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Introduction by the Organizers

The workshop Komplexe Analysis – Differential and Algebraic methods in Kähler
spaces, organized by Philippe Eyssidieux (Grenoble), Jun-Muk Hwang (Daejeon),
Stefan Kebekus (Freiburg) and Mihai Păun (Bayreuth), was held the week stating
from the 9th of April 2023. It was attended by over 50 participants from around
the world, ranging from doctoral students to senior researchers. The program
featured twenty lectures, and allowed ample time for discussion and interaction;
the very well-equipped and inspiring discussion rooms were constantly occupied.

Now concerning the talks, the organisers aimed at a balanced meeting, reflecting
the current generation change in the subject: the program included many talks
by younger colleagues, as well as talks by seniors, whose lectures were often full of
interesting ideas and promising paths to follow.

The list of talks mentioned below is not exhaustive, but illustrates the diversity
and the importance of recent contributions to the field.
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• Hodge theory and its applications. This was one of the dominant themes of
the lectures in our workshop. The main reason is that a few important conjectures
concerning hyperkähler manifolds have been solved recently by using methods from
Hodge theory.

B. Bakker presented his solution to the following beautiful problem proposed
by D. Matsushita: any Lagrangian fibration of an irreducible hyperkähler manifold
is either isotrivial or has maximal variation. C. Schnell explained in a very clear
and convincing manner the proof of two conjectures proposed by Shen, Yin and
Maulik, about the singular fibers of Labrangian fibrations on holomorphic sym-
plectic Kähler manifolds. Kobayashi hyperbolicity of manifolds is a very old and
important topic: C. Lehn presented his joint work with L. Kamenova, in which
they show that the Kobayashy pseudometric vanishes identically for a large, nat-
ural class of compact hyperkähler manifolds.

C. Li’s lecture was centred to one of his very recent contributions, showing that
a compact complex manifold is Kähler if it admits a closed, real 2-form α together
with a non-singular fibration such that the base in Kähler and the restriction of α
to each fiber contains a Kähler form.

The powerful L2 methods are appearing more and more often in recent Hodge
theory. A lecture in this spirit was given by J. Shentu.

• Geometric and complex analysis T. Peternell presented his recent joint work
with A. Höring concerning the characterisation of the nefness of the tangent bundle
of a compact Kähler manifold in terms of the extension defined by a Kähler metric.
He took this opportunity to recall some other classical, still unsolved problems.
H.-J. Hein gave a very beautiful talk about the construction and asymptotic of
interesting metrics on a class of singular surfaces. In a very dynamic lecture,
V. Tosatti explained his results concerning the behaviour of the volume function
near the boundary of the pseudo-effective cone of a smooth projective manifold.
Singular Monge-Ampère equations were equally present in our workshop, thanks
to the talk by E. Di Nezza, and recent contributions to the field of CSCK metrics
were presented by S. T. Paul. A couple of very well-presented and interesting talks
concerning applications of the minimal model program were given by S. Schreieder
and J. Moraga.

Finally, we would like to mention two evening sessions, in which the rule was
that very young participants were encouraged to present their research topics in
10 minutes’ talks. In one of these short presentations, M. Villadsen managed to
present a very clever proof of a deep result due to M. Popa and C. Schnell!
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Abstracts

Nef tangent bundles and canonical extensions

Thomas Peternell

(joint work with Andreas Höring)

This is a report on joint work with Andreas Höring, [5] and [6].
Given a compact Kähler manifold (M,ω), the class [ω] ∈ H1(M,ΩM ) defines a

non-split extension

0 → OM → V → TM → 0,

where TM denotes the tangent bundle of M . Then we may consider the manifold

ZM = P(V ) \ P(TM )

which is an affine bundle overM . In this context, we have the following conjecture
[3], see also [5, Conj.1.1]:

Conjecture 1. Let M be a compact Kähler manifold.

• If ZM is Stein, then TM is nef.
• If M is projective and ZM is affine, then M is rational homogeneous, i.e.,
M = G/P with G a semi-simple complex Lie group and P a parabolic
subgroup.

Recall that a vector bundle V is nef, if the tautological line bundle OV (1) on
P(V ) is nef, i.e., c1(OV (1)) is in the closure of the Kähler cone of P(V ).

To put things into perspective, recall the following structure theorem, proved
in [2].

Theorem 2. Let M be a compact Kähler manifold such that TM is nef. Then -
up to finite étale cover - the Albanese map α :M → Alb(M) is a flat fiber bundle
whose fiber is a Fano manifold F with TF nef.

Concerning Fano manifolds with nef tangent bundle, wer have the following
conjecture, [1]

Conjecture 3. A Fano manifold with nef tangent bundle is rational homogeneous.

This conjecture is known to be true in dimension at most five, but in general it
is wide open.

Coming back to the original situation, Greb and Wong showed that ZM never
contains any compact analytic set of positive dimension. Thus ZM is Stein if and
only if ZM is holomorphically comvex. Further they show that if M is homoge-
neous, then ZM is Stein, and if M is rational homogeneous, then ZM is affine.

More generally, the paper [5] proves, using the base point free theorem,

Theorem 4. If ZM is projective and TM is big and nef, then ZM is affine.
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Note that, as a classical fact, the tangent bundle of a rational homogeneous
manifold is indeed big, i.e., OV (1) is big.

Towards Conjecture 1, [5] shows

Theorem 5. Let M be a smooth projective surface. If ZM is affine, then M = P2

or M = P1 × P1.
If ZM is Stein, then

(1) M is an étale quotient of a torus;
(2) M = P2 or M = P1 × P1;
(3) M = P(E) with E of rank two over an elliptic curve;
(4) M = P(E) with E semi-stable of rank two over a curve B of genus g(B) ≥

2.

The last case has recently been ruled out by N. Müller, [7]. Thus, it remains
to rule out the case that M = P(E) with E unstable of rank two over an elliptic
curve. Notice in all remaining cases ZM is indeed Stein (resp. affine if M = P2 or
M = P1 × P1).

In particular, if M = P(E) with E semi-stable or rank two over an elliptic curve
B, then ZM is Stein. This includes the famous example of Serre, where E shows
up as non-split extension

0 → OB → E → OB → 0.

In that case ZM is biholomorphic to C∗ × C∗, but ZM is not affine.
In dimension three we restrict ourselves to Fano manifolds:

Theorem 6. ([6]) Let M be a (smooth) Fano threefold with ZM affine. Then M
is rational homogeneous.

The case b2(M) ≥ 2 is treated via Mori theory. As to b2(M) = 1, we use the
general fact that TM must be big, as observed by Greb-Wong. Now a remark-
able theorem of Höring-Liu [4] states in particular that a Fano threefold M with
b2(M) = 1 and TM big is either P3, the threedimensional quadric, or the threefold
V5, obtained by intersection the Grassmannian G(2, 5) ⊂ P9 with three general
hyperplanes.

Ruling out M = V5 is rather delicate. In fact, we show, [6]:

Theorem 7. Let M = V5. Then there exists a sequence of antiflips (i.e., a
sequence of inverses of flips))

ψ : P(V ) 99K P(V )−

such that

(1) ψ induces a biholomorphic map

ZM → (P(V )− \ (P(TM )− ∪A))
with an analytic set A ⊂ P(V )− of codimension at least two and P(TM )−

denoting the strict transform of P(TM );
(2) P(V )− and P(TM )− are Q-factorial with terminal singularities and big and

nef anticanonical bundles;
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(3) P(V )− \ P(TM )− is affine.

Note that TM is not nef; in fact, there are lines C ⊂M = V5 such that

TM |C = O(2)⊕O(1)⊕O(−1).

As to higher dimensions, things are reduced to study the uniruled case:

Theorem 8. ( [5]) Let M be a projective manifold with ZM Stein. Then either
M is uniruled or an étale quotient of an abelian variety.
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The Matsushita alternative

Benjamin Bakker

LetX be an irreducible compact hyperkähler manifold, that is, a simply-connected
compact Kähler manifold X for which H0(X,Ω2

X) = Cσ for a nowhere-degenerate
holomorphic two-form σ. Such X are one of the three building blocks of K-trivial
Kähler manifolds as per the Beauville–Bogomolov decomposition theorem.

By a theorem of Matsushita [6], X only has one possible nontrivial fibration
structure—a fibration by Lagrangian tori. Precisely, a Lagrangian fibration of X
is a proper morphism f : X → B to a normal compact analytic variety B whose
generic fiber is smooth, connected, and Lagrangian (see [5] for a recent survey).
It follows that every smooth fiber is in fact an abelian variety. We let B◦ ⊂ B
be a dense Zariski open smooth subset over which the base-change f◦ : X◦ → B◦

is smooth. By the period map of f we mean the period map φ : B◦ → M to
an appropriate moduli space M of polarized abelian varieties associated to the
natural variation of (polarized) weight one integral Hodge structures on B◦ with
underlying local system R1f◦

∗ZX◦ . We say f is isotrivial if the period map is
trivial (equivalently if R1f◦

∗ZX◦ has finite monodromy) and of maximal variation
if the period map is generically finite.

