the wave and a multitude of planetary-Rossby waves that can carry
this response to the extra-tropics [1]. As a demonstration of the relevance of this
barotropic response to tropical wave forcing for the climate system, we considered
the case of a tropical cyclone that evolves in this barotropic response background.
It is found that the tropical waves in general can have a significant–stochastic
effect of the path of the cyclone which may strongly influence tropical cyclone pre-
dictability [2]. Given that the forecast of tropical cyclones such as hurricanes and
typhoons can be sometimes chalenging for weather prediction centres around the
world (examples are plentiful) and that typically climate models (and in particular
the numerical weather prediction models used for long range hurricane forecasting)
are notoriously known to misrepresent tropical waves in particular, and tropical
weather and climate variability in general, the work presented here calls for a route
for possible improvement of tropical cyclone forecasts through the improvement
of tropical wave representation and of convection parametrization in particular in
those models.

References

[1] James Ferguson, Boualem Khouider, Maryam Namazi (2009):Two-way interactions between
equatorially-trapped waves and the barotropic flow. Chin Ann Math Ser B 30(5):539–568

[2] Shin, HG., Khouider, B. (2021): Possible impact of equatorially trapped waves on the
tropical cyclone drift. Clim Dyn 56, 3749–3773. https://doi.org/10.1007/s00382-021-05665-
4.

Multi-scale modeling of Arctic sea ice and floes

Samuel N. Stechmann

(joint work with Q. Deng and N. Chen [1], and with A. Davis, D. Giannakis,
and G. Stadler)

As computational power increases, it is becoming more feasible to model sea ice
as a collection of ice floes, as opposed to the more traditional approach of treating
sea ice as a material, as a continuum, with various rheological models proposed.
In this talk, I will discuss approaches for floe-based (i.e., particle-based) models of
sea ice, including some approaches to multi-scale modeling that aim to bridge the
gap between floe-based and continuum-based models.
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Numerical modeling of viscous-plastic sea-ice dynamics

Carolin Mehlmann

(joint work with S. Danilov, P. Korn, T. Richter, G. Stadler)

Subject of this talk are the mathematical challenges and the numerical treatment
of large scale sea-ice problems. The model under consideration goes back to Hibler
[1] and is based on a viscous-plastic description of sea ice.

In the model, sea ice is considered as a two dimensional fluid which is located
between ocean and atmosphere. Sea ice is characterized by three variables: the
sea-ice concentration A (the percentage of a grid cell that is covered with ice), the
mean ice thickness H and the sea-ice velocity v. The sea-ice concentration and the
sea-ice thickness are advected in time by transport equations, whereas the sea-ice
velocity is determined by the following momentum equation:

(1) m∂tv = F + div(σσσ),

where m is the sea-ice mass and F are the external forces (e.g. wind ocean/drag).
The tensor σσσ describes internal sea-ice stresses. The ice stresses are related to the
strain rate tensor (∇v +∇vT ) by the viscous-plastic rheology

σ =
1

2
ζ(v)

(

∇v +∇vT
)

+
3

4
ζ(v)tr(∇v +∇vT )I − P

2
I,

where the viscosity ζ and the ice strength P is chosen as

ζ :=
P

2max(∆, 2 · 10−9)
, P := H exp(20(1− A)),

∆ :=
√

1.25(v2
1,x + v2

2,y) + 0.5(v1,y + v2,x)2 + 1.5(v1,xv2,y).

We reformulate the sea-ice momentum equation (1) in order to find a suit-
able presentation for applying numerical analysis and modern approximation tech-
niques. Key is the application of a proper regulariziation of the maximum in the
denominator of ζ. As suggested by Kreyscher et al. in [2], we use

ζ =
P

2
√
∆2 + 4 · 10−18

.

In a second step, we apply the decomposition of the strain rate tensor

(2)
1

2

(

∇v +∇vT
)

=: ǫǫǫ = ǫǫǫ′ +
1

2
tr(ǫǫǫ)I

and write the stress tensor in its weak formulation as

(3)
(

σσσ,∇φ
)

=2
(

ζτττ (ǫǫǫ), τττ (φφφ)
)

+
(P

2
, tr(ǫǫǫ(φφφ)

)

= A(v)(φφφ) +
(P

2
, tr(ǫǫǫ(φφφ)

)

,
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with τττ (ǫǫǫ) := 1
2ǫǫǫ

′+ 1
2 tr(ǫǫǫ)I. A(v)(φφφ) has similarities to the regularized p-Laplacian

and the time-dependent minimal surface probelm [9]. Furthermore the Jacobian
of the momentum equation (1) is symmetric and positive definite [8], such that
the time-discretized problem can be written as convex function which is bounded
from below [12]. The viscous-plastic rheology introduces a strong nonlinearity to
the sea-ice model. Thus, solving the sea-ice momentum equation with increasing
spatial resolution is extremely difficult. The analysis based on the reformulated
stress tensor (3) leads to the development of efficient Newton-type solvers for the
sea-ice momentum equation such as [8] or [12].

For the spatial discretization we suggest the use of a nonconforming finite el-
ement, the Crouzeix-Raviart (CR) element. The element places the degrees of
freedom at edge-midpoints of a cell. Therefore the CR element allows for a direct
coupling to ocean models with the same type of staggering (e.g ICON-O [3]). The
CR element needs a stabilization. The instability of the element has its origin
in the discretization of the symmetric strain rate tensor in the rheology. Korn’s
inequality is not uniformly satisfied by the CR element [4]. In order to circum-
vent this instability we follow the idea of Hansbo and Larson [6] and introduce
a stabilization of the Crouzeix-Raviart element, see [7]. To show that the sta-
bilized momentum equation is qualitatively consistent with the solution of the
sea-ice equations an energy estimate is derived. From an evaluation in a numeri-
cal experiment we infer that the derived energy functional stays bounded as in the
estimate for the continuous case, provided the stabilization is applied. Without
stabilization the energy functional grows with increasing mesh resolution show-
ing a qualitatively different behavior compared to the solution of the continuous
sea-ice equations.

In the global ocean model ICON-O we demonstrate that the CR discretiza-
tion can capture the large-scale sea-ice drift [11]. Compared to other low order
discretizations, the CR element has appealing resolution properties [10]. At high
spatial mesh resolution the CR discretization resolves more deformation charac-
teristics on grids with less degrees of freedom compared to all the other low order
approximations.
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Kelvin-Helmholtz instability and relaxed solutions by

space-time optimization

Yann Brenier

The Euler model of a homogeneous incompressible fluid moving in a compact
domain D ⊂ R

d without external force, during a time interval [0, T ], can be
described by the trajectories t ∈ [0, T ] → X(t, a) ∈ D of its fluid parcels labelled
by a ∈ A, where (A, µ) is a suitable probability space, which are accelerated by a
common pressure field p = p(t, x) and equally occupy the available volume, say

∂ttX(t, a) = −(∇p)(t,X(t, a)),

∫

A

φ(X(t, a))µ(da) =

∫

D

φ(x)dx, ∀φ ∈ C(Rd)

(where the volume of D is normalized to 1). This can be written in ”Vlasov” style,
by introducing the nonnegative measure (denoted as a function by abuse)

f(t, x, ξ) =

∫

A

δ(x−X(t, a))δ(ξ − ∂tX(t, a))µ(da).

At least assuming ∇xp to be continuous, one easily obtain:

(1) ∂tf +∇x · (ξf)−∇ξ · (∇xp(t, x)f) = 0,

∫

ξ∈Rd

f(t, x, ξ) = 1,

including, integrating in ξ ∈ R
d with weight (1, ξ), the moment conditions

(2) ∇x · (
∫

ξ

ξf) = 0, ∂t(

∫

ξ

ξf) +∇x · (
∫

ξ

ξ ⊗ ξf) +∇xp = 0.

Among special solutions of this “kinetic formulation” of the Euler model, we im-
mediately recover the smooth solutions (t, x) ∈ [0, T ] × D → v(t, x) ∈ R

d of the
classical Euler’s equations, just by setting f(t, x, ξ) = δ(ξ − v(t, x)).
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More surprisingly we recover in the case d = 1, without any limit process, the
“hydrostatic limit” (in the sense of [6]) of the 2D Euler equations with (x, z) ∈
D × [0, 1]

∂tu+ ∂x(u
2) + ∂z(wu) + ∂xp = 0, ∂zp = 0, ∂xu+ ∂zw = 0, (u,w)(t, x, z) ∈ R

2,

just by setting f(t, x, ξ) =
∫ 1

0
δ(ξ − u(t, x, z))dz.

