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Jan Schröer, Bonn

12 February – 18 February 2023

Abstract. This workshop was about the representation theory of quivers
and finite-dimensional (associative) algebras, and links to other areas of math-
ematics, including other areas of representation theory, homological algebra,
cluster algebras, algebraic geometry and singularity theory. Particularly ac-
tive topics included τ -tilting theory, algebras arising from surface triangula-
tions and the study of exact categories and their generalizations.

Mathematics Subject Classification (2020): Primary: 16Exx, 16Gxx, 16L60, 16W50, 18Exx,

18Gxx; Secondary: 13Dxx, 13F60, 15Axx, 20Cxx, 14Lxx, 16Sxx, 17Bxx, 57K20.

Introduction by the Organizers

The representation theory of quivers and finite-dimensional algebras is a vibrant
part of modern representation theory. The workshop covered some core topics
such as tilting theory and homological conjectures for finite-dimensional algebras.
The numerous interactions with other mathematical subjects like Lie theory, al-
gebraic geometry, topology and combinatorics played an equally important role
and continue to be a source of inspiration. There were 29 lectures given at the
meeting, and what follows is a short survey of their main themes.

Exact categories, triangulated categories and generalizations. Many cat-
egories studied in representation theory are either exact or triangulated. These
two types have been unified as extriangulated categories by Nakaoka and Palu
in 2016. During the meeting several talks were dedicated to this notion. In
particular both Nakaoka and Palu gave talks on the generalization of classical
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constructions in this new setup: Palu reported on a joint work with Nakaoka and
Gorsky that introduced the notion of mutation in certain extriangulated categories
called 0-Auslander. This new definition unifies mutations defined in exact or tri-
angulated context such as cluster-tilting mutation, silting mutation or mutation
of co-t-structures. This moreover gives new examples of mutations arising beyond
the triangulated and exact context. Another classical construction arising both in
exact and triangulated contexts is the notion of localisation by a certain subcate-
gory: In his talk Nakaoka reported on joint work with Ogawa and Sakai giving a
general definition of localisation for extriangulated categories that unifies in par-
ticular Verdier localisation and Serre quotients. Pauksztello reported on joint work
with Coelho Simões on a generalisation of mutation and reduction for orthogonal
subcategories of triangulated categories, generalizing different mutations of simple
minded collections (in the non Calabi-Yau setting), and of simple minded systems
(in the Calabi-Yau setting).

Hanihara and Kalck were both exploring some triangulated equivalences linking
commutative and non commutative algebras. Hanihara gave some equivalences be-
tween singularity categories of graded commutative rings constructed from Segre
products and higher cluster categories of hereditary algebras, while Kalck de-
scribed the endomorphism algebra of some tilting object in the bounded derived
category of coherent sheaves on a (singular) weighted projective space.

Gratz and Krause were both interested in the lattice of thick subcategories of a
triangulated category. Gratz reported on joint work with Stevenson showing that
such a lattice is distributive if and only if it is isomorphic to the lattice of opens
in a topological space. Krause introduced the notion of commutativity for thick
subcategories, and focused his study to the subset of thick subcategories commut-
ing with all thick subcategories. This “center” of the lattice of thick subcategories
happens to be a sublattice which is distributive, and so relates with the results of
Gratz and to the theory of central support.

Representations of Quivers. An exciting recent development in the represen-
tation theory of quivers is the connection with dimension expanders, which are
an analogue in linear algebra of the notion of an expander graph. In his lecture,
Reineke used representations of quivers to obtain new quantitative results about
the existence of dimension expanders. Dimension expanders have also appeared in
the work of the participant Eckert in connection with representation amenability
of algebras.

Bozec and Schiffmann defined a polynomial counting the dimension of the space
of cuspidal functions on the moduli stack of representations of a quiver of a given
dimension vector, and conjectured that the polynomial is positive and integral,
generalizing Kac’s (now proved) conjecture. In a tour de force, Hennecart gave a
proof of this using BPS Lie algebras associated to cohomological Hall algebras of
preprojective algebras.

Geometry arises when one considers the action of the base change group GL(α)
on the space Rep(Q,α) of representations of a quiver Q of dimension vector α,
and even for Dynkin quivers there are long-standing questions; for example are
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orbit closures always normal varieties? One approach by Cerulli-Irelli, Feigin and
Reineke used a geometric construction based on what are now called projective
quotient algebras, and they made a conjecture which could have been one step
towards a proof of normality. Unfortunately, in his lecture Cerulli-Irelli gave
examples showing that the conjecture is false, so new ideas will be needed for
normality.

Vector spaces equipped with a nilpotent endomorphism and an invariant sub-
space can be viewed as certain representations of the quiver of type A2 over a
truncated polynomial ring k[x]/(xn). Kosakowska spoke about an ongoing project
to understand such representations, and in an elegant lecture, Kvamme gave a
result about separated monomorphism categories of representations of a quiver
over an abelian category, and used it to give a quiver-theoretic generalization of
the fact that the number of indecomposable configurations of a vector space over
Fp equipped an endomorphism of cube zero and an invariant subspace is equal to
the number of indecomposable configurations of a finite abelian group of exponent
p3 equipped with a subgroup.

Tilting Theory. For a finite dimensional algebra A which is representation-

finite, Plamondon introduced an affine scheme M̃A which encodes information
about 2-term complexes of projective A-modules. For type A quivers it describes
the configuration space of n points on P1, and more generally for Dynkin quivers

it is related to a cluster X -variety. He explained the face structure of M̃A as well
as a connection with F -polynomials.

The real Grothendieck group K0(projA)R of a finite dimensional algebra A has
a lot of information on the tilting theory of A. It contains a fan (called the g-fan)
whose cones correspond to 2-term silting complexes of A. It is complete if and only
if A is τ -tilting finite. Iyama showed that a complete fan of rank 2 can be realized
as a g-fan of some finite dimensional algebra if and only if it is sign-coherent.
Regarding each vector in K0(projA)R as a stability condition, one obtains the TF
equivalence relation. Asai introduced an open neighborhood of a rigid vector in
K0(projA), and applied it to study the rigid part of each vector in K0(projA)R.

Angeleri-Hügel and Laking discussed 2-term (large) cosilting complexes over
a finite dimensional algebra A, which correspond bijectively with torsion classes
in modA. They are also in bijection with pairs (Z, I), where Z is a rigid set of
indecomposable pure-injective modules and I is a set of indecomposable injec-
tive modules, generalizing support τ−1-tilting pairs. They characterized mutable
points of (Z, I) as the isolated points in the induced topology of the Ziegler topol-
ogy, and showed that the mutation at such points is uniquely determined. These
results are illustrated with examples coming from cluster-tilted algebras of type

Ã.
A d-cluster tilting subcategory of an abelian category is a d-abelian category

(Jasso), and a dZ-cluster tilting subcategory of a triangulated category has a
canonical structure of a (d+2)-angulated category (Geiss-Keller-Oppermann). The
notion of d-torsion classes in a d-abelian category was introduced by Jorgensen.
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Treffinger explained recent results on d-torsion classes in a d-cluster tilting subcat-
egoryM. Among others, d-torsion classes are precisely subcategories closed under
d-extensions and d-quotients, and hence d-torsion classes in M form a complete
lattice. Moreover, d-torsion classes give rise to “support τd-tilting modules”.

Motivated by Auslander correspondence, Jasso characterized Auslander alge-
bras of (d + 2)-angulated categories in terms of twisted periodic algebras. He
also gave an enhanced version by characterizing dg algebras which are dZ-cluster
tilting objects in their perfect derived categories in terms of minimal A∞-algebra
structure.

Algebras arising from surfaces. There is a deep link between the combina-
torics of triangulations of surfaces, the representation theory of certain classes
of finite-dimensional algebras, and Fomin-Zelevinsky cluster algebras (these are
combinatorially defined commutative algebras which arose from the desire to get
a better understanding of Lusztig’s canonical bases of quantum groups).

Fomin-Zelevinsky cluster algebras can be divided into three types: cluster-
finite, mutation-finite and mutation-infinite. Work of Fomin-Shapiro-Thurston
(2008) combined with Felikson-Shapiro-Tumarkin (2012), shows that mutation-
finite cluster algebras arise from triangulations of marked oriented surfaces (up to
a short list of exceptions). The associated Jacobian algebras are of tame represen-
tation type, and they are related to several important classical classes of algebras
(Brauer graph algebras, gentle algebras and quaternion algebras). The modules
over these Jacobian algebras can be parametrized by curves on the marked sur-
face. The intersection pattern of curves leads to information on the dimension of
homomorphism and extension spaces between the corresponding modules.

Qin presented his ground breaking results on the connection between different
bases of cluster algebras arising from surfaces. He showed that the bracelet basis
(parametrized by certain curves on the surface) of these clusters algebras coincides
with the set of theta functions studied by Gross, Hacking, Keel and Kontsevich.

Schroll talked on the braid group action on full exceptional sequences in the
topological Fukaya category of marked surfaces. Bondal and Polishchuk conjec-
tured that this action is always transitive. Schroll presented a class of counterex-
amples, where the braid group acts with infinitely many orbits.

Baur discussed how the class of string algebras arises from labelled tilings of
surfaces. This generalizes the realization of gentle algebras via triangulations of
surfaces. Labardini-Fragoso presented a different generalization by relating marked
surface with orbitfold points and the class of semilinear clannish algebras. This
can be seen as a first step towards the categorification of cluster algebras which
are skew-symmetrizable but not skew-symmetric.

Further topics. Given a real Lie group and a maximal compact subgroup of its
complexification, one can define a category of Harish-Chandra modules, and in
classical work by Bernstein and others, it was shown that the classification of such
modules reduces to the representation theory of suitable associative algebras. For
example Gelfand and Ponomarev’s 1968 classification of Harish-Chandra modules
for SL2(C) led to the classification of modules for string algebras. The classification
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for SL2(R) is more complicated, but known; in his lecture Burban spoke about the
modules for the associative algebras corresponding to Harish-Chandra modules
arising from automorphic forms.

Marczinzik has made numerous contributions to the study of homological prop-
erties of algebras, and in his lecture he presented more examples, including char-
acterizing the lattices whose incidence algebras are Auslander regular as those
which are distributive, and a solution to a question by Green characterizing the
Koszul duals of Auslander algebras. Sen spoke about his work on Nakayama al-
gebras, and the question of which are higher Auslander algebras. Conde spoke
about a theorem of Koenig, Külshammer and Ovsienko showing that up to Morita
equivalence every quasi-hereditary algebra has an exact Borel subalgebra, and her
work determining which Morita representative one needs to take. Bobiński pre-
sented his short proof of a result of Jaworska-Pastuszak and Pastuszak showing
that the Krull-Gabriel dimension of a cluster tilted algebra coincides with that of
the corresponding hereditary algebra.
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Abstracts

Expander representations

Markus Reineke

1. Dimension expanders

Consider the following result in linear algebra:
Let k be an algebraically closed field. For every finite-dimensional k-vector space
V , there exist linear operators F,G ∈ End(V ) such that for all nonzero subspaces
U ⊂ V with dimU ≤ 1

2 dimV , we have

dim(U + F (U) +G(U)) >
1

2
(5−

√
5) · dimU.

This was proved without the explicit constant in [1], and reproved with determina-

tion of the (optimal) constant (5−
√
5)/2 in [2]. The fact that the free algebra in

two generators admits simple representations on arbitrary finite-dimensional vec-
tor spaces can be reformulated as existence of operators F,G ∈ End(V ) such that
dim(U + F (U) +G(U)) > dimU for all nonzero proper U ⊂ V ; the above state-
ment can be seen as a quantitative version of this. In fact, the claimed property is
Zariski-open in the matrix entries of F and G, so that almost all pairs of operators
have this property. However, the proof in [2] is completely nonconstructive.

2. Expander representations

Let Q be a finite acyclic quiver, and let µ = Θ( )
κ( ) : NQ0 \0→ Q be a slope function

on Q. A finite-dimensional representation V of kQ is called stable if µ(U) < µ(V )
for all nonzero proper subrepresentations U ⊂ V . We consider a quantitative
version of stability:

For δ ∈]0, 1[ and ε > 0, the representation V is called a (δ, ε)-expander if for all
nonzero subrepresentations U ⊂ V with κ(U) ≤ δ ·κ(V ), we have µ(U) ≤ µ(V )−ε.
The pair (Q,µ) is said to exhibit uniform expansion if for all δ ∈]0, 1[ there exists
ε > 0 and an unbounded (with respect to dimension) family of (δ, ε)-expanders.

It is easily observed that V is stable if and only if, for every δ ∈]0, 1[, V is a (δ, ε)-
expander for some ε > 0. It also follows from the known representation theory of
extended Dynkin quivers that (Q,µ) exhibiting uniform expansion forces Q to be
wild.

We conjecture that, conversely, every wild quiver Q admits a stability µ such that
(Q,µ) exhibits uniform expansion. This can currently be proved for a special class
Qa,b of bipartite quivers. It includes the three-arrow Kronecker quiver K3, and
expander representations (id, F,G) : V → V of K3 can be used to prove the above
theorem.
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3. Methods

For two dimension vectors e ≤ d for Q, we write e →֒ d if every representation
of dimension vector d admits a subrepresentation of dimension vector e. By a
theorem of Schofield and Crawley-Boevey, this can be characterized inductively in
terms of the Euler form 〈 , 〉 of Q; namely, e →֒ d holds iff 〈e′,d− e〉 ≥ 0 for all
e′ →֒ e.

In particular, e →֒ d implies 〈e,d−e〉 ≥ 0. For the quiversQa,b and an unbounded
class of dimension vectors d, this quadratic condition on e can be used to establish
that, for every δ ∈]0, 1[, there exists ε > 0 such that µ(e) ≤ µ(d) − ε whenever
e →֒ d and κ(e) ≤ δ ·κ(d). Choosing general representations V of these dimension
vectors d then proves uniform expansion.

References

[1] A. Lubotzky, E. Zelmanov, Dimension expanders, J. Algebra 319 (2008), no. 2, 730–738.
[2] M. Reineke, Dimension expanders via quiver representations, Preprint 2022.

Lattices and thick subcategories

Sira Gratz

(joint work with Greg Stevenson)

Given an essentially small triangulated category T , we are interested in studying
its thick subcategories, that is its triangulated subcategories which are closed under
taking direct summands. These are precisely the subcategories that occur as ker-
nels of exact functors between triangulated categories, and are as such crucial to
understand when studying localisations. We denote the set of thick subcategories
of T by Thick(T ).

Famously, the poset Thick(T ) forms a complete lattice under inclusion, that is,
it has arbitrary meets and joins, where pair-wise meets for S, T ∈ Thick(T ) are
given by

S ∧ T = S ∩ T

and paire-wise joins are given by

S ∨ T = thick(S, T ),

the smallest thick subcategory containing both S and T .
In classical geometric examples, the lattice Thick(T ), or a distinguished sub-

lattice thereof, is controlled by a space, that is, it can be interpreted as the lattice
O(X) of open subsets of a topological space X , i.e. it is a spatial frame. The
philosophy of studying thick subcategories through the lense of topology and ge-
ometry has been explored fruitfully in the field of tensor triangular geometry: In
a tensor triangulated category, the lattice of radical thick tensor ideals is a spatial
frame.
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Distributivity. In many representation theoretic examples, the lattice of thick
subcategories behaves very differently to that of a lattice of opens. As a bare
minimum, a lattice of open subsets of a topological space is distributive, that is,
for any open subsets U, V and W we have

U ∩ (V ∪W ) = (U ∩ V ) ∪ (U ∩W ).

Many classical examples from representation theory do not satisfy this distribu-
tivity condition. In fact, the existence of an exceptional pair (E1, E2) in T , such
that there exists a non-trivial map of some degree from E1 to E2 prohibits the
Thick(T ) from being distributive. On the other hand, distributivity is enough to
guarantee an a priori much stronger property.

Theorem ([GS22]). Let T be an essentially small triangulated category. Then
Thick(T ) is distributive if and only if it is a spatial frame.

Approximation by spaces. By the above, we know that whenever Thick(T ) is
distributive, then T is, in terms of its thick subcategories, controlled by a topo-
logical space, and we can study its structure in geometric and topological terms.
However, it does not provide any insight for the non-distributive case. We provide
two free constructions of a topological space associated to any essentially small
triangulated category.

Denote by tcat the category of essentially small triangulated categories and
exact functors, and by Sob the category of sober topological spaces with continuous
maps.

Theorem 1.1 ([GS22]). There is a functor Φ: tcatop −→ Sob such that for any
essentially small triangulated category K, there is a poset map

fK : Thick(K) −→ O(Φ(K))

preserving arbitrary joins, and the pair (O(Φ(K)), fK) is universal, in the sense
that any other poset map g : Thick(K) −→ F preserving arbitrary joins, where F
is a spatial frame, factors through fK.

Concretely, the space Φ(K) can be defined as the set CjSLat(Thick(K),2) of
poset maps preserving arbitrary joins from T (K) to the lattice 2 = O({∗}) under
the topology given by the subbasis Uℓ = {p ∈ CjSLat(Thick(K),2) | p(ℓ) = 1} for
all ℓ ∈ Thick(K).

The space Φ(K) is a successful spatial approximation ofK in many ways: It is a
free, universal, and fully functorial construction. Alas, in the case where Thick(K)
is distributive, we do not in general recover the desired space, i.e. in general the
sober space controlling Thick(K) is properly contained in Φ(K).
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Example 1.2. Let k be a field and consider K = Db(k × k). Its lattice of thick
subcategories is the distributive lattice

0

M = 〈(k, 0)〉 N = 〈(0, k)〉

K

and O(Φ(K)) is consequently computed as

UM ∩ UN

UM UN

U1

U0 = ∅

X

Note that we have, canonically, Φ(K) = Thick(K). This is indeed true for all
K ∈ tcat.

We can fix the issue of losing accuracy in case that Thick(K) is distributive.
However, we do so at the cost of full functoriality. Denote by CLat(Thick(K),2) the
set of poset maps preserving arbitrary joins and finite meets from Thick(K) to 2.
We endow this with a topology with basis Uℓ = {p ∈ CLat(Thick(K),2) | p(ℓ) = 1}
for ℓ ∈ Thick(K).

Theorem 1.3 ([GS22]). For any K ∈ tcat the space

Spcnt(K) = CLat(Thick(K),2)

is sober and satisfies an appropriate universal property.

If Thick(K) is distributive, then O(Spcnt(K)) ∼= Thick(K) as desired. Further-
more, we have a natural comparison map from Spcnt(K) to Φ(K) as well as to
several spectral constructions in sufficiently nice settings, such as to the Balmer
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spectrum [Bal05], the noncommutative spectrum [NVY19] and Matsui’s spectrum
[Mat19].

However, we note that Spcnt(K) can be empty.

Example 1.4. Let k be a field. Let K = Db(mod kA2) be the bounded derived
category of finitely generated right kA2-modules. Then Thick(K) is the lattice

0

〈P1〉 〈P2〉 〈S2〉

K

and CLat(Thick(K),2) = ∅.
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Derived Endomorphism Algebras in Higher Auslander–Reiten Theory

Gustavo Jasso

(joint work with Fernando Muro)

Let k be a field and A a finite-dimensional algebra over k. Suppose that A is of
finite representation type, that is the category mod(A) of finite-dimensional (right)
A-modules admits an additive generator M , say. The algebra Γ := EndA(M) of
endomorphisms of M is then an Auslander algebra, that is Γ has global dimension
at most 2 and dominant dimension at least 2 [Aus71]. The basic paradigm of
Auslander–Reiten Theory is that the minimal projective resolutions of simple Γ-
modules of projective dimension 2 (the largest possible) correspond to almost-
split sequences in mod(A) [AR75]. More generally, if d ≥ 1 and M is a d-cluster
tilting A-module, then Γ is a (d+1)-dimensional Auslander algebra in the sense of
Iyama [Iya07], that is Γ has global dimension at most d+1 and dominant dimension
at least d+ 1. We remind the reader that M is a d-cluster tilting A-module if the
following conditions are equivalent for an indecomposable A-module X :
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• X is a direct summand of M .
• For all 0 < i < d, ExtiA(X,M) = 0.

• For all 0 < i < d, ExtiA(M,X) = 0.

Thus, a 1-cluster tilting A-module is simply an additive generator of mod(A) for
the latter two conditions are empty in this case. In this more general context,
minimal projective resolutions of simple Γ-modules of projective dimension d + 1
correspond to d-almost-split sequences in add(M) ⊆ mod(A), the additive closure
ofM in mod(A). Furthermore, up to Morita equivalence, the association (A,M) 7→
EndA(M) induces a bijection between:

(1) Pairs (A,M) consisting of a finite-dimensional algebra A and a d-cluster
tilting A-module M .

(2) (d+ 1)-Auslander algebras Γ.

The above bijective correspondence is known as the Auslander–Iyama Correspon-
dence [Aus71, Iya07].

Suppose now that Λ is a finite-dimensional selfinjective algebra; for simplicity,
assume Λ to be basic. We wish to interpret the minimal projective resultions of
simple Γ-modules of infinite (!) projective dimension in higher Auslander–Reiten-
theoretic terms. For this, it is necessary to enforce a certain periodicity on these
resultions. More precisely, we assume that there exists an exact sequence of Λ-
bimodules

0→ Λσ → Pd+1 → Pd → · · · → P2 → P1 → P0 → Λ→ 0

with projective middle terms, where σ is an algebra automorphism of Λ; in this
case we say that Λ is twisted (d+ 2)-periodic with respect to σ. Let S be a simple
Λ-module of infinite projective dimension; applying the tensor product functor
S⊗Λ− to the above exact sequence yields the first part of a projective resolution of
S that is ‘twisted periodic’ since the (d+2)-syzygy of S is again a simple Λ-module.
Thus, the minimal total projective resolution of S is completely determined by the
automorphism σ and the truncation

Qd+1 → Qd → · · · → Q2 → Q1 → Q0 → νQ0,

where Q0 is the projective cover of S and νQ0 is its injective hull. It is natural to
wish to interpret the latter complex as an almost split (d+2)-angle [IY08, GKO13].
Indeed, a theorem of Amiot [Ami07] in the case d = 1 and a generalisation by
Lin [Lin19] show that the pair (proj(Λ),−⊗Λ Λσ−1) admits a (d+ 2)-angulation,
where proj(Λ) is the category of finite-dimensional projective Λ-modules. Con-
versely, if proj(Λ) admits a (d + 2)-angulated structure, then Λ must be twisted
(d+ 2)-periodic with respect to some algebra automorphism [GSS03, GKO13,
Han20]. Furthermore, if Λ arises as the endomorphism algebra of a dZ-cluster tilt-
ing object in a triangulated category1 with finite-dimensional morphism spaces,
then proj(Λ) admits a (d + 2)-angulated structure [GKO13]. The main result
in [JM22] refines the above to the following more precise statement (the case
d = 1 was established in [Mur22]):

1That is a (basic) d-cluster tilting object that is isomorphic to its d-fold shift.
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Theorem (Derived Auslander–Iyama Correspondence). Let k be a perfect field.
There is a bijective correspondence between the following:

(1) Quasi-isomorphism classes of DG algebras A such that H0(A) is a basic
finite-dimensional algebra and A is a dZ-cluster tilting object of its perfect
derived category Dc(A).

