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Introduction by the Organizers

In this workshop we brought together experts, as well as young researchers, work-
ing on the following themes: real algebraic geometry, polynomial optimization,
moment problems, noncommutative real algebra with connections to quantum
physics, and Koopman operator methods.

To stimulate discussions and exchanges during the workshop we scheduled 6
senior and junior speakers giving one hour tutorial and introductory lectures on
Monday and Tuesday. These survey-expository talks were (in order of appearence
in the schedule):

Rainer Sinn: an introduction to real algebraic geometry, sums of squares
(Positivstellensätze), and moment problems.

Alexandre Mauroy: an introduction to Koopman operator methods from
numerical and applied perspective.
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Etienne de Klerk: an introduction to semidefinite programming and poly-
nomial optimization (moment–sum of squares (SOS) relaxations).

Corbinian Schlosser: on the connection between Koopman operator meth-
ods and moment–SOS relaxations.

Bernard Mourrain: on the complexity of Positivstellensätze.
Rainer Nagel: an introduction to Koopman operator methods from “pure”

operator theory perspective.

The survey-expository talks were the starting point for the regular research talks
of 30 to 40 minutes (20 minutes for the junior speakers). To encourage the dialogue
between the various areas we decided to keep a mixed daily thematic structure in
the schedule. We also made a concerted effort of giving priority to young speakers.
We have profited from the new technical arrangement to have an online session on
Wednesday evening, with contributions from 2 online participants, Bruce Reznick
and Mehdi Ghasemi, who are both based in North America and could not attend
the meeting in person. The talk of Mehdi Ghasemi in the rather late evening
hour provided an interesting and unusual counterpoint as he described the appli-
cations of moment–SOS based optimization to community safety in the Canadian
provinces of Saskatchewan and Alberta.

Some highlights of the workshop:

• In a breakthrough development described in the survey-expository talk of
Bernard Mourrain, there emerged a completely new connection between
the real algebra side of real algebraic geometry (complexity of Positivstel-
lensätze) and the geometric side (Lojasiewicz inequality and singularities
of the boundary of a basic closed semialgebraic set).
• Positive kernels made an important appearence in the survey-expository

talk of Bernard Mourrain and played a key role in several talks on Koop-
man operator methods. This generated a strong interest on part of other
operator theorists at the meeting, leading possibly to major new insights
in several areas.
• A sum of squares of polynomials is certainly positive. Other ways of

certifying positivity have emerged over the years as (far reaching) conse-
quences of the arithmetic mean – geometric mean inequalty, leading to
classes such as SAGE / SONC polynomials. This was a topic of several
talks (and numerous discussions), bringing these positivity certificates to
the level of maturity where they can become new standard tools in real
algebraic geometry and convex optimization.

We will give now a summary of the main topics discussed at the workshop by
describing the regular research talks (of course, some of the talks were clearly
touching more than one area in perfect accordance with the synergetic spirit of
this meeting).
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Real Algebraic Geometry

The talk of Lorenzo Baldi continued and complemented the survey-expository talk
of Bernard Mourrain by discussing lower bounds for the complexity of Postivstel-
lensätze. The talk of Sarah Hess returned to one of the central topics of real
algebraic geometry — the gap between the cone of positive polynomials and the
cone of sums of squares — by examining a natural sequence of intermediate cones;
it both sharpened a classical Hilbert’s 1888 theorem and related to recent work of
Blekherman and his collaborators. The talk of Konrad Schmuedgen discussed Pos-
itivstellensätze for semirings, rather than the more customary quadratic modules
or preorderings, of a unital commutative algebra. Alexander Taveira Blomenhofer
presented in his talk a semidefinite algorithm for representing given forms as sums
of powers of forms (a variant of Waring’s problem). The talk of Cynthia Vinzant
discussed the principal minors of determinantal polynomials which play a key role
in certifying hyperbolicity (much like sums of squares certify positivity). Ngoc
Hoang Anh Mai discussed positivity certificates in the context of polynomial opti-
mization on non-compact semialgebraic sets. The talk of David Sawall returned to
hyperbolic polynomials (in their non-homogeneous version as real zero polynomi-
als) and gave a counterexample, using matroid techniques pioneered by Branden
about a decade ago, to a recent conjecture that two hyperbolic polynomials in
overlapping sets of variables can be always viewed as projections of a single hy-
perbolic polynomial. The concluding talk of the workshop, by Greg Blekherman,
discussed polynomials in non-normalized traces of powers of symmetric matrices
and showed that their positivity is undecidable; it both related to a large ongoing
effort in studying positivity in the presence of group invariance (in this case, the
full symmetric group) and contrasted with the results for the normalized trace
that were presented in the talks of Jurij Volcic and Igor Klep, see below.

Polynomial Optimization with SAGE / SONC Polynomials

The talk of Thorsten Theobald discussed relative entropy programming and its
applications to SAGE (sums of arithmetic geometric exponentials) signomials (ex-
ponential sums, which are a generalization of polynomials on the positive orthant),
starting with the unconstrained case of global positivity and proceeding to the very
recent results in the constrained case of positivity on a polyhedral set; he also de-
scribed the relation with circuit signomials. This was naturally followed by the
talk of Mareike Dressler that described some corresponding Positivstellensätze,
their complexity, and open problems. Moritz Schick discussed the cone of SOS
cone vs. the SAGE cone and especially the sum of the two. The talk of Bruce
Reznick both returned to the original use of the arithmetic mean – geometric mean
inequality for proving that certain polynomials such as the Motzkin polynomial
are positive, and discussed the SOS-ness of odd powers of positive polynomials
that are not SOS.

Moment Problems

Tobias Kuna discussed a (full) moment problem for algebras generated by a nuclear
space using the projective limit technology that has been a recent breakthrough
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in the area of infinite dimensional moment problems; the results are both mathe-
matically compelling and cover a wide range of potential applications. In a related
talk, Maria Infusino has shown that the various usual conditions ensuring the ex-
istence of a unique representing measure with a compact support: positivity on
an Archimedean quadratic module, Carleman condition, continuity with respect
to a submultiplicative seminorm, are in fact necessary and sufficient; the resulting
description of the support is new even in the finite dimensional case. Philipp di
Dio discussed the behavior of positive polynomials and sums of squares, and dually
of moment functionals, under the heat semigroup. The talk of Simone Naldi dealt
with the computation of certificates for the truncated moment problem.

Noncommutative Real Algebra with Connections to
Quantum Physics

Free noncommtative positivity has been a major development at the crossroads of
real algebraic geometry and operator algebras that has been featured extensively
at the workshops in 2014, 2017, and 2020. Whereas the previous works dealt with
positivity of polynomials in free noncommuting variables when evaluated on all
matrices (or more general selfadjoint operator algebras), the talk of Jurij Volcic
— motivated by rather concrete applications in quantum physics — incorporated
a state (a positive linear functional) into the framework. By contrast, the talk of
Igor Klep considered polynomial optimization via moment–SOS relaxations and
the corresponding positivity certificates for noncommutative polynomials involving
a normalized trace rather than a general state.

Koopman Operator Methods

Following the survey-expository talk of Alexandre Mauroy, Benoit Bonnet-Weill
presented in his talk a set-valued generalisations of Koopman operators in the
spirit of differential inclusions that play a key role in modern control theory. The
talk of Oliver Junge discussed an entropic regularization of transfer operators. In
a very different setting, regularization was used in the talk of Tobias Sutter for
finite dimensional approximation of infinite dimensional linear programs. Posi-
tive kernels, which as already mentioned made an important appearence in the
survey-expository talk of Bernard Mourrain, and the corresponding reproducing
kernel Hilbert spaces, played a key role in the talk of Dimitris Giannakis on the
embedding of classical dynamics in a quantum computer. Gary Froyland intro-
duced dynamical systems and transfer operators in elementary settings, including
the generalization to the case of time-dependent dynamics. Finally, the talk of
Patrick Hermle on a Halmos–von Neumann theorem for action of general groups
provided a direct continuation of the survey-expository talk of Rainer Nagel.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting Mareike Dressler in the “Simons Visiting
Professors” program at the MFO.
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Trace-Positive Noncommutative Polynomials and the Unbounded Tracial
Moment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

Moritz Schick (joint with M. Dressler, S. Kuhlmann)
The Minkowski Sum of Sums of Squares and Sums of Nonnegative
Circuit Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
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Abstracts

Real Algebraic Geometry and Positivstellensätze

Rainer Sinn

This talk gives an introduction to real algebraic geometry. The focus is on basic
notions culminating with various Positivstellensätze. The starting point is a basic
closed semi-algebraic set

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0},
where g1, . . . , gr ∈ R[x1, . . . , xn] are multivariate polynomials with real coefficients.
The goal of a Positivstellensatz is to describe the set

P(K) = {f ∈ R[x1, . . . , xn] : f(x) ≥ 0 for all x ∈ K}
in terms of obviously nonnegative functions on K. This set P(K) is known as the
positive cone or saturated preorder of K. It is a convex cone in the real vector
space R[x1, . . . , xn]. The main convex cone of obviously nonnegative functions on
K for us here is the preorder generated by the inequalities gi defining K:

PO(g1, . . . , gr) =





∑

α∈{0,1}r

σαg
α : σα is a sum of squares



 .

It is built from the products gα = gα1
1 · . . . ·gαr

r of the inequalities, which are clearly
nonnegative on K. Those products are then used to weight sums of squares of
polynomials σα, which are trivially nonnegative on all of Rn. A Positivstellensatz
aims to compare such finitely generated preorders to the saturated preorder of K.
Here is one central version.

Theorem (Schmüdgen). Assume that the basic closed semi-algebraic set K is
compact. Then every polynomial f that is positive on K (meaning f(x) > 0 for
all x ∈ K) lies in PO(g1, . . . , gr).

This theorem uses only geometric/topological assumptions (namely the com-
pactness of K) and holds for any set of inequalities describing K. Other versions,
like Putinar’s Positivstellensatz, need algebraic assumptions.

Theorem (Putinar). Suppose that the basic closed semi-algebraic set K is closed
and that there exist sums of squares s0, s1, . . . , sr such that the superlevel set

{s0 + s1g1 + . . .+ srgr ≥ 0}
is compact. Then for every polynomial f that is positive on K there are sums of
squares σ0, σ1, . . . , σr such that

f = σ0 + σ1g1 + . . .+ σrgr.
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The assumption that this superlevel set is compact is called the archimedean
property of the quadratic module generated by the inequalities. This assumption
is equivalent to the existence of a natural number N such that there is an identity
N −∑n

i=1 x
2
i = σ0 + σ1g1 + . . .+ σrgr certifying the boundedness of K explicitly.

There are many other Positivstellensätze, in particular for more special sets
(like Handelman’s Positivstellensatz for polytopes or Pólya’s Positivstellensatz for
the orthant) or more general rings than the polynomial ring (like coordinate rings
of real affine varieties or other real rings).

There is a close connection to moment problems in functional analysis. Given
a linear functional L : R[x1, . . . , xn] → R, the K-moment problem asks if there
exists a positive Borel measure µ supported on K such that L(f) =

∫
fdµ for any

polynomial f . Clearly, the condition L(f) ≥ 0 for all nonnegative polynomials
f ∈ P(K) is necessary for the existence of such a measure. Haviland’s Theorem
is the converse: this condition is also sufficient.

The K-moment problem is said to be finitely solvable if there exists a finitely
generated preorder PO(g1, . . . , gr) that is dense in the positive cone P(K) (with
respect to the finest locally convex topology on R[x1, . . . , xn]). Haviland’s Theorem
implies that it suffices to check that our candidate L is nonnegative on the finitely
generated preorder in this case.

Elementary arguments show that the classical univariate moment problems fol-
low from Haviland’s Theorem by showing that the associated finitely generated
preorders are in fact saturated (that is equal to the saturated preorder). These
examples are Stieltjes ’s moment problem for K = [0,∞): a linear functional
L : R[x]→ R comes from a measure if and only if L(f2 + xg2) ≥ 0 for all polyno-
mials f, g ∈ R[x]. Here P(K) = PO(x). For Hamburger ’s solution of the moment
problem for K = R, we need that every nonnegative univariate polynomial is a
sum of squares. This follows, for example, from the Fundamental Theorem of Al-
gebra. Finally, also Hausdorff ’s moment problem for K = [0, 1] is now elementary:
P(K) = PO(x, (1 − x)) follows by induction on the degree of the polynomials.

In the case that K is unbounded, the moment problem tends to not be finitely
solvable (at least in dimension at least 2). One notion that plays a role here is
stability of preorders. A preorder PO(g1, . . . , gr) is stable if for every d ∈ N the
intersection PO(g1, . . . , gr) ∩ R[x1, . . . , xn]d with the finite-dimensional subspace
of all polynomials of degree at most d is contained in the set





∑

α∈{0,1}r

σαg
α : σα is a sum of squares, deg(σα) ≤ N






for large enough N ∈ N. So stability is about the existence of uniform degree
bounds, bounding the degrees of the sums of squares needed to write a polynomial
f in it only in terms of the degree d of f .

The simplest example of a stable preorder is the cone of sums of squares PO(1)
itself: If f = h21 + . . .+h2s for real polynomials h1, . . . , hs, then deg(h1) ≤ 1

2 deg(f)
so that we can choose N = d in the above definition.
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Stability is relevant in the context of the moment problem because a simple
topological argument implies that stable preorders are closed in the finest locally
convex topology on R[x1, . . . , xn]. So if the positive cone of K is not finitely
generated and any preorder defining K is stable, then the moment problem is not
finitely solvable. This indeed tends to happen in the unbounded case. Here is a
technically precise version of this.

Theorem (Scheiderer; Kuhlmann/Marshall). Let K ⊂ Rn contain a full-dimen-
sional cone C so that there is a point x ∈ K and a convex cone C′ with non-empty
interior such that x+v ∈ C ⊂ K for all v ∈ C′. Then any preorder PO(g1, . . . , gr)
with K = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} is stable. If dim(K) ≥ 2, then the
positive cone is not finitely generated (as a preorder).

Let’s consider one very explicit example by Stengle: Let K = [0, 1] be the unit
interval. The natural preorder could be PO(x(1 − x)) = PO(x, 1 − x), which is
equal to P(K). Instead of this natural choice of inequalities defining K, consider
g = x3(1−x)3. Then [0, 1] is still {x ∈ R : g(x) ≥ 0}. However, x ∈ P(K) is not in
PO(g). To see that, write x = σ0 +σ1 ·g. Since the right hand side is nonnegative,
we must have σ0(0) = 0. But since σ0 is a sum of squares, this implies that the
derivative of the right hand side also vanishes at 0, which contradicts the evaluation
on the left hand side. However, Schmüdgen’s Theorem implies that x+ ǫ ∈ PO(g)
for all ǫ > 0. This shows that PO(g) is not stable by a limit argument using the
fact that the sum-of-squares for x+ ǫ come from a finite-dimensional vector space.

In this workshop there are several talks about lower and upper bounds for the
degrees of the sums of squares in certificates of nonnegativity, particularly in the
unstable case. The bounds are then not uniform in the degree but depend on
additional information on the particular polynomial, mainly its minimum of K.
See the contributions of Lorenzo Baldi and Bernard Mourrain for concrete results.
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Introduction to the Koopman Operator

Alexandre Mauroy

In this tutorial talk, we have introduced the so-called semigroup of Koopman op-
erators (or Koopman semigroup) and its basic properties. In particular, we have
investigated the interplay between the spectral properties of the Koopman semi-
group and the geometric properties of the underlying dynamical system. Finally,
focusing on the semigroup defined in the Hardy space of the polydisc, we have
applied the framework to global stability analysis.

Definition and Properties. We consider a nonlinear dynamical system de-
scribed by a flow map ϕ : R+ × X → X , where X is the state space. The
semigroup of Koopman operators (Kt)t≥0 : F → F , is defined by the composition
(Kt)f(·) = f ◦ϕ(t, ·) for all observable f : X → C, f ∈ F [1]. In well-chosen spaces
(e.g. F = C0(X) if the flow is continuous and X is compact, F = L2(X,µ) if the
flow preserves the measure µ), the Koopman semigroup is strongly continuous,
i.e. limt↓0 ‖Ktf − f‖ = 0 for all f ∈ F . In this case, the semigroup possesses

an infinitesimal generator A : D(A)→ F , Af = limt↓0
Ktf−f

t which is closed and
whose domain D(A) is dense in F [3]. If the flow is generated by the dynamics
ẋ = F (x), then we have Af = F · ∇f for all f ∈ D(A).

Spectral Properties. A Koopman eigenfunction φλ ∈ F satisfies Aφλ = λφλ
(which implies Ktφλ = eλtφλ for all t > 0), and λ ∈ σp(A) is the corresponding
Koopman eigenvalue.

Assumption 1. The flow is holomorphic and generated by the complex dynamics
ż = F (z), z ∈ Dn, such that 0 = F (0) is a globally stable hyperbolic equilibrium
and the Jacobian matrix DF (0) has non-resonant eigenvalues λj (j = 1, . . . , n).

If the flow satisfies Assumption 1 and if F = H2(Dn), i.e. F is the Hardy space
of the polydisc Dn, then σp(A) = {∑n

j=1 αjλj}α∈Nn and the set of eigenfunctions

{∏n
j=1 φ

αj

λj
}α∈Nn forms a complete basis in H2(Dn). Moreover the Koopman semi-

group admits the spectral decomposition

Ktf =
∑

α∈Nn

〈f, φα〉H2
Φ
φα1

λ1
· · ·φαn

λn
e(α1λ1+···+αnλn)t

in the modulated Hardy spaceH2
Φ, with ‖f‖H2

Φ
= ‖g‖H2 and f = g◦(φλ1 , . . . , φλn

),

g ∈ H2(Dn) [4]. Note that the inner products 〈f, φα〉H2
Φ

are the so-called Koopman
modes.

Interplay between Spectral and Geometric Properties. The level sets of the
Koopman eigenfunctions capture relevant geometric properties of the associated
dynamics. In particular, we have the following results.