Our main result is to resolve a conjecture of Matsushita:
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Theorem 1. Let X be an irreducible hyperkähler manifold (or more generally a
primitive symplectic variety in the sense of [1]). Then any Lagrangian fibration
f : X → B is either isotrivial or of maximal variation.

Both possibilities in Theorem 1 occur for K3 surfaces S—see for example [4,
Chapter 11]—and therefore also for their Hilbert schemes S[g] in each (even) di-
mension. Primitive symplectic varieties are the natural singular analog (as far as
deformation theory is concerned) of irreducible hyperkähler manifolds; for exam-
ple, the irreducible holomorphic symplectic varieties that appear in the singular
Beauville–Bogomolov decomposition theorem are primitive symplectic varieties.

Theorem 1 has previously been treated in two main contexts. First, the Beau-
ville–Mukai system of an ample divisor on a K3 surface has been shown to be of
maximal variation in many cases by Ciliberto–Dedieu–Sernesi [2] by studying the
extendability of a canonically embedded curve to a K3 surface (where in fact the
period map is shown to be quasifinite) and by Dutta–Huybrechts [3] by under-
standing the derivative of the period map. In particular, Dutta–Huybrechts show
that Theorem 1 implies a complete answer:

Corollary 1. Let H be a basepoint-free ample divisor on a K3 surface S. Then
the complete linear system |H | is of maximal variation.

Proof. The genus 2 case is proven unconditionally in [3, Prop. 5.4], and the genus
g ≥ 3 case in [3, Prop. 5.2] assuming Theorem 1. �

Second, van Geemen and Voisin have proven Theorem 1 generically for b2 ≥ 7.
More precisely, let T0 ⊂ H2(X,Q) be the rational transcendental lattice, namely,
the smallest rational Hodge substructure containing [σ] ∈ H2,0(X). Assuming that
X is projective, T0 has generic (special) Mumford–Tate group (namely SO(T0, qX),
where qX is the Beauville–Bogomolov–Fujiki form), and rkT0 ≥ 5, van Geemen
and Voisin [7, Theorem 5] show that any fiber of a Lagrangian fibration that is
not of maximal variation must be a factor of the Kuga–Satake variety of T0, hence
locally constant. Their result in particular applies to the very general projec-
tive deformation of f : X → B assuming b2(X) ≥ 7, which includes all known
deformation types.

The argument of van Geemen–Voisin therefore eventually relies on the largeness
of the generic Mumford–Tate group. We adapt their proof to prove Theorem 1
by replacing this input with the near simplicity of the complex variation of Hodge
structures on R1f◦

∗CX◦ which holds without any genericity assumption. Sim-
ply put, an argument of Voisin shows that the real variation of Hodge structures
R1f◦

∗RX◦ is irreducible. On the one hand, this puts severe restrictions on the split-
ting type of the variation over C. On the other hand, as in van Geemen–Voisin,
a nontrivial generic fiber of the period map produces an unexpected splitting of
T∨⊗R1f◦

∗RX◦ where T is the real transcendental lattice, and this forces the vari-
ation to be isotrivial. We note in passing that the irreducibility of R1f◦

∗RX◦ has
a number of other implications, for example to classifying monodromy represen-
tations in the isotrivial case.

We further deduce from Theorem 1 a result on torsion points of sections:
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Corollary 2. Let X be a primitive symplectic variety and f : X → B a Lag-
rangian fibration. Let L be a line bundle whose restriction to the smooth fibers is
topologically trivial. Then the set of points b ∈ B◦ for which L|Xb

is torsion is
analytically dense in B.

Corollary 2 was proven by Voisin [8, Theorem 1.3] assuming either f is of
maximal variation and dimX ≤ 8 or isotrivial with no restriction on the dimension.
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Constant Scalar Curvature metrics on Algebraic Manifolds

Sean Timothy Paul

Let (X,L) be a polarized complex manifold. Let h be a Hermitian metric on L
with positive curvature (1, 1) form ω := −

√
−1
2π ∂∂ log(h). As usual, Hω denotes

the Kähler metrics in the class [ω], and

νω : Hω → R

denotes Mabuchi’s K-energy map. Recall that the Mabuchi is proper iff there are
positive constants δ, C such that

νω(ϕ) ≥ δJω(ϕ)− C

for all ϕ ∈ Hω.

Theorem A. [6] (X,L) is asymptotically semi-stable iff νω is bounded below.

Theorem B. [6] (X,L) is asymptotically stable (with stability exponent m) iff νω
is proper with coefficient δ = 1

m .

The following (difficult) result is due to Tian in the Fano case (1997) and Chen-
Cheng in general.

Theorem. [4],[5] Assume that Aut(X) is finite. Then there is a cscK metric ωϕ

in [ω] iff νω : Hω → R is proper.

http://arxiv.org/abs/2105.04787
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Corollary. Let (X,L) be a polarized complex manifold with finite (reduced) auto-
morphism group. Let h be a Hermitian metric on L with positive curvature form
ω. Then there is a cscK metric ωϕ ∈ c1(L) iff (X,L) is asymptotically stable.

The assumption that (X,L) is polarized allows us to exploit the Kodaira embed-
dings ιk furnished by (unitary) bases {S0, S1, . . . , SNk

} of H0(X,Lk) for large k.

X ∋ p→ ιk(p) := [S0(p) : · · · : SNk
(p)] ∈ P(H0(X,Lk)∨)

For σ ∈ SL(Nk + 1,C) we define 1
kΨσ,k ∈ Hω by

Ψσ,k := log

Nk∑

i=0

|σ · Si|2hk where σ · Si :=
∑

j

σjiSj .

The punch line is that for each k >> 0 we have a map

SL(Nk + 1,C) → Hω , σ → 1

k
Ψσ,k .

The image of this map (usually denoted by Bk ⊂ Hω ) serves as a concrete
supply of “test potentials”. These finite dimensional spaces of metrics are called
Bergman metrics of “level” k.

Theorem. [1] ⋃

k>>0

Bk = Hω closure in C2 topology .

This shows that the Bk are quite plentiful.

Key Corollary.

inf
ϕ∈Hω

νω(ϕ) = inf
k>0

inf
σ∈ G

νω

(
1

k
Ψσ,k

)

Tian’s 1990 proposal (see [1] pg. 101 top paragraph) was to relate the properness
of the Calabi functional restricted to Bk to the stability of

X ⊂ PNk

in the Chow variety of degree d dimension n algebraic cycles in PNk . This is
essentially correct, but we will use the Mabuchi energy instead of the Calabi energy,
and most importantly, the Hilbert-Mumford theory of (semi)stability must be
extended to two representations.

Let X ⊂ PN be smooth & linearly normal with degree d. Recall that for any
p ∈ X that the embedded tangent space to X at p is the n dimensional projective
linear subspace

Tp(X) ∈ G(n , PN )

obtained by projectivizing the tangent space the the cone over X at any point
v ∈ CN+1 \ {0} lying over p.

Given any 0 ≤ j ≤ n we define the following subvariety Zj(X) of the Grass-
mannian Gj := G(N − (j + 1),PN)

Zj(X) := {E ∈ Gj |∃ p ∈ X ∩ E &dim(E ∩ Tp(X)) ≥ n− j} .
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Generally Zj(X) has codimension one in Gj for all 0 ≤ j ≤ n and is therefore
cut out by a (homogeneous) polynomial in the Plucker coordinates on Gj . To make
the defining polynomial of Zj(X) concrete we view Gj in Stiefel coordinates by
observing that there is a dominant map

Mo
(j+1)×(N+1) ∋ A→ π(ker(A)) ∈ Gj .

The superscript o denotes matrices of maximal rank.
We may then consider the divisor

Zj(X) := π−1(Zj(X)) ⊂Wj :=M(j+1)×(N+1) .

Zj(X) is an irreducible algebraic hypersurface of degree dj in the affine space
Wj with defining SL(j + 1) invariant polynomial

∆j(X) = ∆j ∈ Cdj
[Wj ] , div(∆j) = Zj(X).

Note that ∆j is given only up to C∗.
We associated two divisors Zn(X) and Zn−1(X) cut out by irreducible polyno-

mials ∆n and ∆n−1 respectively. Following conventional notation we write

RX := ∆n & ∆X := ∆n−1 .

It is not hard to show that the degrees are given as follows

degZn(X) = (n+ 1)d

degZn−1(X) = n(n+ 1)d− dµ

Therefore we have

RX ∈ Cd(n+1)

[
M(n+1)×(N+1)

]SL(n+1,C)

∆X ∈ Cn(n+1)d−dµ

[
Mn×(N+1)

]SL(n,C)
.

We must “normalize the degrees” of these polynomials.

(R,∆) :=
(
RX

deg(∆X) , ∆X
deg(RX )

)
.

Definition. X ⊂ PN is semistable if and only if the orbit closures are disjoint
inside the projectivization of the sum of the two obvious G representations

OR∆ ∩ OR = ∅ .
We have defined

OR∆ := G ·
[(
R

deg(∆X)
X , ∆

deg(RX)
X

)]

OR := G ·
[(
R

deg(∆X)
X , 0

)]
.
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Definition. X ⊂ PN is stable if and only if the pair (R,∆) is stable for the
action of G. Explicitly, there is an integer m ≥ 2 such that the pair

(
Iq ⊗R

(m−1) deg(∆X)
X , ∆

m deg(RX)
X

)

is semistable for the action of G and q = deg(RX) deg(∆X).