The ”Vlasov formulation” of the Euler model goes back (at least) to [1] and can
also be seen as the singular limit, as β → 0, of the Vlasov-Poisson model for
which β∆xp(t, x) =

∫

ξ∈Rd f(t, x, ξ) − 1, which describes Coulombian interactions

in Plasma Physics, or Newtonian interactions in Cosmology, according to the sign
of constant β. In [2] we proposed a strategy to solve initial value problems by space-
time convex optimization for various evolution PDEs, including the classical Euler
equations. It is therefore tempting to extend this method to Vlasov equations.
This has been done, with Ivan Moyano [3], for the gravitational Vlasov-Poisson
equations, but our approach seems to fail in the limit case β = 0. In the present
talk, we limit ourself to the less ambitious problem

inf
f≥0

∫

(t,x,ξ)∈[0,T ]×D×Rd

|ξ|2f(t, x, ξ)/2

where f is only subject to the moment conditions (2),
∫

ξ ξf being prescribed at

t = 0 as a given divergence-free vector field v0 over D. This reads as the infinite
dimensional ”linear program”

I = inf
f≥0

sup
A,r,q

∫

(t,x)∈[0,T ]×D

(v0(x) · ∂tA(t, x) + r(t, x))dxdt

+

∫

t,x,ξ

(

|ξ|2/2− ξ · ∂tA(t, x) −∇xA(t, x) · ξ ⊗ ξ − r(t, x) −∇q(t, x) · ξ
)

f(t, x, ξ)

where r = r(t, x) ∈ R, q = q(t, x) ∈ R, A = A(t, x) ∈ R
d are Lagrange multipliers

for the moment conditions (2) and initial condition v0 (all written in weak form),
the vector field A being divergence-free, tangent to ∂D (in order to eliminate the
pressure gradient in (2)) and vanishing at t = T . By convex duality, we may
exchange the inf and the sup, giving

I = sup
A,r,q

∫

(t,x)∈[0,T ]×D

(v0 · ∂tA+ r)dxdt

subject to the pointwise inequality: ∀(t, x, ξ) ∈ [0, T ]×D × R
d,

|ξ|2/2− ξ · ∂tA(t, x) −∇xA(t, x) · ξ ⊗ ξ −∇q(t, x) · ξ ≥ r(t, x).

which is quadratic in ξ over Rd, leading to the concave maximization problem

I = sup
A,q

∫
(

v0 · ∂tA− 1

2

(

I−∇xA− (∇xA)
t
)−1 · (∂tA+∇q)⊗2

)

dxdt

where A is a divergence-free vector field, tangent to ∂D, vanishing at t = T and
subject to I ≥ ∇xA + (∇xA)

t in the sense of symmetric matrices, pointwise.
This problem is exactly the one addressed in [2] (which was obtained without
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any reference to the ”Vlasov formulation” (1)), where it is established that any
smooth solution v of the classical Euler equation provides a maximizer through
A(t, x) = (t− T )v(t, x) (and an analogous formula for q) as long as

(3) −∇xv(t, x) − (∇xv(t, x))
t ≤ (T − t)−1

I, ∀(t, x) ∈ [0, T ]×D.

This condition looks appealing (and reminiscent of the Ponce criterion [8]) and
numerical computations performed by Andrea Natale [7] confirm the result. How-
ever, in case of a shear flow v(t, x) = v(t, x1, x2) = (U(x2), 0) (where D should be
taken as T× [−L,L]), this condition means |U ′(x2)| ≤ T which is quite restrictive.
In particular, this rules out the extreme case U(x2) =sign(x2), which is typical of
the Kelvin-Helmholtz instability. Nevertheless, as shown by Helge Dietert [4], in
that precise case, the concave maximization problem can be solved and one obtain
(provided T ≤ L)

A(t, x) = (t− T )(UT (x2), 0), UT (x2) = inf (1, sup(−1, x2/T )) .

This looks as a very bad result since the maximization problem completely misses
the given initial condition and provides a different shear flow, depending on the
time interval [0, T ]! However, we observe that (UT (x2), 0) viewed as a function
of (T, x) belongs to the one-parameter family of ”relaxed solutions” obtained by
László Székelyhidi [9] through convex integration methods [5], which is supposed
to give a good description of turbulent layers. As a matter of fact, our concave
optimization problem fits very well to the concept of ”subsolution” since, as shown
in [2] by convex duality (at least when v0 is continuous), it reads

I = inf
W,v,p

∫

(t,x)∈[0,T ]×D

trace(W (t, x))

where W is a symmetric matrix-valued measure subject to W ≥ v⊗ v in the sense
of symmetric matrices and ∂tv+∇x ·W+∇xp = 0, for some fields v = v(t, x) ∈ R

d,
p = p(t, x) ∈ R

d, v = v(t, x) being an L2 divergence-free vector field tangent to
∂D with initial value v0 at time t = 0 in the weak sense.
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Compressible Navier–Stokes equations with potential temperature

transport: Analysis and Numerics

Mária Lukáčová-Medviďová

(joint work with A. Schömer)

We have introduced dissipative measure-valued (DMV) solutions to the compress-
ible Navier-Stokes system with potential temperature transport motivated by the
concept of Young measures, see [1] for the concept of DMV solutions and their
relation to weak and strong solutions. This model is often used in meteorological
applications, but its analysis for any γ > 1 was not available in literature. In
[2] we have proved global-in-time existence of DMV solutions by means of conver-
gence analysis of a mixed finite element-finite volume method. Our results hold for
the full range of adiabatic indices including the physically relevant cases in which
the existence of global-in-time weak solutions was open. In [3] we have presented
a DMV-strong uniqueness result for the compressible Navier–Stokes system with
potential temperature transport. This implies that strong solutions are stable in
the class of DMV solutions. Consequently, if a strong solution to the compressible
Navier-Stokes system with potential temperature transport exists, we obtain the
strong convergence of numerical solutions.

As an application of the DMV-strong uniqueness principle we have also de-
rived a priori error estimates for a mixed finite element-finite volume method.
The numerical solutions are computed on polyhedral domains that approximate
a sufficiently a smooth bounded domain, where the exact solution exists. Novel
consistency estimates were presented that allow to compare a strong solution on a
smooth domain Ω with numerical solutions computed on polygonal domains Ωh,
Ω ⊂ Ωh. Here, we only assume that dist(x, ∂Ω) = O(h) for all x ∈ ∂Ωh, see [3] for
further details.
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From micro to macro in the fluid dynamics of sea ice

Kenneth M. Golden

millimeters centimeters meters kilometers 10   kilometers
3

Figure 1. Multiscale structure of sea ice. From left to right: X-
ray tomography image of the salty fluid inclusions (brine) in sea ice
from the Arctic Ocean [9]. Brine volume fraction, geometry, and con-
nectedness depend strongly on temperature, and control fluid transport
processes that are central to the role of sea ice in climate and polar
ecosystems, such as the evolution of ponds on the surface of melt-
ing Arctic sea ice, and nutrient replenishment processes for algae and
other microbes living in the brine inclusions; cross-polarized image of
the polycrystalline microstructure of sea ice from the Ross Sea, Antarc-
tica (Golden, Langhorne), where each individual crystal has complex
fluid microstructure. Polycrystalline statistics and geometrical proper-
ties, and related fluid flow properties, depend strongly on conditions
in the ocean during formation; pancake ice with a granular polycrys-
talline microstructure forming in a wave field in the Southern Ocean
(Golden); the sea ice pack as a granular composite of ice floes in a sea
water host, which displays large-scale fluid-like dynamics when viewed
from space (NASA); satellite image of the Arctic Ocean with its sea
ice cover (NASA). For perspective, rough image sizes from left to right
are 1 cm, 5 cm, 50 m, 100 km, 10,000 km.

Sea ice exhibits complex composite structure on length scales ranging over many
orders of magnitude. From the millimeter scale brine inclusion and centimeter
scale polycrystalline microstructures, to the evolution of melt ponds on the sur-
face of Arctic sea ice and the ice pack itself, fluid dynamics is central to under-
standing sea ice behavior. A principal challenge in modelling sea ice and its role
in climate and polar ecosystems is how to use information on smaller scale struc-
ture to find the effective or homogenized behaviour on larger scales relevant to
climate and ecosystem models. In other words, how do we predict macroscopic
behavior from microscopic laws and information? We’ll give an overview of recent
results on modelling macroscopic behaviour in the sea ice system, with a focus
on novel mathematical approaches, and the central role that fluid behavior over
a tremendous range of length and time scales plays in studying sea ice, and the
climate system more broadly. Percolation theory for fluid flow, fractal geometry
of the brine microstructure, and Stieltjes integral representations for homogenized
parameters of two phase and polycrystalline composites, as well as for advection
diffusion processes and ocean surface waves in the sea ice cover would be consid-
ered. Spectral analysis of these representations leads to a random matrix theory
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Figure 2. (a) Ising model simulation of melt ponds [7]; (b) photo of
real melt ponds (Perovich); (c) example of the polar data gap (blue
disc) on 30 August 2007 with shading indicating sea ice concentration;
(d) and (e) show the data fill in [11], with the shading in (e) similar to
that used by the National Snow and Ice Data Center (http://nsidc.org).

picture of connectedness processes in sea ice, with parallels to Anderson localiza-
tion and semiconductor physics. Melt pond connectedness and complexification
can also be viewed through the lens of Morse theory and persistent homology in
topological data analysis, and the Euler characteristic curve as a function of pond
water level in particular. Related heterogeneity in the parameters of nonlinear al-
gal bloom models is addressed through polynomial chaos methods in uncertainty
quantification, to analyse effective bloom dynamics when the local parameters are
random variables, which is the case for the highly heterogeneous fluid microstruc-
ture of sea ice. Finally, we consider the application of homogenization ideas to
the large scale dynamics of the marginal ice zone (MIZ), the transitional region
between the dense inner core of pack ice and open ocean. We have developed
a rather simple “mushy layer” model that quantitatively explains the dramatic
annual cycle of MIZ width and location. Our work is helping to advance how sea
ice is represented in global climate models, and improve projections of the fate of
Earth’s sea ice packs and the polar ecosystems they support.
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On a compatibility condition for the Navier-Stokes solutions in

maximal Lp-regularity class

Hideo Kozono

(joint work with S. Shimizu)

We consider a compatibility condition on the initial data and the external force
for the initial-boundary value problem of the Navier-Stokes equations with no-slip
condition in bounded domains. Our class of solutions is based on that of maximal
Ls-regularity in the domain of fractional powers of the Stokes operator in Lp. We
show that if the solution belongs to some spaces with higher ordered derivatives,
then the compatibility condition is necessarily satisfied.