Invariant Partition: Let φ0 be a Koopman eigenfunction associated with
the eigenvalue λ = 0. Then, the family of sets

Sr0 = {x ∈ X : φ0(x) = r ∈ R}
is an invariant partition for the flow, i.e. ϕ(−t,Sr0 ) = Sr0 for all t > 0.



Real Algebraic Geometry with a View toward Koopman Operator Methods 751

Periodic Partition: Let φiω be a Koopman eigenfunction associated with
the eigenvalue λ = iω, with ω ∈ R∗

+. Then, the family of sets

Sθiω = {x ∈ X : ∠φiω(x) = θ ∈ [0, 2π)}
is a T -periodic partition for the flow (with period T = 2π/ω), i.e.

ϕ(−t,Sθiω) = Sθ−ωt
iω

for all t > 0 and ϕ(−T,Sθiω) = Sθiω . Such a partition is related to the
notion of isochrons in the case of limit cycle dynamics [5].

Aperiodic Partition: Let φσ+iω be a Koopman eigenfunction associated
with the eigenvalue λ = σ + iω, with σ ∈ R∗

− and ω ∈ R∗
+. Then, the

family of sets

Sτσ+iω = {x ∈ X : |φσ+iω(x)| = eστ ∈ R+}
is an aperiodic partition for the flow, i.e. ϕ(−t,Sτσ+iω) = Sτ−t

σ+iω for all
t > 0. Such a partition is related to the notion of isostables in the case
of dynamics with a hyperbolic equilibrium, when λ = σ + iω 6= 0 is the
dominant eigenvalue [6].

Stability Properties. There exist direct connections between the stability prop-
erties of the Koopman semigroup and the stability properties of the underlying
dynamical systems [7]. Moreover, global stability of the dynamics can be directly
inferred from the spectral properties of the Koopman semigroup. For instance, it
can easily be shown that the intersection of zero level sets of Koopman eigenfunc-
tions associated with eigenvalues λi satisfying ℜ{λi} < 0, i.e.

M =

m⋂

i=1

{x ∈ X |φλi
(x) = 0 ,ℜ{λi} < 0},

is globally uniformly stable in X . Moreover, a hyperbolic equilibrium x∗ ∈ X is
globally uniformly stable in X if and only if there exist n Koopman eigenfunctions
φλi
∈ C1(X), i = 1, . . . , n, such that ℜ{λi} < 0 and ∇φλi

(x∗) 6= 0 [2].

A Lyapunov function for the flow can also be obtained directly from the Koopman
operator framework. Suppose that Assumption 1 holds and let eα = zα, α ∈ Nn,
be monomials. Then, there exists a sequence (ǫα)α∈Nn such that the functional

V : D(V) ⊆ H2(Dn)→ R+, V(f) =
∑

α∈Nn

ǫα|〈f, eα〉H2 |2

satisfies
d

dt
V((Kt)∗f)|t=0 < 0 ∀f ∈ D(V) \ span{1},

where (Kt)∗ is the adjoint of K(t) in H2(Dn). Next, consider the evaluation
functional kz ∈ H2(Dn) such that 〈kz , f〉H2 = f(z) and define the domain

D = {z ∈ Dn | kz ∈ D(V)}.
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We have that the function

V : D ⊆ Dn → R+, V (z) = V(kz) =
∑

α∈Nn

ǫα
∣∣z2α

∣∣ ∀z ∈ D

is a Lyapunov function for the flow, i.e.

V (ϕt(z)) < V (z) ∀z 6= 0.

Note that the Lyapunov function can be constructed explicitly. See [8] for more
details.
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Relative Entropy Methods in Real Algebraic Geometry

Thorsten Theobald

Relative entropy programs are convex optimization problems which optimize linear
functions over affine sections of the relative entropy cone

Kn

rel = cl
{

(x, y, τ) ∈ Rn
>0 × Rn

>0 × Rn : xi ln
xi
yi
≤ τi for 1 ≤ i ≤ n

}
,

where cl denotes the topological closure. This class of optimization problems
contains as a subclass geometric programming. Building upon the arithmetic-
geometric mean inequality (AM/GM inequality), relative entropy programs facili-
tate to compute nonnegativity certificates of a large class of nonnegative polynomi-
als and of nonnegative signomials. These techniques enrich existing optimization
techniques for certifying nonnegativity of polynomials and for the optimization
of polynomials, such as semidefinite programming techniques for sum-of-squares
certificates in real algebraic geometry.

A signomial (also known as exponential sum or exponential polynomial) is a
sum of the form

f(x) =
∑

α∈T

cα exp(〈α, x〉)
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with real coefficients cα and a finite ground support set T ⊂ Rn. Here, 〈·, ·〉 is
the usual scalar product. When T ⊂ Nn, the transformation xi = ln yi gives
polynomial functions y 7→ ∑

α∈T cαy
α on Rn

>0. A signomial f is nonnegative on
Rn if and only if its associated polynomial p is nonnegative on Rn

+.
The following setup connects global nonnegativity certificates of polynomials

and of signomials to the AM/GM inequality. An AGE signomial (“arithmetic-
geometric exponential”) is a nonnegative signomial with at most one negative
coefficient. Finite sums of AGE signomials are nonnegative as well and, for a given
ground support T , form the SAGE cone C(T ) (“sums of arithmetic-geometric
exponentials”). For example, the Motzkin signomial is contained in the SAGE
cone of its support. SAGE signomials can be expressed in terms of the more
elementary circuit signomials. Circuit signomials are, in connection with positive
exponential monomials, a generating system for the SAGE cone.

While the initial focus of the AM/GM-based optimization of signomials was
mostly on unconstrained certificates and unconstrained optimization, the condi-
tional SAGE cone introduced in [2] provides a natural extension to the case of
convex constraint sets X ⊂ Rn. To describe this approach, denote by σX(y) =
sup{yTx : x ∈ X} the support function of X . Murray, Chandrasekaran and Shah
[2] showed that the nonnegativity of a signomial f on X with at most one negative
coefficient can be formulated in terms of a relative entropy program involving also
the support function σX .

A conditional AGE signomial is a signomial which has at most one negative
coefficient and which is nonnegative on X . For a given ground support T , finite
sums of conditional AGE signomials form the conditional SAGE cone CX(T ). In
joint work with R. Murray and H. Naumann [3], a concept of sublinear circuits
has been developed to provide a decomposition of CX(T ) as a finite Minkowski
sum of conditional AGE cones CX(T , λ) induced by the set ΛX(T ) of normalized
sublinear circuits λ. For an introduction to these techniques from a relative entropy
perspective see [4].

Theorem. For polyhedral X, the conditional SAGE cone decomposes as

CX(T ) =
∑

λ∈ΛX (T )

CX(T , λ) +
∑

α∈T

R+ · exp(〈α, x〉).

Moreover, the concepts of reduced circuits and reduced sublinear circuits al-
low to give irredundant decompositions in the unconstrained and the constrained
case. In the constrained case, reduced sublinear circuits give the following irredun-
dant decomposition, where Λ⋆

X(T ) denotes the set of normalized reduced sublinear
circuits.

Theorem. For polyhedral X, we have

CX(T ) =
∑

λ∈Λ⋆
X
(T )

CX(T , λ) +
∑

α∈T

R+ · exp(〈α, x〉)
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and there does not exist a strict subset Λ of Λ⋆
X(T ) with

CX(T ) =
∑

λ∈Λ

CX(T , λ) +
∑

α∈T

R+ · exp(〈α, x〉).

The conditional SAGE cone and the sublinear circuits can also be combined
with techniques to exploit symmetries [1].
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Semidefinite and Polynomial Optimization: a Game of Cones

Etienne de Klerk

In this tutorial talk we gave an introduction to the Lasserre hierarchy for poly-
nomial optimization and related problems, from the perspective of conic (linear)
optimization. The general form of a conic optimization problem involves two
vector spaces over the reals, say E and F , and a nondegenerate bilinear form
〈·, ·〉 : E×F → R (called a duality or pairing). We equip the spaces E and F with
the (locally convex) weak topology of the duality.

The data of the conic optimization problem is a closed, pointed, convex cone
K ⊂ F , vectors a0, a1, . . . , am ∈ E and a vector b ∈ Rm, and the problem then
takes the form:

val = inf
x∈K
{〈a0, x〉 | 〈ai, x〉 = bi ∀i ∈ [m]} ,

where [m] := {1, . . . ,m}.
One obtains the special case of semidefinite programming (SDP) if K is the

cone of n × n symmetric positive semidefinite matrices Sn×n
+ in the vector space

E = F = Sn×n, where the duality is now the Euclidean inner product. Similarly
one may obtain the general moment problem (GMP) as a special case by setting:

• E the space of continuous functions on a compact set S ⊂ Rn

• F the space of signed Radon measures supported on S
• The duality 〈f, µ〉 =

∫
S fdµ

• K ⊂ F the cone of nonnegative Radon measures.

The dual cone of K ⊂ F is defined as

K∗ := {s ∈ E | 〈s, x〉 ≥ 0 ∀x ∈ K} ,
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and the dual conic optimization problem as

val∗ = sup
y∈Rm

{
m∑

i=1

biyi | a0 −
m∑

i=1

yiai ∈ K∗

}
.

One always has the weak duality relation val ≥ val∗, and the strong duality
theorem gives a sufficient condition for equality.

Theorem. Assume the cone

{(〈a0, x〉, . . . , 〈am, x〉) : x ∈ K}
is closed in Rm+1 and that there is a primal feasible solution. Then val = val∗

and, if val > −∞, there is a primal optimal solution.

In summary, for continuous functions f0, . . . , fm defined on a compact S ⊂ Rn,
the GMP takes the form:

val := inf
µ∈M(S)+

{∫

S

f0dµ :

∫

S

fidµ = bi ∀i ∈ [m]

}
,

with dual problem

val∗ = sup
y∈Rm





∑

i∈[m]

biyi : f0(x) −
∑

i∈[m]

yifi(x) ≥ 0 ∀x ∈ S




 .

In the dual problem formulation, we have used that the dual cone of K =M(S)+
is the cone of continuous functions that are nonnegative on S. A special case of the
GMP is the constrained optimization problem minx∈Rn {f(x) | x ∈ S} , obtained
by renaming f0 by f , setting m = 1 and f1 ≡ 1, and b1 = 1. In particular we
obtain the primal and dual formulations:

val := inf
µ∈M(S)+

{∫

S

fdµ :

∫

S

1dµ = 1

}
= sup

y∈R

{f(x)− 1y ≥ 0 ∀x ∈ S} .

If the case where f0, . . . , fm are polynomials, and S is a semi-algebraic set,
one may describe the interior of the dual cone using Positivstellensätze from real
algebraic geometry. Now let S = S(g) ⊆ Rn be a (basic, closed) semi-algebraic
set, defined by polynomials g = (g1, g2, . . . , gs):

S(g) = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0}.
We consider two fundamental cones of polynomials nonnegative on S(g). The first
is the quadratic module generated by g, defined by

Q(g) =

{
s∑

i=0

σigi : σi ∈ Σ[x], i = 0, 1, . . . , s

}

where Σ[x] is the cone of sums of squared polynomials, and g0 ≡ 1. The second
cone is the pre-ordering generated by g,

T (g) =





∑

I⊆[s]

σIgI : σI ∈ Σ[x], I ⊆ [s]




 ,
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where gI :=
∏

i∈I gi for I ⊆ [s], and g∅ ≡ 1. If S(g) is compact, T (g) coincides
with the cone of positive polynomials on S(g).

Theorem (Schmüdgen’s Positivstellensatz (1991) [10]). Assume that S(g) ⊆ Rn

is compact. If a polynomial p is positive on S(g), then p ∈ T (g).

Under an additional assumption, the same holds true for Q(g).

Theorem (Putinar’s Positivstellensatz (1993) [9]). Assume that Q(g) is Archime-
dean, i.e, ∃f ∈ Q(g) such that {x ∈ Rn | f(x) ≥ 0} is compact. If a polynomial p
is positive on S(g), then p ∈ Q(g).

For polynomial-time computation, we need finite dimensional conic approxi-
mations of the quadratic module or pre-ordering, that involve only polynomials
of degree at most r ∈ N. One possibility is to consider the truncated quadratic
module of order r:

Q(g)r =

{
s∑

i=0

σigi : σi ∈ Σ[x], deg(σigi) ≤ r, i = 0, 1, . . . , s

}
.

The Lasserre hierarchy for the GMP is obtained by replacing the cone of nonneg-
ative polynomials on S(g) by Q(g)r :

f(r) := sup
y∈Rm





∑

i∈[m]

biyi : f0(x)−
∑

i∈[m]

yifi(x) ∈ Q(g)r ∀x ∈ S




 ,

for r ∈ N. This problem may be formulated as an SDP [6]. By the Putinar
positivstellensatz, one immediately has the following result.

Theorem (Lasserre (2008) [7]). Assuming primal and dual feasibility and strong
duality for the GMP, one has f(r) ≤ f(r+1) ≤ val for r = 1, 2, . . ., and

lim
r→∞

f(r) = val,

under the Archimedean assumption.

In the talk, we also surveyed recent results on the rate of convergence of the
Lasserre hierarchy, based on effective versions of the Putinar positivstellensatz in
special cases, e.g. [8, 1, 2]. For example:

• A val−f(r) = O(1/r2) asymptotic convergence rate result for the Lasserre
hierarchy for polynomial optimization on the unit sphere, due to Fang and
Fawzi [4]. This result may be extended to the general GMP when S(g) is
the sphere, and the dual GMP problem has an optimal solution [5].
• A recent val − f(r) = O(1/r) asymptotic convergence rate result for the

Lasserre hierarchy for polynomial optimization on the hypercube given by
S(g) = [−1, 1]n, due to Baldi and Slot [3]. In the same paper, there is also
a negative result showing val − f(r) = Ω(1/r8).
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Algebraic Perspectives on Signomial Optimization

Mareike Dressler

(joint work with R. Murray)

Signomials are obtained by generalizing polynomials to allow for arbitrary real
exponents. We consider signomial programming, i.e., the minimization of a sig-
nomial subject to finitely many signomial inequality constraints. This nonconvex
problem has many applications but is in general computationally intractable (NP-
hard). An equivalent question addresses the nonnegativity of signomials on cer-
tain sets. Commonly one approaches this by finding inner/outer approximations
of cones of signomials that are nonnegative on a prescribed set for which member-
ship can be checked efficiently (usually based on Positivstellensätze). We construct
arbitrarily strong inner and outer approximations via the concept of conditional
sums of arithmetic-geometric exponentials (conditional SAGE or X-SAGE) and a
Positivstellensatz for conditional SAGE.

Signomial Rings. Let A ⊂ Rn be a distinguished finite ground set that con-
tains the origin. To every α ∈ A we associate a “monomial” basis function
eα : Rn → R that takes values eα(x) = 〈α,x〉. A signomial supported on a finite
set A ⊂ Rn is a real-linear combination f(x) =

∑
α∈A cαe

α(x), where the sup-
port, denoted by supp(f), is formally defined as the smallest set A ⊂ Rn for which
f ∈ span{eα}α∈A. A posynomial is a signomial with only nonnegative terms. The
signomial ring R[A] is the R-algebra generated by basis functions {eα}α∈A.

https://doi.org/10.1007/s10107-022-01877-6
https://arxiv.org/abs/2212.09551
https://arxiv.org/abs/2302.12558
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X-SAGE. A signomial is called X-SAGE if it can be written as a sum of X-AGE
functions which are signomials that are nonnegative on a convex set X and have
at most one negative term. Checking whether a signomial is X-SAGE can be
done via convex relative entropy programming (REP). An important property of
conditional SAGE is that they preserve sparsity, i.e., if a signomial f is supported
on A and has k ≥ 1 negative coefficients then f is X-SAGE if and only if f is a
sum of k X-AGE functions, each supported on A, see [3, 4].

Positivstellensatz for X-SAGE. Let X ⊂ Rn be compact convex and G ⊂ R[A]
finite. First, we present a characterization of signomials that are positive on sets
K = {x ∈ X : g(x) ≥ 0 for all g ∈ G}. Such sets are in general nonconvex.

Theorem 1. If f ∈ R[A] is positive on K, then there exists an r ∈ N for which
(∑

α∈A e
α
)r
f = λf +

∑
g∈G λg · g,

where λf ∈ R[A] is X-SAGE and each λg ∈ R[A] is a posynomial.

For computational purposes it is important to note that the representation
involves an explicit identity which is affine in f and the “unknown” signomials
{λf} ∪ {λg}g∈G. This result is the first signomial Positivstellensatz to leverage
conditional SAGE in the presence of nonconvex constraints and the first to permit
irrational exponents. We emphasize that neither X nor K (nor their images under
exponential maps) need be semialgebraic. The proof idea is to represent the signo-
mial data via homogeneous polynomials, applying a polynomial Positivstellensatz
(Dickinson-Povh [1]), and then mapping back to signomials.

The absence of additional constraining signomials, i.e., G = ∅, yields:

Corollary 2. If f > 0 on X, then
(∑

α∈A e
α
)r
f is X-SAGE for a large enough

natural number r.

Grading Certificates. Once we have decided r ∈ N and permissible supports
Sg ⊃ supp(λg) for the posynomials, we can use REP to search for an identity
given in the Positivstellensatz. Note, by sparsity preservation, we do not need to
explicitly bound supp(λf ), so we have to decide Sg for g ∈ G. Since signomials
have no concept of “degree” that is central to polynomial optimization theory we
reclaim it now via artificially imposing an A-degree on signomials.

For that let Ad be the set of sums of at most d vectors from A, then we define
the A-degree of a signomial f as degA(f) = inf{d : supp(f) ⊂ Ad}. We point
out that this concept is not intrinsic to signomials. Setting A = supp(f), we have
degA(f) = 1. Let R[A]d denote the space of signomials of A-degree at most d.
Since for signomials f, g the inequality degA(fg) ≤ degA(f) + degA(g) may be
strict, we introduce the so-called inverse support of f ∈ R[A]d as the largest
B ⊂ Ad that satisfies degA(eβf) ≤ d for all β ∈ B and denote it by invsuppd(f).