Definition. A polarized manifold (X,L) is asymptotically semistable if and
only if the log of the minimal distance between the orbit closures is finite. Precisely

inf
k>0

1

k2n
log tan dist0(OR∆,OR) > −∞ .

Definition. A polarized manifold (X,L) is asymptotically stable with exponent
m iff the log of the minimal distance between them-perturbed orbit closures is finite.
Precisely

inf
k>0

1

k2n+1
log tan dist0(Ovw,Ov) > −∞ .

(v, w) :=
(
Iq ⊗R

(km−1) deg(∆X)
X , ∆

km deg(RX)
X

)

We refer the reader to [6] for a complete account of semi-stability/stability.

At last, the connection between the Mabuchi energy and (semi)stability is estab-
lished through the following two propositions, which imply Theorems A & B.

Proposition 1. [6] For any polarized manifold (X,L) and any large k embedding
ιk(X) ⊂ PNk the infimum of the Mabuchi energy restricted to Bk is given by

inf
σ∈G

νω

(
1

k
Ψσ,k

)
=

k−2n

(n+ 1)
log tan dist0(OR∆,OR) + o(1) .

In particular ιk(X) is semistable iff the Mabuchi energy is bounded below on
Bk.

Proposition 2. [6] Let m be a positive integer. For any polarized manifold (X,L)
and any large k embedding we have

inf
σ∈G

(
mνω

(
Ψσ,k

k

)
− deg(∆X)

d
Jω

(
Ψσ,k

k

))
=
k−(2n+1)

(n+ 1)
log tan dist0(Ovw,Ov)+O(1).

We have defined the pair (v, w) and q as follows

(v, w) :=
(
Iq ⊗R

(km−1) deg(∆X)
X , ∆

km deg(RX)
X

)

q := deg(RX) deg(∆X) .
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Abelian differentials and their periods

Bruno Klingler

(joint work with Leonardo Lerer)

An abelian differential (or translation surface) is a pair (C, ω), where C denotes
a smooth irreducible complex projective curve and ω ∈ H0(C,Ω1

C) \ {0} is a non-
zero algebraic one-form on C. Its periods are the complex numbers

∫
γ ω, for γ an

element in the relative homology group H1(C
an, Z(ω);Z), where Z(ω) denotes the

finite set of zeroes of ω. The moduli space PΩMg of abelian differentials (C, [ω])
of genus g (up to scaling) admits a natural algebraic stratification {Sα}α, where
the partition α of 2g − 2 describes the multiplicity of the zeroes of ω.

According to a remarkable theorem of Veech, the complex manifold Sanα associated
with Sα admits a natural uniformization in terms of periods. Let x0 := (C0, [ω0]) ∈
Sanα , let Vα,Z be the relative cohomology group H1(Can

0 , Z([ω0]);Z) and Vα :=
Vα,Z ⊗Z C the associated complex vector space. If U is a sufficiently small simply
connected neighborhood of x0 in Sanα , the holomorphic map DU : U → PVα which
to x = (C, [ω]) ∈ U associates the flat transport (along any path in U joining
x to x0) of the Betti cohomology class [ω]Betti ∈ PH1(Can, Z([ω]);C) of [ω] is a
bi-holomorphism from U onto an open subset of PVα, called a period chart for
Sanα .

This defines an integral projective structure on Sanα , namely an atlas of charts
with value in PVα whose transition functions are locally constant elements of the
integral projective linear group PGL(Vα,Z). These period charts of Sanα are highly
transcendental with respect to the algebraic structure of Sα: the maps are defined
via the non-algebraic operations of parallel transport and integration. We would
like to understand their transcendence properties, in the context of bi-algebraic
structures as defined in [K17]:

• A bi-algebraic subvariety W ⊂ Sα is by definition an irreducible closed al-
gebraic subvariety W of Sα such that W an is algebraic in the period charts: the
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relative periods of ω satisfy (up to scaling) exactly codimSα
W independent alge-

braic relations over C when (C, [ω]) ranges through W .
•A Q-bi-algebraic subvariety of Sα is a bi-algebraic subvariety W ⊂ Sα such

that both W an (in the period charts) and W are defined over Q.
For instance, a Q-bi-algebraic point of Sα (also called an arithmetic point) is

an abelian differential (C, [ω]) ∈ Sα(Q) such that for one basis (γi)0≤i≤dα
of the

relative homology H1(C
an, Z([ω]);Z) (and then for any) the relative period line[∫

γ0

ω, . . . ,
∫
γdα

ω
]
lies in Pdα(Q).

A priori, the simplest bi-algebraic subvarieties of Sα are the linear ones: A
linear subvariety W ⊂ Sα is an irreducible closed algebraic subvariety such that
W an is (projectively) linear in the period charts. It is Q-linear if moreover both
W and W an (in the period charts) are defined over Q. A particular class of
linear subvarieties have been studied in great depth by dynamicists in the last
twenty years: the so-called invariant ones. The groupGL+(2,R) acts naturally on
Vα,Z⊗ZC by identifying C with R2 and extending the natural action of GL+(2,R)
on R2 coordinate-wise on Vα,Z⊗ZR2. This action in period charts commutes with
the one of GL(Vα,Z), hence descends to the natural principal Gm-bundle H

an
α over

Sanα . A linear subvarietyW of Sα which is the projection of a GL+(2,R)-invariant
subvariety of Han

α is said to be invariant. One easily shows that a linear subvariety
W is invariant if and only ifW an is defined over R in the period charts. Prominent
examples are the famous Teichmüller curves, which are Q-linear, see for instance
[McM03a], [Mö06], [McM07].

In [Ler21] and [KL22], the authors develop for Sα the first steps of the bi-algebraic
heuristic, which has been very useful for studying the diophantine properties
of Shimura varieties. They completely characterize geometrically the arithmetic
points of Sα. They prove that arithmetic points of rank 1 are dense in San

α ; but
that, on the other hand, any algebraically primitive Teichmüller curve contains
only finitely many arithmetic points as soon as g ≥ 3. They prove in many cases
that bi-algebraic subvarieties of Sα linear. Contrary to the hope expressed in
[KL22], Deroin-Mattheus proved recently [DM] that there exist bi-algebraic sub-
varieties of Sα which are not linear.

A tantalizing open question is to prove the Ax-Schanuel conjecture for Sα and
attack the following Zilber-Pink conjecture for Sα: The stratum Sα contains only
finitely many arithmetic points of rank at least 3.
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ODD (Riemannian) metrics

Lukas Braun

The concept of Riemannian metrics on manifolds M has seen several generaliza-
tions. Apart from the so-called Finsler metrics, which are indeed norms on the
tangent space TpM , these are given by 2-tensors with ‘relaxed properties’. The
most important ones among them are probably the pseudo- (or semi-)Riemannian
and in particular Lorentz metrics, which may be negative-definite in some direc-
tion but are everywhere nondegenerate. All these generalizations have motivations
from certain fields, such as physics, control theory, etc..

A motivation from birational geometry: singular Kähler metrics. In
the talk, we presented a new generalization of Riemannian metrics, called ODD
metrics, introduced in [5]. Here, ODD stands for ‘Orthogonally Degenerating
on a Divisor’, which stems from the initial motivation for defining these metrics:
Kähler cone metrics with cone angle β > 2π.

Kähler metrics with cone angle β < 2π along a smooth divisor D are far bet-
ter understood and in fact important in the proof of the Yau-Tian-Donaldson
conjecture as is evident from the titles of the work [3] and its successors.

A natural direction in complex birational geometry is to generalize statements
about complex manifolds to well-behaved singular varieties, so called klt pairs
(X,∆). Kähler-Einstein metrics for example generalize to singular Kähler-Einstein
metrics introduced in [2], where also the existence for c1(X,∆) ≤ 0 was proven.
The equivalence of existence to log K-polystability in the case c1(X,∆) > 0 and
thus the singular version of the Yau-Tian-Donaldson conjecture was recently proven
in [4].

While the existence is thus now settled, the singularities of these metrics are still
not fully understood. The approach goes via solving a complex Monge-Ampère
equation on a log-resolution Y → X with a possibly degenerate and singular right
hand side along the exceptional divisor. This exceptional divisor is not smooth, but
at least has simple normal crossings and the zeros and poles in the MA-equation
correspond to cone angles that may be greater than 2π. Thus in contrary to
the smooth case, in the singular case one has to deal with intersections of the
prime divisors and with cone angles > 2π. In addition, further singularity may be
introduced where the MA-equation degenerates.

One particular situation of interest is the case of −(KX +∆) nef on a klt pair.
In this case, an MA-equation on the resolution provides us with a degenerate and
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singular Kähler metric with Ricci curvature bounded from below. We expect this
metric to be an ODD metric at least in certain cases of interest. Developing Rie-
mannian Geometry for ODD metrics thus would us enable to transfer statements
about e.g. the fundamental group from the smooth case (i.e. manifolds M with
−KM nef, see [1]) to the klt case.

The differential-geometric approach: ODD metrics. In order to do so, it
makes sense to start with the most general definition and look how far we can get
with it:

Definition 1 (temporary, experimental). Let M be a real analytic manifold of
dimension n. An ODD metric g on M is an analytic section of Sym2(T ∗M), such
that:

(1) gp is positive semidefinite for all p ∈M .
(2) There is a finite collection N1, . . . , Nm, m ∈ N of closed analytic submani-

folds ofM of strictly smaller dimension, such that gp is nondegenerate for
p ∈M \⋃Nj .

(3) For each Nj, 1 ≤ j ≤ m, the symmetric bilinear form g
Nj
p induced by gp

on TNj is again an ODD Riemannian metric.

Here, note that we cannot demand the restrictions g
Nj
p to be classical Riemann-

ian since in general, they will at least degenerate at intersections with other Ni.
Also, the experimental flavor of this introduction becomes apparent if we think
about how the submanifolds Nj intersect. Definition 1 makes no assumptions here
and in this generality, we still get an induced metric space structure on M . How-
ever, we expect a ’normal crossings property‘ to become important for statements
from advanced Riemannian Geometry.

ODD vector fields and forms. In [5], we defined ODD orthonormal frames,
vector fields, forms, raising and lowering of indices, etc.. Here, we try to give an
intuitive account by considering the maybe simplest possible example.

The ODD metric g = x2dx2 on M = R degenerates at the origin. For this
metric, starting with the frame ∂x = ∂

∂x , we obtain an ODD orthonormal frame
E just by normalizing ∂x with respect to g, which yields

E :=
∂x

|∂x|g
=

1√
x2
∂x =

1

|x|∂x.

This is not even a real-meromorphic, but an algebroid vector field. Thus, we define
ODD vector fields X with respect to g to be those algebroid vector fields on M
that are of the form X = f E with analytic f . Consequently, ODD one-forms are
those that can be written as ω = gε with analytic g in the ODD conormal frame
ε = |x| dx defined by ε(E) = 1. In the standard frame, the raising and lowering of
indices are thus given by

f ∂x 7→ x2f dx, g dx 7→ 1

x2
g ∂x
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and map ODD vector fields to ODD one-forms and vice versa. We can further
define higher differential forms, in particular an ODD volume form

dVg = ε1 ∧ . . . ∧ εn =
√
det(gij dx1 ∧ . . . ∧ dxn

for an orthonormal coframe (εi)i, which in our example amounts to dVg = ε =
|x|dx. In particular, we see that compact regular domains will have nonzero volume
with respect to this measure. Moreover, we are able to define ODD versions of the
gradient, divergence, and Laplacian.

ODD curves and the ODD distance. An ODD regular curve should be a
continuous curve γ[a, b] → M , such that for some partition a < a1 < . . . < b, γ is
analytic on each (aj , aj+1), and

lim
tրaj

γ̇(t)

|γ̇(t)|g
= lim

tցaj

γ̇(t)

|γ̇(t)|g
.

An ODD regular curve through the origin in our example case is given by

γ : [−1, 1] →M = R; t 7→ sgn(t)
√

|x|.
It is easy to see in this one-dimensional example, but indeed true in full generality,
that there is always a reparametrization of an ODD regular curve which is a
classical regular curve.

It is now straightforward to use ODD regular curves to define an ODD distance
function dg on M and we can finally prove:

Theorem 2. Let (M, g) be a connected ODD Riemannian manifold and dg its dis-
tance function. Then (M,dg) is a metric space and the metric topology associated
to dg is the same as the topology of M as a manifold.

Integrability of ODD vector fields and existence of ODD geodesics. We
continue in [5] with defining the ODD Levi-Civita connection, Christoffel symbols
etc. in analogy to the classical case. In our example case from above, we compute
Γ1
11 = 1

x . In particular, ∇EE = 0 but ∇∂x
∂x = 1

x∂x is not even an ODD analytic
vector field. We define ODD vector fields along curves, where we have to be careful
in the case of curves inside the degeneracy locus. We see that at least a covariant
derivative Dt along an ODD curve always gives a well-defined vector field along
the curve.

Then we turn to investigate integrability of ODD vector fields. In [5], we give
examples of nonunique integral curves through a point p ∈ M of an ODD vector
field X . However, we prove the following:

Theorem 3. Let (M, g) be an ODD Riemannian manifold and p ∈M . Let X be
an ODD vector field. If either

(1) p is a general point of M , or
(2) p is a general point of some Nj ⊆ D, which is maximal in the sense that

it is not contained in any other Nk,

then, there exists ǫ > 0 and a unique ODD integral curve γ : (−ǫ, ǫ) → M with
p(0) = p.
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We also conjecture that the existence of integral curves holds for every p ∈ M
and even uniqueness holds in the sense that if γ and µ are two integral curves
through p, then

lim
t→0

γ̇(t)

|γ̇(t)|g
6= lim

t→0

µ̇(t)

|µ̇(t)|g
.

Along very similar lines we can prove the existence of ODD geodesics at general
points of the degeneracy locus:

Theorem 4. Let (M, g) be an ODD Riemannian manifold and p ∈ M . Let
v ∈ TpM be a tangent vector at p. If either

(1) p is a general point of M , or
(2) p is a general point of some Nj ⊆ D, which is maximal in the sense that

it is not contained in any other Nk,

then, there exists a unique ODD geodesic γ through p in direction v.

We finally conjecture that unique geodesics exist for all points p ∈ M and
tangent directions v ∈ TpM .

Further directions. Since the ultimate application of ODD metrics we have in
mind is in Kähler geometry of klt spaces, the following directions hopefully can be
addressed in further works on ODD metrics:

(1) Give rigorous proofs of the mentioned conjectures about integrability of
vector fields and existence of geodesics and develop large parts of Rie-
mannian geometry for ODD metrics, as far as e.g. the Bishop-Gromov
volume comparison or the Margulis Lemma.

(2) Carry over the concept of ODD metrics from manifolds to orbifolds. An
envisioned ODD orbifold metric should be given in orbifold charts by ODD
Riemannian metrics compatible with each other and the orbifold structure.
In particular, the degeneracy locus of the metric and the codimension-one
ramification locus of the orbifold can agree, which yields arbitrary cone
angles β ∈ Q>0.

(3) Finally, show that solutions to complex Monge-Ampère equations with de-
generate and singular right hand side are – maybe at least under additional
assumptions – of ODD type.
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Liquid vector spaces for complex geometers

Johan Commelin

1. Introduction

In this talk I will give an exposition of condensed mathematics and liquid vector
spaces developed by Dustin Clausen and Peter Scholze. I will not present work of
my own; but all mistakes are mine. This talk will not give many details or precise
definitions. But I hope that it will be an appetizer that provides the motivation
sit down for an elaborate main course.

In this section I give a axiomatic introduction to condensed sets.

Fact 1.1. The category CHaus of compact Hausdorff spaces is a full subcategory
of the category Cond of condensed sets. The category Cond has all limits and
colimits.

These facts allow us to single out the “Hausdorff” condensed sets, which admit
a rather elementary (and in my opinion, intuitive) description.

Definition 1.2. A monomorphism X → Y of condensed sets is closed if for every
K ∈ CHaus mapping to Y the pullback X ×Y K is compact Hausdorff.

Definition 1.3. A condensed set X is separated if the diagonal X → X ×X is
closed.

1.4. A related notion in category theory is that of quasiseparated objects. For
condensed sets, these notions turn out to be the same. The terminology quasisep-
arated prevails in the literature. Quasiseparated condensed sets are the same as
compactological spaces, a notion introduced by Waelbroeck in the ’70s.

Definition 1.5 ([4, Ch. III]). A compactological space is a set X equiped with a
compactology, which consists of a topology and a bornology that are compatible
in the way prescribed below. Recall that a bornology endows X with a collection
of “small” subsets that satisfy the following conditions:

• every finite subset of X is small;
• finite unions of small subsets are small;
• subsets of small sets are small.

The topology and bornology form a compactology if they satisfy the following
axioms:

• the closure of a small set is small;
• the closed small subsets are compact Hausdorff;
• the topology on X is the colimit topology of the closed small subsets.

A morphism of compactological spaces X → Y is a function that is continuous
and sends small subsets of X to small subsets of Y .

Fact 1.6 ([3, Prop. 1.2]). The category of quasiseparated condensed sets is equiv-
alent to the category of compactological spaces.
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1.7. What about the condensed sets that are not quasiseparated? Their existence
is very important for the whole theory: they are the reason that Cond has nice
categorical properties, which in turn is the reason that we can unlock the tools
from sheaf theory and homological algebra.

All such condensed sets are quotients of compactological spaces. If X is a
compactological space and E ⊂ X × X is compactological subspace that is an
equivalence relation, then we can form X/E as condensed set. If E is a closed
equivalence relation, then X/E is again compactological. If it is not closed, then
we get one of the “mystery” objects.

2. Liquid vector spaces

Fact 2.1 ([1, Thm 2.14]). Fix 0 < p ≤ 1. A qs condensed R-vector space is
p-liquid if for all q < p and every compact K ⊂ V there exists a compact q-convex
subset of V containing K.

Definition 2.2. A compact K ⊂ V is q-convex if for all x1, . . . , xn ∈ K and all
λ1, . . . , λn ∈ R with

∑ |λi|q ≤ 1 we have
∑
λixi ∈ K.

The general definition of a (non-qs) p-liquid vector space looks a bit different.
I will not give that definition in this talk, but I strongly recommend taking a look
a the first four lectures of [1], which contain a detailed account. Once again, the
non-qs objects are quotients of the qs liquid vector spaces.

2.3. All complete locally convex topological vector spaces are p-liquid. In partic-
ular, all Banach spaces and Frechet spaces1 are p-liquid. But there are many more
p-liquid vector spaces. The category has very nice properties (which relies crucially
on the fact that non-qs objects exist). Continuing our axiomatic approach, we list
some of these properties below.

Fact 2.4 ([3, §VI]).

• The category of p-liquid vector spaces is an abelian category.
• It is a full subcategory of Cond(R), stable under all limits, colimits, and
extensions.

• It has an internal Hom, and a tensor product, that are adjoint in the
expected manner.

• The tensor product agrees with the tensor product of nuclear Frechet
spaces. (Nuclear spaces are the objects in functional analysis where all
“37” different topological tensor products agree.)

• There is a liquidification functor Cond(R) → Liqp which is left adjoint to
the inclusion Liqp ⊂ Cond(R).

1Recall that a Frechet space is a metrizable locally convex complete TVS, alternatively, it is
a locally convex complete TVS whose topology is induced by a countable family of seminorms.
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3. Quasicoherent liquid sheaves

3.1. Let U be some open subset of Cn (for the analytic topology). Then we
can consider the ring of holomorphic function O(U) as condensed ring. It is liquid
because it is a Frechet space. Thus it makes sense to speak of liquid O(U)-modules,
and hence of liquid O-module sheaves.

Fact 3.2 ([1, Exc. 1 of §VI]). Consider an open subset U ⊂ Cn (for the analytic
topology). Let OU denote the structure sheaf (of holomorphic functions). A
quasicoherent liquid sheaf, is a liquid O-module sheaf M such that for every open
polydisk D ⊂ U the natural map

M(D)⊗O(D) O|D → M|D
is an isomorphism.

3.3. In fact, one should really do all of this in the derived setting. And here it
pays off to use the machinery of ∞-categories. One big benefit of working with
∞-categories, is that they can be glued. Indeed, the construction U 7→ C(U) is a
sheaf of stable ∞-categories. (Being stable is the ∞-analogue of being an abelian
category.) By gluing, we obtain a category CX for any complex analytic space X .
It can be viewed as the derived (∞-)category of quasicoherent liquid sheaves on X .

Another missing piece of the puzzle, that can now be filled in, is the exceptional
pushforward functor. This functor turns out to be part of a six functor formalism.
We omit a discussion of six functor formalisms from these notes. Instead we give
some applications.

Theorem 3.4 (Serre duality, [1, Thm 13.6]). Let f : X → Y be a smooth mor-
phism of dimension d between complex analytic spaces. Then there is a natural
isomorphism

f !M ∼= f∗M ⊗OX
Ωd

X/Y

for M ∈ CY .

3.5. The proof consists of two components:

(1) The computation that f !OY = Ωd
X/Y [d]. This is done by deformation to

the normal cone. The argument fits on one page.
(2) Abstract manipulations in the six functor formalism.

3.6. Several other fundamental results in complex geometry can have their proofs
simplified by using the liquid machinery. Clausen and Scholze [1] reprove:

• Serre duality (as we saw above), generalized from coherent to quasicoher-
ent sheaves.

• GAGA. Again, in the quasicoherent setting, generalizing the coherent case.
• Finiteness of coherent cohomology.
• Hirzebruch–Riemann–Roch.

Clausen also showed that the comparison isomorphism between algebraic and an-
alytic de Rham cohomology can be established by formally reducing to the 1-
dimensional cases of the disk and the punctured disk.
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Hodge-to-singular correspondence

Mirko Mauri

(joint work with Luca Migliorini, Roberto Pagaria)

1. Smooth vs singular character varieties

Let C be a compact Riemann surface of genus g ≥ 2 with canonical bundle ωC .
The character variety of C, or Betti moduli space, is the affine quotient

MB = Hom(π1(C),GLn) � GLn

=
{
(A1, B1, . . . , Ag, Bg) ∈ GL2g

n

∣∣
g∏

j=1

[Aj , Bj ] = 1GLn

}
� GLn .

It parametrizes isomorphism classes of semi-simple representations of the funda-
mental group of C. The entire study of nonabelian Hodge theory may be thought
of as the study of the geometry ofMB. Character varieties are also central objects
in various fields of mathematics like Teichmüller or knot theory, and play an es-
sential role in the study of topological 3-manifolds or in the geometric Langlands
program.

One of the main technical problems with working with character varieties is that
MB is often singular. Historically, to avoid dealing with singular moduli spaces,
the moduli problem has been slightly modified or twisted to

MB(n, e) =
{
(A1, B1, . . . , Ag, Bg) ∈ GL2g

n

∣∣
g∏

j=1

[Aj , Bj ] = e2πi
e
n 1GLn

}
� GLn,

for some e coprime to n. Hausel and Thaddeus commented in [11, §1] that ”the
bait-and-switch is perhaps regrettable, but it is standard practice in the subject”.
Under this coprimality assumption, the cohomology of MB(n, e) has been exten-
sively studied in the last decades; see for instance [12, 9, 11, 10, 18, 7, 2, 18, 3, 15, 8].
However only recently studies about the (intersection) cohomology ofMB, denoted
IH(MB,Q), have started to emerge, and the attention of the mathematical commu-
nity was driven back to the original moduli problem ofMB; see [5, 6, 13, 16, 17, 14].

The Hodge-to-singular correspondence shows how the cohomology of the smooth
moduli spacesMB(n, e), with gcd(n, e) = 1, can be expressed in terms of the inter-
section cohomology IH(MB(n

′, 0),Q) with n′ ≤ n; see also [1] for further advances
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in the field. In particular, this viewpoint suggests a unifying approach to the study
of character varieties: IH(MB(n, d),Q) should be studied simultaneously for all
degree d, with no coprimality assumption. It is conceivable that the conjectures
concerning the symmetry of their cohomology, like the P=W or the topological
mirror symmetry conjecture, in degree d = 0 should imply the conjectures for
arbitrary d.

In a different context, this viewpoint has already been successfully employed to
compute the Hodge numbers of the exceptional O’Grady 10 example of compact
hyperkähler manifolds, out of the Betti numbers of Hilbert schemes of five points
on K3 surfaces; see [4]. Indeed, both spaces can be interpreted as special moduli
spaces of sheaves on K3 surfaces corresponding to different degrees d (or rather
Euler characteristics), and the computation of their Betti numbers can be reduced
to determining how their cohomology depends on d.

2. Effective decomposition theorem for the Hitchin system

Remarkably, the Betti moduli space MB(n, d), for any integer d, is homeomorphic
to the Dolbeault moduli space MDol(n, d), parametrizing isomorphism classes of
semistable Higgs bundles on C of degree d, i.e. pairs (E, φ) with E vector bundle
of rank n and degree d, and φ ∈ H0(C,End(E) ⊗ K); see [20]. The Dolbeault
moduli space is equipped with a projective fibration called Hitchin fibration

χ(n, d) : MDol(n, d) → An =
n⊕

i=1

H0(C, ω⊗i
C ),

which assigns to (E, φ) the characteristic polynomial char(φ) of the Higgs field
φ. Since the pioneering work of Hitchin [12], the (non-algebraic) homeomorphism
between MB(n, d) and MDol(n, d) has been exploited to study the topology of
character varieties. The decomposition theorem is a key tool to investigate the
cohomology of MDol(n, d), alias MB(n, d): it allows to decompose

IH(MB(n, d),Q) = IH(MDol(n, d),Q) = H(An, Rχ(n, d)∗ ICMDol(n,d))

into building blocks, which are given by the cohomology of some perverse sheaves
on An. Identifying the perserve sheaves that appear in this decomposition is
a challenging task that we achieved on the locus Ared

n of reduced characteristic
polynomials. In the following, we write that a partition n = {ni} of n is d-integral
if nid/n ∈ Z.

Main Theorem (Hodge-to-singular correspondence). For any partition n = {ni}
of n, let Sn ⊆ Ared

n be the closure of the polynomials whose irreducible factors

have degree ni, and gn : Pn → S
′

n be the relative Jacobian of the simultaneous

normalization of the spectral curves of equation char(φ) = 0 for all polynomials on

a dense open set S
′

n ⊆ S◦
n = Sn \⋃m≤n Sm.
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Then there is an isomorphism in the derived category Db(Ared
n ) of Q-construct-

ible complexes on Ared
n :

(1) Rχ(n, d)∗ ICM(n,d) |Ared
n

≃
⊕

n=(ni)⊣n :
nid/n∈Z

IC(Sn, Rgn,∗QPn
⊗Ln(d))[−2codimSn],

where Ln(d) is a local system on S◦
n which coincides as π1(S

◦
n)-representation

with the top homology of the geometric realization of the poset of non d-integral
partitions m ≥ n, up to a twist by the sign representation of π1(S

◦
n) = Aut(n).