Dynamics of jet variability

Peter H. Haynes

A canonical process in atmosphere-ocean dynamics is the spontaneous formation
of zonal jets in turbulent flow on a β-plane. (The β-plane is a mathematical
construction that includes the important dynamical effect of spherical geometry
on a fluid on the surface of a rotating planet, which is that the vertical component
of rotation varies with latitude.) This process is important in the formation of
jets in the ocean, in the atmospheres of solar system planets and in the Earth’s
atmosphere. A comprehensive set of review papers covering this subject can be
found in the book [1]. Whilst there has been much previous work on formation
mechanisms for jets, there has been less attention paid to their time variability.
This variability is, in particular, relevant to week-to-week variation of weather
in mid-latitudes and also, because of the link between variability and response to
forcing (e.g. the fluctuation-response theorem), to the potential systematic changes
in the mid-latitude circulation as a response to increasing greenhouse gases.



2976 Oberwolfach Report 51/2022

Part of my talk will review some of the aspects of β-plane jet variability de-
scribed in a recent PhD thesis by Laura Cope [2]. The system being considered,
following much previous work, is doubly-periodic in x and y, with turbulence ed-
dies driven by a stochastic forcing. Important parameters are β (the y-gradient
of the vertical component of rotation), µ (linear friction) and ǫ (rate of energy
input). In certain parameter regimes jets form and vary strongly in time. Three
types of variability (see Figure 1, which shows the x-mean over the x-component
of velocity, u(y, t)) are (a) random ‘wandering’, (b) successive formation-merger
(a new jet forms and then merges with another) and, surprisingly, (c) coherent
translation in y, which is a symmetry breaking since the system is (statistically)
invariant under reflection in y. The translation from time to time changes direction
– a sort of ‘rare event’. Various reduced models of the system have been studied,

Figure 1. (From [2]). The mean in x of the x-component of velocity,
u(y, t), shown as a function of y and time t, showing different types of
jet variability. (a) random wandering, (b) successive formation-merger,
(c) translation with random changes in direction.

one being a quasi-linear model in which nonlinear interactions between waves are
omitted and the other a ’CE2’ model for statistical average quantities, based on
equations which neglect third- and higher order moments. Some aspects of the
variability can be reproduced by the reduced models; some cannot be reproduced.
See [2] for further details. Note in particular that the quasi-linear model does not
show translation of the type shown in Figure 1(c). Analysis suggests that in the
nonlinear simulations the nonlinear interactions between different x-wavenumbers
generate long waves, which play an important organising role in maintaining the
structure of turbulent eddies and x-mean flow required for translation. These
nonlinear interactions are absent in the quasilinear simulations, no long waves are
generated and translation cannot be sustained.
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The types of variability illustrated in Figure 1 are interesting but not very
relevant to the variability of the real mid-latitude atmospheric circulation. Future
work is aimed at introducing new ingredients to the model that may give variability
behaviour that is closer to something realistic. This may then provide a route
to understanding the perplexing ‘signal-to-noise’ paradox (e.g. [3]) in seasonal
weather prediction.

A further line of research, recently started, is to investigate ‘data-driven’ mod-
els of jet variability, where the future evolution of u(y, t) might be predicted on
the basis of knowledge of the current state of, or the recent history of u(y, t) but
not of the turbulence field. This has raised the question of the extent to which
the variability illustrated in Figure 1 can be understood as the chaotic behaviour
of an essentially deterministic nonlinear dynamical system, in which the primary
role of the stochastic forcing to ‘activate’ the nonlinear dynamics, or whether it is
fundamentally stochastically driven, so that the time evolution depends on certain
details of the time-history of the stochastic forcing. It seems likely that the ‘wan-
dering’ behaviour (a) is fundamentally stochastically driven and the transitions in
direction of translation (c) may be considered as ‘rare event’ transitions analogous
to those in the number of jets considered in [4]. But the ‘formation-merger’ be-
haviour (b) might combine elements of deterministic chaos and stochastic driving.
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The primitive equations with stochastic boundary conditions

Amru Hussein

(joint work with T. Binz, M. Hieber, M. Saal)

The primitive equations are a fundamental geophysical model. Here, these equa-
tions subject to stochastic wind driven boundary conditions are studied. These
boundary conditions on the atmosphere-ocean interface describe the balance of
the shear stress of the ocean and the horizontal wind force. In contrast to previ-
ous works on deterministic wind driven boundary conditions described by Lions,
Temam and Wang in [2], we investigate in [1] for the first time stochastic wind
driven boundary conditions.

These stochastic wind driven boundary conditions are modeled by a cylindrical
Wiener process. We adapt an approach by Da Prato and Zabczyk for stochas-
tic boundary value problems to define a notion of solutions. Then a rigorous
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treatment of these stochastic boundary conditions, which combines stochastic and
deterministic methods, yields that these equations admit a unique, local pathwise
solution within the anisotropic Lq

t -H
−1,p
z Lp

xy-setting. This solution is constructed
in critical spaces.
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Fluid structure interaction models

Igor Kukavica

(joint work with M. Ignatova, I. Lasiecka, W.S. Ożański, and A. Tuffaha.)

In the first part of the talk, we address a system of partial differential equations
modeling a motion of an elastic body inside an incompressible fluid. The fluid
is modeled by the incompressible Navier-Stokes equations while the structure is
represented by the wave equation. We will review known local and global existence
theorems.

In the second part, we consider a system describing the interaction of an in-
compressible inviscid fluid, modeled by the Euler equations, and an elastic plate,
represented by a fourth-order hyperbolic PDE. We provide a priori estimates for
the existence of solutions with a sharp regularity for the Euler initial data. We
also construct solutions with initial data in the same regularity class.
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A model of convection in two miscible layers

Michio Yamada

(joint work with T. Ishikawa, S. Takehiro)

Thermal convection in two horizontal layers has been a subject of research from
theoretical and applied points of view [1-7]. We consider thermal convection in
two horizontal layers of miscible fluids, where the flow continues to change until
the concentration becomes uniform over the layers, This unsteadiness makes it
difficult to apply standard stability analysis to the miscible case.

A room experiment of thermal convection in two miscible layers by Yanagisawa
and Kurita [8] showed that there are two convection patterns according to the
width of the transition layer between the upper and the lower layers: viscous
coupling convection for thin transition layer and thermal coupling convection for
thick transition layer. In both the convection patterns, a horizontal vortex street
is formed in each of the upper and the lower layers, where the adjacent vortices
rotates in the oppsite direction. In the viscous coupling pattern, the vertically
adjacent vortices rotates in the opposite direction, while the directions are the
same in the thermal coupling pattern.

These two convection patterns are reproduced in a numerical simulation of 2D
convection governed by the following nondimensional equations for momentum,
temperature and concentration,

∂t∇2ψ + J(ψ,∇2ψ) = −RaPr∂x(T −BS) + Pr∇2∇2ψ,(1)

∂tT + J(ψ, T ) = ∇2T,(2)

∂tS + J(ψ, S) =
1

Le
∇2S,(3)

on {(x, z) ∈ [0, Lx]×[−1, 1]}, where ψ is the stream function, J(a, b) = (∂za)(∂xb)−
(∂xa)(∂zb) and Ra, Pr,B, Le are Rayleigh, Prandtl, Buoyancy and Lewis numbers,
respectively. The boundary conditions are u = 0, ∂zS = 0 at z = ±1, T = 0 (z =
1), 1 (z = −1), and ψ, T, S are periodic in x with period Lx.

Starting from the initial condition that u = small disturbance, T = T0(z) =
(1 − z)/2, and S = 0 (z > 0), 1 (z < 0), the convection takes the viscous coupling
form in the early stage, but it changes soon into the thermal coupling form as
the width of the transition layer increases, and the convection becomes disordered
finally. In this time evolution, both the viscous and the thermal coupling state are
not stationary as well as the initial state, which makes analysis of the convection
difficult.