Hierarchy of Lower Bounds. Given a finite set of signomials {f} ∪ G and a
closed convex set X , we want to compute

f⋆
K = inf

x∈K
f(x), where K = {x ∈ X : g(x) ≥ for all g ∈ G}.
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Grading the certificates from the Positivstellensatz according to the largest A-
degree of the constituent signomials leads us to bounds for this problem.

If r := d− degA(f) ≥ 0, the A-degree d SAGE bound is defined as f
(d)
K := sup γ

such that
(∑

α∈A e
α
)r

(f − γ) = λf +
∑

g∈G λg · g, where γ ∈ R and λf and

λg are X-SAGE signomials supported on Ad and invsuppd(g) for each g ∈ G,

respectively. If otherwise d < degA(f), we set f
(d)
K = −∞. Note that compared to

the representation in the Positivstellensatz where {λg}g∈G are merely posynomials,
we take them here to be X-SAGE signomials to increase our chances of finding

such an identity. The bounds f
(d)
K can be computed via REP.

Corollary 3. The sequence f
(1)
K , f

(2)
K , . . . is nondecreasing and bounded above by

f⋆
K. If the signomials {f} ∪G belong to R[A] and X is compact, then

lim
d→∞

f
(d)
K = f⋆

K .

This is the first completeness result for minimizing an arbitrary signomial sub-
ject to constraints given by a compact convex set and a conjunction of arbitrary
(but finitely many) signomial inequalities. It is also the first completeness result for
a hierarchy that uses conditional SAGE in the presence of nonconvex constraints.

Through worked examples we illustrate the practicality of this hierarchy in areas
such as chemical reaction network theory and chemical engineering. These exam-
ples include comparisons to direct global solvers (e.g., BARON and ANTIGONE)
and the Lasserre hierarchy (where appropriate).

Outlook: Upper Bounds. Inspired by [2], we additionally develop arbitrarily
strong outer approximations of cones of nonnegative signomials and define hier-
archies of convex relaxations for approaching the minimum of a signomial from
above. Proving the former result requires establishing basic facts on the existence
and uniqueness of solutions to signomial moment problems. Interestingly, the
completeness of our hierarchy of upper bounds follows from a generic construction
and any (hierarchical) inner approximation of the signomial nonnegativity cone.
Hence, any signomial Positivstellensatz yields upper bounds for signomial opti-
mization.

Open Questions. Some specific suggestions for lines of future work are:

• How to choose “best” signomial ring R[A]?
• Detailed study of signomial moment theory and upper bounds.
• Investigate the convergence rates for upper bounds.
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Set-Valued Generalisations of Koopman Operators

Benôıt Bonnet-Weill

(joint work with M. Korda)

The last two decades have seen a tremendous success of the Koopman operator
theory for analysis of autonomous dynamical systems, see for instance the survey
[5]. More recently, this theory was extended to systems with external inputs
and to control design problems in several different ways. In [10], the authors
defined the Koopman operator for controlled systems by fixing the control to a
pre-specified value, whereas in [9] a family of Koopman operators indexed by the
control input was considered, and used to carrry out switching control design.
Finally, the works [7, 8] investigated the Koopman operator associated with the
extended dynamical system evolving on the product space of the original state-
space and the space of all control sequences, and used the latter within the model
predictive control framework. While the aforelisted methods did produce sound
and efficient methods to investigate e.g. the controllability and stabilisability
properties of controlled systems, or to design model-based predictors, none of
them managed to propose a meaningful generalisation of Koopman operators to
dynamics exhibiting a dependence with respect to some input parameter.

Motivated by this observation, we formulate a transposition of the Koopman
framework to controlled systems using the tried concepts and grammar of set-
valued analysis, for which we refer to [1]. Indeed, it has been known for decades
that a controlled system of the form

(1) ẋ(t) = f(x(t), u(t)), u(·) ∈ U ,
could be equivalently recast as the differential inclusion

(2) ẋ(t) ∈ F (x(t)),

wherein the multifunction F : x ∈ Rd ⇒ {f(x, u) s.t. u ∈ U} ⊂ Rd encodes
the admissible velocities of the controlled dynamics. This change in perspective
has proven to be pivotal in the development of control theory, as evidenced by the
reference treatises [6, 11], and is still used to this day to investigate fine properties
of controlled systems in very diverse contexts (see e.g. the recent works [2, 3, 4]
of the first author in the context of stochastic and mean-field control).

Following this path, we define the set-valued Koopman operators Kt : X ⇒ X
over some observable space X as

Kt(ϕ) :=
{
ϕ ◦ Φu

(0,t) s.t. u(·) ∈ U
}
⊂ X ,
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for all times t ∈ [0, T ], where (Φu
(0,t))t∈[0,T ] is the semigroup of flows associated

with (1) and generated by some u(·) ∈ U . We then study the main properties
of this object – identifying those amongst the amenable concepts of the classical
theory that do persist in this new framework –, propose natural generalisations of
the Liouville and Perron-Frobenius operators, and establish a set-valued version
of the spectral mapping theorem.
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Operator Theory and Optimization in Dynamical Systems

Milan Korda

In this talk, we present a relation between real algebraic geometry and Perron-
Frobenius operators via invariant measures.

We consider time-discrete dynamical systems. That is, for a compact set X and
a continuous map f : X → X , let

(1) xk+1 := f(xk), x0 ∈ X.
The main objects in this talk are the Perron-Frobenius operator and invariant
measures. The Perron-Frobenius operator embeds the dynamical system (1) into
a linear setting [1]. This operator acts on the space of bounded Borel measures
M(X) via

Pf :M(X)→M(X), Pfµ := f#µ,
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where for Borel sets A ⊂ X the measure f#µ is defined by

f#µ(A) := µ(f−1(A)).

The operator Pf enjoys many intriguing properties. Among these are that Pf

is well defined, linear, bounded, preserves non-negativity of Borel measures, and
is dual to the Koopman operator [1]. The second central object for this talk is
invariant measures. An invariant measure is a probability measure µ ∈ M(X)
with

(2) f#µ = µ.

Invariant measures play an important and interesting role in the study of the
longterm behavior of dynamical systems. We motivate the analysis of invariant
measures via the example of the logistic map on X = [−1, 1]

(3) f : [−1, 1]→ [−1, 1], f(x) := 2x2 − 1.

We illustrate the chaotic behavior of the logistic map and the probability density
of the so-called physical (invariant) measure. We also mention the existence of
periodic orbits of arbitrary lengths and a simple relation to the invariant measures
supported on these orbits.

Through the lens of the Perron-Frobenius operator, invariant measures can be
viewed as spectral objects of Pf . Namely, a probability measure µ ∈ M(X) is
invariant if and only if it is a fixed point of Pf , i.e.

(4) Pfµ = µ.

The linear nature of (4) gives rise to several techniques for computing invariant
measures. In this talk, we shortly illustrate two such well-established methods
– Ulam’s method and ergodic averaging – before we focus on a recent optimiza-
tion approach [2]. The latter method allows us to search for extremal invariant
measures, that is, invariant measures that minimize certain cost functions. In its
simplest form, the resulting optimization problem reads

(5)

min
µ

∫
X

g dµ

s.t. µ ∈ M(X)
µ non-negative
µ(X) = 1
Pfµ = µ

where g : X → R is an arbitrary but fixed continuous function. The optimiza-
tion problem (5) is an infinite dimensional conic program on the space of Borel
measures. Assuming that X ⊂ Rn is a compact semialgebraic set and that f and
g are polynomial, the optimization problem (5) can be tackled via the moment-
sum-of-squares hierarchy from polynomial optimization [3, 2]. We motivate this
observation via a simple connection to the moment formulation of polynomial op-
timization problems. If, for the moment, we forget the constraint Pfµ = µ in (5)
we recover the moment formulation of the polynomial optimization

min
x∈X

g(x).
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In order to formulate the missing constraint Pfµ = µ as a linear moment-constraint
we recall the following equivalent formulation of µ being invariant: If X ⊂ Rn is
compact, then, µ ∈M(X) is invariant if and only if

∫

X

p(f(x)) dµ(x) =

∫

X

p(x) dµ(x) for all p ∈ R[x1, . . . , xn].

Following the established line of reasoning for the moment-sum-of-squares hierar-
chy we obtain a sequence of finite dimensional semidefinite programs whose optimal
values converge to the optimal value of (5). Furthermore, the sequence of mini-
mizers in this hierarchy gives rise to a subsequence of pseudo-moments converging
to the moment-sequence of a minimizer of (5).

In the last part of the talk, we return to the example of the logistic map (3). We
show that the physical measure can be computed via an optimization problem in
the form of (5) with a nonlinear but convex cost function. Further, we state how
each periodic orbit can be characterized as the support of certain minimizers of
(5) for well-chosen polynomials g, we refer to [4] for details. We conclude the talk
by mentioning the Christoffel-Darboux kernel as one means for approximating
the support of such (invariant) measures and we give an outlook to computing
other asymptotic objects such as global attractors via similar techniques based on
polynomial optimization.
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On the Effective PositivStellensatz

Bernard Mourrain

Polynomial optimization on a (compact) semi-algebraic set

S = {x ∈ Rn | g1(x) ≥ 0, . . . , gs(x) ≥ 0}
where g1, . . . , gs ∈ R[x1, . . . , xn] can be reformulated into a convex optimization
program, which involves the convex cone Pos(S) of positive polynomials on S. Its
dual involves the cone of moments of measures M(S) supported on S. As the
cone of positive polynomials Pos(S) and its dual M(S) are difficult to describe
effectively, hierarchies of tractables cones such as sum-of-squares cones also known
as Lasserre’s hierarchies have been proposed to approximate them. The efficiency
of the approach depends on the properties of representation of strictly positive
polynomials in these cones, known as the PositivStellensatz.
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We review recent results about the Effective PositivStellensatz, on the degree
of representation of strictly positive polynomials f on S in terms of algebraic and
geometric characteristics of f and the polynomial constraints gi defining S. We
first present degree bounds on the representation of f when S is a simple domain,
like the simplex, the unit sphere, the unit ball and the hypercube [6, 3, 4, 7],

Then we describe a transfer method from a general basic semi-algebraic set
S to a simple domain D, which involves  Lojasiewicz inequalities controlling the
behavior of f in terms of the algebraic distance functions [1, 2], and improves the
previous known bounds [5].
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the hypercube. Optimization Letters, 17(3):515–530, 2022.

[5] Jiawang Nie and Markus Schweighofer. On the complexity of Putinar’s Positivstellensatz.
Journal of Complexity, 23(1):135–150, 2007.

[6] Victoria Powers and Bruce Reznick. A new bound for Pólya’s Theorem with applications to
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Degree Bounds for Putinar’s Positivstellensatz on the Hypercube

Lorenzo Baldi

(joint work with L. Slot)

The Positivstellensätze of Schmüdgen and Putinar show that any polynomial f
positive on a compact basic semialgebraic set S(g) can be represented using sums
of squares as an element of the preordering T (g) (Schmüdgen-type representa-
tion) or of the quadratic module Q(g) (Putinar-type representation, under the
Archimedean assumption). Recently, there has been large interest in proving ef-
fective versions of these results, namely to show bounds on the required degree
of the sums of squares in such representations. These effective Positivstellensätze
have direct implications for the convergence rate of the celebrated moment-SOS
hierarchy in polynomial optimization.

In this talk, we restrict to the fundamental case of the hypercube [−1, 1]n,
defined as a semialgebraic set by the inequalities 1−x21, . . . , 1−x2n, that was recently
analyzed by Baldi and Slot [3]. We show an upper degree bound for Putinar-type
representations on [−1, 1]n of the order O(fmax/fmin), where fmax, fmin are the
maximum and minimum of f on [−1, 1]n, respectively. Previously, specialized
results of this kind were available only for Schmüdgen-type representations, given
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by Laurent and Slot [4]. On the other hand, for Putinar-type representatons the
best available bound for the special case of [−1, 1]n was still the general bound by
Baldi, Mourrain and Parusiński [1, 2].

Our specialized analysis, giving the bound of the order O(fmax/fmin), improves
the exponent of the general bound by a factor of 10. This result is obtained using
an outer approximation of [−1, 1]n with a semialgebraic sets defined by a single
inequality, and exploiting the previous bounds for Schmüdgen-type representations
on hypercubes [4].

Complementing this upper degree bound, we show a lower degree bound of
Ω( 8
√
fmax/fmin). The bound is obtained performing a local analysis at the ver-

tices of [−1, 1]n. This is the first lower bound for Putinar-type representations on
a semialgebraic set with nonempty interior described by a standard set of inequal-
ities. Indeed, previously the only known lower bound was due Stengle [6], that
exploited the non-standard description of the interval [0, 1] with the polynomial
x3(1− x)3. Our approach is different, since we consider the standard set of defin-
ing inequalities 1 − x21, . . . , 1 − x2n, and since we exploit the different properties
of the quadratic module Q(1 − x21, . . . , 1 − x2n) with respect to the preordering
T (1− x21, . . . , 1− x2n).

The existence of lower degree bounds can be seen a quantitative version of the
non-stability property of the quadratic module. The non-stability property for
Archimedean quadratic modules, for dimension at least 2, was studied by Schei-
derer in [5]. Remarkably, the proof in [5] uses an interior point of the associated
semialgebraic, while our proof focuses on a boundary point of the semialgebrac
set, as the one of Stengle [6].
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Pure Koopmanism

Rainer Nagel

We start from a topological dynamical system (K,ϕ), where K is a compact space
and ϕ : K → K is continuous. To this object we associate its ”Koopman lineariza-
tion” (C(K), Tϕ), where C(K) is the Banach algebra of all C-valued continuous
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functions on K and

Tϕ : C(K)→ C(K), f 7→ f ◦ ϕ

is the so called Koopman operator. By Gelfand’s theorem (K,ϕ) and (C(K), Tϕ)
are (anti-)isomorphic in a categorical sense. As a first exercise we state isomorphic
properties in two languages.

(K,ϕ)←→ (C(K), Tϕ)

K metrizable←→ C(K) separable

ϕ− invariant closed subset←→ Tϕ − invariant closed ideal

injective/surjective←→ surjective/injective

open and closed set←→ idempotent e ∈ C(K)

K extremally disconnected←→ C(K) order complete

Standart examples of Banach algebras which can be represented as spaces C(K)
are ℓ∞ and L∞(X,Σ, µ).

In order to obtain a ”structured” quotient of (K,ϕ) we take the Banach algebra
with discrete spectrum

B := lin{f ∈ C(K) | Tf = λf, |λ| = 1}.

If (K,ϕ) is minimal, we show that B yields a quotient (L,ψ) of (K,ϕ) which is
homeomorphic to

(G, rotg0)

where G is a compact, abelian group having a dense subgroup generated by g0 ∈ G.
We then indicate how the concept of discrete spectrum can be relativized in order
to obtain what is called a “Furstenberg tower”. The Lyapunovalgebra is briefly
presented as another application of “pure Koopmanism”.
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Moment Problem for Algebras Generated by a Nuclear Space

Tobias Kuna

(joint work with M. Infusino, S. Kuhlmann, P. Michalski)

In this talk, we considered linear functionals L defined on a unital commutative
real algebra A, not necessarily finitely generated, and consider whether they can
be represented by a Radon measure on the character space X(A). We assume
that the algebra is generated by a vector space V , that means that V is spanned
by a set of generators of A. Furthermore, we assume that V is equipped with a
topology τV which makes V into a locally convex topological vector space. Mainly,
we are interested in the case, where τV is generated by Hilbertian seminorms, that
is seminorms which stem from a symmetric positive semidefinite bilinear form, in
particular, we consider topologies which turns (V, τV ) into a nuclear space. We
endow the character space X(A) with the weakest (Hausdorff) topology which
makes â : X(A)→ R given by α 7→ α(a) continuous and consider Radon measures
on X(A) with respect to the associated Borel σ-algebra. Given a linear function
L : A→ R with L(1) = 1, the moment problem means, that one wants to obtain
conditions on L so that there exists a Radon measure ν supported on the set
of characters {α ∈ X(A) : α|V is τV -continuous }, assumed to be non-empty,
representing L on all of A, that is, for all a ∈ A it holds

(1) L(a) =

∫

X(A)

â(α)dν(α).

This type of moment problem has a wide range of applications in physics and
has been studied extensively before which we cannot cover exhaustively here, but
see for example [1] for references and more details. This problem reduces to the
classical moment problem when A is the algebra of polynomials and V the vector
space spanned by the generators of the algebra of polynomials.

The take on this problem, we presented, studies the following question: assume
for any finite dimensional subspace W of V we can solve the moment problem on
〈W 〉 the algebra generated by W , more precisely, we can find a measure νW which
represents the restriction of L to 〈W 〉. When the topology on V is generated by
one Hilbertian seminorm q we show that one can obtain a representing measure
ν supported on characters whose restrictions to V are q-continuous if and only
if there exists another Hilbertian seminorm p on V such that the trace of p with
respect to q is finite and the collection (νW )W is p-concentrated. A sufficient
condition for the latter is that L(a2) ≤ Cp(a)2 for some C > 0 and all a ∈ V . For

a given L there is a canonical choice for p, namely a 7→
√
L(a2), for which the

above bound and hence p-concentration holds automatically. Therefore, one may
consider p as given and wonder whether one can find q fulfilling the aforementioned
characterization. This can always be done when V is actually equipped with a
nuclear topology. We also present a way how to construct q for a given Hilbertian
seminorm p, for example when (V, p) is Hausdorff with a dense countable set.
Unfortunately, in general q will not be finite on V and then one cannot obtain
the representation for all of A but just for a dense sub-algebra of A. Quite easily
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constructed concrete examples testify that the latter effect appears naturally and
that a representation on all of A is actually unachievable in general. Finally, we
demonstrated how one can apply the above techniques to the case where A = S(V )
the symmetric algebra associated to a nuclear space V . We gave conditions just in
terms of a total subset E of V which nevertheless allowed us to get a representation
on all of A.
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Amalgamation of Real Zero Polynomials

David Sawall

(joint work with M. Schweighofer)

Consider two polynomials p ∈ R[x, y] and q ∈ R[x, z] in three blocks of variables
x = (x1, . . . , xℓ), y = (y1, . . . , ym) and z = (z1, . . . , zn). We call a polynomial
r ∈ R[x, y, z] an amalgam of p and q if p = r(x, y, 0) and q = r(x, 0, z). Clearly,
an amalgam of p and q exists if and only if p(x, 0) = q(x, 0).

We want to investigate when an amalgam of two polynomials exists which is
real zero [HV].

Definition 1. A polynomial p ∈ R[x] is called real zero if for all a ∈ Rℓ the
univariate polynomial

p(ta) ∈ R[t]

has only real roots.

Note that in particular p(0) 6= 0. A univariate polynomial p with p(0) 6= 0 is
real zero if and only if it is real-rooted. Being real zero means that the polynomial
restricted to any line through the origin splits in R[t].

Clearly, if p ∈ R[x, y] is real zero then so is p(x, 0). Thus it only makes sense
to ask for real zero amalgams of real zero polynomials. Schweighofer conjectured
the following in his preprint [Sch] from March 2020:

Conjecture 2. Let p ∈ R[x, y] and q ∈ R[x, z] be real zero polynomials such that
p(x, 0) = q(x, 0). Then there exists a real zero amalgam r ∈ R[x, y, z].

In this talk I gave a counterexample to this conjecture. It is based on a coun-
terexample of amalgamation of matroids and we will use some of the theory of
stable polynomials.

Definition 3. Let p ∈ R[x] be a real zero polynomial. The set

{a ∈ Rℓ | ∀t ∈ (0, 1) : p(ta) 6= 0}
is called the rigidly conex set of p.
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Helton and Vinnikov introduced rigidly convex sets in [HV] and showed that
rigidly convex sets are indeed convex (the homogeneous analogues of rigidly convex
sets (hyperbolicity cones) were introduced much earlier by G̊arding [G̊ar]).

Under the assumption that Conjecture 2 was true Schweighofer showed that for
every rigidly convex set C and any finite union of two-dimensional subspaces of Rℓ

there exists a spectrahedron S containing C and agreeing with it on the finite union
of two-dimensional subspaces. This is a very weak version of the Generalized Lax
Conjecture which conjectures that every rigidly convex set is a spectrahedron. For
this application, Schweighofer only needed to amalgamate real zero polynomials
with ℓ = 2 shared variables. Our counterexample has ℓ = 6 shared variables and
there is a theorem due to Poljak and Turźık [PT1] which says that there cannot
be a counterexample for ℓ = 2 of the type we are considering here. They showed
that any two matroids on sets S and T can be amalgamated if S ∩ T has at most
two elements (which corresponds to the case of two shared variables).

Definition 4. Let S be a finite set and I be a non-empty set of subsets of S.
Then M = (S, I) is called a matroid on S if the following two hold:

• if I ∈ I and J ⊆ I then J ∈ I,
• if I, J ∈ I with |J | > |I| then there exists a ∈ J \ I such that I ∪ {a} ∈ I.

The elements of I are called independent sets of M and the maximal indepen-
dent sets bases of M .

Instead of specifying a matroid by its independent sets it is sufficient to specify
its bases (and of course its underlying set). One should think about S as a finite
set of vectors in some vector space and about I as the subsets of S which are
linearly independent.

Definition 5. To a matroid M on the set {1, . . . , ℓ} with set of bases B we asso-
ciated the multi-affine basis generating polynomial

pM :=
∑

B∈B

∏

i∈B

xi.

Poljak and Turźık [PT2] showed that the following two matroids M1 and M2

do not have a matroid amalgam:

Figure 1. The matroids M1 and M2
y

x1 x3 x2

x4 x6 x5

z

x1 x3 x2

x4 x6 x5
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Every 3-element subset of {x1, . . . , x6, y} respectively {x1, . . . , x6, z} is a basis of
M1 respectively M2 if it does not lie on a line in the picture above. Let e3 ∈ R[x, y]
be the third elementary symmetric polynomial in the seven variables x1, . . . , x6, y.

We consider the real stable basis generating polynomials

pM1 = e3 − x1x2x3 − x4x5x6 − yx1x4 − yx2x5 − yx3x6
and

pM2 = e3(x, z)− x1x2x3 − x4x5x6 − zx1x4 − zx2x5.
Note that not every basis generating polynomial is stable. Using (delta-)matroids
and some more theory of stable polynomials, we showed that there is no stable
amalgam of pM1 and pM2 .

Furthermore, we showed that the polynomials pM1(x1 + 1, . . . , x6 + 1, y) and
pM2(x1+1, . . . , x6+1, z) are real zero and that any real zero amalgam r ∈ R[x, y, z]
would give a stable amalgam r(x1 − 1, . . . , x6 − 1, y, z) of pM1 and pM2 . This
concludes the counterexample for Conjecture 2.

We hope that the application by Schweighofer mentioned above can still be
saved and conjecture the following.

Conjecture 6 (weak real zero amalgamation conjecture). Let p ∈ R[x1, x2, y] and
q ∈ R[x1, x2, z] be real zero polynomials such that p(x, 0) = q(x, 0). Then there
exists a real zero amalgam of p and q, i.e., a real zero polynomial r ∈ R[x, y, z]
such that

p = r(x, y, 0) and q = r(x, 0, z).

More generally, we want to investigate when there exist real zero amalgams of
real zero polynomials. Schweighofer showed in [Sch] that for ℓ = m = n = 1, for
quadratic p and q and for ℓ = 0 there always exists a real zero amalagam of p and
q (even of degree at most max{deg p, deg q}).
Conjecture 7 (strong real zero amalgamation conjecture). Let p ∈ R[x1, x2, y]
and q ∈ R[x1, x2, z] be real zero polynomials both of degree at most d such that
p(x, 0) = q(x, 0). Then there exists a real zero amalgam of p and q of degree at
most d.
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State Polynomials: Positivity and Applications

Jurij Volčič

(joint work with I. Klep, V. Magron, J. Wang)

This talk introduces (noncommutative) state polynomials, which are polynomial
expressions in noncommuting variables x1, . . . , xn and formal state ς of their prod-
ucts. For example, p = ς(x1x2x1)ς(x1)2 + 2ς(x22x1)− 3 is a state polynomial, and
f = ς(x1x2)ς(x1)x2x1 − ς(x22x1) − x2x1x2 + 4 is a noncommutative state poly-
nomial. They can be naturally evaluated on a n-tuple of bounded self-adjoint
operators on a real Hilbert space H, and a state on B(H) (i.e., a unital positive
continuous functional B(H) → R). Concretely, if X = (X1, X2) ∈ B(H) and λ
is a state on B(H), then p(λ,X) = λ(X1X2X1)λ(X1)2 + 2λ(X2

2X1) − 3 ∈ R and
f(λ,X) = λ(X1X2)λ(X1)X2X1 − λ(X2

2X1)−X2X1X2 + 4I ∈ B(H).
Positivity and optimization of state polynomials naturally arise in functional

analysis and quantum information theory. More precisely, one is interested in cer-
tifying positivity of a state polynomial over all finite-dimensional Hilbert spaces,
or separable Hilbert spaces, subject to polynomial constraints on the operator
variables and the state. The derived theory has both noncommutative (due to
formal operator variables generating the free algebra) and commutative (due to
formal state symbols generating the infinitely generated polynomial ring) aspects,
and builds upon real algebra [9], free real algebraic geometry [2], and invari-
ant/representation theory connecting the previous two [12, 8]. The talk presents
algebraic certificates of positivity (Positivstellensätze) and optimization in this
dimension-independent setting, and demonstrates their applications to polynomial
Bell inequalities in quantum networks.

The first main result is the resolution of the state polynomial analog of Hilbert’s
17th problem for positivity on matrix tuples and matricial states.

Theorem 1. Let p be a state polynomial. The following are equivalent:

(1) p(λ,X) ≥ 0 for all states λ and tuples X of self-adjoint operators on
separable Hilbert spaces;

(2) p(λ,X) ≥ 0 for all matricial states λ and matrix tuples X;
(3) p is a quotient of sums of products of elements of the form ς(hh∗) for a

noncommutative state polynomial h.

For example, the Cauchy-Schwarz inequality admits an algebraic certificate of
global positivity

ς(x21)ς(x22)− ς(x1x2)2 =
ς
((
ς(x21)x2 − ς(x1x2)x1

)2)

ς(x1)2
.

Theorem 1 guarantees that every state polynomial inequality is an algebraic conse-
quence of states of hermitian squares. Moreover, for such inequalities, dimension-
independent matrix positivity implies operator positivity, which contrasts the fail-
ure of analogous implication for trace polynomials (where only tracial states are
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considered) by the refutation of Connes’ embedding conjecture [4]. Since Theo-
rem 1 characterizes only positive state polynomials but not noncommutative state
polynomials, one is left with the following open problem.

Problem 2. Find a state-of-hermitian-square certificate for unconstrained posi-
tivity of noncommutative state polynomials.

A very special case of Problem 2 for state polynomials in one matrix variable
is given in [5].

The second main result is an archimedean Positivstellensatz for positivity sub-
ject to noncommutative state polynomial constraints. To a set C of noncommu-
tative state polynomials we associate the analog of a basic semialgebraic set,

KC =
{

(λ,X) : Xj = X∗
j ∈ B(H), λ a state on B(H), c(λ,X) � 0 for all c ∈ C

}

where H is an infinite-dimensional separable real Hilbert space. Furthermore, the
role of a quadratic module is taken by

QC =

{
∑

i

ς(hicih
∗
i ) : ci ∈ {1} ∪ C, hi nc state polynomials

}
.

We say that C is algebraically bounded if r − x21 − · · ·x2n =
∑

i ficif
∗
i for some

r > 0, ci ∈ {1} ∪ C and noncommutative polynomials fi. Algebraically bounded
sets lead to quadratic modules that are archimedean in a suitable sense, and admit
the following Positivstellensatz.

Theorem 3. Let p be a state polynomial, and C an algebraically bounded set of
noncommutative state polynomials. The following are equivalent:

(1) p ≥ 0 on KC;
(2) p+ ε ∈ QC for all ε > 0.

Note that in Theorem 3, checking positivity over operator variables is neces-
sary in general, as matrices of all sizes as in Theorem 1 are no longer sufficient.
This observation holds already for freely noncommutative polynomials (without
state symbols), where matrix evaluations are ample enough only for convex KC .
Furthermore, while state polynomial positivity admits analogs of Artin’s solution
to Hilbert’s 17th problem and Putinar’s Positivstellensatz, one can somewhat sur-
prisingly show that there are no straightforward analogs of Krivine-Stengle and
Schmüdgen Positivstellensätze for the preordering generated by QC . These re-
marks lead to the following questions.

Problem 4. Are matrix evaluations sufficient for checking positivity on a con-
vex KC? Is there an analog of Krivine-Stengle Positivstellensatz for KC if one
considers evaluations on unbounded self-adjoint operators?

Notwithstanding these open problems, Theorem 3 leads to an efficient state
polynomial optimization procedure. Namely, given a state polynomial p and an
algebraically bounded C, there is a hierarchy of semidefinite programs whose solu-
tions form a convergent decreasing sequence with limit supKC

p. This construction
is a variant of Lasserre’s SDP hierarchy, which has been successfully applied in
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commutative polynomial optimization [3], noncommutative polynomial eigenvalue
optimization [10], and trace polynomial optimization [6]. While the size of SDPs
in our hierarchy grows very quickly, this can be mitigated by using sparsity, sym-
metry and conditional expectation reductions. Furthermore, we obtain a stopping
criterion based on flatness in the dual SDP, which yields (through a version of the
Gelfand-Naimark-Segal construction) an explicit finite-dimensional optimizer for
supKC

p.
Finally, the above state polynomial optimization was developed with a view

toward polynomial Bell inequalities in quantum networks. Let us conclude by
giving two concrete applications in this vein. Firstly, abbreviating

cov(x, y) = ς(xy)− ς(x)ς(y)

and then maximizing

cov(x1, y1) + cov(x1, y2) + cov(x1, y3) + cov(x2, y1)

+ cov(x2, y2)− cov(x2, y3) + cov(x3, y1)− cov(x3, y2)

subject to

x2i = y2j = 1, [xi, yj ] = 0

gives the maximal quantum violation 5 of a covariance Bell inequality with the
classical value 2, which answers a question of [11]. Secondly, maximizing

−1

8

(
ς((x1 + x2)y1(z1 + z2))− ς((x1 − x2)y2(z1 − z2))

)2

+ς((x1 + x2)y1(z1 + z2)) + ς((x1 − x2)y2(z1 − z2))

subject to

x2i = y2j = z2k = 1, [xi, yj ] = [yj , zk] = [zk, xi] = 0,

ς(uv) = ς(u)ς(v) for products u in xi and products v in zk

gives the maximal quantum violation 2
√

2 of a Bell inequality in a bilocal sce-
nario with the classical value 2, which answers a question of [1]. More generally,
state polynomial optimization can be applied to any network of parties and en-
tanglement sources, to produce convergent upper bounds on quantum violations
of polynomial Bell inequalities.
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[8] I. Klep, Š. Špenko, J. Volčič, Positive trace polynomials and the universal Procesi-Schacher

conjecture, Proc. Lond. Math. Soc. 117 (2018) 1101–1134.
[9] M. Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Mono-

graphs 146, American Mathematical Society, Providence, RI, 2008.
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Entropic Transfer Operators

Oliver Junge

We propose a novel approach to the following problem from dynamical systems:
Given a deterministic map F : X → X on a large (continuous and possibly high-
dimensional) state space X, find a stochastic (i.e. distribution-valued) map FN on
a small (i.e. finite) state space XN ⊂ X that “captures the most relevant features”
of F . Here, N ∈ N denotes a discretization scale and we will often be interested in
the limit N →∞. Our idea for the construction of FN is to smooth the action of
the deterministic map F on XN by means of an entropically regularized optimal
transport plan.

Concerning the stochastic formulation, we shall assume that F possesses some
interesting invariant probability measure µ (i.e. a natural resp. SRB-measure) and
consider the stochastic formulation of F ’s deterministic dynamics via the transfer
operator T : L2(µ) → L2(µ) given by Th := dF#(hµ)/dµ (where F#ν denotes
the push-forward of the measure ν under F ). Intuitively, if points are distributed
according to hµ on X , then their images are distributed according to Thµ. We
then define FN via a transfer operator TN,ǫ : L2(µN ) → L2(µN ), where µN is
an approximate invariant probability measure for the stochastic dynamics, and ǫ
denotes the magnitude of regularization.

A similar regularization can be applied to T itself, yielding the operator

T ǫ : L2(µ)→ L2(µ).

Informally, compared to T , the regularized operator T ǫ smooths spatial structures
below the length scale

√
ǫ. We show that (a suitable extension of) TN,ǫ converges

to T ǫ in operator norm when µN converges to µ as N →∞ for fixed ǫ > 0. That
is, for sufficiently high N , the analysis of TN,ǫ can reveal structural properties of
the dynamics of F above the length scale

√
ǫ.

Concerning the “most relevant features”, we shall adopt the point of view that
these are determined by the peripheral spectrum of T ǫ. For example, if F exhibits
an (almost) n-cycle, then this will be represented in the spectrum of T ǫ by an
n-tuple of eigenvalues close to λk = e2πik/n. Similarly, if F shows metastable
behaviour, i.e. the state space X decomposes into k almost invariant sets, the
spectrum of T ǫ contains k real eigenvalues close to 1.
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In numerical experiments, our method successfully recovers known metastable
behaviour in a 30 dimensional system from molecular dynamics.
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From Infinite to Finite Programs: Explicit Error Bounds with an

Application to Approximate Dynamic Programming

Tobias Sutter

(joint work with P. M. Esfahani, D. Kuhn, J. Lygeros)

Infinite dimensional linear programming offers remarkable modeling power and
emerges in different fields including engineering, economics, operations research.
This class of programs subsumes prominent problems such as finite dimensional
optimization problems, the generalized moment problem, and dynamic program-
ming as special cases. The exact solution to these programs is in general far beyond
the reach of analytical methods or classical numerical techniques, motivating the
study of tractable approximations schemes.

While there are various approximation techniques for infinite linear programs,
the literature still lacks a scheme that enjoys provably explicit performance guar-
antees. In this talk we will propose a novel approach via finite (random) tractable
convex programs. The idea uniquely builds on tools from two growing areas of ran-
domized optimization and structural convex optimization. The proposed scheme
involves a “regularization” idea that is essential to establish a-priori as well as
a-posterior performance guarantees. To this end, we generalize several existing
results in the randomized as well as structural convex optimization algorithms to
an infinite dimensional setting. The theoretical results of this method, as a spe-
cial case, offers an effective approximate dynamic programming scheme along with
explicit performance guarantees for different classes of Markov decision processes
(discounted or long-time average costs).

The importance of these results is evidenced by their broad potential applica-
bility where decisions and data are two prominent features, opening new vistas
towards data-driven decision-making. As reinforcement learning and “Big Data”
gain ever-increasing significance, we foresee that these results can further open the
door to other fields such as machine learning, operations research, stochastic model
predictive control, finance, business analytics, and many more where randomized
algorithms and convex optimization algorithms have already seen success.
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Intermediate Cones between the SOS and PSD Cones:

Quartics and Sextics

Sarah Hess

(joint work with C. Goel, S. Kuhlmann)

In this talk, we construct a filtration of intermediate cones between the cone
Pn+1,2d of forms in n+ 1 variables of degree 2d that are positive semidefinite and
its subcone Σn+1,2d of forms that admit a sum-of-square representation via a Gram
matrix approach [CLR95] and analyze it for strict inclusions. The investigation of
the relationship between Pn+1,2d and Σn+1,2d dates back to Hilbert’s 1888 seminal
paper [Hil88], where it is demonstrated that Pn+1,2d = Σn+1,2d if and only if
n + 1 = 2 or 2d = 2 or (n+ 1, 2d) = (3, 4). Thus, in any inequality case, at least
one inclusion in our induced cone filtration has to be strict. However, it is not
clear which one and how many there are.

More precisely, let Fn+1,2d be the vector space of all real forms in n+ 1 variables
with degree 2d and let (m0(X), . . . ,mk(X)) be the lexicographically ordered mono-
mial basis of half degree d forms (in n+ 1 variables). For any f ∈ Fn+1,2d, denote
the set of all Gram matrices associated to f by G−1(f) and, for any A ∈ G−1(f),
let qA be the associated quadratic form. Moreover, let V be the dth-Veronese
embedding (of Pn), then

Pn+1,2d = {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|V (Pn)(R)
≥ 0} and

Σn+1,2d = {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|
Pk(R)

≥ 0}.
For i = 0, . . . , k − n, set

Hi := {[z] ∈ Pk | ∃x ∈ Cn+1 : (z0, . . . , zn+i) = (m0(x), . . . ,mn+i(x))}
and let Vi be the smallest projective variety in Pk containing Hi. This leads to
a filtration Vk−n ⊆ . . . ⊆ V0 of irreducible projective varieties containing V (Pn)
in which each inclusion is strict. In particular, Vk−n = V (Pn), V0 = Pk and
dim(Pk)− dim(V (Pn)) = k−n. Furthermore, each inclusion in the corresponding
filtration of sets of real points Vk−n(R) ⊆ . . . ⊆ V0(R) is also strict.

We now construct a cone filtration

(1) C0 ⊆ . . . ⊆ Ck−n

by setting Ci := {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|Vi(R)
≥ 0} for i = 0, . . . , k − n.

Clearly, Ck−n = Pn+1,2d and C0 = Σn+1,2d, since Vk−n = V (Pn) and V0 = Pk,
respectively. Hence, (1) is in fact an intermediate cones filtration between Σn+1,2d

and Pn+1,2d.
For the equality cases (2, 2d), (n + 1, 2) and (3, 4), no inclusions in (1) can be

strict by Hilbert’s 1888 Theorem. It thus remains to consider the inequality cases
(n + 1, 2d)n≥2,d≥2 6= (3, 4) where at least one strict inclusion in (1) has to occur
(again by Hilbert’s 1888 Theorem). The below given general query arises:

Problem 1. For (n+ 1, 2d)n≥2,d≥2 6= (3, 4), which inclusions in (1) are strict?
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In the aim of giving an answer to the above problem, we firstly observe that each
Vi is an irreducible, totally-real, nondegenerate projective variety with codimension
i. Moreover, by an application of Bézout’s Theorem [Har77, Theorem 7.7], we
are secondly able to determine the degrees of V0, . . . , Vn, and Vn+1 if n ≤ 2,
respectively.

Proposition. Let n, d ∈ N and i = 0, . . . , n, then deg(Vi) = i + 1. Moreover, if
n ≤ 2, then also deg(Vn+1) = n+ 2.

This result is crucial, as it allows us to conclude that V0, . . . , Vn, and Vn+1 if
n ≤ 2, are projective varieties of minimal degree, respectively. From this, the next
result follows:

Theorem. Let n, d ∈ N and i = 0, . . . , n−1, then Ci = Ci+1. Moreover, if n ≤ 2,
then also Cn = Cn+1.

The remaining inclusions Cn ⊆ . . . ⊆ Ck−n in (1) thus have to be investigated
for strictness. We conjecture the following:

Conjecture. For (n + 1, 2d)n≥2,d≥2 6= (3, 4) and i = n + 1, . . . , k − n − 1, the
inclusion Ci ⊆ Ci+1 is strict. Furthermore, if n ≥ 3, then also the inclusion
Cn ⊆ Cn+1 is strict.

In this talk, we discuss a proof for the above conjecture in the cases (n+1, 4)n≥3

and (n+1, 6)n≥2. Thus, in combination with the above general theorem, we provide
a full answer to Problem 1 for (n+ 1)-ary quartics (n ≥ 3) and (n+ 1)-ary sextics
(n ≥ 2). Our conjecture consequently reduces to an investigation of the following
special problem:

Problem 2. Is it true that for (n+ 1, 2d)n≥2,d≥4 and i = n+ 1, . . . , k−n− 1, the
inclusion Ci ⊆ Ci+1 is strict. Moreover, if n ≥ 3, is it also true that the inclusion
Cn ⊆ Cn+1 is strict?

We are currently preparing a paper [GHK+] that extends our findings about
the strict inclusions in the (n + 1)-ary quartics (n ≥ 3) and (n + 1)-ary sextics
(n ≥ 2) cases given in this talk (based on [GHK]) to arbitrary inequality cases. To
this end, we will introduce a degree-jumping principle that allows us to maintain
the separating property of a given form f ∈ Ci+1\Ci ⊆ Pn+1,2d when going over to
higher degrees 2δ for δ ≥ d while the number of variables n+1 remains unchanged.
We will therefore give an answer to the special Problem 2. Consequently, the above
conjecture will be proven and the general Problem 1 will be solved.
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The Odd Powers of the Motzkin Polynomial, etc.

Bruce Reznick

For positive integers n, d, let Fn,d denote the real forms of degree d in n variables.
A form p is psd if p(a) = p(a1, . . . , an) ≥ 0 for all a ∈ Rn; p is sos if there
exist forms fj so that p =

∑r
j=1 f

2
j . A form p is positive definite if a 6= 0 implies

p(a) > 0. Following Choi and Lam [1], let Pn,m and Σn,m denote the closed convex
cones of psd forms and sos forms in Fn,m (for even m). Let E(Pn,m) denote the
set of extremal elements of Pn,m; if p is positive definite, then p /∈ E(Pn,m). Let
∆n,m = Pn,m \Σn,m. Hilbert proved that ∆n,m 6= ∅ iff n ≥ 3 and m ≥ 6 or n ≥ 4
and m ≥ 4, without naming specific examples. His 17th Problem asks whether, for
p ∈ Pn,m, there exists some q in some Fn,d so that q2p ∈ Σn,m+2d. Artin answered
yes, but unconstructively. Choi and Lam studied M,S,Q in ∆3,6 and ∆4,4; M
below was found by Motzkin. Another early example in ∆3,6 was R, found by
Robinson. Each of these forms is extremal.

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2,

S(x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2,

Q(w, x, y, z) = w4 + x2y2 + x2z2 + y2z2 − 4wxyz,

R(x, y, z) = x6 + y6 + z6 − (x4y2 + x2y4 + x4z2 + x2z4 + y4z2 + y2z4) + 3x2y2z2.

Stengle [7] proved in 1979 that T (x, y, z) = x3z3+(y2z−x3−z2x)2 ∈ ∆3,6, and
moreover, T 2k+1 ∈ ∆3,6(2k+1) for every positive odd integer 2k+ 1. He said that I

had proved that , S2k+1 ∈ ∆3,6(2k+1) by different arguments. In 1982, Choi, Dai,
Lam and I [2] cited Stengle’s claimed the same for M instead of S. No proofs for
M or S were given at the time.

There are some key old school techniques in the proof of this result for M .
First if p is psd and p(a) = 0 for a 6= 0, then p =

∑
f2
j , implies fj(a) = 0.

If now also p2k+1 =
∑
f2
j , then each fj vanishes at least to 2k-th order at

a. When a is a unit vector, more information is easily derived. Using multi-
nomial notation: i = (i1 . . . , in), xi = xi11 · · ·xinn and f ∈ R[x1, . . . , xn] with
f(x1, . . . , xn) =

∑
i a(f ; i)xi, define C(f) = cvx{i : a(f ; i) 6= 0}. Then [4]:

p(x) =
∑n

k=1 q
2
k(x) =⇒ C(qk) ⊆ 1

2C(p).
Second, by generalizing polarization, the following is known [3] for sos even

forms which are even (a(f ; i) 6= 0 implies i ∈ (2Z)n). Suppose p =
∑

i h
2
i is an

even form, then we may write p =
∑

j q
2
j , where qj(x) =

∑
i cj(i)x

i and all i’s in

a particular qj belong to a single congruence class in (Z/2Z)n.
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Third, if fj(t) ∈ R[t] and for s ≥ 1, (t2 − 1)2s =
∑r

j=1 fj(t)
2. Then an elemen-

tary argument shows that fj(t) = λj(t
2 − 1)s and

∑
j λ

2
j = 1.

Theorem. For any odd integer 2k + 1 ≥ 1, M2k+1 is not sos.

For the proof, note that if M2k+1 =
∑
f2
j , then

C(M2k+1) = cvx{(8k + 4, 4k + 2, 0), (4k + 2, 8k + 4, 0), (0, 0, 12k+ 6)},
C(fj) ⊆ cvx{(4k + 2, 2k + 1, 0), (2k + 1, 4k + 2, 0), (0, 0, 6k+ 3)}.

Since M(0, 0, 1) = 1, it follows that 1 =
∑r

j=1 fj(0, 0, 1)2, and the non-zero values

can only occur in those fj which contain x0y0z6k+3 as a summand; that is, those
fj in which the exponents of x and y are both even. If x2ay2bz6k+3−2a−2b occurs
in fj and 2a = 0, then 2b = 0; the largest possible value of 2a in any fj is 4k + 2,
but x4k+2 must be paired with y2k+1, so the largest exponent of x where the
exponent of y is also even is at most 4k. Thus, fj(t, 1, 1) = cj,(0,0,6k+3) + t2hj(t)
and deg(fj(t, 1, 1)) ≤ 4t.

Now note that M(t, 1, 1) = (t2 − 1)2, and so (t2 − 1)4k+2 =
∑

j fj(t, 1, 1)2,

fj(t, 1, 1) must be a multiple of (t2 − 1)2t+1 and so fj(t, 1, 1) ≡ 0. Thus, for all j,
cj,(0,0,6k+3) = 0, contradicting that the sum of the squares is 1. �

We remark without proof that the same argument applies to a larger set of
forms. Suppose q(y, z) ∈ P2,m for some even form q. Then no odd power of the
psd even form zmM(x, y, z) + x2(y2 − z2)2q(y, z) is sos. (This was proved the
morning after the talk, which is how things go at MFO.)

With minor variations, it can be proved in the same way that S2k+1 and Q2k+1

are never sos, and by looking purely at the zeros, R3 and S3
t are not sos, where St

is a family in ∆3,6 ∩ E(P3,6) ([5, §6.5]) which interpolates between S and R.
We foolishly make the following conjecture:

Conjecture. If p is psd, not sos and extremal, then p2k+1 is not sos.

At this point, I should mention a remarkable 2012 theorem of Claus Scheiderer
[6], a special case of which is that if p ∈ Pn,m is positive definite, then for suffi-
ciently large r, pr ∈ Σn,rm. There is no contradiction between this result and the
conjecture, because positive definite forms can’t be extremal.

Stengle’s example is not extremal: define Tc(x, y, z) = cx3z3+(y2z−x3−z2x)2.

Then it is not hard to show that Tc ∈ P3,6 for |c| ≤
√

256/27, so T = T1 /∈ E(P3,6).

Stengle’s argument shows that T 2k+1
c is not sos if 0 < c ≤

√
256/27.

Let Mc(x, y, z) = x4y2 + x2y4 + z6 − cx2y2z2. Then Mc ∈ ∆3,6 if c ∈ (0, 3] and
M3 is the Motzkin form. Using binomial squares plus one monomial square, we
can show that M3

c ∈ Σ3,18 if c3 ≤ 15
13 . More elaborate variations show that we can

increase c to about 1.1336, which is almost certainly not optimal.
Define Σn,m(2k + 1) = {f ∈ Pn,m | f2k+1 ∈ Σn,(2k+1)m}, so that we have

Σn,m(1) = Σn,m. A natural question is whether Σn,m(2k + 1) is a closed convex
cone. Closed is easy; convex seems difficult. I’d guess the answer is “no,” but
wouldn’t bet any money on it. A positive answer would mean that if p2k+1 and
q2k+1 are sos, then so is (p+ q)2k+1. I can prove a weaker result.
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Theorem. Suppose p and q are polynomials and p2k+1 and q are both sos. Then
(p+ q)2k+1 is also sos.

As a hint of the proof, (p + q)3 = p3 + q(3p2 + 3pq + q2) and moreover also
3p2 + 3pq + q2 = 3

4 (2p+ q)2 + 1
4q

2 is sos. (Added: It can also be shown that if p3

and q3 are sos, then so is (p + q)5. More generally, I conjecture that if p2i+1 and
q2j+1 are sos, then so is (p+ q)2i+2j+1.

This result is already enough to prove that there exists ck ∈ [0, 3) so that

{c | (x4y2 + x2y4 + 1− cx2y2)2k+1 is sos} = (−∞, ck].

Observe that if p is psd and p2k+1 is sos and ℓ > k, then p2ℓ+1 = (pℓ−k)2 · p2k+1

will also be sos, so the sequence (ck) is non-decreasing. What is limk→∞ ck?
So, to sum up:

Question. If p is psd and not sos, is p3 sos?

Answer. Maybe, maybe not.

Question. If p and p3 is psd and not sos, can p5 be sos?

Answer. I’d guess “yes”, but I don’t have an example here.

In a similar vein, let M be the Motzkin form and for c ≥ 0, let

Mc(x, y, z) = M(x, y, z) + c(x2 + y2 + z2)3.

When c > 0, Scheiderer’s theorem implies that there exists N(c) so that M t
c is

sos whenever t is an odd integer ≥ N(c). Let I2k+1 = {c | Mc ∈ Σ3,6(2k+1)}, and
let β2k+1 = inf(I2k+1); it’s not hard to show that I2k+1 = [β2k+1,∞). Further,
limk→∞ β2k+1 = 0 and β2k+1 is a non-increasing sequence of positive numbers, so
there are infinitely many k for which β2k+1 > β2k+3. For such a k, and f = Mβ2k+3

,

f2k+1 is not sos and f2k+3 is sos.
Finally, why is this question interesting, except as a curiosity? For one thing, if

f2k+1 is sos, then f can be written as a sum of squares in which the denominators
are fk. This makes it easier to produce a certificate that f is psd. Just check if
f , f3, f5, etc. are sos. Stop when you get tired. It also gives the opportunity
to produce interesting intermediate sets of forms between Σn,m and Pn,m, even if
they might not be cones. This question was of interest to Stengle and Scheiderer
in the context of Positivstellensatzen, which is beyond the scope of this talk. We
definitely need more quantitative information in this direction!
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An Intrinsic Characterization of Moment Functionals in the

Compact Case

Maria Infusino

(joint work with S. Kuhlmann, T. Kuna, P. Michalski)

We deal with the following instance of moment problem for compactly supported
measures, which is general enough to include infinite dimensional situations such
as measures supported in infinite dimensional spaces or linear functionals defined
on infinitely generated algebras.

Question 1. Let A be a unital commutative R–algebra (not necessarily finitely
generated) whose character space X(A) is non-empty. Given a linear functional
L : A→ R with L(1) = 1, does there exist a Radon measure ν on X(A) such that

(1) L(a) =

∫

X(A)

α(a)dν(α) for all a ∈ A

and the support of ν is compact?

Recall that:

• the character space X(A) consists of all R–algebras homomorphisms from
A to R and is here endowed with the weakest (Hausdorff) topology such
that for each a ∈ A the function â : X(A)→ R, α 7→ α(a) is continuous;
• a Radon measure ν on X(A) is a non-negative measure on the Borel σ–

algebra w.r.t. τX(A) that is locally finite and inner regular w.r.t. compact
subsets of X(A);
• the support of ν, denoted by supp(ν), is the smallest closed subset C

of X(A) for which ν(X(A) \ C) = 0 holds.

If a Radon measure ν as in (1) does exist, then we call ν a representing Radon
measure for L and we say that L is a moment functional. In fact, if the support of
a representing Radon measure is compact, then the representation in (1) is unique
(see e.g., [5, Section 3.3] or [6, Chapter 12]).

In [3, Theorem 1.2] we provide the following characterization all moment func-
tionals with compactly supported representing measure solely in terms of a new
growth condition intrinsic to the given linear functional (see (2)), which also allows
us to exactly identify the compact support of the representing measure.

Theorem 2. Let L : A → R be linear with L(A2) ⊆ [0,∞) and L(1) = 1. Then
there exists a unique representing Radon measure νL for L with compact support
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if and only if

(2) sup
n∈N

2n
√
L(a2n) <∞ for all a ∈ A.

Moreover, in this case,

(3) supp(νL) =

{
α ∈ X(A) : |α(a)| ≤ sup

n∈N

2n
√
L(a2n) for all a ∈ A

}
.

To establish the existence of the unique representing measure νL, we exploit
the recent general version of the classical Nussbaum theorem in [2, Theorem 3.17],
whose applicability is guaranteed because our growth condition (2) implies Carle-

man’s condition, i.e.
∞∑
n=1

1
2n
√

L(a2n)
=∞ for all a ∈ A. Also the exact identification

of the support of the representing measure in (3) entirely relies on the growth con-
dition(2), but is the most surprising and novel feature of Theorem 2. In fact, to
the best of our knowledge, the other results available in the literature on Ques-
tion 1 characterize the existence of a compactly supported representing measure
in terms of the non-negativity of the starting functional on an Archimedean qua-
dratic module (see e.g., [4]) or in terms of its continuity w.r.t. submultiplicative
seminorms (see e.g., [1]), but the support is only shown to be contained in a com-
pact set associated with the considered quadratic module resp. submultiplicative
seminorm and so not exactly identified (for more references, see [3]).

Analyzing the equivalence of our growth condition (2), the positivity condition
in [4], and the continuity condition in [1] independently of the existence of the
representing measure νL, we also determine explicit descriptions of supp(νL) in
terms of the largest Archimedean quadratic module on which L is non-negative and
in terms of the smallest submultiplicative seminorm w.r.t. which L is continuous
(see [3, Corollary 3.13]). All the above mentioned equivalent conditions and the
characterizations of supp(νL) are collected in the following result.

Corollary 3. Let L : A → R be linear with L(A2) ⊆ [0,∞) and L(1) = 1. Then
the following are equivalent.

(i) There exists a unique representing Radon measure νL for L with compact
support.

(ii) supn∈N

2n
√
L(a2n) <∞ for all a ∈ A.

(iii) L is p–continuous for some submultiplicative seminorm p on A.
(iv) L is Q–positive for some Archimedean quadratic module Q in A.

In this case,

supp(νL) =

{
α ∈ X(A) : |α(a)| ≤ sup

n∈N

2n
√
L(a2n) for all a ∈ A

}

= {α ∈ X(A) : α is pL−continuous}
= {α ∈ X(A) : α(a) ≥ 0 for all a ∈ QL} .

where
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• pL is the seminorm defined by pL(a) := supn∈N

2n
√
L(a2n) for all a in

A, which is in fact the smallest submultiplicative seminorm on A w.r.t.
which L is continuous.
• QL is the quadratic module generated by supn∈N

2n
√
L(a2n)±a with a ∈ A,

which is in fact the largest Archimedean quadratic module in A on which L
is non-negative.

Thanks to Theorem 2, we also derive an explicit formula for computing the
measure of singletons in supp(νL), which in turn gives a sufficient condition for
supp(νL) to be countable as well as a necessary and sufficient condition for supp(νL)
to be a finite set (for more details, see [3, Section 3.4]).

We also construct and compare two locally convex topologies on A closely re-
lated to the growth condition (2) and making A a topological algebra. Moreover,
we show that if A is endowed with a locally convex topology belonging to a certain
class, then assuming the growth condition (2) only on the generating elements of
a dense subalgebra of A is sufficient for the existence of νL (see [3, Section 4]).

In future work we would like to investigate whether some of the techniques
used for the results here presented could be exploited to solve some instances of
the moment problem in the non-compact case as well as in the truncated case.
Also the tractability of the growth condition in concrete applications is still to be
explored, and might be a valuable tool to ensure the convergence of sequences of
outer approximations of the compact support.
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Embedding Classical Dynamics in a Quantum Computer

Dimitrios Giannakis

(joint work with S. Das, A. Ourmazd, P. Pfeffer, J. Schumacher, J. Slawinska)

The simulation of classical dynamical systems by quantum systems is a problem
of growing interest in recent years, motivated at least in part by the potential
of quantum computation to solve classically intractable computational problems.
Mathematically, quantum theory has deep connections with the operator-theoretic
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formulation of ergodic theory [3], particularly from an algebraic perspective that
associates to a classical dynamical system an abelian algebra of observables (func-
tions of the state) and to a quantum system a non-abelian operator algebra of
quantum observables acting on Hilbert space. Leveraging these connections pro-
vides a natural route for designing quantum algorithms for simulation of classical
dynamics.

In this talk, we present a framework [4] for simulating a class of measure-
preserving, ergodic dynamics in a quantum computer that is based on a combi-
nation of techniques from Koopman operator theory and harmonic analysis. We
focus on a class of continuous-time, measure-preserving, ergodic flows with finitely
generated pure point spectrum. By the Halmos–von Neumann theorem, such sys-
tems are topologically conjugate to irrational rotations on tori, and we can take
advantage of the structured nature of these systems to design quantum algorithms
that are asymptotically consistent with the Koopman evolution of observables of
the classical system.

Our approach is based on an embedding that represents classical states x in
X ≡ Td by density operators ρx : H → H acting on a reproducing kernel Hilbert
space, H, of complex-valued functions on the classical state space X . The Hilbert
space H is dense in the space of continuous functions on X and it is chosen such
that (i) it is a Banach ∗-algebra with respect to pointwise function multiplication
and complex conjugation; and (ii) the group of Koopman operators (composition
operators) U t : H → H with U tf = f ◦Φt is well-defined as a strongly continuous
unitary evolution group on H [1]. Here, Φt : X → X is the classical dynamical
flow

The Banach algebra structure of H provides, through its regular representation,
a mapping π : H → B(H) from classical observables inH into quantum observables
in B(H) that act as multiplication operators, (πf)g := fg. Moreover, by virtue of
the reproducing property of H we have the identity f(x) = tr(ρx(πf)) for every
x ∈ X and f ∈ H. The latter, allows us to consistently represent pointwise
evaluation of classical observables by quantum mechanical expectation values.

Quantum mechanical observables a ∈ B(H) evolve under the action of the
Koopman operator as a 7→ U taU t∗. The dual picture to this is evolution is the
evolution of density operators ρx as ρx 7→ U t∗ρU t. The latter, can can be thought
of as a lifted version of the evolution of classical probability measures under the
transfer operator (the dual to the Koopman operator).

To arrive at a finite-dimensional quantum system that is implementable on a
quantum computer, we project the states ρx of the infinite-dimensional quantum
system onH onto finite-rank density operators on a 2n-dimensional tensor product
Hilbert space associated with n qubits. Importantly, due to the group structure
of the spectrum of the Koopman operator for pure point spectrum systems, the
unitary evolution operators associated with the projected system admit a tensor-
product factorization allowing efficient implementation in a quantum circuit. In
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particular, a quantum circuit utilizing O(n2) quantum gates simulates the evo-
lution and measurement of classical observables in a subspace of H of dimension
2n.

We illustrate our approach with quantum circuit simulations of low-dimensional
dynamical systems, as well as actual experiments on the IBM Quantum System
One that show promising results for low qubit numbers (n ≤ 4).

A pertinent research question stemming from this work is whether similar
quantum algorithms can be constructed for measure-preserving ergodic flows that
are not of pure-point-spectrum type, particularly weak-mixing or mixing systems
where the point spectrum of the Koopman operator on L2 is trivial, consisting
of only a single simple eigenvalue 1 with constant corresponding eigenfunctions.
In such cases, it is possible to consistently approximate (in the sense of strong
convergence of spectral measures) the generator of the Koopman group on L2 by
operators acting on suitably constructed RKHSs that have discrete spectra [2].
However, the spectra of these regularized operators do not have a group structure
analogous to the spectrum of the Koopman generator for a pure-point-spectrum
system, posing obstacles to efficient approximation within quantum circuits. We
believe that exploring ways of deriving efficient and consistent quantum algorithms
for such systems is an interesting topic for future work.
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Trace-Positive Noncommutative Polynomials and the Unbounded

Tracial Moment Problem

Igor Klep

(joint work with C. Scheiderer, J. Volčič)

This talk concerns noncommutative polynomials, i.e., elements of a free algebra,
with our primary focus being evaluations in matrices and their (normalized) traces.

Consider the following noncommutative lift of the Motzkin polynomial,

M = x2x
4
1x2 + x22x

2
1x

2
2 − 3x2x

2
1x2 + 1.

It is well-known (see, e.g., [KS08], that for any pair of real symmetric n×nmatrices
X1, X2, the evaluation

M(X1, X2) := X2X
4
1X2 +X2

2X
2
1X

2
2 − 3X2X

2
1X2 + In

has nonnegative trace. Alternately, as observed by Quarez [Qua15], M admits a
Hilbert 17th-type sum of squares up to commutators certificate with denominators.
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Namely, M is a sum of commutators c and sums of hermitian squares s with
denominators for

s = (1− x21x22)∗(1 + x21)−1(1− x21x22) + x2(x31 − x1)(1 + x21)−1(x31 − x1)x2

+ (x22 − 1)x1(1 + x21)−1x1(x22 − 1),

c = 2
[
x2, [(1 + x21)−1, x2]

]
.

The main results of the talk present a weak version of Artin’s solution to
Hilbert’s 17th problem for trace positive noncommutative polynomials. More pre-
cisely, we establish the following:

Theorem 1. The following are equivalent for a noncommutative polynomial f :

(i) τ(f(X)) ≥ 0 for all finite von Neumann algebras (F , τ) and tuples X of
self-adjoint operators in F ;1

(ii) f lies in the closure of K with respect to the finest locally convex topology
on the free algebra;

(iii) for every ε > 0 there exists r ∈ N such that

f + ε

n∑

j=1

r∑

k=0

1

k!
x2kj

is a sum of hermitian squares and commutators in the free algebra.

Here, K is the convex cone of all noncommutative polynomials that can be
written as sums of hermitian squares and commutators of elements in the localized
subalgebra

R〈x1, . . . , xn, (1 + x21)−1, . . . , (1 + x2n)−1〉
of the free skew field (=universal skew field of fractions of the free algebra). Thus
the equivalence between (i) and (ii) of Theorem 1 can be seen as a weak solution
to the tracial Hilbert’s 17th problem. The equivalence between (i) and (iii) is the
tracial Störungspositivstellensatz and was inspired by the commutative analog due
to Lasserre [Las06].

The cone K is known not to be closed, e.g. the homogenized noncommutative
Motzkin polynomial

x22x
2
1x

2
2 + x21x

2
2x

2
1 + x63 − 3x1x2x

2
3x2x1

is trace positive (thus in K by Theorem 1), but is not in K. Since K seems difficult
to work with, it would be interesting to have more malleable descriptions for it.
One possible candidate is the so-called dagger closure often considered in real
algebraic geometry:

Open Problem. Is K = K†, where

K† := {f | there is an nc polynomial g such that f + εg ∈ K for every ε > 0}?
The key step to establishing Theorem 1 through convex duality is solving a

tracial moment problem. We prove the following:

1Routine considerations show that one can restrict to II1 factors F here.
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Theorem 2. Let ϕ be a unital linear functional on the free algebra in x1, . . . , xn.

(a) There exists a finite von Neumann algebra (F , τ) and tuple of power-
integrable self-adjoint operators X affiliated with F s. t. ϕ(p) = τ(p(X))
for all noncommutative polynomials p if and only if ϕ(K) = R≥0.

(a) The equivalent conditions in (a) hold if there is M > 0 s. t. ϕ(xrj ) ≤ r!M r

for all j = 1, . . . , n and even r ∈ N.

The recent negative answer to Connes’ embedding problem [JNVWY] implies
that in general, one cannot restrict (i) in Theorem 1 or (a) in Theorem 2 to finite-
dimensional von Neumann algebras (i.e., matrix algebras). This brings us to the
following question.

Open Problem. Find a simple and explicit example of a noncommutative poly-
nomial that is trace positive in all matrix algebras but has negative trace in a
II1-factor.
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The Minkowski Sum of Sums of Squares and Sums of Nonnegative

Circuit Forms

Moritz Schick

(joint work with M. Dressler, S. Kuhlmann)

An n-ary form over R is positive semidefinite, if it takes nonnegative values on Rn.
The set of such forms of degree 2d is a convex cone denoted by Pn,2d. In general,
checking membership in Pn,2d is difficult, therefore one often considers membership
in appropriate convex subcones. On the one hand, the sums of squares cone Σn,2d

has a long history in Mathematics, with results going back to Hilbert’s seminal
work in [4]. On the other hand, the sums of nonnegative circuit forms cone Cn,2d

is a rather newly established cone, first formally defined in [5].
Motivated by [3], we study the convex hull of Σn,2d ∪Cn,2d, i.e. the Minkowski

sum (Σ + C)n,2d := Σn,2d + Cn,2d. Clearly, the following chain of inclusions hold:

Σn,2d ∪Cn,2d ⊆ (Σ + C)n,2d ⊆ Pn,2d.

Thus, one can ask the following:

Question 1. For which case of n, 2d is Σn,2d ∪ Cn,2d ( (Σ + C)n,2d?
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Question 2. For which case of n, 2d is (Σ + C)n,2d = Pn,2d?

In the course of this talk, we presenting explicit forms separating (Σ + C)n,2d
from Σn,2d ∪ Cn,2d and Pn,2d from (Σ + C)n,2d. Regarding Question 1, we show
the following.

Theorem 3. The identity Σn,2d ∪ Cn,2d = (Σ + C)n,2d holds if and only if n = 2
or 2d = 2 or (n, 2d) = (3, 4).

The if-part follows by Hilbert’s 1888 Theorem [4], since for n = 2 or 2d = 2
or (n, 2d) = (3, 4), we have Σn,2d = (Σ + C)n,2d = Pn,2d. For the only if part,
it suffices to show that for the two base cases (n, 2d) ∈ {(3, 6), (4, 4)}, it holds
Pn,2d\(Σ + C)n,2d 6= ∅. Indeed, we show that such forms can be found via an
SOS-perturbation of the Motzkin form [6] ((n, 2d) = (3, 6)) and the Choi-Lam
form [2] ((n, 2d) = (4, 4)).

Question 2 on the other hand is fully answered in [1], where the author shows the
following.

Theorem 4. The identity (Σ+C)n,2d = Pn,2d holds if and only if n = 2 or 2d = 2
or (n, 2d) = (3, 4).

The proof in [1] does not provide explicit forms in Pn,2d\(Σ+C)n,2d = Pn,2d for
n ≥ 3, 2d ≥ 4, (n, 2d) 6= (3, 4). However, it can indeed be shown that for the base
cases (n, 2d) ∈ {(3, 6), (4, 4)} such examples are given by the Robinson forms [7].
Examples for higher degrees can be achieved with a suitable multiplier. For higher
number of variables, the same examples apply.

Furthermore, we show that the cone (Σ + C)n,2d = Pn,2d has the following prop-
erties:

(1) It is a proper cone (i.e. convex, closed, pointed and has nonempty interior)
in the finite dimensional vector space Hn,2d of n-ary forms of degree 2d.

(2) It is neither closed under multiplication nor under linear transformation
of variables.

(3) Membership in (Σ +C)n,2d can be checked via a combination of semidefi-
nite and relative entropy programming.

In our future work, we aim for an exploitation of the cone (Σ + C)n,2d in a
polynomial optimization setting. The goal is to find hierarchies of lower bounds
for unconstrained or constrained polynomial optimization problems that can be
computed efficiently using membership conditions in (Σ + C)n,2d.

An open question regarding the interplay of the cones Σn,2d and Cn,2d is a char-
acterization of their intersection Σn,2d ∩ Cn,2d.

References

[1] G. Averkov, Optimal size of linear matrix inequalities in semidefinite approaches to poly-
nomial optimization, SIAM J. Appl. Algebra Geometry 3 (2019), 128–151.

[2] M. D. Choi and T. Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977),
no. 1, 1–18.



Real Algebraic Geometry with a View toward Koopman Operator Methods 789

[3] M. Dressler, Sums of nonnegative circuit polynomials: geometry and optimization, Ph.D.
thesis, Goethe-Universität Frankfurt am Main, 2018.
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Positivstellensätze for Semirings

Konrad Schmüdgen

(joint work with M. Schötz)

This talk is about Positivstellensätze for semirings of a commutative unital real
algebra A. Let C be a convex cone in A such that 1 ∈ C. We define

C† := {a ∈ A : (a+ ε1) ∈ C for all ε > 0}.

If S is a semiring of A (that is, S is a convex cone with 1 ∈ S which is invariant
under multiplication), then C is called an S-module if ac ∈ C for all a ∈ S and
c ∈ C.

It is shown that if C is an S-module of an Archimedean semiring S, then C† is
an Archimedean quadratic module and S† is an Archimedean preordering. Also, if
C is an Archimedean quadratic module, then C† is an Archimedean preordering.
This implies that the Archimedean Positivstellensätze for semirings and quadratic
modules can be derived from each other. In particular it yields a unified operator-
theoretic approach to both results.

Further, a number of notions and results on general semirings in A are devel-
oped. Another main result is a general Positivstellensatz with denominators for
semirings of filtered algebras. As an application of this theorem, a denominator-
free Positivstellensatz for the cylindrical extension of an algebra with Archimedean
semiring is obtained. A number of applications and illustrating examples of these
results are given.

The talk is based on joint work with Matthias Schötz, Arxiv 2207.02748.
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A Halmos-von-Neumann Theorem for Actions of General Groups

Patrick Hermle

(joint work with H. Kreidler)

A classical problem of topological dynamics is to determine whether given topologi-
cal G-systems, G is a topological group, are isomorphic. EveryG-system (G,K,ϕ),
i. g. a continuous group action ϕ of G on a compact space K, induces a strongly
continuous Koopman representation

Tϕ : G→ L(C(K)), g 7→ Tϕ−1
g
,

where Tϕ−1
g
f = f ◦ ϕg−1 for every f ∈ C(K). A G-system has discrete spectrum

(see [1]) if

C(K) =
⋃
{M ⊆ C(K) |M finite-dimensional Tϕ invariant subspace}

‖·‖

.

The classical theorem of Halmos and von Neumann (see [2]) solves the isomorphism
problem for minimal Z-systems with discrete spectrum completely in the sense by
addressing three aspects:

(i) (Uniqueness) The point spectrum of the Koopman operator Tϕ1 is a
complete isomorpism invariant.

(ii) (Representation) Every system is isomorphic to a rotation system on a
compact monothetic group.

(iii) (Realisation) For every subgroup Γ of the unit disk there exists a Z-
system such that Γ = σ(Tϕ1).

We generalize this theorem replacing Z by an arbitary topological group (see [3]).
While the proof of the classical Halmos-von Neumann theorem uses the struc-
ture of compact abelian groups (e. g. Pontryagin duality), the non-commutative
situation is more intricate. Instead of character theory, we have to deal in the
non-commutative case with finite-dimensional representation of dimension larger
than 1. Therefore, we introduce the dual object

Ĝ := Irr(G)/ ∼
of a topological group G, where Irr(G) are the irreducible finite-dimensional rep-
resentations, and use the non-commutative analogue of Pontryagins duality, the
so called Tannaka-Krein duality (see [4]).
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A Semidefinite Algorithm for Powers-of-Forms Decomposition

Alexander Taveira Blomenhofer

In powers-of-forms (POF) decomposition, we are given forms fd of degree d ·k in n
variables for (various) values d ∈ D, e.g. D = {0, 1, 2, 3}, and we are asked to find
k-forms q1, . . . , qm such that fd =

∑m
i=1 q

d
i for all d ∈ D. For fixed d, this amounts

to finding a k-Waring decomposition of f of rank m. It turns out that if d ≥ 3
and m is not too large, general POF decompositions of rank m will be unique
for the forms they describe, up to trivialities. The algorithmic task to recover the
unique addends of a POF decomposition is poorly understood, but has applications
in algebraic statistics, as e.g. the parameter estimation problem for mixtures of
centered Gaussians from moments is a POF problem, where k = 2. We aim to
understand for which ranks m, recovering the unique addends of some typical
rank-m POF decomposition is possible with an efficient algorithm. In this talk,
I generalize a classical algorithmic uniqueness result for 1-Waring decompositions
to the case of all k ≥ 1. The key ingredient is a condition that the second order
power sum

∑m
i=1 q

2
i has a particularly simple Gram spectrahedron.

As a first observation, note that if someone was to give us a basis u1, . . . , um of
the space q1, . . . , qm, this would allow to consider the following reduction to the
better-understood case k = 1: Consider the evaluation map

ϕ : R[Y1, . . . , Ym]→ R[q1, . . . , qm], Yi 7→ ui

which is a homomorphism of graded algebras from the polynomial ring in m vari-
ables Y1, . . . , Ym to the algebra generated by R[q1, . . . , qm]. To make the previous
statement true, we endow R[Y1, . . . , Ym] with the grading by the degree and we
grade R[q1, . . . , qm] by 1

2 the degree. The kernel of ϕ is the ideal of relations of
q1, . . . , qm. The restriction ϕ|≤3 to the graded components of degree at most 3
is thus an isomorphism of R-vector spaces if and only if there are no algebraic
relations of q1, . . . , qm of degree at most 3. Given access to the basis u1, . . . , um,
the inverse map ϕ−1

≤3 can be evaluated algorithmically by solving a linear system.
In particular, it is then possible to compute the preimages g1, g2, g3 of f1, f2, f3
under the map ϕ. It is then straightforward that g1, g2, g3 admit a joint POF
decomposition

gd =

m∑

i=1

ℓdi

where ℓi is the preimage of qi. This reduced to a degree-3 POF decomposition
where the number of addends ℓ1, . . . , ℓm equals the number of variables Y1, . . . , Ym.
Algorithms for this special case are classically known. In other words, if q1, . . . , qm
do not satisfy any algebraic relations of degree ≤ 3, then recovering the space of
〈q1, . . . , qm〉 from the powers sums solves the problem.

Note that generic q1, . . . , qm will not satisfy any relations of degree at most 3 if
m is not too large. Indeed, for m ≤ n, they will not satisfy any algebraic relation
at all, but even for m slightly larger than n, the degree of algebraic relations will
usually be higher than 3. E.g. from Bézout’s theorem it follows that n+ 1 general
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quadratics will have a principal ideal of relations generated by a single polynomial
of degree 2m ≥ 4 (for m ≥ 2).

The question remains how to recover the space 〈q1, . . . , qm〉. This is where I

make use of the second order power sum. Decompositions f2 =
∑N

i=1 p
2
i come

with an associated subspace 〈p1, . . . , pN 〉 which is the image of the Gram tensor∑N
i=1 p

⊗2
i ∈ Gram(f2) associated with the decomposition. It turns out that this

subspace is equal for all Sum-of-Squares decompositions G ∈ Gram(f2) that share
the same supporting face F . Let us write UF for the subspace associated with
each face F of the Gram spectrahedron of f2.

Now, a Gram spectrahedron might have infinitely many faces, but sometimes
the Gram spectrahedron of f2 has a particularly simple facial structure. E.g. the
most simple case is when Gram(f2) is a singleton set, i.e. up to orthogonal trans-
formations there is a unique Sum-of-Squares decomposition. It is then possible
to compute the unique Sum-of-Squares decomposition

∑m
i=1 q

⊗2
i of f2 and recover

the space from it.
With geometrical arguments on the real variety VR(q1, . . . , qm), it is easy to

show that singleton Gram spectrahedra occur for typical choices of m quadratics
at least as long as m ≤ n−1. However, a numerical study I conduct with the SDP
solver MOSEK shows that singleton Gram spectrahedra still typically occur also for
pairs of values (m,n) where m is larger than n.

The aforementioned algorithm suggests that a natural problem in real algebra:
What is the maximum number m(n) for which there exists a Euclidean open
subset U of the space of m-tuples of quadratics in n variables such that for all
q = (q1, . . . , qm) ∈ U ,

∑m
i=1 q

2
i has a singleton Gram spectrahedron? So far, it is

only known to me that n− 1 ≤ m(n) <
(
n+1
2

)
.

Time-Dependent Moments from PDEs: The Heat Equation as an

Example

Philipp J. di Dio

Partial differential equations (PDEs), (real) algebraic geometry (non-negative poly-
nomials), and the theory of moments are intensively studied fields in mathematics.
Much studied is the interaction between real algebraic geometry and the moment
problem. Less studied is the interaction between these and partial differential
equations. We present here recent results. We explicitly treat the heat equation.
It is joint work with R. Curto, M. Korda, and V. Magron. The work is financed
by the DFG project DI-2780/2-1 and the research fellowship of Ph. J. di Dio at
the Zukunfskolleg of the University of Konstanz, funded as part of the Excellence
Strategy of the German Federal and State Government.

Introduction. The heat equation is

∂tu = ∆u

u( · , 0) = u0 on Rn
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with ∆ := ∂21 + · · · + ∂2n and u0 a Schwartz function. Its unique solution is
u( · , t) = Θt ∗ u0, the convolution of the heat kernel Θt with the initial data u0.
By duality, the heat equation also acts on polynomials u0 = p0 ∈ R[x1, . . . , xn].
The unique solution is then given by

p( · , t) = Θt ∗ p0 =

∞∑

k=0

tk

k!
·∆kp0 =

⌊(deg p0)/2⌋∑

k=0

tk

k!
·∆kp0 ∈ R[x1, . . . , xn, t].

The convolution with the non-negative heat kernel shows that non-negativity is
preserved while the second formulation is valid since the sum is finite (polynomials
are entire vectors with respect to ∆). Hence,

et·∆ : R[x1, . . . , xn]→ R[x1, . . . , xn]

for all t ∈ R (not just t ≥ 0) and the set of non-negative polynomials is invariant
for all t ≥ 0. Additionally, applying the Richter Theorem it is clear that from the
convolution also sums of squares are mapped to sums of squares. In each case we
have

degx p( · , t) = degx p0

for all t ∈ R, i.e., in summary

et·∆ : Pos(n, d)→ Pos(n, d) and et·∆ : SOS(n, d)→ SOS(n, d)

for all t ≥ 0. Again, by duality we have the group structure

et·∆ : R[x1, . . . , xn]∗ → R[x1, . . . , xn]∗

on the linear functionals on R[x1, . . . , xn]. For t ≥ 0 moment functionals are
mapped to moment functionals, since non-negative polynomials are mapped to
non-negative polynomials.

Results. The following (surprising) observations are the starting point of this
investigation:

(1) the Motzkin polynomial fMotz(x, y) = 1− 3x2y2 + x4y2 + x2y4 becomes a
sum of squares e∆fMotz ∈ SOS(2, 6),

(2) the Robinson polynomial

fRob(x, y) = 1− x2 − y2 − x4 + 3x2y2 − y4 + x6 − x4y2 − x2y4 + y6

becomes a sum of squares et∆fRob ∈ SOS(2, 6) for all

t ≥ τRob ∈
(

20 946

100 000
,

20 947

100 000

)
,

(3) the Schmüdgen polynomial

fSchm(x, y) = (y2 − x2)x(x + 2)[x(x − 2) + 2(y2 − 4)]

+200[(x3 − 4x)2 + (y3 − 4y)2]

becomes a sum of squares for all t ≥ 2 · 10−4,
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(4) the Berg–Christensen–Jensen polynomial

fBCJ(x, y) = 1− x2y2 + x4y2 + x2y4

becomes a sum of squares for all t ≥ 1
6 .

For the Choi–Lam polynomial we can even determine the exact time, when it
becomes a sum of squares.

Theorem 1. Let

fCL(x, y, z) := 1− 4xyz + x2y2 + x2z2 + y2z2 ∈ Pos(3, 4) \ SOS(3, 4)

be the Choi–Lam polynomial. Then

et∆fCL ∈
{

Pos(3, 4) \ SOS(3, 4) for t ∈ [0, 1/9), and

SOS(3, 4) for t ∈ [1/9,∞).

To prove this result we have to look at all Gram matrix representations of
et∆fCL. This Gram matrix proof enables us to prove the following.

Theorem 2. There exists a τ3,4 ≥ 1/9 such that

et·∆Pos(3, 4) ⊆ SOS(3, 4)

for all t ≥ τ3,4.
Connecting this to the moment problem we get the following.

Corollary. Let τ3,4 be minimal from Theorem 1 and L : R[x, y, z]≤4 → R[x, y, z]≤4

be such that e−τ3,4·∆L is strictly square positive. Then L is a moment functional.

All given examples have in common that the highest degree part is a sum of
squares. If this is not the case, the time-evolution with respect to the heat equation
never becomes a sum of squares.

Theorem 3. Let p0 ∈ R[x1, . . . , xn] be non-negative on Rn such that the highest
degree part is not a sum of squares. Then et·∆p0 is not a sum of squares for all
t ∈ R.

The case of (n, 2d) = (n, 2) is trivial, since then Pos(n, 2) = SOS(n, 2) by
Hilbert’s Theorem. The second case (3, 4) is solved by Theorem 2. Only the
cases (2, 2d) are by Theorem 3 the only other possibilities when non-negative
polynomials can become sum of squares. This is still open.

Open Problem 1. For which d ∈ N does there exist a τ2,2d ≥ 0 such that

eτ2,2d·∆Pos(2, 2d) ⊆ SOS(2, 2d).

We only looked at the operator A = ∆. Hence, we have the following second
open problem.

Open Problem 2. For (n, d) ∈ N× 2N is there an (linear) operator A such that
there exists a τn,d(A) ≥ 0 such that

et·APos(n, d) ⊆ SOS(n, d)

for all t ≥ τn,d(A)?
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We thank the organizers for the conference at Oberwolfach and the possibility
to present these research results.

An Elementary View to Transfer Operators

Gary Froyland

Transfer operators provide a powerful spectral approach to solving many problems
in dynamics. In this tutorial-style presentation I will introduce dynamical systems
and transfer operators in elementary settings. Dynamical systems that expand all
directions in phase space, or more generally that have well-defined directions of
uniform expansion and contraction are well-suited to transfer operator techniques.
For such dynamics, there are suitable Banach spaces upon which the transfer op-
erator is quasi-compact. Quasi-compactness provides an elegant approach (the
Nagaev–Guivarc’h approach) [1]–[3] to proving statistical limit laws such as the
central limit theorem, local central limit theorem, and large deviation principle;
see also the survey [8] A spectral approach to extreme value theory is developed
by Keller in [5]. Quasi-compactness of the transfer operator enables rigorous com-
putation of fixed points, which correspond to physical invariant measures of the
dynamics, and of the variance in the central limit theorem, and the rate function
in a large deviation principle [10]–[11].

Real-world dynamics requires time-dependent dynamics and we introduce trans-
fer operator cocycles. One must now define analogues of eigenvalues (Lyapunov
exponents), eigenfunctions (Oseledets spaces), quasi-compactness, and isolated
spectrum. With the help of multiplicative ergodic theory the necessary exten-
sions of these concepts to the time-dependent or random dynamical systems can
be carried out [6]–[7]. One may then try to construct a Nagaev–Guivarc’h-style
approach to statistical limit laws for random dynamical systems. The fundamen-
tals of this program have been carried out in [9], [12]. In the case of extreme value
theory, one requires an extension of differentiable perturbation theory from deter-
ministic dynamics [4] to the random situation [13]. Such an extension enables a
very general extreme value theory [13] for random dynamics.
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[12] Davor Dragicević, Gary Froyland, Cecilia González-Tokman, and Sandro Vaienti. A spectral
approach for quenched limit theorems for random hyperbolic dynamical systems. Transac-
tions of the American Mathematical Society, 373:629-664, 2020.

[13] Jason Atnip, Gary Froyland, Cecilia González-Tokman, and Sandro Vaienti. Perturbation
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Determinantal Polynomials and the Principal Minor Map

Cynthia Vinzant

(joint work with A. Al Ahmadieh)

The principal minor map takes an n × n matrix to the vector of its 2n principal
minors.The quest for an algebraic description of the image of this map dates back
to 19th century classical algebraic geometry. This talk described a connection
between this problem and certain classes of determinantal representations.

The image of an n × n matrix A under the principal minor map is given by
ϕ(A) = (AS)S⊆[n] where AS is the determinant of the |S| × |S| submatrix of
A whose rows and columns are indexed by S. By convention we take A∅ = 1.
Understanding the image of this map is a question in classical algebraic that has
reemerged due to its connections with determinantal point processes, which are
discrete probabilistic models with useful properties for sampling and computation.

There are nontrivial equations vanishing on the image of n× n symmetric ma-
trices under this map starting at n = 3 and general n × n matrices starting at
n = 4. In 1897, Nanson [7] gave some of the algebraic relations on ϕ(C4×4), a
characterization that was completed by Lin and Sturmfels in 2009 [6]. A character-
ization for general n remains open. For symmetric matrices, Holtz and Sturmfels
[4] show invariant under an action of the group SL2(C)n ⋊ Sn and conjectured
that the vanishing of polynomials in the orbit of the hyperdeterminant under this
group cuts out the image of the principal minor map over C. This conjecture was
resolved by Oeding [8]. We use a connection with determinantal representations
to extend the results of Oeding to arbitrary fields and show that no such finite
uniform description is possible in the general case.
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The connection to determinantal polynomials is that the principal minors of an
n× n matrix A are exactly the coefficients of the polynomial

(1) fA = det (diag(x1, . . . , xn) +A) =
∑

S⊆[n]

AS

∏

i∈[n]\S

xi.

We can there translate the problem of characterizing the image of the principal mi-
nor map to that of characterizing which multiaffine polynomials have such a repre-
sentation. When the matrix A is Hermitian, then the polynomial fA is real stable,
meaning that it has no zeroes whose imaginary parts are all positive. Brändén [3]
showed that a multiaffine polynomial f =

∑
S⊆[n] aS

∏
i∈[n]\S ∈ R[x1, . . . , xn] is

stable if and only if for all i, j ∈ [n], the polynomial

∆ij(f) =
∂f

∂xi

∂f

∂xj
− f ∂2f

∂xi∂xj

is nonnegative on Rn. Kummer, Plaumann, and Vinzant [5] showed that f has
a determinantal representation (1) with a real symmetric matrix A if and only
if each of the polynomials ∆ij(f) are squares in R[x1, . . . , xn]. The forward di-
rection of this relies on Dodgson condensation. In [1], show that this extends to
arbitrary fields k. Moreover, for n = 3, the quadratic discriminant of the polyno-
mial ∆12(f) ∈ k[x3] is exactly Cayley’s 2 × 2× 2 hyperdeterminant, which shows
that Oeding’s results extends to arbitrary fields.

In [2], we show that f has a determinantal representation (1) with a Hermitian
matrix A if and only if each of the polynomials ∆ij(f) are a sum of two squares
g2 +h2 in R[x1, . . . , xn] (alternatively a Hermitian square (g+ ih)(g− ih)). Using
this characterization, we show that for every n ≥ 4, the image of n× n Hermitian
matrices under the principal minor map is cut out by the image of the equations
and inequalities defining the image for n = 4 under the group SL2(C)n ⋊ Sn.

One might wonder if the image of general n × n matrices under the princi-
pal minor map can be described by the orbit of some finite set of equations and
inequalities under SL2(C)n ⋊ Sn. This turns out to be impossible. As in the sym-
metric and Hermitian case, one can show that for any i, j, the polynomial ∆ij(fA)
must factor as a product of two multiaffine polynomials. The converse does not
hold [2, Example 3.2]. Moreover, one can construct a family of multiaffine polyno-
mials f2n+1 for n ≥ 2 with the property that f2n+1 does not have a determinantal
representation (1) but that after specializing any variable, it does. For example,

f5 = x1(x3x4 + 1)(x2x5 + 1) + (x2x3 + 1)(x4x5 + 1).

The polynomial ∆12(f) = (x3 − x5)(x3x4 + 1)(x4x5 + 1) does not factor as the
product of two multiaffine polynomials but that its specialization in any variable
does. We show that the coefficient vector of f2n+1 satisfies conditions inherited
from the image of 2n× 2n matrices under the principal minor map but does not
belong to the image of the principal minor map itself. This precludes the existence
of a finite description of the image of general n× n using only the group action of
SL2(C)n ⋊ Sn. We end with two questions.
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Question 1. In [5], the authors show that if some power fm of a polynomial f can
be written as det(A0 + x1A1 + . . .+ xnAn) for some m ∈ Z+ and real symmetric
matrices A0, . . . , An with Aj � 0 for j ≥ 1, then ∆ij(f) is a sum of squares in
R[x1, . . . , xn] for all i, j ∈ [n]. Does the converse hold?

