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Introduction by the Organizers

The workshop New Directions in Real Algebraic Geometry, organised by Saugata
Basu (West Lafayette), Mario Kummer (Dresden), Tim Netzer (Innsbruck) and
Cynthia Vinzant (Seattle) was well attended with 47 in-person and six virtual
participants. The 28 talks covered a wide range of topics in real algebraic geometry
and its applications. Two of these talks were given by virtual participants, the
others by in-person participants. In the following we describe the major lines of
investigation emphasized during the workshop.

1. Algebraic geometry and real algebraic geometry

In several talks it has become apparent that prominent concepts and methods of
modern algebraic geometry can be profitably applied to classical questions in real
algebraic geometry. For instance, Olivier Benoist presented new results on sum
of squares representations of nonnegative real-analytic functions where the crucial
step is to compute the cohomological dimension of the field of meromorphic func-
tions on certain subsets of normal Stein spaces. Christoph Schulze talked about
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nonreduced projective schemes that are naturally associated to certain faces of the
cone of nonnegative polynomials. Lorenzo Baldi reported on a characterization of
the extreme rays of the cone of nonnegative forms on elliptic normal curves in
terms of their group law and the real geometry of their 2-torsion points. Matilde
Manzaroli gave a bound for the real Betti numbers of a smooth fiber of a real
semistable degeneration near a certain special fiber X0 in terms of the complex
geometry of X0. Rainer Sinn explained the role played by real cubic surfaces and
the Schläfli double six in computer vision.

2. Computability and Complexity

Tools from real algebraic geometry are very well suited for studying computability
and complexity questions. For example Annie Raymond spoke about the unde-
cidability of the general problem of deciding algebraic inequalities between graph
homomorphism densities. Evelyne Hubert spoke about a new approach for op-
timizing symmetric trigometric functions over Rn and applications to the explo-
ration of the spectral bound on the chromatic numbers of set avoiding graphs.
Peter Bürgisser spoke about the real zeros of random structured polynomial and
in particular his proof of a probabilistic version of the real tau conjecture. Hamza
Fawzi introduced the notion of k-local Hamiltonian systems and described how to
compute their ground energy via a large convex optimization problem based on
entropy constraints.

3. Convexity

The connection of real algebraic geometry to convexity and optimization has
proven very productive in recent years. The conference also included some talks on
this topic. Chiara Meroni explained partial progress on two open problems from
convexity theory. One is asking for a classification of zonoids, the other is trying
to describe directional convex hulls as semialgebraic sets. Julian Vill spoke about
fiber bodies of projected convex sets, and in particular about those of Gram spec-
trahedra of binary sextics and ternary quartics, in which case the facial structure
of the fiber bodies can be determined rather explicitly.

4. Quantum

Recent developments in non-commutative semialgebraic geometry have revealed
close connections to quantum information theory and operator algebra. Several
talks at the conference covered such topics. Bill Helton explained how non-
commutative Positiv- and Nullstellensätze can help finding optimal strategies for
quantum non-local games. Ion Nechita spoke about minimal and maximal op-
erator systems, and how they help analyzing compatibility of quantum measure-
ments, in particular the amount of noise one has to add to achieve compatibility.
Eli Shamovich reported on the Arveson-Douglas conjecture, related to the com-
pactness of certain commutators of operators. He explained how methods from
algebraic geometry can be used to examine the problem. Mirte van der Eyden gave
an overview about possible generalizations of abstract operator systems, allowing
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to apply some of the most important results in the area to problems that did not
fit into the framework so far.

5. Geometry of polynomials

Wednesday evening, there were two short talks given remotely. Lior Alon gave a
talk introducing the Kurasov-Sarnak construction of Fourier quasicrystals from
stable polynomials and the result that all Fourier quasicrystals (with integer
weights) can be acheived via this construction. The proof and main objects were
closely related with torus actions on varieties and amoebas. This was the sub-
ject of the other evening talk by Jan Draisma, who described an algorithm for
computing the dimension of the amoeba of a linear space.

On Thursday, Pavel Kurasov gave an overview of the connections between stable
polynomials, Fourier quasicrystals, and metric graphs, expanding on the talk of
Alon. Greg Knese told us about the possible local structure of singularities of
stable hypersurfaces and a connection to the set of rational functions bounded on
some domain in Cd. Another topic of discussion was Lorentzian and log-concave
polynomials, which generalize stability. Petter Brändén gave an introduction to
Lorentzian polynomials, an extension of this notion to cones other than the positive
orthant, and several interesting implications for discrete log-concavity in sequences
associated to matroids. Nima Anari introduced a different generalization called
fractional log-concavity and its implications for sampling algorithms on various
delta-matroids.

6. Symmetry

Several talks focused on the study of symmetries in real algebraic geometry.
Phillippe Moustrou discussed ideals of polynomials closed under the action of two
types of groups: the symmetric group acting by permutations of variables, and
the hyperoctahedral group acting by permutation of variables and sign changes.
Cordian Riener spoke about the nice properties of the Vandermonde mapping and
certain undecidability results arising from the limits of these mappings. Alison
Rosenblum spoke about the geometry and topology of Vandermonde variety in
the case of Coxeter groups of type Bn. Kevin Shu spoke about hyperbolic polyno-
mials and maps preserving hyperbolicity, and in particular how symmetry in the
polynomials allows to connect these two notions.

7. Miscellaneous

Antonio Lerario presented results on the optimal transport problem between al-
gebraic hypersurfaces in complex projective space and explained how to rephrase
this as a Riemannian geodesic problem. Dmitrii Pavlov talked about the Zariski
closure of Gibbs manifolds, i.e., images of linear spaces of symmetric matrices un-
der the exponential map and explained connections to optimization. Jean-Yves
Welschinger spoke about handle decompositions on finite simplicial complexes.
These decompositions extend the classical shellings of boundaries of convex poly-
topes.
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Abstracts

Sums of few squares in real-analytic geometry

Olivier Benoist

It was discovered by Hilbert [8] that a positive semidefinite f ∈ R[X1, . . . , Xn]
cannot in general be written as a sum of squares of polynomials. Hilbert’s 17th
problem, solved by Emil Artin [2] in 1927, shows that it is however always a sum
of squares of rational functions.

Theorem 1 (Artin). Any positive semidefinite f ∈ R[X1, . . . , Xn] is a sum of
squares in R(X1, . . . , Xn).

Pfister [11] discovered in 1967 a quantitative improvement of Artin’s theorem
controlling the number of squares required.

Theorem 2 (Pfister). Any positive semidefinite f ∈ R[X1, . . . , Xn] is a sum of 2n

squares in R(X1, . . . , Xn).

In real-analytic geometry, where one considers real-analytic functions (locally
given by convergent power series) instead of polynomials, even the analogue of
Artin’s theorem is still an open problem.

Open question 1. Are all positive semidefinite real-analytic functions f : Rn →
R sums of squares of real-analytic meromorphic functions?

This question, or variants where one considers real-analytic functions defined
on more general normal real-analytic spaces (of dimension n), is known to have a
positive answer if n ≤ 2 [9, 1], or under restrictive hypotheses, such as appropri-
ate compactness hypotheses [10]. Our goal in this talk is to obtain quantitative
statements à la Pfister in this context, under such a compactness hypothesis.

Theorem 3. LetM be a normal real-analytic space of dimension n and let K ⊂M
be a connected compact set. Then any positive semidefinite f ∈ O(K) is a sum
of 2n squares in M(K).

In the above statement, we let O(K) be the ring of real-analytic functions
defined in a (non specified) open neighborhood of K, and we define M(K) to be
its field of fractions. An element f ∈ O(K) is said to be positive semidefinite if
it takes nonnegative values in some neighborhood of K. The following immediate
corollary is worth spelling out.

Corollary 4. Let M be a compact real-analytic manifold of dimension n, and let
f :M → R be a positive semidefinite real-analytic function. Then f is a sum of 2n

squares of real-analytic meromorphic functions.

Both Theorem 3 and Corollary 4 are entirely new if n ≥ 3.
In keeping with the motto that real geometry is complex geometry done equiv-

ariantly with respect to the action of the group G := Gal(C/R) ≃ Z/2 generated
by complex conjugation, it is important for the proof of Theorem 3 to work in
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the complex-analytic context. The natural setting is that of Stein spaces which
are the complex-analytic analogues of affine varieties and of their Stein compact
subsets, which are those admitting a basis of Stein neighborhoods.

Theorem 5. Let X be a normal Stein space of dimension n. Let G act on X
through an antiholomorphic involution. Let K ⊂ X be a connected G-invariant
Stein compact subset. Then any f ∈ O(K)G which takes nonnegative values on a
neighborhood of KG in XG is a sum of 2n squares in M(K)G.

Here is a typical example of application of Theorem 5. ChooseX = Cn endowed
with the involution z 7→ z̄, and K ⊂ X to be the closed unit ball. Then O(K) is
the set of power series

∑
I aIz

I in z1, . . . , zn with complex coefficients that have
radius of convergence> 1 (i.e. that converge in a neighborhood ofK), and O(K)G

is the subring of those that have real coefficients. Theorem 5 then states that any
f ∈ O(K)G that takes nonnegative values in a neighborhood of the closed unit
ball in Rn is a sum of 2n squares in the fraction field M(K)G of O(K)G.

Theorem 3 follows from Theorem 5 thanks to the works of Cartan, Grauert and
Tognoli establishing the existence of Stein complexifications of normal real-analytic
spaces (see [4]).

Over fields, the Milnor conjectures proven by Voevodsky [12] provide a bridge
between quadratic forms and Galois cohomology. In particular, they imply that the
scalars represented by certain quadratic forms (the multiplicative forms of Pfister,
among which the sums of 2n squares quadratic form) are completely controlled by
the vanishing of associated Galois cohomology classes. As a consequence, vanish-
ing theorems in Galois cohomology imply representations as sums of few squares
results. This technique allows us to reduce Theorem 5 to the following statement,
which is the main theorem of the talk.

Theorem 6. Let X be a normal Stein space of dimension n and let K ⊂ X
be a connected compact Stein subset. Then the field M(K) has cohomological
dimension n.

The conclusion of Theorem 6 means that the cohomology of the absolute Galois
group of M(K) with value in any finite Galois-module vanishes in degree > n.
The strategy of its proof is to exploit the fact, due to Hamm [6] and based on
Morse theory, that a Stein space of dimension n has the homotopy type of a
finite simplicial complex of dimension n, and hence that its singular cohomology
vanishes in degree > n. To conclude, it remains to prove a theorem comparing
étale cohomology (which generalizes Galois cohomology) and singular cohomology.

In algebraic geometry, such a comparison theorem is due to Mike Artin (see [5]).
Its proofs are based on fibration arguments (to somehow reduce to the case of
curves). Unfortunately, we do not know how to implement such fibrations argu-
ments in the setting of Stein geometry, and one has to devise a new strategy of
proof. To this effect, we rely in an essential way on Grauert’s bump method as
developed by Henkin and Leiterer ([7], see also [3]).
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Undecidability of polynomial inequalities in weighted graph
homomorphism densities

Annie Raymond

(joint work with Grigoriy Blekherman, Fan Wei)

Given two simple graphs G and H , let hom(H,G) denote the number of homo-
morphisms from H to G, which is the set of maps from V (H) to V (G) that send

edges of H to edges of G. Furthermore, let t(H,G) := hom(H,G)
|V (G)||V (H)| denote the

homomorphism density of H in G, i.e., the probability that a random map from
V (H) to V (G) is a homomorphism. One can extend the usual definition of graph
homomorphisms to include target graphs G with edge weights w : E(G) → R,
denoted as Gw:

hom(H,Gw) :=
∑

ϕ:V (H)→V (Gw):
ϕ is a homomorphism

∏

{i,j}∈E(H)

wϕ(i),ϕ(j).

We can define t(H,Gw) := hom(H,Gw)
|V (Gw)||V (H)| analogously. If the edge weights w of

Gw only take values in {0, 1}, we recover the usual definitions of homomorphism
numbers and densities.

One of the central topics in extremal combinatorics is the study of algebraic
inequalities between homomorphism densities. For example, the famous Sidorenko
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conjecture [Sid93] states that t(H,G)− t(K2, G)
|E(H)| ≥ 0 for any bipartite graph

H and any graph G. Since t(Hi, Gw) · t(Hj , Gw) = t(HiHj , Gw) where HiHj is
the disjoint union of Hi, Hj , any polynomial inequality can be seen as a linear
inequality. Formally, define a quantum graph f to be a finite formal linear combi-
nation of graphs

∑
1≤i≤k ciHi where k ∈ N+, ci ∈ R, and Hi’s are finite graphs

[FLS07]. Many extremal combinatorics questions can be reformulated as asking
whether

t(f,Gw) :=
∑

cit(Hi, Gw) ≥ 0

is valid for all graphsGw for certain classes of edge weightsw, sometimes including
negative real weights, for example, in the theory of Ramsey multiplicity or localness
of graph inequalities (e.g., [Lov, Lov11, KVW, FW17, KNN+22, Lov12]).

In 2011, Hatami and Norin [HN11] proved a fundamental result that it is un-
decidable to determine the validity of polynomial inequalities in homomorphism
densities for unweighted graphs. We show undecidability for the corresponding
problem for weighted homomorphism densities and numbers. This provides nega-
tive answers to questions 17 and 21 of Lovász ([Lov]) which asked to find computa-
tionally effective certificates for the validity of homomorphism density inequalities
in weighted homomorphism densities.

Proof Idea and Challenges: We first sketch the idea of Ioannidis and Ramakr-
ishnan’s short proof [IR95] of the undecidability of inequalities between homo-
morphism numbers hom(Hi, G) as a motivation for the proof for homomorphism
densities. As in [HN11], this proof is also deduced from Matiyasevich’s solution
[Mat70] to Hilbert’s tenth problem: Given a positive integer k and a polynomial
p(x1, . . . , xk) with integer coefficients, the problem of determining whether there
exist x1, . . . , xk ∈ Z such that p(x1, . . . , xk) < 0 is undecidable.

By changing xi to −xi when necessary, it is therefore also undecidable to deter-
mine whether a polynomial with integer coefficients is always nonnegative for xi’s
taking values in N. Thus it suffices to show that for any polynomial with integer
coefficients p(x1, . . . , xk), there is a quantum graph f such that p(x1, . . . , xk) ≥ 0
for all xi ∈ N if and only if hom(f,G) ≥ 0 for all G. Let H1, . . . , Hk be finite con-
nected graphs with no homomorphisms from one to another and such that each
Hi has no non-trivial homomorphism to itself. It is not hard to show that such
graphs exist. Since hom(Hi, G) hom(Hj , G) = hom(HiHj , G), there is a quantum
graph f such that for any graph G,

p(hom(H1, G), . . . , hom(Hk, G)) = hom(f,G).

Crucially, since hom(Hi, G) ∈ N, we have that p ≥ 0 for any x1, . . . , xk ∈ N

implies that hom(f,G) ≥ 0 for all G. On the other hand, for each k-tuple of
values a1, . . . , ak ∈ N, there is a graph G such that t(Hi, G) = ai, for example by
letting G be the disjoint union of ai copies of Hi.

One challenge in generalizing this simple proof to show the undecidability of
homomorphism density inequalities is that t(Hi, G) is not necessarily an integer. In
[HN11], Hatami and Norin used a result of Bollobás [Bol76] that the convex hull of
the set of all possible pairs of edge-triangle densities, i.e., pairs (t(K2, G), t(K3, G))
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for unweighted graphs G, is the convex hull of points (1, 1) and
(
n−1
n , (n−2)(n−1)

n2

)

for n ∈ N. These extreme points thus provide the needed integer points. This
integrality feature alone does not lead to undecidability, since nonnegativity of
univariate polynomials on integers is a decidable problem.

Given a polynomial p(x1, . . . , xk) in k variables, starting from a particular base
graph F , Hatami and Norin use a delicate and intricate construction of a quantum
graph f based on different variations of blow-ups of F . As in the proof of the
undecidability of homomorphism number inequalities, one needs k “independent”
copies of the convex hull to “plug in” x1, . . . , xk. Hatami and Norin achieve this
by measuring some conditional graph densities, conditioned on the set of graph
homomorphisms φ : V (F ) → V (G). They construct the quantum graph f so that
for any graph G,

t(f,G) =
∑

φ

cφp
∗(x1(φ), y1(φ), . . . , xk(φ), yk(φ))

where cφ’s are constants, p
∗ is a polynomial whose nonnegativity is closely related

to that of p, and xi(φ) and yi(φ)’s are closely related to the density of K2 and
K3 in some subgraphs Gi(φ) of G depending on φ. When p ≥ 0 for integer-valued
variables, they show that p∗ ≥ 0 by the integrality feature of the aforementioned
convex hull and the fact that each individual φ enables k copies of this convex
hull. A crucial fact is that since the weights w of Gw are nonnegative (in fact,
they are in {0, 1}), the constants cφ are always nonnegative. These two facts imply
t(f,G) ≥ 0 for any G.