We propose a new model in which the horizontally averaged width of the tran-
sition layer is kept constant in time evolution. Decomposition of the concentration
S into the conduction part Sδ(t) = (1/2)erfc(z/δ(t)) and deviation part Σ, gives

∂tΣ + J(ψ, Sδ(t)) + J(ψ,Σ) =
1

Le
∇2Σ,

(

δ(t) = 2
√

t/Le
)

.(4)



2980 Oberwolfach Report 51/2022

Observing that the horizontal average of this equation is

∂t〈Σ〉+ 〈J(ψ,Σ)〉 = 1

Le
∂2z 〈Σ〉,(5)

we discard the term J(ψ,Σ), and then 〈Σ〉 obeys the diffusion equation, and so
we further assume that 〈Σ〉 vanishes initially to assure that 〈Σ〉 always vanishes.
The horizontally averaged concentration 〈S〉 is then equal to S0(t), and our final
assumption is that δ(t) is a constant. Under these assumptions, our model is
obtained as

∂t∇2ψ + J(ψ,∇2ψ) = −RaPr∂x(T −BS) + Pr∇2∇2ψ,(6)

∂tT + J(ψ, T ) = ∇2T,(7)

∂tΣ + J(ψ, Sδ) =
1

Le
∇2Σ, (S = Sδ +Σ),(8)

where δ is a constant parameter denoting the width of the transition layer.
The model has the steady solutions, u = 0, T = T0(z), Σ = 0 for any positive

δ, and so its linear stability analysis is possible. Stability eigenvalue problem is
solved numerically. According to the stability neutral curves obtained, the steady
state becomes unstable at a critical Rayleigh number which increases as the width
δ increases. The critical mode is viscous coupling when δ is small, but it is thermal
coupling when δ is larger than a certain value, in harmony with the room experi-
ment and the numerical simulation of the original system. However, the marginal
modes are associated with eigenvalues with nonzero imaginary part (Hopf). This
is considered to be an aritifact not observed in the original system, while the real
unstable eigenvalues also take part in as the Rayleigh number increases.

Numerical simulation of the time evolution in the model system shows long time
asymptotic behavior of solutions. The viscous coupling convection appearing as a
travelling wave solution keeps its viscous coupling form and continues for a long
time. The viscous coupling convection has a clear symmetry and is invariant to
Pvis[f ] = (1/2)(f(x, z)−f(x,−z)). Also the thermal coupling convection appears
as a traveling wave solution and continues for a long time, and is invariant to
Ptherm[f ] = (1/4)(f(x, z)−f(x+Lx/4,−z)+f(x+2Lx/4, z)−f(x+3Lx/4,−z)).
The ranges of these projection operators (viscous coupling and thermal coupling
spaces) are invariant set of the time evolution of the model system, and it is
verified that the asymptotic solutions are also lies in these spaces. However, the
intersection of these spaces is not simply {0}, but a nonzero dimensional space.
Extraction of the orthogonal components to these spaces shows that the asymptotic
solutions are coexisting attractors in some parameter region, and the attractors
have different domains of attraction. Although the relation of the model system to
the original system is not yet clear, these properties suggests saddle-like structures
in solution space of the original system.

This talk is based on the paper: Ishikawa, Takehiro and Yamada (2022), Model
system for the transient behavior of double diffusive convection in two miscible
layers, JJIAM, 39-2, DOI: 10.1007/s13160-022-00540-z (open access).
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Free boundary problems of the incompressible Navier-Stokes

equations in the critical Besov space

Senjo Shimizu

(joint work with T. Ogawa)

We consider free boundary problems of the incompressible Navier-Stokes equations
in R

n with n ≥ 2. Let the initial velocity vector u0(y), y = (y′, yn) ∈ R
n−1 × R,

and the initial boundary η0(y
′) be given. We consider the problem to find the

domain

Ωt := {(y′, yn) ∈ R
n−1 × R; yn > η̄(t, y′)},

the velocity vector ū(t, y) and the pressure p̄(t, y) for y ∈ Ωt satisfy the Navier–
Stokes equations:

(1)



















































∂tū+ū · ∇ū− div T (ū, p̄) = 0, t > 0, y ∈ Ωt,

div ū = 0, t > 0, y ∈ Ωt,

T (ū, p̄)νt = 0, t > 0, y ∈ ∂Ωt,

∂tη̄
√

1 + |∇′η̄|2
= −ū · νt, t > 0, y ∈ ∂Ωt,

ū(0, y) = u0(y), y ∈ Ωt,

η̄(0, y′) = η0(y
′), y′ ∈ ∂Ωt.

Here, ∂Ωt denotes the boundary of Ωt, νt is the unit outward normal at a point
y ∈ ∂Ωt given by νt = (∇′η̄,−1)T/

√

1 + |∇′η̄|2, T (ū, p̄) is the stress tensor defined
by T (ū, p̄) = (∇ū+ (∇ū)T)− p̄I, where I is the n× n identity matrix, (∇yu)i,j =
(

∂uj/∂yi
)

(1≤i,j≤n)
, (∇ū)T denotes the transposed matrix of ∇ū, where ∇ = ∇y =

(∂y1
, ∂y2

, · · · , ∂yn
), ∇′ = (∂y1

, ∂y2
, · · · , ∂yn−1

).
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At the first step, we transform the free boundary problem on ∂Ωt into the
fixed boundary problem ∂Ω0 by using the Lagrangian transformation. As the
next step, we transform the Lagrangian transformed problem into a problem with
flat boundary. In order to do so, we extension of the boundary function η0 ∈
Ḃ

1+(n−1)/q
q,1 (Rn−1) to E(x′, xn) = e−|∇′|xnη0(x

′) for xn > 0. Transformed problem
in the half-space R

n
+ is the following quasi-linear variable coefficient problem:

(2)



















∂tu−∆u+∇p = f(u, p, E) + F (u, p, E), t > 0, x ∈ R
n
+,

div u = g(u,E) + (1 + ∂nE)Gdiv (u,E), t > 0, x ∈ R
n
+,

T (u, p)en = h(u, p, E) +H(u, p, E), t > 0, x ∈ ∂Rn
+,

u(0, x′, xn) = u0(x
′, xn − E(x′, xn)), x ∈ R

n
+,

where en = (0, · · · , 0,−1)T, {DEu}ij = ∂ui

∂xj
− ∂jE

1+∂nE
∂ui

∂xn
, f(u, p, E), g(u,E) and

h(u, p, E) are the linear variable coefficient terms, and the nonlinear terms are
given by

Fu(u, p, E) := Π2n−2
(

∫ t

0

DEuds
)

D2
Eu+Πn−1

(
∫ t

0

DEuds

)

∇Ep,

Gdiv (u,E) := div
(

Πn−1
(

∫ t

0

DEuds
)

u
)

,

Hu(u, p, E) := Π2n−2
(

∫ t

0

DEuds
)

∇Eu en,+Πn−1
(

∫ t

0

DEuds
)

p en.

We denote Πm(A) polynomials of A of order at most m.

Theorem 1 (Global well-posedness for the flat boundary problem (2)). Let n ≥ 2,

n/2 < p < 2n− 1 and 1 ≤ q < pn/|p− n|. If the initial data u0 ∈ Ḃ
−1+n/p
p,1 (Rn

+)

and the initial boundary η0 ∈ Ḃ
1+(n−1)/q
q,1 (Rn−1) satisfy for some small ε0 > 0 that

(3) ‖u0‖
Ḃ

−1+n
p

p,1 (Rn
+
)
+ ‖∇′η0‖

Ḃ
n−1
q

q,1 (Rn−1)
≤ ε0,

then the initial boundary value problem (2) admits a unique global solution

u ∈ Cb(R+; Ḃ
−1+n

p

p,1 (Rn
+)) ∩ Ẇ 1,1(R+; Ḃ

−1+n
p

p,1 (Rn
+)),

∆u,∇p ∈ L1(R+; Ḃ
−1+n

p

p,1 (Rn
+)),

p|xn=0 ∈ Ḟ
1
2
− 1

2p

1,1 (R+; Ḃ
−1+n

p

p,1 (∂Rn
+)) ∩ L1(R+; Ḃ

n−1

p

p,1 (∂Rn
+))

with the estimate
∥

∥∂tu
∥

∥

L1(R+;Ḃ
−1+n

p
p,1 (Rn

+
))
+
∥

∥D2u
∥

∥

L1(R+;Ḃ
1+n

p
p,1 (Rn

+
))
+
∥

∥∇p
∥

∥

L1(R+;Ḃ
−1+n

p
p,1 (Rn

+
))

+
∥

∥p|xn=0

∥

∥

Ḟ
1
2
−

1
2p

1,1 (R+;Ḃ
−1+n

p
p,1 (∂Rn

+
))
+
∥

∥p|xn=0

∥

∥

L1(R+;Ḃ
n−1
p

p,1 (∂Rn
+
))
≤ ε1,

where ε1 = ε1(n, p, ε0) is a constant.
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The proof is based on maximal L1-regularity of the Stokes system with stress
free boundary condition in the half-space with inhomogeneous data, and combi-
nation of bilinear estimates on the boundary and sharp trace estimates.