(2) Equivalence classes of pairs (Λ, σ) consisting of a basic finite-dimensional
algebra Λ and σ is an algebra automorphism such that Λ is twisted (d+2)-
periodic with respect to σ.

The correspondence is given by A 7→ (H0(A), σ), where σ is a choice of algebra
automorphism of H0(A) such that H−d(A) ∼= H0(A)σ as H0(A)-bimodules.

The key ingredient in the proof of the theorem is the restricted universal Massey
product (rUMP) of length d+2 associated to any minimal A∞-model of A [Kad82,
Kel01, LH]. By definition, the rUMP of A is the Hochschild cohomology class

uA ∈ HHd+2,−d(H0(A), H∗(A))

that is the image of the class {md+2} ∈ HHd+2,−d(H∗(A), H∗(A)) of the higher
operation md+2 : H

∗(A)⊗d+2 → H∗(A)[−d] under the canonical map

HHd+2,−d(H∗(A), H∗(A)) −→ HHd+2,−d(H0(A), H∗(A)).

Indeed, a further main result in [JM22] is the following variant of the above theo-
rem:

Theorem. Let k be a perfect field. There is a bijective correspondence between
the following:

(1) Quasi-isomorphism classes of DG algebras A such that H0(A) is a basic
finite-dimensional algebra and A is a dZ-cluster tilting object of its perfect
derived category Dc(A).

(2) A∞-isomorphism classes of minimal A∞-algebras B with the following
properties:
• The underlying graded algebra of B is concentrated in degrees that are
multiples of d, and there exists an invertible element ϕ ∈ Bd.
• The rUMP uB ∈ HHd+2,−d(B0, B) is invertible in the Hochschild–
Tate cohomology (bigraded) algebra HH•,∗(B0, B).

The correspondence associates to a DG algebra A any of its minimal A∞-models.

It is interesting to investigate in more detail the existence of additional struc-
tures on the DG algebras that arise from the Derived Auslander–Iyama Corre-
spondence.

Conjecture. Let Λ be a basic finite-dimensional algebra that is twisted (d+ 2)-
periodic with respect to the Nakayma automorphism ν of Λ. Let A be any DG
algebra that corresponds to (Λ, ν) under the Derived Auslander–Iyama Correspon-
dence. Then, A admits a right d-Calabi–Yau structure in the sense of [KS06].

The conjecture is motivated by the existence of a right d-Calabi–Yau structure
on the Amiot–Guo–Keller cluster category [Ami09, Guo11, Kel05a] associated to
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the derived (d+1)-preprojective algebra [Kel11, IO13] of a d-representation finite
algebra [IO11], see [KL23] for an announcement of the proof of a much more
general theorem on Calabi–Yau structures on Drinfeld quotients.
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Mutation in hereditary extriangulated categories

Yann Palu

(joint work with Mikhail Gorsky, Hiroyuki Nakaoka)

Inspired from categorification of cluster algebras, the notion of mutation arises
in many different guises in representation theory. Our aim is to give a common
framework for as many of those mutations as possible. This framework takes the
form of some “nice” extriangulated structures.

Extriangulated categories [12] axiomatize extension-closed full subcategories of
triangulated categories, in a similar way that Quillen exact categories axiomatize
extension-closed full subcategories of abelian categories. An extriangulated cate-
gory is an additive category endowed with some biadditive functor, to be thought
of as an Ext1 bifunctor, and a class of diagrams, called conflations or extriangles, of

the form A  B ։ C
δ

99K, where δ is an element of the abelian group Ext1(C,A).
One might think of extriangles as conflations where the inflation (resp. deflation) is
not necessarily a monomorphism (resp. epimorphism) or alternatively as triangles
that cannot be rotated.

The prototypical example of an extriangulated category that carries a theory
of mutation is the homotopy category of complexes concentrated in degrees -1
and 0 whose components are finite-dimensional projective modules over a finite-
dimensional algebra. It is called the category of two-term complexes and denoted
K [−1,0](projΛ).

Definition: An extriangulated category C is 0-Auslander if:

(a) for anyX ∈ C, there is an extriangle P1  P0 ։ X 99K with P0, P1 projective;
(b) for any projective P , there is an extriangle P  Q ։ I 99K with Q projective-

injective and I injective.

In other words, an extriangulated category is 0-Auslander if it has enough pro-
jectives, global dimension at most one and dominant dimension at least one. An
analogous definition using injectives instead of projectives is equivalent to this
one. The category of two-term complexes is 0-Auslander, with projectives the
complexes concentrated in degree 0 and injectives the complexes concentrated in
degree -1. Its only projective-injective is 0.

Fix a Krull–Schmidt, 0-Auslander extriangulated category C and assume for
simplicity that it is Hom-finite with a basic projective generator P .

Definition: Let R ∈ C be basic and rigid, i.e. Ext1(R,R) = 0. Then R is called

(i) maximal rigid if, for any X , R⊕X being rigid implies X ∈ addR;
(ii) complete rigid if |R| = |P |;
(iii) tilting if there is an extriangle P  R0 ։ R1 99K with R0, R1 ∈ addR;
(iv) silting if C is its smallest full subcategory containing R and stable under

taking summands, extensions, cones of inflations and fibers of deflations.

Theorem 1: If R is rigid, then |R| ≤ |P | (whence the term complete), and all
four definitions above are equivalent.
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Theorem 2: Let R be basic and silting in C. Write R = R ⊕ X where X
is indecomposable and not projective-injective. Then there is a unique, up to
isomorphism, Y not isomorphic to X , such that R⊕ Y is silting. Moreover, there
is an exchange extriangle of the form X  E ։ Y 99K or Y  E′

։ X 99K, but
not both, with E,E′ ∈ addR.

Theorem 2 applies to various settings, recovering many notions of mutations.
We give several examples of such applications.

Cluster tilting [7, 3, 9] Let C be a Hom-finite cluster category, and fix a cluster

tilting object T ∈ C. Let ∆T be the collection of all those trianglesX → Y → Z
δ−→

ΣX , for which δ factors through addΣT . This relative structure appeared in [13]
in order to categorify the g-vectors of cluster algebras of finite type, and endow
C with an extriangulated structure by [8]. The extriangulated category (C,∆T ) is
0-Auslander with projectives addT and injectives addΣT . Its silting objects being
precisely the cluster tilting objects, Theorem 2 recovers cluster tilting mutation.
More generally, relative tilting mutation can be recovered in a similar way.

Two-term silting [2, 10] Let Λ be a finite-dimensional algebra. The extriangulated
category K [−1,0](projΛ) is 0-Auslander and its silting objects coincide with the
so-called two-term silting complexes, whose theory of mutation is thus recovered
by Theorem 2.

Intermediate co-t-structures [6] Let D be a triangulated category with a co-t-
structure whose co-heart we denote by S. Its extended co-heart, the full subcate-
gory C = S ∗ΣS, is a 0-Auslander extriangulated category. Under the assumptions
of Theorem 2, and combining it with results from [15] and [1], we recover mutation
of intermediate co-t-structures.

The non-kissing complex [11, 5, 14] Thomas MCConville generalized the flip of
triangulations of a convex polygon to some flip of non-kissing facets. Those are
maximal collection of pairwise non-kissing walks that only use NW to SE moves
inside a given grid. A kiss is a local configuration where walks meet but do not
cross. To each grid, we associate a (blossoming) quiver with relations (Q, I):

The maximal strings of this gentle quiver with relations are in bijection with
the walks and we define W to be the additive full subcategory of the category
of representations of (Q, I) generated by the walks. The exact category W is 0-
Auslander with projective-injectives the straight walks (i.e. the string modules
corresponding to the maximal paths in (Q, I)). Its indecomposable projectives are
the non-simple indecomposable projectives over (Q, I), and similarly for injectives.
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Its silting objects are precisely the non-kissing facets and therefore Theorem 2
recovers the flip of non-kissing facets.

New examples? Discussions with Thomas Brüstle and Ralf Schiffler during this
workshop showed that the mutation of maximal almost rigid modules [4] over a
quiver of Dynkin type An also follows from Theorem 2.

Question: Are there other examples of mutation theories that are recovered by
Theorem 2? Can Theorem 2 be applied to discover new mutations?

Disclaimer: The categorical structures arising from those examples are appar-
ently of very different natures. The category (C,∆T ) is a relative structure of a
triangulated category; the category K [−1,0](proj Λ) is extension-closed in a trian-
gulated category; the category W is an exact category, and its quotient by the
ideal of morphisms factoring through some projective-injective (which is relevant
from the combinatorial perspective) is neither exact nor triangulated. Being able
to consider all those situations at once shows how extriangulated structures can
be useful tools in representation theory.
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Polyharmonic modular forms and representations of the
Gelfand quiver

Igor Burban

(joint work with Claudia Alfes-Neumann and Martin Raum)

Recall that the group G = SL2(R) acts on complex upper half-plane H = {τ ∈
C
∣∣ Im(τ) > 0} by linear fractional transformations:

(
a b
c d

)
· τ =

aτ + b

cτ + d
. For

the coordinate τ = u + iv on H one considers the hyperbolic Laplace operator

∆ = −v2
(

∂2

∂u2
+

∂2

∂v2

)
, which acts on the space of smooth functions on H.

Let Γ ⊂ G = SL2(R) be a congruence subgroup (e.g. Γ = SL2(Z)) and

Γ
ρ−→ GL(V ) be its finite dimensional representation. The space of polyharmonic

modular forms of type (Γ, ρ) is defined as

H
(
Γ, (V, ρ)

)
=



H

f−→ V

∣∣∣∣∣∣

f is smooth
f(h · τ) = ρ(γ)

(
f(τ)

)
for allh ∈ Γ

∆d(f) = 0 for some d ∈ N depending on f



 .

From the analytic point of view of major interest is the case when (V, ρ) is the triv-
ial representation and d = 1. To any polyharmonic modular form f ∈ H

(
Γ, (V, ρ)

)

one can attach a Harish–Chandra (g,K)-module Mf , where g = sl2(C) and
K = SO2(R). Next, the category of Harish–Chandra modules HC(g,K) splits into
a union of blocks and Mf automatically belongs to the central block HC◦(g,K)
(the block containing the trivial (g,K)-module). It can be shown (see e.g. [1]) that
HC◦(g,K) is equivalent to the category of finite length nilpotent representations
of the Gelfand quiver

−
a−

** ⋆
b−

jj

b+

44 +

a+

tt a−b− = a+b+.

Summing up, we attach to any polyharmonic modular form f a representation Mf

of the Gelfand quiver. We prove that Mf is indecomposable and provide a full list
of representations of the Gelfand quiver having the form Mf for an appropriate
f ∈ H

(
Γ, (V, ρ)

)
. This classification generalizes the one of Bringmann and Kudla

[2], obtained for harmonic Maaß modular forms (i.e. those f ∈ H
(
Γ, (V, ρ)

)
for

which ∆(f) = 0). Our results are also valid for polyharmonic modular forms of
arbitrary weight, where other blocks of HC(g,K) do arise.
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Cluster tilting for Segre products

Norihiro Hanihara

1. Background

Let R be a commutative Gorenstein ring, which we assume to be complete local of
dimension d, containing a perfect residue field k. One is interested in the category
CMR of (maximal) Cohen-Macaulay modules overR, whose stable category CMR
is a triangulated category, and is moreover (d−1)-Calabi-Yau when R is an isolated
singularity. On the other hand, given a finite dimensional algebra A and an integer
n, one can construct an n-Calabi-Yau triangulated category as the n-cluster cate-
gory Cn(A), which is by definition the triangulated hull Db(modA)/−⊗L

ADA[−n]
of the orbit category of the derived category [2, 1, 11]. Recent extensive studies
on tilting theory for singularity categories (see [8, 6]) show that there are in fact
triangle equivalences

CMR ≃ Cd−1(A),

which gives a deep connection between representation theories of a commutative
ring R and of a finite dimensional algebra A.

We intend to study the category CMR in terms of the finite dimensional al-
gebras A, and the most fundamental class of such algebras leads to the following
definition of a new representation type.

Definition 1. Let R be a commutative complete Gorenstein local ring. We say
that R is of hereditary representation type if there exists a finite dimensional hered-
itary algebra H and a triangle autoequivalence F of Db(modH) such that there
is a triangle equivalence

CMR ≃ Db(modH)/F.

We refer to [5] for some variations of the definition. A priori we allow any
autoequivalence F , but in fact we shall give examples with the best choice of F .

We would like to give examples of commutative rings of hereditary representa-
tion type, which is a non-trivial task; to the best of the author’s knowledge only
two such examples from quotient singularities are known [10, 12, 13]. To achieve
this we give a general construction of cluster tilting objects for some commutative
rings R (Theorem 3), and apply Morita-type theorem for Calabi-Yau triangulated
categories (Theorem 5) to the stable category CMR, which yields that R is of
hereditary representation type.

2. Cluster tilting for Segre products

Let us start with the following notion which generalizes cluster tilting objects.

Definition 2 ([7, 9]). Let R be a commutative Cohen-Macaulay ring. A CT
module is M ∈ CMR satisfying the following.

addM = {X ∈ CMR | HomR(M,X) ∈ CMR}
= {X ∈ CMR | HomR(X,M) ∈ CMR}
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When R is a local isolated singularity of dimension d+1, then HomR(M,N) ∈
CMR if and only if ExtiR(M,N) = 0 for 0 < i < d, thus CT module is exactly
the d-cluster tilting object in CMR. Also, CT modules are special class of non-
commutative creprant resolutions [14] which are one of the important subjects in
birational geometry.

Now we state the general existence theorem of CT modules. Let k be a perfect
field, R′ =

⊕
i≥0 R

′
i and R′′ =

⊕
i≥0 R

′′
i be positively graded commutative Goren-

stein normal domains of dimension ≥ 2 such that R′
0 and R′′

0 are finite dimensional
over k. Let R = R′#R′′ be the completion of the Segre product

⊕
i≥0 R

′
i⊗R′′

i . It
follows from the computation of local cohomology groups over the Segre product
[3] that if R′ and R′′ has the same negative a-invariant then R is Gorenstein with
the same a-invariant.

Theorem 3. Suppose that R′ and R′′ have the same a-invariant −p. If R′ (resp.
R′′) has a CT module M (resp. M ′′) such that EndR′(M ′) (resp. EndR′′(M ′′)) is

positively graded, then
⊕p−1

l=0 M ′(l)#M ′′ is a CT module for R.

Note that the existence of a CT module whose endomorphism ring is positively
graded implies the a-invariant is negative, thus R is Gorenstein, and the direct
sum makes sense.

Trivially S ∈ CMS is a CT module when S is regular. As a very special case
of Theorem 3, we obtain the following result.

Corollary 4. Let Si = k[[xi,0, . . . , xi,di
]], 1 ≤ i ≤ n be the power series rings with

deg xi,j = ai,j > 0. Suppose that
∑di

j=0 ai,j is common for all 1 ≤ i ≤ n. Then the
Segre product S1# · · ·#Sn has a CT module.

3. Commutative rings of hereditary representation type

To give examples of commutative Gorenstein rings of hereditary representation
type, we need another result than the previous construction of cluster tilting mod-
ules in Theorem 3, which is the following Morita-type theorem for Calabi-Yau
triangulated categories.

Theorem 5 ([4]). Let T be an algebraic d-Calabi-Yau triangulated category with

a d-cluster tilting object T such that EndT (
⊕d−2

i=0 T [−i]) =: H is hereditary. Then
there exists a trianlge equivalence

T ≃ Db(modH)/τ−1/(d−1)[1]

for a naturally defined (d − 1)-st root of τ , provided every connected component
of H is representation-infinite.

Note that the right-hand-side is a Z/(d−1)Z-quotient of the usual d-cluster cate-
gory Cd(H) = Db(modH)/τ−1[d−1], which we therefore denote by C

(1/(d−1))
d (H).

From the construction of Theorem 3, we can find the following examples of
commutative rings to which one can apply Theorem 5, hence of hereditary repre-
sentation type.
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Theorem 6. (1) Let R = k[[x, y]](2)#k[[x, y]](2) with deg x = deg y = 1.
Then there exists a triangle equivalence

CMR ≃ C2(kQ), Q = ◦ +3 ◦ ◦ks .

(2) Let R = k[[x, y, z]]#k[[u, v]] with deg x = deg y = deg z = 1 and deg u = 1,
deg v = 2. Then there exists a triangle equivalence

◦ //

✾�$
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾

✾✾
✾✾

✾✾
◦

✆z	 ✆
✆✆
✆✆
✆

✆✆
✆✆
✆✆

✆✆
✆✆
✆✆

CMR ≃ C
(1/2)
3 (kQ), Q =

◦ // ◦ .

(3) Let R = k[[x, y, z]]#k[[x, y, z]] with deg x = deg y = deg z = 1. Then there

exists a triangle equivalence for the Ã5-quiver with triple arrows.
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❇�(
❇❇

❇❇
❇❇

❇❇ ❇❇
❇❇

✶
� 
✶✶
✶✶
✶✶
✶✶

✶✶
✶✶
✶✶
✶✶

✶✶
✶✶
✶✶
✶✶
◦

✌~� ✌
✌✌
✌✌
✌✌
✌

✌✌
✌✌
✌✌
✌✌

✌✌
✌✌
✌✌
✌✌⑤v� ⑤⑤
⑤⑤⑤⑤
⑤⑤
⑤⑤
⑤⑤

CMR ≃ C
(1/3)
4 (kQ), Q = ◦

❇�(
❇❇

❇❇
❇❇

❇❇ ❇❇
❇❇
◦

⑤v� ⑤⑤
⑤⑤⑤⑤
⑤⑤
⑤⑤
⑤⑤

◦ ◦
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Cluster algebras from surfaces and scattering diagrams

Fan Qin

(joint work with Travis Mandel)

Let S denote a compact oriented surface and M a finite set of marked points
in S. Σ = (S,M) is called a marked surface. On the one hand, by working
with the topology of (curves in) Σ, one can construct a skein algebra Sk(Σ). It
has the basis consisting of the bracelets (certain unions of curves). On the other
hand, by studying algebraic or geometric structures on Σ, one can construct the
cluster algebra A. By [GHKK18], A has the basis consisting of the theta functions
(arising from the study of mirror symmetry). It is known that Sk(Σ) = A. Roughly
speaking, our main result is the following:

Theorem 1 ([MQ23]). The bracelets coincide with the theta functions.

It has been long expected that the bracelets form the atomic basis for Sk(Σ), i.e.,
it is the “minimal positive basis”. We deduce this conjecture from the “atomicity”
properties of theta functions.

Corollary 2. The bracelets basis is atomic.

Let us provide more details. We consider curves on Σ such that they either
end at M (called arcs) or are closed and contained in S \M (called loops). We
impose the mild assumption that Σ has at least one triangulation ∆, by which we
mean a maximal collection of non-intersecting non-isotopic curves. A diagram D
is union of finitely many curves, which is considered up to homotopy fixing M and
the crossings. The skein algebra Sk(Σ) associated to Σ is defined as the quotient
module of ⊕DZD modulo the Kauffman’s skein relations, where D are understood
as the homotopic classes. Its multiplication is given by taking the union, i.e.,
D ·D′ := D ∪D′. The skein algebra Sk(Σ) is defined as the localization of Sk(Σ)
at the boundary arcs.

For example, let us consider an annulus with one marked point on each bound-
ary component. Its arcs without self-crossings are b1, b2, γk, see Figure 1. It has a
loop L without self-crossing.

Figure 1. An annulus with two marked points and its curves
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Figure 2. A skein relation on the annulus

Figure 3. Replace multiple loops by a bracelet with self-crossing

By the skein relation, we have γkγk+2 = b1b2 + γ2
k+1, ∀k, see Figure 2. It turns

out that the skein algebra is

Sk(Σ) =
Z[b±1 ,b±2 ]{γwk

k γ
wk+1

k+1 , LwL |wi ≥ 0}.

The monomials γwk

k γ
wk+1

k+1 are called cluster monomials. For any w-copy of
loops isotopic to L, we replace it by a closed loop with w− 1 self-crossing, called a
bracelet Bracw(L), see Figure 3. It is known that Bracw(L) = Tw(L), where Tw( )
is the w-th Chebyshev polynomial defined by

Tw(z + z−1) = zw + z−w, ∀w ≥ 0.

Then the bracelets form a basis of Sk(Σ) [MSW13][FG06].
Notice that (γ1, γ2, b1, b2) form a triangulation ∆. The corresponding seed s

consists of a quiver Q (dual graph of ∆) with 4 vertices, and generators ai on
the vertices (we denote a1 = γ1, a2 = γ2, a3 = b1, a4 = b2), see [FST08]. Define
xk =

∏
i→k ai/

∏
k→j aj .

As in [GHKK18], we consider a scattering diagramD = D(s) in the correspond-
ing Euclidean space. Let us continue this example. Then D is a collection of walls
in R4. Let fi denote the i-th unit vector. A wall is a pair (d, pd) such that:

• d is a codimension-1 polyhedral cone in R4 invariant under the translation
±f3, ±f4.
• pd is a formal series in Z[[x1, x2]], called the wall-crossing operator.

