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Introduction by the Organizers

The workshop Representations of Finite Groups was organised by Olivier Dudas
(Marseille), Meinolf Geck (Stuttgart), Radha Kessar (Manchester), and Gabriel
Navarro (Valencia). It was attended by 48 participants (and 3 remote) with broad
geographic representation. It covered a wide variety of aspects of the representa-
tion theory of finite groups and related topics, notably algebraic groups.

There were 26 lectures, either 30 or 50 minutes long, in which recent progress,
connections to related areas and emerging new directions of research were pre-
sented. Besides the lectures, there was plenty of time for informal discussions
among participants; furthermore, two evening sessions provided an informal fo-
rum for presenting open research problems.

Among other highlights, this meeting will be remembered as the occasion on
which the solution to Brauer’s Height Zero Conjecture was presented by G. Malle.
Brauer’s conjecture has been with us since 1955, and several of our meetings have
reported important progress in this area. Now, thanks to a new approach, the
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conjecture has become a theorem (by Malle, Navarro, Schaeffer-Fry, and Tiep),
completing the work of decades of many mathematicians.

Another driving force in our field is the McKay conjecture and its generalizations,
which need advancing our understanding of groups of Lie type and Deligne–Lusztig
theory. Important progress in this direction was presented by G. Lusztig himself,
describing a new relation between his work on strata in reductive groups and his
theory of character sheaves. He was preceded by a talk from J. Hetz, a very recent
PhD, who removed the last ambiguity in the (generalised) Springer correspon-
dence. C. Bonnafé stated far reaching conjectures on the unipotent characters
and character sheaves based on actions of braid groups and J. Michel gave new
insight on Lusztig’s Fourier transform.

The meeting was opened by A. Schaeffer-Fry, who in joint work with L. Ruhstorfer,
also a recent PhD, announced the solution of the Galois–McKay conjecture for the
prime 2. One day later, Ruhstorfer himself announced that groups of Lie types
B and C satisfy the Alperin–McKay conjecture, bringing us one step closer to a
solution of this fundamental conjecture.

Regarding the Galois version of the Alperin-McKay conjecture, C. Vallejo estab-
lished the fields of values of the 2-height zero characters, providing a surprising
new consequence of and support for the conjecture. Finally, regarding the so-
called “counting conjectures,” J. Semeraro, in joint work with Kessar and Malle,
presented strong evidence that the celebrated Alperin Weight Conjecture can hold
more generally, even when finite groups are not present! This re-launches the
Spetses program started 30 years ago.

In the spirit of M. Broué’s pioneering approach of finding structural explanations
for all these counting conjectures, S. Bouc showed us how to study p-permutation
equivalences in families, that is as objects in a well-behaved category. R. Boltje
closed our meeting by explaining how such equivalences encode some of the nu-
merical coincidences we have observed in the past years.

Several outstanding problems in our field were also discussed. L. Margolis provided
the state of the art of the celebrated counterexample for the prime p = 2 on the
Modular Isomorphism Problem and the hopes for finding a p odd one. On the other
hand, P. Tiep announced advances on a long-open conjecture by J. Thompson on
simple groups and their generation as the square of a conjugacy class. C. Eaton
reported on the latest developments on the Donovan conjecture, bringing together
years of work of several participants of the workshop, including S. Koshitani whose
talk focused on the prime p = 2. A breakthrough result is the reduction theorem
for the conjecture in the abelian defect group case, obtained by Eaton and Livesey.

On cohomology, M. Linckelmann presented very recent results and conjectures
obtained for the symmetric groups. Modules with finitely generated cohomology
where at the heart of D. Benson’s talk, who gave new perspectives on how to
characterize them. In the case of groups of Lie type, J. Grodal explained how
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string topology can be used to relate their cohomology with that of the corre-
sponding complex loop groups, leading to new evidence for the genericity of their
representation theory.

Representation theory also governs the structure of finite groups. H. P. Tong-
Viet gave interesting variations of an old theorem of Baer–Suzuki. G. Robinson
provided bounds on the index of abelian normal subgroups of finite subgroups
of GL(n,C) with restricted composition factors. This last result illustrates the
impact of our community in other branches of mathematics, as it was motivated by
problems encountered by Coulembier–Ostrik–Etingof to adapt Deligne’s work on
symmetric tensor categories to positive characteristic. In the same spirit, G. Hiss
explained how one could answer a problem on fixed point theory on manifolds
thanks to our knowledge on finite groups of Lie type.

N. Mazza reported on the state of the art of the ambitious programme, joint
with Carlson–Grodal–Nakanao, of describing the structure of the group of endo-
trivial modules of finite groups of Lie type. C. Lassueur gave an overview of a
series of papers with G. Hiss on the classification of trivial source modules in
cyclic blocks. J. Murray and B. Sambale’s talks presented new results on duality
in character theory. In a similar, though more combinatorial vein, M. Fayers
proposed interesting new approaches to the Mullineux involution on the linear
and projective modular characters of symmetric groups.

For this edition, we organized a late session of open problems which aroused great
interest among the participants, so much so that we had to organize a second one.
Participants were able to freely state nascent questions that we hope will spark
research in the area for many years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Navarro’s Galois-McKay Conjecture for the Prime 2

Mandi A. Schaeffer Fry

(joint work with Lucas Ruhstorfer)

Let p be a prime, G a finite group, and P a Sylow p-subgroup of G. The long-
standing McKay conjecture posits that the size of the set of irreducible ordinary
characters of G with degree relatively prime to p, Irrp′(G), should be the same
as the size of the corresponding set, Irrp′(NG(P )), for the normalizer of P . The
McKay–Navarro conjecture (sometimes also called the Galois-McKay conjecture),
a refinement due to G. Navarro in [10], says that there should further be a bijection
between Irrp′(G) and Irrp′(NG(P )) that commutes with the action of a certain sub-
group H of the absolute Galois group G = Gal(Qab/Q). Namely, H is comprised
of the Galois automorphisms that map all p′-roots of unity to a given p-power of
themselves. (Equivalently, this is saying that the bijection should commute with
the action of the absolute Galois group over the p-adic field Qp.)

The ordinary McKay conjecture was reduced in [2] by Isaacs–Malle–Navarro to
proving certain “inductive McKay conditions” for every finite nonabelian simple
group. In particular, the conditions require that for every quasisimple group G,
there exists some Aut(G)P -stable NG(P ) ≤M < G and a bijection

Ω: Irrp′(G) → Irrp′(M)

that is Aut(G)P -equivariant and satisfies several other strong properties.
Here at the MFO in 2014, G. Malle and B. Späth announced the proof of the

ordinary McKay conjecture for the prime p = 2 (see [8]) as a consequence of
proving these inductive conditions. In particular, their work completes the desired
Aut(G)P -equivariant bijections in the case of groups of Lie type when p = 2.
In [11], G. Navarro, B. Späth, and C. Vallejo proved a corresponding reduction
theorem for the McKay–Navarro conjecture, stating that the conjecture holds for
all finite groups if certain “inductive McKay–Navarro conditions” hold for every
finite nonabelian simple group. These conditions build on the inductive McKay
conditions, requiring that the bijection Ω from before is further (Aut(G)P ×H)-
equivariant and satisfies a strong condition about H-compatible extensions of χ ∈
Irrp′(G) and Ω(χ) to G⋊ Aut(G)P,χ, respectively M ⋊ Aut(G)P,χ.

In this talk, I discuss joint work with L. Ruhstorfer, in which we have completed
the proof of the inductive McKay–Navarro conditions for p = 2, and hence the
proof of:

Main Theorem. The McKay–Navarro conjecture holds for p = 2.

The case of the alternating groups for p = 2 follows quickly by the work of R.
Nath [9]. Many groups of Lie type with exceptional Schur multipliers were checked
by B. Johansson [3, 4], and we use GAP to verify the desired conditions for those
remaining and the sporadic groups (the latter were also checked by C. Vallejo
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in unpublished work). The case of groups of Lie type in defining characteristic
was settled by my coauthor, L. Ruhstorfer [13], with some outlying cases com-
pleted in [3]. Hence, we are left to consider the groups of Lie type in non-defining
characteristic.

Our work builds on the bijections Ω from [5, 6, 21, 1, 8] for proving the inductive
McKay conditions for groups of Lie type for p = 2. In [17], I describe the action
of G on the Howlett-Lehrer parameters for characters of groups with a BN pair
in order to complete the proof began in [16, 19] of another conjecture of Navarro
from [10], which now also follows as a consequence of the Main Theorem above.
Here at the MFO in 2019, I discussed how I extended the techniques from [17]
in [18], also building on joint work with J. Taylor [20], to show that for many
groups of Lie type defined in odd characteristic, the map Ω can be chosen to
further be H-equivariant. For many of these groups (perhaps most notably the
case G = Sp2n(q), which required distinct treatment), L. Ruhstorfer and I were
able to complete the extension portion of the conditions, and hence the inductive
McKay–Navarro conditions for p = 2, in [14]. Several additional outlying cases
were completed by B. Johansson in [4].

In the final installment [15] leading to the Main Theorem, Ruhstorfer and I
completed the final pieces, in particular verifying both the H-equivariance and
extension parts of the inductive McKay–Navarro conditions for p = 2 and the
groups whose underlying algebraic groups are of type A and D. These results use
work from [8, 7, 19, 12], describing the specific Lusztig and Harish-Chandra series
in which the odd-degree characters lie in these cases. We also use techniques
developed in [14] and supplemented in [4] for working with extensions to field
automorphisms, as well as rationality properties of characters in Irr2′(G) in these
cases in order to study the desired extensions to the rest of the automorphism
group.
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[21] B. Späth, The McKay conjecture for exceptional groups and odd primes, Math. Z.,
261(3):571–595, 2009.

Generating functions for the Hochschild cohomology of

symmetric groups

Markus Linckelmann

(joint work with Dave Benson, Radha Kessar)

This talk is about the implications of homological stablility for the Hochschild
cohomology of symmetric group algebras. The Hochschild cohomology of a finite-
dimensional algebra A over a field is the Ext-algebra

HH∗(A) = Ext∗A⊗kAop(A,A).

We have canonical isomorphismsHH0(A) ∼= Z(A) andHH1(A) ∼= Der(A)/IDer(A),
where Der(A) is the subspace of Endk(A) of derivations on A and IDer(A) the sub-
space of inner derivations. The space Der(A) is a Lie subalgebra of Endk(A) with
respect to the Lie bracket [f, g] = f ◦ g− g ◦ f , where f , g ∈ Endk(A), and IDer(A)
is a Lie ideal in Der(A), implying that HH1(A) inherits a Lie algebra structure. By
results of Gerstenhaber, HH∗(A) is a graded-commutative algebra, and HH∗(A)
has a graded Lie algebra structure of degree −1 which extends the Lie algebra
structure on HH1(A).

Throughout this paper p is a prime. For n a non-negative integer, we denote by
p(n) the number of partitions of n, with the convention p(0) = 1. The partition
function is the associated generating function P(t) =

∑∞
n=0 p(n) tn. Since p(n) is

the number of conjugacy classes of Sn, we have p(n) = dimFp
(HH0(FpSn)). In

degree 1, we have the following combinatorial description. We write as usual λ ⊢ n
if λ is a partition of n. We write λk for the number of parts of λ of length k, and
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we use the notation λ = (nλn . . . 2λ21λ1). For integers n, k such that n > 0 and

k > 1 we set Fk(n) =
∑

λ⊢n

λk. Thus Fk(n) is the total number of parts of length k

in all partitions of n.

Theorem 1 ([2, Corollary 4.7]). For any positive integer n we have

dimFp
(HH1(FpSn)) =

{

2F2(n) p = 2,

Fp(n) p > 3.

We similarly have combinatorial expressions for the dimensions of HH2(FpSn).
In terms of generating functions, we have the following.

Theorem 2 ([2, Theorem 1.2]). The generating functions for the dimensions of
the Hochschild cohomology of the group algebra of the symmetric group Sn on n
letters in low degrees are given by

(i)

∞
∑

n=0

dimFp
(HH0(FpSn)) tn = P(t)

(ii)
∞
∑

n=0

dimFp
(HH1(FpSn)) tn =















2t2

1 − t2
P(t) p = 2,

tp

1 − tp
P(t) p > 3.