Corollary 2 (Global well-posedness of the free boundary problem (1)). Let n ≥ 2,
n/2 < p < 2n− 1 and 1 ≤ q < pn/|p− n|. For the same ε0 in Theorem 1 and u0
and η0 satisfying (3), let (u, p) be the global solution of (2) obtained in Theorem 1.

Then the pull-back (ū, p̄) of (u, p) given uniquely solves the original problem (1).
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On energy conservation for the hydrostatic Euler equations:

an Onsager conjecture

Daniel W. Boutros

(joint work with S. Markfelder and E. Titi)

Onsager’s conjecture was first posed in [5], it states that weak solutions of the
incompressible Euler equations conserve kinetic energy (the L2 norm in space) if
the velocity field is Hölder continuous in space with exponent bigger than 1

3 . In

case the exponent is less than 1
3 energy dissipation can occur. We consider an

analogue of Onsager’s conjecture for the hydrostatic Euler equations (also known
as the inviscid primitive equations of oceanic and atmospheric dynamics). We
recall that these equations are given by

∂tuh + (uh · ∇)uh + w∂zuh +∇p = 0,(1)

∇ · uh + ∂zw = 0, ∂zp = 0,(2)

where uh is the horizontal velocity field and w is the vertical velocity component.
We consider system (1)-(2) in the three-dimensional periodic channel

M = {(x, y, z) ∈ R
3 : 0 ≤ z ≤ L, (x, y) ∈ T

2},
where the vertical velocity component w is assumed to satisfy the no-normal flow
boundary condition, that is

w(x, y, 0, t) = w(x, y, L, t) = 0.

For classical solutions, the stated physical boundary-value problem in the periodic
channel can be equivalently formulated as a problem in the three-dimensional
torus T3 with the requirement that the vertical velocity w is an odd function with
respect to z and the horizontal velocities uh are even functions with respect to z.
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The hydrostatic Euler equations arise from the Euler equations under the as-
sumption of the hydrostatic balance, as well as the small aspect ratio limit (in
which the vertical scale is much smaller compared to the horizontal scales).

Formally, solutions of the hydrostatic Euler equations with the boundary con-
ditions stated above conserve the spatial L2 norm of uh. Therefore the analo-
gous formulation of Onsager’s conjecture for these equations concerns the critical
threshold for weak solutions to conserve this quantity.

Unlike the Euler equations, in the case of the hydrostatic Euler equations the
vertical velocity is one degree spatially less regular compared to the horizontal
velocities. The fact that the equations are anisotropic in regularity and nonlocal
makes it possible to prove a range of sufficient criteria for energy conservation,
which are independent of each other. This means that there probably is a ‘family’
of Onsager conjectures for these equations.

In [1] we consider three different notions of weak solutions to the hydrostatic
Euler equations:

• A type I weak solution is the ‘canonical’ weak solution to the hydrostatic
Euler equations. For such a weak solution it is assumed that w ∈ L2(T3×
(0, T )) and uh ∈ L∞((0, T );L2(T3)).

• For a type II weak solution it is assumed that w ∈ L2((0, T );

L2(T;B−s
2,∞(T2))) and uh ∈ L∞((0, T );L2(T3))∩L4((0, T );L4(T;Bσ′

4,2(T
2)))

for σ′ > s (where we have separately specified the regularity in the z-
variable), for 0 < s < 1

2 .

• For a type III weak solution we assume that w ∈ L2((0, T );B−s
2,∞(T3)) and

uh ∈ L∞((0, T );L2(T3)) ∩ L4((0, T );Bσ′

4,2(T
3)) for 0 < s < 1

2 and s < σ′.

In the above, we have denoted the Besov spaces (as well as their dual spaces)
by Bs

p,q. In order to make sense of the vertical part of the nonlinearity (i.e. the
product uhw) for both type II and type III weak solutions, we use the Bony de-
composition as well as the paradifferential calculus. One of the differences between
types II and III are the way in which the boundary conditions are attained.

In the case of type I weak solutions, we prove that each of the following condi-
tions are sufficient for energy conservation:

• If uh ∈ L4((0, T );B
1/2+
4,∞ (T3)) and w ∈ L2((0, T );L2(T3))

• If w ∈ L3((0, T );Cβ(T3)) and uh ∈ L3((0, T );Cα(T3)) with α > 1
2 − 1

2β
and α ≥ β

• If w ∈ L2((0, T );L2(T3)) and uh has Besov regularity Bα
3,∞(T) with re-

spect to the vertical variable and Bβ
3,∞(T2) with respect to the horizontal

variables, such that α > 1
3 , β >

2
3 and β + 2α > 2

The global existence of type I weak solutions was established in [2], using tech-
niques from convex integration.

In the case of type III weak solutions, we show that each of the following
conditions are sufficient for energy conservation:
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• If w ∈ L2((0, T );B−s
2,∞(T3)) and uh ∈ L4((0, T );B

s+1/2+
4,∞ (T3))

• If uh ∈ L3((0, T );B
3/4+
4,∞ (T3))

These results are proven by first establishing an equation of local energy balance,
which contains a ‘defect term’ which captures the potential lack of regularity of
the weak solution (this approach was first introduced in [4]). Then one can derive
sufficient conditions for energy conservation of weak solutions by deriving sufficient
conditions for the defect term to be zero. It is also possible to prove sufficient
conditions for energy conservation by using commutator estimates (which was
done for the first time in [3]), see appendix B in [1].
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Hibler’s viscous-plastic sea ice model: rigorous analysis, time periodic

solutions and interaction with a rigid body

Felix Brandt

(joint work with T. Binz, K. Disser, R. Haller and M. Hieber)

Sea ice has attracted much attention in climate science due to its role as a hot
spot in global warming. As a material, it exhibits a complex mechanical and ther-
modynamical behaviour. In 1979, Hibler introduced the governing equations of
large-scale sea ice dynamics in a seminal paper [4]. The model has been investi-
gated numerically by various communities, whereas rigorous analysis has started
only very recently by the works of Brandt, Disser, Haller-Dintelmann and Hieber
[2] as well as Liu, Thomas and Titi [5].

For a bounded domain Ω ⊂ R
2 with boundary of class C2 and a time intervall

J = (0, T ), 0 < T ≤ ∞, we consider the horizontal ice velocity u : Ω × J → R
2,

the mean ice thickness h : Ω × J → [κ,∞), where κ > 0 is a small parameter
indicating the transition to open water, and the ice compactness a : Ω×J → (0, 1].
In addition, the ice mass m is given by m = ρiceh, where ρice > 0 denotes the ice
density, ccor > 0 represents a Coriolis parameter, H is the sea surface dynamic
height, τocean(u) as well as τatm represent the oceanic forces and atmospheric wind
forces, respectively, and for the ice growth rate f , the thermodynamic terms are

given by Sh = f
(

h
a

)

a+ (1− a)f(0) and Sa = f(0)
κ (1− a)χf(0)>0 +

a
2hShχSh<0.
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Following [4], we assume that the viscous-plastic rheology is given by a consti-
tutive law relating the internal ice stress σ and the deformation tensor ε = ε(u) =
1
2

(

∇u+∇uT
)

via an internal ice strength P = p∗h exp(−c(1− a)) for p∗ > 0 and
c > 0 constant and nonlinear bulk and shear viscosities ζ and η. As the viscosities
become singular, we introduce a suitable regularization, and the regularized stress
tensor then takes the shape

σδ = 2ηδε+ [ζδ − ηδ]tr(ε)I−
P

2
I,

with ζδ = e2ηδ = P
2△δ(ε)

= P

2
√

δ+△2(ε)
for e > 1 denoting the ratio of the long axis

to the short axis of the elliptical yield curve and δ > 0, and with

△2(ε) =
(

ε211 + ε222
)

(

1 +
1

e2

)

+
4

e2
ε212 + 2ε11ε22

(

1− 1

e2

)

.

The system of equations on Ω×J , completed by boundary and initial conditions,
is then given by

(1)



























m(ut + u · ∇u) = divσδ −mccorn× u−mg∇H + τatm + τocean(u),

ht + div(uh) = Sh + dh∆h,

at + div(ua) = Sa + da∆a,

u = 0, ∂νh = 0, ∂νa = 0,

u(0) = u0, h(0) = h0, a(0) = a0.