Question 2. What are equations describing the image of C5×5 under the principal
minor map? Can the image of Cn×n be cut out by equations obtained from the
action of SL2(C)n ⋊ Sn and some increasing combinatorial structures?
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ML-Degree of Statistical Models and the Beta-Invariant of a Matroid

Julian Weigert

(joint work with M. Micha lek)

We start with a common question from the field of statistics: Given a fam-
ily (fΣ)Σ∈S of probability distributions on Rm and some observed data vectors
d1, . . . , dk ∈ Rm, which of the fΣ describes the observed data best? To answer
this question we usually want to find Σ ∈ S such that

log

(
k∏

i=1

fΣ(di)

)

is maximized.
We will focus on the special case of linear concentration models, where some

linear subspace L ⊂ Rm×m is fixed and the the family of probability distributions
is given by

fΣ : Rm → R, x 7→ 1√
det(2πΣ)

exp

(
−1

2
xtΣ−1x

)

where Σ−1 ∈ L is positive semi-definite and invertible.
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Denote by L−1 the complexification of the Zariski-closure of the set

{Σ ∈ Rm×m | Σ−1 ∈ L}.
With the initially described optimization problem in mind, it is natural to define
the Maximum-Likelihood-degree (ML-degree) of L to be the number of complex
critical points Σ ∈ L−1 of the function

Σ 7→ log

(
k∏

i=1

fΣ(di)

)

where d1, . . . , dk ∈ Rm are general and k is sufficiently large. It is known that for a
generic choice of L this number agrees with the degree of the variety L−1 ⊆ Cm×m.
This also happens in the special case where L only contains diagonal matrices,
where both numbers can be shown to be an invariant of the matroid associated
with L. We will therefore now consider L ⊆ Cm and think of it as a space of
diagonal m×m-matrices. After projectivizing, L−1 is then given as the image of
the (rational) cremona map

crem : P(Cm) 99K P(Cm)

(x1 : . . . : xm) 7→ (x−1
1 : . . . : x−1

m ) = (x2 · . . . · xm : . . . : x1 · . . . · xm−1).

Let M be the matroid associated to L in the following way: Consider the intersec-
tions of the coordinate hyperplanes with L, i.e. Hi := {xi = 0} ∩ L, i = 1, . . . ,m,
then M is the matroid on {1, . . . ,m}, where a k-element subset {i1, . . . , ik}, k ≤ m
is independent if and only if codimL(Hi1 ∩ · · · ∩Hik) = k. Let χM (q) ∈ Z[q] and
χM (q) = χM (q)/(q − 1) be the characteristic and reduced characteristic polyno-
mials of M .

In [3] it is shown that the coefficients of χM (q) are (up to sign) given by the
multidegree of the graph of the cremona map in P(Cm)×P(Cm). In particular the
ML-degree of L and the degree of L−1 are both given as χM (0)(−1)rank(M). This is
an invariant of the matroid M but it is not the beta-invariant. However, both the
ML-degree and the beta-invariant of a matroid are connected to counting bounded
regions of a certain hyperplane arrangement, so it is natural to ask if there is a
related matroid M̃ such that its beta-invariant β(M̃) := χM̃ (1)(−1)rank(M) equals
the degree of L−1. In fact we can construct such a matroid from L in the following
way:

(1) Consider the orthogonal complement (with respect to the standard inner
product) L⊥ of L and shift it by some generic u ∈ Cm.

(2) Intersect with the coordinate hyperplanes to obtain an arrangement of
affine hyperplanes Hi := {xi = 0} ∩ (L⊥ + u), i = 1, . . . ,m.

(3) Describe eachHi as the kernel of an affine linear form qi ∈ C[x1, . . . , xm−d],
where d = dim(L) and we identify L⊥ with Cm−d. Homogenize each qi
using a new variable y. The new kernels of the qi give a hyperplane
arrangement in L⊥ ⊕ C. We add one more hyperplane

H0 := {(x, y) ∈  L⊥ ⊕ C | y = 0}.
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(4) From the new hyperplane arrangement we build a matroid M̃ on m + 1

elements as described above, then β(M̃) = deg(L−1).
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Positivity Certificates and Polynomial Optimization on Non-Compact

Semialgbraic Sets

Ngoc Hoang Anh Mai

(joint work with J.-B. Lasserre, V. Magron)

The work is concerned with polynomial optimization on non-compact semialge-
braic sets. Its spirit and main motivation is to voluntarily avoid the big-ball trick
which reduces the problem to the compact case. The big-ball “trick” is to sim-
ply assume that the global minimum is attained in some a priori known ball BM

centered at zero of radius M > 0 potentially large. Therefore, by adding this ad-
ditional constraint to the definition of the feasible set, one is back to the compact
case.

Why? This “trick” has definitely some merit since in some practical applications
such an M can be sometimes determined with ad-hoc arguments. However, it is
not satisfactory from a mathematical point of view. Indeed after one has found
a minimizer x⋆ ∈ BM , one is still left with the question: Is really x⋆ a global
minimizer? Was M chosen sufficiently large? In other words, in doing so one
does not obtain an certificate that x⋆ is a global minimizer. As we will see, the
challenge is to adapt some certificates of positivity on non-compact sets already
available in the literature, to turn them into a practical algorithm.

Reznick proves in [6] that any positive definite form can be multiplied by a
large enough power of ‖x‖22 to become a sum of powers of linear forms (which
is in particular a sums of squares (SOS) of polynomial). For this specific class
of nonnegative polynomials, Reznick’s result provides a suitable decomposition
into SOS of rational functions, which can be practically computed via semidefinite
programming (SDP). An interesting related result is the Positivstellensatz [5] of
Putinar and Vasilescu.

Denote by R[x] the ring of real polynomials in vector of variable x = (x1, . . . , xn).
Let Σ[x] ⊂ R[x] stand for the set of SOS polynomials. Given g = {g1, . . . , gm} in
R[x], define

S(g) := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m} ,

Q (g) :=

{
σ0 +

m∑
j=1

σjgj : σj ∈ Σ[x]

}
.
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Theorem 1 (Putinar–Vasilescu [5]). Let θ ∈ R[x] be the quadratic polynomial
x 7→ θ(x) := 1 + ‖x‖22, and denote by p̃ ∈ R[x, xn+1] the homogeneous polynomial

associated with p ∈ R[x], defined by x 7→ p̃(x) := x
deg(p)
n+1 p(x/xn+1).

(1) Let f ∈ R[x] such that f̃ > 0 on Rn+1\{0}. Then θkf ∈ Σ[x] for some
k ∈ N.

(2) Let f, g1, . . . , gm ∈ R[x] satisfy the following two conditions:

(a) f = f0 + f1 such that deg(f0) < deg(f1) and f̃1 > 0 on Rn+1\{0};
(b) f > 0 on S(g).
Then θ2kf ∈ Q(g) for some k ∈ N.

As a consequence, they also obtain:

Corollary 2 (Putinar–Vasilescu [5]). Let θ := 1 + ‖x‖22.
(1) Let f be a polynomial in R[x] of degree at most 2d such that f ≥ 0 on Rn.

Then for all ε > 0, there exists k ∈ N such that θk(f + εθd) ∈ Σ[x].
(2) Let f ∈ R[x] such that f ≥ 0 on S(g). Let d ∈ N such that 2d > deg(f).

Then for all ε > 0, there exists k ∈ N such that θ2k(f + εθd) ∈ Q(g).

As already mentioned, our approach is to treat the non-compact case frontally
and avoid the big-ball trick. Our contribution is threefold:

I. We first provide an alternative proof of Corollary 2, with an explicit degree
bound on the SOS weights, by relying on Jacobi’s technique in the proof of [3,
Theorem 7]; this is crucial as it has immediate implications on the algorithmic
side. More precisely, the degrees of the SOS weights σj are bounded above by
k+ d−⌈deg(gj)/2⌉. First, one transforms the initial polynomials to homogeneous
forms, then one relies on Putinar’s Positivstellensatz for the compact case, and fi-
nally one transforms back the obtained forms to dehomogenized polynomials. As a
consequence, with ε > 0 fixed, arbitrary, this degree bound allows us to provide hi-
erarchies (ρik(ε))k∈N, i = 1, 2, 3 for unconstrained polynomial optimization (where
m = 0 and i = 1) as well as for constrained polynomial optimization (m ≥ 1 and
i = 2, 3). Computing each ρik(ε) boils down to solving a single SDP, with strong
duality property. For k sufficiently large, ρik(ε) becomes an upper bound for the
optimal value f⋆ of the corresponding polynomial optimization problem (POP)
min

x∈S(g)
f(x). If this problem has an optimal solution x⋆, the gap between ρik(ε) and

f⋆ is at most εθ(x⋆)d. The related convergence rates are also analyzed in these
sections.

II. In the second contribution, we provide a new algorithm to find a feasible
solution in the semialgebraic set S(g). The idea is to include appropriate additional
spherical equality constraints ϕt := ξt−‖x− at‖22, t = 0, . . . , n, in S(g) so that the
system S(g ∪ {±ϕ0, . . . ,±ϕn}) has a unique real solution. The nonnegative reals
(ξt)

n
t=0 are computed with an adequate moment-SOS hierarchy. Moreover, this

solution might be extracted in certain cases by checking whether some (moment)
matrix satisfies a flat extension condition (see [1, 4]).
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III. Finally we use this method to approximate a global minimizer of f on S(g).
Namely, we fix ε > 0 small and find a point in S(g ∪ {ρik(ε)− f}). This procedure
works in certain cases, even if the set of minimizers is infinite. This is in deep
contrast with the extraction procedure of [2] (via some flat extension condition)
which works only for finite solution sets. Assuming that the set of solutions is
finite, one may compare our algorithm with the procedure from [2] as follows. On
the one hand, the latter extraction procedure provides global optimizers, provided
that one has solved an SDP-relaxation with sufficiently large “k” (so as to get
an appropriate rank condition). On the other hand, our algorithm that adds
spherical equality constraints “divides” the problem into n+1 SDP relaxations with
additional constraints but with smaller order “k” (which is the crucial parameter
for the SDP solvers).
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On Algebraic Certificates for the Truncated Moment Problem

Simone Naldi

(joint work with D. Henrion, M. Safey El Din)

Let K = S(g) ⊂ Rn be a basic semialgebraic set defined by polynomial inequalities
g1(x) ≥ 0, . . . , gk(x) ≥ 0, where g = (g1, . . . , gk) ∈ R[x]k.

Given d ∈ N and a sequence of real numbers y = (yα)α∈Nn
d
,

Nn
d = {α = (α1, . . . , αn) ∈ Nn :

∑

i

αi ≤ d},

the truncated moment problem is the question of determining whether there exists
a nonnegative Borel measure µ on Rn, with support in K, and such that

yα =

∫

K

xα dµ, for all α ∈ Nn
d .

In this case one says that y is moment-representable with respect to g. It is the
truncated version of the classical moment problem, see [5, 10].

The truncated moment problem can be interpreted as a convex conic feasibility
program L∩C, where the cone is the set C = P(K)d of polynomials nonnegative
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on K, of degree at most d, and the linear space L is the hyperplane defined by the
vanishing of the Riesz functional Ly : R[x]≤d → R defined by

Ly



∑

α∈Nn
d

pαx
α


 =

∑

α∈Nn
d

pαyα,

that is L = ker(Ly).
When K is compact, the classical duality between moments and positive poly-

nomials states that y is moment-representable whenever Ly is nonnegative on
P(K)d, in other words, if the mentioned conic program is weakly feasible (L in-
tersects P(K)d but does not intersect its interior). In this case there exists an
atomic measure µ =

∑s
i=1 ciδxi

whose moment sequence of degree ≤ d is y: such
a measure is a (real) solution of a highly structured polynomial system of type
multivariate Vandermonde. An open question from a computational point of view
is how to compute efficiently such a measure, that represents a certificate of rep-
resentability for the input vector: the user can compute again the moments of
the measure by simply evaluating the integral and check that the input vector
coincides with these moments.

On the other side of the coin, y is not moment-representable exactly when the
conic program L∩P(K)d is strongly feasible: in algebraic terms, when there exists
a polynomial p ∈P(K)d, (strictly) positive on K, in L, the kernel of Ly. In our
contribution we study algorithmic aspects of the computation of irrepresentability
algebraic certificates when y is not moment-representable. We show the existence
of explicitly strictly positive polynomials in the kernel of the Riesz functional.
These have the form

p = 1 + σ0 + σ1g1 + σ2g2 + · · ·+ σkgk ∈ 1 +Q(g)

where Q(g) is the quadratic module associated with the description g, and p
satisfies Ly(p) = 0. One example which has been discussed during the talk at
MFO is the following: fix n = 2 and d = 6, and let g be the vector y ∈ R28 given
by

y00 = 32 y22 = 30

y20 = y02 = 34 y60 = y06 = 128

y40 = y04 = 43 y42 = y24 = 28.

and all the entries are zeroes. A polynomial certifying that y is not a moment
vector in the unit ball K = {a ∈ R2 : 1− a21 − a22 ≥ 0} is

p = 1 +
8

9
(1− x2 − y2).

Remark that p certifies that the subvector (y00, y10, y01, y20, y11, y02) is already not
moment-representable. After the talk, Greg Blekherman suggested an easier way
of certifying that the previous vector is not moment-representable by means of
binomial inequalities [3].
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Our contribution shows also that there exist rational certificates of unrepre-
sentability: when y is over Q, the polynomial p can be chosen with rational co-
efficients. However, by the result of C. Scheiderer [9], even if p is in Q[x], it is
possible that any of its positivity certificates for the membership p ∈ 1 +Q(g) are
not rational. It is an open question whether such phenomenon can actually occur
in this context.
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Matrix Polynomials, Symmetric Polynomials and Undecidability

Grigoriy Blekherman

(joint work with J. Acevedo, S. Debus, C. Riener)

Our main object of interest is the so-called Vandermonde map which appears natu-
rally in several contexts and provides connections between different mathematical
domains. We begin with the following motivating problem: suppose that we are
given a polynomial expression in traces of powers of symmetric matrices, such as

2 tr(A2) tr(B6)− tr(A4) tr(B4),

is there an algorithm to decide whether this expression is nonnegative for all sym-
metric matrices A, B of all sizes? What happens if we replace trace by normalized
trace t̃r(A) = trA

n , where n is the size of the matrix?
One of our main results is that the first (unnormalized) problem is undecidable,

while the second one is decidable. The key to the hardness of the unnormalized
problem is the fascinating geometry of the image of the probability simplex under
the Vandermonde map. Some geometric properties of this set were observed in
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different areas of mathematics making it an important and beautiful object to
study.

For any n × n matrix A recall that tr(Ad) = λd1 + · · · + λdn, where λi are the
eigenvalues of A. We use pd to denote the d-th power sum polynomial:

pd(x) = xd1 + · · ·+ xdn.

We see that testing whether 2 tr(A2) tr(B6) − tr(A4) tr(B4) is nonnegative on all
symmetric matrices of all sizes is equivalent to understanding whether 2p2(x)p6(y)−
p4(x)p4(y) is nonnegative on all real vectors x and y of any dimension. Define the
d-th Vandermonde map νn,d by sending a point in Rn to its image under the first
d power sums:

νn,d(x) = (p1(x), . . . , pd(x)).

Let ∆n−1 be the probability simplex in Rn: ∆n−1 consists of all vectors with
nonnegative coordinates with the sum of coordinates equal to 1. We call the
image νn,d(∆n−1) of the probability simplex under the Vandermonde map the
(n, d)-Vandermonde cell and denote it by Πn,d. Observe that the first coordinate
of Πn,d is identically 1, and so we may project it out, and see Πn,d as the subset
of Rd−1, which is the image of ∆n−1 under (p2, . . . , pd).

Since 2p2(x)p6(y) − p4(x)p4(y) is an even homogeneous polynomial, deciding
whether it is nonnegative for all x, y ∈ Rn is equivalent to deciding whether the
polynomial 2a1b3−a2b2 is nonnegative on the product Πn,3×Πn,3, where ai = pi(x)
and bi = pi(y).

We reach two important conclusions: first, we are interested in nonnegativity
of polynomials on (products of) Vandermonde cells Πn,d, and second, to consider
matrices of all sizes we need to take the limit of the Vandermonde cell Πn,d as n
goes to infinity.

The Vandermonde cell Πn,d is a compact subset of Rd−1, and our first main
result is that Πn,d has the combinatorial structure of a cyclic polytope, verifying
an experimental observation of [8].

For a fixed d the sets Πn,d form an increasing sequence of sets in Rd−1. Let Πd be
the closure of the union of Πn,d. We show that the set Πd has the combinatorial
structure of an infinite cyclic polytope, and that Πd is not semialgebraic for all
d ≥ 3. Reduction needed to show undecidability of the unnormalized trace problem
is borrowed from the one used by Hatami and Norine in [6] in the context of
homomorphism density inequalities in graph theory. The set used by Hatami and
Norine is essentially a linear transformation of the set Π3, and the reduction is
based on the geometry of Π3. In particular this shows that deciding validity of
matrix power trace inequalities is already undecidable if we only use second, fourth
and sixth matrix powers, and we need at most 11 matrix variables for the problem
to become undecidable. We note that the geometry of Π3 was also used directly
by Blekherman, Raymond and Wei [2] to show undecidability of homomorphism
density inequalities with arbitrary edge weights.

We also consider the image of ∆n−1 under elementary symmetric polynomials.
Our previous results on the boundary structure transfer over by using Newton’s
identities. We write En,d := (e1, . . . , ed)(∆n−1) and denote the limit image by Ed.
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We show that the convex hull of En,d is an actual cyclic polytope. This helps us
reprove and slightly generalize the result of Choi, Lam and Reznick [5] on test sets
for nonnegativity of even symmetric sextics. We note that the convex hull result
can be traced to the work of Bollobás in extremal graph theory [4].

Testing nonnegativity of univariate normalized trace polynomials was consid-
ered by Klep, Pascoe and Volčič [7] where the authors proved a Positivstellensatz in
the univariate case. Geometrically, such normalized trace polynomials correspond
to power means. Nonnegativity of polynomials in power means was investigated
by Blekherman and Riener in degree 4 [3] and more generally by Acevedo and
Blekherman [1]. We briefly illustrate the connection with the Vandermonde map.
Decidability of the normalized trace problem follows quickly from the work in [3].
As before we can consider the image of the normalized Vandermonde map, and
fixing d take the (closure of the) limit as n goes to infinity. As explained in [1] the
geometry of the limit is drastically different. For instance, the limit of the nor-
malized Vandermonde map of the unit simplex ∆n−1 corresponds to the set of the
first d moments of a probability measure supported on R≥0, and it is well-known
that this set can be described by linear matrix inequalities [9]. In particular, the
limit is semialgebraic for all d.
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