(iii)
∞
∑

n=0

dimFp
(HH2(FpSn)) tn =















2t2 + 3t4 − t6

(1 − t2)(1 − t4)
P(t) p = 2,

tp

(1 − tp)(1 − t2p)
P(t) p > 3.

The formula for degree one has independently been obtained by Briggs and
Rubio y Degrassi [5]. The pattern of the above formulae carries over to arbitrary
degrees.

Theorem 3 ([2, Theorem 1.3]). For any integer r > 0 there exists a rational
function R(t) with integer coefficients, depending on r and on p, such that

∞
∑

n=0

dimFp
(HHr(FpSn)) tn = R(t)P(t).

One of the main tools in the proofs of these results is the centraliser decompo-
sition for the Hochschild cohomology of finite group algebras

HH∗(kG) ∼=
⊕

g∈G/∼

H∗(CG(g); k),

where g runs over a set of representatives of the conjugacy classes in G (see e.
g. [1, Theorem 2.11.2]), and where k is a commutative ring. This isomorphism is
graded k-linear, unique up to unique isomorphism, but this is not an isomorphism
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as graded k-algebras. In particular, in degree 1 we have a decomposition

HH1(kG) ∼=
⊕

g∈G/∼

Hom(CG(g); k),

where Hom(CG(g), k) is the k-space of group homomorphisms from CG(g) to the
additive group (k,+). If k is a field of characteristic zero, then this space is zero
since CG(g) is a finite group. If k is a field of characteristic p, then (k,+) has
exponent p, and hence the non-vanishing of HH1(kG) is in that case equivalent
to the existence of an element g ∈ G such that Op(CG(g)) < CG(g), or equiv-
alently, such that CG(g) has a non-trivial p-group as homomorphic image. As
a consequence of results by Fleischmann, Janiszczak and Lempken [7], using the
classification of finite simple groups, this is always the case if p divides the order
of G. In order to apply the centraliser decomposition to symmetric groups, we use
the well-known description of centralisers in symmetric groups as direct products
of certain wreath products, in conjunction with the Künneth formula. A second
key tool at this point is the work on homological stablilty for symmetric groups
due to Nakaoka [10]; more precisely, we are making use of a generalisation of one
of Nakaoka’s results by Hatcher and Wahl in [8].

In order to extend the above results to the Hochschild cohomology of blocks of
symmetric groups, we denote by Bn the principal block of FpSn, for all non-
negative integers n (with the convention B0 = Fp). Nakayama’s conjecture, proved
by Brauer [4] and G. de B. Robinson [11], states that the blocks of FpSn are
parametrised in terms of p-core partitions. By a result of Chuang and Rouquier
in [6], if B is a block of FpSn, then B is derived equivalent to the principal block
Bpw of FpSpw, for some integer w such that 0 6 w 6 n

p , called the weight of B.

Since Hochschild cohomology is invariant under derived equivalences, this can be
used to prove the following results.

Theorem 4 ([3, Theorem 1.2]). Let B be a weight w-block of a symmetric group
algebra over Fp. If p = 2, then

dimFp
HH1(B) = 2

w−1
∑

j=0

dimFp
(Z(Bpj)).

If p > 3, then

dimkHH
1(B) =

w−1
∑

j=0

dimFp
(Z(Bpj)).

This shows in particular, that for any block B of FpSn of positive weight we
have HH1(B) 6= 0. It remains an open question (cf. [9, Question 7.4]), whether for
every block B of a finite group with non-trivial defect groups we haveHH1(B) 6= 0.
In terms of the generating functions

P(t) =

∞
∑

n=0

p(n) tn,
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Z(t) =

∞
∑

n=0

dimFp
(Z(Bpn)) tn

we have the following.

Theorem 5 ([3, Theorem 1.3]). For any positive integer r, there exists a rational
function φ(t) (depending on p and r) with φ(0) non-zero, such that

∞
∑

n=0

dimFp
(HHr(Bpn)) tn = tφ(t)Z(t)

and
∞
∑

n=0

dimFp
(HHr(kSn)) tn = tpφ(tp)P(t).

This shows that tpφ(tp) = R(t) where R(t) is as in Theorem 3, giving an
affirmative answer to a question by Ken Ono. If one drops the condition φ(0) 6= 0,
then this formula holds also for r = 0 with φ(t) = 1

t . Since Fp is a splitting
field for FpSn, the dimensions of Hochschild cohomology of blocks of symmetric
group algebras remain unchanged upon replacing Fp by any field of characteristic
p. The authors conjecture that HH1(FpSn) should be a solvable Lie algebra, for
any positive integer n.

In addition to the work of Hatcher and Wahl already mentioned, homological
stability has received a considerable amount of attention in recent papers by R.
Boyd, R. Hepworth, P. Patzt, and others, where this phenomenon is extended to
numerous classes of algebras. This raises the question whether the above results
on generating functions for Hochschild cohomology can be extended to (blocks
of) alternating groups, other finite Coxeter groups, Hecke algebras, and diagram
algebras.
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Brauer’s height zero conjecture

Gunter Malle

(joint work with Gabriel Navarro, Mandi Schaeffer Fry, Pham Huu Tiep)

Let G be a finite group, p a prime, b a Brauer p-block of G with defect group D
and

Irr0(b) := {χ ∈ Irr(b) | χ(1)p = |G : D|p}
the complex irreducible characters in b of height zero. Based upon rather scarce
evidence, Richard Brauer in 1955 proposed the following:

Conjecture 1. Irr0(b) = Irr(b) ⇐⇒ D abelian.

This became known as the Brauer Height Zero conjecture (BHZ). It has had a
crucial influence on research in representation theory of finite groups since then,
and is a prominent example of the unsolved local-global conjectures which have
since been formulated. The BHZ had been verified for the class of p-solvable groups
as well as for various classes of nearly simple groups by various authors. In 2013,
R. Kessar and the author completed the proof of the “⇐” implication of BHZ,
building on fundamental work of Lusztig as well as of Fong–Srinivasan, Cabanes–
Enguehard and Bonnafé–Rouquier on representations of finite reductive groups,
and later verified the other direction for all p-blocks of all quasi-simple groups. In
2022, L. Ruhstorfer was able to settle the missing direction for the prime p = 2,
as a consequence (shown by Navarro–Späth) of his work on the Alperin–McKay
conjecture. We presented and discussed the proof of our result:

Theorem 2. The “⇒” implication of BHZ holds for all primes p > 2.

By the earlier results cited above, this means that almost 70 years after it was
first conceived, BHZ is now known in full generality.

Our proof proceeds by a careful analysis of a minimal counter-example, using
all of the above-mentioned results as well as further ones by Külshammer–Puig
and Koshitani–Späth. Along the way it requires two statements about blocks b of
quasi-simple groups S. The first asserts the existence of enough characters in b
not conjugate under the full automorphism group of S, the second shows that for
b with abelian defect, the pointwise stabiliser in Out(S) of all characters in b has
cyclic Sylow p-subgroups. Our proof of these two claims relies on the classification
of finite simple groups as well as on the above-mentioned deep work of Lusztig and
others on characters and blocks of finite reductive groups.
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Splendid Morita equivalences for principal 2-blocks with wreathed

defect groups

Shigeo Koshitani

(joint work with Caroline Lassueur, Benjamin Sambale)

We classify principal 2-blocks of finite groupsG with Sylow 2-subgroups isomorphic
to a wreathed 2-group C2n ≀ C2 with n ≥ 2 up to splendid Morita equivalence (=
Puig equivalence). As a consequence, obtain that Puig’s Finiteness Conjecture
holds for such blocks. Furthermore, we obtain a classification of such groups
modulo O2′(G), which is a purely group theoretical result and of independent
interest. This is the first case where the case of wild representation type is
treated.

Given an integer t ≥ 0 and a positive prime power q, we let

SLt
2(q) := {A∈GL2(q) | det(A)2

t

= 1} and SUt
2(q) := {A∈GU2(q) | det(A)2

t

= 1}.

Theorem 0.1. Let k be an algebraically closed field of characteristic 2 and let
G be a finite group with a Sylow 2-subgroup P isomorphic to a wreathed 2-group
C2n ≀ C2 for a fixed integer n ≥ 2. Then the following assertions hold.

(a) The principal 2-block B0(kG) of kG is splendidly Morita equivalent to the
principal 2-block of precisely one of the following finite groups:

(W1) C2n ≀ C2 ;
(W2) (C2n × C2n) ⋊S3 ;
(W3) SLn

2 (q) where q is a positive power of a prime such that (q − 1)2 = 2n;
(W4) SUn

2 (q) where q is a positive power of a prime such that (q + 1)2 = 2n;
(W5) PSL3(q) where q is a positive power of a prime such that (q − 1)2 = 2n;
(W6) PSU3(q) where q is a positive power of a prime such that (q + 1)2 = 2n.

Moreover, in all cases, the splendid Morita equivalence is induced by the
Scott module Sc(G×G2,∆P ).

(b) In (a) if G1 and G2 are two groups such that |G1|2 = |G2|2 and which are
both of type (W3), both of type (W4), both of type (W5), or both of type
(W6), then B0(kG1) and B0(kG2) are splendidly Morita equivalent.

As a byproduct of our main work we obtain a classification of principal 2-blocks
of all finite groups with the wreath product Sylow 2-subgroups just as it has
been done by Erdmann around 1990 for the case of tame representation type, and
therefore our result should be a new result.

Corollary 0.2. For every integer n ≥ 2 there are only finitely many splendid
Morita equivalence classes of principal 2-blocks with defect groups isomorphic to a
wreathed 2-group C2n ≀ C2. Namely, Puig’s Finiteness Conjecture holds for such
blocks.
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On the generalised Springer correspondence

Jonas Hetz

Let p be a prime, G a connected reductive group over k = Fp, W the Weyl group
of G and NG the set of all pairs (O, E ) where O ⊆ G is a unipotent class and E

is a G-equivariant irreducible local system on O (taken up to isomorphism).
The Springer correspondence (originally defined by Springer [7] for p not too

small; for arbitrary p see Lusztig [2]) is an injective map SG : Irr(W) →֒ NG, which
plays a crucial role, for example, in the determination of the Deligne–Lusztig Green
functions. However, SG is in general not surjective. In order to understand the
missing pairs, Lusztig [3] developed a generalisation of Springer’s correspondence,
which is a substantial ingredient in the program of determining the complete char-
acter tables of finite groups of Lie type. For instance, this has been utilised recently
to complete the computation of unipotent characters at unipotent elements for the
groups E6(q) and E7(q) where q is a power of p.

With very few exceptions, the generalised Springer correspondence has been de-
termined explicitly by Lusztig and Spaltenstein [3, 4, 5, 6]; the last open problems
occur for groups of type E8 and p = 3. These remaining indeterminacies have been
resolved in [1], which thus concludes the determination of the generalised Springer
correspondence. The proof is based on considering the Hecke algebra associated
to the finite group E8(q) (for q a power of 3) and its natural (B,N)-pair exploiting
a well-known formula relating characters of this Hecke algebra with the unipotent
principal series characters of E8(q).
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Unipotent character sheaves and strata of a reductive group

George Lusztig

Let G be a connected reductive group over an algebraically closed field. We define a
decomposition of G into finitely many strata each of which is a union of conjugacy
classes of fixed dimension. The strata are indexed by a set independent of the
characteristic. The strata can be described purely in terms of the Weyl group. We
show that the set of unipotent character sheaves on G can be naturally mapped
surjectively to the set of strata of G.

On the source-algebra equivalence class of a block with cyclic

defect groups

Caroline Lassueur

(joint work with Gerhard Hiß)

This talk was a report on a series of three joint articles [HL21, HL23a, HL23b] with
Gerhard Hiß (RWTH Aachen). Considering a finite group G and an algebraically
closed field k of positive characteristic p, the starting point was the following
question.

Question A. Given a block B of the group algebra kG with a non-trivial cyclic
defect defect group D of order pn (n ∈ Z≥1), can we give a concrete classification
of the indecomposable B-modules with a trivial source, up to isomorphism?

In [Jan69] Janusz gave a constructive classification of all indecomposable B-
modules, up to isomorphism, using directed connected subgraphs of the Brauer
tree called paths, which encode composition factors, submodules and quotients.
Much later, in 2012, Hiß and Naehrig [HN12] gave a classification of all liftable
B-modules in terms of Janusz’ classification of the indecomposables. We observe
that both these classification problems can be considered up to Morita equivalence
(hence understood from the data given by the embedded Brauer tree of the block),
whereas an answer to Question A depends on the source-algebra equivalence class
of the block (also called Puig equivalence class or splendid Morita equivalence
class). Now, by the work of Linckelmann [Lin88] the source-algebra equivalence
class of B is parametrised by three parameters: the embedded Brauer tree σ(B)
of B, a sign function τ(B) on the vertices of σ(B), and an indecomposable capped
endo-permutation kD-module W (B), on which the unique subgroup of order p
of D acts trivially. Thus, building on [HN12], the main result of [HL21] is a
concrete classification of the indecomposable trivial source modules belonging B

in terms of Janusz’ classification of the indecomposable modules and in terms of the
parameters σ(B), τ(B), W (B). Moreover, [HL21] describes the precise position
of the modules in the Auslander-Reiten quiver of the block in terms of distance to
the rim. The precise combinatorics of the result is too complex to be printed down
here, we refer the reader directly to [HL21, Theorem 5.3 and Proposition B.1].
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In order to make concrete calculations for specific groups it is necessary to have
a good understanding of the three parameters σ(B), τ(B), and W (B). The sign
function τ(B) is understood in terms of values of the ordinary characters of B

evaluated at a generator of the unique cyclic subgroup of order p of D. Feit [Fei84]
considered the problem of describing all possible Brauer trees, which he solves
through a reduction to quasi-simple groups. Now, when p is odd there are 2n−1

(resp. 2n−2 when p = 2) isomorphism classes of kD-modules that can occur as
W (B) and it is known that they all occur for some p-soluble group (in which case
σ(B) is a star with exceptional vertex at its centre). Thus, this leads naturally to
the following questions, to which we give partial answers in [HL23a, HL23b].

Question B.

(1) Can W (B) be read off from the character table of G?
(2) Can we determine W (B) for all (non-uniserial) cyclic blocks B of finite

groups?
(3) Can we determine W (B) for all cyclic blocks B of finite quasi-simple

groups?
(4) Can (b) be reduced to (c)?

To begin with, assuming p is odd, we prove that Question B(a) has an affirma-
tive answer.

Theorem C ([HL23a, Theorem 3.4]). Let p be an odd prime. Let B be a block
of kG with a cyclic defect group D ∼= Cpn where n ≥ 1. For each 1 ≤ i ≤ n let
ui be a generator of the subgroup Di of D of order pi. Let χ be a non-exceptional
irreducible character lying in IrrC(B). Then, the kD-module W (B) is determined
up to isomorphism by the signs of the character values {χ(ui)}1≤i≤n (which are
all integers).

Next, we give some criteria which ensure thatW (B) ∼= k, the trivial kD-module.
In particular, W (B) ∼= k provided B is the principal block or CG(D) = CG(D1).
This allows us to deal with the following classes of finite quasi-simple groups, where
we note that for the purpose of the proofs it is good to treat the groups of Lie
type with an exceptional Schur multiplier separately.

Theorem D ([HL23a, Propositions 6.1–6.5]). Let p be an odd prime. Let B be a
block of kG with a non-trivial cyclic defect group, where G is a finite quasi-simple
group. Then W (B) ∼= k provided S := G/Z(G) is:

(i) a sporadic simple group or the Tits simple group;
(ii) an alternating group An with n ≥ 5;

(iii) a group of Lie type in defining characteristic;
(iv) a classical group of Lie type in cross-characteristic such that “the prime

number p is large with respect to the Lie rank of G”; or
(v) an exceptional group of Lie type (including the Suzuki and Ree groups) in

cross-characteristic and p > 3, respectively p > 5 if S is of type E8.

More precisely, the groups of type (iv) are the following classical groups. First,

the universal covering group Ĝ of S is one of SLn(q) (n ≥ 2), SUn(q) (n ≥ 3),
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Spn(q) (n ≥ 4 even), Spinn(q) (n ≥ 7 odd), or Spin±
n (q) (n ≥ 8 even). Moreover,

if d denotes the order of q modulo p, then pd > n provided Ĝ is one of SLn(q),

Spn(q) or Spin−
n (q); pd > n − 1 provided Ĝ = Spinn(q) with n odd; pd > n − 2

provided Ĝ = Spin+
n (q) with n even; and finally pd > 2n provided Ĝ = SUn(q).

In [HL23b], we examine the remaining cases and describe all non-trivial invariants
W (B) which can occur. For quasi-simple classical groups we reduce this task to
the computation of the endo-permutation kD-modules W (B) arising from GLn(q)
or covering groups of PSLn(q) when p | (q − 1), or from GUn(q) or covering
groups of PSUn(q) when p | (q + 1). Moreover, if G is an exceptional group
of Lie type, non-trivial modules W (B) in fact only exist for p = 3. This work
reveals an interesting close connection between the structure of the module W (B)
and Deligne-Lusztig theory. Also, the results depend, somehow mysteriously, on
the congruence class of p modulo 4, namely, if p ≡ −1 (mod 4), the number of
non-isomorphic kD-modules W (B) arising is roughly cubic in n, whereas if p ≡ 1
(mod 4) this number is n− 1. These investigations show that, within the class of
all cyclic blocks B of finite quasi-simple groups, non-trivial modules W (B) can
also occur when the Brauer tree is not a star, although not for any shape of tree
occuring.
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Braid group action on the cohomology of Deligne-Lusztig varieties

Cédric Bonnafé

(joint work with M. Broué, O. Dudas, J. Michel, R. Rouquier)

To an element b of the braid monoid associated with a split finite reductive group
GF , one can attach a Deligne-Lusztig variety X(b) which is acted on by GF . We
construct an action of the centralizer of b in the braid group on the cohomology of
X(b), which does not come from an action on the variety. The aim of this talk is
to describe this construction and give some of its properties, the most important
one being the compatibility with Deligne-Lusztig induction. If time permits, we
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will discuss some questions related to the SL2(Z)-action on the space spanned by
unipotent characters.

Character bounds for finite groups of Lie type and

Thompson’s conjecture

Pham Huu Tiep

In this talk, we discuss recent results, obtained in joint work of the speaker with
various collaborators, on the following problem:

Problem 1. Let G be a finite almost quasisimple group, g ∈ Gr Z(G).

(A) Find an explicit, and as small as possible, 0 < γ = γ(g) < 1, such that

|χ(g)|
χ(1)

≤ γ, ∀ χ ∈ Irr(G) with χ(1) > 1.

(B) Find an explicit, and as small as possible, 0 < α = α(g) < 1, such that

|χ(g)| ≤ χ(1)α, ∀ χ ∈ Irr(G).

Results on Problem 1 will be useful for a number of applications, which usually
involve using Frobenius character formula, and include

(i) Ore conjecture [14] and Waring-type problems [11, 12] for finite simple groups
(ii) Random generation of simple groups, and representation varieties Hom(Γ, G),

where G = Sn, G(F) for a simple algebraic group G, and Γ a Fuchsian group,
see [17],

(iii) Random walks on Cayley graphs and McKay graphs [18, 19],
(iv) Thompson conjecture [1]: If G is a finite non-abelian simple group, then

G = C2 for some conjugacy class C of G.

The most general result on Problem 1(A), which combines results of Gluck [Gl],
Gluck and Magaard [5], and Guralnick and the author [9], says that one can take
γ = 79/80, unless E(G) = An.

Our main focus will be on finite classical groups G = Cl(V ), where V = Fn
q .

For any g ∈ Cl(V ), the support supp(g) is defined to be.

supp(g) = inf
λ∈Fq

codimKer(g − λ · 1Ṽ ),

where Ṽ = V ⊗ Fq. A result of Larsen, Shalev, and the author [11] states that,
for any classical group G = Cl(V ), any irreducible character 1G 6= χ ∈ Irr(G), and
any g ∈ G

(1)
|χ(g)|
χ(1)

≤ 1

q
√

supp(g)/481
.

The first significant result on Problem 1(B) for symmetric groups was obtained by
Fomin and Lulov [4]. It has been vastly generalized by Larsen and Shalev [10].
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For finite groups of Lie type G = GF , where G is a connected reductive group of
semisimple rank r in good characteristic p, strong exponential bounds of the form

|χ(g)| ≤ f(r)χ(1)α(L
F

have been obtained in [2], [23], for the elements g ∈ G such that CG(g) ≤ LF

for some proper F -stable Levi subgroup L. Ignoring the (explicit) function f(r),
the (explicit) exponent α(LF ) is sharp in several cases. However, these bounds
leave out the elements g ∈ G whose centralizer is not contained in any proper Levi
subgroup, for instance, if g is unipotent.

An alternate approach towards Problem 1(B) has been developed in [6], [7], which
applies particularly well in the situation where either χ(1) or |CG(g)| is not too
large, compared to |G| logarithmically. The task of bounding character values can
then be accomplished using the concept of character level. Relying on Howe’s du-
ality and Deligne-Lusztig theory, we relate the level to the degree and the Lusztig’s
label for any irreducible character of G = Cln(q).

Using level theory, we prove:

Theorem 2. For any 0 < ε < 1, there is δ = δ(ε) > 0 such that the following
statement holds. For any finite quasisimple group G of Lie type, and for any g ∈ G
with |CG(g)| ≤ |G|δ,

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G).

For instance, if G = SLn(q) or SUn(q), and ε = 8/9, one can take δ = 1/12.
Building on [6, 7], we have recently proved the following uniform exponential

character bound, which works for all elements in all finite quasisimple groups of
Lie type:

Theorem 3. [13] There exists an explicit constant c > 0 such that for all finite
quasisimple groups G of Lie type, all χ ∈ Irr(G), and all g ∈ G, we have

|χ(g)|/χ(1) ≤ χ(1)−c
log |gG|
log |G| .

We remark that, up to the factor c, the exponent in Theorem 3 is optimal.
Here are some consequences of Theorem 3.

• A linear upgrade of the LST-bound (1):

|χ(g)/χ(1)| ≤ q−σ·supp(g)

for a uniform constant σ > 0.
• “Swapping” ε and δ in Theorem 2 :
For any 0 < δ < 1, there is 0 < ε = ε(δ) > 0 such that the following
statement holds. For any finite quasisimple group G of Lie type, and for
any g ∈ G with |CG(g)| ≤ |G|δ,

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G).
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• Lubotzky’s conjecture (also of Shalev) [20, 22]: If G is simple of Lie type,
then the mixing time of the random walk on the Cayley graph Γ(G, gG) is of
the same magnitude as its diameter; and it is Ω(n/supp(g)) if G = Cln(q).

The diameter part was established by [16].
• Liebeck-Shalev-Tiep’s conjecture [17]: If G is simple and α a faithful char-
acter of G, then the diameter of the McKay graph M(G,α) is

Ω(log |G|/ logα∗(1)),

where α∗ is the sum of distinct irreducible constituents of α.
The alternating case was proved by [18], relying on a recent result of

Sellke [21] for symmetric groups.

Strategy of proof of Theorem 3. We use probability theory to solve a representation-
theoretic problem. The starting idea is that the expected value of χ(gx1gx2...gxm),
with x1, ..., xm ∈ G chosen uniformly at random and χ ∈ Irr(G), is χ(g)m/χ(1)m−1.
Then we prove mixing theorems, which show that the probability that a product
of m random conjugates of g ∈ G lands in a small conjugacy class is small. Hence
with high probability one can apply Theorem 2. In fact, one needs to do it in
two bootstrappings. First, bootstrap a mid-size class to apply the GLT-bound
in Theorem 2. Then bootstrap any class to land “almost surely” in a mid-size
class. �

Theorem 3 allows us to make significant progress on Thompson’s conjecture:

Theorem 4. [13] If G = Cln(q) is a simple classical group of large enough rank,
and, furthermore,

(∗) : (q+1)|n if G = PSUn(q), ǫ = (−1)n(q−1)/4 and 2|n if G = PΩǫ
n(q) with 2 ∤ q

then Thompson’s conjecture holds for G, i.e. G = C2 for some C = gG.