Denoting the principle variable of the system by v = (u, h, a), we rewrite (1) as
a quasilinear evolution equation of the shape

(2) v′ +A(v)v = F (v), t > 0, v(0) = v0

on the ground space X0 = Lq(Ω;R2)× Lq(Ω)× Lq(Ω) and with regularity space

X1 = {v ∈ H2,q(Ω;R2)×H2,q(Ω)×H2,q(Ω) : u = 0, ∂νh = ∂νa = 0 on ∂Ω}.
Solutions are considered in the maximal regularity space with time weights,

i.e., in E1(J) := H1,p
µ (J ;X0) ∩ Lp

µ(J ;X1). The trace space of this class is given by

Xγ,µ = (X0, X1)µ−1/p,p, and we observe that Xγ,µ →֒ B
2(µ−1/p)
qp (Ω)4 →֒ C1,α(Ω)4

if 1
2 + 1

p + 1
q < µ ≤ 1. Furthermore, we consider an open subset Vµ ⊂ Xγ,µ such

that (u, h, a) ∈ Vµ satisfy h ≥ κ and a ∈ (0, 1].
Verifying maximal regularity of the linearized operator matrix A(v0) by show-

ing that the linearized operator corresponding to divσδ exhibits certain elliptic-
ity properties and by using the respective results for the Neumann Laplacian on
bounded domains in conjunction with the upper triangular structure of the op-
erator matrix, and showing Lipschitz estimates of the nonlinear terms, we apply
local existence theory to prove local strong well-posedness. More precisely, we get
the following result, see [2, Theorem 2.1]:
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Assume that 1 < p, q < ∞ and µ ∈ (1/p, 1] satisfy 1
2 + 1

p + 1
q < µ ≤ 1, and let

v0 ∈ Vµ. Then there exist τ = τ(v0) > 0 and r = r(v0) > 0 with BXγ,µ
(v0, r) ⊂ Vµ

such that (2), i.e., (1), admits a unique solution v(·, v1) ∈ E1(0, τ) ∩ C([0, τ);Vµ)

for each initial value v1 ∈ BXγ,µ
(v0, r).

Observing that (0, h∗, a∗), h∗ > 0, a∗ ∈ (0, 1] constant, are trivial equilibria
for (2) and employing the generalized principle of linearized stability, we show
stability of (0, h∗, a∗) in Xγ,µ and global existence of the unique solution to (2)
for initial data close to the equilibrium provided δ is chosen small enough and the
external forces vanish, see [2, Theorem 2.3].

It is natural to ask for time periodicity of solutions to Hibler’s sea ice model
in view of time dependence of e.g. the ice growth rate f = f(t). Employing
maximal periodic regularity for dealing with the linear problem, verifying Lipschitz
estimates of the nonlinear terms and using the contraction mapping principle, we
show in [3] that (2), i.e., (1), admits a unique time periodic strong solution close
to constant equilibria under certain smallness assumptions and subject to time
periodic forces. This is especially valid for time periodic wind forces of the shape
|Uatm|Uatm = c(t)h, with c(t) time periodic, and time periodic ice growth rate
f(t) = f(t+ T ).

The interaction problem of sea ice with a rigid body is studied in [1], where
Newton’s law is used for describing the equations for the rigid body. Transforming
the problem to a fixed domain, using a “monolythic” approach, a suitable de-
coupling technique as well as a similarity transform, showing Lipschitz estimates,
especially using nonlinear complex interpolation for estimates of the stress ten-
sor, and applying a variant of a classical local-in-time existence theorem, local
strong well-posedness of the coupled system is shown provided the collision case
is excluded.
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A rigorous proof of the validity of the point vortex description for a

class of inviscid gSQG models

Carina Geldhauser

(joint work with Marco Romito)

Point vortex models are a classical approach in 2D turbulence. We characterize a
point vortex by its positionXj in R

2, and its intensity γj ∈ R. Point vortex models
describe the evolution of vortex positions according to the system of equations

(1)

{

Ẋj =
∑

k 6=j γk∇⊥Gm(Xj , Xk),

Xj(0) = xj ,
j = 1, 2, . . . , N,

where γk are real numbers and Gm is the Green function of the operator (−∆)
m
2 .

Here, we consider the case m ∈ [1, 2], where m = 2 is the Euler case and m = 1
the surface-quasigeostrophic case. In [GR20] we prove that the above system (1)
has, for fixed N , a global solution for a. e. initial condition, under the assumption
that

∑

j∈J γj 6= 0 for all J ⊂ {1, 2, . . . , N}.
An interesting question is whether point vortices provide an approximation of

solutions to the generalized surface quasigeostrophic equation on R
2, i.e. the case

m ∈ (1, 2) of

(2)











∂tθ + u · ∇θ = 0,

(−∆)
m
2 ψ = θ,

u = ∇⊥ψ.

To be more precise, we aim at a statement of the form: if an initial condition is
approximated, in the sense of measures, by point vortices as N ↑ ∞, then solutions
to gSQG are approximated, again in the sense of measures, by the evolution of

the point vortex measure
∑N

j=1 γjδXj(t)..
We note, first of all, that these are measure valued solution, so should interpret

gSQG in the sense of distributions, this is not enough to include measures with
atoms. In the case of Euler equations (m = 2), a symmetrisation [Del91] (see also
[Sch95, Sch96]) allows to tame the singularity of the Biot-Savart kernel. In this
context, writing the equation against a test function ϕ only in terms of θ yields

∫ ∫

θ(t, x)ϕ(t, x) dx dt +

+

∫ ∫∫

km(x − y) · (∇ϕ(t, x) −∇ϕ(t, y))θ(t, x)θ(t, y) dx dy dt = 0,

where km = ∇⊥Gm. However, in our more singular setting, the new kernel km(x−
y) · (∇ϕ(t, x) −∇ϕ(t, y)) is not bounded on the diagonal.

To overcome these difficulties, in [GR20] we approximate point vortices by vor-
tex blobs of radius ǫ, and we are able to prove that for values of the parameter
m not too small (

√
3 < m < 2), a sequence of vortex blobs solutions to gSQG

converges, as the size of the blobs goes to 0, to the configuration of point masses
that obeys to (1). Also, we prove localisation of vortices, namely, if θ is initially
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a vortex blob, then it remains a vortex blob of comparable size. A similar result
in a slightly different setting, which avoids the technical lower bound of

√
3 was

proven recently in [Ros20].
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Free boundaries in the atmosphere: quasi-geostrophic equations

with moisture

Antoine Remond-Tiedrez

(joint work with L. Smith, S. Stechmann)

To describe the atmosphere on a synoptic scale (the scale at which high- and low-
pressure systems are apparent on a weather map, for example) one may use the
quasi-geostrophic equations, which are derived as a limit of the classical Boussinesq
system under the assumptions of fast rotation and strong stratification. When
incorporating the dynamics of water content in the atmosphere, a.k.a. moisture,
one may then study the moist Boussinesq equations and its limit, the precipitating
quasi-geostrophic equations.

These models are important for atmospheric scientists in light of the role that
the water cycle plays in atmospheric dynamics, notably through energy budgeting
(such as for example when atmospheric circulations are driven by latent heat
release in storms). Mathematically, these models present interesting challenges
due to the presence of boundaries, whose locations are a priori unknown, between
phases saturated and unsaturated in water (schematically: boundaries between
clouds and their surroundings).

In particular, while the (dry) quasi-geostrophic equations rely on the inversion
of a Laplacian, this becomes a much trickier adversary in the presence of free
boundaries. In this short talk we will discuss how this nonlinear equation under-
pinning the precipitating quasi-geostrophic equations can be characterized using
a variational formulation and we will describe the many benefits one may derive
from this formulation.
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Motion of small rigid bodies in a viscous incompressible fluid

Arnab Roy

(joint work with E. Feireisl, A. Zarnescu)

In this talk, we consider a finite number of rigid bodies immersed in a viscous
incompressible fluid and discuss the effect of the rigid bodies on the fluid flow as
their diameters are asymptotically tending to zero.

There are some results in the literature regarding the impact of a small rigid
body immersed in a viscous fluid on the fluid motion. But a general approach used
so far is based on the idea that if the mass density is large then the velocity can
be controlled. So, it deals with the scenario when the body is small but “heavy”
and the resulting situation is therefore close to the rigid obstacle problem.

But these results are slightly at odds with a physically relevant hypothesis that
the body density should be at least bounded. We want to understand the small
but “light” (bounded density) particle case. In the talk we present a recent result
[1] where we prove that the effect of a finite number of rigid bodies is negligible as
soon as their diameters are small whereas their mass densities are irrelevant. We
need the following condition on the shape of the bodies:

Dε ≡ max
i=1,··· ,N

{diam[Si
ε]} → 0 as ε→ 0,

0 < λDβ
ε ≤ |Sε| as ε→ 0, d≤β <







15 if d = 3,

arbitary finite if d = 2,

for some λ > 0 independent of ε. But this allows different bodies to shrink to zero
in different order of scaling.

Our approach is based on a new restriction operator that assigns a given func-
tion its “projection” on the space of rigid motions of the bodies. Considering
the case of several bodies needs a nontrivial modification of the construction of
restriction operator presented in [2].

The new restriction operator improves considerably the error estimates neces-
sary to perform the asymptotic limit. Another new ingredient is that we use the
dissipation energy rather than the energy itself to obtain suitable bounds on the
translation velocity pf the rigid body. This is why the result is independent of the
mass densities of the bodies.
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Non-uniqueness of the Vanishing Viscosity Limit for Passive Scalar

Transport along an Incompressible Flow

Lucas Huysmans

(joint work with E. Titi)

In this talk we consider the linear transport equation for a passive scalar f(x, t) ∈
R along a background incompressible flow u(x, t) ∈ R

2, with ∇ · u = 0 in the
distributional sense. We work on the two-torus x ∈ R

2/Z2, with t ≥ 0. The

corresponding equation for f is ∂f
∂t + ∇ · (uf) = 0 when written in divergence

form, and when understood in the weak sense permits solutions with u, f bounded
without further regularity.