Further, if d = e is coprime with n, Wn is a general normal slice through

Mn(e), and W̃n a symplectic resolution of Wn, then Ln(e) is a local system with

stalk HdimWn(W̃n,Q).

The result is a refinement of the celebrated Ngô support theorem; see [19, §7].
The main issue is to determine the support Sn of the decomposition theorem for
Rχ(n, d)∗ ICM(n,d) and the mysterious local systems Ln(d). The previous theorem
shows that the following dichotomy holds: either the subvarieties Sn have a Hodge-
theoretic nature as summands of Rχ(n, d)∗ ICM(n,d), which happens when n is not
d-integral; or they are image of the stratum of a canonical Whitney stratification
of MDol(n, d), which happens when n is d-integral.

This means that we have two extreme cases: the space MDol(n, 0), i.e. d = 0, is
the most singular moduli space, but Rχ(n, 0)∗ ICMDol(n,0) |Ared

n
has no proper sum-

mand; while when gcd(n, e) = 1, MDol(n, e) is smooth with the maximal number
of summands of Rχ(n, e)∗ ICMDol(n,e) |Ared

n
. Remarkably, the local systems Ln(e)

that appear in these new summands of Rχ(n, e)∗ ICMDol(n,e) can be expressed in
terms of the topology of the symplectic singularities Wn. We could informally
say that there exists a conservation law between Hodge-theoretic summands of
the decomposition theorem and singular strata as the degree d varies. For these
reasons we called our effective version of the decomposition theorem for Hitchin
systems Hodge-to-singular correspondence.

It would be ideal and very useful for applications if we could drop the restriction
to the locus of reduced spectral curve in (1). This would follow in particular from
the following conjecture.

Conjecture (Full support). The complex Rχ(n, 0)∗ ICMDol(n,0) has full support on
the whole basis An of the Hitchin system, i.e. no direct summand of it is properly
supported on a subvariety of An.

In other words, we ask whether the complex Rχ(n, 0)∗ ICMDol(n,0) is determined
by the restriction to any open subset of An, in particular the locus over which the
Hitchin fibration is smooth. It suggests that IH(MDol(n, 0)) should be regarded
as a primitive indecomposable building block of the cohomology of any other Dol-
beault moduli space MDol(n, d).
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Regularity of the volume function

Valentino Tosatti

(joint work with Simion Filip and John Lesieutre)

This talk was a report on ongoing work with Simion Filip and John Lesieutre,
aimed at clarifying the regularity properties of the volume function near the bound-
ary of the pseudoeffective cone.

Let Xn be a smooth projective variety over C, and let BX ⊂ N1(X,R) be the
cone of big classes inside the real Néron-Severi group. Its closure BX is the cone
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of pseudoeffective classes. The volume function

Vol : BX → R≥0

is known to be continuous, zero precisely on ∂BX , and C1 on BX [1, 2, 3]. However,
the regularity of Vol at points on ∂BX remained mysterious.

Theorem 1. There is a Calabi-Yau 3-fold X with a very ample divisor A and a
pseudoeffective R-divisor class D ∈ ∂BX such that the function

t 7→ Vol(D + tA)

is C1 on [0,+∞) but not C1,α on [0, ε) for any small ε, α > 0.

This answers negatively a question of Lazarsfeld [2].
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A gluing construction for surfaces with hyperbolic cusps

Hans-Joachim Hein

(joint work with Xin Fu, Xumin Jiang)

Consider the family of affine sextics

Xσ = {(z21 + z1)
3 + (z22 + z2)

3 + (z23 + z3)
3 = σ} ⊂ C3.

The projective closures Xσ ⊂ CP3 are smooth for 0 < |σ| ≪ 1 but X0 is singular.
Each singularity of X0 is locally isomorphic to the ordinary triple point

(0, 0, 0) ∈ {z31 + z32 + z33 = 0} ⊂ C3.(∗)
There are 8 such singularities in total, and they are equivalent under the action of
Aut(X0). We have the following canonical Kähler metrics in this setting:

• On Xσ, 0 < |σ| ≪ 1, we have a unique negative Kähler-Einstein metric
ωKE,σ provided by the Aubin-Yau theorem [1, 10] because c1(Xσ) < 0.
This metric is fundamentally non-explicit.

• On the regular part of X0, i.e., away from the 8 singularities, we have a
unique complete Kähler-Einstein metric ωKE,0 provided by a theorem of

Kobayashi [5]. This metric is non-explicit deep in the interior of (X0)
reg

but was recently [2, 3] proved to be asymptotic to the model metric

ωcusp = −3i∂∂ log(−log h), h = e−ϕ(|z1|2 + |z2|2 + |z3|2),
on the ordinary triple point singularity (∗). Here, ϕ is a smooth function on
the elliptic curve E ⊂ CP2 over which (∗) is an affine cone, and i∂∂ϕ is the
difference between ωFS|E and the unique flat Kähler metric representing
the hyperplane class on E. The theorems on existence and asymptotics
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of [2, 3, 5] hold more generally on any variety of general type whose only
singularities are cones over abelian varieties. The most obvious examples
of such varieties are ball quotients of finite volume with their hyperbolic
metrics, and indeed the model metric ωcusp is hyperbolic. In fact, the key
property of ωcusp required in almost all of the proofs of [2, 3, 5] is that
it has bounded holomorphic sectional curvature. However, ball quotients
are never smoothable, so X0 is certainly not a ball quotient.

• Locally analytically near each singularity of X0, the smoothing family Xσ

is isomorphic to the affine family

Yσ = {z31 + z32 + z33 = σ} ⊂ C3.

The projective closure Y σ of this family in CP3 is a family of del Pezzo
surfaces sharing the elliptic curve E as a common anticanonical hyperplane
section and degenerating to the normal cone of this hyperplane section as
σ → 0. For any smooth Fano manifold Y and smooth divisor D ⊂ Y with
−KY = [D], Tian-Yau [9] proved that the affine variety Y = Y \D admits
a complete (but not a priori unique or canonical) Calabi-Yau metric ωTY .
This was again based on the existence of a suitable model metric on the
punctured normal bundle ND/Y \D given by a Calabi-type ansatz. In our

setting, this Ricci-flat Calabi-type model metric has the explicit form

ωCalabi = i∂∂(log h)
3

2 , h as above.

It was proved in [4, 6] that ωTY , while non-explicit in the interior of Y , is
asymptotic to ωCalabi near the compactifying divisor D in Y = Y ∪D.

Let mσ : Yσ → Y1 denote the scaling map mσ(z) = σ−1/3z and let ωTY denote
the Tian-Yau metric on the fixed affine cubic Y1. The main result of our work is
that ωKE,σ is well-approximated by |log |σ||−3/2m∗

σωTY near the vanishing cycles

of the smoothing and by ωKE,0 on fixed compact subsets of (X0)
reg. The complete

statement describes ωKE,σ asymptotically as σ → 0 everywhere on Xσ (there are
7 relevant regions). In particular, near the vanishing cycles we have that:

∃σ0 > 0 : ∀K ⊂ C3 compact, ∀0 < α <
1

3
, ∀ε > 0 : ∃C <∞ : ∀0 < |σ| ≤ σ0 :

∥∥∥ωKE,σ − |log |σ||− 3

2m∗
σωTY

∥∥∥
C1,α

(

m−1
σ (K),|log |σ||−

3

2 m∗

σωTY

) ≤ C|log |σ||− 3

4
( 1

3
−α)+ε.

The main ingredients of the proof of this result are:

• |log |σ||−3/2m∗
σωCalabi is a reasonably good match to ωcusp in regions of

the form |z| ∼ |σ|β (z ∈ C3) for any fixed β ∈ (0, 1/3).
• While this matching is not sufficient for a gluing construction, it can be
improved by introducing a new radial Kähler-Einstein model metric on (∗)
that interpolates between ωCalabi and ωcusp.

• Standard machinery of the inverse function theorem in weighted Hölder
spaces, similar to the machinery that was used e.g. in [8] for smoothings
of ordinary double point singularities.



992 Oberwolfach Report 18/2023

• Realizing that this machinery is obstructed due to the existence of an
“approximate kernel” of the linearized Monge-Ampère operator near each
singularity of X0, which consists of functions that interpolate between a
nonzero constant on the Tian-Yau end and zero on the cusp.

Our way of dealing with this obstruction is to vary the Ricci potential of the
glued metric by a constant before solving the Monge-Ampère equation. This forces
us to assume that all the singularities of X0 are equivalent under Aut(X0) and it
introduces the artificial restriction α < 1/3 in the statement of the final estimate,
where α < 1 would be natural (ωKE,σ cannot be C1,1 close to a scaled pullback of
ωTY because they are Einstein metrics with different sign of the Einstein constant).
We hope to remove these artificial restrictions in future work.