Strategy of proof. By [3], we may assume q ≤ 7. Choose y of big support. Theorem
3 allows us to prove that (yG)2 contains all elements g ∈ G except for the ones
of small support. To cover the latter, say g = diag(h, In−k) with small k, choose
x = diag(y, y′) with y′ real. The above condition (∗) is needed to treat the case
where the primary eigenvalue of g is not 1. Our proof also makes use of the fact
that every element in the Schur cover of G is a commutator [15]. �
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The inductive Alperin–McKay condition for groups of

Lie type B and C

Lucas Ruhstorfer

(joint work with Julian Brough)

In the representation theory of finite groups some of the most important conjec-
tures relate the representation theory of a finite group G to the ones of its ℓ-local
subgroups for a prime ℓ dividing the order of G. One of these conjectures is the
Alperin–McKay conjecture, which forms a blockwise generalization of the McKay
conjecture. For an ℓ-block b of G we denote by Irr0(b) the subset of height zero
characters of the characters of the block b.

Conjecture (Alperin–McKay). Let b be an ℓ-block of G with defect group D and
B its Brauer correspondent in NG(D). Then

|Irr0(b)| = |Irr0(B)|.

In [Spä13], the Alperin–McKay conjecture was reduced to the verification of the
so-called inductive Alperin–McKay condition (iAM) for all finite simple groups and
primes ℓ.

For groups of Lie type B or C, it suffices to validate the iAM condition for all
isolated ℓ-blocks, see [Ruh22]. In this talk we explain how an iAM-bijection can
be obtained in this case. This is joint work in progress with Julian Brough.

In what follows, let G be a simple algebraic group of simply connected type B or
C defined over an algebraically closed field of characteristic p > 0. We assume that
F : G → G is a Frobenius endomorphism defining an Fq-structure on G and we
let ℓ ≥ 5 be a prime with ℓ 6= p. Then every isolated ℓ-block b of GF is labeled by a
d-cuspidal pair (L, λ), i.e. a pair consisting of a d-split Levi subgroup L of (G, F )
and a d-cuspidal character λ ∈ Irr(LF ). In our situation Z(L)Fℓ is a characteristic
subgroup of a defect group D of b and there exists a unique block B of NG(L)
covering bLF (λ). One can show that in order to prove the iAM-conditions for
the block b it suffices to construct an Aut(GF )b,D-equivariant bijection Irr0(b) →
Irr0(B). We construct such a bijection by giving a parametrization of both the
characters of Irr0(B) and of Irr0(b).

One of the key results for parametrizing the characters in the block B is the
following proposition about extending characters from LF to their inertia group
in NGF (L):

Proposition. For every character θ ∈ Irr(bLF (λ)) there exists an extension Λ(θ) ∈
Irr(NGF (L)θ). In particular, we have a bijection

Irr(WG(L, θ)) → Irr(NG(L) | θ), η 7→ Ind
NG(L)
NG(L)λ

(Λ(θ)η).

In the “McKay-situation” such a bijection was already known by the work of
Cabanes–Späth [CS19]. Using properties of the constructed extensions Λ(θ) it is
then possible to describe the stabilizer of the elements of Irr0(B) in Aut(GF )b,D.
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For parameterizing the global characters height zero characters, we use the prop-
erties of d-Harish-Chandra theory. For a d-cuspidal character θ ∈ Irr(LF ) denote
by E(GF , (L, θ)) the set of constituents of RG

L
(θ). Then we have the following:

Proposition. For every θ ∈ Irr(bLF (λ)) there exists a bijection

Irr(WG(L, θ)) → E(GF , (L, θ))

Moreover, every height zero character in Irr0(b) appears in the d-Harish-Chandra
series E(GF , (L, θ)) for some θ ∈ Irr(bLF (λ)).

Note that for characters in Irr(GF ) the stabilizer in Aut(GF ) is understood by
work of Cabanes–Späth [CS19]. Using this, one can show that the parametrizations
from above yield an Aut(GF )b,D-equivariant bijection Irr0(b) → Irr0(B). As a
consequence we obtain:

Theorem. Let G be a quasi-simple group of Lie type Bn or Cn (n ≥ 2) defined
over the finite field Fq for q a prime power of an odd prime and let ℓ ≥ 5 not
dividing q. Then every ℓ-block of G satisfies the iAM-condition.
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The Mullineux map

Matt Fayers

Let sgn denote the 1-dimensional sign module for the symmetric group Sn. If M
is an irreducible Sn-module, then M ⊗ sgn is again irreducible, and it is natural
to ask which irreducible it is. In characteristic zero, the answer is well-known: the
irreducible modules are the Specht modules Sλ labelled by partitions of n, and it

is a classical result that Sλ ⊗ sgn ∼= Sλ′

, where λ′ is the conjugate partition. In
characteristic p, the situation is more difficult: now the irreducible modules are
the James modules Dλ labelled by p-regular partitions of n, so there is a function
mp (the Mullineux map) from p-regular partitions to p-regular partitions defined

by Dλ ⊗ sgn ∼= Dmp(λ). The Mullineux problem is to describe mp combinatori-
ally. This problem was studied in the 1970s by Mullineux, who conjectured a
solution but was unable to prove his conjecture. Then in 1994 Kleshchev gave a
very different solution based on his modular branching rules. Ford and Kleshchev
then showed that the combinatorial functions defined by Mullineux and Kleshchev
coincide, thereby proving the Mullineux conjecture. Since then, several other solu-
tions to the Mullineux problem have been found, although the function mp remains
somewhat mysterious. In particular, there is an intriguing interplay between the
Mullineux map and James’s regularisation map, which has consequences for the
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decomposition number problem for the symmetric groups. I describe a new al-
gorithm for the Mullineux map based on generalisations (found by my student
Diego Millan Berdasco) of the regularisation map. This allows the combinatorial
proof of results of Bessenrodt–Olsson–Xu and the author relating the Mullineux
map with regularisation. I then briefly describe some work in progress joint with
Nicolas Jacon aimed at describing mp in terms of m2p using bipartitions.

Local determination of Frobenius–Schur indicators

Benjamin Sambale

It is a difficult problem to decide whether a real-valued character χ of a finite
group G can be afforded by a real representation. Although this information is
encoded by the Frobenius–Schur indicator (F-S indicator)

ǫ(χ) :=
1

|G|
∑

g∈G

χ(g2)

(being 1 if and only if χ comes from a real representation), it cannot, for instance,
be read off from the character table of G (as D8 and Q8 witness). On the other
hand, the F-S indicators of characters in a given block B are, as always, influenced
by a defect group ofB. Motivated by John Murray’s results on cyclic defect groups,
I obtained the number of real characters in nilpotent blocks (this number is not
invariant under Morita equivalence).

Theorem 1. Let B be a real, nilpotent p-block of a finite group G with defect
group D. Let bD be a Brauer correspondent of B in DCG(D). Then the number
of real characters in Irr(B) of height h coincides with the number of characters
λ ∈ Irr(D) of degree ph such that λt = λ where

NG(D, bD)∗/DCG(D) = 〈tDCG(D)〉.
If p > 2, then all real characters in Irr(B) have the same F-S indicator.

Here NG(D, bD)∗ := {g ∈ NG(D) : bgD ∈ {bD, bD}} is the extended stabilizer of
bD. For p = 2, Rod Gow and John Murray have introduced the extended defect
group E of B such that |E : D| = 2 unless B is the principal block. It seems that
the pair (D,E) fully determines the F-S indicators in nilpotent blocks as follows:

Conjecture 2. Let B be a real, nilpotent, non-principal 2-block of a finite group
G with defect pair (D,E). Then there exists a height preserving bijection Γ :
Irr(D) → Irr(B) such that

ǫ(Γ(λ)) =
1

|D|
∑

e∈E\D

λ(e2)

for all λ ∈ Irr(D).
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Theorem 3. Conjecture 2 holds in each of the following cases:

(i) D is abelian or a dihedral group.
(ii) G is solvable or quasisimple.

In general, Conjecture 2 is implied by the following local conjecture:

Conjecture 4. Let B be a real, non-principal 2-block with defect pair (D,E). Let
(x, b) be a B-subsection with defect pair (CD(x),CE(x)) such that b has a unique
projective indecomposable character Φ. Then for every y ∈ G with y2 = x, we
have

[ΦCG(y), 1CG(y)] = |yCG(x) ∩ E \D|,
where yCG(x) denotes the conjugacy class of y in CG(x).

A consequence of Conjecture 4 is an interesting formula involving the general-
ized decomposition numbers dxχϕ where IBr(b) = {ϕ}:

∑

χ∈Irr(B)

ǫ(χ)dxχϕ = |{y ∈ E \D : y2 = x}|.

Murray has also investigated blocks with dihedral defect groups. Using similar
idea as above, I excluded two families appearing in his classification.

Theorem 5. Let B be real block of a finite group G with dihedral defect group D
of order 2d ≥ 8 and extended defect group E. Let ǫ1, . . . , ǫ4 be the F-S indicators
of the four irreducible characters of height 0 in B. There is a unique family of
2-conjugate characters of height 1 in Irr(B) of size 2d−3. Let µ be the common
F-S indicator of those characters. The possible values for ǫ1, . . . , ǫ4, µ are given as
follows, while the remaining 2d−3−1 characters (of height 1) all have F-S indicator
1:

Morita equivalence class l(B) E ǫ1, . . . , ǫ4;µ
D (nilpotent) 1 D, D × C2 1, 1, 1, 1; 1

D ∗ C4 1, 1, 1, 1;−1
D2d+1 0, 0, 1, 1; 1
SD2d+1 0, 0, 1, 1;−1
C2d−1 ⋊ C2

2 , d ≥ 4 1, 1, 1, 1; 0
PGL(2, q), |q − 1|2 = 2d−1 2 D, D × C2 1, 1, 1, 1; 1

C2d−1 ⋊ C2
2 , d ≥ 4 1, 1, 1, 1; 0

PGL(2, q), |q + 1|2 = 2d−1 2 D, D × C2 1, 1, 1, 1; 1
PSL(2, q), |q − 1|2 = 2d 3 D, D × C2 1, 1, 1, 1; 1

D2d+1 0, 0, 1, 1; 1
SD2d+1 0, 0, 1, 1;−1
C2d−1 ⋊ C2

2 , d ≥ 4 1, 1, 1, 1; 0

PSL(2, q), |q + 1|2 = 2d 3 D, D × C2 0, 0, 1, 1; 1
D2d+1 1, 1, 1, 1; 1

A7, d = 3 3 D, D × C2 1, 1, 1, 1; 1

All cases occur for all d as indicated.

This work is supported by the German Research Foundation (SA 2864/4-1).
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Modules with finitely generated cohomology

Dave Benson

Let G be a finite group and k a field of characteristic p. A theorem of Lenny
Evens [4] shows that if M is a finitely generated kG-module then H∗(G,M) is
a finitely generated module over the graded commutative Noetherian k-algebra
H∗(G, k). What about the converse? If G is a finite p-group then you only need
H0(G,M) to be finite dimensional in order for M to be finitely generated. Further-
more, if M has no projective summands and there exists i > 0 such that Hi(G,M)
is finite dimensional then M is finitely generated. However, for more general finite
groups there can be infinite dimensional modules M with no projective summands
but H∗(G,M) = 0. For example for G = Z/3 × Σ3 in characteristic three, there
is a three dimensional module with this property.

Let us work in the stable module category StMod(kG), where we have quo-
tiented out those maps which factor through a projective module. This is a trian-
gulated category whose compact objects are the finitely generated modules. The
only difference this makes to cohomology is that we have to replace H∗(G,M)

by Ĥ>0(G,M), which is identical except in degree zero. So by a no cohomology

module, we mean an object M in StMod(kG) with Ĥ>0(G,M) = 0, and when we

speak of modules with finitely generated cohomology we mean that Ĥ>0(G,M) is
finitely generated over H∗(G, k), and when we speak of no cohomology modules

we mean that Ĥ>0(G,M) = 0.

Conjecture 1. The thick subcategory of StMod(kG) consisting of modules with
finitely generated cohomology is generated by the thick subcategories of finitely
generated modules and of no cohomology modules.

Now let BG be the classifying space of G. Write C∗BG for the cochains on BG
with coefficients in k, and D(C∗BG) for its derived category. There are several
equivalent ways to construct this. If we regard C∗BG as a differential graded alge-
bra then we take differential graded modules and homotopy classes of morphisms,
and we invert the quasi-isomorphisms. Alternatively, if we regard C∗BG as H∗BG
with an A∞-algebra structure, then we take A∞-modules and homotopy classes
of maps. The quasi-isomorphisms in this picture are automatically invertible. Fi-
nally, we might want to regard C∗BG as a commutative S-algebra in the sense
of Elmendorf, Kř́ıž, Mandell and May [3], in which case we take the category of
modules and invert the weak equivalences.
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We write Db(C∗BG) for the thick subcategory consisting of those objects X in
D(C∗BG) such that H∗(BG;X) = HomD(C∗BG)(C

∗BG,X) is finitely generated
as a module over the ring H∗BG. This definition is introduced and justified in
Greenlees and Stevenson [5].

Conjecture 2 (Greenlees). The subcategory Db(C∗BG) is equal to the thick
subcategory of D(C∗BG) generated by the module C∗BS, where S is a Sylow
p-subgroup of G.

Greenlees and I have recently proved that given a finite group G and a field k,
Conjectures 1 and 2 are equivalent. The connection between the two statements
goes via the intermediary of the category KInj(kG). This is the homotopy cate-
gory of complexes of injective (= projective) kG-modules. Inside this category,
the acyclic complexes give a copy of StMod(kG) via Tate resolutions, while the lo-
calising subcategory generated by ik, an injective resolution of the trivial module,
gives a copy of D(C∗BG).

Next, we introduce the notion of the nucleus [2]. This has a group theo-
retic definition and a representation theoretic definition, and the statement that
the two coincide is proved in [1]. Recall that Quillen [6] gave a description of
VG = SpecH∗(G, k) in terms of the category of elementary abelian p-subgroups
of G and their conjugations and inclusions. In terms of this, the group theoretic
nucleus is the subset defined as the union of the images of VE → VG as E ranges
over the elementary abelian p-subgroups whose centraliser is not p-nilpotent. The
representation theoretic nucleus is the union of the supports of the no cohomology
modules in the principal block of kG. We shall write ΘG for the nucleus defined
through either of these routes. The relevance of the nucleus is partly explained by
the following theorem from [1].

Theorem 3. The stable category of the principal block of kG is generated by the
trivial module k together with the modules whose support is contained in ΘG.

We are able to prove Conjectures 1 and 2 in the case where ΘG is ∅ or {0};
namely groups in which the centraliser of every element of order p is p-nilpotent.
In these cases, the support of the singularity category

Dsg(C
∗BG) = Db(C∗BG)/Thick(C∗BG)

is exactly equal to the nucleus. We conjecture that this is the case in general.
If Conjecture 2 is true then using Theorem 3, one can show that the support is
contained in the nucleus, but the other direction seems harder.

Finally, Jon Carlson and I have managed to prove Conjecture 1 in two cases with
non-trivial nucleus, namely G = Z/3×Σ3 in characteristic three, and G = Z/2×A4

in characteristic two. The proofs are not easy, and do not readily generalise.
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Cohomology of finite groups of Lie type and loop groups

Jesper Grodal

(joint work with Anssi Lahtinen)

My talk was about a new relationship between H∗(BG(Fq);Fℓ), the cohomology
of finite groups of Lie type G(Fq), and H∗(BLG(C);Fℓ), the cohomology of the
classifying space of the corresponding loop group LG(C), and was based on a
recent preprint with Lahtinen [GL]. Here G is a connected split reductive group
defined over Z, and we can for our purposes model the loop group LG(C) by the
space of continuous maps from the circle S1 to G(C) with the analytic topology,
a group under pointwise multiplication. (Taking smooth or polynomial maps does
not change the cohomology in this case.) The space BLG(C) also identifies with
LBG(C) = map(S1, BG(C)).

Quillen [Qui72] calculated in 1972 that, when ℓ | q − 1,

H∗(BGLn(Fq);Fℓ) ∼= Fℓ[x1, . . . , xn] ⊗ ∧Fℓ
(y1, . . . , yn),

where the polynomial generators xi are in degree 2i and the exterior generators
yi are in degree 2i − 1 (only additively when ℓ = 2 unless 4 | q − 1). This
answer agrees with the cohomology of H∗(LBGLn(C);Fℓ). Note that on the level
of spaces LBGL1(C) ≃ S1 × CP∞ whereas BGL1(Fq) ≃ BZ/(q − 1), so the
underlying spaces are certainly not homotopy equivalent, even after completing at
the prime ℓ, ruling out the existence of an underlying direct map of spaces. Despite
this, subsequent calculations have revealed agreements between H∗(BG(Fq);Fℓ)
and H∗(LBG(C);Fℓ) for other connected split reductive algebraic groups G, as
long as ℓ | q − 1. This led Tezuka to ask in 1998 [Tez98] if it could always be the
case for any connected split reductive algebraic group? Evidence for this has been
mounting, yet without displaying any direct link between the two objects.

In recent joint work with Anssi Lahtinen [GL] we combine string topology à la
Chas-Sullivan with the theory of ℓ-compact groups, to show that H∗(G(Fq);Fℓ)
admits a module structure over H∗(LBG(C);Fℓ), equipped with a Chas-Sullivan
type string product. We furthermore show, with a few potential exceptions, that
this module structure is free of rank one over H∗(LBG(C);Fℓ) whenever ℓ | q− 1.
We also show how to get around the congruence condition, by passing to a ℓ-
compact group:
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Theorem 1 (G-Lahtinen [GL]). Suppose G is a simple simply connected split
linear algebraic group over Z, and ℓ a prime. Suppose (G, ℓ) is not one of the
following 8 pairs: (E8, 5), (Ei, 3), (F4, 3), and (Ei, 2), i = 6, 7, 8.

If ℓ | q−1, then H∗(BG(Fq);Fℓ) is free of rank 1 over H∗(LBG(C);Fℓ) equipped
with a Chas-Sullivan string product.

Without the congruence condition there still exists an ℓ–compact group BH, de-
pending only on G and the multiplicative order of q modulo ℓ, so that H∗(BG(Fq);
Fℓ) is free of rank 1 over H∗(LBH ;Fℓ).

We etablish the result by first constructing the module structure and then
proving that it is free of rank one if and only if a certain natural map Fℓ

∼=
Hd(G(C);Fℓ) → Hd(G(Fq);Fℓ), induced from a ‘Lang map’ of ℓ-complete spaces
G(C)̂ℓ → BG(Fq )̂ℓ, is non-trivial, where d is the dimension of the maximal compact
subgroup of G(C). We then verify that it is non-trivial e..g, under the assumptions
stated in Theorem 1. We also investigate what other structure the isomorphism
between H∗(BG(Fq);Fℓ) and H∗(LBH ;Fℓ) preserves. We refer to [GL] for more
detail.
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The fields of values of the 2-height zero characters

Carolina Vallejo Rodŕıguez

(joint work with Gabriel Navarro, Lucas Ruhstorfer, Pham Tiep)

It is not difficult to show that every finite abelian extension of Q can be realized
as the field of values of some irreducible character of a finite (solvable) group. We
recall the if χ is a character of G, then the field of values of χ is

Q(χ) = Q(χ(g) | g ∈ G).

We can more generally define F(χ), the field of values of χ over any number field
F, as the composite field 〈F,Q(χ)〉. In this report, we write Qn = Q(e2πi/n) for
every positive integer n. With this convention, note that Q(χ) ⊆ Q|G| for every
character of the finite group G.

In 2019, Isaacs, Liebeck, Navarro and Tiep began the study of the field of values
of the irreducible characters of odd degree in [1]. Their goal was to understand
which quadratic extensions of Q could appear as those, as computations suggested
that, quite surprisingly, fields as Q(

√
±2) and Q(

√
3) were never realized as the

field of values of an odd-degree irreducible character of a finite group. They suc-
ceeded in this goal [1, Theorem A] and the key was to show that an odd-degree
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irreducible character χ of a finite group G is either 2-rational, that is, Q(χ) ⊆ Qm

for some odd integer m, or i ∈ Q(χ) [1, Theorem C]. Later, in 2021, Navarro and
Tiep generalized these results by completely characterizing the fields of values of
the irreducible odd-degree characters in [3, Theorems A1 and A2].

Odd-degree irreducible characters are precisely the height zero characters lying
in 2-blocks of maximal defect. Our present research aims at understanding the
fields of values of height zero characters in arbitrary 2-blocks. We can start by
noticing that Q(

√
3) does not appear as the field of values of any odd-degree

irreducible character [1, Theorem A], but there are many 2-blocks that have a

height zero character χ with Q(χ) = Q(
√

3). For instance, if we look in a double
cover of S5. We remark that such a χ is not 2-rational and i /∈ Q(χ).

In order to state our main results it is convenient to introduce one last piece
of notation. If F is an abelian number field, the conductor of F is the minimum k
such that F ⊆ Qk. We define the conductor c(χ) of a character χ as the conductor
of Q(χ) its field of values. Note that if χ is an irreducible character with Q(χ) =

Q(
√

3), then c(χ) = 12 and i ∈ Q3(χ) = Q12.

Theorem A. Let χ be an irreducible character of a finite group G having height
zero in its 2-block. Write c(χ) = 2am, where m is an odd prime, and F = Qm.
Then Q2a ⊆ F(χ) (so F(χ) = Qn).

While Theorem A does not strictly generalize [1, Theorem C], it has three
important consequences: firstly, Theorem A allows us to completely determine the
abelian number fields that appear as the field of values of irreducible characters
of 2-height zero in finite groups (those are precisely the abelian number fields F
that satisfy 〈F,Qm〉 = Qn where n = 2am is the conductor of F and m is odd); in
particular, we can characterize the quadratic extensions of Q that appear as the
field of values of 2-height zero irreducible characters; and lastly, we can give a new
characterization of 2-rational irreducible 2-height zero characters.

Moreover the statement of TheoremAfollows from the so-called Alperin-McKay-
Navarro conjecture [2, Conjecture B]. This contrast the situation in [1] and [3],
where the statements of the main results do not follow from the McKay-Navarro
conjecture [2, Conjecture A].

As the McKay conjecture and its refinements deal with irreducible characters
of degree not divisible by a fixed but arbitrary prime p; it is natural to wonder
what are the fields of values the irreducible characters of degree not divisible by
p for odd primes p, and more generally, of the p-height zero characters. In [3], it
was conjectured that the set constituted by the fields of values of the irreducible
characters of degree coprime to p of finite groups is exactly the set conformed by
the abelian number fields F with |Qpa : Qpa ∩ F| not divisible by p, where the
conductor of F is pam and m is coprime to p. As the authors notice in [3], the
above conjecture does not seem to follow from the McKay-Navarro conjecture. We
propose the following.

Conjecture B. Let p be a prime. Let F be an abelian number field. Write n the
conductor of F as n = pam where m is coprime to p. There is some irreducible
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character χ of a finite group G having height zero in its p-block with Q(χ) = F if,
and only if, |Qn : 〈F,Qm〉| is coprime to p.

We show that Conjecture B is implied by the statement Alperin-McKay-Navarro
conjecture. Moreover, we can prove “if” implication in Conjecture B and show
that the “only if” implication holds if it holds for the height zero characters lying
in p-blocks of quasi-simple groups.
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Bounding the order of finite complex linear groups with restricted

composition factors

Geoffrey Robinson

We consider a family F of finite groups which is closed under taking normal sub-

groups and homomorphic images, and we wish to determine under which conditions
there is a constant α(F) such that whenever G ∈ F and also G ⊆ GL(n,C), we
have

[G : F (G)] ≤ α(F)n−1

and related questions of a similar nature. This question was motivated by a
question from P. Etingof related to work of Coulembier, Etingof and Ostrik on
asymptotic growth properties in symmetric tensor categories, but we obtain other
applications as well. Since we do not require the family F to be closed under
extensions, this restricts the use of some standard Clifford-theoretic reductions.

It turns out (using the classification of finite simple groups) that α(F) exists if
and only if F contains only finitely many alternating groups. This suffices to deal
with covers the questions of Etingof, which concerned finite complex linear groups
of order coprime to a chosen prime p, and finite complex linear groups with an
Abelian Sylow p-subgroups. For we note that when F is the family of all finite
groups of order prime to p (for p an odd prime), then F contains no alternating
group Altk with k ≥ p. Similarly, when F is the family of all finite groups with
Abelian Sylow p-subgroups (for p an odd prime), then F contains no alternating
group Altk with k ≥ p2.

An examples of the results we prove is:

Theorem A: Let p be an odd prime greater than 11, and let G be a finite sub-
group of GL(n,C) with Abelian Sylow p-subgroups. Then G has an Abelian normal

subgroup A with [G : A] ≤
(

(p2 − 1)!
)

n−1

p2−3 .



Representations of Finite Groups 1063

Our methods also allow us to produce a relatively short proof of the following
variant of theorems of B. Weisfeiler and M.J. Collins:

Let G be a finite subgroup of GL(n,C), and suppose that Altm is the largest
alternating group which occurs as a composition factor of G. Then G has an
Abelian normal subgroup A with

[G : A] ≤
(

max{60,m!
1

m−2 }
)n−1

.

Furthermore, if [G : A] > 60n−1, then m > 151 and

[G : A] ≤ (m!)
n−1
m−2 ≤ (n+ 1)!.

On endotrivial modules for finite groups

Nadia Mazza

(joint work with Jon Carlson, Jesper Grodal, Dan Nakano)

Let G be a finite group and let k be a field of positive characteristic p dividing
|G|. We consider finitely generated kG-modules. A kG-module M is endotrivial
if EndkM is isomorphic (as kG-module) to the direct sum of the trivial module
k and some projective module, or equivalently, M∗ ⊗M ∼= k in the stable module
category mod(kG) where M∗ = Hom(M,k) and ⊗ = ⊗k. The stable isomorphism
classes of endotrivial modules form an abelian group, denoted T (G) and called the
group of endotrivial modules for G.

The stable isomorphism classes of endotrivial modules are the invertible ele-
ments of Green ring mod(kG), and they also are the “building bricks” of the
source modules of simple modules for finite p-soluble groups. Our ultimate objec-
tive is to classify endotrivial modules for all finite groups, or at least determine
T (G) as an abelian group. Numerous results have already been obtained in that
direction. In particular, T (G) is finitely generated, which allows us to split the
question into two: finding the torsion subgroup TT (G) of T (G), and a torsion free
complement TF (G) of TT (G) in T (G).

The main, and often unique, example of endotrivial module of dimension greater
than one is the syzygy Ω(k) of the trivial module, i.e. Ω(k) = ker(P ։ k) of a
projective cover of k.

Henceforth, let S ∈ Sylp(G), and set N = NG(S). We record the following
results on endotrivial modules (cf. [4] for details and background):

• T (N) ∼= T (S)N ⊕Hom(N, k×), the direct sum of the N -stable elements of
T (S) and the one-dimensional kN -modules. Moreover, T (S) is known by
generators and relations.

• The rank n of TF (G) as abelian group is equal to the number of compo-
nents of the orbit space A≥2

p (G)/G where A≥2
p (G) is the poset of noncyclic

elementary abelian p-subgroups of G. In particular, n = 0 if G has p-rank
less than 2 and n = 1 if G has p-rank greater than p if p is odd, or 4 if
p = 2. In any case, n ≤ p+ 1 if p is odd, and n ≤ 5 if p = 2. Moreover, if
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n ≥ 1, then [Ω(k)] generates an infinite cyclic direct summand in TF (G).
A result of Grodal uses homotopy methods, and in the cases of interest
for the present work, reduces, in some sense, the computation of K(G) to
a p-local analysis.

In our joint work, we aim to determine T (G) for all finite groups of Lie type
G. By a finite group of Lie type we mean the group of fixed points G = GF of a
connected reductive algebraic group G defined over an algebraically closed field of
positive characteristic under a Steinberg endomorphism (e.g. SLn(q)). We refer
to [3] for the theoretical background.

Results for TF(G). Let G be a finite group of Lie type (of order divisible by p).
The following hold.

• TF (G) = 0 whenever G has p-rank one.
• TF (G) = 〈[Ω(k)]〉 ∼= Z unless G is isomorphic to one of the following:

– PGLp(q) with p | q − 1, or PGUp(q) with p | q + 1, or 3D4(q) with
p = 3 and gcd(3, q) = 1.

– G/Z(G) is isomorphic to PSL3(p),PSU3(p),PGL3(p),PSpin5(p),
SO5(p) or G2(p), with some further restrictions on the values of p.

Detailed results are provided in [1, Theorem A].

Results for TT(G). Let G be a finite group of Lie type (of order divisible by p).
The following hold.

• If G has p-rank one, then ResGNG(Z) : T (G) → T (NG(Z)) is an isomor-
phism, where Z is the unique subgroup of S of order p.

• TT (G) = Hom(G, k×) ∼= G/[G,G]S unless G is isomorphic to a product
H ×K with K a p′-group and H is isomorphic to one of the following:

– SU3(2), Sp4(2), G2(2) or SL4(2) with p = 3.
– Sp8(2), F4(2), E7(2) or E7(3)sc with p = 5, where the subscript sc

denotes the fixed points E7
F7 under the Frobenius endomorphism F7

of the simply connected reductive group E7.
Detailed results are provided in [2, Theorem A], together with the results
for the very twisted groups.
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Spetses from the p-local perspective

Jason Semeraro

(joint work with Radha Kessar, Gunter Malle)

Let ℓ be a prime and k be an algebraically closed field of characteristic ℓ. It
is often possible to describe the local side of a local-global counting conjecture
in terms of fusion systems. To a finite group G one can associate a saturated
fusion system FS(G) on a Sylow ℓ-subgroup S of G. In general a saturated fusion
system F on an ℓ-group S is a category on the subgroups of an ℓ-group whose
morphisms are group homomorphisms satisfying particular axioms (all satisfied
when F = FS(G)). Such a category is called exotic if it is not realised by any
finite group G in this way. It is a theorem that any ℓ-block B of kG determines
a saturated fusion system FD(B) on its defect group D and an open problem to
show that FD(B) is never exotic. The author was motivated by the following
invariant for fusion systems. Let d ≥ 0 and F be a saturated fusion system on S.
A subgroup Q ≤ S is said to be F-centric if CS(P ) ≤ P for all P ∈ QF (that is
for all subgroups F -conjugate to Q). For each F -centric subgroup Q, define:

NQ := {σ = (1 = X0 EX1 EX2 E · · ·EXm) | Xm ≤ℓ OutF(Q),m ≥ 0}
to be the set of all normal chains of ℓ-subgroups of OutF(Q) = AutF(Q)/ Inn(Q)
of length |σ| = m and for σ ∈ NQ, write I(σ) = stabOutF (Q)(σ) for its stabiliser.
Now, following [7], set

wQ(F , d) :=
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

µ∈Irrd(Q)/I(σ)

z(kI(σ, µ)),

where Irrd(Q) = {µ ∈ Irr(Q) | vℓ(|Q|/µ(1)) = d} is the number of characters of
ℓ-defect d and z(−) denotes the number of ℓ-defect zero blocks. Finally, set

m(F , d) =
∑

Q

wQ(F , d),

where the sum runs over all F -centric subgroups Q up to F -conjugacy. Robinson’s
Ordinary Weight Conjecture (OWC) asserts that for the principal ℓ-block B0 of
any finite group G there is an equality

| Irrd(B0)| = m(FS(G), d)

where Irrd(B0) denotes the set of ordinary characters of G in B0 of ℓ-defect d.
Since the RHS of this equality makes perfect sense for arbitrary saturated fusion
systems one is naturally led to ask whether the integer m(F , d) is of any impor-
tance/significance for exotic fusion systems. Indeed in 2010, Markus Linckelmann
asked whether particular properties of this integer might be even used to detect
the exoticity of a fusion system. This question motivated the author to calculate
m(F , d) for large collections of exotic fusion systems on a computer. Somewhat
surprisingly, the results did not produce significant observable differences with
the group case. This ‘good’ behaviour, in turn, led to several conjectures about
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the invariant in joint work with Justin Lynd, Radha Kessar and Markus Linckel-
mann (see [7, Section 2]). For example, we conjectured that m(F , d) ≥ 0 for any
saturated fusion system and non-negative integer d.

A particularly interesting family of fusion systems on which to test these con-
jectures is the (Benson–Solomon) family of exotic simple 2-fusion systems with q
an odd prime power. Calculation of the integers m(F , d) in [10] yielded a further
surprise: not only were they always positive, they were also generic polynomials in
the 2-part of q2 − 1 ! In an attempt to explain this, and realising that for certain
groups of Lie type Irrd(B0) could be calculated in terms of the underlying fusion
system and lists of unipotent degrees, the author employed the theory of spetses
(see below) to define an ‘ad-hoc’ analogue of Irrd(B0) for BSol(q). For this set, he
then conjectured and proved a version of (OWC).

These observations seemed to point to an unexplored connection between ℓ-
compact groups and spetses which was the starting point for a joint project [8] with
Radha Kessar and Gunter Malle. An ℓ-compact group BX is a connected pointed
ℓ-complete topological space whose loop space has finite mod ℓ-cohomology. Such
an object may be regarded as a certain homotopical version of a compact connected
Lie group G. In particular (BG)∧ℓ is an ℓ-compact group, but there are also exotic
examples which are not of this form. Like a compact Lie group, any ℓ-compact
group BX has a maximal torus BT and Weyl group W such that (W,π2(T )) is
an ℓ-adic reflection group. Moreover, (W,π2(T )) controls the structure of BX see
[1, 2]. Recall that an ℓ-adic reflection group is a finite subgroup W of GL(L),
(L a Zℓ-lattice) generated by reflections, i.e. elements of W which pointwise fix
a sublattice of L of corank 1. Note that, via extension of scalars, ℓ-adic relection
groups form a sub-class of complex reflection groups.

Now if BX is a simply connected ℓ-compact group with Weyl group W and q is
a prime power with (ℓ, q) = 1 then a result of Broto–Møller [3] shows that to the
pair (W, q) one can associate a saturated fusion system F on a finite ℓ-group. More
explicitly, it is shown that the classifying space of F is the space of homotopy fixed
points of BX under an unstable Adams operation ψq. For example if G a compact
connected Lie group and BX = (BG)∧ℓ , F is the fusion system of (the principal
ℓ-block of) the corresponding finite group of Lie type, [6, 9]. When BX is exotic,
we also obtain exotic fusion systems corresponding to complex reflection groups
W = G(m, r, n), r > 2, n ≥ ℓ and ℓ | (q − 1) (ℓ odd) and the Benson–Solomon
fusion systems when W = G24 and ℓ = 2).

In a completely different direction, if W ≤ GL(V ) is a spetsial complex reflection
group and ϕ ∈ NGL(V )(W ), the Broué–Malle–Michel theory of spetses [4] explains
how to associate to the pair G := (W,ϕ):

• a set Uch(G) of “unipotent” characters, and for each γ ∈ Uch(G), a “de-
gree” γ(1) ∈ QW [x], where QW is the character field of W ;

• for a root of unity ζ, a partition of Uch(G) into ζ-Harish–Chandra series;
• a cyclotomic Hecke Algebra: H(G,u) (see also, [5]).

If W = W (G) is the Weyl group of a connected reductive group G, q = pf then:
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• Uch(G) corresponds to the set Uch(G(q)) of unipotent characters of G(q)
and for each γ ∈ Uch(G) γ(1)(q) is the correct degree;

• the ζ-series partition of Uch(G) corresponds to the ℓ-block partition of
G(q), for q ≡ ζ (mod ℓ);

• H(W,u) specialises to Iwahori–Hecke algebra of G(q).

It turns out that one can combine these two sets of data to formulate a good
notion of the characters in the principal ℓ-block B0 of an ℓ-adic spets G := (W, Id)
as follows. Let BX be the ℓ-compact group attached to W and q ≡ ζ (mod ℓ)
be a prime power coprime with ℓ. Let (S,F) be the fusion system corresponding
to (BX, q) and assume that BX is simply connected. Now to the pair (G, q) we
associate a set

Irr(B0) :=
⋃

s∈S/F

E(G, s)ζ , where E(G, s) ↔ Uch(CG(s))ζ

of “irreducible characters” in B0. This has the property that if (G, q) corresponds
to G(q) then there exists a degree-preserving bijection between Irr(B0) and Irr(B0),
where B0 is the principal ℓ-block of G(q). As a consequence we can formulate a

version of (OWC) for B which simply asserts that | Irrd(B0)| = m(F , d) for all
d ≥ 0. This was shown to hold in [8] in the case W = G(e, r, ℓ) when q ≡ 1
(mod ℓ) and, after slightly modifying B0, for ℓ = 2 in the case W = G24 when
q ≡ 1 (mod 4) by applying the main result of [10].

This talk will be survey of the above, together with a discussion of recent
progress in generalising unipotent blocks, their dimensions and character values
on semisimple ℓ-elements. Our results and conjectures provide significant evidence
of a substantial ℓ-local enrichment of the existing Broué-Malle-Michel theory of
spetses and offer a valuable new perspective on the local-global conjectures of
modular representation theory.
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The E1-property of finite groups

Gerhard Hiss

(joint work with Rafa l Lutowski)

Motivated by fixed point theory on manifolds, Dekimpe, de Rock and Penninckx
formulated a slightly weaker form of the following conjecture.

Conjecture (following [1, Conjecture 4.8]). Let G be a finite group and V a
non-trivial, irreducible, odd-dimensional RG-module. Write ρ : G → GL(V ) for
the representation of G afforded by V . Then, for every n ∈ NGL(V )(ρ(G)) of finite
order, there is g ∈ G such that ρ(g)n has eigenvalue 1. �

The aim of the joint project with Rafa l Lutowski is to prove the above conjecture,
which would imply the truth of [1, Conjecture 4.8]. In order to present some of the
intermediate results we have achieved on this way, let me set up some terminology.

Let G be a finite group and let V be a finite-dimensional RG-module. Denote
by ρ the corresponding representation of G. For the purpose of this talk assume
that ρ is faithful, and consider G as a subgroup of GL(V ) via the embedding ρ. For
n ∈ GL(V ) of finite order normalizing G, we say that (V, n) has the E1-property, if
there is g ∈ G such that gn has eigenvalue 1. We say that V has the E1-property,
if this condition holds for all such n. Finally G has the E1-property, if V has the
E1-property for all non-trivial, irreducible, odd-dimensional RG-modules V . Thus
the conjecture predicts that every finite group has the E1-property.

The trivial RG-module (for the trivial group G) does not have the E1-property.
It is easy to see that every elementary abelian 2-group does have the E1-property.
In [1, Example 4.9] the authors show that the absolute irreducible 4-dimensional
real representation of the extraspecial group 21+4

+ does not have the E1-property.
The following result gives a sufficient criterion for the E1-property.

Proposition 1. Assume that V is absolutely irreducible and let n ∈ GL(V ) be
of finite order normalizing G. Suppose that there exist g ∈ G such that x := gn
satisfies

dim(V ) > (|x| − 1)|CG(y)|1/2 for all 1 6= y ∈ 〈x〉.
Then (V, n) has the E1-property. �

From now on assume that V is non-trivial and odd-dimensional. Then V is abso-
lutely irreducible. We have reduced the conjecture to finite simple groups.

Theorem 1. A minimal counterexample to the conjecture is a non-abelian finite
simple group. �

As a corollary, a finite solvable group has the E1-property. From now on let G be
a non-abelian simple group. It is not difficult to see that G has the E1-property
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if Aut(G) ∼= G or if Aut(G) is a split extension of Inn(G) with a group of order 2.
Hence a sporadic simple group or a simple alternating group (except, possibly A6)
is not a minimal counterexample to the conjecture.

It thus remains to consider the finite simple group of Lie type. Let G be such a
group, let p be its characteristic, and let B = UT denote a Borel subgroup of G,
where T is a maximally split torus and U a Sylow p-subgroup of G.

Assume first that p is odd. Then the restriction of V to B contains a homoge-
neous component V1 of odd dimension, such that the irreducible submodules of V1
have dimension 1 and their character λ satisfies λ2 = 1B. This allows to prove, in
most cases, that V satisfies the E1-property by restricting V to suitable parabolic
subgroups of V . At the time of this writing, the E1-property for some instances
(V, n) still has to be checked.

Suppose now p = 2. Here, our approach further subdivides into two cases. In
the first of these, we can give a complete answer.

Theorem 2. Suppose that G = GF for some simple algebraic group G of adjoint
type of characteristic 2, and some suitable Steinberg morphism F of G. Assume
also that G 6∼= PΩ+

8 (q). Then G has the E1-property. �

Let G be a group as in Theorem 2, and let (V, n) be a pair arising from G as in the
conjecture. Modifying n by an element of G, we may assume that n normalizes U
and T . Now restrict V to U , the Sylow 2-subgroup of G. Under our hypotheses,
this restriction contains, after a further modification of n by an element of T , an
n-invariant homogeneous component of odd dimension, consisting of a direct sum
of non-trivial 1-dimensional simple modules. As n has eigenvalue 1 or −1 on V1,
this shows that (V, n) has the E1-property.

This leaves to consider the remaining groups of Lie type of characteristic 2.
These are the simple groups PSLd(q) and PSUd(q) with gcd(d, q − 1) > 1 re-
spectively gcd(d, q + 1) > 1, the simple groups E6(q) and 2E6(q) with 3 | q − 1
respectively 3 | q + 1, and the groups PΩ+

8 (q), where, in all cases, q is even. Most
instances of V are ruled out with Proposition 1. This requires a detailed knowl-
edge of the fixed point subgroups of non-inner automorphisms of G of prime order.
When these methods do not apply, i.e. when dim(V ) is too small, we show that V
is Harish-Chandra induced from a suitable odd-dimensional real module of a suit-
able Levi subgroup of G. This step relies on the classification of the characters of
the possible V via Lusztig’s generalized Jordan decomposition.

Although some steps are still missing, I am confident that the methods we have
acquired so far will lead to a proof of the conjecture.
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Variations of Baer-Suzuki theorem and applications

Hung P. Tong-Viet

(joint work with R. Guralnick and G. Tracey)

The Baer-Suzuki theorem, a classical result in finite group theory, states that if C
is a conjugacy class of a finite group G and if every two elements in C generate
a nilpotent subgroup, then C generates a nilpotent normal subgroup of G. This
gives a nice characterization of the Fitting subgroup of G, that is, the largest
nilpotent normal subgroup of G. This theorem was originally proved by Baer in
1957 and later by M. Suzuki in 1965. A more direct and elementary proof was
obtained by Alperin and Lyons in [1]. This theorem was used by M. Suzuki in the
classification of finite simple groups. Especially, it was used to show that every
finite nonabelian simple group possesses a nontrivial real element of odd order.
Many generalizations of this theorem have been proposed and studied over the
years.

In [5, Theorem A], Guralnick and Robinson show that for a finite group G and a
prime p, if x ∈ G is an element of order p, and [x, g] is a p-element for all elements
g ∈ G, then x ∈ Op(G). Guralnick and G. Malle extend this to all p-elements in [3,
Theorem 1.4]. These results have recently been used in [2] to show that if x ∈ G
is a p-element and xy is a p-element for all p-elements y ∈ G, then x ∈ Op(G).

In [6], we extend this result as follows.

Theorem 1. Let G be a finite group and let p be a prime. If x ∈ G is a p-element
and xy is either 1 or p-singular for every p-element y ∈ G, then x ∈ Op(G).

Recall that an element is p-singular if its order is divisible by p. Following
Guralnick and Moretó [4], an irreducible complex character χ of a finite group
G is said to be multiplicative if χ(xy) = χ(x)χ(y) for all nonidentity elements
x, y ∈ G with gcd(o(x), o(y)) = 1. Clearly every linear character is multiplicative.

As an application of Theorem 1, we prove in [6] the following which partially
answers a question raised in [4].

Theorem 2. Let G be a finite group and let χ be a nonlinear irreducible complex
character of G. Then χ is multiplicative if and only if there is a prime p such that
χ vanishes off Op(G).

In [6], we also generalize several other results in [5] and [2].
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elements in finite groups, J. Lond. Math. Soc. (2) 99 (2019), no. 2, 535–552.

[3] R. M. Guralnick and G. Malle, Variations on the Baer-Suzuki theorem, Math. Z. 279

(2015), no. 3-4, 981–1006.
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Modular Isomorphism Problem – progress, solution and

open challenges

Leo Margolis

(joint work with D. Garćıa-Lucas, Á. del Rı́o, T. Sakurai, M. Stanojkovski)

Say we are given only the R-algebra structure of a group ring RG of a finite
group G over a commutative ring R. Can we then find the isomorphism type of
G as a group? This so-called Isomorphism Problem has obvious negative answers,
considering e.g. abelian groups over the complex numbers, but more specific for-
mulations have led to many deep results and beautiful mathematics. The last
classical open formulation was the so-called Modular Isomorphism Problem: Does
the isomorphism type of kG as a ring determine the isomorphism type of G as a
group, if G is a p-group and k a field of characteristic p? This question goes back
at least to Brauer’s influential survey [Bra63].

We start with a short overview of some known results before presenting a rather
recent general solution to the problem: there is a series of non-isomorphic 2-groups
which have isomorphic group algebras over any field of characteristic 2 [GLMdR22].
These groups are 2-generated with cyclic derived subgroup and of nilpotency class
3. Several natural questions remain open though, including:

• Does the Modular Isomorphism Problem have a positive answer for groups
of odd order?

• Does it have a positive answer for groups of nilpotency class 2?
• What is the role of the field in the problem: might there in particular exist
p-groups G and H and a field k of characteristic p such that FpG 6∼= FpH ,
but kG ∼= kH?

• As the isomorphism type of kG can not be recovered from kG, which are
actually the properties of G which can be read from the structure of kG?

I will present some new ideas concerning these questions partly covered by
[MSS21, GLdRS22, GL22].
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Tower equivalence and Lusztig’s truncated Fourier transform

Jean Michel

Let W ∈ GL(V ) where V = Cn be an irreducible well-generated complex reflection
group. We call a tower T a maximal chain 1 = W0 ⊂ W1 ⊂ . . . ⊂ Wn = W of
parabolic subgroups. If Ref(W ) are the reflections, we associate to a tower a set
of “Jucys-Murphy” elements

J i
T =

∑

r∈Ref(Wi)−Ref(Wi−1)

r

and a commutative subalgebra JT = C[J1
T , . . . , J

n
T ] ⊂ C(W ). Two complex char-

acters χ, χ′ ∈ Irr(W ) are said T -equivalent if they have the same restriction to
JT . The characters χ and χ′ are said tower-equivalent, written χ ≡ χ′, if they are
tower-equivalent for all towers.

A coxeter element is an element c of W which has e2iπ/h as an eigenvalue on V ,
where h is the highest reflection degree of W . The main result of [1] is the tower
equivalence

∑

χ∈Irr(W )

χ(c−1)χ ≡
n
∑

i=0

(−1)iχΛi(V ),

where on the RHS the sum is over the exterior powers of the reflection represen-
tation. They show this case-by-case.

I have a more conceptual proof for spetsial reflection groups using Lusztig’s
truncated Fourier transform. I give the definition for Weyl groups, it is extended
verbatim to spetsial groups.

Let GF be a split finite reductive group with Weyl group W , and let RG

Tw
Id be

the Deligne-Lusztig induced from a torus of type w ∈ W , and let Uχ for χ ∈ Irr(W )
be the principal series unipotent character indexed by χ.

We define the truncated Lusztig Fourier transform as the application which
maps χ ∈ Irr(W ) to the class function f(χ) on W defined by

for w ∈W , f(χ)(w) = 〈RG

Tw
Id, Uχ〉GF .

The definition is extended by linearity to all class functions.
The properties I prove from which I deduce the result of [1] are

• For any class function on W , we have χ ≡ f(χ).

• For χ ∈ Irr(W ) we have f(χ)(c) =

{

(−1)i if χ = χΛi(V ),

0 otherwise.
.

• f(
∑

χ∈Irr(W ) χ(w)χ) =
∑

χ∈Irr(W ) f(χ)(w)χ.

• For any χ ∈ Irr(W ) we have χ ≡ χ.
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It follows from the first item that the image of Id − f is a vector space of
class functions tower equivalent to 0. I call kernel of the tower equivalence the
space of all class functions tower equivalent to 0. Many computations support the
conjecture:

Conjecture 1. For any irreducible spetsial group except G32, the image of Id− f
is equal to the kernel of the tower equivalence.
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Functorial equivalence of blocks

Serge Bouc

(joint work with Deniz Yılmaz)

Let k be an algebraically closed field of characteristic p > 0, let R be a commutative
ring, and let F be an algebraically closed field of characteristic 0. We consider
([BY20], [BY22]) the following category Rpp∆k :

• The objects of Rpp∆k are the finite groups.
• For finite groups G and H , the set of morphisms HomRpp∆

k
(G,H) from G

to H in Rpp∆k is equal to RT∆(H,G) = R⊗Z T
∆(H,G), where T∆(H,G)

is the Grothendieck group of the category of diagonal p-permutation (kH,
kG)-bimodules. These are p-permutation bimodules which are projective
when considered as left or right modules (or equivalently, p-permutation bi-
modules which admit only indecomposable direct summands with twisted
diagonal vertices).

• The composition in Rpp∆k is induced by R-linearity from the usual tensor
product of bimodules: if G, H , and K are finite groups, if M is a diago-
nal p-permutation (kH, kG)-bimodule and N is a diagonal p-permutation
(kK, kH)-bimodule, then N⊗kHM is a diagonal p-permutation (kK, kG)-
bimodule. The composition of (the isomorphism class of) N and (the iso-
morphism class of) M is by definition (the isomorphism class of) N⊗kHM .

• The identity morphism of the group G is the (isomorphism class of the)
(kG, kG)-bimodule kG.

The category Rpp∆k is an R-linear category. The R-linear functors from Rpp∆k
to the category RMod of R-modules are called diagonal p-permutation functors
over R. These functors, together with natural transformations between them,
form an R-linear abelian category F∆

Rppk
.

Our first main result is the following:

Theorem 1. The category F∆
Fppk

of diagonal p-permutation functors over F is
semisimple.
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In order to describe the simple objects of F∆
Fppk

, we consider pairs (L, u), where

L is a finite p-group and u is a generator of a p′-group acting on L. We write
L〈u〉 := L⋊ 〈u〉 for the corresponding semi-direct product. We say that two pairs
(L, u) and (M, v) are isomorphic if there is a group isomorphism f : L〈u〉 →M〈v〉
that sends u to a conjugate of v. We denote by Aut(L, u) the group of automor-
phisms of L〈u〉 sending u to a conjugate of u, and by Out(L, u) the quotient of
Aut(L, u) by the subgroup of inner automorphisms of L〈u〉. We say that a pair
(L, u) is a D∆-pair if C〈u〉(L) = 1.

Theorem 2. The simple diagonal p-permutation functors over F, up to isomor-
phism, are parametrized by isomorphism classes of triples (L, u, V ), where (L, u)
is a D∆-pair and V is a simple FOut(L, u)-module.

Let (G, b) be a pair of a finite group G and a block idempotent b of kG. Then
kGb is a diagonal p-permutation (kG, kG)-bimodule, and its class in RT∆(G,G) is
an idempotent endomorphism of G in Rpp∆k . We denote by RT∆

G,b or RT∆(−, G)b

the diagonal p-permutation functor over R defined by RT∆
G,b = RT∆(−, G) ◦ kGb.

Then RT∆
G,b is a direct summand of the representable functor RT∆(−, G), so it is

a projective object of F∆
Rppk

, by the Yoneda lemma.

Definition 3. Let G and H be finite groups, let b be a block idempotent of kG,
and c be a block idempotent of kH. We say that the pairs (G, b) and (H, c) are
functorially equivalent over R if the functors RT∆

G,b and RT∆
H,c are isomorphic in

F∆
Rppk

.

By the Yoneda lemma, the pairs (G, b) and (H, c) are functorially equivalent if
and only if there are elements σ ∈ cRT∆(H,G)b and τ ∈ bRT∆(G,H)c such that
τ ◦ σ = kGb in bRT∆(G,G)b and σ ◦ τ = kHc in cRT∆(H,H)c. In particular,
functorial equivalence over Z implies functorial equivalence over any R. It is
slightly weaker than p-permutation equivalence of blocks ([BX08], [BP20]), which
requires in addition that τ be equal to the opposite of σ.

By Theorem 1, the functor FT∆
(G,b) splits as a direct sum of simple functors in

F∆
Fppk

. We obtain three equivalent formulas for the multiplicity of a given simple

functor SL,u,V as a direct summand of FT∆
G,b:

• One in terms of fixed points of some subgroups of Out(L, u) on V .
• One in terms of “u-invariant” (G, b)-Brauer pairs (P, e).
• One in terms of the “u-invariant” local pointed groups Pγ on kGb.

Using these formulas, we show that functorial equivalence preserves some impor-
tant invariants of blocks:

Theorem 4. Let b be a block idempotent of kG and c a block idempotent of kH.
If (G, b) and (H, c) are functorially equivalent over F, then:

(i) l(kGb) = l(kHc).
(ii) k(kGb) = k(kHc).
(iii) b and c have isomorphic defect groups.
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We also get the following characterization of nilpotent blocks:

Theorem 5. Let b a block idempotent of kG with defect group D. The following
are equivalent:

(i) The block b is nilpotent.
(ii) If SL,u,V is a simple summand of FT∆

G,b, then u = 1.

(iii) If SL,u,F is a simple summand of FT∆
G,b, then u = 1.

(iv) (G, b) is functorially equivalent to (D, 1) over F.

Finally, we prove the following finiteness result:

Theorem 6. Let D be a finite p-group. Then there is only a finite number of pairs
(G, b), where G is a finite group, and b is a block idempotent of kG with defect
groups isomorphic to D, up to functorial equivalence over F.

We refer to [BY23] (Stable functorial equivalence of blocks) and [Y22] (Isotypic
blocks are functorially equivalent) for recent additional results related to functorial
equivalence of blocks.
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A real version of Gallagher’s theorem

John Murray

The subject of this talk is Clifford Theory. This relates the irreducible characters
Irr(G) of a finite group G to those of a normal subgroup N . In [2] P. X. Gallagher
showed that for θ ∈ Irr(N), the number of irreducible characters of G over θ equals
the number of θ-good conjugacy classes of Gθ/N . Our real version of Gallagher’s
theorem counts the number of real irreducible characters of G over θ as a difference
of certain θ-good classes of Gθ/N .

In a second theorem, we compute the Frobenius-Schur indicator of the induced
character θ↑G, as a sum over the involutions t in the quotient of the extended
centraliser G∗

θ/N , with t weighted by Gow-Frobenius-Schur indicators of θ with
respect to t. The latter indicator, which takes one of the values 0,±1, was intro-
duced by R. Gow in [1]. The recent preprint [3] interprets this indicator in terms
of the Brauer-Wall group of R.

One corollary of our second theorem is that if θ is real and of 2-defect zero,
the Frobenius-Schur indicator of θ↑G equals the number of involutions in Gθ/N .
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We outline an ingenious alternative argument, which uses ideas of R. Gow and G.
Robinson, to shows that under the hypothesis, θ has a canonical extension to Gθ.
The conclusion then follows from standard Clifford theory.
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Progress on Donovan’s conjecture, and challenges

Charles Eaton

I give an overview of some progress on Donovan’s conjecture, which states that for
a fixed finite p-group P , there are only finitely many Morita equivalence classes
of blocks B of finite groups G with defect group D ∼= P . This conjecture may be
stated over O (the O-Donovan conjecture) or k (the k-Donovan conjecture), where
O is a suitable complete discrete valuation ring with residue field k = O/J(O) of
characteristic p. For a given P , this conjecture is equivalent to both of the following
conjectures holding for P :

Conjecture 1 (Weak Donovan conjecture, based on a question of Brauer). There
is a bound on the entries of the Cartan matrix of blocks with defect group isomor-
phic to P .

Conjecture 2 (Morita-Frobenius number conjecture). There is a bound on the
Morita-Frobenius numbers of blocks with defect group isomorphic to P .

The Morita-Frobenius number mfk(B) of a block B is the smallest m ≥ 1 such
that σm(B) is Morita equivalent to B, where σ is a ring automorphism of the
group algebra induced by raising coefficients of group elements in kG to the power
of p. A similar number mfO(B) is defined for O-blocks.

This equivalence was proved for k in [6] and for O in [1]. It is more convenient
to work with the related strong O-Frobenius number sfO(B) that we do not define
here, but which differs from mfO(B) by a factor depending on the defect group.
In addition to being a Morita invariant, a key fact about sfO(B) is as follows. Let
N ⊳G and let B be a block of OG covering a block b of ON . Suppose that B has
defect group D and b has defect group N ∩ D such that G = CD(D ∩ N)N (for
example as happens if D is abelian, b is G-stable and G/N is a p-group). Then
sfO(B) ≤ sfO(b). This was proved for D abelian in [3] and in general in [4].

Absolute bounds on the Morita-Frobenius numbers of blocks of quasisimple
groups were obtained by Farrell and Kessar in [5]. As a result, in [1] it was
proved that Donovan’s conjecture for abelian defect groups is equivalent to the
Weak Donovan conjecture for such blocks of quasisimple groups. Since the Weak
Donovan conjecture is known to hold for 2-blocks with abelian defect groups by [2],
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Donovan’s conjecture follows in this case. Finally, Donovan’s conjecture is proved
for blocks with defect group Q8 ×Q8 and Q8 × C2n in [4].

Progress on Donovan’s conjecture, as well as on related conjectures and classi-
fications of Morita equivalence classes of blocks with some given defect groups, is
recorded at the following wiki site:

https://wiki.manchester.ac.uk/blocks/index.php/Main Page.
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The Broué invariant of a p-permutation equivalence

Robert Boltje

Let G and H be finite groups, let (K,O, F ) be a p-modular system (large enough
for G and H), and let A ∈ Bl(OG) and B ∈ Bl(OH) be block algebras.

A result of Broué states that if I : RK(A)
∼→ RK(B) is a perfect isometry and

χ ∈ Irr(A) then
|G|/χ(1)

|H |/I(χ)(1)
∈ Q

has p-value zero and its residue class in F×
p is independent of χ ∈ Irr(A). We

denote this residue class by β(I) and call it the Broué invariant of I.
If C• is a splendid Rickard complex for A and B then

∑

n∈Z
(−1)n[Cn] is a

p-permutation equivalence in the representation group T∆(A,B), and if γ is a p-
permutation equivalence between A and B then its character µ induces a perfect
isometry I : RK(A)

∼→ RK(B).

Theorem A If a perfect isometry I between A and B comes from a p-permutation
equivalence (or even a splendid Rickard complex) then, up to a sign, β(I) ∈ F×

p is

independent of I and equal to β(A)/β(B), for certain invariants β(A), β(B) ∈ F×
p .

If additionally A and B correspond via Brauer’s first main theorem then β(I) ∈
{±1}.

Suppose that A and B correspondent via Brauer’s first main thoerem. Recall
that the Alperin-McKay conjecture predicts a bijection

Ω: Irr0K(A)
∼→ Irr0K(B)

between the sets of irreducible characters of height zero.
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Theorem B Suppose that A and B are Brauer correspondents and let Ã ∈
Bl(ZpG) and B̃ ∈ Bl(ZpH) be the unique block algebras with AÃ 6= {0} and

BB̃ 6= {0}.
(a) If there exists a p-permutation equivalence between A and B then there exists

a bijection Ω preserving p-residues up to sign.

(b) If there exists a p-permutation equivalence between Ã and B̃ then there exists
a bijection Ω preserving p-residues up to sign and respecting the Galois action over
Qp.

(c) If there exists a splendid Rickard equivalence between Ã and B̃ then there
exists a bijection Ω preserving p-residues up to sign, respecting the Galois action
over Qp, and preserving Schur indices and endomorphism algebras over Qp.

Reporters: Jonas Hetz and J. Miquel Mart́ınez
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