Such an equation is a hyperbolic conservation law [3], and as such may be
regularised with the addition of viscosity ν > 0 acting on f . In the context of
passive transport this is often instead named diffusion. The resulting equation is
∂f
∂t +∇ · (uf) = ν∆f – the advection-diffusion equation for f along a background
incompressible flow u.

Here, and for many other hyperbolic conservation laws, the additional viscos-
ity causes the equation to be well-posed (e.g. with bounded background flow u
[2]). Meanwhile the non-viscous problem is ill-posed [4, 6] (unless u is sufficiently
regular, e.g. [1, 5]).

This phenomenon is common for hyperbolic conservation laws and leads to
the study of admissible solutions in the absence of viscosity. As such the study
of the limit ν → 0 is of great interest, in particular for the compressible and
incompressible Navier-Stokes equations.

We provide an example of an incompressible background flow for which the
weak solutions to the advection-diffusion equation may not converge as ν → 0.
Moreover we show that for different sub-sequences of ν the weak solutions may
converge to different weak solutions of the non-viscous problem – the transport
equation. This phenomena occurs for a carefully constructed background flow u,
exploiting a novel mechanism contingent on the flow u having a structure bearing
semblance to intermittency in turbulence. Correspondingly, non-uniqueness is
created through a novel kind of turbulent transport relying on the following effect.

Through two elementary lemmas we can show that the effect of small viscosity is
to ‘blur’ the transport of f along the highly oscillatory parts of the background flow
u to zero, whilst transport of f along the less oscillatory regions of u remains mostly
unchanged despite diffusion. Thus it is possible to find a sequence of viscosities νn
such that viscous transport of f includes the more turbulent regions of u one at
a time. If the effect on f of each subsequent region exactly cancels the previous,
the sequence of solutions will alternate between two different behaviours. This is
achieved explicitly with background shear flows, and leads to different vanishing
viscosity limits along the even and odd sub-sequences ν2n → 0, ν2n+1 → 0.
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Well-posedness of Hibler’s dynamical sea-ice model

Xin Liu

(joint work with M. Thomas and E. Titi)

We establish the local-in-time well-posedness of solutions to an approximating
system constructed by mildly regularizing the dynamical sea-ice model of W.D.

Hibler, Journal of Physical Oceanography, 1979. Our choice of regularization has
been carefully designed, prompted by physical considerations, to retain the origi-
nal coupled hyperbolic-parabolic character of Hibler’s model. Various regularized
versions of this model have been used widely for the numerical simulation of the
circulation and thickness of the Arctic ice cover. However, due to the singularity in
the ice rheology, the notion of solutions to the original model is unclear. Instead, a
simplified, approximating system, which captures current numerical study, is pro-
posed. The well-posedness theory of such a system provides a first-step groundwork
in both numerical study and future analytical study.
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Analysis of a rotationally constrained convection model

Yanqiu Guo

(joint work with C. Cao, E. Titi)

This talk is about the analysis of an asymptotically reduced system for rotation-
ally constrained convection. The presence of a dominant balance in equations for
fluid flow can be exploited to derive a simpler set of governing equations that
permits analytical explorations. For rotation dominated flows, the geostrophic
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balance occurs: the pressure gradient force is balanced by the Coriolis effect. The
Taylor-Proudman constraint suggests that the dominant Coriolis force leads to
flows that are organized into vertical plumes or columns whose horizontal scale
is small compared to the layer height. Applying the asymptotic theory for small
Rossby number and tall columnar structures, Julien and Knobloch derived a closed
set of reduced equations from the three-dimensional Boussinesq equations. Also,
Sprague et al. numerically simulated this reduced model to study the equal pop-
ulations of cyclonic and anticyclonic structures in rapid rotating convection. This
reduced system is interesting yet challenging for analytical study. On the one
hand, the nonlinear convection term has a reduced complexity since it contains
only the horizontal gradient. On the other hand, the physical domain remains
three dimensional, while the regularizing viscosity acts in the horizontal direction
only, creating a major difficulty for establishing the global existence theory. An-
other difficulty arises due to a linear term involving the vertical derivative of the
stream function, reflecting the balance of the Coriolis force by the pressure. I will
present some of our results motivated by the global regularity problem. We show
that the model is globally well-posed if regularized by a very weak dissipation. I
will also discuss the case of infinite Prandtl number convection, and the situation
when both of the Prandtl and Rayleigh numbers approach infinity. This is a joint
project with Chongsheng Cao and Edriss Titi.

The primitive equations with transport noise

Antonio Agresti

(joint work with M. Hieber, A. Hussein, M. Saal)

The primitive equations are one of the fundamental models for geophysical flows
used to describe oceanic and atmospheric dynamics. In this talk I will discuss some
recent results on the primitive equations with noise of transport type. Such noise
is often used in fluid mechanics to model turbulent flows. In addition to transport
noise, we also consider non-isothermal turbulent pressure. From a modeling point
of view, the temperature dependence of the turbulent pressure can be seen as a
large scale effect of an additive noise acting on the small vertical dynamics. For the
primitive equations with transport noise and non-isothermal turbulent pressure,
we provide a physical derivation and we discuss the global well-posedness for data
in the critical spaces H1. The latter result gives a non-trivial extension of the
celebrated work by C. Cao and E.S. Titi [3] on the deterministic model. Our
approach is based on recent developments of maximal regularity techniques in
the context of stochastic parabolic PDEs. Finally, starting from these results, we
discuss some open problems.
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Radiative transfer in fluids: from analysis to numerical simulations

François Golse

(joint work with C. Bardos, O. Pironneau, E. Titi)

Radiative transfer describes the interaction of electromagnetic radiation, viewed
as a gas of photons, with a background medium such as a gas, a plasma or a liquid.
Photons interact with the atoms, ions, electrons or nanoparticles in the medium in
essentially two different manners, viz. (a) scattering and (b) absorption/emission.
Scattering corresponds to “collisions” between a photon and the particles in the
medium, involving a sudden change in the direction of the photon. Absorption
and emission are quantum effects: a photon can be absorbed by one electron in an
atom of the background medium, exciting it to a higher energy level; conversely,
an electron can fall back to a lower energy level, thereby emitting one photon.

Radiation is described by the radiative intensity Iν(t, ~x, ~ω) := chνf(t, ~x, ~ω, ν),
where f(t, ~x, ~ω, ν) is the number density of photons of frequency ν at the position
~x and in the direction ~ω at time t, while c is the speed of light and h the Planck
constant. An important example is the radiative intensity for a black body at
temperature T , given by the Planck function Bν(T ) := 2hν3/c2(ehν/kT −1), where
k is the Boltzmann constant. One easily checks that

∫ ∞

0

Bν(T )dν = 2π4k4

15c2h3T
4 (Stefan-Boltzmann’s law).

Assuming isotropic scattering for simplicity, the radiative intensity satisfies the
radiative transfer equation

(RT )
(

1
c∂t + ~ω · ∇~x

)

Iν + κνIν = κνaνJν + κν(1− aν)Bν(T ) .

In (RT), κν := ρκ̄ν , where ρ is the density of the background medium and κ̄ν the
specific extinction coefficient for radiation of frequency ν, and aν ∈ [0, 1] is the
scattering albedo, while

Jν(t, ~x) :=
1
4π

∫

S2

Iν(t, ~x, ~ω)d~ω (mean radiative intensity).

Finally T (t, ~x) is the temperature at the point ~x at time t.
The specific extinction coefficient κ̄ν depends strongly on the frequency ν,

see www.gemini.edu/observing/telescopes-and-sites/sites#Transmission;
this is important in the understanding of the greenhouse effect. For liquid water,
see en.wikipedia.org/wiki/Electromagnetic absorption by water .
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The radiative transfer equation is coupled to the energy balance equation in the
fluid dynamics system, as follows:

(H)

(∂t + ~u(t, ~x) · ∇~x)T (t, ~x) =
cP
cV
κT∆~xT (t, ~x)

+ 4π
ρcV

∫ ∞

0

κν(1− aν)(Jν(t, ~x)−Bν(T (t, ~x)))dν

where ~u is the fluid velocity field, while κT is the (constant) heat diffusivity. The
fluid is assumed to be incompressible with constant density ρ, while cV and cP
are respectively the specific heats of the fluid at constant volume and at constant
pressure. Viscous heating is neglected in equation (H) — for instance if |~u| ≪ 1.

1. Stratified Radiative Transfer

In (RT), let ~x = (x, y, z) ∈ Ω = O × (0, Z) where z ∈ (0, Z) is the height, while
(x, y) ∈ O are the horizontal variables. Consider a steady problem where

|∂xIν(t, ~x, ~ω)|+ |∂yIν(t, ~y, ~ω)| ≪ |∂zIν(t, ~x, ~ω)| ,
Setting µ := ωz, one can average out the variables ωx, ωy, and define

Iν(~x, µ) :=
∫ 2π

0

Iν(~x, (sin θ cosα, sin θ sinα, cos θ))
dα
2π , Jν(~x)=

∫ 1

−1

Iν(~x, µ)dµ2 .