Regarding generalizations, cones over abelian varieties in higher dimensions are
not smoothable [7], and cones over non-flat Calabi-Yau manifolds do not admit
Kähler-Einstein model metrics of bounded curvature. However, there are other
log-canonical surface singularities with model metrics of bounded curvature, see
[2, 5], to which one could hope to apply a similar gluing construction.
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One forms without zeros

Stefan Schreieder

(joint work with Feng Hao and Ruijie Yang)

Tischler’s theorem [Ti70] states that on a closed connected differentiable manifold
X , the following conditions are equivalent:

(1) there is a closed real 1-form α ∈ A1(X)R without zeros;
(2) there is a fibration over the circle f : X → S1.
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Item (2) means that the manifold X is diffeomorphic to a quotient F × [0, 1]/ ∼,
where F denotes a fibre of f and F × 0 is identified with F × 1 via some diffeo-
morphism of F . It is clear that (2)⇒(1). To see the converse, let α ∈ A1(X)R be
a real closed 1-form without zeros. Up to perturbing α a little bit we may assume
that the cohomology class [α] ∈ H1(X,R) is rational. Up to multiplying α with
a nonzero integer, we may then assume that [α] ∈ H1(X,Z) is integral. But then
for any base point x0 ∈ X , the map

f : X −→ R/Z, x 7→
∫ x

x0

α

satisfies df = α and so it is a submersion because α has no zeros. That is, f yields
a fibration over the circle, as we want.

It is natural to wonder if Tischler’s theorem admits an analogue in the complex
analytic setting. We are then asking for geometric characterizations of compact
complex (or compact Kähler) manifolds that admit a holomorphic one-form with-
out zeros. The naive analogue of Tischler’s theorem fails in this context even for
smooth complex projective varieties: there are threefolds X (e.g. a blow-up of the
product E1 × E2 × P1 along E1 × 0 × 0 ∪ 0 × E2 ×∞, where E1, E2 are general
elliptic curves), that admit a holomorphic one-form without zeros but such that
there is no smooth morphism from X to a complex torus of positive dimension.

Even though Tischler’s theorem does not admit a direct analogue in complex
algebraic geometry, Kotschick [Kot22] makes the following remarkable conjecture,
which predicts that the question whether a compact Kähler manifold carries a
holomorphic one-form without zeros depends only on the underlying differentiable
manifold, hence is in some sense a topological property:

Conjecture 1 (Kotschick). Let X be a compact Kähler manifold. Then the fol-
lowing are equivalent:

(1) there is a holomorphic one-form without zeros;
(2) there is a closed real 1-form α ∈ A1(X)R without zeros, or by Tischler’s

theorem equivalently, the underlying differentiable manifold admits a fibra-
tion over the circle f : X → S1.

If ω is a holomorphic one form without zeros, then its real and imaginary part
cannot have any zeros, because Re(ω)∧ Im(ω) is a nonzero multiple of ω ∧ ω̄ and
the latter is nonzero at each point, because ω has no zero (indeed, ω and ω̄ have
different types, hence must both vanish at a point where they are linearly depen-
dent). In particular, (1) in Kotschick’s conjecture implies (2) and the nontrivial
part is the converse.

Kotschick observes that item (2) implies χ(X,Ωp
X) = 0 for all p. This implies

the conjecture in dimension one and one can use classification of surfaces to deduce
it also in dimension two, see e.g. [Kot22, Sch21].

In [Sch21], it had been shown that (2) implies the following stronger condition,
which generalizes the vanishing of the Euler characteristics χ(X,Ωp

X) mentioned
above: there is a holomorphic one-form ω ∈ H0(X,Ω1

X) such that the following
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complex is exact:

. . .
∧ω−→ Hi−1(X,C) ∧ω−→ Hi(X,C) ∧ω−→ Hi+1(X,C) ∧ω−→ . . . .(1)

Moreover, the above complex remains exact if we replace X by a finite étale cover
τ : X ′ → X and ω by τ∗ω.

This implication of condition (2) comes from the following observations: the
cohomology of the above complex agrees with the cohomology of the local system
L(ω) := ker(d + ∧ω) ⊂ OX . To prove that the above complex is exact one
then has to see that for some ω, L(ω) has no cohomology. By generic vanishing
[GL87], one can reduce this to the statement that there is some complex rank one
local system with trivial Chern class that has no cohomology. The latter can be
produced explicitly by pulling back a general local system on S1 via the fibration
f : X → S1. (The fact that this has no cohomology follows from a Leray spectral
sequence argument.)

The main result in [HS21] uses the exactness of (1) to settle Kotschick’s con-
jecture for smooth projective threefolds.

Theorem 2 ([HS21]). Let X be a smooth complex projective threefold. Then
Kotschick’s conjecture holds for X. More precisely, assume that the differentiable
manifold that underlies X admits a fibration over the circle. Then up to (inverses
of) blow-ups of elliptic curves that are not contracted via the Albanese morphism,
one of the following holds:

(1) there is a finite étale cover X ′ → X such that X ′ ∼= A×Z admits a positive
dimensional complex torus A as a factor such that A is not contracted to
a point in Alb(X).

(2) X is a smooth del Pezzo fibration g : X → E over an elliptic curve E.
(3) X is a conic bundle g : X → S over a surface S such that there is a one

form ω ∈ H0(S,Ω1
S) without zeros and such that g∗ω has no zeros on X.

The proof of this theorem relies on the minimal model program. It is natural
to conjecture that the above result holds also true for compact Kähler threefolds.

We are also led to the expectation that a smooth complex projective variety of
non-negative Kodaira dimension with a one form without zeros admits a birational
model with an étale cover which admits a positive dimensional abelian variety as
a factor. Both conjectures remain open for the moment.

Instead of concentrating on low dimensions, it is natural to consider the case
where some other invariants of X are small. For instance, the smallest nontrivial
value for b1(X) is 2, in which case Kotschick’s conjecture predicts the following: Let
X be a compact Kähler manifold whose underlying differentiable manifold admits
a fibration over the circle. If b1(X) = 2, then the Albanese map X → Alb(X) is
smooth.

If b1(X) = 2, then Alb(X) is an elliptic curve and hence it is a simple complex
torus. The main result in [SY22] yields then the following evidence in favour of
Kotschick’s conjecture (in loc. cit. the statement assumes that X is Kähler but
the proof works more generally for an arbitrary compact complex manifold X).



Komplexe Analysis – Differential and Algebraic methods in Kähler spaces 995

Theorem 3 ([SY22]). Let X be a compact complex manifold with a morphism
f : X → A to a simple complex torus. Assume that there is a closed real 1-form
α ∈ A1(X)R without zeros such that [α] ∈ f∗H1(A,R). Then Rif∗Z is a local
system for all i.

The above theorem says that the fibres of f have locally constant integral coho-
mology; the analogous result for rational cohomology has previously been proven
in [DHL21]. The proof of the above theorem differs from the strategy in [DHL21]
and relies on a characterization of simple perverse sheaves with vanishing Euler
characteristic in [KW15] together with the generic vanishing results from Bhatt–
Schnell–Scholze in [BSS18].

The example of elliptic fibrations with multiple fibres shows that there are non-
smooth proper morphisms such that Rif∗Q is a local system for all i. Similar
examples where Rif∗Z is a local system for all i are not known. In fact, the
following conjecture of Bobadilla-Kollár [BK12] would imply smoothness of f in
the above situation:

Conjecture 4 (Bobadilla–Kollár). Let f : X → Y be a proper morphism between
complex manifolds. Then f is smooth if and only if Rif∗Z is a local system for all
i.

The above theorem from [SY22] thus shows that Kotschick’s conjecture in the
case where Alb(X) is simple follows from the Bobadilla–Kollár conjecture.
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Moduli of Foliations

Calum Spicer

(joint work with Michael McQuillan, Roberto Svaldi)

The main conjectures of the Minimal Model Program (MMP) imply that any
variety may be decomposed into fibrations in atomic varieties with simple curva-
ture properties, namely, Fano varieties (c1(X) is positive), Calabi-Yau varieties
(c1(X) = 0) and canonically polarised varieties (−c1(X) is positive). Even better,
we expect these atomic varieties to fit into nice families of varieties which may
be parametrised by corresponding moduli spaces. Realising this expectation for
varieties of general type has been a major program of research since the late 1980s
and is now essentially complete. We refer to [2] for a detailed treatment of the
topic, but we remark here that the MMP in dimension n+ 1 plays a central role
in the construction of the moduli space for varieties of dimension n.

In recent years there has been an increasing body of work on the applications
of the MMP to the study of foliations. In the case of foliations on surfaces, by
work of Brunella, McQuillan and Mendes, foliated analogues of the main conjec-
tures of the MMP have been proven. We are therefore interested in realising the
second expectation of the MMP, namely, producing moduli spaces of foliations on
surfaces, especially in the case of the foliations of general type. In light of recent
developments on the MMP for foliations on threefolds, see [7, 8, 9, 10], many of
the technical tools required for this are in place.

Our aim here is to describe some important examples which demosntrate some
of the novel features of the moduli of foliations, survey some recent progress on
moduli of foliations and to report on some work in progress with R. Svaldi and M.
McQuillan.