There are several difficulties in extending this approach to more arbitrary
weights w in Gw. First, much less is known about possible tuples of weighted
graph densities. There are certainly fewer valid inequalities when negative weights
are allowed. For instance, it is still an open question to characterize all graphs H
such that t(H,Gw) ≥ 0 for all weighted graphs Gw [Lov]. If we try to record again
all pairs of edge-triangle densities (t(K2, Gw), t(K3, Gw)), then any point in R2 is
achievable. Second, the construction that Hatami and Norin used heavily relies
on cφ being nonnegative, which is not the case in general for weighted graphs.
Lastly, the process to obtain multiple copies of the convex hull with the integrality
feature relies on individual φ’s, and cannot be used in our setting by the previous
argument.

Our proof strategy is to show that the convex hull of ratios of densities of some
carefully chosen graphs has the integrality feature even for weighted graphs. We
then directly realize multiple copies of the convex hull by using an explicit family
of graphs instead of going through a sum depending on φ. Remarkably, the convex
hull is the same regardless of the weights we use—including unweighted graphs.
Another advantage of our proof technique is that we associate each polynomial to
an explicit quantum graph.
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Positivity and its Non-Reduced Structures

Christoph Schulze

Non-negativity of polynomials is a key issue in Real Algebraic Geometry. A main
objective is the formulation of Positivstellensätze, which are algebraic certificates
of positivity. In contrast, though convexity always played a role in this topic,
the literature on the convex structure of the set of non-negative polynomials is
rather small. The first results towards classifications of extreme rays of cones of
non-negative forms just appeared in 2012 (by Blekherman et. al., see [1]) and
2018 (by Kunert and Scheiderer, see [3]) and a complete classification of the faces
of the cone of non-negative ternary quartics was given 2014 in Kunert’s thesis in
[2]. The latter work makes use of cones of locally non-negative polynomials, which
were studied in more detail in the affine setting (i.e. without restriction on the
degree) in the author’s thesis in [4].

Let us introduce some notation for the cones already mentioned. Let d, n ∈ N.
We denote by P2d the cone of globally non-negative forms inside the forms R[X]2d
of degree 2d in n+1 variables X = (X0, . . . , Xn). Similarly, given any P ∈ Pn(R),
we denote by PLoc

2d (P ) the set of forms that are non-negative on some Euclidean
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neighborhood of P in Pn(R). Further, there are affine versions: the cone of globally
non-negative polynomials (of any degree) P inside the polynomial ring R[x] in
n variables x = (x1, . . . , xn) and the cones of locally non-negative polynomials
PLoc(P ) with P ∈ Rn.

Given any (not necessarily exposed) face F of P2d, we consider elements f in
the relative interior of F . These are exactly the elements f such that the smallest
face of P2d containing f is F . It is an easy observation that these elements share
the same real zero set in Pn(R). However, all these zeros have to be singularities
as we consider non-negative elements. Thus, the question arises if these elements
do also share a common non-reduced structure. This is in fact the case as there
is an saturated homogeneous ideal J =

⊕
d′∈N0

Jd′ of R[X] that is defined from
f “in a geometrical way”, independent of the special choice of f and we have
J2d = span(F ). Given d′ ∈ N0, its homogeneous part of degree d′ is defined by

Jd′ = {g ∈ R[X]d′ | ∃ ǫ > 0: f ≥ ǫ · |g| on Sn}.

We call ideals of R[X] that arise in this way positivity ideals. It is obvious that
elements of the form (X2

0 + · · · +X2
n)
k · f with k ∈ N, and hence also the corre-

sponding faces J ∩ P2(d+k), will give rise to the same ideal J as f . For d′ < d,
J ∩ P2d′ is also a face of P2d′ , but it may lead to a smaller associated ideal. So
there is some d0 ∈ N0 such that just for d′ ≥ d0, there is a (unique) face of P2d′

that induces J .
In the affine setting, the situation is different. We are working in an infinite-

dimensional vector space and there may be faces without any points in the relative
algebraic interior. However, it turns out that we obtain similar properties as in
the projective setting if we restrict ourselves to the consideration of faces whose
linear span is an ideal. We also call them ideal faces. Then a proper replacement
of the relative interior of an ideal face F are the elements f ∈ P such that F is
the smallest face containing f · P . The ideal I arising from an ideal face is just its
linear span and there is also a similar description as in the projective setting. It is

I = {g ∈ R[x] | ∃h ∈ P : h · f ≥ |g| on Rn}.

In the affine setting, we use the same notion of positivity ideals. Clearly, we have
I ∩ P = F , so there is a unique face giving rise to a positivity ideal.

The constructions from above are well-behaved. Given f ∈ P2d, we may con-
sider the closed subscheme of Pn

R
corresponding to the positivity ideal J that arises

from f . Then the restriction of this scheme to an affine chart An
R
coincides with the

closed subscheme of An
R
corresponding to the ideal I that arises from the respec-

tive dehomogenization of f . This dehomogenization procedure does also respect
the lattice structure of these cones and an additional multiplicative structure that
may be defined in a canonical manner. Further, one can also define such ideals
for faces of PLoc

2d (P ) and PLoc(P ). There is a well-defined transfer from a face of
P2d or P to a corresponding face of PLoc

2d (P ) or PLoc(P ) and again, this commutes
with dehomogenization if P ∈ Rn ⊆ Pn(R).

We will close this abstract with a generalization that goes beyond the study
of these cones. In the definition of J and I, it is possible to replace f by any
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non-negative function on Sn or Rn and one obtains again a (in the projective case
saturated homogeneous) ideal. This leads to a larger class of ideals, but one can
show that this class consists exactly of the square roots of positivity ideals. Here,
the square root of a subset of the polynomials ring consists of all elements whose
square is in the given set. Especially, square roots of positivity ideals are ideals.
We call such ideals absolute ideals.
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Fiber bodies of spectrahedra

Julian Vill

In [4] Mathis and Meroni study the fiber body of a compact convex set. Informally,
this means the following. Choose a convex, compact set K ⊂ Rn+m and consider
the projection π : Rn+m → Rn to the first n components. Over each point in the
image we have a convex fiber in K. The fiber body of K is the average over all
fibers. More precisely, any point y in the fiber body is given by

y =

∫

π(K)

γ(x) dx

where γ : π(K) → Rm is a measurable section. The fiber body ΣπK is itself a
compact convex set in Rm. It is the continuous analogue of the Minkowski sum of
convex sets. One may also think about a limit object of Minkowski sums when the
number of summands tends to infinity. In [4] the fiber body was then studied in
several special cases where the support function of the convex body K is known.

Before that the notion of fiber polytopes was introduced and studied by Billera
and Sturmfels [1]. These possess beautiful and well-studied combinatorics which
led to numerous constructions of polytopes with prescribed combinatorial struc-
ture, for example in [10]. Moreover, fiber polytopes are a generalisation of sec-
ondary polytopes which are studied in the context of linear programming in [7].
Their combinatoric structure gives rise to certain basis of the optimisation prob-
lem.

We study the fiber body of families of spectrahedra. We use a different approach
as we do not in general know the support function. The goal is to understand the
facial structure of the fiber body given we know the facial structure of the fibers.
This can also be seen as a generalization from linear programming to semidefinite
programming. However, it is not clear what the meaning of the fiber body is in
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this situation. It would be interesting to study the fiber body of spectrahedra from
this point of view.

We then apply the general setup to study two special families of spectrahedra,
namely Gram spectrahedra of binary sextics and of ternary quartics. These are
examples in dimensions 3 and 6 respectively.

Gram spectrahedra have a close connection to sum of squares representations
of polynomials and have been introduced in [2]. The Gram spectrahedron of a
fixed homogeneous polynomial parametrizes its sum of squares representations up
to orthogonal equivalence. Afterward, especially the structure of their extreme
points was investigated, for example in [3] and [5]. In [6] and [9] the complete
facial structure of Gram spectrahedra was studied in the case of ternary quartics
and binary forms. As we do not have a description of the support function of
Gram spectrahedra, we make extensive use of these results in order to describe
the facial structure of the fiber body.

In both cases we were very surprised by the remaining facial structure on the
fiber bodies. In the case of binary sextics there is exactly one extreme point on
the boundary of the fiber body with a 3-dimensional normal cone ([8, Thm 5.2]).
A general positive semidefinite (psd) binary sextic has exactly four such points
corresponding to length two sum of squares representations. In the case of ternary
quartics the structure of the boundary changes rather drastically. On the one hand,
every face has a 1-dimensional normal cone even though the Gram spectrahedron of
a general psd ternary quartic has normal cones of dimensions 1, 3, 6. On the other
hand, the fiber body has a 2-dimensional family of 3-dimensional faces whereas
a general Gram spectrahedron has no faces of dimension larger than 2 ([8, Thm
6.5]).

Informally, we expect normal cones of the fiber body to be small compared to
the normal cones of the fibers, and faces to be larger. This turned out to be true
in the cases studied. It would be interesting to know if this also holds for different
families of spectrahedra and if these fiber bodies carry information relevant to
semidefinite programming.
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Real zeros of random structured polynomials

Peter Bürgisser

Seminal work by Khovanskii [4, 5] showed that the number of nondegenerate real
zeros of a fewnomial system in n variables is bounded by n and its number t of
monomials. However, Khovanskii’s bound is exponential in t, while many people
believe that there should be an upper bound, which is polynomial in t, see [7].
We recently proved that [3] “generically” this is indeed the case: more specifically,
the expected number of real zeros of random fewnomial systems with prescribed
set of exponent vectors can be neatly bounded (similarly as for Kushnirenko’s
conjecture).

When focusing on structured polynomials, even the univariate case is challeng-
ing. Koiran’s real tau conjecture [6] for the number of real zeros of a sum of
products of sparse polynomials implies the separation of the complexity classes
VP and VNP. Proving such separation is the major open question in algebraic
complexity theory [2]. Recently, we proved (with I. Briquel) that random uni-
variate polynomials typically have as few real zeros as predicted by the real tau
conjecture [1]. The randomness refers here to formulas with fixed combinatorial
structure and independent standard Gaussian coefficients.

The proofs rely on tools from the theory of random fields (Kac-Rice formula [8])
and integral geometry.
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[5] Askold G. Khovanskĭı. Fewnomials, volume 88 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, RI, 1991.

[6] Pascal Koiran. Shallow circuits with high-powered inputs. Proc. Second Symposium on In-
novations in Computer Science, ICS, 2011.
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Optimal Transpot between algebraic hypersurfaces

Antonio Lerario

(joint work with Paolo Antonini, Fabio Cavalletti)

What is the optimal way to deform a projective hypersurface into another one?
In this paper we will answer this question adopting the point of view of measure
theory, introducing the optimal transport problem between complex algebraic pro-
jective hypersurfaces.

First, a natural topological embedding of the space of hypersurfaces of a given
degree into the space of measures on the projective space is constructed. Then, the
optimal transport problem between hypersurfaces is defined through a constrained
dynamical formulation, minimizing the energy of absolutely continuous curves
which lie on the image of this embedding. In this way an inner Wasserstein distance
on the projective space of homogeneous polynomials is introduced.

This distance is complete and geodesic: geodesics corresponds to optimal defor-
mations of one algebraic hypersurface into another one. Outside the discriminant
this distance is induced by a smooth Riemannian metric, which is the real part of
an explicit Hermitian structure. The topology induced by the inner Wasserstein
distance is finer than the Fubini–Study one.

To prove these results we develop new techniques, which combine complex and
symplectic geometry with optimal transport, and which we expect to be relevant
on their own.

We discuss applications on the regularity of the zeroes of a family of multivariate
polynomials and on the condition number of polynomial systems solving.

Two convex conjectures for different flavours

Chiara Meroni

(joint work with Fulvio Gesmundo and with Bogdan Rait, ă and Bernd Sturmfels)

We present two conjectures related to real algebraic geometry, with connections to
certain notions of convexity. The first conjecture was originally stated in a joint
work with Fulvio Gesmundo [5]. This work is motivated by the zonoid problem,
which we now introduce. Given z1, . . . , zN ∈ Rd, the Minkowski sum

Z =

N∑

i=1

[−zi, zi] ⊂ Rd

is called zonotope, and it is a special type of polytope. A zonoid is a limit, in
the Hausdorff topology, of zonotopes. According to this definition, zonotopes, and
by extension zonoids, are centrally symmetric convex bodies, namely Z = −Z.
All centrally symmetric convex bodies in R2 are zonoids; in Rd for d > 2 the set
of zonoids is strictly contained in the set of centrally symmetric convex bodies.
The zonoid problem, introduced in [3], but already appearing in [2], consists in
determining whether a given centrally symmetric convex body is a zonoid. More
precisely, assume to have a polynomial p ∈ R[x1, . . . , xd] such that K = {x ∈
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Rd | p(x) ≥ 0} is a centrally symmetric convex body. Can we decide if K is a
zonoid? This point of view on the zonoid problem has been investigated in [9], in
the context of o-minimal structures. We turn this question into an algebraic geom-
etry problem by studying the properties of the variety ∂aK = {x ∈ Rd | p(x) = 0},
also known as algebraic boundary of K. The aim is to gain an understanding of the
necessary properties that a polynomial p must satisfy in order for the associated
K to be a zonoid. We focus on a particular family of zonoids, called discotopes [5,
Definition 2.2].

Definition 1. Let D1, . . . , DN ⊂ Rd be discs, i.e., linear images of the standard
unit ball of any dimension. The associated discotope is their Minkowski sum

D =

N∑

i=1

Di.

We denote by E the closure in the Zariski topology of the set of exposed points of
D. This is by definition an algebraic variety, contained in the algebraic boundary of
D, and we are interested in characterizing its dimension and degree. In particular,
since we are interested in exposed points, we might restrict to the case in which

dimDi ≥ 2 for all i = 1, . . . , N . We define the quantity (⋆) =
∑N

i=1(dimDi − 1)
which captures the sum of the dimensions of the boundaries of the discs. Then
the following holds [5, Theorems 4.3, 6.1].

Theorem 2. Let D be a generic discotope with dimDi ≥ 2 for all i = 1, . . . , N .
If (⋆) ≤ d − 1, then E is an irreducible variety with dim E = (⋆) and deg E = 2N .
If (⋆) > d−1, then dim E = d−1. In particular, if dimDi = 2 for all i = 1, . . . , N

then E is an irreducible variety with deg E ≤ 2N ·
(
N
d−1

)
.

From the theorem we get no information about irreducibility and degree of E in
the case (⋆) > d − 1 when discs of dimension higher than 2 are involved. The
genericity assumption concerns the linear spans of the discs, which we assume to
be as transversal as possible. The following is [5, Conjecture 8.2].

Conjecture 1. Let D be a generic discotope with dimDi ≥ 2 for all i = 1, . . . , N .
Then, E is irreducible.

The proof of the first part of the Theorem 2 relies on the construction of geometric
joins of varieties. The second part, when (⋆)>d−1, is based on an interpretation
of E as a determinantal variety. Namely, consider the addition map Σ : ∂D1 ×
. . .× ∂DN → Rd ⊂ Cd. It can be showed that Σ−1(E) is contained in the critical
locus of Σ, and they have the same dimension. Proving that crit Σ is irreducible
would imply that our variety E is irreducible as well. The critical locus can be seen
as the determinantal variety of maximal minors of a matrix with linear entries of
a specific form. Such a matrix is not generic in the sense of Bertini’s theorem,
nevertheless in the case of 2-dimensional discs and in all other explicit examples
that we computed, it defines an irreducible variety.

We move now to the second conjecture, which is a result of many conversations
with Bogdan Rait, ă and Bernd Sturmfels. The motivation for the problem that we



New Directions in Real Algebraic Geometry 831

are going to discuss comes from multivariate calculus of variations. The goal is to
construct non-constant Lipschitz solutions to the system of PDE’s

{
Av(x) = 0 for x ∈ Ω,

v(x) ∈ K for almost every x ∈ Ω,

where v : Rn → V, A =
∑

|α|=ℓAα∂
α is an ℓ-homogenenous vectorial linear differ-

ential operator with constant coefficients Aα ∈ lin(V,W), and K = {M1, . . . ,MN}
is finite. Here Ω ⊂ Rn is an open convex set, and V,W are finite dimensional real
inner product spaces.

Example. Let A be the curl:

Av = (∂kvij − ∂jvik) for
i = 1, . . . ,m,
j, k = 1, . . . n,

where v = (vα,β)α,β : Rn → Rm×n. Then, Av = 0 can be solved for v = ∇f , for
some f : Rn → Rm. Therefore, the question becomes whether there exists such
an f satisfying ∇f ∈ K, where K is a given set of finitely-many matrices, and we
want the gradient to coincide with all the matrices in K, in distinct regions.

The construction of solutions of the system of PDE’s involves computing the Λ-
convex hull of K, where Λ is a cone associated to A, known as the wave cone. In
the example of the curl, the wave cone is the cone of rank-one (m× n)-matrices,
and one talks about rank-one convexity. This motivates the study of the rank-one
(or, for a more general cone Λ, the directional) convex hull of finitely-many points.
A function f : Rm×n → R is said to be rank-one convex if t 7→ f(A + tB) is a
convex function for every matrix A ∈ Rm×n and every matrix B of rank one.

Definition 3. Let K ⊂ Rm×n be compact. Its rank-one convex hull is

Krc = {x ∈ Rm×n | f(x) ≤ min f(K) for all rank-one convex f}.

Alternatively, the rank-one convex hull can be seen as the zero locus of a function,
that we are now going to introduce. Let x ∈ Rm×n. A rank-one elementary
splitting of the Dirac measure δx is the measure λ1δx1 + λ2δx2 , with λ1 + λ2 = 1,
x in the segment conv(x1, x2), and x2−x1 ∈ Rm×n of rank-one. Then, a rank-one
laminate of finite order is defined to be a measure obtained by a finite number of
rank-one elementary splittings. It is of the form

ν =

m∑

i=1

λiδxi

with
∑
λi = 1. We call its center of mass the point ν =

∑
λixi. Then, we can

rewrite the rank-one convex hull as Krc = {x ∈ Rm×n | g(x) = 0}, where

g(x) = inf{〈ν, d2K(x)〉 | ν Λ-laminate of finite order, ν = x}.

By angle brackets we mean that if ν =
∑
λiδxi

then 〈ν, d2K(x)〉 =
∑
λid

2
K(xi),

where dK is the distance to the set K. This alternative characterization of the
rank-one convex hull emphasizes the role of the cone in the construction, since the
splittings can be done only along its rays. This leads to our second conjecture.
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Conjecture 2. The rank-one convex hull of a finite set is semialgebraic.

This result is true in R2, identified with the space of diagonal 2 × 2 matrices. In
fact, [4, Theorem 1.1] proves that this holds for more general cones in R2, with a
finite number of rays, and provides an algorithm for the computation of the rank-
one (or, in general, directional) convex hull. An analogous result [11] describes
the case in which the cone Λ consists of d linearly independent vectors in Rd. A
very different example of semialgebraic rank-one convex hull in higher dimension
appears in [12]. We believe that in higher dimension, where the cones are not
necessarily linear but rather a union of algebraic varieties, one should examine
the arrangement of the cones placed at each point of K. Heuristically, a positive
answer to our conjecture may provide an algorithm to compute rank-one convex
hulls; conversely, a negative answer would highlight the complexity of explicitly
computing them. For more details on rank-one convexity and directional convexity,
we refer to [6, 7, 8, 10, 13]. In addition, we would like to mention that after
the talk, Saugata Basu pointed out that a similar geometric construction, known
among the analysis community as lamination hull, also appears in the context of
cryptography, in relation to the round complexity of randomized functions [1].
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Non-negative forms on cubic curves

Lorenzo Baldi

(joint work with G. Blekherman and R. Sinn)

The study and characterization of (global) non-negativity for polynomials (or
forms) dates back to D. Hilbert [4], whose classical result characterize the number
of variables and the degrees for which the convex cone of non-negative forms on
Pn coincide with the convex cone of sums of squares. In the last decades, the rela-
tion between non-negativity and sums of squares received increasing attention: the
work of Hilbert has been recently extended by G. Blekherman, R. Sinn, G. Smith
and M. Velasco [3], that consider non-negativity and sums of squares on projec-
tive varieties. In particular, they characterize the (totally real, non-degenerate,
irreducible, projective) varieties where non-negative quadratic forms and sums of
squares coincide as those of minimal degree. This result, whose proof requires com-
bining techniques from algebraic and convex geometry, is a major achievement in
the recent research area of convex algebraic geometry [2].

In this talk, based on [1], we restrict to the first non-trivial varieties where the
cones of non-negative forms and sums of squares are different, i.e. plane cubic
curves C ⊂ P2. Our goal is to characterize completely the cone of non-negative
forms from the point of view of convex geometry.

The simpler case of the projective line P1 guides our investigation: there, the
cone PP1,2d of non-negative forms on P1(R) of degree 2d is full dimensional in
R[x0, x1]2d, and the all the faces of this convex cone arise as follows. If F ⊂ PP1,2d

is a face, then there exists points Ai ∈ P1 and natural numbers ki such that F
consists of non-negative forms on P1 that vanish at Ai with multiplicity at least
2ki.

We consider the convex cone PC,2d ⊂ R[x0, x1, x2]2d of non-negative forms on
C(R) of degree 2d, and we assume that C ⊂ P2 is in Weierstarss form. We
characterize the extremal rays of the cone PC,2d, using the group law ⊕ on C:
R≥0 · f is an extremal ray of PC,2d if and only if f.C = 2(A1 + · · · + A3d) and
either:

• A1 ⊕ · · · ⊕ A3d = O, where O the zero of the group law (in this case f is
a square); or

• A1 ⊕ · · · ⊕A3d = T , where T is a special 2-torsion point of (C(R),⊕).

The analysis is performed for every d, and provides explicit Krivine-Stengle-type
certificates of non-negativity for every non-negative form, as of ratios of sums of
squares in the function field R(C) of C. The result obtained is, in a suitable sense,
independent from the real topology of the curve, and is connected to the analysis
of V. Vinnikov [5] for abstract curves. The special 2-torsion point T is identified
using special rational functions in R(C), given by the embedding of C in P2.

For higher dimensional faces of PC,2d, we retrieve a characterization analogous
to the one of P1. These results are extended to elliptic normal curves, using the
Veronese embedding and successively projecting away from points in the Veronese
embedding of C.
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Sn and Bn-Specht Ideals

Philippe Moustrou

(joint work with S. Debus, C. Riener, H. Verdure)

An Sn-invariant ideal is an ideal I in a polynomial ring K[x1, . . . , xn] such that
for every P ∈ I and σ ∈ Sn, σ · P ∈ I, where Sn acts by permuting coordinates.
We are interested in the points in the corresponding variety V (I), especially their
symmetries. In this direction, the degree principle, due to Timofte [1] and revisited
by Riener [2] says that if the ideal I is generated by degree d polynomials, then
the variety V (I) is non-empty if and only if it contains a point with at most d
distinct coordinates.

Up to symmetry, a point x in Kn can be written as

x = (x1, . . . , x1︸ ︷︷ ︸
λ1

, . . . , xk, . . . , xk︸ ︷︷ ︸
λk

)

where xi 6= xj whenever i 6= j, and λi ≥ λi+1 for any i. The sequence Λ(x) =
(λ1, . . . , λk) is then a partition of n: the orbit-type of x. In this set-up, the degree
principle says that it is enough to look for points in V (I) with an orbit-type of
length at most k. In order to have more information on the possible orbit-types,
we study Specht ideals, which provide a connection between the partitions of n
and the irreducible representations of Sn.

For a given partition λ of n, the Specht ideal Iλ is the ideal of K[x1, . . . , xn]
generated by all Specht polynomials of shape λ. We denote by Vλ the corresponding
Specht variety. In [3], we study the correspondence between the poset of partitions
for the dominance order, the poset of Specht ideals, and the poset of Specht
varieties for inclusion relations. More precisely, for two partitions λ and µ of n,
we have

µ dominates λ⇔ Iλ ⊂ Iµ ⇔ Vµ ⊂ Vλ.

This in turns provides a complete understanding of Specht varieties in terms of
orbit types: the Specht variety Vµ is made of all the points x inKn such that Λ(x) is
not dominated by µ. This decomposition helps proving results about the algebraic
properties of Specht ideals [4, 5]. Moreoever, our results also give information
on general Sn-invariant ideals. Depending on the monomials appearing in the
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polynomials of an Sn-invariant ideal I, we are able to find partitions λ of n such
that I contains the Specht ideal Iλ. This then implies that VI ⊂ Vλ, and gives
information on the possible orbit types of the points in V . This gives somehow a
generalization of the degree principle, giving a better understanding of invariant
ideals with respect to representation theory or for algorithmic purposes.

In [6], we adapt our approach to Bn-invariant ideals, where Bn acts on
K[x1, . . . , xn] by permutation of coordinates and sign changes. There, irreducible
representations are in bijection with bipartitions, and Bn-Specht ideals and vari-
eties can be defined in a similar way. However, even if several orders on bipartitions
were studied, non of them gave the equivalence with the inclusion of Specht ideals.
We introduce another order on bipartitions, and show the correspondence with the
poset of ideals. This requires a precise study of the poset of bipartitions including
the covering cases. Then, we also provide a notion of orbit-type in this situation,
in order to get analogues of our decomposition results for Sn-Specht varieties, and
similar consequences for Bn-invariant ideals.
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Symmetries at the limit

Cordian Riener

(joint work with Jose Acevedo, Grigoriy Blekherman, Sebastian Debus)

For n ∈ N the group Sn of permutations of an n-element set is a well studied object
and the natural inclusion Sn ⊂ Sn+1 opens the possibility to study phenomena
appearing in the limit, when n tends to infinity. In this context it is an interesting
question to consider the equivariant algebraic and semi-algebraic geometry of S∞

invariant sets. The main setup of the talk was considering the limit of the so called
Vandermonde varieties and Vandermonde cells. These are defined via the power
sum polynomials pa(x) = xa1 + . . .+ xan, where a ∈ R>0. More concretely:

Definition 1. Let α = (α1, . . . , αd) ∈ Rd>0 be a sequence of strictly increasing
positive real numbers.
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(1) The α-Vandermonde map in n variables is defined to be the map

νn,α : Rn≥0 −→ Rd

x 7−→ (pα1(x), pα2(x), . . . , pαd
(x))

.

(2) Let
∆n−1 :=

{
x ∈ Rn≥0 : x1 + . . .+ xn = 1

}

and α be a strictly increasing sequence of real numbers larger than 1. The
(n, α)-Vandermonde cell Πn,α is the set νn,α(∆n−1). In the case when
α = (2, . . . , d) we write Πn,d.

(3) For 2 ≤ k ≤ d and c ∈ {1} × Rk−1
≥0 we define the associated generalized

positive α-Vandermonde variety to be the fiber over c of the corresponding
Vandermonde map, i.e.,

V αk (c) := ν−1
n,(1,α1,...,αk−1)

(c) ∩ Rn≥0.

Since for α = (2, . . . , n) the power sum polynomials generate the Sn invariant
polynomials, the Vandermonde cells and the Vandermonde varieties in this setup
naturally connect to the Sn orbit space of ∆n−1 (or generally Rn). They have
already been studied by Arnold, Kostov and Ursell [2, 8, 11] in the context of
hyperbolic polynomials and symmetric inequalities and can also be used to design
algorithms to compute Betti numbers of symmetric semi-algebraic sets which re-
duce the symmetry in the problem (see [5]). The main question we examined in
the talk connected the Vandermonde cells to the following question from compu-
tational complexity:

Suppose that we are given a polynomial expression in traces of powers of sym-
metric matrices, such as, for example

2 tr(A2) tr(B6)− tr(A4) tr(B4) + tr(A2) tr(C6).

Can we decide algorithmically if such a trace polynomial is non-negative for all
symmetric matrices A, B, C of all possible sizes ? Since for a symmetric A ∈ Rn×n

we have tr(Ad) = λd1 + · · ·+ λdn this question is indeed naturally connected to the
power sum polynomials. Indeed,

2 tr(A2) tr(B6)− tr(A4) tr(B4) + tr(A2) tr(C6) ≥ 0 ∀ symmetric A,B,C ∈ Rn×n

holds if and only if

2p2(x)p6(y)− p4(x)p4(y) + p2(x)p6(z) ≥ 0 ∀x, y, z ∈ Rn.

Since we want to ensure that the condition holds for all matrix sizes, one naturally
is brought to consider power sum polynomials in an arbitrary number of variables
and studying of the Vandermonde cells and their limit when n tends to infinity.

As it turns out, the Vandermonde cells poses as rich combinatorial structure,
namely they behave combinatorially similar to cyclic polytopes, in the following
sense:

Definition 2. Let S ⊂ Rd. Then S has the combinatorial structure of the cyclic
polytope C(n, d) if there exists a homeomorphism

Φ : bd C(n, d) → bd S
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which is a diffeomorphism when restricted to the relative interior of any face of
bd C(n, d). The vertices of S are the images of the vertices of C(n, d)

The connection to cyclic polytopes was observed experimentally by Melánová,
Sturmfels, and Winter [10] and [1] confirms this experimental observation. Build-
ing on this combinatorial understanding, one can study the limit. For fixed d ∈ N

we consider the limiting set, Πd, i.e., the union over all Πn,d. Whereas the sets
Πn,d are by definition semi-algebraic, the following striking result is deduced in [1]

Theorem 3. The limiting set Πd is not semi-algebraic for d ≥ 3.

The proof of this statement is based on understanding of the singularities that
aries and are connected to the combinatorial structure: The number of isolated
singularities is growing with n and tends to infinity. Therefore, the limit cannot
be semi-algebraic. This result is a first indication that the question of testing
non-negativity of symmetric polynomials in the limit is not directly obvious via
the Vandermonde map. By further integrating works of Hatami and Norine [7] we
arrive at the following stronger statement which appears in [1, Theorem 6.2].

Theorem 4. The following decision problem is undecidable.

Instance: A positive integer k and a trace polynomial f(X1, . . . , Xk).
Question: Is f(M1, . . . ,Mk) nonnegative for all real symmetric matrices

M1, . . . ,Mk of all sizes for all 1 ≤ i ≤ k?

It is interesting to remark that it follows from the arguments in [6] that when
we replace the usual trace by the normalized trace, i.e. 1

n Tr(A) for a symmetric
matrix A of size n× n, the problem becomes decidable.

The computational problem we present in the talk suggests that the geome-
try of the limit poses interesting questions. Indeed, as mentioned, the sets Πn,d
are linked to the orbit spaces Rn//Sn. The work on bounding the equivariant
Betti numbers of symmetric semi-algebraic sets (for example [4]) brought up the
following question.

Question 1. There exists a polynomial p such that the sum of the equivariant
Betti numbers of S(n) is given by p(n)?

The works in [3, 4] have already established polynomial bounds for these equi-
variant Betti numbers, but a positive answer to the above question would provide
a stronger understanding of the behaviour of these quantities when n tends to
infinity. Furthermore, in [9] we consider the ring C[xij : i ∈ N, j ∈ [n]] and its
spectrum An∞. There is a natural action of the infinite symmetric group S∞ on the
first index in the polynomial ring and on the specturm. Various authors have been
able to show that many algebraic properties from finite dimensional rings carry
over up to symmetry. However, we show in [9] that the quotient space AnK,∞/G
is rather badly behaved. However, to understand this better an answer to the
following question might shade more light on the symmetry in the limit here:

Question 2. Is the Kolmogorov quotient KQ(AnK,∞/G) a spectral space?
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Betti numbers of real semi-stable degenerations via
logarithmic geometry

Matilde Manzaroli

(joint work with Emiliano Ambrosi)

In [AM22], we study the real topology of totally real semi-stable degenerations,
with certain technical conditions on the special fiber X0, and we give a bound
for the individual real Betti numbers of a smooth fiber near 0 in terms of the
complex geometry of X0. The subject of interest in [AM22] has its root in the
search of refinements of the Smith-Thom inequality; see (1). In the context of toric
and tropical degenerations, there have been conjectures (e.g. [Vi80],[Ite17]) and
results (e.g. [Ite93], [RS22]) concerning bounds of individual real Betti numbers. In
[AM22], thanks to the use of (real) logarithmic geometry (see e.g. [Kat89], [KN89],
([Arg21])), we push ourselves a little further into a purely algebraic geometry
context and study degenerations which are not necessarily toric.

Let X be a smooth projective real algebraic variety over C, let X(C) be the
set of its complex points and X(R) the set of its real points. For K = R,C, set
bi(X(K)) := dimF2(H

i(X(K),Z/2Z)), the ith Betti number of X(K).
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1. Individual Betti numbers

The Smith-Thom inequality,

(1)
∑

i

bi(X(R)) ≤
∑

i

bi(X(C))

bounds the total Betti number of the real points of X with the total Betti num-
ber of its complexification. The problem of finding (non trivial) bounds for the
individual Betti numbers bi(X(R)) in terms of the geometry of X(C) is a central
topic in real algebraic geometry. For example, it was conjectured by Viro in [Vi80]
that if X is a smooth projective real surface such that X(C) is simply connected
then b1(X(R)) ≤ dim(H1(X,Ω1

X)). Even if the conjecture has been disproved by
Itenberg in [Ite93], many smooth projective real algebraic varieties constructed
with the tools at our disposal (for example, using Viro’s patchworking method
[Vi83]) verify the inequality

(2) bi(X(R)) ≤
∑

j

hi,j(X),

where hi,j(X) := dim(Hi(X,ΩjX)).
The main goal of [AM22] is try to understand why it is easier to construct real

algebraic varieties satisfying (2) and we look into a purely algebraic geometric
setting in which an inequality close to (2) holds. Roughly speaking, the general
principle is that, often, the constructions of real varieties with prescribed topology
are achieved first by constructing a degenerated version of the pair (X(C), X(R)),
whose irreducible components are simpler to deal with and then by deforming
them back in non-trivial ways. Our main results (Theorem 1, Corollary 2), show
that if these components are simple, from a cohomological point of view, then the
variety obtained by gluing these components satisfies the inequality (2), up to the
dimension of the 2-torsion in some cohomology group.

The most general result previously known in this setting is [RS22, Theorem 1.4],
which proves a conjecture of Itenberg ([Ite17]). In [RS22], Renaudineau and Shaw
show that for a real compact hypersurface X near the Q-regular smooth tropical
limit inside a smooth toric variety (see [IKMZ19] for the definitions involved), the
inequality (2) holds. The strategy involved to prove such result consists in sepa-
rately computing complex and real information into combinatorial data ([IKMZ19],
[RS22]) and, in a second moment, showing that they are related ([RS22], [ARS21]).

In [AM22] we generalize this result to more general families of varieties, avoiding
the use of combinatorial arguments and constructing, via real logarithmic geome-
try, a space which allows to simultaneously relate real and complex data.

2. Main result

While the methods in [RS22] are mainly of combinatorial nature, tropical geometry
allows to construct degenerations of a given subvariety in a smooth toric variety.
This is the point of view that we tackle in [AM22], trying to generalize this kind
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of individual-real-Betti-bounds to the general fiber of an abstract semi-stable de-
generation, where combinatorial techniques from tropical and toric geometry are
no longer available.

Assume that C is a smooth real curve and f : X → C a real projective morphism
which is smooth outside a real point 0 ∈ C(R) and strictly-semistable around 0,
in the sense that the irreducible components of X0 are smooth and, locally an-
alytically around 0, the family f : X(C) → C(C) is isomorphic to the standard
semistable degeneration Spec(C[x1, . . . , xn, T ]/(x1 . . . xn − T )) →Spec(C[T ]). As-
sume furthermore that f : X → C is totally real, i.e. that the irreducible com-
ponents of X0(C) are real. Write X0 =

⋃
i∈I Xi for the decomposition of X0 in

irreducible components and for every subset J ⊆ I set

XJ :=
⋂

i∈J

Xi and X0
J := XJ \

⋃

i6∈J

Xi.

Then X0 =
∐
J⊆I X

0
J is a stratification I := {X0

J}J⊆I of X0 by smooth real

algebraic subvarieties. Fix a refinement Z := {X0
∆} of I, made of smooth real

algebraic varieties.
In [AM22], we construct, for every ring A and every q ≥ 0 a canonical cochain

complex C•
q,Z,A of A-modules depending only on the complex geometry of the

stratification Z. ftsRecall that a variety is said to be maximal, if (1) is an equality.
Inspired by the geometric properties of degenerations constructed from tropical
geometry, we consider the following conditions on the members of Z.

(a) Hi(X0
∆(R),Z/2Z) = 0, for all i ≥ 1 and X0

∆ ∈ Z;
(b) X0

∆ is maximal, for all X0
∆ ∈ Z;

(c) the mixed Hodge structure on Hi(X0
∆(C),Q) is pure of type (i, i) and

Hi(X0
∆(C),Z) is torsion free, for all i ≥ 1 and X0

∆ ∈ Z.

Our main result is then the following.

Theorem 1. Assume that (a),(b) and (c) hold. Then for every t ∈ C(R) close to
0 one has :

(1) bp(Xt(R)) ≤
∑
q dim(Hp(C•

q,Z,Z/2Z)).

(2) dim(Hp(C•
q,Z,Z ⊗Q)) = hp,q(Xt)

(3) C•
q,Z,Z ⊗ Z/2Z ≃ C•

q,Z,Z/2Z.

Theorem 1 directly implies the following corollary, which was the main motiva-
tion for [AM22].

Corollary 2. Assume that (a), (b), (c) hold and that Hp(C•
q,Z,A) is torsion free

for every p, q ∈ N. Then for every t ∈ C(R) close to 0 and every p ∈ N one has

bp(Xt(R)) ≤
∑

q

hp,q(Xt).

Inspired by the approach used in [Bru22], our basic strategy is to relate the
real Betti and the Hodge numbers via the geometry of a common ambient space.
The main innovation of [AM22] is the use of (real) logarithmic geometry (see e.g.
[Kat89], [KN89], ([Arg21])) to construct and study this common ambient space,
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which allows to use a more sophisticated and less combinatorial machinery. After
the construction of such a space, the cohomology of the general real fiber can
be computed by a filtered complex. The idea of the use of filtered complexes is
inspired by [RS22], where it was constructed via combinatorial techniques. Since
these combinatorial tools are not available in our general setting, we use a different
approach based on equivariant cohomology.
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Pinched handle decomposition of finite simplicial complexes

Jean-Yves Welschinger

I will introduce a notion of pinched handle decompositions on finite simplicial
complexes and prove their existence after finitely many stellar subdivisions at
facets. These decompositions extend the classical shellings of boundaries of convex
polytopes for example. They encode a class of compatible discrete Morse functions
while conversely every such function on a finite simplicial complex induces a (weak)
pinched handle decomposition on its second barycentric subdivision.

Definition 1. A basic (resp. Morse) tile of dimension n and order k ∈ {0, . . . , n+
1} is an n-simplex deprived of k codimension one faces (resp. together with pos-
sibly a unique face of higher codimension, called its Morse face).

If T is a basic tile of order k, then every non-empty face µ of T has to contain
the (k− 1)-dimensional face r(T ), called its restriction set, whose missing vertices
are opposite to the missing ridges, that is codimension one faces, of T , compare
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[8]. The tile T \ µ is said to be critical of index k when µ = r(T ) and it is said
to be regular otherwise. The closed simplex is thus critical of vanishing index and
the open simplex critical of index dim(σ).

From the topological viewpoint, an n-dimensional critical tile of index k ∈
{0, . . . , n} is a (simplicial) pinched handle of dimension n and index k. It is ob-

tained by pinching onto µ the missing face µ×θ of a piecewise linear handle
◦
σ ×θ,

where
◦
σ is an open k-simplex, θ an (n − k)-simplex and µ a codimension one

missing face of σ.

Definition 2. A pinched handle decomposition of a finite (relative) simplicial
complex S is a filtration ∅ = S0 ⊂ S1 ⊂ · · · ⊂ SN = S by (relative) subcomplexes
such that for every p ∈ {1, . . . , N}, Sp \ Sp−1 consists of a single basic or critical
tile supported by a facet, that is a maximal face, of S.

A weaker form of pinched handle decomposition is given by allowing all Morse
tiles instead of basic and critical tiles only in this definition. Both notions gen-
eralize the classical notion of shellings [2] and I call the latter a Morse shelling,
a notion that we introduced in [7] together with Nermin Salepci. Recall that a
shellable triangulated manifold has to be PL-homeomorphic to a ball or a sphere,
that triangulated spheres need not be shellable [6, 5], though PL-spheres becomes
polytopal, hence shellable [2], after sufficiently many barycentric subdivisions [1].
Nevertheless, this number of subdivision can be arbitrarily large. From the al-
gorithmic complexity point of view, deciding collapsibility [9] or shellability [4] is
NP -complete, while contractibility is undecidable [10, 9]. A shelling is a pinched
handle decomposition without handles of intermediate index.

Theorem 3 (Theorem 1.3 of [11]). Every finite (relative) simplicial complex car-
ries a pinched handle decomposition after finitely many stellar subdivisions at max-
imal faces. Moreover, the same holds true using stellar subdivisions at codimension
one faces instead, or also using mixed ones. Finally, in bounded dimension, both
the sequence of subdivisions and the shelling are given by some quadratic time
algorithm.

These pinched handle decompositions, even in their weaker form, recover the
homology and cohomology of the complexes via spectral sequences.

Theorem 4 (Theorem 1.2 of [12]). Any Morse shelling on a finite (relative) simpli-
cial complex induces two spectral sequences which converge to its relative homology
and cohomology respectively and whose first pages are free graded modules over the
critical tiles.

These weak versions are closely related to the Morse theory of R. Forman [3].
Indeed, every Morse shelling encodes a class of compatible discrete Morse functions
whose critical faces are in one-to-one correspondence with the critical tiles of the
shelling, preserving the index [7, 12]. And conversely, the following holds.

Theorem 5 (Theorem 1.1 of [13]). Let f be a discrete Morse function on a finite
simplicial complex K. Then, the second barycentric subdivision of K carries Morse
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shellings whose critical tiles are in one-to-one correspondence with the critical faces
of f , preserving the index.

This theorem has the following consequence in the smooth category.

Theorem 6 (Corollary 1.2 of [13]). Let f be a smooth Morse function on a smooth
closed manifold M and let h : K → M be any PL-triangulation on M . Then, as
soon as d is large enough, the d-th barycentric subdivision of the simplicial complex
K carries Morse shellings whose critical tiles are in one-to-one correspondence with
the critical points of f , preserving the index.

However, discrete Morse functions or Morse shellings do not distinguish between
a collapsible complex and an actual triangulated ball, while the critical tiles (or
pinched handles) of a pinched handle decomposition on a triangulated manifold
provide an obstruction from being shellable, hence being a PL-triangulated ball
or sphere, see [13].
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Gibbs manifolds

Dmitrii Pavlov

(joint work with Bernd Sturmfels, Simon Telen)

Given a linear (or, more generally, affine) subspace L of the space of symmetric

n×n matrices Sn ≃ R(
n+1
2 ), one defines its Gibbs manifold GM(L) to be the image

of L under the exponential map. This map is defined on the space of n×n matrices

by the converging power series exp (X) =
∞∑
i=0

X i

i!
. It sends symmetric matrices to

positive definite matrices, so GM(L) is a subset of the positive definite cone.
Gibbs manifolds arise naturally in many areas of science, such as quantum

physics [1], statistics [6] and optimization [2]. For instance, in entropic regu-
larization for semidefinite programming [2, Section 5] the optimal point for the
regularized program is the unique intersection of the spectrahedron with a Gibbs
manifold. More precisely, this is the Gibbs manifold GM(L) of the linear space L
spanned by the matrices defining the linear constraints.

In some special cases, Gibbs manifolds are semialgebraic. This happens, for
instance, if the matrices in L are pairwise commuting. Though this is not true in
general, it is interesting to ask which polynomial equations vanish on the Gibbs
manifold of L. This motivates the definition of the Gibbs variety GV(L), which is

the Zariski closure of the Gibbs manifold GM(L) in the complex space C(
n+1
2 ).

Gibbs varieties are a natural noncommutative generalization of toric varieties,
since any affine toric variety arises as the Gibbs variety of a linear space spanned by
diagonal matrices. In the same spirit, the role of Gibbs manifolds in entropic regu-
larization for semidefinite programming extends the role of positive toric varieties
in the linear programming setup of [5].

A peculiar feature of Gibbs varieties is that they are low-dimensional. This is
made precise in the following theorem.

Theorem 1 ([2]). Let L ⊂ Sn be an affine space of symmetric matrices of dimen-
sion d. The dimension of the Gibbs variety GV(L) is at most n + d. If L is a
linear space, then dimGV(L) is at most n+ d− 1.

The following result gives a formula for the dimension of GV(L) in terms of the
L-centralizer of a generic matrix A in L. This is defined as the set of all matrices
in L that commute with A.

Theorem 2 ([3]). Let L be a linear space of n × n symmetric matrices of di-
mension d. Let k be the dimension of the L-centralizer of a generic element in L
and m the dimension of the Q-linear space spanned by the eigenvalues of L. Then
dimGV(L) = m+ d− k.

Note that by Theorem 2, the upper bound for linear spaces in Theorem 1 is
attained when the eigenvalues of L are Q-linearly independent and the dimension
of a generic L-centralizer is one.

Apart from being low-dimensional, Gibbs varieties are also irreducible and uni-
rational under a mild genericity assumption. Moreover, it is possible to find an
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explicit rational parametrization of a given Gibbs variety. A key ingredient is
Sylvester’s formula [4]. After such a parametrization is obtained, one can algo-
rithmically implicitize the variety, that is, find its defining equations. This can
be done both symbolically and numerically. Implicitization algorithms are imple-
mented and available at https://mathrepo.mis.mpg.de/GibbsManifolds.
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Matrix convex sets with polytope base,
quantum Latin squares, and compatibility

Ion Nechita

(joint work with Andreas Bluhm, Simon Schmidt)

A polytope P containing the origin can be characterized in two different but equiv-
alent ways:

• by its facets, as an intersection of half-spaces:

(1) P =

f⋂

i=1

{x ∈ Rg : 〈x, hi〉 ≤ 1},

• by its extremal points, as a convex hull:

(2) P = conv{vi}
k
i=1.

If we want to allow the elements of the polytope to be tuples of matrices instead
of tuples of scalars, these two conditions give rise to two different and inequivalent
(in general) such matricization, which are both special cases of so-called matrix
convex sets

• the facet description from Eq. (1) generalizes to the set

Pmax(d) := {(A1, . . . , Ag) ∈ Msa
d (C)g : 〈A, hi⊗ρ〉 ≤ 1 ∀i ∈ [f ], ∀ρ ∈ M1,+

d (C)},

• and the extremal points description from Eq. (2) generalizes to the set

Pmin(d) := {(A1, . . . , Ag) ∈ Msa
d (C)g : ∃POVMC s.t.Ax =

k∑

i=1

vi(x)Ci, ∀x ∈ [g]}.
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As our notation suggests, Pmin is the smallest matrix convex set arising from P
and Pmax is the largest.

The appearance of density matrices and POVMs in the definition of the sets
Pmin, Pmax suggest that there might be a link between such matrix convex sets
and quantum information theory. Indeed, in the articles [1, 2, 3], some of the
present authors realized that if one takes P to be the hypercube [−1, 1]g, then the
following correspondence holds:

(2E1 − I, . . . , 2Eg − I) ∈ ([−1, 1]g)max ⇐⇒ {Ei, I − Ei} POVMs ∀i .

What about ([−1, 1]g)min? One of the defining properties that distinguish quan-
tum mechanics from our everyday experience based on classical mechanics is the
existence of incompatible measurements, i.e., measurements that cannot be per-
formed at the same time [4]. Such measurements are indispensable for detecting
quantum non-locality and can therefore be seen as a resource for many quantum
information theoretic tasks similar to entanglement. For the measurements that
are compatible, a joint measurement exists such that their outcomes can be re-
covered post-processing the outcomes of the joint measurement. It turns out that
membership in ([−1, 1]g)min is related to measurement compatibility

(2E1 − I, . . . , 2Eg − I) ∈ ([−1, 1]g)min ⇐⇒ {Ei, I −Ei} comptatible POVMs ∀i .

The reformulation of measurement compatibility as minimal and matrix convex
sets has been instrumental in finding new bounds on the maximal amount of
incompatibility available in different situations.

The success of the study of minimal and maximal matrix convex sets for the
hypercube suggests the natural question: What tasks in quantum information
theory can be formulated as membership in Pmin, Pmax for polytopes P?. This is
the task this paper sets out to solve.

Motivated by the example of measurement compatibility, we define a notion of
polytope operators and polytope compatibility. A tuple of matrices is a P-operator
if it is in Pmax and it is P-compatible if it is in Pmin. We study equivalent
formulations and implications of polytope compatibility and we characterize the
elements which are P-compatible if and only if they are P-operators. An informal
version of the latter result is the following:

Theorem. Let A be a g-tuple of self-adjoint operators. Then, A is P-compatible
for all polytopes P such that they are P-operators if and only if the operators A
admit a pairwise commuting dilation N with essentially the same numerical range.

We show that another well-known problem from quantum information theory
can be formulated as polytope compatibility, namely the study of quantum magic
squares. An N × N block matrix (Aij)i,j∈[N ] with d-dimensional matrices Aij is
a quantum magic square if both its rows {Aij}j∈[N ] and columns {Aij}i∈[N ] form
POVMs. This can be expressed with the help of the Birkhoff polytope (the set of
bistochastic matrices), projected onto its supporting affine subspace. Calling this
polytope BN , we arrive at the following equivalence:

A ∈ (BN )max ⇐⇒ A is a quantum magic square.
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A quantum magic square is especially simple if it has a hidden structure in terms
of a tensor product of permutation matrices and a POVM. In [5], such a quan-
tum magic square is called semiclassical, whereas [6] calls such quantum magic
squares doubly normalised tensor of positive semi-definite operators. The interest
in such objects come from the Birkhoff-von Neumann theorem, which states that
the bistochastic matrices are the convex hull of the permutation matrices. The
semiclassical magic squares can be seen as a matricization of this idea. However,
not all quantum magic squares are semiclassical, but we can characterize the ones
that are:

A ∈ (BN )min ⇐⇒ A is a semiclassical quantum magic square.

One might be tempted to conjecture that semiclassical quantum magic squares
are the ones in which the row and column POVMs are compatible. However,
we give an explicit example of a quantum magic square with compatible POVMs
which is not semiclassical. Using one of our reformulations of P-compatibility as
factorization of an associated map through a simplex, we recover the fact that
being a semiclassical quantum magic square does not only require the POVMs to
be compatible, but also that the post-processing via which they arise from a joint
measurement is symmetric (previously observed in [6]).

Finally, we find that polytope compatibility corresponds in general the compat-
ibility of POVMs with common elements under restricted post-processing. Any
collection of POVMs which share elements can be represented as a hypergraph,
where each POVM element is a vertex and which POVM elements belong to the
same POVM is represented by hyperedges. Such hypergraphs are in one-to-one cor-
respondence with polytopes P having vertices with rational coordinates. Being a
P-operator then corresponds to being a POVMwith the desired common elements.
These POVMs are P-compatible if and only if the POVMs are compatible and have
a joint measurement from which they arise under restricted post-processing.

We illustrate this in an example where we consider two POVMs with a common
element A, such that the POVMs become

(3) (A,B, I −A−B) (A,C, I −A− C).

The polytope to which this compatibility structure corresponds is a pyramid with
square basis. (A,B,C) is in the minimal matrix convex set corresponding to the
pyramid if and only if the two POVMs above are compatible and have a joint
POVM Q with five elements from which they arise as

A = Q1 B = Q4 +Q5 C = Q3 +Q5.

We conclude the section with an explicit counterexample that not all compatible
POVMs as in (3) have a joint POVM of the form above, which shows that the
restricted post-processing is indeed necessary.

Thus, in summary, this work generalizes the correspondence between measure-
ment incompatibility and the minimal and maximal matrix convex sets of the hy-
percube. We find that polytope compatibility is in one-to-one correspondence with
measurement compatibility with common elements and restricted post-processing.
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As an example, we find that being a semiclassical magic square corresponds to
being Birkhoff-polytope compatible.
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Arveson-Douglas essential normality conjecture - a bridge between
operator algebras and algebraic geometry

Eli Shamovich

Let us fix a number d ∈ N and consider the polynomial ring C[z1, . . . , zd]. For

a multi-index α ∈ (N ∪ {0})d, we define the length |α| =
∑d
j=1 αj and the cor-

responding monomial zα =
∏d
j=1 z

αj

j . One can endow the polynomial ring with
various inner products. One, in particular, stands out due to its importance in
many areas of mathematics and physics. This inner product, which is known in
algebraic geometry as the Bombieri inner product (see, for example, [5]), is given
by

〈zα, zβ〉 = δαβ

∏d
j=1 αj !

|α|!
=

α!

|α|!
.

Completing the polynomial ring with respect to the corresponding norm yields a
Hilbert space that we will denote H2

d . This Hilbert space is known in physics as
the symmetric (or bosonic) Fock space and as the Drury-Arveson space in function
theory and operator algebras community. The Drury-Arveson space is a space of
analytic functions on the unit ball Bd ⊂ Cd with certain convergence conditions
on the Taylor coefficients at the origin. By the Bombieri inequality, for every two
homogenous polynomials p, q ∈ C[z1, . . . , zd] of degrees n and m, respectively, we
have

n!m!

(n+m)!
‖p‖‖q‖ ≤ ‖pq‖ ≤ ‖p‖‖q‖

In particular, it implies that multiplication by a polynomial extends to a bounded
operator on H2

d . We will denote these multiplication operators by Mp. In particu-
lar, we will focus on the operators of multiplication by coordinatesMzj , 1 ≤ j ≤ d.

The multiplier algebra Md of H2
d is the weak operator topology closed algebra
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generated by the Mzj in B(H2
d ). The space H2

d and its multiplier algebra enjoy
several universality properties discovered by Drury [10], Arveson [2], and Agler
and McCarthy [1]. Arveson proved that for every 1 ≤ i, j ≤ d, the operator
MzjM

∗
zi − M∗

ziMzj is compact. Recall, that an operator on a Hilbert space is
called compact if it maps the unit ball into a precompact subset. Intuitively,
compact operators are small, since one can approximate a compact operator by
finite-rank ones in norm. Therefore, we say that the operators Mzj are essentially
normal. Moreover, we get an exact sequence

0 → K → C∗(1,Mz1 , . . . ,Mzd) → C(∂Bd) → 0.

Here, K stands for the ideal of compact operators, C∗(1,Mz1 , . . . ,Mzd) is the
unital C∗-algebra generated by our multiplication operators, and C(∂Bd) is the
algebra of continuous functions on the boundary of the ball.

Given a radical homogenous ideal I ⊂ C[z1, . . . , zd], we can associate to I two
Hilbert spaces [I], that is the closure of I in H2

d and HI that is the orthogonal
complement of [I]. It is rather immediate that [I] is invariant for Mzj and, there-
fore, HI is coinvariant (i.e., invariant under the M∗

zj). Let us denote by PI the

orthogonal projection onto HI and for 1 ≤ j ≤ d, Sj = PIMzj |HI
. Arveson [3]

and Douglas [8] have conjectured that the operators Sj are also essentially nor-
mal. Nowadays, this question is the first part of the Arveson-Douglas essential
normality conjecture. If true, this implies that we have an exact sequence:

0 → K → C∗(1, S1, . . . , Sd) → C(∂Bd ∩ V (I)) → 0.

Here, V (I) is the cone cut out by the homogenous ideal I in Cd and C(∂Bd∩V (I))
is the algebra of continuous functions on the intersection of V (I) with the boundary
of the ball. The exact sequence gives rise to a K-homology class via the Brown-
Douglas-Fillmore theory [6] on the space ∂Bd ∩ V (I). This class, in turn, can be
translated (at least in the smooth case) to a K-theory class on the homogeneous
variety corresponding to I (see [9]). Whether the corresponding K-homology class
is non-trivial, even if the operators Sj are essentially normal, is the second part of
the Arveson-Douglas essential normality conjecture.

The essential normality conjecture was established in many cases. For example,
the case of monomial ideals was proved by Arveson [4] and Douglas [7]. The case
of principal ideals and the cases for d = 2 and d = 3 was established by Guo
and Wang [12]. The case of smooth projective varieties was settled by Englǐs and
Eschmeier [11] (see also [9]).

Shalit [13] proposed an interesting approach to the conjecture. We say that
the ideal I has the stable division property, if there exists a constant C > 0
and a homogeneous generating set f1, . . . , fk ∈ I, such that for every homoge-

neous h ∈ I, there exists g1, . . . , gk ∈ C[z1, . . . , zd], such that h =
∑k

j=1 fkgk

and
∑k

j=1 ‖fkgk‖
2 ≤ C‖h‖2. It was shown by Shalit that if I ⊂ C[z1, . . . , zd]

is a homogenous ideal with the stable division property, then the corresponding
operators S1, . . . , Sd are essentially normal. It is an open question whether the
converse holds.
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Lastly, one can obtain a condition on angles between subspaces. Let H be a

Hilbert space an K,L ⊂ H be closed subspaces. Let K′ = K ∩ (K ∩ L)⊥ and

L′ = L ∩ (K ∩ L)⊥. The Friedrichs angle between K and L is the acute angle θ,
such that

cos θ = sup {|〈x, y〉| | x ∈ K′, y ∈ L′, and ‖x‖ = ‖y‖ = 1} .

Consider the last differential in the Koszul complex of the variables. Namely,

D : C[z1, . . . , zd]⊗ Cd → C[z1, . . . , zd]

given by D
(∑d

j=1 pj ⊗ ej

)
=
∑d

j=1 zjfj. Here, the ej are the vectors of the

standard basis in Cd. Let (kerD)n be the n-th graded component of the kernel of
D. Let In stand for the n-th graded component of I. In an ongoing joint work with
Kennedy, we have shown that the first part of the essential normality conjecture
is equivalent to the fact that the cosine of the Friedrichs’ angle between (kerD)n
and In ⊗ Cd tends to 0 with n.
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Abstract cone systems

Mirte van der Eyden

(joint work with Tim Netzer, Gemma De les Coves)

In free semialgebraic geometry one studies families of semialgebraic sets that live
in matrix spaces of growing dimension. These sets have some common description;
for example in case of a free spectrahedron, one can define every level by the same
tuple of hermitian matrices (B1, . . . , Bd):

Ss(B1, . . . Bd) = {(A1, . . . , Ad) ∈ Herds |A1 ⊗B1 + . . .+Ad ⊗Bd ≥ 0},

where Hers are the s by s hermitian matrices and by ≥ 0 we mean positive semidef-
inite (psd). By studying the entire family {Ss}s≥0 at once, one can prove stronger
results then by just looking at the levels separately [8].

Abstract operator systems are a closely related concept that originated from
operator theory, with the same spirit of having a free dimension [5, 7]. An abstract
operator system (AOS) consists of a vector space V with involution, together with
a proper cone Ds (i.e. convex, closed, salient and with non-empty interior) inside
the hermitian part of Mats(V ), for every s ∈ N. The cones have to be chosen such
that one can move between the levels by matrix contractions:

A ∈ Ds ⇒ ∀X ∈ Mats,t(C), X∗AX ∈ Dt.

In the higher levels, the interaction between the cones and the tensor product
becomes particularly insightful. Starting with a cone D1 ⊆ V at the groud level,
there are multiple ways to define the cone of positive elements in the higher levels.
Well-studied examples of operator systems over the cone of positive semidefinite
matrices are the operator system of separable matrices (arising from the minimal
tensor product), psd matrices, and block-positive matrices (from the maximal ten-
sor product) [3]. These examples have clear connections to quantum information
theory, where one studies quantum states and measurements, modelled by psd ma-
trices, and is interested for example in determining if a quantum state is separable
(i.e. part of the minimal AOS over the psd cone) or otherwise entangled. Some
results in this direction can be found here [3, 6, 4].

There are multiple recent works on similar notions of entanglement between
general cones in finite dimensional vector spaces, not necessarily matrix spaces [1,
2]. Related to that, there has been a lot of interest in general probabilistic theories,
where one tries to single out quantum theory from more general probabilistic
theories where states are no longer psd matrices but elements from cones in a
vector space (see [9] and references therein). Abstract operator systems are no
longer capable of capturing these results, because they are always based on matrix
spaces.

Motivated by this, we propose a generalized version of AOS, called the Abstract
cone system (ACS). We no longer restrict to matrix spaces (and their positive
semidefinite cones), but instead look at tensor products of V with arbitrary fi-
nite dimensional vector spaces with involution. We reprove the most important
theorems about AOS in this more general case: the equivalent of the Choi-Effros
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theorem that every abstract operator system has a concrete realization, the exis-
tence of minimal and maximal ACS over a given cone at the ground level and the
duality between cone systems with a finite dimensional realization (which are free
spectrahedra) and finitely generated ones.

More specifically, ACS are based on the following structure. The role that
is usually played by the matrix spaces Mats(C) and the contraction maps that
guarantee the compatibility between the cones, now has to be played by other
vector spaces and other maps. We formalize this by choosing a subcategory of the
category ∗

FVec, the category with finite dimensional vector spaces with involution
∗ as objects, and as morphisms all ∗-linear maps. This subcategory S has to be
monoidal, meaning that C is in there, and that whenever S and T are objects in
S, then S⊗T is also in there. Moreover, it has to respect duals, so for S ∈ S, also
its dual space S′ ∈ S. Together with a few more technical details, this provides
the structure on which we can define an abstract cones system:

Definition 1 (Abstract cone system). An abstract cone system consists of an
object V ∈ ∗

FVec, together with a family of proper cones DS ⊆ V ⊗ S for all
S ∈ S, such that:

A ∈ DS ⇒ ∀φ ∈ HomS(S, T ), (id⊗ φ)A ∈ DT ,

where by HomS(S, T ) we denote the set of morphisms between S, T ∈ S that are
part of the subcategory.

It is now interesting to explore the different subcategories that we can choose,
and what type of examples can be fit into this generalized framework. Some
examples are the following:

• The minimal subcategory consists only of C, with HomS(C,C) = R≥0 as
morphisms. An abstract operator system over this subcategory will be a
vector space V with any proper cone D ⊆ Vh.

• Adding one other vector space S to this minimal subcategory, immediately
requires us to include an infinite number of objects of the form

Sn,m = S⊗n ⊗ S′⊗m

in the subcategory. The morphisms between all these vector spaces can be
determined by choosing a proper cone Cs ⊆ Sh and defining HomS(S,C)
to be all the maps that are positive on this cone. There are many ways
to extend this to a choice for all morphisms in the subcategory, but two
distinct choices are the maps that are completely positive on the minimal
and maximal tensor products of the cone Cs and its dual cone C∨

s :

Cn,m = C
⊗min/maxn
s ⊗min/max (C

∨
s )

⊗min/maxm

• Finally, when choosing as elements all vector spaces of bounded operators
on finite dimensional Hilbert spaces, B(H), and as morphisms the set

{φ : B(H1) → B(H2)|φ(T ) = f †Tf ∀f ∈ Hom(H1, H2)},

we are exactly back to the case of abstract operator systems, but in a basis
independent way.
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This talk was about ongoing work in this direction. In the near future, we will
focus on expanding the list of examples and connecting to recent work and open
problems in quantum information theory and general probabilistic theories.
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A classical quantum game: Perfection vs. The Nullstellensatz

John William Helton

(joint work with dam Bene Watts, Jared Hughes, Daniel Kane, Igor Klep
and Zehong Zhang)

The talk concerned a rigid class of equations which make sense both for matrix
unknowns or for binary unknowns. The ultimate issue is to compare the satisfiabil-
ity (solvability) of these equations. The problem comes from quantum games and
amounts to understanding the advantage of allowing a ‘perfect’ quantum strategy
over restricting players to using a classical strategy.

Satisfiability (SAT) problems are heavily studied in computer science for m×n-
systems of linear equations which one must solve mod 2. They generate a class
of such systems randomly and find that asymptotically there is a critical threshold
c, meaning that with high probability

m/n < c implies there is a solution;

m/n > c implies there is no solution.

For example, for 3XOR SAT c exists and is about 0.92; see [1].
There is a k player XOR game and quantum game analog of this and histori-

cally these have been an influential guide to quantum vs classical behavior. That
quantum entanglement exists was shown by experiments on a particular 2XOR
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game. 2XOR games were fully understood by Tsirelson in the 1980s, who showed
they reduce to a SDP. About 15 years ago it was shown that quantum strategies
could have unbounded advantage over classical strategies in the context of 3XOR
games. Open remained: given a 3XOR game determine if it does or does not have
‘perfect’ quantum strategy. Is this problem decidable?

Work with collaborators settles this by reducing quantum strategy production
to a new class of linear SAT like problems. The reduction starts at a high level
with a noncommutative directional real nullstellensatz applied to a special class of
toric ideals [2]. Next comes a tricky calculation [3].

Having an algorithim allows us to run many experiments which confront us
with questions about the critical threshold [4]. So now we are developing theory
for that. Our speculation is that

cSAT = cGAME = cQUANTUMGAME

holds for the thresholds. This is a long slog with progress: bounding the difference
above within 4 percent and we are near a proof that the first equality is true.
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Amoeba dimensions

Jan Draisma

(joint work with Eggleston, Pendavingh, Rau, and Yuen)

1. Amoeba dimensions for general varieties

Let X ⊆ (C∗)n be an irreducible closed subvariety. The amoeba of X , denoted
A(X), is the image of X under the map

Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn).

Note that A(X) is the image of a semialgebraic set in (R>0)
n under the diffeomor-

phism log : R>0 → R applied coordinate-wise, so dimR A(X) has a well-defined
meaning. The tropicalisation of X , denoted Trop(X), equals limt→∞

1
tA(X) in a

suitable version of the Hausdorff metric.
Much is known about the structure of Trop(X); e.g., it is the support of a

pure dimCX-dimensional polyhedral complex, which is connected through codi-
mension one. Much less is known, in this generality, about A(X). Indeed, even
its dimension behaves mysteriously. For instance, X := {(x, y) | x + y = 1} and
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Y := {(x, y) | x · y = 1} are both curves but have amoebas of dimensions and 2,
respectively:

Trop(X )

�(X )

Trop(Y) =�(Y)

An obvious upper bound to dimR A(X) is 2 dimCX . On the other extreme, if
T ⊆ (C∗)n is a subtorus of dimension k, given as the image of a monomial map
(C∗)k → (C∗)n corresponding to a matrix B ∈ Zn×k, then A(T ) = B · Rk is a
k-dimensional, rather than 2k-dimensional, linear subspace of Rn.

In [3], Nisse and Sottile study the structure of A(X). In particular, they observe
that a torus action always causes a dimension drop for A(X). The argument is as
simple as it is elegant: if X is stable under a k-dimensional subtorus T ⊆ (C∗)n,
then the quotient map X → X/T ⊆ (C∗)n/T ∼= (C∗)n−k has a corresponding
natural map A(X) → A(X/T ) ⊆ Rn−k whose fibres are translates of the k-
dimensional space A(T ). In particular,

(1) dimR A(X) = dimRA(X/T ) + k ≤ 2 dimC(X/T ) + k ≤ 2 dimCX − k.

Furthermore, Nisse and Sottile prove that the maximal dimension drop is caused
by a maximal-dimensional torus action:

Theorem 1 ([3]). The amoeba dimension dimR A(X) of an irreducible closed
subvariety X ⊆ (C∗)n is at least dimCX, with equality if and only if X is a torus
orbit.

It is natural to wonder, conversely, whether a dimension drop is always caused by
a torus action. This is not the case: e.g., if X is any variety with n

2 < dimCX < n,
then dimR A(X) ≤ n < 2 dimCX , whereas most varieties of this dimension do not
admit any torus action. This caused Nisse-Sottile to consider a weaker version of
torus actions. Slightly modifying their definition, for the purpose of this abstract,
we say that a torus T ⊆ (C∗)n nearly acts on X if A(T ) ⊆ TpA(X) for most
p ∈ A(X). For instance, the torus (C∗)2 nearly acts on X in the first example
above. This example shows that a near torus action does not always cause a
dimension drop in the amoeba dimension. However, in [2] we proved that the
converse is true:

Proposition 2 ([2]). If dimR A(X) < 2 dimCX, then some positive-dimensional
torus T nearly acts on X.

Now if T nearly acts onX , then dimR A(X) = dimR A(T ·X). Furthermore, the
variety Y := T ·X is stable under T , so that, to compute its amoeba dimension,
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one can use the argument in (1). Since Y/T lives in a lower-dimensional torus, one
can use this argument inductively. The conclusion is then the following formula
for the amoeba dimension:

Theorem 3 ([2]). For any irreducible closed subvariety X ⊆ (C∗)n, we have

dimR A(X) = min{2 dimC T ·X − dimC T | T a subtorus of (C∗)n}.

This theorem has the interesting consequence that Trop(X) determines the
amoeba dimension of X :

Corollary 4 ([2]). For any irreducible closed subvariety X ⊆ (C∗)n, we have

dimR A(X) =min{2 dimR(U +Trop(X))− dimR U |

U subspace of (R)n spanned by rational vectors},

where U +Trop(X) is the Minkowski sum.

Open question 1. Is there an algorithm that takes as input a d-dimensional
rational polyhedral fan with support F and computes the expression in the corollary
with Trop(X) replaced by F?

2. Amoeba dimensions of linear spaces

Now assume that V ⊆ Cn is a linear subspace for which X := V ∩ (C∗)n is
nonempty. Then Trop(X) is the matroid fan of the loopless matroid M on [n]
in which a subset I is independent if the projection V → CI is surjective. In
particular, by the corollary, dimR A(X) is uniquely determined by M . This raises
the question for an explicit matroidal formula. We have found such a formula:

Theorem 5 ([1]). In the setting above, dimR A(X) equals the minimum, over all
partitions of [n] into nonempty subsets P1, . . . , Pk, of

k∑

i=1

(2 rk(Pi)− 1).

Furthermore, this dimension can be computed deterministically in polynomial time
in the bit size of a matrix with row space V .

A few remarks are in order:

(1) The inequality ≤ is easy and follows from the fact that, for any such
partition P1, . . . , Pk of [n], we have V ⊆

∏
i Vi where Vi is the projection

of V in CPi ; the −1 is caused by the fact that each vector space Vi is stable
under a 1-dimensional torus.

(2) The proof of ≥ is independent of our earlier paper [2] and is specific for
linear spaces; we do not get a new formula for the amoeba dimension of a
general variety.

(3) We actually show that for a general loopless matroidM on [n], the function
that maps E ⊆ [n] to the minimum over all partitions of E into nonempty
subsets P1, . . . , Pk of the expression in the theorem is the rank function
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of a new matroid M ′ on [n], and we give an algorithm for computing the
rank of E that needs only a polynomial number of rank evaluations in M .

To conclude, we now have two formulas for the amoeba dimension of X when
X = V ∩ (C∗)n, with V a linear subspace of Cn. Both of these depend only on
the matroid defined by V , and must of course give the same value. This raises the
following question.

Open question 2. Let M be an arbitrary loopless matroid on [n] and let F ⊆ Rn

be the support of the matroid fan of M . Is it true that

min{2 dimR(U + F )− dimR U | U subspace of (R)n spanned by rational vectors}

equals

min{
k∑

i=1

(2 rkM (Pi)− 1) |
⊔

i

Pi = [n] and all Pi 6= ∅}?

It is not hard to see ≤ by taking for U the space spanned by the characteristic
vectors of the Pi. For the converse we have no idea!
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Quasicrystals and Lee-Yang (stable) polynomials

Lior Alon

(joint work with Alex Cohen, Cynthia Vinzant)

This talk presents our recent results along with a line of works, initiated by Kurasov
and Sarnak [2] and followed by Olevskii and Ulanovskii [3], that relates three, a-
priori different, mathematical objects:

(I) Fourier quasicrystals (crystalline measures) with N-valued coefficients.
(II) Real-rooted exponential polynomials, and
(III) Lee-Yang (stable) polynomials.

Following Ruelle [1], a multivariate polynomial p ∈ C[z1, . . . , zn] is called Lee-Yang
polynomial if it has no zeros in Dn ∪ (C \ D)n, where D = {z ∈ C : |z| < 1} is the
unit disc. One fundamental example is a determinant,

p(z1, z2, . . . , zn) = det(diag(z1, . . . , zn) + U),

where U is any fixed n×n unitary matrix. The name Lee-Yang polynomials refers
to the elegant proof of the Lee-Yang Circle Theorem by Brändén and Borcea.
Lee-Yang polynomials relate to real-rooted exponential polynomials as follows.
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If p(z1, . . . , zn) =
∑

α
cαz

α is Lee-Yang and ℓ = (ℓ1, . . . , ℓn) ∈ Rn+, then the
univariate exponential polynomial

f(x) = p(exp(ixℓ)) = p(eixℓ1 , . . . , eixℓn) =
∑

α

cαe
ix〈ℓ,α〉

is real-rooted, since (eixℓ1 , . . . , eixℓn) ∈ Dn ∪ (C \ D)n whenever Im(x) 6= 0.
A recent work of Kurasov and Sarnak [2] related the above observation to a

special class of one-dimensional crystalline measures called Fourier quasicrystals.
Let S(R) denote the space of Schwartz functions : smooth functions on R with

lim|x|→∞ |xn dm

dmxf(x)| = 0 for all n,m ∈ Z≥0. If f ∈ S(R) then so does its Fourier

transform f̂ ∈ S(R). If there exist discrete (locally finite) sets Λ, S ⊂ R and
complex coefficients (ax)x∈Λ, (ck)k∈S , such that for any f ∈ S(R),

∑

x∈Λ

axf(x) =
∑

k∈S

ckf̂(k),

in the sense that the right and left sums converge to the same finite limit, then
µ =

∑
x∈Λ axδx is called a crystalline measure. It is called a Fourier Quasicrystal

(FQ) if in addition to the above, the sums on both sides converge absolutely.

Theorem 1. [2] Let p(z1, . . . , zn) be a Lee-Yang polynomial, let ℓ ∈ Rn+, let Λ be
the zero set of f(x) = p(exp(ixℓ)), and for x ∈ Λ let ax ∈ N be the multiplicity of
x as a zero of f . Then µp,ℓ :=

∑
x∈Λ axδx is an FQ.

Consequently, Olevskii and Ulanovskii [3] showed that for any FQ with ax ∈ N

for all x ∈ Λ, there is some real-rooted exponential polynomial f whose zero set
and multiplicities are Λ and (ax)x∈Λ. This motivated us to ask whether there is
also an associated pair of Lee-Yang p and ℓ ∈ Rn+.

Theorem 2. [4] Let f(x) =
∑s
j=0 cje

λjx with cj , λj ∈ C. If f is real-rooted, then

there is a Lee-Yang polynomial p ∈ C[z1, . . . , zn] and ℓ ∈ Rn+ such that

f(x) = eλ0xp(exp(ixℓ)),

and the entries of ℓ are Q-linearly independent.

As a result, the Kurasov-Sarnak construction comprises every possible FQ with
N-valued coefficients.

Theorem 3. [4, 3] If µ =
∑

x∈Λ axδx is an FQ with ax ∈ N for all x ∈ Λ, then
µ = µp,ℓ as in the Kurasov-Sarnak construction, for some Lee-Yang p(z1, . . . , zn)
and ℓ ∈ Rn+ with Q-linearly independent entries.

After establishing this equivalence between FQ’s with N-valued coefficients and
(p, ℓ) pairs, and after providing some motivation and background for non-periodic
FQ’s, I will present new (unpublished) results on the relation between properties
of µp,ℓ and properties of p. In particular, showing that µp,ℓ is periodic if and only
if p is binomial (or a power of such), and that the irreducible decomposition of p
provides a decomposition of µp,ℓ into sum of periodic and non-periodic measures,
where the support of the non periodic parts have uniform bound on their intersec-
tion with any periodic set. Furthermore, if p has multi-degree d = (d1, . . . , dn), so
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that p(z1, . . . , zn) has degree dj in zj , and if (xj)j∈Z are the zeros of p(exp(ixℓ)),
counted increasingly with multiplicity, then xj = 2π

〈d,ℓ〉j + O(1), where the O(1)

error term is uniformly bounded, and the gaps xj+1 − xj have a well defined gap
distribution ρp,ℓ. That is, for any h continuous on R,

lim
N→∞

1

N

N∑

j=1

h(xj+1 − xj) =

∫
hdρp,ℓ,

where ρp,ℓ is given implicitly in terms of the torus zero set of p.
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Comptes Rendus. Mathématique, 358(11-12):1207–1211, 2020.

[4] Lior Alon, Alex Cohen, and Cynthia Vinzant. Every real-rooted exponential polynomial is
the restriction of a lee-yang polynomial. arXiv preprint arXiv:2303.03201, 2023.

Hereditary Lorentzian polynomials

Petter Brändén

(joint work with Jonathan Leake)

We introduce the class of hereditary polynomials. These polynomials share fun-
damental properties with volume polynomials of Chow rings of simplicial fans.

We characterize hereditary polynomials that are hereditary Lorentzian. This
gives a characterization of Chow rings that satisfy Hodge-Riemann relations of
degree 0 and 1.

Local theory of stable polynomials and bounded rational functions

Greg Knese

(joint work with K. Bickel, J.E. Pascoe, A. Sola)

The admissible numerator problem amounts to describing the bounded rational
functions on a domain in Cd. More precisely, given a domain D ⊂ Cd and a
polynomial p ∈ C[x1, . . . , xd] with p(x) 6= 0 for x ∈ D, is it possible to give a
simple description of the set

{Q ∈ C[x1, . . . , xd] : ∃C > 0 such that |Q/p| ≤ C on D}?

In one dimension this is simply a matter of cancelling boundary poles, so the
question is only interesting in several variables where it is likely very challenging
in complete generality. In this talk we focus on a particular domain, namely the
unit bidisk

D2 = {(x1, x2) ∈ C2 : |x1|, |x2| < 1}.
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The admissible numerator question can be approached by focusing on single bound-
ary zero of p and converting to the bi-upper half plane

H2 = {(x, y) ∈ C2 : ℑx,ℑy > 0}.

In this setting we then focus on a polynomial p with no zeros in H2 and p(0, 0) = 0.
We present a complete local description of the zero sets of such stable polynomials
in terms of constrained Puiseux series expansions. Specifically, the branches of
p(x, y) break up into two types:

• The real stable type of the form

0 = y + φ(x)

where φ is analytic at 0, φ(0) = 0, φ′(0) > 0, and φ has all real power
series coefficients.

• The pure stable type of the form

0 = y + q(x) + x2Lψ(x1/k)

where q ∈ R[x] has degree less than 2L, q(0) = 0, q′(0) > 0, and ψ is
analytic at 0 with ℑψ(0) > 0.

It turns out that the pure stable case is the only case of interest in the admissible
numerator problem. The following polynomial

[p](x, y) =
∏

(y + q(x) + ix2L)

where the product is taken over all of the branches of p has the property that

|p/[p]|

is bounded above and below for (x, y) ∈ H2 close to (0, 0).
In particular, in the local admissible numerator problem we can always replace

p with the simpler [p].
Our solution to the admissible numerator problem is then described as follows.

Let Ip be the set of polynomials Q such that Q/p is bounded in H2 for (x, y) close
to (0, 0) and let I be the product ideal

I =
∏

(y + q(x), x2L)

where again the product is taken over all local branches of p.
Our main theorem is

Ip = I.

One half of this was proven in our paper and the other half was proven by J.
Kollár.
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Metric graphs, stable polynomials and Fourier quasicrystals

Pavel Kurasov

(joint work with Peter Sarnak)

Spectra of Laplacians on metric graphs, also known as quantum graphs, have been
intensively studies in recent year due to possible applications to nano-physics.
Let us restrict our studies to finite metric graphs formed from compact intervals

en, n = 1, 2, . . . , N, of lengths ℓn and Laplace operators− d2

dx2 with standard vertex
conditions:

• the function is continuous at the vertex (continuity condition);
• the sum of outgoing first derivates at the vertex is equal to zero (Kirchhoff
condition).

One of the most interesting results is the trace formula connecting the spectrum
λj = k2j to geometric and topologic properties of the metric graph [9, 2, 4, 3]:

∑

kn 6=0

(δ(k − kn) + δ(k + kn))

︸ ︷︷ ︸
spectral information

= 1− β1︸ ︷︷ ︸
= χ

δ(k) +
L

π
+

1

π

∑

p∈P

l(prim (p))Sv(p) cos kℓ(p)

︸ ︷︷ ︸
geometric/topologic information

where

• L =
∑N

n=1 ℓn - the total length of the graph;
• χ – Euler characteristic of Γ;
• β1 – number of independent cycles in Γ;
• P – the set of closed oriented paths p on Γ;
• ℓ(p) – length of the closed path p;
• Sv(p) – product of all vertex scattering coefficients along the path p.

This formula is a direct generalisation of the classical Poisson summation formula
and coincides with it if the graph is just one interval with Neumann conditions
at the end points. In contrast to similar formulas for Riemannian manifolds the
obtained trace formula is exact.

It appears that this formula is extremely interesting for Fourier analysis since it
provides explicit examples of crystalline measures, which can be defined following
Y. Meyer as [7]:

A discrete measure µ is crystalline if it is a tempered distribution and if the
measure itself and its Fourier transform µ̂ are sums of delta functions with discrete
supports:

µ =
∑

λ∈Λ

aλδλ µ̂ =
∑

s∈S

bsδs.

Collecting all delta functions on the left hand side the trace formula can be
written as:
∑

kn 6=0

(δ(k − kn) + δ(k + kn))− χδ(k) =
L

π
+

1

π

∑

p∈P

l(prim (p))Sv(p) cos kℓ(p).
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One may obtain similar summation formulas starting from multivariate stable
polynomials [5]. The supports of the corresponding measures are described as
zeroes of trigonometric polynomials. If the multivariate polynomials in addition
are symmetric, i.e. invariant under involution zj 7→ 1/zj, then the trigonometric
polynomials have only real zeroes and the corresponding measures are crystalline
measures. It appears that all one-dimensional crystalline measures are given by
real-rooted trigonometric polynomials [8]. It was proven recently that all such
polynomials can be obtained using our construction via multivariate stable polyno-
mials [1]. Spectral properties of Laplacians on metric graphs are further described
in [6, 3].
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Entropy constraints for ground state optimization

Hamza Fawzi

(joint work with Omar Fawzi, Samuel O. Scalet)

A fundamental computational problem in quantum many-body theory is to com-
pute the ground energy of local Hamiltonians. Consider a multipartite Hilbert
space H = ⊗v∈VCd with local dimension d, on a finite set of sites V . We con-
sider here 2-local Hamiltonians, where the interaction can be modeled by a graph
G = (V,E) on the set of sites V , and where a Hamiltonian term hij is attached to
each edge ij ∈ E

(1) H =
∑

ij∈E

hij ,

where each hij acts nontrivially only on sites i and j.
The ground energy of H is defined as its smallest eigenvalue. Due to the special

structure ofH , its matrix representation is generally sparse and thus one can apply
standard methods such as Lanczos iterations to compute its minimal eigenvalue.
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However, since the dimension of H grows exponentially with |V |, this is only
feasible for moderate values of |V |. It is of considerable theoretical and practical
interest to find efficient algorithms, that scale polynomially in |V |, to approximate
the ground energy of local Hamiltonians.

The smallest eigenvalue of H admits the following variational formulation:

(2) λmin(H) = min
ψ∈H

〈ψ,Hψ〉

〈ψ, ψ〉
.

Variational methods posit a certain form for the state ψ = ψθ, and find the value
of the parameters θ that minimize the objective function of (2). As such, these
methods provide upper bounds on λmin(H). A prominent example are tensor net-
work states, which have been extremely successful and in particular give provably
efficient algorithms for gapped systems in one dimension.

Another class of methods that have been studied in the literature are based on
convex relaxations and provide lower bounds on λmin(H). For 2-local Hamiltonians
H of the form (1), computing the energy 〈ψ,Hψ〉 only requires knowledge of the
two-body marginals ρij of |ψ〉〈ψ| for ij ∈ E. If we denote by C the set of two-body
marginals that are consistent with a global state on V , i.e.,

(3) C = Cd,V,E =
{
(ρij)ij∈E : ∃ρ ∈ D(⊗v∈VC

d), s.t. ρij = tr V \{i,j}ρ
}

where D(H) denotes the set of density operators on a Hilbert space H, then one
can write the ground energy problem for a 2-local Hamiltonian (1) as a linear
optimization problem over C:

(4) λmin(H) = min
(ρij)∈C

∑

ij∈E

tr [hijρij ].

To make this approach tractable, it is required to have a computationally efficient
representation of the convex set C. Unfortunately, it is highly likely that C does
not have any simple representation, e.g., it is known that the problem of checking
membership in C

2,[n],([n]
2 )

is QMA-hard.

Rather than aiming to describe C, we are interested in constructing efficient

outer relaxations of C, i.e., tractable convex sets Ĉ such that C ⊂ Ĉ. Replacing

C by Ĉ in (4) would then yield a lower bound on λmin(H). Such relaxations Ĉ
can be constructed by identifying necessary conditions that any set of marginals
(ρij) which are globally consistent must satisfy. Most relaxations that have been
constructed in the literature are based on semidefinite programming. We describe
here the most popular approaches:

• A simple relaxation can be obtained by simply imposing that the two-body
marginals are consistent on the intersection of their supports, i.e., one can take
(5)

Ĉloc
E =

{
(ρij)ij∈E : ρij ≥ 0, tr ρij = 1 ∀ij ∈ E, tr jρij = tr j′ρij′ ∀ij, ij′ ∈ E

}
.

This relaxation can be made tighter by introducing higher-order marginals of ρ.

This gives a hierarchy of the form C = Ĉloc
N ⊂ Ĉloc

N−1 ⊂ · · · ⊂ Ĉloc
2 ⊂ Ĉloc

E , where
N = |V |.
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• The Lasserre/sum-of-squares relaxation stems from the observation that if |ψ〉
is a global state on H, then 〈ψ,O†Oψ〉 ≥ 0 for any observable O acting on H. In
particular if O is a l-local operator, then O†O is at most 2l-local, and 〈ψ,O†Oψ〉 is
linear in the expectation values mF = 〈ψ, Fψ〉 of 2l-local observables F . It turns
out that the infinite family of constraints

(6) 〈ψ,O†Oψ〉 ≥ 0 ∀O l-local observable on H

can be encoded as a single positive semidefinite (psd) constraint of a matrix whose
entries are linear in the expectation values (mF ).

In this contribution, we are interested in relaxations for the convex set C that go
beyond semidefinite programming. In particular, we are interested in relaxations
that use entropies of the local marginals. Recall that the von Neumann entropy
of the system A for the state ρ is defined by

S(A)ρ = −tr ρA log ρA,

where ρA denoted the reduced state of ρ on the system A. In addition, the condi-
tional entropy is defined by

S(A|B)ρ = S(AB)ρ − S(B)ρ.

An important property about the latter is that it is concave in ρAB; this follows
from the identity

S(A|B)ρ = −D(ρAB‖idA ⊗ ρB)

whereD(ρ‖σ) = tr [ρ(log ρ−log σ)] is the relative entropy function, which is jointly
convex in (ρ, σ).

Our main contribution is to study two families of entropy constraints that yield
new strengthened relaxations for the ground energy problem. These relaxations are
obtained by imposing inequalities on the conditional entropies of local marginals
of the global state, and can be combined with any of the existing semidefinite
relaxations. By virtue of the concavity of the conditional entropy function, these
relaxations are all convex and can be solved efficiently using tools from convex
optimization [FS22].

The first family of entropy constraints come from weak monotonicity, and the
second family of constraints, that we call Markov Entropy Decomposition (MED)
constraints, are motivated by the work of Poulin and Hastings [PH11] and are
based on combining the chain rule together with strong subadditivity. Though
weak monotonocity constraints are in many cases stronger than MED constraints,
we show that in general the two families are not comparable. Our main message
is that for many natural Hamiltonians, imposing entropy constraints can lead to
significantly tighter bounds compared to simple consistency conditions captured

by Ĉloc
l . We also show limitations on the gains that can be obtained using weak

monotonicity constraints (and also MED in many settings): entropy constraints
involving l sites are implied by consistency constraints on 2l− 1 sites. As a result,

as the size of the matrix variables involved in Ĉloc
l is exponential in l, entropy

constraints can at most lead to a quadratic improvement in terms of the size of
the matrix variables.
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An intriguing open question arising from our work is to construct other entropy
constraints that could lead to tighter relaxations. This question is related to
obtaining inequalities for the so-called quantum entropy cone (see e.g., [LW05])
though it differs in several respects: in our case, the dimension of the subsystems
is fixed, the number of systems involved is bounded by l, and in order to obtain
convex relaxations, we look for expressions that are concave in the state ρ, e.g.,
conical linear combinations of conditional entropies.
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Symmetrically Hyperbolic Polynomials

Kevin Shu

(joint work with Greg Blekherman, Julia Lindberg)

A polynomial p ∈ R[x1, . . . , xn] is said to be hyperbolic in a direction v ∈ Rn if p
is homogeneous, p(v) 6= 0, and for any x ∈ Rn, the univariate polynomial p(x+ tv)
has only real roots. These polynomials turn out to be surprisingly pervasive in
real algebraic geometry, optimization, and probability.

These polynomials are natural generalizations of the notion stable polynomials
in the homogeneous case. The key example of such polynomials is the determinant
of a symmetric matrix. The fact that a symmetric matrix has real eigenvalues is
equivalent to the fact that det(X) is hyperbolic with respect to I ∈ Sym2(R

n).

Definition 1. We say that a polynomial is symmetrically hyperbolic if it is invari-
ant under permutations of variables and it is hyperbolic with respect to ~1, the all
1’s vector.

Definition 2. We say that a homogeneous symmetric polynomial of degree d is
hook-shaped if it is of the form

p(x) =

d∑

i=1

aie
d−i
1 (x)ei(x),

where ei is the elementary symmetric polynomial of degree i, and ai ∈ R for
i = 1, . . . , d.

Definition 3. A linear map T : R[t]n,0 → R[t]d,0 is a 0-sum hyperbolicity preserver
if T (Hn,0) ⊆ Hd,0. T is diagonal if T (tn−k) = γkt

d−k for all k = 0 . . . d, and
T (tn−k) = 0 for k > d
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Definition 4. If p is a hook-shaped polynomial, then the associated operator to
p is the function T : R[t]n,0 → R[t]d,0 defined as follows. If g(t) ∈ R[t]n,0 is a
polynomial so that

g(t) = a(t− r1)(t− r2) . . . (t− rn),

for r1, . . . , rn ∈ C, then we let

T (g)(t) = ap(~r − ~1t),

where ~r denotes the vector whose entries are the roots ri. We then extend this
definition to all g ∈ R[t]n,0 by continuity (note that this is possible because the
coefficients of T (g) are polynomials in the coefficients of g).

We might ask how the notion of a 0-sum hyperbolicity preserver relates the usual

notion of hyperbolicity preserver considered in [1, 2]. Clearly, if T̂ : R[t]n → R[t]d
is a diagonal linear map that preserves hyperbolicity for all polynomials in R[t]n,

then the restriction of T̂ to R[t]n,0 is a 0-sum hyperbolicity preserver. We might
ask if all such 0-sum hyperbolicity preservers occur in this way.

Definition 5. Let T : R[t]n,0 → R[t]d,0 be a 0-sum hyperbolicity preserver. We

say T is extendable if there exists a diagonal linear map T̂ : R[t]n → R[t]d so that

T̂ is a hyperbolicity preserver, and T is the restriction of T̂ to R[t]n,0.

Theorem 6. Let T : R[t]n,0 → R[t]d,0 be a 0-sum hyperbolicity preserver. If d ≤ 4,
then T is extendable, and moreover, this is the case if and only if

T ((x− 1)n−1(x+ n− 1))

has real roots, where d− 1 of them have the same sign.
On the other hand, if d ≥ 5, then there exists a 0-sum hyperbolicity preserver

which is not extendable.

Using this theorem, we can obtain characterizations of hook-shaped symmetri-
cally hyperbolic polynomials of low degree. We can say the most for cubics:

Theorem 7. Let p be a cubic symmetric polynomial. Then the following are
equivalent:

(1) p is symmetrically hyperbolic.
(2) The operator associated to p is a 0-sum hyperbolicity preserver.

(3) p(b+ ~1t) is real rooted, where b is any coordinate vector.
(4) ∆~1~1p is sum of squares (SOS).

We can also characterize quartic hook-shaped polynomials:

Theorem 8. Let p be a quartic hook-shaped symmetric polynomial. Then the
following are equivalent:

(1) p is symmetrically hyperbolic.
(2) The operator associated to p is a 0-sum hyperbolicity preserver.

(3) Let q(t) = p(b + ~1t), where b is a coordinate vector. Then q(t− 1
n ) is real

rooted, with at least 3 roots having the same sign.
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Finally, we will say more about a quintic example.

Theorem 9. Let

p = 4500e5 − 220e1e4 + 7e21e3,

which is in 5 variables. Then,

• p is symmetrically hyperbolic.
• p’s associated operator is not extendable
• ∆~1~1p is SOS
• p is not SOS hyperbolic.

Here are some comments on the proofs of this theorem. We are able to show
that p is symmetrically hyperbolic by using a computer to show that ∆~1~1p is SOS.
Similarly, we show that for some u ∈ Rn, ∆~1up is not SOS using a computer. Let
T be the associated operator to p. We show that T is not extendable by noting
that

T ((x− 1)4(x+ 4)) = 750(x− 1)2(x − 2)2(x+ 6),

and that in general, if

T ((x− 1)4(x + 4)) = (x − a)2(x− b)2(x + 2a+ 2b),

for a, b ∈ R+, then T is not extendable.

Open Problems

Our results leave open several interesting questions. Firstly, we might wonder
whether or not the natural extension of the Branden-Borcea characterization to
0-sum hyperbolicity preservers might hold:

Conjecture 1. Let T : R[t]n,0 → R[t]d,0 be diagonal. Then T is a 0-sum hyper-
bolicity preserver if and only if

T ((x− 1)n−1(x + n− 1))

has real roots with d− 1 having the same sign.

This conjecture would also immediately characterize hook-shaped symmetric
polynomials.

We have shown that this holds for d ≤ 4, and also that the sign condition on
the roots of T ((x− 1)n−1(x+ n− 1)) is necessary for all d. Furthermore, we have
extensive computational evidence that this conjecture holds when d ≤ 6, using
the following procedure: we chose a real rooted polynomial q ∈ R[t]d,0 with d− 1
roots of the same sign. For this polynomial q, there is a unique diagonal map T
satisfying T ((x − 1)n−1(x + n − 1)) = q, and a unique hook-shaped symmetric
polynomial p whose associated operator is T . We then verified that ∆~1,~1p is a sum
of squares. This leads us to an additional conjecture, which in a sense generalizes
the Newton inequalities:

Conjecture 2. If p is a hook-shaped symmetric polynomial, then p is symmetri-
cally hyperbolic if and only if ∆~1,~1p is SOS.
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One reason this may be difficult is that there are examples of hook-shaped
symmetrically hyperbolic polynomials p where p is not SOS hyperbolic.

A more speculative conjecture is as follows:

Conjecture 3. If p is hook-shaped and symmetrically hyperbolic, then the associ-
ated operator of p is extendable if and only if p is weakly SOS-hyperbolic.

We have a large amount of computational evidence that for cubics and quartics
that this holds in the sense that we cannot find any examples of such polynomials
which are not SOS-hyperbolic. Our evidence in the case of quintic polynomials is
more limited, though we have not disproven this conjecture yet.
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lg-concavity and sector-stability of polynomials

Nima Anari

In this talk, I explain two properties of polynomials with nonnegative coefficients
that are connected to fast mixing of random walks. A fractionally lg-concave poly-
nomial is one that becomes lg-concave as a function over Rn>0 after variables are
raised to a constant fractional power. I will show that the generating polynomial of
a distribution being fractionally lg-concave implies the existence of fast sampling
distributions for the distribution. Then I explain examples of combinatorial distri-
butions coming from matroid theory and the theory of delta-matroids that satisfy
fractional lg-concavity. The proof uses sector-stability of distributions associated
to these delta-matroids.

Two View Chiral Reconstructions and Real Cubic Surfaces

Rainer Sinn

(joint work with Andrew Pryhuber, Rekha R. Thomas)

We discuss projective reconstructions in computer vision for pinhole cameras from
the point of view of real algebraic geometry and chirality. A pinhole camera is
modelled as a 3 × 4 matrix A with real entries and maximal rank 3. This defines
a rational map A : P3

99K P2 that is not defined in the 1-dimensional nullspace of
A. The codomain of this map is a picture taken by the pinhole camera A. A scene
is a collection of cameras and world points, i.e., points in RP 3. The goal of image
reconstruction is to find such a scene given the pictures that the cameras have
taken. We will only look at the case of 2 cameras here and assume that the input is
a set of point pairs, which means a set P = {(xi, yi) ∈ RP 2×RP 2 : i = 1, 2, . . . , k}
of matched points in both images. The goal is to find cameras A1 and A2 and
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pointsXi ∈ RP 3 such that A1Xi = xi and A2Xi = yi. A projective transformation
of RP 3 of the scene (so cameras and world points) preserves these linear equations
so that projective reconstructions come in orbits under the projective linear group.

The goal of this talk is to discuss the underlying projective algebraic geometry
which goes back to the 19th century. The connection is particularly intriguing in
the case k = 5 of five point pairs and two cameras. We will see real cubic surfaces
with 27 real lines as well as a Schläfli double six consisting of twelve real lines.

The connection is based on an important tool in the computer vision literature
called a fundamental matrix. A fundamental matrix F is a 3×3 real matrix of rank
2. It encodes the relative location of two cameras up to projective transformation:
if A1 = [I3|0] and A2 = [G|t], where I3 is the 3 × 3 identity matrix and G is an
invertible 3 × 3 matrix, then the associated fundamental matrix is [t]×G, where
[t]× is the matrix representing the linear map v 7→ t×v given by the cross product
× on R3. The main result here says that there exists a projective reconstruction
of the point correspondence P as defined above if there is a fundamental matrix
F such that y⊤i Fxi = 0 for i = 1, 2, . . . , k (and such that F is P-regular). These
k linear equations in F are known as the epipolar equations.

However, we are interested in reconstructions where the points Xi lie in front
of the cameras A1 and A2. This can be modelled by inequality constraints in
RP 3 and translated to the setup of fundamental matrices. The chiral epipolar
inequalities are gi(F )gj(F ) ≥ 0 for 1 ≤ i < j ≤ k, where gi(F ) = y⊤i [t]×Fxi for a
generator t of the left kernel of F . Since such a vector t can be written in terms of
quadratic functions in the entries of F by Cramer’s rule, the polynomial gi(F ) is
cubic in the entries of F . So the product gigj has even degree in those variables.
In particular, its sign is invariant under scaling of F by real numbers.

To connect this general setup with cubic surfaces in P3 and the geometry of
the 27 lines on it, we assume from now on that k = 5 and that the point pairs
P are generic. Then the epipolar equations define a 3-dimensional subspace of
P8 = P(Mat3×3). Since a fundamental matrix is supposed to have rank 2, we
are interested in the intersection of the determinantal hypersurface in P8 with
this P3 defined by the epipolar equations. This gives our cubic surface S ⊂ P3.
By genericity, this surface is smooth and therefore contains exactly 27 real lines.
In fact, since the rank 1 matrices xiy

⊤
i defining the surface (via 0 = y⊤i Fxi =

trace
(
F (xiy

⊤
i )
)
) are real, it follows from a dimension count in linear algebra, that

S contains 10 real lines, namely Wxi
= {M ∈ S : Mxi = 0} and symmetrically

W yi = {M ∈ S : y⊤i M = 0} for i = 1, 2, . . . , 5. Moreover, the 5 lines Wxi
given

in terms of right kernels are pairwise skew because every point on S is a matrix
of rank 2. The same holds for the 5 lines W yi given in terms of left kernels. Two
lines Wxi

and W yj intersect if and only if i 6= j. In fact, these lines are contained
in a Schläfli double six, meaning that there are points x6 and y6 in RP 2 such that
the 6 lines Wxi

are pairwise skew, W yj are pairwise skew, and Wxi
intersects W yj

if and only if i 6= j. By the classification of the real forms of cubic surfaces, this
is enough to conclude that the cubic surfaces S arising in the context of chiral
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reconstruction always have 27 real lines. Moreover, S is isomorphic to the blow
up of P2 in x1, x2, . . . , x6 as well as the blow up of P2 in y1, y2, . . . , y6.

To interpret the chiral epipolar inequalities from this perspective, it suffices to
show that the hypersurface defined by gi intersects S in the two lines Wxi

and
W yi on S so that the inequality gigj can only change sign along the four lines
Wxi

∪ W yi ∪ Wxj
∪ W yj . Since these lines arise as the exceptional divisors or

strict transforms of conics in P2 under the isomorphism with the blow up of P2 in
x1, . . . , x6, we can see the semi-algebraic subset of S defined by these inequalities
in the corresponding image plane of the camera A1 that we are looking for.

More details, further references, and illustrating pictures can be found in our
paper [1].
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Optimization of trigonometric polynomials with symmetry

Evelyne Hubert

(joint work with Tobias Metzlaff, Philippe Moustrou, Cordian Riener)

Given a n–dimensional lattice Ω ⊆ Rn, a trigonometric polynomial is a function

f : Rn → R, u 7→ f(u) :=
∑

ω∈Ω

cω e
2πi〈ω,u〉,

where 〈·, ·〉 denotes the Euclidean scalar product and the finitely many nonzero
coefficients cω ∈ C satisfy c−ω = cω. Such functions are good L2–aproximations
for Λ–periodic functions, where Λ is the dual lattice. This paper offers a new
approach to optimizing such a trigometric function, over Rn, when this latter is
invariant under a crystalographic reflection group. We show how the problem can
then be reduced to polynomial optimization on a semi–algebraic set and handled
with a variation on Lasserre hierarchy. The resulting algorithm is applied to the
exploration of the spectral bound on the chromatic numbers of set avoiding graphs.

In the literature of trigonometric optimization, one often regards the lattice
simply as a free Z–module, that is, Ω = Zn, ignoring the geometry and only
taking central symmetry into account. For the purpose of optimization, a hierarchy
of Hermitian sums of squares reinforcements provides a numerical solution [13,
3]. Alternatively, one can apply Lasserre’s hierarchy with complex variables [25],
where one has to restrict to the compact torus.

In this article, Ω is the weight lattice of a crystallographic root system in Rn.
Root and weight lattices provide optimal configurations for a variety of problems in
geometry and information theory, with incidence in physics and chemistry. The A2

root lattice (the hexagonal lattice) is classically known to be optimal for sampling,
packing, covering, and quantization in the plane [11, 26], but also proved, or
conjectured, to be optimal for energy minimization problems [34, 9]. From an
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approximation point of view, weight lattices of root systems describe Gaussian
cubature [30, 31], a rare occurence on multidimensional domains.

The distinguishing feature of the lattices associated to crystallographic root
system is their intrisic symmetry. This latter is given by the so called Weyl group
W , a finite group generated by orthogonal reflections w.r.t. 〈·, ·〉. It is this feature
that we emphasize and offer to exploit in an optimization context. We present a
new approach to numerically solve the trigonometric optimization problem

f∗ := min
u∈Rn

f(u)

under the assumption of crystallographic symmetry, that is, for A ∈ W , we have
f(Au) = f(u), or equivalently cAω = cω. The first step of our approach is
a symmetry reduction that translates the trigonometric optimization above to
the problem of optimizing a polynomial over a semi–algebraic set, a subject that
ripened in the last two decades [27, 32, 33, 28, 29, 10, 18]. The second step of our
approach is thus an adaptation of Lasserre’s hierarchy of moment relaxations and
sums of squares reinforcements. We indeed modify the hierarchy introduced in
[22, 23] to work directly in the basis of generalized Chebyshev polynomials. These
are not homogeneous but naturally filtered by a weighted degree, different from
the usual degree.

The simplest case of this symmetry reduction scheme, the univariate case, is
obvious but maybe worth reviewing to get the initial idea. The group is then
W = {1,−1} and the invariance condition is thus f(−u) = f(u) for all u ∈ R.
That implies that one can write f(u) =

∑
k∈N

ck
2 (exp(2πi ku) + exp(−2πi ku)) =∑

k∈N
ck cos(2π ku) =

∑
k∈N

ck Tk(cos(2π u)), where {Tk}k∈N are the Chebyshev
polynomials of the first kind. As a consequence we have f∗ := minu∈Rn f(u) =
minz2≤1

∑
k∈N

ckTk(z), a polynomial optimization problem with semi–algebraic
constraints.

With Ω = Zn and W = {1,−1}n, one can use products of univariate Chebyshev
polynomials to operate a similar symmetry reduction. This is theA1×. . .×A1 case.
We look at all the lattices associated to crystallographic root systems, offering a
wider range of domains of periodicity (hexagon, rhombic dodecahedron, icosite-
trachoron, . . . ) and simplices of any dimension, or cartesian products of these, as
fundamental domains. The key to the symmetry reduction then is the existence
and properties of generalized Chebyshev polynomials. They allow to rewrite any
invariant trigonometric polynomials as polynomials of the fundamental generalized
cosines. These generalized Chebyshev polynomials arose in different contexts, in
particular in the search of multivariate orthogonal polynomials [14, 16, 21, 7]. A
more recent development is the description of their domain of orthogonality, the
image of the generalized cosines, as a compact semi–algebraic set given by a unified
and explicit polynomial matrix inequality [24]. Such a description is necessary to
proceed algorithmically with the obtained polynomial optimization problem.

In the algorithmic approach, we solve a primal/dual semi–definite program
(SDP) that models a moment–relaxation/sums of squares reinforcement in terms of
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generalized Chebyshev polynomials. Our Maple package GeneralizedCheby-

shev1 allows to compute the parameters of the SDP, specifically the matrices which
impose the semi–definite constraints. Beyond that, the package offers a large va-
riety of tools, including the matrices from [24], a function to rewrite invariants in
terms of generalized Chebyshev polynomials and an implemented recurrence for-
mula for their computation. We can thus compare our method with the one in [13]
in practice. We observe in several examples that the quality of the approximation
is improved, while the computational complexity is reduced.

As a second set of contributions, we apply our method to the computation of
spectral bounds for chromatic numbers of set avoiding graphs. The first such graph
considered was the Euclidean distance graph [35, 5, 6, 12], where the vertices are
the points of Rn and the set to be avoided is the sphere. As set of vertices we
consider either Rn, or a lattice thereof. As for the set to be avoided we mostly
consider the boundary of a polytope with crystallographic symmetry. Choosing
appropriate discrete measures on the polytope, the spectral bound from [5] made
specific to the chromatic number can be expressed as the solution of a max–min
optimization problem on a trigonometric polynomial. Our symmetry reduction
technique then allows us to retrieve, with simple proofs, the chromatic number
of the Cn lattice, of the graph avoiding the crosspolytope of radius 2 in Zn, and
of the graph avoiding the cube in Rn. In other cases, we apply our optimization
algorithm to compute lower bounds numerically. We improve on [17] by +2 for
the chromatic number of Z4 avoiding the crosspolytope of radius 4. We also give
further bounds for the rhombic dodecahedron as well as the icositetrachroron.
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sets avoiding unit distances. https://arxiv.org/abs/2207.14179, 2022.

[2] G. Ambrus and M. Matolcsi. Density estimates of 1-avoiding sets via higher order correla-
tions. Discrete Comput. Geom., 67(4):1245–1256, 2022.

[3] F. Bach and A. Rudi. Exponential convergence of sum-of-squares hierarchies for trigono-
metric polynomials. https://arxiv.org/abs/2211.04889, 2022.

[4] C. Bachoc, T. Bellitto, P. Moustrou, and A. Pêcher. On the Density of Sets avoiding Paral-
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[9] L. Bétermin and M. Faulhuber. Maximal theta functions universal optimality of the hexag-

onal lattice for madelung–like lattice energies. Journal d’Analyse Mathématique, 2023.
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[26] H. Künsch, E. Agrell, and F. Hamprecht. Optimal lattices for sampling. IEEE Transactions
on Information Theory, 51(2):634–647, 2005.

[27] J.-B. Lasserre. Global Optimization with Polynomials and the Problem of Moments. SIAM
Journal of Optimization, 11(3):796–817, 2001.

[28] J.-B. Lasserre. Moments, Positive Polynomials and Their Applications. Series on Optimiza-
tion and its Applications. Imperial College Press, 2009.

[29] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials. In
Emerging Applications of Algebraic Geometry, Springer 2009.

[30] H. Li and Y. Xu. Discrete Fourier analysis on fundamental domain and simplex of Ad lattice
in d variables. The Journal of Fourier Analysis and Applications, 16(3):383–433, 2010.

[31] R. Moody and J. Patera. Cubature formulae for orthogonal polynomials in terms of elements
of finite order of compact simple Lie groups. Advances in Applied Mathematics 47 2011.

[32] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical
Programming, 96(2):293–320, 2003.

[33] P. Parrilo and B. Sturmfels. Minimizing polynomial functions. In Series in discrete mathe-
matics and theoretical computer science, volume 60 AMS 2003.

[34] M. Petrache and S. Serfaty. Crystallization for coulomb and riesz interactions as a conse-
quence of the cohn–kumar conjecture. Proceedings of the AMS, 148(7):3047–3057, 2020.

[35] A. Soifer. The mathematical coloring book. Springer, New York, 2009. Mathematics of col-
oring and the colorful life of its creators.



874 Oberwolfach Report 15/2023

Vandermonde Varieties in Type B

Alison Rosenblum

(joint work with Saugata Basu)

This talk concerned the topology of Vandermonde varieties in the setting of type
B symmetry. Recent results of Basu and Riener leverage symmetry relative to
the action of the symmetric group Sn on Rn in the study of the cohomology of
semialgebraic sets. We hope to extend these principles to the next major class of
symmetry, and begin by studying a key class of symmetric sets known as Vander-
monde varieties in the type B setting.

Let S be a set defined by the polynomials {f1, . . . , fs} with each fj contained

in the set R[X1, . . . , Xn]
Sn

≤d of symmetric polynomials of degree at most d. The

action of Sn on Rn (by permuting variables) induces an action on the cohomology
spaces Hi(S), where throughout we will assume coefficients in Q. This action
allows us to apply the isotypic decomposition from representation theory to each
Hi(S):

Hi(S) ∼=Sn

⊕

λ⊢n

mi,λ(S) S
λ

where the decomposition is indexed over partitions λ of the number n. Sλ denotes
the Specht module associated to λ, and mi,λ(S) is the multiplicity of Sλ in Hi(S).
The dimensions of the Specht modules are well known and may be computed using
the “hook length formula,” so in order to compute the ith Betti number, i.e., the
dimension ofHi(s), one need only compute each multiplicity. A priori, the number
of partitons grows exponentially with n. However, Basu and Riener proved that
partitions which are too long relative to d cannot appear with positive multiplicity
in the decomposition.

Theorem 1 (Restriction Theorem for Partitions, Basu and Riener, [3]). For d ≥ 2,
mi,λ(S) = 0 when length(λ) ≥ 2d+ i− 1.

As a consequence, Basu and Riener in [3] develop an algorithm for computing

the first l Betti numbers of such a set S, with complexity bounded by (snd)2
O(d+l)

.
One key tool in the restriction theorem above is a class of sets known as Van-

dermonde varieties. These were classically studied in a trio of papers by Arnold
[1], Givental [4], and Kostov [5]. In the case of the symmetric group acting on
Rn (refered to as type A), we will define Vandermonde varieties using the Newton

power sums p
(n)
A,m = Xm

1 + · · · + Xm
n . For a positive integer d ≤ n and a point

y = (y1, . . . , yd) ∈ Rd, we define the type A Vandermonde variety

VA,d,y = {x ∈ Rn | p
(n)
A,1(x) = y1, . . . , p

(n)
A,d(x) = yd}

We will be most interested in studying the portion of VA,d,y that is contained in a
fundamental region relative to the group’s action. In the present case, we will take

the Weyl chamber, W
(n)
A = {(x1, . . . , xn) ∈ Rn | x1 ≤ · · · ≤ xn}. We will denote

the restriction of a Vandermonde variety to this set by Z
(n)
A,d,y = V

(n)
A,d,y∩W

(n)
A . Basu
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and Riener showed in [3] that each non-empty Z
(n)
A,d,y together with its intersections

with the walls of the Weyl chamber forms a regular cell complex (an open subset
X of R is said to be regular if X and its closure are homeomorphic as a pair to
the open ball of some dimension and its closure). We have now done the same in
the next major class of symmetry.

Type B refers to the action of the groupWB(n) = (Z/2Z)n⋊Sn of signed per-
mutations. Elements act on Rn by both permuting coordinates and changing their
sign. To define Vandermonde varieties in type B, we draw upon their charicteriza-
tion as the intersection of level sets of the first d generators of the ring of polynomi-
als invariant relative to the symmetry at hand. In the case of type B, a convenient

choice is the Newton power sums of even degree, p
(n)
B,m = X2m

1 + · · · +X2m
n . For

1 ≤ d ≤ n and y ∈ Rd, the type B Vandermonde variety is then

VB,d,y = {x ∈ Rn | p
(n)
B,1(x) = y1, . . . , p

(n)
B,d(x) = yd}

The Weyl chamber in type B is defined by W
(n)
B = {(x1, . . . , xn) ∈ Rn | 0 ≤

x1 ≤ · · · ≤ xn}. We have shown that regularity continues to hold for the type B
restricted Vandermonde variety.

Theorem 2. For every 1 ≤ d ≤ n and y ∈ Rn, the interior of Z
(n)
B,d,y is either

empty, a single point, or a regular cell of dimension n − d. It follows that this

set together with the intersection of Z
(n)
B,d,y with the walls of W

(n)
B is a regular cell

complex.

The proof of Basu and Riener in [3] involves a concept known as monotonicity,
as develped by Basu, Gabrielov, and Vorobjov in [2]. Monotonicity in type A
allows for an interesting shortcut in the type B regularity proof. The regularity of
the Vandermonde varieties in type B is expected to lay the fondation for proving
a type B analogue of Basu and Riener’s restriction theorem. Their paper first
establishes the restriction theorem (or something very similar) for Vandermonde
varieties. We have put in place many of the ingredients for a type B restriction
theorem for Vandermonde varieties.

To understand the (co)homology of a symmetric set by studying it only on a
fundamental region, we must pay specific attention to the walls. The walls of the
fundamental region correspond to Coxeter generators CoxA(n) (resp. CoxB n))
of the given group. In the type A case, we may use the adjacent transpositions
sj = (j j + 1) as generators and focus on the geometric interpretation of sj as

the wall obtained by intersecting W(n) with {(x1, . . . , xn) ∈ Rn | xj = xj+1}. In
type B, we may use the generators in CoxA(n) and add one generator s0 which
corresponds to changing the sign on the first coordinate. The associated wall would
be the intersection of Wn

B with {(x1, . . . , xn) ∈ Rn | 0 = x1}. We have used the
type B regularity theorem above in conjunction with type B analogues of several
of Arnold, Givental, and Kostov’s theorems to establish the following statement

about relative cohomologies. Let W
(n)
B,sj

denote the wall corresponding to sj .
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Theorem 3. Let d ≥ 2 and y ∈ Rd. If T ⊂ CoxB(n), then

Hi

(
Z

(n)
B,d,y, Z

(n)
B,d,y ∩

(
⋃

s∈T

W
(n)
B,s

))
= 0

when card(T ) ≥ 2d+ i

This provides the vanishing of direct summands in a lesser-known decomposition
of the homology spaces, given below. We assume that d is at least 2.

H∗(V
(n)
B,d,y) ≃WB(n)

⊕

T⊂CoxB(n)

H∗

(
Z

(n)
B,d,y, Z

(n)
B,d,y ∩

(
⋃

s∈T

W
(n)
B,s

))
⊗Ψ

(n)
B,T

where Ψ
(n)
B,T is what is known as the Solomon module in type Bn indexed by T .

Basu and Riener used a very similar result in type A to prove their restriction
theorem for Vandermonde varieties, and so we expect the above vanishing to yield
a type B restriction theorem first for Vandermonde varieties and then for general
symmetric semialgebraic sets.

We would eventually like to extend these results to all finite reflection groups.
Sufficiently indecomposible reflection groups can be classified into a small number
of types (technically, this would be the classification of Coxeter systems). We have
addressed or are addressing types A and B. The above results hold equally well for
type C, and so only type D, the dihedral groups, and a few scattered exceptional
types remain. While we could establish our general result by checking case by
case, it would be nice to also determine the principles underlying our arguments,
in order to establish an overarching proof.
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Université Toulouse Jean Jaurès
5 Allée Antonio Machado
31058 Toulouse
FRANCE

Dr. Abhiram Natarajan

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM

Dr. Ion Nechita

CNRS, FERMI
Laboratoire de Physique Theorique
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