A base point Q is any chosen generic point in R4 \D. For any m ∈ Z4, one can
construct the theta functionϑm,Q from D. It takes the form amFm,Q, where Fm,Q

is a formal series in Z[[x1, x2]] with constant 1. For a different choice Q′, ϑm,Q and
ϑm,Q′ are related by wall-crossing operators along a path from Q to Q′.

By [GHKK18], the cluster monomials are theta functions. In this example, it
remains to check that Bracw(L) are theta functions. Denote δ = f1−f2. We show



422 Oberwolfach Report 7/2023

that, when Q is chosen close enough to the ray R>0δ,

ϑwδ,Q = aw + a−w + higher x-order terms.

Based on this, we can show the Chebyshev recursion:

ϑwδ,Q = Tw(ϑw,Q).

We also check that ϑδ,Q = L. Therefore, Bracw(L) = ϑwδ,Q as desired. This
example provides a hint for treating general surfaces (more techniques are needed).

Let us discuss the generality of our result. Assume Σ is connected without loss
of generality.

Theorem 3. When Σ is not a once-punctured torus, the quantum (tagged) bracelets
coincide with the quantum theta functions.

For this statement, we need to construct quantum (tagged) bracelets for general
surfaces: they are not well-defined in skein algebras if the surface has punctures,
but we can construct them in quantum cluster algebras.

Finally, let us remark how the result fails for a once-punctured torus: the tagged
arc represents an element in the cluster algebra, which is 4 times the corresponding
theta function.
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On braid group actions on full exceptional sequences

Sibylle Schroll

(joint work with Wen Chang and Fabian Haiden)

Full exceptional sequences play an important role as generators of triangulated
categories in many different contexts such as bounded derived categories of co-
herent sheaves and finite dimensional algebras and in the construction of Fukaya
Seidel categories. However, for a general triangulated category it is often difficult
to decide whether full exceptional sequences exist and if they do exist, how to
find all of them. In [9] an action of the braid group on the set of full exceptional
sequences in a triangulated category was given and in [2] it was conjectured that,
up to shift, this action should be transitive. There are many examples where
this has been shown to be true, namely the action has been shown to be transi-
tive for bounded derived categories of projective planes [9], del Pezzo surfaces [8],
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the Hirzebruch surface of degree two [11] and weighted projective lines [13, 14],
the bounded derived categories of hereditary algebras [6, 15] and the topological
Fukaya category associated to a graded compact oriented surface with boundary
and marked points (as constructed in [10]) in the case that the surface has genus
zero [5].

In this talk we report on [3] where we study the braid group action on the set
of full exceptional sequences in the topological Fukaya category F(S,M, ν) of a
graded compact oriented surface with boundary and marked points (S,M) of any
genus and where ν is a line field on S, that is an element in Γ(S,P(TS)). This
category was constructed in [10] where it was shown that it is triangle equivalent
to the subcategory of objects with finite total homology of the derived category
of a homologically smooth graded gentle algebra. Using results of [5] and [4], we
show that there are bijections between the following sets:

• the set of full exceptional sequences in F(S,M, ν) up to shift
• marked surfaces (S,M) where M ⊂ ∂S and M has at least two elements
• (S,M)-framed Hurwitz systems
• simple branched coverings of the complex unit disc with matching paths.

We further show that all four sets have a natural action of the Artin braid group
Bn on n strands where n is the rank of the Grothendieck group of F(S,M, ν) and
that these actions are compatible with the bijections above.

According to Birman-Hilden [1] the braid group Bn is isomorphic to the sym-
metric mapping class group of a regular branched covering of the disk with n
branch points. Recall that the symmetric mapping class group is the subgroup
of the mapping class group of the surface S consisting of isotopy classes of orien-
tation preserving diffeomorphisms of S which preserve the fibres of the branched
covering. We note that the regular simple branched coverings of the disc are the
branched double covers of the disc. Furthermore, the combined actions of the
braid group and the mapping class group act transitively on the double covers
of the discs with n branch points and with matching paths. Thus for branched
double covers of the disc with matching paths the question of the transitivity of
the mapping class group action on the set of full exceptional sequences reduces
to the question of when the mapping class group is isomorphic to the symmetric
mapping class group of the branched covering.

A recent result of Ghaswala and McLeay [7] answers precisely this question.
Namely, they show that the symmetric mapping class group of the branched double
cover of the disc branched over n points is isomorphic to the mapping class group
if and only if n ≤ 3. They further show that if n ≥ 4 then the symmetric mapping
class group is a subgroup of of infinite index of the mapping class group.

Combining the above results, we obtain a counter example to the conjecture
by Bondal and Polishchuk. Namely the braid group action on the set of full
exceptional sequences in F(S,M, ν) is not transitive if S is a surface with two
marked points and either g = 1 and two boundary components or g ≥ 2 and one
or two boundary components. Moreover, in these cases there are infinitely many
orbits.
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On projective quotient algebras

Giovanni Cerulli Irelli

(joint work with Markus Reineke, Marco Trevisiol and Grzegorz Zwara)

Let k be an algebraically closed field of characteristic zero and let A be a finite-
dimensional k-algebra of finite representation type. In [3] it was defined an algebra
BA called the projective quotient algebra associated with A. The algebra BA

is of global dimension at most two and it is endowed with two functors: the
restriction functor res : BA-mod→ A-mod and the intermidiate extension functor
c : A-mod → BA-mod. Given an A-module M we denote by M̂ = c(M). The
definition of the algebra BA generalizes a previous definition given in [1] in the
case when A = kQ is the path algebra of a Dynkin quiver. In this case we use

the shorthand BQ. We denote by d̂ := dimM̂ and by RB(d̂) the corresponding
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representation variety containing the point M̂ . We denote by OM and OM̂ the

orbits of M and M̂ under the structure groups, respectively. The importance of
the projective quotient algebra for us is given by the following theorem proved in
[1] and [3]: the restriction functor realizes the orbit closure of M as a geomtric

quotient of both RB(d̂) and of OM̂ . Thus, to prove that the orbit closure of M is

normal it is enough to prove that either RB(d̂) or OM̂ is normal. Let us restrict
our attention to the case of Dynkin quivers considered in [1]. In this case the

algebra BQ is presented by a quiver Q̂ with relations Î [2]. It is straightforward

to check that OM̂ is an irreducible component of RB(d̂), and that the number of

equations defining RB(d̂) equals the codimension of OM̂ . As a working hypothesis

in [2] we formulated the following conjecture: OM̂ = RB(d̂). If this is the case

then OM̂ is complete intersection and hence Cohen-Macauley. In this project we
find examples in type An-equioriented, D5 and A6 with alternating orientation
where the conjecture does not hold. On the positive side we find conditions on
a representation of An-equioriented, so that the conjecture holds. It is worth

noticing that M̂ is the minimal element of RB(d̂) with respect to the Hom-order,
and thus our (counter-)examples extend the class of representation varieties where
the degeneration order is not equivalent to the Hom-order.
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Quasi-hereditary algebras with exact Borel subalgebras

Teresa Conde

Quasi-hereditary algebras are modeled after the category O of a complex semi-
simple Lie algebra and their exact Borel subalgebras are the counterpart of a
Borel subalgebra.

Definition 1. A finite-dimensional algebra1 A is quasi-hereditary with respect to
a poset (Q0,≤) labelling the isoclasses of simple A-modules if there exist quotients
∆i of the projective indecomposable modules Pi satisfying the following conditions
for every i ∈ Q0:

(1) ker (Pi ։ ∆i) is filtered by modules ∆j with j > i;
(2) ker(∆i ։ Li) is filtered by simple modules of the form Lj with j < i.

1We fix an underlying field and assume throughout that it is algebraically closed.
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The quotients ∆i are called standard modules. Quasi-hereditary algebras may be
alternatively defined using a class of modules whose role is somewhat dual to that
of the standard modules. Such modules are called costandard and are denoted by
∇i. Quasi-hereditary algebras are quite abundant in mathematics and examples
include not only blocks of the category O, but also Schur algebras and all finite-
dimensional algebras of global dimension at most 2.

For the purpose of understanding the representation theory of quasi-hereditary
algebras, one may identify the algebras having the same structure. We call two
quasi-hereditary algebras equivalent if the corresponding categories of modules
filtered by standard modules are equivalent as exact categories, and denote by
[(A,Q0,≤)] the class of all quasi-hereditary algebras equivalent to a given quasi-
hereditary algebra (A,Q0,≤). By a result of Dlab and Ringel (see [4]), any two
equivalent quasi-hereditary algebras are Morita equivalent through an equivalence
of module categories that preserves the “quasi-hereditary structure” (i.e. maps
standard modules to standard modules).

Exact Borel subalgebras of quasi-hereditary algebras emulate the role of Borel
subalgebras of complex semi-simple Lie algebras.

Definition 2. A subalgebra B of a quasi-hereditary algebra (A,Q0,≤) is an exact
Borel subalgebra if:

(1) the induction functor A⊗B − is exact;
(2) the isoclasses of simple B-modules can be labelled by the poset (Q0,≤)

in such a way that (B,Q0,≤) becomes a quasi-hereditary algebra with
simple standard modules;

(3) A⊗B LB
i
∼= ∆A

i for every i ∈ Q0.

The subalgebra B is regular if the induction functor A⊗B− induces isomorphisms
ExtnB(L

B
i , L

B
j )→ ExtnA(A⊗B LB

i , A⊗B LB
j ) for every i, j ∈ Q0 and every n ≥ 1.

Not every quasi-hereditary algebra has an exact Borel subalgebra. However,
a result of Koenig, Külshammer and Ovsienko establishes the existence of exact
Borel subalgebras up to equivalence of quasi-hereditary algebras.

Theorem 3 ([5]). Let (A,Q0,✂) be a quasi-hereditary algebra. There exists at
least one algebra in [(A,Q0,✂)] that contains a basic regular exact Borel subalgebra.

Theorem 3 can be seen as an analogue of the following weak variant of the
Wedderburn–Malcev Theorem: in the class of finite-dimensional algebras Morita
equivalent to a given algebra A, there exists at least one that contains a basic
maximal semi-simple subalgebra. In this latter situation, any two algebras Morita
equivalent to A that contain a basic maximal semi-simple subalgebra must be
basic and therefore isomorphic, and there exists an isomorphism between them
which restricts to an isomorphism between the maximal semi-simple subalgebras.
Theorem 3 raises the following questions with respect to uniqueness, in the spirit
of Wedderburn–Malcev Theorem:

(1) Consider two equivalent quasi-hereditary algebras, both containing a ba-
sic regular exact Borel subalgebra. Do they need to be isomorphic? In
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other words, is a quasi-hereditary algebra in [(A,Q0,≤)] containing a basic
regular exact Borel subalgebra unique up to isomorphism?

(2) Let B be a basic regular exact Borel of some quasi-hereditary algebra in
[(A,Q0,≤)]. Is B unique up to isomorphism?

(3) Let (A,Q0,≤) and (A′, Q′
0,≤) be two equivalent quasi-hereditary algebras,

both containing a basic regular exact Borel subalgebra, say B and B′,
respectively. Does there exist an isomorphism f : A→ A′ that restricts to
an isomorphism between B and B′?

Naturally, an affirmative answer to (3) implies an affirmative answer to both
(1) and (2). In [2], a positive answer to (1) is provided.

Theorem 4 ([2]). Let (A,Q0,≤) be a quasi-hereditary algebra and let (li)i∈Q0 be
the sequence of integers defined recursively by the formula

li = 1 +
∑

j,k∈Q0

k≤j<i

lk[∇j : Lk] dim (HomA(∆j ,∆i))−
∑

j∈Q0
j<i

lj [∆i : Lj ],

where [X : L] denotes the multiplicity of simple A-module L as a composition

factor of X. Up to isomorphism, EndA(
⊕

i∈Q0
P⊕li
i )op is the unique algebra in

[(A,Q0,≤)] containing a basic regular exact Borel subalgebra.

A considerably stronger uniqueness result, providing an affirmative answer to
(3), is proved in [6]. A positive aspect of the approach in [2] is that it gives explicit
numerical answers using elementary methods and does not rely on calculations
with A∞-algebras, in contrast with results in [5, 1, 6]. In fact, the recursive
formula in Theorem 4 can be slightly modified to define a special matrix V[(A,Q0,≤)]

which turns out to be quite useful to derive information about regular exact Borel
subalgebras.

Theorem 5 ([2]). Let (A,Q0,≤) be a quasi-hereditary algebra. The following
hold:

(1) (A,Q0,≤) has a regular exact Borel subalgebra if and only if the linear sys-
tem of equations V[(A,Q0,≤)]x = (dimLA

i )i∈Q0 has a solution whose entries
are positive integers;

(2) all algebras in [(A,Q0,≤)] have a regular exact Borel subalgebra if and only
if the radical of every standard A-module is filtered by costandard modules;

(3) The Cartan matrix of any regular exact Borel subalgebra B of a quasi-
hereditary algebra in [(A,Q0,≤)] is given by the transpose of the product
([∇A

i : LA
j ])i,j∈Q0 × V[(A,Q0,≤)].

An interesting aspect of the matrix V[(A,Q0,≤)] (and of exact Borel subalgebras in
general) is its compatibility with the inductive structure of the algebra (A,Q0,≤).
The next result is part of joint work in progress with Julian Külshammer.

Theorem 6 ([3]). Let (A,Q0,≤) be a quasi-hereditary algebra and let e ∈ A be
an idempotent supported in a subset Q′

0 of Q0. Assume that A-module A/AeA
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is filtered by standard modules and that its dual D(A/AeA) (regarded as an A-
module) is filtered by costandard modules. Then

V[(A,Q0,≤)] =

(
V[(A/AeA,Q0\Q′

0,≤)] 0
∗ V[(eAe,Q′

0,≤)]

)
.
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Functorially finite d-torsion classes and τd-rigid modules

Hipolito Treffinger

(joint work with Jenny August, Johanne Haugland, Karin Jacobsen,
Sondre Kvamme and Yann Palu)

In this report d is a positive natural number, A is a finite dimensional algebra
over a field K, modA is the category of finitely generated right A-modules and
all subcategories are supposed to be full. A subcategory X of modA is said to be
generating if for every A-module M there exists an epimorphism p : X →M where
X ∈ X . Dually, X is said to be cogenerating if for every A-module M there exists
a monomorphism i : M → X ′ where X ′ ∈ X . A morphism f : X → Y is called
left minimal if any endomorphism g of Y satisfying g ◦ f = f is an isomorphism.
The definition of a right minimal morphism is dual.

Given an object M ∈ modA we denote by |M | the number of isomorphism
classes of indecomposable direct summands of M . By addM we denote the cate-
gory of direct summands of direct sums of UA. Moreover, FacM is the category

FacM = {X ∈ modA: M ′ → X → 0 where M ′ ∈ addM}.
Let X be a subcategory of modA and let M be an object of modA. A right

X -approximation of M is a map fM : XM → M where XM ∈ X such that every
map g : X →M with X ∈ X factors through fM . If every object M ∈ modA has
a right X -approximation we say that X is a contravariantly finite. The definitions
of left approximations and covariantly finite subcategories are dual. A subcategory
is said to be functorially finite if it is both covariantly and contravariantly finite.
We start by recalling the definition of d-cluster tilting subcategories [I1, I2].
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Definition 1. A functorially finite generating-cogenerating subcategory M of
modA is d-cluster tilting if

M = {X ∈ modA | ExtiA(X,M) = 0 for all M ∈ M and all 1 ≤ i ≤ d− 1}
= {Y ∈ modA | ExtiA(M,Y ) = 0 for all M ∈ M and all 1 ≤ i ≤ d− 1}.

Note that if d = 1, the conditions of Definition 1 are empty and we obtain that
for every algebra A, modA is a 1-cluster tilting subcategory.

The study of the homological aspects of d-cluster tilting subcategories in module
categories is usually known as higher homological algebra. This is due to the fact
that they behave like a higher analogue of abelian categories. This was axiomatised
in [Ja] where the notion of d-abelian categories was introduced. Moreover, it was
also shown in [Ja] that every d-cluster tilting subcategory of an abelian category
is d-abelian. In particular, in any d-cluster tilting subcategory M the shortest
non-split exact sequences known as d-extensions, have (d + 2) terms and every
morphism inM admits a d-kernel and a d-cokernel. The reader is referred to [JK]
for more on higher homological algebra.

The main object of study in this report is that of functorially finite d-torsion
classes. The notion of a torsion classes was introduced in [D] for abelian categories
and adapted to d-cluster tilting subcategories of abelian categories in [Jø]. Instead
of giving the original definition of d-torsion classes we give as definition the char-
acterisation of d-torsion classes inside a d-cluster tilting subcategoryM⊂ modA
shown in [D], for the case d = 1, and [AHJKPT1], for the general case.

Definition 2. Let A be an algebra and let U be a subcategory of a d-cluster-tilting
M⊂ modA. Then U is a d-torsion class if and only if U the following conditions
are verified:

(1) U is closed under d-quotients, i.e., for every map f : M → U where U ∈ U
there exists a d-cokernel

M
f−→ U

f1−→ U1
f2−→ · · · fd−→ Ud −→ 0

such that Ui ∈ U for every i ∈ {1, . . . , d}.
(2) U is closed under d-extensions, i.e., for every d-extension

0→ U
f0−→ X1

f1−→ . . .
fd−1−−−→ Xd

fd−→ U ′ → 0

where U,U ′ ∈ U there exists a commutative diagram

0 U X1 · · · Xd U ′ 0

0 U U ′
1 · · · U ′

d U ′ 0

f0 f1 fd−1 fd

f ′
0 f ′

1
f ′
d−1 f ′

d

such that Ui ∈ U for every i ∈ {1, . . . , d}.
Remark 3. As a consequence of Definition 2 one can show that given a d-torsion
class U ⊂M, for every object M ∈M there exists a subobject UM ∈ U , known as
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the torsion subobject ofM with respect to U , such that the natural monomorphism
0→ UM →M is a minimal right U-approximation. In particular this implies that
every d-torsion class is contravariantly finite.

Fix a functorially finite d-torsion class U in M ⊂ modA and let f0 : A → UA
0

be the minimal U-left approximation. Then we can construct an exact sequence

A
f0−→ UA

0
f1−→ UA

1
f2−→ . . .

fd−1−−−→ UA
d−1

fd−→ UA
d −→ 0

where UA
i is the minimal U-approximation of coker fi−1 for every i ∈ {1, . . . , d}.

One can show that this sequence is actually a d-cokernel of f0 and, hence, that fd
is an epimorphism. Moreover, by construction, this is a minimal d-cokernel of f0,
which implies that given any other d-cokernel

A
f0−→ UA

0
g1−→ ŨA

1
g2−→ . . .

gd−1−−−→ ŨA
d−1

gd−→ ŨA
d −→ 0

of f0 we have that UA
i is a direct summand of ŨA

i for every i ∈ {1, . . . , d}. In
particular, it follows from Definition 2 that UA

i ∈ U for every i ∈ {1, . . . , d}. Set

UA =
⊕d

i=0 U
A
i .

Denote τd = τ ◦ Ωd−1, where Ω is the syzygy functor and τ is the Auslander-
Reiten translation in modA. If M ∈ modA is such that HomA(M, τdM) = 0 we
say that M is τd-rigid. In the case d = 1 we simply say that M is τ -rigid.

In the following result, due to [AS], for d = 1, and [AHJKPT2], for d > 2, we
compile several properties of UA and U .
Theorem 4. Let U be a functorially finite d-torsion class in M ⊂ modA. With
the notation above the following holds.

(1) UA is a τd-rigid module.

(2) UA is Extd-projective in U , i.e., ExtdA(UA, U) = 0 for every U ∈ U . More-

over, if Ũ ∈ U is Extd-projective in U then Ũ ∈ add(UA).
(3) U =M∩ FacUA.
(4) Let PU be the maximal basic projective module such that HomA(PU ,U) = 0.

Then |UA|+ |PU | = |A|.

In what follows, we say that a 1-torsion class is a simply a torsion class and we
denote it by T . Moreover the torsion subobject of an object M with respect to a
torsion class T is denoted by tM . The following result of [AJST] shows an intricate
relationship between d-torsion classes inside a d-cluster tilting subcategoryM and
the torsion classes inside the ambient module category modA.

Theorem 5. Let U be a d-torsion class in M ⊂ modA. Then there exists a
torsion class T ⊂ modA such that U =M∩T and UM = tM for every M ∈ M.

By fixing d = 1 in Theorem 4, for every functorially finite torsion class T we obtain
a τ -rigid module T = TA

0 ⊕ TA
1 such that T = FacT . Then we can combine this

with Theorem 5 to obtain a new way to get functorially finite d-torsion classes, as
shown by the following result.



Representation Theory of Quivers and Finite-Dimensional Algebras 431

Proposition 6. Let A be an algebra having a d-cluster tilting subcategory M
and let T = FacT a functorially finite torsion class in modA, where T is as above.
Suppose moreover that U =M∩T is a d-torsion class UM = tM for everyM ∈ M.
Then U is a functorially finite d-torsion class inM⊂ modA.

Suppose that we have a functorially finite torsion class T as in the previous
proposition. Since the d-torsion class U =M∩ T is functorially finite in modA
we can play the same game as before and consider the exact sequence

T
g0−→ UT

0
g1−→ UT

1
g2−→ . . .

gd−1−−−→ UT
d−1 −→ 0

where UT
0 is the minimal left U-approximation of T = TA

0 ⊕ TA
1 and UT

i is the
minimal U-approximation of coker gi−1 for every i ∈ {0, . . . , d − 1}. If we denote

by UT =
⊕d−1

i=0 UT
i , the following result of [AHJKPT2] shows a deep connection

between UT and UA.

Theorem 7. Let M be a d-cluster tilting subcategory of modA and let T be a
functorially finite torsion class such that U = M∩ T is a d-torsion class in M
with UM = tM for every M ∈M. Then, with the notation above, the module UT

is an Extd-projective in U =M∩ FacT . Moreover addUT = addUA.
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Derived categories of singular varieties and finite dimensional algebras

Martin Kalck

(joint work with Yujiro Kawamata, Carlo Klapproth, Nebojsa Pavic)

1. Introduction and motivation

Throughout this text, X denotes a projective variety over C.

Aim. Describe the bounded derived category Db(X) of coherent sheaves on X
using derived categories Db(R) := Db(mod R) of finite dimensional algebras R.