The steady, stratified Radiative Transfer with heat convection system is
(SSRT )







(µ∂z + κν)Iν(~x, µ) = κνaνJν(~x) + κν(1− aν)Bν(T (~x)) ,

(~u(~x) · ∇~x − cP
cV
κT∆~x)T (~x) =

4π
ρcV

∫ ∞

0

κν(1− aν)(Jν(~x)−Bν(T (~x)))dν .

This system is supplemented with the boundary conditions

(BC)







Iν(x, y, 0, µ) = µQ+
ν , Iν(x, y, Z,−µ) = µQ−

ν , 0 < µ < 1 ,

~u
∣

∣

∣

∂Ω
= 0 ,

∂T

∂n

∣

∣

∣

∂Ω
= 0 .

One can solve the radiative transfer equation for Iν with given temperature field,
and average in µ to obtain Jν , which is then inserted in the heat convection
equation. This leads to the following iterative scheme, for n ≥ 1:

Jn
ν (~x) = Sν(~x) +

∫ Z

0

κν

2 E1(κν |z − ζ|)(κνaνJn−1
ν +κν(1−aν)Bν(T

n−1))(x, y, ζ)dζ ,















(~u(~x) · ∇~x − cP
cV
κT∆~x)T

n(~x) = 4π
ρcV

∫ ∞

0

κν(1− aν)(J
n
ν (~x)−Bν(T

n(~x)))dν ,

∂T

∂n

∣

∣

∣

∂Ω
= 0 ,

where E1(τ) :=
∫∞

τ
e−s

s ds for all τ > 0, assuming that

T 0 ≡ 0 , J0
ν (~x) = Sν(~x) :=

1
2

∫ 1

0

(e−κνz/µQ+
ν (x, y) + e−κν(Z−z)/µQ−

ν (x, y))µdµ .
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Theorem A [1]. Assume that 0 ≤ Q±
ν ≤ Bν(TM ), while 0 ≤ aν ≤ aM < 1 and

0 < κm ≤ κν ≤ κM . Assume moreover that

γ := sup
ν>0

(

(1 − aν)

∫ κνZ/2

0

E1(θ)dθ

)

+ sup
ν>0

(

aν

∫ κνZ/2

0

E1(θ)dθ

)

< 1 .

(1) Then one has

0 ≤ Sν = J0
ν ≤ . . . ≤ Jn

ν ≤ Jn+1
ν ≤ Bν(TM ) , 0 = T 0 ≤ . . . ≤ T n ≤ T n+1 ≤ TM .

(2) The sequence (Jn
ν , T

n) converges exponentially fast to a solution (Jν , T ) of
(SSRT) with (BC):

∫

Ω

∫ ∞

0

(|Jν − Jn
ν |+ κν(1− aν)|Bν(T )−Bν(T

n
ν )|)(~x)dνd~x

≤ γn|Ω|
1−γ (1 + 1

κm(1−aM ) )

∫ ∞

0

κν(1 − aν)Bν(TM )dν .

(3) There exists at most one (weak) solution of (SSRT) with (BC) such that Iν ≥ 0
a.e. on Ω× (−1, 1)× (0,+∞) and 0 ≤ T ∈ L∞(Ω).

Several numerical applications of Theorem A are presented in [1].

2. Coupling Radiative Transfer with the Boussinesq System

Since 1/c≪ 1, we may consider a quasi-static coupling of RT with the Boussinesq
system, with gravity field ~g, and thermal expansion coefficient α:
(RTB)











~ω · ∇~xIν + ρ̄κ̄νIν = ρ̄κ̄νaνJν + ρ̄κ̄ν(1− aν)Bν(T ) ,

(∂t + ~u · ∇~x)~u = −∇~x(P/ρ̄) + µF∆~x~u+ (1− α(T − T̄ ))~g , div~x~u = 0 ,

(∂t + ~u · ∇~x)T = κT∆~xT + 4π
ρcP

∫∞

0
κν(1 − aν)(Jν −Bν(T ))dν .

Assume that this problem is posed on a smooth domain Ω of R3, with unit
outward normal ~n~x at ~x ∈ ∂Ω, with boundary conditions

(BC′) Iν(t, ~x, ~ω) = Ibν(~x, ~ω) , ~ω · n~x < 0 , ~u
∣

∣

∣

∂Ω
= 0 , T

∣

∣

∣

∂Ω
= T b ≡ T b(~x) ,

and initial conditions

(IC) ~u
∣

∣

∣

t=0
= ~uin , T

∣

∣

∣

t=0
= T in .

The buoyancy term in the Boussinesq equation couples the heat and the motion
equations, and precludes using the monotonicity argument of the preceding section.
The following result is based on a priori “energy” estimates.

Theorem B [2]. Let T in ∈ H1(Ω) satisfy the boundary condition T in
∣

∣

∣

∂Ω
= T b,

and let ~uin ∈ H1
0 (Ω) satisfy div~x~u

in = 0. Assume that there exist Tm, TM ∈ R s.t.

0 < Tm ≤ T b ≤ TM and Bν(Tm) ≤ Ibν ≤ Bν(TM ) .
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Then there exists some finite time τ > 0 and a unique strong solution of the
system (RTB) with boundary conditions (BC’) and initial conditions (IC) on the
time interval [0, τ). This solution satisfies ~u ∈ L∞(0, τ ;H1

0 (Ω)) ∩ L2(0, τ ;H2(Ω)),

0 < Tm ≤ T b ≤ TM , and Bν(Tm) ≤ Ibν ≤ Bν(TM ) .
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Primitive equations coupled with moisture dynamics and justification

of hydrostatic balance

Jinkai Li

(joint work with S. Hittmeir, R. Klein, E. Titi, G. Yuan)

In this talk we will present some recent results on the well-posedness of the cou-
pled system of the primitive equations with the moisture system for the warm
cloud. Multi-phases and phase changes are taken into consideration and both the
simplified case and the thermodynamically refined case will be considered. For the
simplified case, we assume that the dry air and water vaper have the same gas con-
stants and heat capacities and ignore the heat capacity of the liquid water. Some
results rigorously justifing the hydrostatic approximatoin from the Navier-Stokes
equations to the primitive equations in both the frameworks of strong solutions
and z-weak solutions will also be presented.

On the way to the limit: time-parallel algorithms for oscillatory,

multiscale PDEs

Beth A Wingate

(joint work with J. Rosemeier, T. Haut, T. Andrews, C. Cotter, H. Yamazaki)

This work focuses on phase averaging techniques, inspired by the method of fast
singular limits, for taking large time steps in time-parallel time stepping methods.
We briefly introduce time-parallel time stepping. We discuss a proof of ’parareal’
convergence [1] whose ingredients include bounds from fast singular limits in the
case when epsilon -¿ 0 and arguments developed by Gander and Hairer [3]. Second,
we discuss the more general case, when epsilon finite (and not necessarily small)
where we have a new proof of how the combination of mapping and phase averaging
works as a coarse propagator for parareal [2]. We give a few examples. Finally,
we end with a brief outline of 3 new lines of inquiry: a proof of convergence for
multi-level parareal [4] (with Juliane Rosemeier), alternate mapping to capture
more phase averaging (with Tim Andrews). Finally, we show a first explorations
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of this type of mapping and averaging on the sphere [5] with Hiroe Yamazaki and
Colin Cotter.
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On singular limits for the Rayleigh-Benard problems

Eduard Feireisl

(joint work with P. Bella, F. Oschmann)

We consider a general compressible viscous and heat conducting fluid confined
between two parallel plates and heated from the bottom. The time evolution
of the fluid is described by the Navier-Stokes-Fourier system considered in the
regime of low Mach and Froude numbers suitably interrelated. The asymptotic
limit is identified as the Oberbeck-Boussinesq system supplemented with non-local
boundary conditions for the temperature deviation.
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Mathematisches Institut
Universität Leipzig
Postfach 10 09 20
04009 Leipzig
GERMANY

Dr. Ryo Takada

Graduate School of Mathematical
Sciences,
The University of Tokyo
Tokyo 153-8914
JAPAN



Mathematical Advances in Geophysical Fluid Dynamics 3003

Prof. Dr. Edriss S. Titi

Department of Applied Mathematics and
Theoretical Physics
Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Dr. Patrick Tolksdorf

Institut für Mathematik
Johannes Gutenberg-Universität Mainz
Geb.: 2413
Staudingerweg 9
55128 Mainz
GERMANY

Dr. Amjad Tuffaha

Department of Mathematics and
Statistics
American University of Sharjah
University City
P.O. Box 26666
- Sharjah -
UNITED ARAB EMIRATES

Prof. Dr. Beth Wingate

Department of Mathematics and
Statistics
University of Exeter
Harrison Building
North Park Road
Exeter EX4 4QF
UNITED KINGDOM

Prof. Dr. Michio Yamada

RIMS
Kyoto University
Oiwake-cho, Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN




