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Introduction by the Organizers

The MATRIX-MFO Tandem Workshop “Stochastic Reinforcement Processes and
Graphs” was held synchronously at two venue: MFO in Oberwolfach and MATRIX
near Melbourne. The organisers were Markus Heydenreich (LMU Munich), Mark
Holmes (University of Melbourne), Victor Klepstyn (CNRS, Rennes), and Cécile
Mailler (University of Bath), with Markus Heydenreich and Cécile Mailler based
at MFO, Mark Holmes and Victor Klepstyn based at MATRIX. The workshop
was well attended, with approximately 20 participants at MFO, 12 at MATRIX,
and 5 online.

Reinforcement in a nut-shell. Pólya-type urn models are random processes
where balls are repeatedly sampled from an urn, and additional balls are added
depending on the colour of the sampled ball. Since their introduction in 1931,
generalisations of Pólya urn models have spurred a rich variety of mathematical
research activity. They are basic building blocks of competition-type probabilistic
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models in the fields of economics, biology and neuroscience. A single urn is of-
ten insufficient to capture the complexity inherent in real-world applications, and
consequently systems of interacting urns have gained popularity. In the field of
neuroscience, when a neuron fires, only synapses that are connected to this neu-
ron can be chosen to transmit the signal. Hence, Pólya models with graph-based
interactions are a natural starting point for addressing one of the mechanisms of
neuroplasticity: synapses that have been identified as useful in the past are more
likely to be chosen in the future.

In recent decades, various random walk models involving reinforcement have be-
come central objects of study in the probability literature. This includes (linearly)-
reinforced random walks (linearly-RRW), as introduced by Coppersmith and Di-
aconis, and once-RRW as introduced by Davis (this was introduced as a simpler
model, but in many ways this is harder to study). Other variants have included
strongly RRW, non-backtracking RRW, and RRW with finite or decaying memory.
Often such models are well-understood on certain graphs with special properties
such as trees or complete graphs. Connections with other fields of mathemat-
ics, such as random Schrödinger operators and stochastic dynamical systems have
been successfully exploited, but there remain many important and elegant open
problems, as well as some (apparently) embarrassingly simple ones.

Summary of the workshop. The workshop was organised around six overview
talks with accompanying open-problem sessions:

• “The ant random walk”, by Daniel Kious and Bruno Schapira,
• “Preferential attachment”, by Mia Deijfen and Remco van der Hofstad,
• “Condensation”, by Steffen Dereich and Peter Mörters,
• “Graph-based interacting Pólya urns”, by Viktor Kleptsyn
• “Interacting urns”, by Giacomo Aletti and Andrea Ghiglietti,
• “Self-reinforced random walks”, by Silke Rolles and Christophe Sabot.

Each couple of participant gave a 1-hour talk presenting their model and some
important results in the existing literature. They then chaired a 1-hour discussion
session during which the participants had the opportunity to ask questions about
the model and discuss open problems. Plenty of time was left free in the program
for participants to discuss the open problems informally in smaller groups during
the week. We are hoping that these open problem sessions gave the opportunity
to the participants to start new collaborations on these important open problems
on reinforcement.

In order to identify and highlight various open problems that arise from appli-
cations of probability to other areas of science, such as cognition, we had, early on
in the week, a talk by Lucy Palmer from the Florey Institute of Neuroscience and
Mental Health (Melbourne), followed by a discussion of the potential mathematical
problems raised by her talk.
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We had also planned a few “standard” talks on recent results, with the aim to
span the whole width of the research area of reinforcement. We had the following
speakers:

• Jean Bertoin on “Pólya urns with innovation”
• Stefan Grosskinsky on “Asymptotics of generalized Pólya urns with non-
linear feedback”

• Christian Hirsch on “Extremal linkage networks”
• Lucile Laulin on “The superdiffusive limit of the elephant random walk”
• Bas Lodewijks on “Super-linear preferential attachment with fitness”
• Pierre Tarrès on “⋆-Reinforced Random Walks, Bayesian Statistics and
Statistical Physics”

• Stanislav Volkov on “Linear competition processes and generalized Pólya
urns with removals”

Although all participants work on reinforcement, it was the first time most of
them attended a workshop centered around this topic. We had excellent feedback
about this, with participants saying that they enjoyed seeing how other partici-
pants also worked on reinforcement, but from different perspectives.
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Abstracts

Finding geodesics on graphs using reinforcement learning algorithms

Daniel Kious and Bruno Schapira

(joint work with C. Mailler)

We present different models, inspired by reinforcement learning, for the behavior
of ants searching for foods. More precisely, our models consist in launching sequen-
tially random walks on a finite graphs with two marked nodes, say N (for nest)
and F (for food), all starting from N and stopped once they reach F . Now the
rule is that, after reaching F , each random walk decides to increase the weights of
some of the edges that it has crossed, according to some suitably chosen algorithm,
with the goal of minimizing the time needed for the future random walks to reach
the food.

In our first paper [1], we consider two possible models. In the first one, each
random walk selects uniformly at random one of the shortest paths going from N
to F within the subgraph visited by the walk, and add one to the weights of all
the edges on this path. In the second model, once it has reached F , the walker
performs a loop erasure on its reversed path that it took for going from N to F .
This way it produces a simple path from F to N , and again one increases the
weights of all the edges on this path by one. Our main conjecture is that on any
finite graph, with two marked nodes as above, the only edges whose weight will
grow linearly are those lying on a geodesic between N and F .

We prove this result, for the second model, for a class of graphs called Series-
Parallel (SP), which are built recursively as follows. By definition a single edge,
with one of its end vertices called N and the other one called F , is a SP graph.
Furthermore, given any two SP graphs with marked nodes N1, F1 and N2, F2

respectively, one obtains a new SP graph by gluing them in parallel, i.e. identifying
N1 with N2 and F1 with F2, or by gluing them in series, i.e. identifying F1 and
N2, and calling N1 the new nest and F2 the new food. In particular this class of
graphs includes the set of finite trees, where the root is the nest, and all leaves are
identified to a unique vertex, the food.

Furthermore, we also prove the conjecture in the case of the first model, for
one of the simplest possible graph which is not in the class SP, which we call
the losange graph. It is made of 4 vertices, say u1, u2, u3, u4, with u1 the nest,
u4 the food, u1 and u4 are linked to u2 and u3 by an edge, and u2 and u3 are
also linked by an edge. The proof for this graph, despite looking very simple, is
quite complicated, as it involves various couplings between different types of urn
processes.

In our second paper, we consider a different algorithm, which looks much sim-
pler, but is actually quite difficult to analyze. This algorithm simply consists in
adding one to the weights of all the edges crossed by the random walk in its way
from N to F . In this case we show on a variety of examples, that the algorithm
no longer finds geodesics, but on the other hand it has the interesting feature that
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all weight sequences normalized by the number of random walks, converge almost
surely to some deterministic constants, and we conjecture that this is a general
fact which should hold on any finite graph. Thus we found a new model with
a linear reinforcement mechanism, for which deterministic limits appear, a bit
like for Pólya-urns with irreducible replacement matrices. In terms of stochastic
approximation, this means that the limiting ODE has a unique attractor.

Several problems on this model remain open, such as proving our main conjec-
ture on general finite graphs, or extending the model in order to be able to treat
the case with several sources of food in a meaningful manner.

References
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Recent developments in preferential attachment models

Maria Deijfen and Remco van der Hofstad

We discuss recent developments in preferential attachment models, focussing on
their degree distribution, local convergence and small-world structure. We follow
[18, Chapter 8] and [19, Chapters 5 and 8].

Model definition. Preferential attachment graphs are dynamical and grow with
time. Specifically, at each integer time, a vertex with m edges is added to the
graph. The edges are attached to vertices choosen proportionally to degree plus
some parameter δ. The graph at time n is denoted by PA(m,δ)

n and its vertices
by v(m)

1 , . . . , v(m)
n . We start by defining the model for m = 1, for which the graph

consists of a collection of trees. In this case, PA(1,δ)

1 consists of a single vertex with
a single self-loop.

Fix δ ≥ −1. We denote the degree of vertex v(1)

i in PA(1,δ)

n by Di(n), where,
by convention, a self-loop increases the degree by 2. Conditionally on PA(1,δ)

n , the
edge of vertex v(1)

n+1 is connected to a second vertex (including itself), according
to the probabilities

P
(

v(1)

n+1 → v(1)

i | PA(1,δ)

n

)

=















1 + δ

n(2 + δ) + (1 + δ)
for i = n+ 1,

Di(n) + δ

n(2 + δ) + (1 + δ)
for i ∈ [n].

This model was first defined by Barabási and Albert [2] for δ = 0, and formalised
by Bollobás and Riordan in [5], again for δ = 0. See e.g. [11] for a version with
random out-degrees and general δ, and [18, Section 8.9] for more background on
the history of the model.

The model with m > 1 is defined in terms of the model for m = 1 as follows.
Fix δ ≥ −m. We start with PA(1,δ/m)

nm , and denote the vertices in PA(1,δ/m)

nm by
v(1)

1 , . . . , v(1)
mn. Then we merge the m vertices v(1)

1 , . . . , v(1)
m in PA(1,δ/m)

n to become
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vertex v(m)

1 in PA(m,δ)

n . In doing so, we let all the edges that are incident to any of
the vertices in v(1)

1 , . . . , v(1)
m be incident to the new vertex v(m)

1 in PA(m,δ)

n . Then, we
merge the m vertices v(1)

m+1, . . . , v
(1)

2m in PA(1,δ/m)

nm to become vertex v(m)

2 in PA(m,δ)

n ,

etc. This defines the model for general m ≥ 1. The resulting graph PA(m,δ)

n is a
multi-graph with precisely n vertices and mn edges, so that the total degree is
equal to 2mn.

Degree structure. We start by describing the degree structure of the preferential
attachment model, starting with the degree evolution of fixed vertices:

Theorem 1 (Degrees of fixed vertices). Consider PA(m,δ)

n with m ≥ 1 and δ > −m.
Then, Di(n)/n

1/(2+δ/m) converges almost surely to a proper random variable ξi as
n→ ∞.

See e.g. [22] for the degrees of fixed vertices, including the maximal degree. It
is also known that P(ξi > 0) = 1, see e.g. [18, Chapter 8].

We next investigate the degree distribution in the graph. We write

Pk(n) =
1

n

∑

i∈[n]

1{Di(n)=k}

for the (random) proportion of vertices with degree k at time n. For m ≥ 1 and
δ > −m, we define (pk)k≥0 by pk = 0 for k = 0, . . . ,m− 1 and, for k ≥ m,

pk = (2 + δ/m)
Γ(k + δ)Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)Γ(k + 3 + δ + δ/m)
.

Note that pk ∼ k−(2+δ/m) as k → ∞. The probability mass function (pk)k≥0 arises
as the limiting degree distribution for PA(m,δ)

n :

Theorem 2 (Degree sequence in preferential attachment model). Consider PA(m,δ)

n

with m ≥ 1 and δ > −m. There exists a constant C = C(m, δ) > 0 such that, as
n→ ∞,

P

(

max
k

|Pk(n)− pk| ≥ C

√

logn

n

)

= o(1).

This result was derived non-rigorously for δ = 0 in [2], rigorously in [6] for
δ = 0, and for general δ > −m in various places, see e.g. [11] as well as [18, Section
8.9] for further references.

Local convergence. Local convergence of finite graphs was first introduced in [3]
and, in a different context, independently in [1]. It describes the intuitive notion
that a finite graph, seen from the perspective of a uniformly chosen vertex, looks
like a certain limiting graph.

A rooted graph is a pair (G, o), where G = (V (G), E(G)) is a graph with vertex
set V (G), edge set E(G), and root vertex o ∈ V (G). Further, a rooted or non-
rooted graph is called locally finite when each of its vertices has finite degree
(though not necessarily uniformly bounded). For a rooted graph (G, o), we let
B(G)

r (o) denote the (rooted) subgraph of (G, o) of all vertices at graph distance at
most r away from o. Two rooted (finite or infinite) graphs (G1, o1) and (G2, o2)
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are called isomorphic, abbreviated as (G1, o1) ≃ (G2, o2), when there exists a
bijection φ : V (G1) 7→ V (G2) such that φ(o1) = o2 and {u, v} ∈ E(G1) precisely
when {φ(u), φ(v)} ∈ E(G2). We let G⋆ denote the space of rooted graphs modulo
isomorphisms.

We say that Gn converges locally in probability to (G, o) ∼ µ precisely when,
for every rooted graph H⋆ ∈ G⋆ and all integers r ≥ 0,

p(Gn)(H⋆) :=
1

|V (Gn)|
∑

v∈V (Gn)

1

{B
(Gn)
r (v)≃H⋆}

P−→ µ(B(G)

r (o) ≃ H⋆).

Theorem 3 (Local convergence of preferential attachment models). Fix m ≥ 1
and δ > −m. The preferential attachment model PA(m,δ)

n converges locally in
probability to the Pólya point tree.

This result was proved in [4], see also [17] for the most general result applying
to settings where vertices attach an i.i.d. number of edges upon arrival as proposed
in [11], as well as [15, 21, 23] for related results. The Pólya point tree is a multi-
type branching process with continuous type space. Rather than giving its precise
definition, we state the main ingredient of the proof of local convergence. This
key ingredient concerns a finite-graph Pólya urn description, which is very much
in line with the topic of the workshop.

We start by introducing the necessary notation. Let (ψj)j≥1 be independent
Beta random variables with parameters α = m+ δ, βj = (2j − 3)m+ δ(j − 1), i.e.,

ψj ∼ Beta
(

m+ δ, (2j − 3)m+ δ(j − 1)
)

.

Define

ϕ(n)

j = ψj

n
∏

i=j+1

(1− ψi), S(n)

k =

n
∏

i=k+1

(1− ψi).

We now construct a graph as follows:

⊲ Conditionally on ψ1, . . . , ψn, choose (Uk,i)k∈[n],i∈[m] as a sequence of in-
dependent random variables, with Uk,i chosen uniformly at random from
the (random) interval [0, S(n)

k−1].

⊲ For k ∈ [n] and j < n, join two vertices j and k if j < k and Uk,i ∈ I(n)

j

for some i ∈ [m] (with multiple edges between j and k if there are several
such i).

Call the resulting random multi-graph on [n+1] the finite-size Pólya graph of size
n. The main result is then as follows:

Theorem 4 (Finite-graph Pólya version of preferential attachment models). Fix
m ≥ 1 and δ > −m. Then, the distribution of the preferential attachment model
with out-degree m, no self-loops and intermediate degree updates is the same as
that of the finite-size Pólya graph of size n.

The importance of Theorem 4 is that the edges in the finite-size Pólya graph
are independent conditionally on the Beta variables (ψk)k≥1.
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Graph distances. We next investigate the graph distances in the preferential
attachment model. These graph distances turn out to depend sensitively on the
precise value of δ, where, for a graph G and two vertices u, v ∈ V (G), we let
distG(u, v) denote the graph distance in G between u and v, and we let diam(G)
denote the diameter of G:

Theorem 5 (Typical distances preferential attachment models). Consider PA(m,δ)

n

with m ≥ 2. Let o1, o2 be chosen independently and uniformly at random from [n].
(a) Fix δ > 0. There exist 0 < c1 ≤ c2 <∞ such that, as n→ ∞ and whp,

c1 log n ≤ dist
PA

(m,δ)
n

(o1, o2) ≤ c2 log n.

(b) Fix δ = 0. As n→ ∞,

dist
PA

(m,δ)
n

(o1, o2)
log logn

logn

P−→ 1, diam(PA(m,δ)

n )
log logn

logn

P−→ 1.

(c) Fix δ ∈ (−m, 0). As n→ ∞,

dist
PA

(m,δ)
n

(o1, o2)

log logn

P−→ 4

| log (τ − 2)| ,
diam(PA(m,δ)

n )

log logn

P−→ 4

| log (τ − 2)|+
2

logm
.

These results are proved in [16] for δ > 0, [5] for δ = 0 and [8, 12, 16] for
δ ∈ (−m, 0). See [19, Chapter 8] for an extensive overview of such results.

Open problems. Here, we discuss some open problems for preferential attach-
ment models.

(a) Preferential attachment models with removal. Preferential attachment models
are usually formulated as pure growth models, that is, once a vertex or an edge has
been added it cannot be removed. However, in many application vertices and/or
edges can also disappear from the network and it is therefore natural to analyse
versions of the model type that allow for this possibility. Attempts have been
made in [9] and [7] for discrete-time models with random removal. The expected
degree sequence can then be analysed but concentration results exist only in weak
versions. In [23], a continuous-time embedding of the basic preferential attachment
tree is introduced, which allows the model to be analysed using theory for general
branching processes. In [10], this embedding is extended to a version of the model
with various types of vertex removals by working with a birth and death process
instead of a pure birth process. In this setting, also concentration results can
be obtained. It turns out that, if vertices die randomly, the tail exponent is
not affected, while if vertices die proportionally to degree, then the power-law
distribution is lost. It would be interesting to analyse the effect of vertex and/or
edge removal on other quantities, such as the component structure and the vertex
of maximal degree. For a given choice of removal mechanism, does the network
contain a giant component? Is the vertex with maximal degree persistent, or does
it change with time?

(b) Relation local limits preferential attachment models and Bernoulli model.
Dereich and Mörters [15] investigate a model where vertices come in and connect
conditionally independently to all vertices of the graph with a probability that is a
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function of the in-degree of that vertex. Indeed, fix a function f : N → [0,∞), and
start with BPA(f)

1 being a graph containing one vertex v1 and no edges. At each
time n ≥ 2, we add a vertex vn. Conditionally on BPA(f)

n−1, and independently for
every v ∈ [n− 1], we connect this vertex to v by a directed edge with probability

(1)
f(D(in)

v (n− 1))

n− 1
,

where D(in)
v (n− 1) is the in-degree of vertex v at time n− 1.

Dereich and Mörters [15], see also [13, 14], consider concave functions f : N 7→
(0,∞) that satisfy that f(k+1)−f(k) < 1 for every k ≥ 0, and describe the degree
evolution and giant in this model. They also show that the out-degree distribution
is close to Poisson with a certain limiting parameter. Finally, in the course of the
proof for the limiting size of the giant, they identify the local limit (even though
they do not state local convergence explicitly). What is the relation between the
local limits of the two models?

It can be expected that these agree, provided we appropriately adapt the pref-
erential attachment model with random out-degrees studied in [17]. Indeed, we
should use preferential attachment based only on the in-degree (note that for fixed
degrees this makes no difference, and only changes δ to δ+m), and in the setting
where each vertex attaches an i.i.d. Poisson number of edges with the appropriate
parameter. This, however, has not been proved, partly due to the rather different
descriptions of the local limit in the model in [15] compared to those in[4] and [17].
It would be highly useful to make this connection clearer.

(c) Local limits preferential attachment models beyond the affine case.
Following up on this, for their model, Dereich and Mörters [15] are able to consider
preferential attachment models with fairly general attachment functions f . The
local limits for such models, but now with a fixed number of out-edges per vertex,
has not been considered beyond the tree case for which m = 1 (see [23]). For the
tree case, and as described above, Rudas, Tóth and Valkó rely on the continuous-
time embedding of the process to relate it to a continuous-time branching process
that can be studied using the classical work of Jagers and Nerman [20]. However,
for the graph setting, this embedding does not directly extend, and the Pólya urn
representations that are so powerful for the affine case are no longer available.
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Condensation

Steffen Dereich and Peter Mörters

The talk is an overview over selected aspects of the mathematical research into
the phenomenon of condensation.

1. What is condensation?
As temperature decreases in a gas, drops of liquid form. These drops are charac-
terised by a higher particle density than elsewhere in the gas.

We explain the simplest stochastic model in which such phenomenon can be ob-
served, which is the balls-in-boxes model. In this model the gas is contained in a
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container, which we partition into n boxes. We denote by X1, . . . , Xn the number
of particles in each box. The total number of particles is then fixed as

m =

n
∑

i=1

Xi with n,m→ ∞ such that
m

n
→ ρ.

Subject to this constraint the probability of a configuration X1, . . . , Xn is

1

Z

n
∏

i=1

qXi .

If qk ∼ ck−β for some β > 2 the model arises

• as stationary distribution of the zero range process,
• by conditioning independent random variables Xi with P(Xi = k) ∼ ck−β

on the large deviation event {X1 + . . .+Xn = m}.
In this context it was shown in [4] that if µβ = EXi denotes the (unconditional)
particle density then, for ρ > µβ,

Z ∼
(

ρ− µβ

)−β
n1−β

and the particle numbers in the largest and second largest box satisfy

X(1) = (ρ− µβ)n+ o(n), X(2) = o(n).

This means that all excess mass condenses in a single box.

2. Condensation and large deviations
We show two ways in which condensation arises in the context of upper large
deviations for random geometric graphs.

Take a torus Tn of volume n and form a graph taking

• a Poisson process of intensity one as vertices,
• make each vertex v the centre of a ball with independent random radiusRv,
• form an edge {v, w} if the balls B(v,Rv) and B(w,Rw) intersect,
• let En be the number of edges and suppose µ := limn→∞ E

[

En

n

]

<∞.

First, in the scenario of heavy-tailed radius distributions P(Rv > x) ∼ x−β+1

forthcoming work [5] (partly based on [6]) shows that for ρ > 0 non-integer, and k
the unique integer such that k − 1 < ρ < k,

P{|En| ≥ n(ρ+ µ)} = (F (ρ) + o(1))

(

n

k

)

nk(1−β),

where F (ρ) is an explicit functional of the excess edge density ρ. The underlying
effect is a condensation of the degree distribution in exactly k vertices, whose
associated balls cover a nonvanishing proportion of the torus volume.

Second, in the contrasting scenario of constant radii Rv = 1 it is shown in [1] that

1√
n logn

logP
(

|En| ≥ n(ρ+ µ)
)

= −
√

ρ

2
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Here the underlying effect is that
√
2ρn vertices condense in a set of diameter one

and therefore form a drop of higher density.

3. Condensation and growth processes
We consider a continuous time branching processes with reinforcement, in which
the emergence of condensation can be studied in a stochastic context, see [3].

We start with a single individual with a genetic fitness chosen according to a prob-
ability measure µ on (0, 1). Individuals never die and give birth to new individuals
with a rate equal to their genetic fitness, the different reproduction rates causing
a selection effect. When a new individual is born, it is a mutant with probability
β, in which case it gets a fitness drawn independently of everything else from µ.
If the new individual is not a mutant, it inherits the fitness of its parent. Under
the assumption

β

∫

µ(dx)

1− x
< 1,

a positive fraction of the mass in the empirical fitness distribution condenses, as
time goes to infinity, in the essential supremum of the fitness distribution µ (here
set to be one). We pose some open questions on the nature of the condensation
process and show how these are solved in [2] for a simplified variant of the model.
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Graph-based interacting Pólya urns

Victor Kleptsyn

(joint work with Christian Hirsch, Mark Holmes)

1. Introduction

This talk is devoted to presenting open problems in the study of the so-called
(W,α)-reinforcement models, or WARMs for short, that were introduced in [6]
(see also [1]). These are graph-based models of interacting Pólya urns, defined
in the following way. Assume that a graph G = (V,E) is given, as well as a
bounded function p : V → (0,∞). Also, assume that we are given the initial
counts (Ne(0))e∈E . Then, we take for every vertex v ∈ V a Poisson process
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(times between points of the process are i.i.d. exponentials) with intensity p(v),
the processes for all the vertices being independent. Whenever at some t a clock
at some vertex v ∈ V rings, we consider the adjacent edges e ∼ v, and reinforce
one of these edges ξ using the generalized Pólya urn with the weight function
W (x) = xα:

Nξ(t+) = Nξ(t−) + 1, Ne(t+ 0) = Ne(t− 0), e 6= ξ,

where for every e0 ∼ v, the probability of selecting e0 from among those edges
incident to v is

Nα
e0

∑

e′∼vN
α
e′
.

Hereafter we will refer to p(v) as to the firing rate at v due to the motivation
coming from a network of neurons: vertices are neurons, and edges are axons
joining them, that are reinforced by the signal passing through them.

Provided that the function p is bounded and the degrees of vertices do not
grow too much (for instance, it suffices to assume that the degrees are bounded),
this process is well-defined [3]. Then, one can ask to determine the asymptotic

behaviour of the scaled weights Xe(t) :=
Ne(t)

t as t→ ∞.
Note that for the case of a finite graph, this continuous-time process can be

transformed into a discrete-time one by considering at the process at the times at
which the clocks ring. In this case, on each step the reinforcing vertex is chosen

independently with the probability p′(v) := p(v)∑
u p(u) .

This random process admits a stochastic approximation by the differential equa-
tion

d

dt
xe =

1

t
(−xe + fe(x)),

where fe(x) is the rate of reinforcement of the edge e:

fe(x) =
∑

v∼e

pv
xαe

∑

e′∼v x
α
e′
.

The 1
t factor can be removed by the exponential time change, t = eτ . Also, for the

finite graph where this expression is well-defined, the resulting differential equation
is gradient-like (see e.g. [7]) for the function

L(x) = −
∑

e∈E

xe +
1

α

∑

v∈V

log

(

∑

e∼v

xαe

)

.

Namely, one has
d

dτ
xe = xe

∂L(x)

∂xe
.

The properties of this flow highly depend on whether α is smaller than 1, equal
to 1 or larger than 1, in the same way as they do for one generalized Pólya urn.
We say that x = (xe)e∈E is an equilibrium for the process if xe = fe(x) for every
e ∈ E.

Unless otherwise stated, below we will assume that the firing rates are bounded
above, and that the graph (V,E) has bounded degrees.
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2. Subcritical case: α < 1

For a finite graph, the function L is concave, which implies the convergence of the
vector (xe(t))e∈E to the unique equilibrium (which maximises L on the simplex
xe ≥ 0,

∑

e xe =
∑

v p(v)). It is thus natural to ask if such a convergence takes
place for general graphs:

Conjecture 1. On infinite graphs there is a unique equilibrium x and Xe(t) → xe
for every e ∈ E almost surely.

This was partially established by Y. Couzinié, C. Hirsch, in [2, Theorem 2.2].
Assuming that p(v) ≡ 1 they have shown the convergence for α < 1

2 , and for α < 1
for the particular case G = Z.

3. Critical case: α = 1

In the case α = 1, the function L is non-strictly concave, and in some situations
this leads to the non-uniqueness of an equilibrium. In particular, this happens on
even-length cycle [8]. For instance, if the firing rates are uniform, p(v) ≡ 1, the
equilibria on the cycle of length 2k are of the form

{(a, b, a, b, . . . , a, b) | a+ b = 2}.
However, on any odd cycle the equilibrium is unique. Moreover, as the length of
the even-length cycle increases, the law of (a, b) converges to the Dirac measure
in (1, 1). Considering the graph Z as an “infinite cycle”, this then motivates the
following conjecture.

Conjecture 2. For G = Z with firing rates p(v) ≡ 1, one has almost surely

∀v xv(t) → 1, as t→ ∞.

4. Supercritical case: α > 1

On finite graphs, it is known that due to the gradient-likeness of the approximating
flow, the weights vector X(t) almost surely converges to an equilibrium, and that
this equilibrium cannot be linearly unstable [4]. For α > 2 such an equilibrium
should be supported on a forest: every connected component is a tree [7]. For
α > 25 and p(v) ≡ 1 it is known that each such tree is a whisker, a tree graph of
diameter at most 3 [7].

Open Problem 1. Improve the lower bound α > 2 for which every connected
component is a tree.

Open Problem 2. Improve the lower bound α > 25 for which (when p(v) ≡ 1)
every connected component is a whisker.

Note that for the triangle graph with p(v) ≡ 1 an edge dies out (i.e. some
Xe(t) → 0) almost surely if α > 4/3, but this does not hold if α < 4/3 [6]. This
means that the lower bounds α > α0 (with α0 = 2 and α0 = 25) in the open
problems above are not true in general if α0 < 4/3. Perhaps α > 4/3 is sharp for
both results.
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For infinite graphs the Lyapunov function cannot be applied (the sum becomes
infinite), and much less is known. However it is known (by different arguments:
comparing to a percolation-type model called the corrupted compass model) that
for any graph with bounded degrees of vertices, for a sufficiently large α almost
surely the limit of x(t) exists, and the edges on which this limit is supported
decompose into finite connected components [3].

On the other hand there are examples of regular trees with firing rates decreas-
ing to 0 sufficiently quickly with the distance to the root, in which almost surely
there is an infinite number of infinite connected components, formed by surviving
edges [5].

Conjecture 3. Assume that firing rates p(v) are bounded away from zero and
from infinity, and that α > 1. Then the limit limt→∞Xe(t) exists almost surely
for each e, and the surviving edges form finite connected components. In particular,
for α > 2 they are trees.

Also, it is interesting to know whether the example on the regular tree can be
modified for the case of Zd for some d ≥ 2.

Open Problem 3. Do there exist a bounded (but not bounded away from 0) func-
tion p, d ≥ 2, and α > 1 for which the WARM on the graph G = Z

d almost surely
(or indeed with positive probability) contains an infinite connected component of
surviving edges? If such a component exists, is it unique?
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Networks of reinforced stochastic processes

Andrea Ghiglietti

(joint work with Giacomo Aletti, Irene Crimaldi)

The model we introduced in [1] consists in a collection of very general stochastic
processes with reinforcement that are connected among each others through a given
underlying network. These processes are located on the vertices of the graph and
the strength of the interactions is represented by weights associated to the edges.
In [1] the complete synchronization of the system and some CLTs have been derived
under some crucial assumptions on the adjacency matrix of the network and on the
form of the reinformcement sequence. Then, under the same setting in [2, 3] the
processes of the empirical and weighted means computed on the vertices have been
investigated. Here we present the main results reported in our recent work [4] that
provide the complete characterization of the first-order asymptotic behavior of this
general class of stochastic models removing any assumption on the topology of the
graph and on the reinforcement sequence. This very general framework allowed
us to find some surprising conditions and limiting behaviors, such as the partial
synchronization of the system or the periodic clockwise dynamics.

The reinforcement mechanism is a key feature governing the dynamics of many
biological, economic and social systems. In paricular, we consider the framework
in which there is a collection of N ≥ 2 agents that at each discrete time t ∈
N can take one of two possible actions S = {0, 1}, so that the variable Xt,j ∈
{0, 1} will indicate which action has been taken at time t by the agent j. The
reinforcement mechanism would suggest that, if the agent j takes action 1 at time
t, then the probability of taking action 1 at time t+1 should be greater. This can
be modeled by a time-dependent Pólya urn having balls of color 0 or 1, in which the
color of the sampled balls represent the action taken. In this case, the dynamics
of the urn proportion Zt,j can be written as Zt+1,j = (1 − rt)Zt,j + rtXt+1,j,
with E[Xt+1,j |Ft] = Zt,j and an appropriate deterministic reinforcement sequence
(rt)t∈N, where rt ∈ (0, 1) depends on the quantity of balls added to the urn at
time t (e.g. for classic Pólya urn rt ∼ 1/t). We call this class of processes with
self-reinforcement ”Reinforced Stochastic Processes (RSPs)” and they can be put
in connection with the notion of time-dependent Pólya urn.

Let us now consider a system where there are interactions, and so the decision
of each agent could be influenced by the other agents’ opinion; in other words,
the probabilty of taking an action by a person j could depend also on the propen-
sity towards that action of the agents connected with the person j. In order to
model this phenomenon of interaction, we introduce a finite weighted direct graph
(V,E,A) where V = {1, . . . , N} is the set of vertices (agents of the system), E
the set of edges and A the weighted adjacency matrix (interaction matrix ), with
A non-negative (A ≥ 0) and normalized (A⊤1 = 1). Then, using the compact
notation Zt = (Zt,1, . . . , Zt,N )⊤ and Xt = (Xt,1, . . . , Xt,N )⊤, we can write the
dynamics of a system of interacting RSPs as

(1) Zt+1 = (1− rt)Zt + rtXt+1, E[Xt+1|Ft] = A⊤
Zt.



658 Oberwolfach Report 12/2023

Notice that ah,k = 0 means that agent h has no “direct influence” on agent k, as
ah,k quantified how much the decision Xk,t+1 depends on the propensity Zh,t+1.

From now on, let us assume A irreducible (for extensions to A reducible see [4])
and exclude trival initial conditions (Z0 6= 0 and Z0 6= 1). Then, we will focus on
the following goals:

(i) sufficient and necessary conditions on the reinforcement sequence (rt)t and
on the interaction matrix A for the complete almost sure asymptotic syn-
chronization of the personal inclinations towards a certain random variable
Z, i.e.

(2) Zt
a.s.−→ Z1;

(ii) the behaviour of the system when the complete almost sure asymptotic
synchronization does not hold; in particular, sufficient and necessary con-
ditions on the reinforcement sequence and on the interaction matrix for a
partial almost sure asymptotic synchronization of the personal inclinations;

(iii) in the case of complete almost sure asymptotic synchronization towards Z,
the probability that Z takes the extreme values, 0 or 1, i.e. the probability
of asymptotic polarization of then personal inclinations.

Starting with point (i), we have derived the following sufficient and necessary
conditions:

(a) When A⊤ is aperiodic (period d = 1), (2) holds true if and only if
∑

t rt =
+∞;

(b) When A⊤ is periodic (period d ≥ 2), (2) holds true if and only if
∑

t rt(1−
rt) = +∞.

Regarding point (ii), let us now focus on the behavior of the system when neither
(a) nor (b) hold true. It is quite easy to prove that when

∑

t rt < +∞, all the
processes (Zt,h)t, h = 1, . . . , N , converge almost surely, but, for any pair of distinct
nodes, there exists a strictly positive probability that the corresponding processes
do not synchronize. It is much harder instead to characterize the behavior of the
system when A⊤ is periodic,

∑

t rt = +∞,
∑

t rt(1 − rt) < +∞; indeed, in this
case only a partial almost sure asymptotic synchronization takes place:

(Zt,h1 − Zt,h2)
a.s.−→ 0 ∀h1, h2 ∈ same cyclic class ⇔

∑

t

rt = +∞.

What is even more surprising in this setting is that there exists a strictly positive
probability that the entire process (Zt)t does not converge. Specifically, denote as

Z
(C)
t the projection of Zt on the eigen-space associated with the d eigenvalues with

|λ| = 1, and construct the d-dimensional random vector Z
(c)
t taking one element

for each cyclic class. Then, we have:

(1) Zt,h
a.s.∼ Z

(c)
n,ℓ, with ℓ being the cyclic class containing h;

(2) Z
(c)
t,ℓ (1 − Z

(c)
t,ℓ )

a.s.−→ 0 for each ℓ = 0, . . . , d − 1 (i.e. the limit set of each

cyclic class is given by the barrier-set {0, 1});
(3) ‖Z(c)

t ‖ almost surely converges;
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(4) N∞ = a.s.− limt ‖Z(c)
t ‖2 is a random variable taking values in {0, . . . , d}

with P (N∞ = 0) + P (N∞ = d) < 1 and it represents the limit of the
number of cyclic classes that are near to 1.

As a consequence:

(5) On {N∞ = 0} ∪ {N∞ = d}, we have that all the Z
(c)
t,ℓ converges towards

the same barrier (hence, we have complete synchronization of the system
toward the same barrier).

(6) On {1 ≤ N∞ ≤ d − 1}, we have an asymptotic periodic behaviour of

the components of Z
(c)
t : ∃ an integer-valued increasing sequence (σt)t s.t.

Z
(c)
σt,ℓ

− Z
(c)
σt+1,ℓ−1

a.s.−→ 0.

In particular, when
∑

t(1 − rt) < +∞, we have σt+1 = σt + 1 eventually,

so that Zt+d − Zt
a.s.−→ 0 and P (Xt+d = Xt eventually) = 1.

Finally, regarding point (iii), we established several results in which the prob-
ability of asymptotic polarition has been proved to be strongly related with the
asympotic behavior of the reinforcement sequence (rt)t. Indeed, rt and (1 − rt)
indicate in (1) the weights associated to the ”new” and the ”past” information,
respectively. Hence, since the new information Xj,t+1 is an element of the barrier
set {0, 1}, we can heuristically see that the process Zj,t will tend to polarize when

rt is relevant compared to (1− rt) or
∏t

n(1− rn), while Zj,t will hardly reach the
barriers when rt quickly vanishes. Formally, given the complete synchronization
and denoting Q = P (Z = 0) + P (Z = 1), we proved the following:

(a) if rt = O(
∏t−1

n=0(1−rn)) and
∑

t
r2t

[
∏t−1

n=0(1−rn)]1−δ
< +∞ for some δ ∈ (0, 1),

then Q = 0 (Non-trivial asymptotic polarization is negligible);

(b) if
∑

t

∏t
n=0(1−rn) < +∞, then Q > 0 (non-trivial asymptotic polarization

with a strictly positive probability);
(c) if

∑

t r
2
t < +∞, then Q < 1 (non-almost sure asymptotic polarization);

(d) if
∑

t r
2
t = +∞, then Q = 1 (almost sure asymptotic polarization).
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On some aspects of linearly edge-reinforced random walks and
vertex-reinforced jump processes

Silke Rolles and Christophe Sabot

Linearly edge-reinforced random walk (errw) was introduced in 1986 by Copper-
smith and Diaconis [5] and first investigated by Pemantle [18] on trees. A cru-
cial property of the errw is partial exchangeability. The process is a mixture of
reversible Markov chains. The mixing measure was computed by Coppersmith-
Diaconis [5] and later by Keane-Rolles [10]. The remarkable shape of this mixing
measure remained mysterious for quite some time. However, bounds for hitting
probabilities in Z

2 [15], recurrence on strips at all reinforcements [14] and on a
modification of Z2 at strong reinforcement [16] were shown based on this mixing
measure. In the last 15 years many progress has been made on errw leading to a
rather precise description of its asymptotic behavior and its companion process,
the vertex-reinforced jump process (vrjp).

From a different perspective, in 2010, Disertori, Spencer, and Zirnbauer inves-
tigated a non-linear hyperbolic supersymmetric sigma model, called H2|2-model,
motivated by localisation/delocalisation properties of the Anderson model [9, 8].
A key step in the understanding of the errw has been the understanding of the
relation between the errw, the vrjp, and the H2|2-model [21]. This led to a proof
of localisation at strong reinforcement in any dimension [21, 1] and existence of a
transient regime at weak reinfocement in Z

d, d ≥ 3, [21, 7].
More recently, a representation of the vrjp in terms of random Schrödinger

operators [23] has proved useful to show recurrence in dimension 2 for any re-
inforcement, both for errw and vrjp [24, 20, 11]. In [19] a convex monotonicity
property of the vrjp, generalising Rayleigh’s monotonicity, was understood and
used to prove uniqueness of the phase transition between recurrence and tran-
sience in dimension d ≥ 3. Recently, a better understanding of the density of
states of this Schrödinger operator was obtained [6].

The vrjp and the H2|2-model have shown very rich connections with differ-
ent topics. Let us mention the deep connections with Dynkin’s or Ray-Knight’s
theorems about local times, starting with [22, 13], culminating in the deep under-
standing of the relation between geometry of the spin space and Ray-Knight type
theorems of different self-interacting processes [4, 3]. Besides, in the same family
of supersymmetric models, the H2|4-model was related to percolation conditioned
to have no loops. Mermin-Wagner’s estimates proved for the H2|2-model were
generalised to the H2|4-model to prove absence of phase transition in dimension 2
for this model [2]. In different directions, a relation with the vrjp/H2|2-model and
interlacement was exhibited [17] and relations with stochastic calculus [12, 25].

In the overview talk, we presented the models and

• the relation between errw, vrjp, and the H2|2-model,
• the representation with random Schrödinger operators,
• the application to the asymptotic behavior, namely recurrent phase, tran-
sient phase, exponential localisation, and

• some of the many open questions which remain in the area.



Stochastic Reinforcement Processes and Graphs 661

References

[1] O. Angel, N. Crawford, and G. Kozma, Localization for linearly edge reinforced random
walks, Duke Math. J. 163(5) (2014), 889–921.

[2] R. Bauerschmidt, N. Crawford, T. Helmuth, and A. Swan, Random spanning forests and
hyperbolic symmetry, Comm. Math. Phys. 381(3) (2021), 1223–1261.

[3] R. Bauerschmidt, T. Helmuth, and A. Swan, Dynkin isomorphism and Mermin-Wagner the-
orems for hyperbolic sigma models and recurrence of the two-dimensional vertex-reinforced
jump process, Ann. Probab. 47(5) (2019), 3375–3396.

[4] R. Bauerschmidt, T. Helmuth, and A. Swan, The geometry of random walk isomorphism
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processes, Ann. Inst. Henri Poincaré Probab. Stat. 57(2) (2021), 1058–1080.

[18] R. Pemantle, Phase transition in reinforced random walk and RWRE on trees, Ann. Probab.
16(3) (1988), 1229–1241.

[19] R. Poudevigne-Auboiron, Monotonicity and phase transition for the VRJP and the ERRW,
JEMS (2022)

[20] C. Sabot. Polynomial localization of the 2D-vertex reinforced jump process, Electron. Com-
mun. Probab. 26 (2021), Paper No. 1, 1–9.

[21] C. Sabot and P. Tarrès, Edge-reinforced random walk, vertex-reinforced jump process and
the supersymmetric hyperbolic sigma model, JEMS 17(9) (2015), 2353–2378.

[22] C. Sabot and P. Tarrès. Inverting Ray-Knight identity, Probab. Theory Related Fields
165(3-4) (2016), 559–580.

[23] C. Sabot, P. Tarrès, and X. Zeng, The vertex reinforced jump process and a random
Schrödinger operator on finite graphs, Ann. Probab. 45(6A) (2017), 3967–3986.



662 Oberwolfach Report 12/2023

[24] C. Sabot and X. Zeng, A random Schrödinger operator associated with the vertex reinforced
jump process on infinite graphs, J. Amer. Math. Soc. 32(2) (2019), 311–349.

[25] C. Sabot and X. Zeng. Hitting times of interacting drifted Brownian motions and the vertex

reinforced jump process, Ann. Probab. 48(3) (2020), 1057–1085.

Asymptotics of generalized Pólya urns with non-linear feedback

Stefan Grosskinsky

(joint work with Thomas Gottfried)

Generalized Pólya urns with non-linear feedback are an established probabilistic
model to describe the dynamics of growth processes with reinforcement, a generic
example being competition of agents in evolving markets [1]. Depending on the
feedback function, it is well known that the model may exhibit monopoly, where
a single agent achieves full market share. Besides this general result, various
further results for particular feedback mechanisms have been derived from different
perspectives, see [3] for more details and [6] for a review. The purpose of this paper
is to provide a comprehensive account of the possible asymptotic behaviour for a
large general class of feedback functions.

1. The model

Let A ≥ 2 be the number of agents and Fi : N → (0,∞) the feedback function
of agent i ∈ [A] := {1, . . . , A}. We define a homogeneous, discrete-time Markov
process (X(n))n∈N0 = ((X1(n), . . . , XA(n))n∈N0 on the state space NA with initial
condition X(0) = (X1(0), . . . , XA(0)) ∈ N

A such that Xi(0) ≥ 1 for all i ∈ [A],
and transition probabilities

P

(

X(n+ 1) = X(n) + e(i)
∣

∣X(n)
)

=
Fi(Xi(n))

F1(X1(n)) + ...+ FA(XA(n))
, i = 1, . . . , A,

where e(i) = (δi,j)
A
j=1 is the i-th unit vector. We denote by N := X1(0) + ... +

XA(0) ≥ A the initial market size.
In addition, we define the corresponding time-inhomogeneous Markov process

(χ(n))n∈N0 of market shares

χi(n) :=
Xi(n)

N + n
∈ (0, 1) , i = 1, . . . , A, n ∈ N0 ,

with χ(n) = (χ1(n), . . . , χA(n)) ∈ ∆o
A−1, where ∆o

A−1 is the interior of the unit

simplex ∆A−1 := {(x1, . . . , xA) ∈ [0, 1]A : x1+ ...+xA = 1}. Of particular interest
is the event of strong monopoly of an agent i ∈ [A]

sMoni(χ(0), N) := P

{

lim
n→∞

∑

j 6=i

Xj(n) <∞
}

,

i.e. only one agent wins in infinitely many steps.
This model was essentiall introduced in [4]. A useful alternative construction

of the process is provided by the so-called exponential embedding (see e.g. [6] and
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references therein). Dynamic results with stochastic approximation (see e.g. [7]
and references therein) are also covered in [3] but not included in this report.

2. Monopoly case

It is generally known (see e.g. [5]) that strong monopoly occurs with probability

one, i.e. P
(

⋃A
i=1 sMoni(χ(0), N)

)

= 1, if and only if

(M)

∞
∑

k=1

1

Fi(k)
<∞ for at least one i,

otherwise this probability is zero. We distinguish two main types of feedback.

Definition: Let agent i fulfill (M). We call i of type P (for polynomial) if

lim
k→∞

Fi(k)
∞
∑

l=k

1

Fi(l)
= ∞

and of type E (for exponential) if

lim sup
k→∞

Fi(k)

∞
∑

l=k

1

Fi(l)
<∞.

The (asymptotic) attraction domain of an agent i ∈ [A] is defined as

Di :=
{

χ(0) ∈ ∆o
A−1 : lim

N→∞
P(sMoni(χ(0), N)) = 1

}

⊂ ∆o
A−1.

Theorem 1: Let at least one agent satisfy (M) and all agents satisfying (M) are
either of type P or type E. Moreover, assume one of the following conditions:

(1) At least one agent is of type E and for all χ(0) ∈ ∆o
A−1, i, j ∈ [A]

lim inf
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
= 0, lim sup

N→∞

Fi(χi(0)N)

Fj(χj(0)N)
= ∞ do not hold simultaneously .

(2) No agent is of type E and all agents of type P (there is at least one) fulfill

lim sup
k→∞

1

k
Fi(k)

∞
∑

l=k

1

Fi(l)
<∞.

In addition, suppose that limN→∞
Fi(χi(0)N)
Fj(χj(0)N) ∈ [0,∞] exists for all χ(0) ∈

∆o
A−1, i, j ∈ [A].

Then the asymptotic attraction domains are polytopes that dissect the simplex up

to boundaries, i.e.
⋃A

i=1Di = ∆A−1 , where (·) is the topological closure. If agent
i does not satisfy (M) then Di = ∅.

Moreover, in the situation of assumption (1), the monopoly is even total with
high probability for large N , i.e. one agent wins in all steps. This does in gen-
eral not hold in the situation of assumption (2). In addition, [3] provides results
allowing an explicit calculation of the attraction domains in generic examples.
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3. Non-monopoly case

Now, assume that no agent fulfills (M) and define ai(t) :=
∫ t

1
1

Fi(s)
ds for an appro-

priate extension of Fi.

Theorem 2: Let all agents fulfill

lim sup
k→∞

1

k
Fi(k)

k
∑

l=1

1

Fi(l)
<∞ and lim inf

k→∞

1

kp
Fi(n)

k
∑

l=1

1

Fi(l)
> 0

for some p > 1
2 . If the limit

(1) χi(∞) := lim
t→∞

a−1
i (t)

a−1
1 (t) + ...+ a−1

A (t)
∈ [0, 1]

exists for an i ∈ [A], then

χi(n)
n→∞−−−−→ χi(∞) almost surely .

If the limit in (1) does not exist, then χi(n) does not converge for n→ ∞.

The assumptions of Theorem 2 are fulfilled e.g. for Fi(k) = kβ , β < 1 or
Fi(k) = log k, but almost linear feedback such as Fi(k) = k log k is not in-
cluded. Nevertheless, using results in [2], we also cover the almost linear case
in [3], which reveals weak monopoly, i.e. all agents win in infinitely many steps,
but limn→∞ χi(n) = 1 for a random agent i.
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Super-linear preferential attachment with fitness

Bas Lodewijks

(joint work with Tejas Iyer)

We consider a model of randomly growing trees called super-linear preferential at-
tachment with fitness, which features both super-linear reinforcement and fitness.
In this model, we have an attachment function f : N0 × R+ → R+, a sequence of
random i.i.d. vertex-weights (Wi)i∈N, and we initially start with a tree T1, which
consists of a root vertex labelled 1 with weight W1. At each step n ≥ 2 we con-
struct Tn from Tn−1 as follows. A new vertex n with weight Wn is introduced and
connected to one vertex already present in the tree. Conditionally on Tn, vertex
n connects to vertex i ∈ {1, . . . , n− 1} with probability

f(degn−1(i),Wi)
∑n−1

j=1 f(degn−1(j),Wj)
,

where degn−1(i) denotes the degree of vertex i in the tree of size n − 1 created
so far. We focus on the case where f grows super-linear in its first argument. In
particular, we discuss the two examples f(k,W ) = Wkp and f(k,W ) = kp +W
(multiplicative fitness and additive fitness, respectively), where p > 1 is a constant
called the super-linear exponent.

Super-linear preferential attachment models with fitness are a combination of
two different types of preferential attachment models. In the first, super-linear
preferential attachment models, independently introduced by Krapivsky and Red-
ner [7] and Drinea et al. [3], vertices are introduced one at a time and a new
vertex connects to an existing vertex, sampled with probability proportional to kp

when the degree of the vertex is k, for some p > 1. The other class of models
is preferential attachment with fitness. In these kind of models, each vertex is
assigned a (random) weight and the probability to connect to a vertex depends on
both its weight and degree. Most commonly studied are two variants: multiplica-
tive fitness and additive fitness as introduced by Barabasi and Bianconi [1] and
Ergün and Rodgers [4], respectively. Here, the probability to connect to a vertex
is proportional to the product, respectively the sum, of its degree and weight.

Super-linear preferential attachment models exhibit winner-takes-all behaviour,
where there almost surely exists a unique vertex that attains an infinite degree,
whilst all other vertices have finite degree, as shown by Oliviera and Spencer [9].
Preferential attachment models with fitness, on the other hand, can exhibit fitter-
take-all behaviour, where new and fitter vertices with higher weights are able to
outcompete older vertices and attain the largest degrees, see e.g. [2, 5, 8].

We are interested in the effect of the competition induced by the vertex-weights
and how this competition manifests itself in the presence of super-linear rein-
forcement of degrees. For both the multiplicative and additive fitness setting,
we identify a phase transition in the structure of the infinite limiting tree T∞ =
limn→∞ Tn. In particular, we identify whether the limiting infinite tree contains a
unique vertex with infinite degree or a unique infinite path almost surely, based on
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work of Iyer [6]. We quantify the phase-transition in terms of the tail-behaviour
of the fitness distribution and the super-linear exponent p.

Let us assume that the vertex-weight satisfy

P(W1 ≥ x) = ℓ(x)x−(α−1), x > 0,

for some α > 1 and ℓ a slowly-varying function (i.e. limx→∞ ℓ(cx)/ℓ(x) = 1 for
any c > 0). Then, in the multiplicative setting:

• When (p−1)(α−1) > 1, T∞ contains a unique vertex with infinite degree.
• When (p−1)(α−1) < 1, T∞ contains a unique infinite path and all vertices
have finite degree.

On the other hand, in the additive setting:

• When p(α− 1) > 1, T∞ contains a unique vertex with infinite degree.
• When p(α − 1) < 1, T∞ contains a unique infinite path and all vertices
have finite degree.

The analysis of the phase transition and the behaviour of the tree is based on
embedding the preferential attachment tree into an explosive Crump-Mode-Jagers
processes. Here, each vertex gives birth according to an associated explosive point
process, and explosion denotes the concept that the process produces an infinite
total progeny in finite time. The analysis of these CMJ processes uses a novel idea
based on the number of individuals in such a process that explode before all their
ancestors. When this number is almost surely finite, this implies that the time
at which explosion occurs, coincides with with the explosion time of the random
point process associated with a single individual. As a result, this unique individual
attains an infinite degree almost surely. On the other hand, when instead every
individual almost surely has a child that explodes before itself, it follows that a
unique infinite path appears and all vertices have finite degree almost surely. This
is due to the fact that the explosion time of the process is then strictly smaller
than the explosion time of the point process associated with any individual.

This novel approach allows us to recover the results of Oliviera and Spencer [9]
and extend them from preferential attachment models with only super-linear re-
inforcement to models with both super-linear reinforcement and fitness. Our ap-
proach also allows us to deal with settings without fitness for which the analysis
used by Oliviera and Spencer breaks down.

We also obtain results in a more general setting, where fewer assumptions on
the attachment function f are required. Here we provide conditions on f and the
weight distribution that imply the almost surely existence of a unique vertex with
infinite degree or a unique infinite path. Furthermore, we can prove results related
to the number of subtrees in the infinite tree T∞ in the infinite degree regime.
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Linear competition processes and generalized Pólya urns
with removals

Stanislav Volkov

(joint work with Serguei Popov, Vadim Shcherbakov)

A competition process is a continuous time Markov chain that can be interpreted
as a system of interacting birth-and-death processes, the components of which
evolve subject to some sort of interactions. This process is, probably, the most
known example of such Markov chains: for instance, competition processes with
non-linear interaction (e.g., of the Lotka-Volterra type) were originally proposed
to model competition between populations; please see [1], [3], [6], [7] and references
therein.

During the talk, we analyse the linear version of the above process, namely
the case where a component of the process increases with a linear birth rate and
decreases with a rate given by some linear function of other components, and a
zero is an absorbing state for each component (when a certain component becomes
zero, it stays zero forever, i.e., becomes extinct). We show that, with probability
one, eventually only a random subset of non-interacting components of the process
survives. A similar result also holds for the relevant generalized Pólya urn model
with removals.

Formally, fix an integer N ≥ 1. An N ×N matrix A = (aij) with non-negative
elements and zeros on the main diagonal is called an interaction matrix. Given
a number α > 0 and an interaction matrix A = (aij) consider a continuous-
time Markov chain X(t) = (X1(t), . . . , XN (t)) ∈ Z

N
+ , t ∈ R+, with the following

transition rates

(1) qxy =

{

αxi, y = x+ ei;
(

∑N
j=1 aijxj

)

1{xi>0}, y = x− ei,

where x, y ∈ Z
N
+ , and ei = (0, 0, . . . , 0, 1, 0, . . . , 0) is the i-th unit vector in Z

N
+ .

We call the process X(t) with transition rates (1) a linear competition process.
The quantity aij ≥ 0 indicates how much component i is affected by component j
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(in biological terms, the fact that aij > 0 can be interpreted as a predator j
hunting prey i). Note that the birth rate α is the same for all the components;
unfortunately, the question about the long-term behaviour of the process remains
open for the situation when it is not the case.

Let ζ(n) = (ζ1(n), . . . , ζN (n)) ∈ Z
N
+ , n ∈ Z+, be the embedded Markov chain

corresponding to X(t). Denote Fn = σ(ζ(1), . . . , ζ(n)), and

R(ζ) =

N
∑

i=1



αζi + 1{ζi>0}

N
∑

j=1

aijζj



 , ζ = (ζ1, . . . , ζN ),

then the transition probabilities of Markov chain ζ are given by

P
(

ζ(n+ 1) = ζ(n) + ei
∣

∣Fn

)

=
αζi(n)

R(ζ(n))
,

P
(

ζ(n+ 1) = ζ(n) − ei
∣

∣Fn

)

=

{∑N
j=1 aijζj(n)

R(ζ(n)) if ζi(n) ≥ 1;

0 if ζi(n) = 0.

Our main result is the following:

Theorem. Let X(t) be a linear competition process with transition rates (1)
specified by a parameter α > 0 and an interaction matrix A and ζ(n) be the
corresponding embedded Markov chain. Suppose that Xi(0) = ζi(0) ≥ 0, i =
1, 2, . . . , N , and for every subset I = {i1, i2, . . . , iK} ⊆ {1, . . . , N} denote

EI =
{

lim
t→∞

Xi(t) = lim
n→∞

ζi(n) = ∞ if i ∈ I; .... = 0, if i /∈ I
}

.

Let us call a non-empty I disjoint in A, if aij = aji = 0 for all i, j ∈ I. Then
for every disjoint in A subset I we have P(EI) > 0. Moreover, no other limiting
behaviour is possible, i.e.

P





⋃

I: I disjoint in A

EI



 = 1

so, with probability one, some random subset I of non-interacting components of
the process X(t) survives, and the surviving components behave as independent
Yule processes, each with the same parameter α. As a result, for large n the
process {ζi(n), i ∈ I} has the same distribution as the classical Pólya urn with K
different types of balls.

(A slightly more restrictive result holds if Xi(0) ≥ 1 for all i.)

An interesting observation is that the embedded Markov chain can be also regarded
as a Pólya-type urn model with removals (for some extensive results of multi-type
Pòlya urns see e.g. [5]). Indeed, w.l.o.g. assume that α and all aij are integers.
Consider a Markov chain Y (n) = (Y1(n), . . . , YN (n)) ∈ Z

N
+ , n ∈ Z+, where Yi(n)

represents a number of balls of type i = 1, . . . , N in a urn. The dynamics of the
model is as follows. Suppose an urn contains Yi ≥ 1 balls of type i ∈ {1, 2, . . . , N}.
Pick a ball of type i with probability proportional to Yi, and then return it to
the urn with α additional balls of the same type; at the same time for each j 6= i
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remove aji, Yj balls of type j (or just all available balls of type j if there are less
of them than this quantity). Similar processes were considered in [2] and [4].

It turns out that the above result holds for both linear competition process and
the urn model with removals.
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Limits of Pólya urns with innovations

Jean Bertoin

At each step of a Pólya urn scheme, a ball is drawn uniformly at random from an
urn, independently of the preceding steps. One observes its color; then the ball
is returned in the urn together with a random numbers of balls of different colors
according to some fixed distribution that depends only on the color of the sampled
ball. Most often, it is assumed that the set of all possible colors is finite, with the
notable exception of certain recent contributions that include [1, 2, 3, 5, 6, 8, 9].
The quantities of interest are the proportions of balls with given colors after a
large number of steps.

We are interested in a variation of the Pólya urn scheme which incorporates
innovations, in the sense that at each step, balls with new colors that have never
been used before can be returned in the urn, and the space S of colors is an
arbitrary measurable space. A typical replacement consists of a pair (C, ξ), where
C is a random variable with values in {−1, 0, 1, 2, . . .} which represents the number
of copies of the sampled ball which are returned in the urn (the case C = −1
accounts for the situation where the sampled ball is removed from the urn), and
ξ a point process on S which represents the random family of new balls which are
simultaneously added. The dynamics are hence fully encoded by the kernel of laws
(Ps)s∈S that specify the distributions of the pair (C, ξ) as a function of the color
s of the sampled ball.
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We make two key assumptions. First, we suppose that the average number of
copies that are returned at a typical step does not depend on the sampled color,
viz.

(1) the function s 7→ Es(C) is constant on S,

where the notation Es is used for the mathematical expectation under Ps. Second,
we suppose that there exists a measurable function a on S that is bounded away
from 0 and from ∞, such that for every s ∈ S, the intensity measure of the point
processes ξ under Ps is given by

(2) Es(ξ(f)) = a(s)µ(f), for all f ∈ L∞(S).

In words, a is a factor which modulates the intensity of innovations as a function
of the color of the sampled ball.

An important result for urn schemes with finitely many colors is that the first
order asymptotic of the contain of the urn as the number of steps goes to infinity
is determined by the largest eigenvalue of the mean replacement matrix and its
eigenvectors. The same feature holds in the present setting; it implies the almost-
sure convergence of the empirical distribution of colors towards µ. It is well-known
for classical urn schemes with finitely many colors, that the fluctuations of the
empirical distributions of colors in the urn depend crucially of whether the largest
eigenvalue of the mean replacement matrix is larger or smaller than twice the real
part of the second largest eigenvalue; see [4, 7]. This incites us to introduce

(3) λ1 := Es(C) + µ(a) and λ2 := Es(C),

and set

(4) ρ :=
λ2
λ1

∈ (−∞, 1).

In particular, ρ > 1/2 if and only if Es(C) > µ(a), which we interpret as rein-
forcement being stronger than innovation. The main result presented in the talk
is:

Theorem. Let Ūn denote the empirical distribution of colors in the urn after n
steps. Assume (1), (2), and some further mild technical conditions.

(i) If ρ > 1/2, then we have for every f ∈ L∞(S):

lim
n→∞

n1−ρ
(

Ūn(f)− µ(f)
)

= Lf a.s.,

where Lf is some non degenerate random variable.
(ii) If ρ < 1/2, then the sequence of processes

(

λ1
√

(1− 2ρ)n
(

Ūn(f)− µ(f)
)

: f ∈ L∞(S)
)

, n ≥ 1

converges in the sense of finite dimensional distributions to a Gaussian
bridge G(br) indexed by L∞(S).
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The superdiffusive limit of the elephant random walk

Lucile Laulin

(joint work with Hélène Guérin and Kilian Raschel)

The Elephant Random Walk (ERW) was first introduced by Schütz and
Trimper [6] in order to investigate the long-term memory effects in non-Markovian
random walks. It is a one-dimensional discrete-time random walk on integers,
which has a complete memory of its whole history. It was referred to as the ERW
in allusion to the famous saying that elephants can remember where they have
been.

Over the last decade, the ERW and other processes derivated from it have
received a lot of attention from mathematicians. The one-dimensional ERW is
defined as follows. The random walk starts at the origin at time zero, S0 = 0.
At time n = 1, the elephant moves to the right with probability q and to the left
with probability 1 − q where q lies between zero and one. Hence, the position of
the elephant at time n = 1 is given by S1 = X1 where X1 has a Rademacher R(q)
distribution. Afterwards, at any time n ≥ 2, the elephant chooses uniformly at
random an interger k among the previous times 1, . . . , n, and

Xn+1 =

{

+Xk with probability p,
−Xk with probability 1− p,

where the parameter p ∈ [0, 1] is the memory of the ERW. Then, the position of
the ERW is given by

Sn+1 = Sn +Xn+1.

In particular, when p = 1/2, the ERW reduces to the simple RW.
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The ERW appears to have three regimes of behavior, depending on wether
p < 3/4 (diffusive), p = 3/4 (critical) or p > 3/4 (superdiffusive), see below for
the main results.

Diffusive Critical Superdiffusive

LLN
Sn

n

a.s.−→
n→∞

0
Sn√
n logn

a.s.−→
n→∞

0
Sn

n2p−1

a.s.−→
n→∞

L

CLT
Sn√
n

L−→
n→∞

N
(

0,
1

3 − 4p

) Sn√
n logn

L−→
n→∞

N
(

0, 1
) Sn − n2p−1L√

n

L−→
n→∞

N
(

0,
1

4p− 3

)

There are multiple approaches to study the ERW, but two of them have been
used the most. In 2016, Baur and Bertoin [1] used the connection to Pólya-
type urns with random replacement as well as two functional limit theorems
for multitype branching processes due to Janson [4]. They established almost
sure and functional convergences. In 2017, Bercu [2] used martingale theory
to prove the law of iterated logarithm and quadratic strong law, as well as the
central limit theorem and law of large numbers. In 2019, Kubota and Takei [5]
used martingale theory to prove that in the superdiffusive regime, the fluctuations
around the almost sure limiting random variable are Gaussian. It was already
known that L was not Gaussian [2].

One of the main question regarding the ERW is the law of the superdiffusive
limit. In a forthcoming work, we establish that the limit L has a density supported
by the whole real line, and we give a recursive relation for computing all of its
moments. To do so, we use the connection with Pólya-type urns and we rely
on the work of Chauvin et al. [3] for two-colors Pólya urns with deterministic
replacement. Our strategy is to obtain a distributional equation satisfied by the
limit.
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Extremal linkage networks

Christian Hirsch

(joint work with Markus Heydenreich)

The human brain is one of the most prototypical real-world example of a complex
network. In order to process sensory information, the brain relies on a system
of neuronal cells that are linked by synapses of varying strengths. Some of the
neurons can be considered hubs that have the ability to connect to a large number
of other neurons. Moreover, it is important to have small distances in the sense
that typically neurons can be connected in a small number of hops

One of the key questions in neuroscience is to identify the mechanisms that
lead to the evolution of such complex neuronal networks. This is an attractive
goal as it offers the potential to gain insights on how to design effective learning
architectures for artificial neuronal networks.

In this context, neuroscientists proposed the tabula rasa hypothesis [7]. Accord-
ing to this suggestion, at the beginning of the development, the brain exhibits an
enormously large number of possible connections. Only through the process of
perception, sensory experience and learning, this network develops into a sparse
network of important functional connections.

It is at this point, where we draw a connection to the core topic of the workshop,
namely reinforced graphs. Loosely speaking, the idea is to develop a model based
on the phenomenon that when a neuron fires, it is more likely that we strengthen
synapses with a high weight with a higher probability since they have been already
used successfully in the passed.

One early mathematical model in this direction are Pólya urns with graph-based
competition that were introduced in [6] and further studied in [1, 4, 5]. However,
these typically lead to a large number of small isolated components, thereby failing
to reflect the structure of the brain.

To address these shortcomings, in [2] a model was proposed that gives rise to
a layered structure with short distances. However, this model relies both on a
process of external node fitnesses as well as on a very particular choice of a base
network and interaction of fitness and weights.

To address this issue, the extremal linkage networks were introduced in [3],
which we now describe. The base network has nodes (neurons) of the form VN =
(Z/N) × Z≥0 for some N ≥ 1. Moreover, {Fv}v∈VN is a collection of iid node
fitnesses that are Fréchet distributed with some parameter δ > 0. That is, P(Fv ≤
r) = e−r−δ

. The fitnesses have two purposes. First, they determine the scope
of the considered vertex. That is, a vertex v = (i, h) of fitness Fv can possibly
connect to vertices of distance at most Fv in the next layer h + 1. Moreover, v
connects to precisely to one vertex in the next layer, namely the one with the
largest weight among all vertices in the scope.

We now discuss the key results of [3] for the parameter δ = 1, where the model is
most similar to the one described in [2]. For δ = 1 the typical in-degrees converge
in distribution asN → ∞ to a random variable with exponential tails. Moreover, if
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HN denotes the layer of the most common ancestor of two typical nodes in the base
layer of VN , then HN/ logµ(N) → 1 in probability, where µ := exp(E[log(2F )]).

From the point of modelling, one of the disadvantages of extremal linkage is
that the construction relies on externally assigned fitnesses. It would be more
natural if the evolution of such weights could be explained by a mechanism of self-
organization. A promising candidate in this direction could be to tie the fitness
to the number of reinforcements like in the following suggestion.

(1) Start with nodes of fitness 1. That is W0(v) = 1.
(2) Fire iid at rate Wt(v)/t. Except if v is at the bottom layer, then it fires

at rate 1.
(3) In the next layer, select the vertex of maximal weight among all vertices

in the range Wt(v)/t and add weight 1.
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[1] Y. Couzinié and C. Hirsch. Weakly reinforced Pólya urns on countable networks. Electron.
Commun. Probab., 26:1–10, 2021.

[2] M. Heydenreich and C. Hirsch. A spatial small-world graph arising from activity-based
reinforcement. In K. Avrachenkov, P. Pra lat, and N. Ye, editors, Algorithms and Models for
the Web Graph, volume 8305 of Lecture Notes in Comput. Sci., pages 102–114. Springer,
Cham, 2019.

[3] M. Heydenreich and C. Hirsch. Extremal linkage networks. Extremes, 25:229–255, 2022.
[4] C. Hirsch, M. Holmes, and V. Kleptsyn. Absence of WARM percolation in the very strong

reinforcement regime. Ann. Appl. Probab., 31(1):199–217, 2021.
[5] C. Hirsch, M. Holmes, and V. Kleptsyn. Infinite WARM graphs III: strong reinforcement

regime. Preprint, 2023+.
[6] R. v. d. Hofstad, M. Holmes, A. Kuznetsov, and W. Ruszel. Strongly reinforced Pólya urns
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⋆-Reinforced Random Walks, Bayesian Statistics and
Statistical Physics

Pierre Tarrès

(joint work with S. Bacallado, C. Sabot)

Consider a directed graph G = (V,E) endowed with an involution on the vertices
denoted by ∗, and such that

(1) (i, j) ∈ E ⇐⇒ (j∗, i∗) ∈ E.

A discrete Markov Chain on G with transition probability p(i, j) from i to j, and
endowed with that involution ∗, is called Yaglom reversible if and only if there
exists a probability measure π on V such that, for all i, j ∈ V, i ∼ j,

π(i, j) := π(i)p(i, j) = π(j∗)p(j∗, i∗) = π(j∗, i∗),

π(i) = π(i∗).

This implies in particular that π is an invariant measure for that Markov Chain.
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Consider for instance the reversible k-dependent Markov Chain, i.e. the random
processes Y such that the law of Yn+1 depends only on (Yn−k+1, . . . , Yn). It induces
a Markov chain (Xn) on the (directed) de Bruijn graph G = (V k, E) with

w = (i1, . . . , ik) → w̃ = (i2, . . . , ik+1)

with transition rate p(w, w̃), and invariant measure π(w). The classic reversibility
assumption of Y

(Y1, . . . , Yn)
law
= (Yn, . . . , Y1), if (Y1, . . . , Yk) ∼ π

corresponds to the Yaglom reversibility of X on de Bruijn graph with involution
∗ with

w = (i1, . . . , ik) 7→ w∗ = (ik, . . . , i1) flipped k-string.

Note that the dependence of the Random Walk on the past could also be chosen
to be of variable-order, with context set C ⊆ S ∪S2 ∪ · · · ∪Sk on de Bruijn graph:
for all (i1, . . . , iℓ) ∈ C, the transition probabilities out of x and y would be the
same whenever x and y both end in (i1, . . . , iℓ). A generalization of the latter is
the Random Walk with amnesia, on G = (V,E) defined by V = S ∪ S2 ∪ . . . Sk

with two types of edges: “forgetting” ones (i1, . . . , im) → (i2, . . . , im), if m > 1,
and “appending” ones (i1, . . . , im) → ((i1, . . . , im, j), for each j ∈ V , if m < k.

Given initial weights αi,j > 0, (i, j) ∈ E such that αi,j = αj∗,i∗ , a process
(Xn)n∈N on a directed graph G = (V,E) endowed with an involution ∗ on the
vertices is called a ⋆-Edge Reinforced Random Walk (⋆-ERRW) if X0 = i0 for
some i0 ∈ V and, for all n ∈ N, j ∼ Xn,

P
i0,α(Xn+1 = j | X0, X1, . . .Xn) = 1Xn→j

Zn((Xn, j))
∑

l,Xn→l Zn((Xn, l))

where

Zn((i, j)) = αi,j +Ni,j(n) +Nj∗,i∗(n)

Ni,j(n) =
n
∑

k=1

1{(Xk−1,Xk)=(i,j)}.

The ⋆-ERRW can be seen as a generalisation of the Edge-Reinforced Random
Walk (ERRW) introduced in the seminal work of Diaconis and Coppersmith [2],
corresponding to the case where ⋆ is the identity map.

Let div be the divergence operator from R
E to R

V defined by

div(z)(i) =
∑

j,i→j

zi,j −
∑

j,j→i

zj,i.

One can show that, for all i0 ∈ V , if div(α) = δi∗0 − δi0 , then the ⋆-ERRW
starting from i0 is partially exchangeable, that is, the probability of a path only
depends on its starting point and on the number of crossings of directed edges.

It follows from a result of Diaconis and Freedman [3] that any partially ex-
changeable process can be seen as a mixture of Markov chains Pω. That result
allows one to make use of the ⋆-ERRW to do Bayesian statistics on the unknown
parameter ω. Indeed, if we let L(i0, α) be the mixing measure on ω from P

i0,α,
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then the distribution of ω after n first steps is given by L(Xn, (Zn(e))e∈E) : in
other words, the posterior is in the same family of distributions as the prior, given
by the mixing measure of the ⋆-ERRW given initial conditions, and thus they are
conjugate priors.

Next, we explain a new argument that allows to guess the mixing measure
(which we eventually compute explicitly), based on that Bayesian approach, see
the OOPS minicourse on YouTube (2019) for more details.

Then we note that the ⋆-ERRW can be seen (at jump times) as mixture (for
random weights β) of the so-called ⋆-Vertex-Reinforced Jump Process (⋆-VRJP),
which jumps from i to j at time t a rate βijL

∗
j (t), where

Lj(t) = 1 +

∫ t

0

1{Ys=j}

is the local time (plus one) spent by the process at site j. This generalizes the
result obtained with Sabot [4] on nonoriented graphs.

Contrary to the VRJP, the ⋆-VRJP is in general not exchangeable. Now, after
an adequate randomization of the initial local time, it becomes partially exchange-
able: we compute the mixing measure of that randomized ⋆-VRJP.We can describe
the non-randomized ⋆-VRJP as a mixture of conditioned Markov Jump Processes.
Finally, we show a link between the ⋆-VRJP with a random Schrödinger operator,
which generalizes the one previously obtained in [6, 7].
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