This has been achieved for projective spaces as a first example of tilting theory.

Example 1.1 (Beilinson 1978). Let X = Pn. There are triangle equivalences

Db(X) ∼= Db

(
EndX(

n⊕

i=0

O(i))
)
∼= 〈O, . . . ,O(n)〉 ∼= 〈Db(C), . . . , Db(C)〉,(1)

describing Db(X) as Db(R) for a finite dimensional algebra R (tilting), using a full
exceptional sequence and as a semiorthogonal decomposition (S.O.D), respectively.

Building on this, full exceptional sequences have been constructed for many
smooth varieties, e.g. by Hille & Perling, Kapranov, Kawamata, Kuznetsov.

However, singular projective (Gorenstein) varieties do not admit full exceptional
sequences, cf. [5] and also [8]. This motivates the following definition, which
generalizes both tilting (l = 1) and full exceptional sequences (all Ci ∼= Db(C)).

Definition 1.2 ([5]). A Kawamata semiorthogonal decomposition (KSOD) is an
(admissible) semiorthogonal decomposition

Db(X) = 〈C1, . . . , Cl〉,(KSOD)

where Ci ⊆ Perf(X) or Ci ∼= Db(Ri) for finite dimensional algebras Ri.

Remark 1.3. Kawamata initiated the study of KSODs for threefolds [9], which
was the starting point for our investigations in [5]. If X is singular, at least one
of the algebras Ri has infinite global dimension. The derived categories Db(Ri)
of these algebras capture the singular information of X and fit into Kuznetsov &
Shinder’s framework of ‘categorical absorption of singularities’ [7].

In the sequel, we describe known constructions of KSODs and also discuss ob-
structions to the existence of KSODs.

2. Constructions of Kawamata S.O.Ds and tilting

2.1. Curves.

Theorem 2.1 (Burban [1], cf. also [5]). Let X be a connected nodal curve with all
irreducible components isomorphic to P1. Then Db(X) has a tilting object if and
only if the dual intersection graph of X is a tree.
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2.2. Surfaces.

Theorem 2.2 (Karmazyn-Kuznetsov-Shinder [6]). Let X be a projective toric
surface. Then X has a Kawamata decomposition1

Db(X) ∼= 〈Db(R1), . . . D
b(Rn)〉,(2)

if and only if K0(D
b(X)) ∼= Zt. Moreover, in this case, (2) holds for finite dimen-

sional local C-algebras Ri
∼= Kri,si described explicitly in (4), see [2].

Definition 2.3. Tuples ā = (a0, . . . , ad) ∈ Z>0 define weighted projective varieties

P(ā) := Proj C[x0, . . . , xd], where deg xi = ai.(3)

The toric varieties P(ā) have dimension d and possibly cyclic quotient singularities.

Applying Theorem 2.2 to two-dimensional weighted projective varieties yields:

Example 2.4. Db(P(1, a, b)) = 〈Db(Kb,a), D
b(Ka,b′), D

b(C)〉,
for 1 ≤ a < b coprime, b′b ≡ 1 mod a and finite dimensional algebras given by

Kr,s
∼= C〈z1 . . . , zl〉


zβi

i for all i
zizj for i < j

zi

(
zβi−2
i

)(
z
βi−1−2
i−1

)
· · ·
(
z
βj+1−2
j+1

)(
z
βj−2
j

)
zj for i > j




,(4)

where r/(r − s) = [β1, . . . , βl] is the Hirzebruch–Jung continued fraction, see [2].

2.3. Higher-dimensional varieties. The following generalizations of Beilinson’s
Example 1.1 to singular weighted projective varieties (3) are a part of [3].

Theorem 2.5. There is an explicit tilting object on X = P(1d,m) for all m, d ≥ 1.

Theorem 2.6. Let Xd = P(1d, d). There is a Kawamata S.O.D

Db(Xd) = 〈Db(RXd
), Db(C), Db(C)〉,(5)

where RXd
is given by the following quiver Qd with relations

1 2 · · · d− 1
...

x11

x1d

...

x21

x2d

...

x(d−2)1

x(d−2)d

z(d−1)d

...
zij, i<j

z12

x(i+1)kxij − x(i+1)jxik = 0

x1jzkl + x1lzjk − x1kzjl = 0

zklx(d−2)j + zjkx(d−2)l − zjlx(d−2)k = 0

(CQd{zab | 1 ≤ a < b ≤ d}CQd)
2 = 0

for all 1 ≤ j < k < l ≤ d and 1 ≤ i ≤ d− 3

Remark 2.7. (a) There is a more general version of Theorem 2.6 for certain
varieties (including some non-rational varieties!) with a cyclic quotient singularity
1
d(1

d) as in P(1d, d), cf. [3].
(b) Theorems 2.5 & 2.6 yield equivalences between singularity categories Dsg(X) :=
Db(X)/Perf(X) and Dsg(R) := Db(R)/Kb(proj R), for finite dimensional algebras
R. In the special case of Gorenstein singularities, these singular equivalences have
also been obtained by Hanihara using a different approach.

1It is admissible if X is Gorenstein.
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3. Obstructions to Kawamata semiorthogonal decompositions

We state a special case of the main result in [4]. It indicates that odd-dimensional
varieties with hypersurface singularities typically do not admit KSODs.

Theorem 3.1. Let X be a projective Gorenstein variety over C. Assume that

(1) the dimension of X is odd.
(2) the bounded derived category of coherent sheaves Db(X) admits a KSOD.

The following implications hold for every isolated hypersurface singularity s of X:

(a) if s is an ADE-hypersurface singularity, then s is an A1-singularity.

(b) if Dsg(Ôs) ∼= Dsg(S) for a 3-fold Spec(S) admitting a small resolution of
singularities2, then s is an A1-singularity.

Remark 3.2. (1) A special case of Theorem 3.1 shows: if an odd-dimensional pro-
jective variety X with only ADE-hypersurface singularities admits a tilting object,
then X is nodal, i.e. all its singularities are of type A1.
(2) The key idea to prove Theorem 3.1 is to compare the singularity categories
of X and of finite dimensional Gorenstein algebras R, respectively. More pre-
cisely, we look at the quivers of the endomorphism algebras of special generators
called cluster-tilting objects. In Dsg(R) these quivers cannot have loops or 2-cycles,
whereas, in our setting, if the corresponding quivers in Dsg(X) contain arrows,
then they also have loops or 2-cycles3. Hence, these quivers contain no arrows,

which implies Dsg(Ôs) ∼= Dsg(A1). This shows that Ôs is an A1-singularity.
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Localization of extriangulated categories

Hiroyuki Nakaoka

(joint work with Yasuaki Ogawa, Arashi Sakai)

1. Introduction

Extriangulated category can be regarded as a common generalization of exact cat-
egories and triangulated categories. It is defined as an additive category, equipped
with some extra structure ([7]). One of the advantages to use extriangulated
categories is that this class is closed by some basic operations such as taking
extension-closed subcategories, ideal quotients, and relative theories. As localiza-
tion is another basic operation for additive categories, it will be natural to look
for a unified formulation of localizations of extriangulated categories.

In a collaboration with Yasuaki Ogawa and Arashi Sakai [6], we have shown
that the localization of an extriangulated category by a class of morphisms satis-
fying some conditions can be equipped with a natural, universal structure of an
extriangulated category. This construction unifies the Serre quotient of abelian
categories and the Verdier quotient of triangulated categories. In fact, it unifies
the following types of localizations involving abelian/exact/triangulated categories
known in the literature.

(i) Verdier quotient of a triangulated category [9].
(ii) Serre quotient of an abelian category.
(iii) Localization of an exact category by a percolating subcategory given by

Henrard, Kvamme and van Roosmalen [2].
(iv) Rump’s localization of an exact category [8] by a biresolving subcategory.
(v) Localization of an extriangulated category with respect to a Hovey twin

cotorsion pair [7]. This contains localizations of abelian/exact categories
with respect to nice model structures (abelian model structures by Hovey
[3],[4], exact model structures by Gillespie [1], whose counterpart in trian-
gulated categories is given by Yang [10]) as typical cases.

2. Main theorem

In the following let (C ,E, s) be an extriangulated category ([7, Definition 2.12]),

which we assume to be small for simplicity. If δ ∈ E(C,A) satisfies s(δ) = [A
x−→

B
y−→ C], we write as A

x
 B

y
։ C

δ
99K and call this sequence an s-triangle or

extriangle. The sequence A
x
 B

y
։ C is called a conflation, morphisms x, y are

called inflation and deflation, respectively. Let S be a class of morphisms in C

which contains all isomorphisms, closed by compositions and finite direct sums.
Take an ideal quotient p : C → C = C /[NS ], where we define NS to be the full
subcategory of C given by

NS = {N ∈ C | (N → 0), (0→ N) ∈ S }.



436 Oberwolfach Report 7/2023

Let L : C → C̃ be the localization of C by S = p(S ), and put Q = L◦p : C → C̃ .
Our main theorem is as follows.

Theorem 1 ([6, Theorem 3.5]). Let (C ,E, s) and S be as above. Assume that

S satisfies S = p−1(S ) and the following conditions.

(MR1) S satisfies 2-out-of-3 condition with respect to compositions.

(MR2) S is a multiplicative system.

(MR3) Let A
x
 B

y
։ C

δ
99K and A′

x′

 B′
y′

։ C′ δ′

99K be any pair of extriangles,

and suppose that a ∈ C (A,A′), c ∈ C (C,C′) satisfies aδ = δ′c. If a, c ∈ S ,

then there exists b ∈ S which makes

A B C

A′ B′ C′

x //
y

//

a
��

b
��

c
��

x′

//

y′

//

� �

commutative in C .
(MR4) {v ◦ x ◦ u | x is an inflation, u, v ∈ S } is closed by compositions. Dually

for deflations.

Then C̃ has a natural structure of an extriangulated category (C̃ , Ẽ, s̃) with a uni-

versal exact functor (Q,µ) : (C ,E, s)→ (C̃ , Ẽ, s̃).

As a brief sketch of the construction, for any pair of objects A,C, the abelian

group Ẽ(C,A) is given by the quotient set of

{(C t←− Z
δ

99K X
s←− A) | s, t ∈ S , δ ∈ E(Z,X)}

by some equivalence relation. For each equivalence class [ t \δ/ s ] ∈ Ẽ(C,A) to

which (C
t←− Z

δ
99K X

s←− A) belongs, the associated conflation A
Q(x◦s)−→ Y

Q(t◦y)−→
C in C̃ is given by using an extriangle X

x
 Y

y
։ Z

δ
99K in C . See [6] for details.

3. Relation to known constructions

Let N ⊆ C be a full additive subcategory closed by isomorphisms.

Definition 2. N ⊆ C is called a thick subcategory if it is moreover closed by
direct summands, and satisfies 2-out-of-3 condition for conflations.

We assume N ⊆ C is thick in the rest. Define classes of morphisms LN ,RN in C

by

LN = {f | there is a conflation X
f
 Y ։ N with N ∈ N},

RN = {f | there is a conflation N  X
f
։ Y with N ∈ N},

and let SN be the class of all finite compositions of morphisms in LN and RN .
We have NSN

= N . In [6], we have shown that SN satisfies the assumption of
Theorem 1 in each of the following two cases.
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Case A: N ⊆ C is biresolving, namely any object C in C admits a deflation N ։ C
and an inflation C  N ′ for some N,N ′ ∈ N .

Case B: N ⊆ C is percolating, namely any morphism f ∈ C (X,Y ) admits a fac-

torization f = i ◦ d through some N ∈ N where X
d
։ N is a deflation and

N
i
 Y is an inflation. Moreover we assume that N satisfies the following

technical conditions (a),(b).

(a) If f ∈ C (A,B) is a split monomorphism such that f is an isomorphism
in C , then there exist N ∈ N and j ∈ C (N,B) such that [f j] : A⊕
N → B is an isomorphism in C .

(b) Ker
(
C (X,A)

l◦−−→ C (X,B)
)
⊆ [N ](X,A) holds for any X ∈ C and

any l ∈ LN (A,B). Dually, Ker
(
C (C,X)

−◦r−→ C (B,X)
)
⊆ [N ](C,X)

holds for any X ∈ C and any r ∈ RN (B,C).

Remark 3. If C is an exact category, then the above definition of a percolating sub-
category agrees with the original definition in [2, Definition 2.8], and the technical
conditions are always satisfied.

If N ⊆ C is a biresolving thick subcategory as in the above Case A, then we
have the following ([6, Section 4.3]).

• SN = RN ◦ LN holds, and SN satisfies the assumption of Theorem 1.
• SN agrees with the set of monomorphic-epimorphic morphisms in C .

• C̃ becomes a triangulated category.

Example 4. Case A recovers the following.

(1) If C is triangulated, then any thick subcategory is biresolving and C̃ is
nothing but the Verdier quotient of C by N .

(2) If C is exact, then it recovers the localization of an exact category by a
biresolving subcategory given by Rump in [8].

(3) If C is a weakly idempotent complete extriangulated category equipped
with a Hovey twin cotorsion pair ((S, T ), (U ,V)), then we can associate
a biresolving thick subcategory N consisting of cones of morphisms in

{V f−→ S | V ∈ V , S ∈ S}. As above the resulting localization C̃ is
triangulated, which was also shown in [7, Theorem 6.20]. (We remark
that equivalence between condition (WIC) in [7, Condition 5.8] and weak
idempotent completeness is shown by Klapproth in [5, Proposition 2.7].)

If N ⊆ C is a percolating thick subcategory satisfying technical conditions as
in the above Case B, then we have the following ([6, Section 4.4]).

• SN = LN ◦ RN holds, and SN satisfies the assumption of Theorem 1.

• In general C̃ is extriangulated by Theorem 1. Moreover C̃ becomes exact
if N satisfies the following condition which is a bit stronger than (b).

(b)′ Ker
(
C (X,A)

x◦−−→ C (X,B)
)
⊆ [N ](X,A) holds for any X ∈ C and

any inflation x ∈ C (A,B). Dually, Ker
(
C (C,X)

−◦y−→ C (B,X)
)
⊆

[N ](C,X) holds for any X ∈ C and any deflation y ∈ C (B,C).
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For example if C is exact, this condition is trivially satisfied.

Example 5. Case B recovers the following. See [6, Section 4.4] for the detail and
other typical instances.

(1) If C is exact, then it recovers the localization of an exact category by a
percolating subcategory given by Henrard, Kvamme and van Roosmalen
in [2].

(2) In particular if C is abelian, it recovers the Serre quotient of C by N .
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Indecomposables in the separated monomorphism category

Sondre Kvamme

(joint work with Nan Gao, Julian Külshammer, Chrysostomos Psaroudakis)

1. Introduction

In this talk we consider a classical question in representation theory, namely to
determine the indecomposable objects in a given category. We are interested in
the separated monomorphic representations of a quiver, defined below.

Let Q = (Q0, Q1) be a finite acyclic quiver with vertices Q0 and arrow Q1, and
let A be an abelian category. For an arrow α ∈ Q1 we let s(α) and t(α) denote its
source and target, respectively. Consider the category rep(Q,A) of representations
of Q over A. Explicitly, its objects are tuples

((Ai)i∈Q0 , (Aα)α∈Q1)
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where Ai is an object in A for all i ∈ Q0, and where Aα : As(α) → At(α) is a
morphism in A for all α ∈ Q1. For simplicity we skip the index sets when writing
representations. A morphism

(Ai, Aα)→ (Bi, Bα)

in rep(Q,modΛ) is a collection of morphism (ϕi : Ai → Bi)i∈Q0 such that the
following diagram

Ai Aj

Bi Bj

Aα

ϕi ϕj

Bα

commutes for every α ∈ Q1. We are interested in the subcategory of separated
monomorphisms.

Definition 1. A representation (Ai, Aα) ∈ rep(Q,A) is called a separated mono-
morphism if the canonical morphism

⊕

α∈Q1

t(α)=i

As(α)
(Aα)−−−→ Ai

is injective for all i ∈ Q0. The subcategory of separated monomorphisms is
denoted by mono(Q,A).

If Q = 1 → 2 and A = modΛ is the category of finitely generated right
modules over a ring Λ, then we are just studying submodules of finitely generated
Λ-modules. Such situations have been studied since the beginning of the 20th
century, see for example [4, 2]. There is now a large body of work on such questions.
We mention some recent results below. Here k denotes a field.

• In [6] it was shown that mono(1→ 2,modΛ) is exact and has Auslander–
Reiten sequences if Λ is an Artin algebra. This was generalized in [3] to
mono(Q,modΛ) for an arbitrary finite acyclic quiver Q.
• The Auslander–Reiten quiver of mono(1 → 2,modk[x]/(xn)) was deter-
mined in [7] for n ≤ 6. It turns out that it is representation-finite when
n ≤ 5, and is tame when n = 6.
• The Auslander–Reiten quiver of mono(1 → 2 → 3,modk[x]/(xn)) was
determined in [5] for n ≤ 4. It turns out that it is representation-finite
when n ≤ 3, and is tame when n = 4.
• The Auslander–Reiten quiver of mono(1 → 2 → 3 → 4,mod k[x]/(x3))
and mono(1 → 2 → · · · → m,mod k[x]/(x2)) was determined in [9]. In
these cases it is representation-finite.
• Less is known about the separated monomorphism category over Z/pnZ
(for p a prime) than over k[x]/(xn), even though both are artinian unis-
eral rings of Loewy length n. This is due to Z/pnZ not being a finite-
dimensional algebra, and therefore certain techniques in representation-
theory cannot be applied to it. An old open question is the “Birkhoff
problem”, on describing the category mono(1 → 2,modZ/p6Z)). The
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question is attributed to the paper [1] by Birkhoff. Note that the indecom-
posables in mono(1→ 2,modZ/pnZ) have been computed in [8] for n ≤ 5.
In [7] the authors ask whether the structure of mono(1→ 2,modZ/p6Z))
is similar to the structure of mono(1→ 2,modk[x]/(x6)).

2. A (representation) equivalence

Now assume A is an abelian category with enough injectives. Then the category
rep(Q,A) is also an abelian category with enough injectives. One can show that
mono(Q,A) is an extension-closed subcategory of rep(Q,A), and is therefore an
exact category in the sense of Quillen. Furthermore, mono(Q,A) has enough
injective objects as an exact category, but they are different from the injectives in
rep(Q,A). Let mono(Q,A) and A denote the injectively stable categories. The
following definition is due to Auslander.

Definition 2. A representation equivalence is a full and dense functor F which
reflects isomorphisms (i.e. if F (f) is an isomorphism then f is an isomorphism).

Theorem 3. The composite

mono(Q,A)→ rep(Q,A)→ rep(Q,A)
induces a representation equivalence

Φ: mono(Q,A)→ rep(Q,A).
Furthermore, if Q has at least one arrow, then Φ is an equivalence if and only if
A is hereditary.

Since Φ is a representation equivalence, it induces a bijection between isomor-
phism classes of indecomposable objects in mono(Q,A) and in rep(Q,A). If A is
nice, e.g. the category of finitely generated modules of an Artin algebra, then this
is also in bijection with isomorphism classes of non-injective objects in mono(Q,A).
This is very useful if A is abelian, since we reduce the study of indecomposables
in the exact category mono(Q,A) to the study of indecomposables in the abelian
category rep(Q,A).

3. Artinian uniserial rings of Loewy length 3

Let Fp be the finite field with p elements, where p is a prime number. Then there
is an equivalence

modZ/p3Z
∼=−→ modFp[x]/(x

3).

By Theorem 3 we get a bijection between isomorphism classes of indecomposable
non-injective objects in mono(Q,modZ/p3Z) and in mono(Q,modFp[x]/(x

3)). In
fact, this can be extended to a bijection between all indecomposable objects, which
preserves the underlying partition vector. We explain what this means below.

Assume Λ is a commutative artinian uniserial ring of Loewy length n, e.g.
Z/pnZ or k[x]/(xn) for k a field. Then there is a bijection between isomorphism
classes of finitely generated Λ-modules, and partitions, i.e. sequences α = (α1 ≥
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α ≥ . . . ≥ αm) with α1 ≤ n. Explicitly the bijection is given by sending α to the
Λ-module

M(α) :=

m⊕

i=1

M(αi)

where M(αi) is the unique (up to isomorphism) indecomposable Λ-module with
length αi. Given a representation (Mi,Mα) ∈ rep(Q,modΛ), we have an associ-
ated partition αi for each i ∈ Q0, defined by M(αi) ∼= Mi. The tuple (αi)i∈Q0 is
called the partition vector of (Mi,Mα).

Theorem 4. There is a bijection between isomorphism classes of indecomposable
representations in mono(Q,modZ/p3Z) and in mono(Q,modFp[x]/(x

3)) which
preserves the partition vector.
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Tiled surfaces, string algebras and laminations

Karin Baur

(joint work with Raquel Coelho Simoes, Bethany R. Marsh)

A geometric module for string algebras, [2]. A string algebra is a finite di-
mensional algebra A = kQ/I where k is an algebraically closed field, Q = (Q0, Q1)
a finite quiver and I an admissible ideal which is generated by paths in Q of length
at least two. Furthermore, for every v ∈ Q0 there are at most two incoming arrows
and at most two outgoing arrows and the arrows of Q satisfy:
(S1) For every a ∈ Q1 there is at most one b ∈ Q1 such that ba /∈ I and at most
one arrow c with ac /∈ I.
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String algebras are a large class of algebras which in particular contain the
gentle algebras. The latter satisfy in addition:
(G1) for every arrow a there is at most one arrow b′ such that b′a ∈ I and at most
one arrow c′ such that ac′ ∈ I.
(G2) The ideal I is generated by paths of length two.

If we do not require A to be finite dimensional but still assume the above
conditions, including (G1) and (G2), A is called locally gentle.

All these algebras are amenable to geometric descriptions by tiled surfaces. By
this we mean a subdivision of an oriented surface with marked points on boundary
components and in the interior (called punctures) such that the tiles under this
are of the following shapes. The vertices of these shapes are boundary vertices or
punctures.

i
j

m

n

i

j

i1

j

i

α

β

γ

β

αγ
δ

The first two tiles are polygonal of size at least 3, with no boundary segment or
a single boundary segment (shaded). We use this to define the quiver Q: The arcs
in the tiling of the surface correspond to the vertices of Q and arrows correspond
to angles in the tiles, as indicated in the figure: there is an arrow i → j in Q if
and only the arcs for j follows the arc of i clockwise within a tile. The relations
of I arise as follows: any path of length two inside a tile is an element of I. For
example, the first tile comes with the relations α1α2 and α2α3.

Geometric modules for gentle algebras (and their module categories) have been
given in [1], [6], for locally gentle algebras in [7].

Since for string algebras, we may have longer relations, we need an additional
geometric feature on tiled surfaces. We introduce labels on tilings: a label is a
sequence of t ≥ 3 arcs (i1, i2, . . . , it) which share a common vertex, such that there
are arrows αj : ij → ij+1 in Q. Then the path given by a label is a generator
for I. This allows us to obtain the extra monomial relations needed for string
algebras. If A = kQ/I arises from a tiling with labels, we say that A is a labelled
tiling algebra. Two examples of labelled tilings and the associated quivers with
relations are in Figure 1. The labels are indicated in red.

1

23

4

5

L = {(2,3,4)}

1234

5

Q : 1

2
3

γ

α β

L = {(2, 3, 1, 2)}

3
2

1

βα

γ

I = (γα β )

Q :

Figure 1. Labelled tiled surfaces, with associated quivers with relations
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Our main result is the following:

Theorem ([2]). The following are equivalent:

(1) A is a string algebra.
(2) A = B/R with B locally gentle and R is an ideal generated by paths of

length ≥ 2 such that every oriented cycle in A has a relation.
(3) A is a labelled tiling algebra.

A key ingredient is the fact that we can view a string algebra as the quotient
of a locally gentle algebra, see point (2) above. The surface corresponding to a
string algebra A = kQ/I arises from an associated locally gentle algebra B and
the surface associated to it. This surface is not unique as in order to find B, we
can choose which relations to remove from the ideal I. We conjecture that if we
choose B to be finite dimensional, the surface is unique, up to rotating certain
collections of tiles.

Laminations for tiled surfaces, [3]. In the second part of the talk we introduce
the notion of laminations on a surface tiled by polygon: every tile is a polygon of
size ≥ 3 and with at most one boundary edge. The laminations in [4], see also [5],
can be viewed as the case of a triangulated surface.

In [3], we aim to determine the size of a maximal lamination and to define a
mutation operation on curves in a maximal lamination.

Laminations are collections of non-crossing curves such that whenever a curve
successively crosses two edges of a tile, these two edges have to be adjacent. Let
{e1, . . . , en, en+1, . . . , em} be the arcs in the tiling where e1, . . . , en are the arcs
whose endpoints are both punctures and en+1, . . . , em are arcs with endpoints a
puncture and a vertex on the boundary, m > n. Any curve c crossing the tiling
gives a coordinate vector with entries in Zm as follows: We say that c crosses ei
positively, if the arc ei together with the immediate predecessor and successor of
arcs crossed by c form an S-shape. We say that c crosses ei negatively, if they
form a Z-shape. And c crosses ei trivially if it crosses these three arcs in a fan (or
does not meet ei). We associate +1 to any positive crossing, −1 to any negative
crossing. Then any lamination gives a coordinate vector in Zm. We say that c is
the ith elementary lamination if its coordinate vector has entry +1 in position i
and 0 else. We write ci for this curve. A lamination is maximal if no curve distinct
from all its components can be added without introducing crossings. The size of
a lamination is the number of different connected components it contains (up to
isotopy). The collection {c1, . . . , cn} forms a maximal lamination of size n.

We aim to determine the size of maximal laminations which cross all edges
en+1, . . . , em trivially, i.e. laminations with support on e1, . . . , en only. Any curve
in such a lamination, either spirals at both ends into (different) punctures or is
a closed curve. For simplicity, we now restrict to coordinate vectors in Zn (as
the remaining entries are all 0). We show in [3] that if a coordinate vector of a
lamination contains a 0 entry, it is not maximal.
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Figure 2. Lamination on tiled disk and the quiver of the tiling

Conjecture. Let L be a maximal lamination on a tiled surface with polygonal
tiles which is supported on n internal edges. Then L has at most size n. If the
lamination contains no closed loops, the size is equal to n.

Figure 2 shows a maximal lamination on a hexagon on the left. Denote the
internal edges by e1, e2, e3, e4 clockwise around the inner quadrilateral, starting
with its north west edge. The coordinate vector is (6,−5,−5, 4) in that order.

Tilings by polygons as above give rise to locally gentle algebras, as in the first
part of this abstract. The vertices of the quiver are the arcs of the tiling (the
non-boundary edges). Every internal vertex has degree 4. In any internal tile of
size r we have a clockwise r-cycle. Any r-tile on the boundary gives rise to a
linearly oriented quiver on r − 1 vertices. An example is on the right in Figure 2.
Every clockwise cycle is full of relations, i.e. any path of length two in a clockwise
cycle is 0. The connected components of any lamination correspond to a (non-
crossing) collection of non-zero walks in the quiver which are infinite or closed. So
they correspond to infinite dimensional string modules and to band modules. We
expect that the walks of a laminations with no loops give rise to a rigid infinite
dimensional string module.

We have a proof of the above conjecture for certain tilings, using a reduction
technique on internal edges and showing that the size of a lamination strictly
decreases if the reduction is not at a closed loop.
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Simple-mindedness: tilting, reduction, mutation

David Pauksztello

(joint work with N. Broomhead, R. Coelho Simões, D. Ploog, J. Woolf,
A. Zvonareva)

1. Setting

Throughout, D will be a Hom-finite, Krull-Schmidt, k-linear triangulated category
with shift functor Σ: D → D. For simplicity, we will assume that k is an alge-
braically closed field. When D has a Serre functor, it will be denoted S : D→ D. If
X is a subcategory or collection of objects of D then ⊥X = {d ∈ D | HomD(d, x) =
0 ∀x ∈ X} and X⊥ = {d ∈ D | HomD(x, d) = 0 ∀x ∈ X}.

2. Tilting and (co-)t-structures

A torsion pair in D is a pair of full subcategories (X,Y), each closed under direct
summands, such that

(1) HomD(x, y) = 0 for each x ∈ X and y ∈ Y;
(2) D = X ∗ Y = {d ∈ D | there exists a triangle x → d → y → Σx with x ∈

X and y ∈ Y}.
A torsion pair (X,Y) is called a t-structure if ΣX ⊂ X and Σ−1Y ⊂ Y, and is called
a co-t-structure if Σ−1X ⊂ X and ΣY ⊂ Y. The subcategory X is called the aisle
of the torsion pair and the subcategory Y is called the co-aisle. If (X,Y) then its
heart, H = X ∩ ΣY is an abelian subcategory of D. A t-structure (X,Y) is called
bounded if

D =
⋃

i≥j

ΣiH ∗ Σi−1H ∗ · · · ∗ ΣjH.

Since H ⊂ X and H ⊂ ΣY we have HomD(Σ
ih1, h2) = 0 for each h1, h2 ∈ H and

i > 0.
A torsion pair in an abelian category H is a pair of full subcategories (T ,F)

such that HomH(t, f) = 0 for each t ∈ T and f ∈ F , and H = T ∗ F = {h ∈ H |
there exists a short exact sequence 0→ t→ h→ f → 0 with t ∈ T and f ∈ F}.
Theorem 2.1 ([6, Proposition 2.1]). Let (X,Y) be a t-structure in D with heart
H. Suppose (T ,F) is a torsion pair in H. Then

(
X ∗ Σ−1T ,Σ−1(F ∗ Y)

)
is a

t-structure in D with heart K = F ∗ Σ−1T ; see Figure 1.

A subcategory X of D is contravariantly finite if each object d ∈ D admits
a morphism f : xd → d such that HomD(x, f) : HomD(x, xd) ։ HomD(x, d) is
surjective for each x ∈ X. Covariantly finite subcategories are defined dually and
a subcategory is functorially finite if it is contravariantly and covariantly finite.

Theorem 2.2 ([4, Corollary 2.8]). Suppose D is a Hom-finite, Krull-Schmidt,
saturated triangulated category. Let (X,Y) be a bounded t-structure in D with
heart H. The following are equivalent:
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Σ2H ΣH

T

H

F Σ−1T

Σ−1H

Σ−1F

Σ−2H

X ∗ Σ−1T

X Y

Σ−1(F ∗ Y)

Figure 1. Schematic showing the t-structure (X,Y) and the
Happel-Reiten-Smalø tilted t-structure

(
X ∗ Σ−1T ,Σ−1(F ∗ Y)

)

at the torsion pair (T ,F) in the heart H = X ∩ ΣY.

(1) H is contravariantly finite (resp. covariantly finite) in D.
(2) H has enough injectives (resp. projectives).
(3) (X,Y) has a right (resp. left) adjacent co-t-structure, i.e. there is a co-t-

structure (Y,Y⊥) (resp. (⊥X,X)).

Prototypical examples of saturated triangulated categories are Db(modA) and
Db(cohX), where A is a finite-dimensional algebra of finite global dimension and
X is a smooth projective variety. A more technical version of Theorem 2.2 is true
without the restriction that D is saturated in [4, Theorem 2.4].

Corollary 2.3. Suppose D is a Hom-finite, Krull-Schmidt, saturated triangulated
category. If H is functorially finite in D and (T ,F) is a torsion pair in which T
and F are functorially finite, then the HRS-tilted heart K = F ∗ Σ−1T is also
functorially finite in D.

Proof. If (X,Y) is a t-structure, then (⊥X,X) is a co-t-structure if and only if X is
functorially finite in D. If H is functorially finite in D then so is the torsion class
T . In particular, by [13, Lemma 5.3], X ∗Σ−1T is functorially finite in D. Hence,(
⊥(X ∗ Σ−1T ),X ∗ Σ−1T

)
is a co-t-structure in D. One argues similarly with the

torsionfree class. �

3. Simple-minded objects

Definition. A collection of objects S of D is an orthogonal collection, if for each
s1, s2 ∈ S Schur’s lemma holds, i.e.

HomD(s, t) =

{
k if s1 ≃ s2,

0 otherwise.

An orthogonal collection S is a simple-minded collection (SMC ) [12] if

(1) it is an ∞-orthogonal collection, i.e. HomD(Σ
is1, s2) = 0 for each i > 0

and s1, s2 ∈ S, and,
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(2) D =
⋃

i≥j Σ
i〈S〉 ∗ Σi−1〈S〉 ∗ · · · ∗ Σj〈S〉, i.e. 〈S〉 is the heart of a bounded

t-structure in D.

For w ≥ 1, S is a w-simple-minded system (w-SMS ) [2, 11] if

(1) it is a w-orthogonal collection, i.e. HomD(Σ
is1, s2) = 0 for each 1 ≤ i ≤

w − 1 and s1, s2 ∈ S, and,
(2) D = Σw−1〈S〉 ∗ · · · ∗ Σ〈S〉 ∗ 〈S〉

Theorem 3.1 ([5, Theorem 3.3]). Let S be an orthogonal collection of D and
suppose T ⊆ S. Then 〈T〉 is functorially finite in 〈S〉.

Remark 3.2. If S is a w-SMS in D, then, as a consequence of condition (2) in the
definition, 〈S〉 is functorially finite in D, see [3, Corollary 2.9]. By Theorem 3.1 it
follows that if T ⊆ S then 〈T〉 is also functorially finite in D. In particular, func-
torial finiteness of the extension closure of a w-orthogonal collection is a necessary
condition for that collection to occur as a subcollection of a w-SMS.

If S is an orthogonal collection and T ⊆ S then
(
〈T〉,T⊥ ∩ 〈S〉

)
and

(
⊥T ∩

〈S〉, 〈T〉
)
are “torsion pairs” in 〈S〉 with functorially finite “torsion class” and

functorially finite “torsionfree class”, respectively. In the case that S is an SMC,
then the two “torsion pairs” above are genuine torsion pairs in the abelian sense.

4. Reduction and mutation

Let T be an orthogonal collection and U be a collection of objects of D. Provided
that 〈T〉 is functorially finite in D, we can define two mutation operations on U

with respect to T. The right mutation of U at T is obtained by taking for each
object u ∈ U a minimal right 〈T〉-approximation ut → Σu and extending it a
distinguished triangle,

tu → Σu→ RT(u)→ Σtu,

and setting RT(U) = {RT(u) | u ∈ U}. Left mutation is defined analogously, see
[3] for precise details.

In analogy with [8] for cluster-tilting/silting mutation, in [3] a pair of collections
of objects (U,V) is called a T-mutation pair if U = LT(V) and V = RT(U).

When T is a subcollection of a w-SMS, the extension closure 〈T〉 is automat-
ically functorially finite by Theorem 3.1 and as such mutation is always defined.
However, if T is a subcollection of an SMC this is not automatic. This motivates
the following definition, which permits us to discuss mutation of SMCs.

Definition. An SMC S in D is called strong if 〈S〉 is functorially finite in D.

Theorem 4.1 ([3, Theorems 4.1 & 5.1]). Suppose T is an orthogonal collection
such that

(1) 〈T〉 is functorially finite in D; and,
(2) SΣT = T or HomD(Σt1, t2) = 0 for each t1, t2 ∈ T.

Let Z be a subcategory of D such that (Z,Z) is an T-mutation pair satisfying,
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(Z1) Z is closed under extensions and direct summands;
(Z2) the cones in D of maps in Z lie in 〈T〉 ∗ Z; and
(Z3) the cocones in D of maps in Z lie in Z ∗ 〈T〉.

Then there is a functor 〈1〉 : Z → Z and for each morphism f : x → y in Z there

is a diagram x
f−→ y −→ zf −→ x〈1〉 giving rise to a class of triangles ∆ which

makes D into a triangulated category.

The key point is that the shift functor 〈1〉 : Z → Z is defined via the right
mutation formula with respect to T. In particular, if T = {0} then 〈1〉 = Σ.

This result allows one to obtain a reduction result for w-SMSs and SMCs anal-
ogous to the reduction results for w-cluster-tilting subcategories and silting sub-
categories obtained in [1, 7, 8]. We state the result fo w-SMSs and SMCs together.
The result for w-SMSs is due to [3, Theorem 6.6] and the result for SMCs is due
to [9, Theorem 3.1]. An alternative proof in the SMC case in the same spirit as
the SMS case is given in [4, Theorem A.2] of the appendix to that article.

Theorem 4.2. Let T be a w-orthogonal (resp. ∞-orthogonal) collection and

Z =

{
{d ∈ D | HomD(Σ

it, d) = 0 ∀t ∈ T and 0 ≤ i ≤ w} if T is w-orthogonal;

Z = ⊥(Σ≤0T) ∩ (Σ≥0T)⊥) if T is ∞-orthogonal.

Then, (Z,Z) is a T-mutation pair satisfying the hypotheses of Theorem 4.1. More-
over, there is bijection,

{w-SMSs (resp. SMCs) in D containing T} 1−1←→ {w-SMSs (resp. SMCs) in Z}.
The key observation in this theorem is that a right mutation on the left-hand

side of the bijection corresponds to a shift on the right-hand side of the bijection.
Therefore, the question of whether the mutation of a w-SMS or an SMC is again a
w-SMS or an SMC boils down to asking whether the shift of a w-SMS or an SMC is
again a w-SMS or an SMC, which is tautologous. The following theorem recovers
[10, Theorem 6.3] in the case of w-SMSs and generalises the SMC mutation theory
for derived categories of finite-dimensional algebras of [12].

Theorem 4.3. Let T be a w-orthogonal (resp. ∞-orthogonal) collection such that
〈T〉 is functorially finite in D. Suppose (U,V) is a T-mutation pair. Then U∪T is
a w-SMS (resp. strong SMC) if and only if V∪T is a w-SMS (resp. strong SMC).

Remark 4.4. Corollary 2.3 says that tilting a functorially finite aisle (resp.
coaisle) at a functorially finite torsion (resp. torsionfree) class produces another
functorially finite aisle (resp. coaisle). That is, the property of having an adjacent
co-t-structure is preserved by tilting at functorially finite torsion pairs providing a
conceptual homological explanation behind the Koenig-Yang correspondences and
their compatibility with mutation.

Tilting at torsion pairs whose torsion (resp. torsionfree) class is generated by
a subset of simple objects is simple-minded mutation. In particular, simple tilts of
length hearts with enough projectives and enough injectives produce length hearts
with enough projectives and enough injectives. This means that “algebraic” hearts
are well behaved within the space of Bridgeland stability conditions.
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Mutation of closed sets in the Ziegler spectrum - Part I

Lidia Angeleri Hügel

(joint work with Rosanna Laking, Francesco Sentieri)

For a finite dimensional algebra A, the lattice torsA of torsion pairs in the cat-
egory modA of finite dimensional modules is controlled by mutation. Minimal
inclusions of functorially finite torsion classes are encoded by mutation of associ-
ated compact 2-term silting complexes, as shown in [1]. The non-functorially finite
case is captured by large 2-term cosilting complexes and their mutations inside the
derived category D(ModA).

Definition [9]. Let Kb(InjA) denote the category of bounded complexes of injec-
tive A-modules. A complex σ ∈ Kb(InjA) which is concentrated in degrees 0 and
1 is said to be a 2-term cosilting complex if it satisfies

(i) HomD(ModA)(σ
I , σ[1]) = 0 for all sets I, and

(ii) Kb(InjA) is generated as a thick subcategory by the class Prodσ of all
arbitrary products of copies of σ and their direct summands.

Two cosilting complexes σ and σ′ are said to be equivalent if Prodσ = Prodσ′.
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There is a bijection between equivalence classes of 2-term cosilting complexes
and torsion pairs in modA: given a cosilting complex σ, we take its zero-th co-
homology C = H0(σ), consider the torsion pair (T ,F) = (T ,CogenC) in ModA
cogenerated by C, and assign to σ its restriction (t, f) = (T ∩modA,F∩modA) to
modA. It is proved in [4] that under this bijection irreducible cosilting mutation
corresponds to minimal inclusion of torsion classes and thus determines the Hasse
quiver of torsA.

Here irreducible mutation is defined as in [2, 1] by picking an indecomposable
summand of σ, approximating it by “the rest” and replacing it by the cone (or
co-cone) of this approximation. When working with large cosilting complexes,
however, this approximation by “the rest” requires some care: our objects in
general don’t have indecomposable decompositions and we are forced to work
with infinite direct products rather than finite direct sums.

The aim of this talk is to show that, despite these difficulties, large mutation
amounts to an operation on sets of indecomposable modules and shares important
features with classical silting mutation.

To this end, we consider the Ziegler spectrum Zg(A) of A, a topological space
whose points are given by the isomorphism classes of indecomposable pure-injective
modules. Recall that the pure-injective modules over a finite-dimensional algebra
A are precisely the modules which are direct summands of direct products of
finite-dimensional modules. By [5, 6] we know that the module C defined above is
pure-injective, and it follows from [7] that Z = ProdC ∩ Zg(A) is a closed subset
of Zg(A). It turns out that the cosilting complex σ is determined by Z together
with the set I of representatives of the indecomposable injective A-modules in
Ker(HomA(C,−)).
Definition. A pair (Z, I) is a rigid pair if it satisfies

(i) Z is a subset of Zg(A), and I is a set of indecomposable injective modules;
(ii) Z is rigid, i.e. if M,N are in Z and µM , µN are their minimal injective

copresentations, then HomD(ModA)(µM , µN [1]) = 0;
(iii) HomD(ModA)(Z, I) = 0.

The rigid pairs which are maximal among all rigid pairs are called cosilting pairs.

Proposition. The assignment σ 7→ (Z, I) defines a bijection between equivalence
classes of 2-term cosilting complexes and cosilting pairs.

Via this bijection we can define a notion of mutation of cosilting pairs. It
amounts to exchanging elements of Z ∪ I with suitable indecomposable pure-
injective or injective modules. However, unlike classical mutation, in general not
every point in a cosilting set is mutable, i.e. can be replaced. But an important
property is preserved.

Theorem. [3] Let (Z, I) be a cosilting pair.

(1) If X is a mutable point of (Z, I), then there is exactly one way to replace
X to obtain a new cosilting pair (Z ′, I ′).
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(2) (IC) If X is not a mutable point of (Z, I), then X lies in Z and (Z, I) is
the only cosilting pair which extends (Z \ {X}, I).

Our proof of statement (2) requires to assume the validity of the Isolation
Condition (IC). We refer to Part II and to [8, §5.3.2] for details on this condition.
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Mutation of closed sets in the Ziegler spectrum - Part II

Rosanna Laking

(joint work with Lidia Angeleri Hügel, Francesco Sentieri)

Let A be a finite-dimensional algebra over a field K. This talk follows on from
Part I in which Lidia Angeleri Hügel explained how cosilting pairs (Z, I) in ModA
can be used to parametrise 2-term cosilting complexes in D(ModA) up to equiva-
lence. In Part I it was explained that the irreducible mutations of 2-term cosilting
complexes can be seen on the level of the corresponding cosilting pair (Z, I) as
replacing a mutable element of Z ∪ I by a (uniquely determined) indecomposable
module to obtain a new cosilting pair (Z ′, I ′).

Let (Z, I) be a cosilting pair and let σ be the corresponding 2-term cosilting
complex. The elements of X ∈ Z ∪ I correspond bijectively to the indecompos-
able complexes αX obtained as direct summands of arbitrary products of σ (i.e.
contained in Prod(σ)). We say that a module X ∈ Z ∪ I is mutable if there is
a mutation of σ at the corresponding complex αX ∈ Prod(σ). In the first part of
this talk we address the following question: when is X ∈ Z ∪ I mutable?

The Ziegler spectrum and mutablity. In Part I it was explained that the sets
(Z, I) consist of indecomposable pure-injective modules, that is, indecomposable
modules that arise as direct summands of products of finite-dimensional modules.
The isomorphism classes of these modules form the points of a topological space
called the Ziegler spectrum; we will often identify an isomorphism class with a
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representative of the class. It turns out that, in some important cases, the question
of whether a module in Z∪I is mutable can be answered in terms of this topology.

Definition ([10]): Let Zg(A) denote the set of equivalence classes of indecom-
posable pure-injective modules. For each f : M → N in mod A, define the sub-
set (f) := {L ∈ Zg(A) | HomA(f, L) is not surjective } ⊆ Zg(A). Then the sets
{(f) | f ∈ mod A} form a basis of open sets of the Ziegler topology on Zg(A).
The set Zg(A) with this topology is known as the Ziegler spectrum.

The setting where a topological interpretation of mutability is available is when
the isolation condition (IC) holds for A. This condition can be found, for example,
in [7]; due to its technical nature, we will not define it here. We note, however,
that it is known to hold for many important classes of algebras, such as tame
hereditary algebras, many algebras of domestic representation type (e.g. domestic
gentle, cycle-finite, strongly simply-connected and multicoil algebras) or any finite
dimensional algebra over countable fields. In fact, no examples are known where
this condition fails. The result where (IC) is assumed is labelled accordingly.

Theorem ([2]): Let (Z, I) be a cosilting pair in Mod A and let M ∈ Z. Then
the following statements hold.

(1) Every module I ∈ I is mutable.
(2) The set Z is a closed set of Zg(A).
(3) (IC) The module M is mutable if and only if M is isolated in Z with the

subspace topology.

The (isoclasses of) indecomposable finite-dimensional A-modules are isolated
in Zg(A) and so it follows from the theorem that finite-dimensional modules in Z
are always mutable. A cosilting pair (Z, I) consists of finite-dimensional modules
if and only if (⊕M∈ZM,⊕I∈II) is a support τ−1-tilting pair. Thus our result
recovers the well-known result that mutation is possible at any summand of a
support τ−1-tilting pair [1].

In our joint work [2] we are also able to identify the mutable elements of Z
without using (IC). Indeed, it was explained in Part I that there is a torsion pair
(T ,F) in ModA associated to (Z, I). We show that a module M ∈ Z is mutable
if and only if there exists a left almost split morphism M → N in F such that the
kernel and cokernel are finitely presented. Indeed, it is also straightforward to see
from this perspective that finite-dimensional modules in Z are always mutable.

Example: cluster-tilted algebras of type Ã. We end the talk with an example
illustrating mutation of cosilting pairs for a family of finite-dimensional algebras

called cluster-tilted algebras of type Ã [4]. These algebras have been shown to
coincide with the surface algebras A(Γ) corresponding to a triangulation Γ of an
annulus S with marked points M in the boundary [3]. Recall that the arcs in Γ
yield the vertices of a quiver with relations for A(Γ); later we will use the notation
Iα for the injective indexed by the vertex α ∈ Γ.

The Ziegler spectrum of A(Γ) is known [8]: it consists of string modules M(α)
(parametrised by finite or asymptotic curves α in the surface) and band modules
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B(λ, n) (parametrised by (λ, n) in the set K∗×N∪{∞,−∞}) plus one additional
band module called the generic module G.

The cosilting pairs have also been classified [6]: the finite-dimensional cosilting
pairs are parametrised by triangulations ∆ of (S,M) and the infinite-dimensional
cosilting pairs are parametrised by pairs (Ω, P ) where Ω is an asymptotic triangu-
lation of (S,M) (in the sense of Baur and Dupont [5]) and P ⊆ K∗. Indeed they
are given as follows:

• Given a triangulation ∆ as above, we have a cosilting pair (Z, I) in
Mod A(Γ) with Z = {M(α) | α ∈ ∆ \ Γ} and I = {Iα | α ∈ ∆ ∩ Γ}.
• Given a pair (Ω, P ) as above, we have a cosilting pair (Z, I) in ModA with
Z = {M(α) | α ∈ ∆\Γ}∪{B(λ,∞) | λ ∈ P}∪{B(λ,−∞) | λ /∈ P}∪{G}
and I = {Iα | α ∈ ∆ ∩ Γ}.

The topology on Zg(A(Γ)) has been described explicitly and the Krull-Gabriel
dimension of A(Γ) is shown to be equal to two [9]; this implies that (IC) holds
for A(Γ). We can therefore apply the results of Parts I and II of this talk and
conclude that every module in such an Z is mutable except the generic module G.
Moreover, the mutation of string modules is given by a flip operation (described for
asymptotic arcs in [5]) and the mutation of band modules is given by exchanging
the module B(λ,∞) for the module B(λ,−∞).
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BPS Lie algebra of 2-Calabi–Yau categories and positivity of cuspidal
polynomials of quivers

Lucien Hennecart

(joint work with Ben Davison and Sebastian Schlegel Mejia)

2-Calabi–Yau categories are ubiquitous in representation theory and algebraic ge-
ometry. They arise as the categories of

(1) Representations of the (deformed or not, additive or multiplicative) pre-
projective algebra ΠQ of a quiver Q, or more generally of 2-Calabi–Yau
algebras,

(2) Representations of the (twisted or not) fundamental group algebra of a
compact Riemann surface S,

(3) Semistable sheaves on (non-necessarily compact) symplectic surfaces.

This is a report on the preprints [4] and [5].

Setup. We let A be one of the categories defined above. We are here especially
interested in the category A = Rep(ΠQ) of finite dimensional representations of
the preprojective algebra of a quiver Q. We refer to [4] for the general case. We
let (M,N)A :=

∑
j∈Z

(−1)jextj(M,N) be the Euler form of A.
Throughout, Q denotes a finite quiver, i.e. a pair of a set of vertices Q0 and a

set of arrows Q1, both finite, along with two maps s, t : Q1 → Q0 assigning to an
arrow its source and target. We form the doubled quiver Q = (Q0, Q1) by adding
an arrow α∗ to each arrow α ∈ Q1, with α∗ given in the opposite orientation of α.
The preprojective algebra is the quotient

ΠQ := CQ/〈
∑

α∈Q1

[α, α∗]〉.

Generalised Kac–Moody Lie algebra for a monoid with bilinear form.
For a pair M = (M, (−,−)) of a monoid with a bilinear form (−,−) : M×M → Z,
we define

ΣM :=
{
m ∈ R+

M
| for any nontrivial decomposition

m =

r∑

j=1

mj,mj ∈M, one has 2− (m,m) >

r∑

j=1

(2 − (mj ,mj))





the set of primitive positive roots

and

Φ+

M
:= ΣM ∪ {lm : l ≥ 2,m ∈ ΣM with (m,m) = 0}

the set of simple positive roots.

The Cartan matrix is AM := ((m,n))m,n∈Φ+

M

. We assume that positive diagonal

coefficients are equal to 2 and off-diagonal coefficients are nonpositive. For a
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Φ+

M
×Z-vector space V , we define the Lie algebra nM,V as the Lie algebra generated

by V with the relations

[v, w] = 0 if (deg(v), deg(w)) = 0

ad(v)1−(deg(v),deg(w))(w) = 0 if (deg(v), deg(v)) = 2

for homogeneous v, w ∈ V , where deg : V → Φ+

M
.

The associative algebra generated by V with the same relations is canonically
isomorphic to the enveloping algebra U(nM,V ).

The BPS Lie algebra of 2 Calabi–Yau categories. We let MA be the
stack of objects of A, MA be the moduli space of semisimple objects in A and
JH : MA →MA be the Jordan–Hölder map, sending an object of A to its semisim-
plification with respect to some Jordan–Hölder filtration. We let Perv(MA) be
the (Abelian) category of perverse sheaves on MA. Using the monoid structure
⊕ :M×2

A →MA given by the direct sum, we make Perv(MA) a tensor category
by defining the tensor product F � G = ⊕∗(F ⊠ G ). We let MA := π0(MA)
be the monoid of connected components ofMA. We letMA,0 be the connected
component of the zero object of A. An algebra object in Perv(MA) is a triple
(F ∈ Perv(MA),m : F � F → F , η : Q

MA,0
→ F ) satisfying the usual axioms.

Algebra objects in the category of bounded below constructible complex D+
c (MA)

are defined in the same way.

Theorem 1 (Davison–H–Schlegel Mejia, 2022, [4, 5]).

(1) There is a cohomological Hall algebra product on the complex of con-

structible sheaves AA := JH∗DQ
vir

MA
, making it an algebra object in

D+
c (MA),

(2) The constructible complex AA is semisimple and concentrated in nonneg-
ative perverse degrees,

(3) The degree 0 perverse cohomology pH0(AA) has an induced algebra struc-
ture in Perv(MA).

The relative BPS algebra of A is defined as BPSA,Alg := pH0(AA). The abso-
lute BPS algebra is obtained by taking the derived global sections: BPSA,Alg :=
H∗(BPSA,Alg).

For A = Rep(ΠQ), these results were proven in [2]. The proof in the generality
exposed here relies on the neighbourhood theorem for 2-Calabi–Yau categories in
[3].

Theorem 2 (Davison–H–Schlegel Mejia, 2023, [4, 5]). The BPS algebra BPSA,Alg

is isomorphic to the enveloping algebra of the generalised Kac–Moody Lie algebra
associated to the pair (MA, (−,−)A) generated by

IC(MΦ+
A

) :=
⊕

a∈ΣA

IC(MA,a)⊕
⊕

a∈ΣA,(a,a)A=0
l≥2

IC(MA,a),
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the intersection cohomology of some connected components of the moduli space of
semisimple objects in A (note the specificity for isotropic roots).

Idea of the proof. This theorem is proven for the relative BPS algebra BPSA,Alg.
First, using the neighbourhood theorem of [3], we show that it suffices to prove
this theorem for A = Rep(ΠQ) for all quivers Q. By the neighbourhood theorem
again, we prove the result for preprojective algebras by induction on the set of pairs
(Q,d) of a quiver Q and a dimension vector d ∈ NQ0 supported on the whole of
Q. We take advantage of the fact that BPSA,Alg is a semisimple perverse sheaf on
MA. We then rely on one of the main theorems of [6] which gives an explicit and
combinatorial description of the top CoHA of the strictly seminilpotent stack. �

At this point, one may define the relative BPS Lie algebra of A as the sub-Lie
algebra of BPSA,Alg generated by IC(MΦ+

A

). The absolute BPS Lie algebra is

BPSA,Lie := H∗(BPSA,Lie).
When A is the category of representations of a 2-Calabi–Yau algebra A, there is

an other approach for defining the BPS Lie algebra using the critical cohomological
Hall algebra associated to the 3-Calabi–Yau completion of A. In [4], we prove that
both definitions lead to canonically isomorphic Lie algebras.

Corollary 3. The BPS Lie algebra is isomorphic to the generalised Kac–Moody
Lie algebra associated to the pair (π0(MA), (−,−)A) generated by IC(MΦ+

A

).

Theorem 4 (Davison, [2]). For A = Rep(ΠQ), the character of the BPS Lie
algebra is given by

ch(BPSΠQ,Lie) =
∑

d∈NQ0

AQ,d(q
−2)zd.

Constructible Hall algebra and cuspidal polynomials. We let Rep(Q,Fq)
be category of representations of Q over the finite field with q elements Fq. The
constructible Hall algebra of Q is the space

HQ,Fq
:= Func(Rep(Q,Fq)/∼,C)

of finitely supported functions on the set of isomorphism classes of representations
of Q over Fq. The algebra structure comes from the extension structure of the
category Rep(Q,Fq) and is given by some convolution product:

(f ⋆ g)([R]) :=
∑

N⊂R

q
1
2 〈[R/N ],[N ]〉Qf([R/N ])g([N ]),

Dually, a twisted coproduct ∆ can be defined:

∆(f)([M ], [N ]) =
q−

1
2 〈M,N〉Q

|Ext1Q(M,N)|
∑

ξ∈Ext1(M,N)

f([Xξ])

where Xξ is the middle term of the short exact sequence determined by ξ.
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The character of HQ,Fq
is given by the formulas with plethystic exponentials

ch(HQ,Fq
) :=

∑

d∈NQ0

MQ,d(q)z
d = Expz


 ∑

d∈NQ0

IQ,d(q)z
d




= Expz,q


 ∑

d∈NQ0

AQ,d(q)z
d




where the polynomials MQ,d(q) (resp. IQ,d(q), resp. AQ,d(q)) count all (resp.
indecomposable, resp. absolutely indecomposable) d-dimensional representations
of Q over Fq.

The space of cuspidal functions is the space of primitive elements for the co-
product ∆: Hcusp

Q,Fq
=
⊕

d∈NQ0 H
cusp
Q,Fq

[d], Hcusp
Q,Fq

[d] := {f ∈ HQ,Fq
[d] | ∆(f) =

f ⊗ 1 + 1 ⊗ f}. Bozec and Schiffmann proved ([1]) that the functions CQ,d(q) :=
dimCH

cusp
Q,Fq

[d] are polynomials in q. They conjectured that these polynomials

have nonnegative coefficients for d ∈ ΣΠQ
.

Theorem 5 (Davison–H–Schlegel Mejia, 2023, [4, 5]). For d ∈ ΣΠQ
, CQ,d(q) ∈

N[q]. Furthermore, CQ,d(q) = IP(MΠQ,d)(q
− 1

2 ) (intersection Poincaré polyno-
mial).

The proof of Theorem 5 relies on the interpretation of absolutely cuspidal poly-
nomials as the NQ0×Z-graded multiplicity of the space of simple positive roots of
a NQ0 ×Z-graded generalised Kac–Moody algebra having the generating series of
Kac polynomials as character ([1]). Theorem 5 is then deduced from Corollary 3
and Theorem 4. Theorem 5 also provides qualitative informations on the cuspidal
polynomials: CQ,d(q) is monic and of degree 1− 〈d,d〉Q for d ∈ ΣΠQ

.
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Nakayama Algebras and Wide Subcategories

Emre Sen

(joint work with Gordana Todorov, Shijie Zhu)

1. Introduction

Among the artin algebras of finite representation type, Nakayama algebras are
special since all indecomposable modules are uniserial. Although module cate-
gories are well-understood, many classification problems are still open. Here we
report results of [STZ1] and [STZ2] in which we give complete classifications of
cyclic Nakayama algebras which are (dominant) Auslander-Gorenstein and linear
Nakayama algebras which are higher Auslander respectively.

There is an extensive literature on the homological properties of Nakayama
algebras by the works of Ringel, Gustafson, Madsen, Marczinzik to name a few.
One recurring theme of all these works is the Gustafson’s function which takes a
Kupish series of a Nakayama algebra and interprets socles of projectives modules
combinatorially. In [S1], we developed a functorial approach to handle homological
dimensions, briefly the core idea of the syzygy filtration method is constructing the
algebra ε(Λ) called syzygy filtered algebra whose category of modules are equivalent
to the category of modules filtered by the second syzygies of the cyclic Nakayama
algebra Λ over the algebraically closed field K.

We present the construction shortly. Let S(Λ) be the complete set of represen-
tatives of socles of projective modules over Λ. The syzygy filtered algebra ε(Λ) is
the endomorphism algebra of projective covers of Auslander-Reiten translates of
elements of S(Λ), i.e.

ε(Λ) := EndΛ P where P =
⊕

S∈S(Λ)

P (τS).

Let B(Λ) be the complete set of isomorphism classes of the second syzygies of
simple modules with projective dimension greater than one and Filt(B(Λ)) be the
category of B(Λ)-filtered Λ-modules. Then, Filt(B(Λ)) is equivalent to mod-ε(Λ).
It turns out that ε(Λ) is again a Nakayama algebra in most cases (i.e. gldimΛ 6= 2),
hence enables us to use mathematical induction on certain homological dimensions.
For details we refer to [S1] and [R1].

A finite dimensional artin algebra A is called higher Auslander if global and
dominant dimensions of A are equal [I]. In [S2], based on the syzygy filtered algebra
construction we gave the complete classification of cyclic Nakayama algebras which
are higher Auslander algebras. We define the defect of algebra Λ as the number
of indecomposable injective but non-projective modules and denote it by def Λ.

Theorem 1.1. [S2] (i) If Λ is a cyclic Nakayama algebra of rank n which is a
higher Auslander algebra of global dimension k, then there exists a unique cyclic
Nakayama algebra Λ′ of rank n + def Λ which is a higher Auslander algebra of
global dimension k + 2 and ε(Λ′) ∼= Λ.
(ii) Let (Λ, τ) denote the algebra Λ = Λ1× ...×Λt with connected linear Nakayama
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algebras Λ1, . . . ,Λt and the cyclic permutation τ of the simple Λ-modules, such that
the restriction to the simple Λi-modules is the Auslander-Reiten translation for
the simple Λi-modules, and τ maps the simple projective Λi-module to the simple
injective Λi−1-module1 (with Λ0 = Λt). If (Λ, τ) is a higher Auslander algebra
of global dimension k and rank n, then there exists a unique cyclic connected
Nakayama algebra Λ′ of rank n + def Λ which is a higher Auslander algebra of
global dimension k + 2 and ε(Λ′) ∼= Λ.

This means that any cyclic Nakayama algebra which is a higher Auslander al-
gebra can be uniquely constructed from Nakayama algebras of smaller ranks by
reversing the syzygy filtration process. Therefore, the classification of all cyclic
Nakayama algebras which are higher Auslander algebras reduces to the classifica-
tion of linear ones.

We report the result from the upcoming joint work with G. Todorov and S. Zhu.
Relying on Theorem 1.1, it is natural to ask under which conditions one can reverse
the syzygy filtration process uniquely. The key observation is the invariance of the
defects.

Theorem 1.2. [STZ1] If Λ is a cyclic Nakayama algebra, then there exists unique
cyclic Nakayama algebra Λ′ such that ε(Λ′) ∼= Λ and def(Λ′) = def(Λ).

Recall that an algebra is called Auslander-Gorenstein if injective dimension is
bounded by dominant dimension of the algebra [IS]. Recently dominant Auslander-
Gorenstein algebras introduced in [CIM], namely for each projective module P ,
in.dimP ≤ dom.dimP . We apply Theorem 1.2 to give a complete classification
of Nakayama algebras which are (dominant) Auslander-Gorenstein algebras. In
other words, we prove that any cyclic Nakayama algebra which is an Auslander-
Gorenstein algebra can be uniquely constructed from Nakayama algebras of smaller
ranks by reversing the syzygy filtration process. Therefore, it is enough to classify
2-Auslander-Gorenstein algebras which we state below.

Theorem 1.3. [STZ1] Cyclic Nakayama algebra is 2-Auslander-Gorenstein of in-
finite global dimension iff resolution quiver (Si 7→ τ socP (Si)) has one cycle and
some length one branches where nodes in the cycle correspond to minimal projec-
tives and leaves correspond to projective-injective modules with nonzero defect.

2. Wide Subcategories Cogenerated by
Projective-Injective Modules

The syzygy filtration method was developed for cyclic Nakayama algebras and
provided a unified approach to handle some homological dimensions. It is natural
to ask whether we can extend it for other classes of algebras. It seems that the
correct tool might be wide subcategories.

Let P̂ be the additive generator of projective-injective A-modules where A is an
artin algebra with dom.dimA≥ 1. Then F := {M ∈mod-A |M is submodule of P̂}
is a torsion-free class. The wide subcategory associated to F is

1The term Nakayama cycle was coined by Ringel for (Λ, τ)
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W(cogen P̂ ) := {X ∈ F | ∀(g : X → Y ) ∈ F , then coker(g) ∈ F} .(1)

Proposition 2.1. [S1, Prop 2.36] If Λ is a cyclic Nakayama algebra, then the
category Filt(B(Λ)) is equivalent to the wide subcategory cogenerated by projective-

injective Λ-module P̂ , i.e. Filt(B(Λ)) ∼=W(cogen P̂ ).

Proposition above suggests that the syzygy filtered algebra construction might
be carried into some other classes of algebras via the wide subcategories. First, we
use it in the case of linear Nakayama algebras. Since linear Nakayama algebras are
representation directed, the wide subcategory has always a simple object coming
from projective cover of simple injective module which we call trivial.

Theorem 2.2. [STZ2] (i) If Λ is a connected linear Nakayama algebra which is
higher Auslander, then there exists a unique connected linear Nakayama algebra Λ′

which is higher Auslander such that non-trivial component of W(Λ′) is equivalent
to mod-Λ.

(ii) Let (Λ, τ) denote the product Λ = Λ1×...×Λt of connected linear Nakayama
algebras Λ1, . . . ,Λt such that the restriction to the simple Λi-modules is the Aus-
lander-Reiten translation for the simple Λi-modules, and τ maps the simple projec-
tive Λi-module to the simple injective Λi−1-module. If (Λ, τ) is a higher Auslander
algebra, then there exists a unique connected linear Nakayama algebra Λ′ which
is higher Auslander such that non-trivial component of W(Λ′) is equivalent to
mod-(Λ, τ).

In conclusion, the classification problem reduces to the detection of small rank
linear Nakayama algebras in which we extend results of the recent work of Ringel
[R2] where he considers linear Nakayama algebras with monotone Kupish series
which are higher Auslander.

Example 2.3. For instance 3-Auslander algebras constructed from
⊕m

i=1 An are
given by Kupisch series (nn, (2n, 2n−1, . . . , n, nn−1)m−1, n, n−1, . . . , 1). Similarly,
any 4-Auslander algebra can be constructed from Auslander algebras which are
of the form ((2, 3)d, 2, 2, 1). For instance 4-Auslander algebras constructed from⊕m

i=1(2, 3, 2, 2, 1) is (2, (3, 3, 3, 3, 2, 3, 2)m−1, 3, 3, 3, 3, 2, 2, 1).
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The Krull–Gabriel dimension of cluster-titled algebras

Grzegorz Bobiński

We present a short proof of the following result due to Jaworska-Pastuszak and
Pastuszak [7].

Theorem 1. Let H be a hereditary algebra over a field k. If C is a cluster tilted
algebra of type H, then

KG-dimC = KG-dimH.

In the above theorem KG-dimA stands for the Krull–Gabriel dimension of an
algebra A. We remark that the Krull-Gabriel dimension of hereditary algebras is
well-known. Namely, we have the following compilation of classical results due to
Auslander [1], Geigle [5] and Baer [2].

Theorem 2. Let H be a hereditary algebra over a field k. Then

KG-dimH =





0 if H is of Dynkin type,

2 if H is of Euclidean type,

∞ otherwise.

For completeness we present the definition of the Krull-Gabriel dimension. For
an abelian category A, we define a so-called Krull–Gabriel filtration (Aα) of A by
full subcategories Aα, where α is either an ordinal or −1, as follows:

Aα :=





0 if α = −1,
{A ∈ A : A is of finite length in A/Aβ} if α = β + 1,⋃

β<αAβ if α is a limit ordinal.

If there exists α such that Aα = A, then we call the minimal such α the Krull–
Gabriel dimension of A and write KG-dimA = α. Otherwise, the Krull–Gabriel
dimension of A is undefined and we write KG-dimA =∞.

Now, for a k-category B, let F(B) be the category of finitely presented con-
travariant functors from B to the category of k-vector spaces. We call B right
coherent if F(B) is an abelian category. This is the case if either B is abelian
(for example, the category of finite dimensional modules over a finite dimension
algebra) or triangulated (for example, the cluster category CH for a hereditary
algebra H).

Finally, if A a finite dimensional algebra, then we put

KG-dimA := KG-dimF(modA).

There are two results we use in order to prove Theorem 1. In order to formulate
the first one, which is due to Geigle [6], we need an additional notion. Let X be
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an object of a k-category B. A morphism f : Y → X is called right almost split
if f is not a split epimorphism and any morphism Z → X which is not a split
epimorphism factors through f .

Theorem 3. Let B be a Krull–Schmidt Hom-finite right coherent k-category. As-
sume N is a finite class of indecomposable objects in B such that for each X ∈ N
there exists a right almost split morphism Y → X. If addN 6= B, then

KG-dimF(B) = KG-dimF(B/[N ]),

where [N ] denotes the ideal of maps in B, which factor through direct sums of
objects in N .

The second result is the following theorem due to Buan, Marsch and Reiten [4].

Theorem 4. Let T be a cluster tilting object in the cluster category CH , for a
hereditary algebra H. If C := EndCH

(T )op, then we have an equivalence of cate-
gories

modC ≃ CH/[ΣT ].

Since there exist almost split triangles in CH [3], B := CH satisfies the assump-
tions of Theorem 3. Thus if C := EndCH

(T )op is a cluster tilted algebra of type
H , then by using Theorems 3 and 4 (for T := T and T := H), we get

KG-dimC = KG-dimF(CH) = KG-dimH.
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Auslander regular algebras and Koszul duality

René Marczinzik

(joint work with Aaron Chan and Osamu Iyama)

A noetherian ring A is called Auslander regular if it has finite global dimension
and there exists a minimal injective coresolution

0→ A→ I0 → I1 → . . .→ In → 0

such that the flat dimension of each term Ii is at most i. This is a non-commutative
generalisation of the well studied regular local commutative algebras and famous
examples of non-commutative Auslander regular algebras include Weyl algebras
and universal enveloping algebras of finite dimensional Lie algebras. Assume for
the rest of this note that all algebras are finite dimensional algebras over a field.
For finite dimensional algebras, the most important class of Auslander regular al-
gebras are higher Auslander algebras, blocks of category O ([KMM]) and incidence
algebras of distributive lattices ([IM]). We introduce the new class of dominant
Auslander regular algebras as algebras of finite global dimension such that every
indecomposable projective module P has the property that the injective dimen-
sion of P is at most the dominant dimension of P . We use this new class of
algebras to generalise the classical Auslander algebras and the higher Auslander
correspondence with cluster tilting modules. Dominant Auslander regular algebras
have several advantages compared to the classical higher Auslander algebras. For
example they are invariant under glueing and under Koszul duality. We use this
last property to answer an old question by Green ([Gre]) on the characterisation
of the Koszul dual of Auslander algebras that were studied in [GM1] and [GM2].
Namely, we show that a finite dimensional Koszul algebra A is the Koszul dual
of a non-semisimple Auslander algebra if and only if A has the following three
properties:

(1) The Loewy length of A is equal to 3.
(2) An indecomposable projective A-module P is injective if and only if it has

Loewy length 3.
(3) A is dominant Auslander regular.

This leads to the following open question: For which representation-finite algebra
B is the Koszul dual of the Auslander algebra of B higher Auslander? We show
that this is the case when B is hereditary or selfinjective and use this to describe
a rich new class of higher Auslander algebras and higher cluster tilting modules.
For more details and proofs we refer to [CIM].
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Semilinear clannish algebras associated to triangulations of surfaces
with orbifold points

Daniel Labardini-Fragoso

(joint work with Raphael Bennett-Tennenhaus)

The main aim of this talk is to present [2]. We construct semilinear clannish
algebras for the colored triangulations of a surface with marked points and orbifold
points, and prove that they are Morita-equivalent to the Jacobian algebras of the
species with potential constructed by Geuenich and myself a few years ago in [3, 4].

Surfaces with marked points and orbifold points. A surface with marked
points and orbifold points is a triple Σ = (Σ,M,O) consisting of

• A compact, connected, oriented, two-dimensional real manifold Σ with
(possibly empty) boundary ∂Σ;
• a finite set of marked points ∅ 6= M ⊆ Σ with at least one point from each
connected component of ∂Σ; points in P := M \ ∂Σ are called punctures ;
• a (possibly empty) finite set of orbifold points O ⊆ Σ \ ∂Σ.

An arc on Σ is a curve k on Σ that connects either a pair of points in M, or a
point in M and a point in O, and satisfies the following conditions:

• except for its endpoints, k is disjoint from ∂Σ ∪M ∪O;
• except possibly for its endpoints, k does not cross itself;
• k is not homotopically trivial in Σ \ (M ∪O) rel M ∪O;
• k is not homotopic in Σ rel M ∪O to a boundary segment of Σ;
• k is not a loop closely enclosing a single orbifold point.

There are two types of arcs: those connecting points in M, called non-pending
arcs, and those connecting a point in M to a point in O, called pending arcs.

Arcs are considered up homotopy rel M ∪ O. Two arcs are compatible if there
are representatives in their homotopy classes rel M ∪ O that do not intersect in
Σ \ ∂Σ. A triangulation of Σ is a maximal collection of pairwise compatible arcs.
Each triangulation τ of Σ splits Σ into finitely many triangles.

From now on, we shall assume that Σ satisfies one of the following conditions:

(1) ∂Σ 6= ∅ and M ⊆ ∂Σ (so P = ∅), or ∂Σ = ∅ and |M| = 1 (so P = M).

Then there are three possible types of triangles for any given triangulation τ of Σ,
namely, those shown in Figure 1.
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Figure 1. Left: The tree types of triangles of a triangulation.
Right: The cells of the CW-complex X(τ) = (Xn(τ))n=0,1,2.

Colored triangulations. Define a CW-complex X(τ) = (Xn(τ))n=0,1,2 by:

0-cells: X0(τ) := τ (i.e., each arc in τ becomes a 0-cell)

1-cells: X1(τ) := {arrows connecting 0-cells clockwisely inside triangles}
2-cells: X2(τ) := {3-cycles on X1(τ) arising from triangles of τ , up to rotation}.

Let Cn(τ) := F2Xn(τ) be the F2-vector space with basisXn(τ), where F2 := Z/2Z,
and define a chain complex C•(τ) and a cochain complex C•(τ) as follows

C•(τ) : 0 −→ C2(τ)
∂2−→ C1(τ)

∂1−→ C0(τ) −→ 0

∂2(αβγ) := α+ β + γ, ∂1(α) := h(α) − t(α)

C•(τ) := HomF2(C•(τ),F2) : 0←− C2(τ)
∂∨
2←− C1(τ)

∂∨
1←− C0(τ)←− 0

Following [4], we define a colored triangulation of Σ = (Σ,M,O) to be a pair
(τ, ξ) consisting of a triangulation τ of Σ and a 1-cocycle ξ ∈ ker(∂∨

2 ) ⊆ C1(τ),
i.e. a choice (ξa)a∈X1(τ) of elements of F2 = {0, 1}, subject to the condition that
for every 2-cell αβγ ∈ X2(τ) one must have ξα + ξβ + ξγ = 0mod2.

Semilinear clannish algebras. Let K be any field, and suppose we are given:

• a finite quiver Q̂, not necessarily loop-free;

• a set S ⊆ Q̂ of special loops ;

• a field automorphism σa ∈ Aut(K) for each arrow a ∈ Q̂1;

• a set Z of paths on Q̂ of length at least 2;
• a degree-2 polynomial qs ∈ K[s;σs] for each s ∈ S, where K[s;σs] is the
skew-polynomial ring in s with coefficients in K, skewed by σs.

Suppose further that the following conditions are met:

• for each vertex k ∈ Q̂0, at most two arrows of Q̂ end (resp. start) at k;

• for each arrow a : k → j not in S, at most one arrow b of Q̂ ends (resp.
starts) at k and satisfies ab /∈ Z (resp. ba /∈ Z);
• no path belonging to Z has a special loop as its first or last arrow.

Consider the ring S := ×k∈Q̂0
K and the S-S-bimodule

⊕
a∈Q̂1

Kσa ⊗K K, where

for any field automophism σ ∈ Aut(K), we define Kσ to be the twisted K-K-
bimodule having K as underlying abelian group, with left K-action z ∗m := zm
and right K-action m∗z := mσ(z) for z ∈ K and m ∈ K. Following [1], we denote
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the tensor algebra KσQ̂ := TS(
⊕

a∈Q̂1
Kσa ⊗K K), and say that the quotient

KσQ̂/〈Z ∪ {qs | s ∈ S}〉
is a semilinear clannish algebra.

As in [2], we associate a semilinear clannish algebra to each colored triangulation
(τ, ξ) as follows. Fix one of the following two choices of field K:

K := C or K := R

Set Q̂(τ) to be the quiver obtained from (X0(τ), X1(τ)) by adding a loop sj at
each pending arc j of τ . Further, let θ : C→ C be complex conjugation and define

S(τ) := {sj | j ∈ τ is pending} i.e., all loops are special;

σa :=

{
θξa |K if a ∈ X1(τ)

θ|K if a ∈ S(τ)
for each arrow a of Q̂(τ);

Z(τ) := {αβ | ∃γ ∈ X1(τ) such that αβγ ∈ X2(τ) up to rotation of cycles},

qsj :=

{
s2j − 1 ∈ C[sj ; θ] if K = C

s2j + 1 ∈ R[sj ; 11R] if K = R
for all pending arcs j of τ .

These definitions can be mnemotechnically visualized for the triangles from Fig-
ure 1 as follows (K = C first, K = R afterwards):

C

C
θ
ξβ

⊗CC

❄❄❄

��
❄❄❄

C

C
θ
ξγ

⊗CC⑧⑧⑧

??⑧⑧⑧

CC
θξα⊗CC

oo

C

C
θ⊗CC

s2=e s ��

C
θ
ξβ

⊗CC

❄❄❄

��
❄❄❄

C

C
θ
ξγ

⊗CC⑧⑧⑧

??⑧⑧⑧

CC
θξα ⊗CC

oo

C

C
θ⊗CC

s21=e1 s1 ��
C

θξα⊗CC // C

C
θ⊗CC

s2 s22=e2��

C
θ
ξγ

⊗CC

⑧⑧⑧

��⑧⑧⑧

C

C
θ
ξβ

⊗CC❄❄❄

__❄❄❄

R

R⊗RR

❄❄
❄

��
❄❄

❄

R

R⊗RR⑧⑧⑧

??⑧⑧⑧

RR⊗RR
oo

R

R⊗RR

s2=−e s ��

R⊗RR

❄❄
❄

��
❄❄

❄

R

R⊗RR⑧⑧⑧

??⑧⑧⑧

RR⊗RR
oo

R

R⊗RR

s21=−e1 s1 ��
R⊗RR // R

R⊗RR

s2 s22=−e1��

R⊗RR
⑧⑧
⑧

��⑧⑧
⑧

R

R⊗RR❄❄❄

__❄❄❄

We show in [2] that KσQ̂(τ)/I(τ, ξ), where I(τ, ξ) := 〈Z ∪ {qsj | sj ∈ S(τ)}〉, is
a semilinear clannish algebra.

Jacobian algebras. Let (τ, ξ) be a colored triangulation of Σ. Pick one of the
following two assignments F = (Fk)k∈τ of fields Fk for k ∈ τ :

Fk :=

{
R for all k pending;

C for all k non-pending;
or Fk :=

{
C for all k pending;

R for all k non-pending.



Representation Theory of Quivers and Finite-Dimensional Algebras 467

We shall say that the assignment on the left is B-like, and to that the one on the
right is C-like. For each arrow a ∈ X1(τ), a : k → j, set g(τ, ξ)a := θξa |Fj∩Fk

and

A(τ, ξ)a :=





(Fj ⊗R Fk)
2 = (R⊗R R)2 if k, j are pending and F is B-like;

Fj ⊗R Fk = C⊗R C if k, j are pending and F is C-like;

F
g(τ,ξ)a
j ⊗Fj∩Fk

Fk if at least one of k, j is non-pending.

These assignments of fields and bimodules can be mnemotechnically visualized for
the triangles from Figure 1 as follows (B-like assignment first, C-like afterwards)

C

C
θ
ξβ

⊗CC

❄❄❄

��
❄❄❄

C

C
θ
ξγ

⊗CC⑧⑧⑧

??⑧⑧⑧

CC
θξα⊗CC

oo

R

C⊗RR

❄❄
❄

��
❄❄

❄

C

R⊗RC⑧⑧⑧

??⑧⑧⑧

CC
θξα⊗CC

oo

R (R⊗RR)
2 // R

C⊗RR
⑧⑧
⑧

��⑧⑧
⑧

C

R⊗RC❄❄❄

__❄❄❄

R

R⊗RR

❄❄
❄

��
❄❄

❄

R

R⊗RR⑧⑧⑧

??⑧⑧⑧

RR⊗RR
oo

C

R⊗CC

❄❄
❄

��
❄❄

❄

R

C⊗RR⑧⑧⑧

??⑧⑧⑧

RR⊗RR
oo

C C⊗RC
// C

R⊗RC
⑧⑧
⑧

��⑧⑧
⑧

R

C⊗RR❄❄❄

__❄❄❄

Let R := ×k∈τFk, A(τ, ξ) :=
⊕

a∈X1(τ)
A(τ, ξ)a. Thus, A(τ, ξ) is an R-R-

bimodule, so one can form the (complete) tensor ring of A(τ, ξ) over R. Following
[3, 4], we can define an “obvious” (super-)potential W (τ, ξ) ∈ TR(A(τ, ξ)) as the
sum of “obvious” degree-3 cycles in TR(A(τ, ξ)), and take the cyclic derivatives
of W (τ, ξ) to define the Jacobian algebra P(A(τ, ξ),W (τ, ξ)). Roughly, for each
arrow a and cycle c, the cyclic derivative ∂a(c) is defined to be the g(τ, ξ)−1

a -linear
part of the usual sum of paths obtained by deleting each occurrence of a in c (with
the reordering yx if c = xay), see [3]. Since the Fk are not necessarily all the same
field, the notion of path has to be enhanced, both a and ia (resp. ai) may be
paths whenever a is an arrow with Fh(a) = C (resp. Ft(a) = C). This way, e.g., ab
and aib are distinct paths if t(a) = h(b), Fh(a) = R, Ft(a) = C, Ft(b) = R. On the
other hand, if t(a) = h(b), Fh(a) = C, Ft(a) = R, Ft(b) = C, then

ab =
1

2
(ab− iabi) +

1

2
(ab+ iabi),

(ab− iabi)i = i(ab− iabi), (ab+ iabi)i = −i(ab+ iabi),

i.e., 1
2 (ab− iabi) and 1

2 (ab+ iabi) are the 11-linear part and the θ-linear part of ab.

Main result. Essential to the proof of our main result are the simple observations
that C ∼= R[s]/〈s2 + 1〉 = R[s, 11R]/〈s2 + 1〉 and R ≃Morita C[s; θ]/〈s2 − 1〉.

Theorem 1. [2] If Σ is a surface with marked points and orbifold points sat-
isfying (1), then for any colored triangulation (τ, ξ) of Σ, the Jacobian alge-

bra P(A(τ, ξ),W (τ, ξ)) and the semilinear clannish algebra KσQ̂(τ, ξ)/I(τ, ξ) are
Morita-equivalent (K = C in the B-like situation, K = R in the C-like situation).
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Configuration spaces and “curvy” associahedra from
associative algebras

Pierre-Guy Plamondon

(joint work with Nima Arkani-Hamed, Hadleigh Frost, Giulio Salvatori
and Hugh Thomas)

Let k be a field and fix a finite-dimensional k-algebra Λ. We will define an affine

variety M̃Λ which reflects the τ -tilting theory of Λ and recovers varieties arising
in geometry and in the computation of scattering amplitudes.

1. Algebraic setting: 2-term complexes of projectives

We denote by K [−1,0](projΛ) the category of 2-term complexes of finitely gen-
erated projective Λ-modules. It is the full subcategory of the homotopy cat-
egory Kb(projΛ) whose objects are the complexes supported in cohomological
degrees −1 and 0. This category enjoys the following properties:

(1) Since it is an extension-closed full subcategory of a triangulated category,
it is extriangulated in the sense of [11].

(2) As an extriangulated category, it has enough projectives and enough in-
jectives. The projective objects are the complexes supported in degree 0
and the injective ones are those supported in degree −1.

(3) It has homological dimension at most 1 and dominant dimension at least 1,
and so is a 0-Auslander category in the sense of [7].

(4) The cohomology functor H0 induces an equivalence of k-linear categories

K [−1,0](projΛ)/(Λ[1])
∼−→ modΛ,

where (Λ[1]) is the ideal of morphisms factoring through an injective ob-
ject.

(5) The category has Auslander–Reiten–Serre duality in the sense of [8], and
in particular has almost-split conflations.

2. The varieties

From now on, we assume that Λ has finite representation type. For any two
objects X and Y of K [−1,0](projΛ), we define a “compatibility degree” c(X,Y ) as

c(X,Y ) := dimExt1(X,Y ) + dimExt1(Y,X).
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Definition 1. For each indecomposable object X of K [−1,0](projΛ), let uX be a
variable.

(1) The u-equation associated to X is the polynomial equation

uX +
∏

Y indecomposable

u
c(X,Y )
Y = 1.

(2) Define

M̃Λ := Spec
(
C[uX | X indec.]

/
〈u-equations〉

)

and

MΛ := Spec
(
C[u±1

X | X indec.]
/
〈u-equations〉

)
.

Example 2. If Λ = k, then there are only two indecomposable objects in the
category K [−1,0](proj Λ), namely Λ and its shift ΣΛ. The two u-equations are the
same: uΛ + uΣΛ = 1. Thus

M̃Λ := Spec
(
C[uΛ, uΣΛ]

/
〈uX + uΣX − 1〉

)
.

Example 3. If Λ = kQ, whereQ is the quiver of type An given by 1→ · · · → n, then
the u-equations can be described combinatorially as follows. Take a disk with n+3
marked points on its boundary numbered clockwise from 1 to n+ 3, and consider
its diagonals [i, j] joining points i and j (with 1 ≤ i < j ≤ n+ 3, |i− j| ≥ 2). For
two diagonals [i, j] and [k, ℓ], let I([i, j], [k, ℓ]) be 1 if the two diagonals intersect
and 0 if they don’t.

There is a bijection between the diagonals of the disk and the indecomposable
objects of K [−1,0](projΛ) such that the u-equations become

u[i,j] +
∏

[k,ℓ]

u
I([i,j],[k,ℓ])
[k,ℓ] = 1.

These equations appear in work Koba and Nielsen [10] on scattering amplitudes,
and in work of Brown [2] on configuration spaces of points in a projective line.

Example 4. If Λ = kQ, with Q any orientation of a Dynkin diagram of type ADE,
then we recover the u-equations of [1].

Example 5. If Λ is a gentle algebra arising from a grid as in [3, 12], then the u-
equations are related to a conjecture of Early [6].

3. Face structure

Theorem 6 (Arkani-Hamed, Frost, P., Salvatori, Thomas). Let R be an inde-

composable rigid object of K [−1,0](projΛ). Then the Zariski-closed subset of M̃Λ

defined by putting uR = 0 is isomorphic to M̃Λ′ , where Λ′ is the τ-tilting reduction
of Λ with respect to R (see [9]).

We view M̃Λ′ as the “face” of M̃Λ at uR = 0. In type An, this confers a “face”

structure to M̃Λ which is the same as that of the associahedron. We thus view

M̃Λ as a “curvy” associahedron.
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4. Parametrization

From now on, we assume moreover that k = C. We let Λ ∼= kQ/I with I an
admissible ideal, and we let n be the number of vertices of Q. For any Λ-moduleM ,
its F -polynomial is

F (M) =
∑

d∈Nn

χ (Grd(M))yd ∈ Z[y1, . . . , yn],

where Grd(M) is the submodule Grassmannian of M of dimension vector d and χ
is the Euler characteristic. This definition takes its root in the categorification of
cluster algebras [4]. If X is an object of K [−1,0](proj Λ), we write F (X) instead
of F

(
H0(X)

)
.

Theorem 7 (Arkani-Hamed, Frost, P., Salvatori, Thomas). For any indecom-
posable non-projective object X of K [−1,0](projΛ), let τX → EX → X be an
almost-split conflation. Then the map

Φ : C[MΛ] −→ C[y±1
1 , . . . , y±1

n ][F (X)−1 | X indec.]

defined by

uX 7→





FE

FτXFX
if X is neither Pi nor ΣPi

yi
FE

FτXFX
if X = ΣPi

Frad Pi

FPi

if X = Pi

is surjective.

The proof uses a multiplication formula of [5] for F -polynomials and results on
Grothendieck group and g-vectors from [13]. We conjecture that the map Φ is in
fact an isomorphism.
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Fans in tilting theory: Rank 2 case

Osamu Iyama

(joint work with Toshitaka Aoki, Akihiro Higashitani, Ryoichi Kase,
Yuya Mizuno)

For each finite dimensional algebra A, 2-term silting complexes of A give rise to a
nonsingular fan in the real Grothendieck group of A, which we call the g-fan of A.
An important problem in tilting theory is to classify complete g-fans. In this note,
we give an answer for rank 2 case. More explicitly, we show that complete g-fans of
rank 2 are precisely sign-coherent fans of rank 2. As a by-product of our method,
we prove that for each positive integer N , there exists a finite dimensional algebra
A of rank 2 such that the Hasse quiver of the poset of 2-term silting complexes of
A has precisely N connected components.

We start with recalling basic notions from [F]. Let Rd be an Euclidean space with
inner product 〈·, ·〉. A convex polyhedral cone σ in Rd is a set of the form

cone{v1, . . . , vs} := {
s∑

i=1

rivi | ri ≥ 0} ⊂ Rd,

where v1, . . . , vs ∈ Rd. It is called rational if each vi can be taken from Qd, and
strongly convex if σ ∩ (−σ) = {0}. A supporting hyperplane of σ is a hyperplane
Ker〈u,−〉 in Rd given by some 0 6= u ∈ Rd satisfying σ ⊂ {v ∈ Rd | 〈u, v〉 ≥ 0}. A
face of σ is the intersection of σ with a supporting hyperplane of σ.

A fan Σ in Rd is a collection of cones in Rd such that

• each face of a cone in Σ is also contained in Σ, and
• the intersection of two cones in Σ is a face of each of those two cones.

A fan Σ in Rd is called complete if
⋃

σ∈Σ σ = Rd, and nonsingular if each maximal

cone in Σ is generated by a Z-basis for Zd.
The following class of fans is our main concern.

Definition 1. A sign-coherent fan is a pair (Σ, σ+) of a nonsingular fan Σ in Rd

and a cone σ+ = cone{ei | 1 ≤ i ≤ d} ∈ Σ of dimension d such that −σ+ ∈ Σ and
the following condition is satisfied.

• For each σ ∈ Σ, there exists ǫ ∈ {±1}d such that σ ⊆ cone{ǫ1e1, . . . , ǫded}.
Now we introduce the g-fan. Let A be a finite dimensional algebra over a field k,

projA the category of finitely generated projective A-modules, and Kb(projA) the
homotopy category of bounded complexes on projA. The split Grothendieck group
K0(projA) of projA is isomorphic to that of the triangulated category Kb(projA),
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and is a free abelian group with basis consisting of the isomorphism classes of
indecomposable projective A-modules. Consider the real Grothendieck group

K0(projA)R := K0(projA)⊗Z R ≃ R|A|.

We call T = (T i, di) ∈ Kb(projA) presilting if HomKb(projA)(T, T [ℓ]) = 0 for all

positive integers ℓ, and silting if it is presilting and generates Kb(projA) as a thick
subcategory. We call T 2-term if T i = 0 for all i 6= 0,−1.

Definition 2. [H, DIJ] For a 2-term presilting complex T = T1 ⊕ · · · ⊕ Tℓ of
A with indecomposable direct summands Ti, let C(T ) := cone{[T1], . . . , [Tℓ]} ⊂
K0(projA)R. The g-fan of A is

Σ(A) := {C(T ) | T : 2-term presilting complex of A}.

This is in fact a fan. More strongly, the following basic result holds.

Proposition 3. [A, DIJ] Let A be a finite dimensional algebra over a field k.

(1) (Σ(A), C(A)) is a sign-coherent fan in K0(projA)R.
(2) Σ(A) is complete if and only if A is τ-tilting finite (that is, A has only

finitely many isomorphism classes of basic 2-term silting complexes).

There are many other conditions which are satisfied by g-fans, e.g. idempotent
reductions, Jasso reductions, pairwise positivity [AHIKM1]. We pose the following
problem.

Problem 4. Characterize complete sign-coherent fans in Rd which can be realized
as g-fans of some finite dimensional algebras.

The following main result gives a simple answer to the case d = 2.

Theorem 5. [AHIKM2] Let k be an arbitrary field. For each complete sign-
coherent fan (Σ, σ+) in R2, there exists a finite dimensional k-algebra A and
an isomorphism K0(projA)R ≃ R2 of R-vector spaces such that (Σ(A), C(A)) ≃
(Σ, σ+).

To prove this, we give the following three results, which realize certain combi-
natorial operations for fans in the level of algebras:

• Gluing Theorem,
• Rotation Theorem,
• Subdivision Theorem.

As another application of our method, we prove the following result.

Theorem 6. [AHIKM2] Let k be an arbitrary field. For each positive integer N ,
there exists a finite dimensional k-algebra with |A| = 2 such that the Hasse quiver
of the poset of 2-term silting complexes of A has precisely N connected components.

This follows from Rotation Theorem and another type of Gluing Theorem.
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The rigid parts of the elements of the real Grothendieck groups

Sota Asai

(joint work with Osamu Iyama)

Let A be a finite dimensional algebra over a field, and projA be the category of
finitely generated projective A-modules.

A complex U in the homotopy category Kb(projA) is said to be presilting if
HomKb(projA)(U,U [> 0]) = 0. Since Kb(projA) is Krull-Schmidt, any complex X ∈
Kb(projA) has a unique decomposition X =

⊕m
i=1 Xi into indecomposable direct

summands up to isomorphisms and reordering, so X has a maximum presilting
direct summand, which we can call the rigid part of X .

Based on decompositions of 2-term complexes X = (X−1 → X0) in Kb(projA),
Derksen-Fei [5, Definition 4.3] introduced canonical decompositions θ =

⊕m
i=1 θi

in the Grothendieck group K0(projA). We say that θ ∈ K0(projA) is rigid if
there exists some 2-term presilting complex U such that [U ] = θ. Since any
element θ ∈ K0(projA) admits a unique canonical decomposition up to reordering
[5, Theorem 4.4], the rigid part of θ can be defined in a quite natural way.

However, in this definition, it is still unclear whether the rigid part of mθ is al-
waysm times of the rigid part of θ for each positive integerm ∈ Z≥1, because there
are not enough results on the relationship between the canonical decompositions
of θ and mθ.

To avoid this problem partially, we define the rigid part of each element in the
real Grothendieck group K0(projA)R := K0(projA) ⊗Z R without using canonical
decompositions. In our definition of rigid parts, the rigid part η of θ satisfies the
following properties.

(a) η is rigid.
(b) We can take the “direct sum” of η and θ − η.
(c) The element η is the “maximum” element satisfying (a) and (b).
(d) For any positive real number r ∈ R>0, rη is the rigid part of rθ.

Below we explain these properties precisely.
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(a). First, to define rigid elements in K0(projA)R, we define the presilting cones
C◦(U), C(U) in K0(projA)R for each basic 2-term presilting complex U =

⊕m
i=1 Ui

with Ui indecomposable by

C◦(U) :=

m∑

i=1

R>0[Ui], C(U) :=

m∑

i=1

R≥0[Ui].

By [1, Theorem 2.27, Corollary 2.28], the elements [U1], . . . , [Um] are linearly in-
dependent, so the presilting cones C◦(U), C(U) are m-dimensional. Under this
preparation, θ ∈ K0(projA)R is said to be rigid if there exists some basic 2-term
presilting complex U such that θ ∈ C+(U).

(b). We next consider the “direct sum” of η and θ−η. For this purpose, we use the
two numerical torsion pairs (T θ,Fθ), (Tθ,Fθ) associated to each θ ∈ K0(projA)R
introduced by Baumann-Kamnitzer-Tingley [3, Proposition 3.1]. These are defined
in the category modA of finitely generated A-modules as follows:

T θ := {M ∈ modA | θ(N) ≥ 0 for any quotient N of M},
Fθ := {M ∈ modA | θ(L) < 0 for any submodule L 6= 0 of M},
Tθ := {M ∈ modA | θ(N) > 0 for any quotient N 6= 0 of M},
Fθ := {M ∈ modA | θ(L) ≤ 0 for any submodule L of M}.

We say that two element θ, η ∈ K0(projA)R is TF equivalent if both (T θ,Fθ) =
(T η,Fη) and (Tθ,Fθ) = (Tη,Fη) hold.

Based on results by Yurikusa [6, Proposition 3.3] and Brüstle-Smith-Treffinger
[4, Proposition 3.27], I proved that the presilting cone C◦(U) for each basic 2-term
presilting complex U ∈ Kb(projA) is a TF equivalence class in [2, Proposition 3.11].
Thus, we write (T U ,FU ) and (TU ,FU ) for the corresponding numerical torsion
pairs.

For our purpose, it is important to use the open neighborhood NU of C◦(U) for
each basic 2-term presilting complex U ∈ Kb(projA) given by

NU := {θ ∈ K0(projA)R | TU ⊂ Tθ, FU ⊂ Fθ},
which firstly appeared in [2, Section 4]. Its closure NU satisfies

NU = {θ ∈ K0(projA)R | TU ⊂ T θ, FU ⊂ Fθ}.
Therefore, NU is a union of TF equivalence classes, and moreover, we can check
that NU is a rational polyhedral cone in K0(projA)R. For any basic 2-term pre-
silting complexes U, V , the complex U ⊕V is presilting if and only if C◦(V ) ⊂ NU ,
so if η ∈ C◦(U), we can think that the direct sum η⊕ (θ− η) is “admitted” if and
only if θ − η ∈ NU .

(c). Let U be a basic 2-term presilting complex in Kb(projA). Then, for each
θ ∈ NU , we would like to show the set

H := {η ∈ C(U) | θ − η ∈ NU}.
has a maximum element.
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The key point is the facets (the faces of codimension one) ofNU . If U =
⊕m

i=1 Ui

with Ui indecomposable, then since NU =
⋂m

i=1 NUi
, any facet F of NU admits

some i ∈ {1, 2, . . . ,m} such that F is contained in some facet of NUi
. We have

proved the uniqueness of this property.

Theorem 1. Let U =
⊕m

i=1 Ui be a basic 2-term presilting complex in Kb(projA)

with Ui indecomposable. Then, for any facet F of NU , there uniquely exists
i ∈ {1, 2, . . . ,m} such that F is contained in exactly one facet of NUi

.

By using this, we have that H has a maximum element.

Proposition 2. Let U =
⊕m

i=1 Ui be a basic 2-term presilting complex in

Kb(projA) with Ui indecomposable, and θ ∈ NU . Then, the set H = {η ∈ C(U) |
θ − η ∈ NU} is of the form

{
m∑

i=1

xi[Ui] | xi ∈ [0, ai] (i ∈ {1, 2, . . . ,m})
}

with a1, a2, . . . , am ∈ R≥0.

Therefore, under the setting of the proposition, we set

ηU (θ) :=

m∑

i=1

ai[Ui] ∈ C(U).

If θ ∈ NU , then ηU ∈ C+(U) holds. Now we can define the rigid part of each
θ ∈ K0(projA)R as follows.

Definition 3. Let θ ∈ K0(projA)R. We can take the maximum basic 2-term
presilting complex U in Kb(projA) such that θ ∈ NU . Then, we call ηU (θ) the
rigid part of θ.

This definition gurantees the desired “maximum” property in the following
sense: if a basic 2-term presilting complex V and η ∈ C◦(V ) satisfy θ − η ∈ NV ,
then η =

∑m
i=1 bi[Ui] ∈ C(U) with bi ∈ [0, ai] in the notation of Proposition 2.

(d). The definition of ηU (θ) gives a map NU → C(U). This map is piecewise
R-linear, so we have the following.

Corollary 4. Let θ ∈ K0(projA)R and r ∈ R>0. Then, the rigid part of rθ is r
times of θ.

We end this abstract by stating the relationship between canonical decomposi-
tions.

Corollary 5. Let K be an algebraically closed field and θ ∈ K0(projA). Then,
there exists some positive interger l ∈ Z≥1 such that, for each k ∈ Z≥1, the
following elements coincide.

(a) The rigid part of klθ in our definition.
(b) The rigid part of klθ defined by canonical decompositions.
(c) k times of the rigid part of lθ in our definition.
(d) k times of the rigid part of lθ defined by canonical decompositions.
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Combinatorial invariants of invariant subspaces of nilpotent
linear operators

Justyna Kosakowska

(joint work with Markus Schmidmeier)

In [2, 3, 4, 5, 6] we developed and introduced several combinatorial tools and
invariants (Littlewood-Richardson tableaux, Klein tableaux, arc diagrams, socle
tableaux, standard Young tableaux) that control some properties of invariant sub-
spaces of nilpotent linear operators. We want to present how one can apply these
tools and invariants to investigate geometric and algebraic properties of invariant
subspaces of nilpotent linear operators.

Throughout we assume that k is a field and Λ = k[[T ]] is the k-algebra of power
series. By a nilpotent k-linear operator we mean a Λ-module of the form

Nα =
s⊕

i=1

Λ/(Tαi),

where α = (α1, . . . , αs) is a partition.
We are interested in the category S of all triples (Nα, Nβ, f), where

f : Nα → Nβ

is a monomorphism of Λ-modules. Morphisms in this category are defined in the
natural way. We call objects of S invariant subspaces of nilpotent linear operators
and identify them with short exact sequences of nilpotent linear operators.

Theorem of Green and Klein ([1, 7]) states that for given partitions α, β, γ,
there exists a short exact sequence

0 −→ Nα −→ Nβ −→ Nγ −→ 0

of nilpotent linear operators if and only if there is a Littlewood-Richardson (LR-)
tableau Γ of shape (α, β, γ). Moreover, we have Γ = [γ(0), . . . , γ(s)], where for all
i:

Nγ(i)
∼= Nβ/T

if(Nα).

We call Γ the LR-tableau of this short exact sequence.
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Let α′ be the transpose of the partition α. Recall that an LR-tableau of shape
(α, β, γ) is a filling of the skew diagram β \γ with α′

1 boxes with entry 1, α′
2 boxes

with entry 2, etc. such that

• the entries are weakly increasing in each row, strictly increasing in each
column,
• for each c ≥ 0, ℓ ≥ 2 there are at least as many entries ℓ− 1 on the right
hand side of the c-th column as there are entries ℓ.

An LR-tableau Γ can be viewed as a sequence of partitions

Γ = [γ(0), . . . , γ(s)]

where γ(i) denotes the region in the Young diagram β which contains the empty
boxes and boxes with entries 1, . . . , i.

Let k = k be an algebraically closed field. Fix partitions α, β, γ. Denote by
Hβ

α = Homk(Nα, Nβ) = M|α|,|β|(k) the affine variety of all |α| × |β|-matrices,
where |α| = α1 + . . . + αs. We work with the Zariski topology. Consider the
subset Vβ

α,γ ⊂ Hβ
α consisting of all monomorphisms f : Nα → Nβ such that

Coker f ∼= Nγ . For an LR-tableau Γ of shape (α, β, γ), denote by VΓ ⊆ Vβ
α,γ

subset consisting of all f such that (Nα, Nβ , f) has type Γ.
Note that

Vβ
α,γ =

•⋃
VΓ,

were the union is indexed by the set T β
α,γ of all LR-tableaux of shape (α, β, γ). For

Γ,∆ ∈ T β
α,γ we define define (reflexive and anti- symmetric) relation

∆ �bound Γ⇐⇒ VΓ ∩ V∆ 6= ∅
Denote by ≤bound the transitive closure of �bound.

In [4, 5, 3], applying combinatorial properties of LR-tableaux, the order ≤bound

is investigated.
We introduce a new combinatorial invariants: socle tableaux. The socle tableau

for (Nα, Nβ , f) is defined in the following way. Let sociNα = {x ∈ Nα ; T ix = 0}.
The socle seguence

0 ⊂ f(socNα) ⊂ · · · ⊂ f(socs−1Nα) ⊂ f(socsNα) = f(Nα),

gets a sequence of epimorphisms:

Nβ → Nβ/f(socNα)→ · · · → Nβ/f(soc
s−1Nα)→ Nβ/f(Nα),

and hence also a decreasing sequence of partitions:

β = σ(0) ⊇ σ(1) ⊇ · · · ⊇ σ(s−1) ⊇ σ(s) = γ,

where σ(i) is such that Nδ(i) ≃ Nβ/f(soc
iNα). We call Σ = [σ(s), σ(s−1), . . . , σ(0)]

the socle tableau of (Nα, Nβ, f).
An S-tableau of shape (α, β, γ) is a filling of the skew diagram β \ γ with α′

1

boxes with entry 1, α′
2 boxes with entry 2, etc. such that
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• in each row, the entries are weakly decreasing, in each column, the entries
are strictly decreasing,
• for each vertical line, and each natural number ℓ, there are at most as
many entries ℓ+ 1 on the left hand side of the line as there are entries ℓ.

The following theorems hold.

Theorem [2]. There exists a short exact sequence of Λ-modules

η : 0 −→ Nα
f−→ Nβ −→ Nγ −→ 0

if and only if there exists an S-tableau Σ of shape (α, β, γ).
Moreover, Σ = [σ(s), . . . , σ(0)], where for all i

Nσ(i)
∼= Nβ/f(soc

iNα).

Let homS(X,Y ) = lenHomS(X,Y ), Pm
ℓ = (Λ/(pℓ),Λ/(pm), ι).

Theorem [2]. For X = (Nα, Nβ, Nγ), the following invariants are equivalent in
the sense that each one determines both of the others.

(1) The socle tableau Σ = ΣX .
(2) The LR-tableau Γ∗ = ΓX∗ of the dual object X∗.
(3) The Hom-matrix H = (hm

ℓ )ℓ,m where hm
ℓ = homS(P

m
ℓ , X).
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On the syzygy categories over dimer tree algebras and their skew
group algebras

Ralf Schiffler

(joint work with Khrystyna Serhiyenko)

This is an overview of the results in [7, 8, 9]. A dimer tree algebra A is the Jacobian
algebra of a quiver Q (without loops and 2-cycles) with a canonical potential such
that

(1) every arrow lies in a chordless oriented cycle;
(2) the dual graph is a tree.

By definition, dimer tree algebras are 2-Calabi Yau tilted algebras [1] and there-
fore non-commutative Gorenstein algebras of Gorenstein dimension one [5]. The
category of non-projective syzygies over A is equivalent to the stable category of
(maximal) Cohen Macaulay modules CMPA as well as to the singularity category
of A. The category CMPA is a triangulated category whose shift is given by the
inverse syzygy functor Ω−1. Moreover, CMPA is 3-Calabi-Yau [5].

In [7], we introduce a derived invariant, the total weight, of a dimer tree algebra
and show that it is an even integer, which we denote by 2N . Then we construct
a 2N -gon S with checkerboard pattern ρ(i), i ∈ Q0, and show that the category
CMPA is equivalent to the category DiagS of 2-diagonals in S. This equivalence
maps indecomposable syzygies to 2-diagonals, irreducible morphisms to 2-pivots,
and Auslander-Reiten triangles to meshes. Moreover, it commutes with the shift
functors and the Auslander-Reiten translations in both categories. In particular,
the syzygy functor Ω in CMPA corresponds to the clockwise rotation R by π/N in
DiagS. The inverse Auslander-Reiten translation in CMPA is given by Ω2 and in
DiagS by R2. Furthermore, the radical of the indecomposable projective module
P (i) is mapped to the line ρ(i) of the checkerboard pattern in S.

It follows that the projective resolutions of A-modules are periodic of period
N or 2N . Using a result of [3], we then obtain that CMPA is equivalent to the
2-cluster category C2

AN−3
= Db(modH)/τ−1[2] of type AN−3.

In particular, the number of indecomposable Cohen-Macaulay modules over A
is N(N − 2). We say the dimer tree algebra is of finite Cohen-Macaulay type A.

The name dimer tree algebra stems from the fact that the checkerboard pattern
on S can be extended to a dimer model (or Postnikov diagram) on a slightly larger
disk.

In [9]. we then consider dimer tree algebras with an admissible group action by
a group G = {1, σ} of order two. The skew group algebra AG has been studied
in [6, 2]. Inspired by their results, we show that AG is of finite Cohen-Macaulay
type D. In fact, CMPAG is equivalent to the category of 2-arcs in a punctured
N -gon and therefore to the 2-cluster category of Dynkin type DN+1

2
. The action

of the non-trivial group element σ induces an action on the checkerboard 2N -gon
given by a rotation by angle π. Therefore, the checkerboard pattern on the 2N -
gon induces a checkerboard pattern on the punctured N -gon, and the equivalence
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of categories again commutes with the shift functors and the Auslander-Reiten
translations in both categories.

We also give examples of 2-Calabi-Yau tilted algebras of finite Cohen-Macaulay
types E6,E7 and E8.
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Central support for triangulated categories

Henning Krause

The notion of support for objects of an essentially small triangulated category re-
quires a space, and it is therefore an interesting task to construct such a space from
the lattice of thick subcategories. Several options are discussed in recent work of
Gratz and Stevenson [3]. In fact they point out that a distributive lattice of thick
subcategories is automatically a spatial frame, so isomorphic to a lattice of open
subsets of a topological space. In my talk I reported on own recent work [4] which
has been inspired by this beautiful observation. I turns out that distributivity
follows when a sublattice consists of thick subcategories which are pairwise com-
muting (i.e. any morphism between these subcategories factors through an object
in the intersection). In particular, the centre of the lattice of thick subcategories
is a distributive lattice. This yields a space which one may use to define central
support for objects of a triangulated category. It is interesting to note that for a
tensor triangulated category any thick tensor ideal is central (so commuting with
any other thick tensor ideal), provided that the tensor category is rigid. In that
way we recover Balmer’s spectrum of a (rigid) tensor triangulated category [1].
Also, thick subcategories are central when they are defined via the cohomological
support given by a central ring action, as in work of Benson, Iyengar, and myself
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[2]. Thus central support offers a common generalisation of several existing no-
tions of support. As a bonus one obtains Mayer–Vietoris sequences for any pair
of commuting thick subcategories. We refer to [4] for details.
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Via Scarpa 10
00161 Roma
ITALY

Dr. Aaron K. Y. Chan

Graduate School of Mathematics
Nagoya University
Furo-cho, Chikusa-ku
Nagoya-shi 464-8602
JAPAN

Prof. Dr. Xiao-Wu Chen

School of Mathematical Sciences
University of Science and Technology
of China (USTC)
No. 96, Jin Zhai Road, Baohe
Hefei, Anhui Province 230 026
CHINA



Representation Theory of Quivers and Finite-Dimensional Algebras 483

Dr. Teresa Conde

Institut für Algebra und Zahlentheorie
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart
GERMANY

Prof. Dr. William Crawley-Boevey

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
GERMANY

Sebastian Eckert

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
GERMANY

Dr. Haruhisa Enomoto

Graduate School of Science
Osaka Metropolitan University
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka
Osaka 599-8531
JAPAN

Prof. Dr. Karin Erdmann

Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford OX2 6GG
UNITED KINGDOM

Monica Garcia

Laboratoire de Mathématiques de
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Universidad Nacional Autónoma de
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