1. Moduli of varieties

Before explaining the difficulties arising in producing a reasonable moduli theory
for foliations, we briefly recall the moduli theory for varieties of general type.
To define a moduli functor we need to specify the objects being parametrised
as well as specifying families of these objects. The objects we are interested in
parametrising are stable varieties, namely projective varieties X such that X is
semi-log canonical and KX := −c1(X) is ample. A family of stable varieties is
given by a flat morphism f : X → T such that KX/T is Q-Cartier and f -ample,
and the fibres are all semi-log canonical.

As a result of the work of many mathematicians, e.g., [11], [12], [2], we have
the following statement on the existence of moduli spaces for stable varieties.

Theorem 1.1. Fix n ∈ Z>0 and v ∈ Q>0. The moduli functor of stable varieties
of dimension n with Kn

X = v is coarsely represented by a projective variety Mn,v.

We remark that thanks to [1] any smooth variety X of general type admits a
birational model X 99K X ′ such that X ′ is stable.
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2. Examples

By a foliation F on a normal variety X we mean the data of a coherent subsheaf
TF ⊂ TX such that

(1) TX/TF is torsion free; and
(2) TF is closed under Lie bracket.

In general we will need to consider foliations on non-normal varieties, but the
correct definition is technical and so we will not give a precise definition here.

We now present several examples which show how a moduli theory of foliations
must diverge from the account of moduli of varieties provided above. To be precise,
these examples will explain why defining a stable foliation as being one such that
KF is ample and F is semi-log canonical will not yield a good moduli theory.

Example 2.1. Let (X,F) be a normal foliated surface such that KF is big and
nef. Suppose that there exists a cycle of rational curves E ⊂ X which is invariant
by F and such that KF · E = 0. Such a confinguration of curves is called an
elliptic Gorenstein leaf (e.g.l.). By a theorem of McQuillan, [3], it is known that
KF |E 6∼Q 0 and therefore KF is not semi-ample.

Such examples do in fact exist (take for example an appropriate ramified cover
of a minimal resolution of the Bailey-Borel compactification of a Hilbert modular
surface equipped with one of the tautological foliatons).

This example shows if given a foliation F of general type on a surface X , then
finding a nice model on which KF becomes ample is too much to hope for. Rather
one has the following result due to [3].

Theorem 2.2. Let X be a smooth projective surface and F a foliation of general
type on X with canonical singularities. Then there exist a birational contraction
p : X → Y to an algebraic surface (not necessarily projective) such that if G = p∗F
then

(1) KG is not necessarily Q-Cartier, but it is ample in the sense of Mumford
intersection theory, [13, §4.1];

(2) G has canonical singularities (in a numerical sense); and
(3) Y has log canonical singularities (in particular KY is Q-Cartier).

We call the model (Y,G) guaranteed by Theorem 2.2 the canonical model of
(X,F).

When trying to compactify the moduli space of normal varieties, it is necessary
to allow normal varieties to degenerate to non-normal varieties. Similarly, to
compactify the moduli space of foliations it is necessary to consider foliations on
non-normal surfaces. Here we see that it even too much to expect that KF is big
on every component of a degeneration.

Example 2.3. We believe it is reasonable to assert that for g ≥ 2 the foliation
induced by the fibration Mg,1 → Mg between the moduli space of pointed stable
curves and the moduli space of curves is a natural model of an algebraically inte-
grable foliation, and that a Hilbert scheme of curves in Mg, or some subscheme
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thereof, should represent some component of the moduli space of such foliated
surfaces.

We now recall an example originally noticed by Keel. Assume g ≥ 3 and fix a
curve C of genus equal to 2 and another curve B with genus equal to g− 2 and fix
a point b ∈ B. We produce a family of stable curves S → C as follows: we glue
C ×B to C × C so that C × {b} is glued to the diagonal ∆ ⊂ C × C. If F is the
foliation induced by S → C then, on one hand, this should be a stable foliation.
On the other hand, KF |C×C = p∗KC +∆ where p is one of the projections, which
is big and nef but not semi-ample, and, KF |C×B = q∗KB +C×{b} where q is the
projection onto B, which is nef but not big.

As observed before, fixing KdimX
X suffices to get a bounded moduli problem,

namely, the moduli functor can be represented by union finitely many quasi-
projective varieties. However, for foliations more invariants need to be fixed as
the following shows.

Example 2.4. There are examples due to Xiao, [6], of smooth morphisms fi :Xi →
Ci, i = 1, 2, . . . , where Xi is a surface, Ci is a curve and the fibres of fi are curves
of a fixed genus g ≥ 2 such that g(Ci) goes to infinity, but K2

Xi/Ci
= v for some

fixed v ∈ Z>0.

Finally, we record one other interesting behaviour of the moduli of foliations.
If X → T is a flat family and KX/T is Q-Cartier then the set

{t ∈ T : Xt has canonical singularities.} ⊂ T

is open, [14]. This is not the case for foliations.

Example 2.5. Consider the family of foliations A2
x,y × A1

t → A1
t defined by the

vector field x∂x + ty∂y. For t ∈ Q ≥ 0 the foliation on the fibre over t has log
canoincal but not canonical singularities, and for tinC\Q the foliation on the fibre
over t has canonical singularities.

3. Stability and ǫ-adjoint stability

We now explain an idea, initially considered in work of J. V. Pereira and R. Svaldi,
[5], which provides a potential way of addressing these idiosyncratic features of the
moduli of foliations and which points the way to a good definition of the moduli
functor for foliations. The main observation is that for 0 < ǫ ≪ 1 the divisors
KF + ǫKX where KF := −c1(TF ) are better behaved from the perspective of
birational geometry.

We say a foliated surface (X,F) is ǫ-stable provided KF + ǫKX is a Q-Cartier
ample divisor and (X,F) is ǫ-adjoint log canonical. We do not define ǫ-adjoint
log canonicity here, but only note that it depends on a natural generalisation of
the discrepancy function to divisors of the form KF + ǫKX . In [4] we prove two
main results regarding ǫ-stable foliations on normal surfaces, namely existence and
boundedness, cf. Examples 2.1 and 2.4.
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Theorem 3.1. There exists a universal τ > 0 such that for all 0 < ǫ < τ the
following holds. Let X be a smooth surface and F a foliation of general type then
here exists an ǫ-stable model of (X,F).

Theorem 3.2. Fix 0 < ǫ < τ and v > 0. The set of ǫ-stable models (X,F) where
X is normal and where (KF + ǫKX)2 = v is bounded.

4. Properness and separatedness

We now explain how to use these ideas to study the properness and separatedness
of the moduli space of foliations.

Let C = Spec(A) where A is a DVR, let c ∈ C be the unique closed point, let
η ∈ C be the generic point, and let C◦ = C \ {c}. Let (X◦,F◦) → C◦ be a family
of foliations of general type. Since we are particularly interested in compactifying
the component corresponding to canonical models of foliations of general type on
surfaces, we will assume that X◦ is normal.

Let us assume that on the generic fibre we have KF◦ is a big and nef Q-Cartier
divisor and that F◦ has canonical singularities. Building off [4], for 0 < ǫ ≪ 1
we are able to compactify (X◦,F◦) to a family of ǫ-stable models. Usually this
compactification depends on the choice of ǫ, but we are able to show as ǫ→ 0 that
this compactification stabilises to a unique limit compactification (Xlim,Flim).

However, owing to the possible existence of e.g.l.s, we cannot in general assume
that KF◦ is ample over the generic point of C. One of the key points is therefore
understand this obstruction in families. Ideally, we would like to show that on the
limit model (Xlim,Flim) that e.g.l.s move in a family.

Theorem 4.1 (Work in progress). Notation as above. Then there exists a divisor
E ⊂ Xlim such that Eη ⊂ Xη and Ec ⊂ Xc are elliptic Gorenstein leaves, and any
elliptic Gorenstein leaf in Xη or Xc is contained in E.

Moreover, there exists a contraction π : Xlim → Y/C which contracts E to a
section of Y → C.

We remark that owing to the failure of the basepoint free theorem the existence
of the contraction π : Xlim → Y in the category of algebraic spaces is a delicate
problem, and must proceed by a very careful analysis of the structure of the
degeneration.
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Gedodesic distance

Eleonora Di Nezza

(joint work with Tamas Darvas and Chinh Lu)

Let X be a compact Kähler manifold of complex dimension n and fix a Kähler
metric ω normalized such that

∫
X ωn = 1. We then consider the set of ω-

plurisubharmonic functions (ω-psh for short) denoted by PSH(X, ω). We say that
a function u : X → R∪{−∞} is quasi-plurisubharmonic (qpsh) if locally u = ρ+ϕ
where ϕ is plurisubharmonic (psh) and ρ is smooth. A qpsh function u is ω-psh if
ω + i∂∂̄u ≥ 0 in the weak sense of currents.

Given a ω-psh function u, one can define the so called non-pluripolar Monge-
Ampère measure ωn

u := (ω + i∂∂̄u)n. When u is smooth, the latter is simply the
wedge product n-times of the smooth positive (1, 1)-form ωu := ω++i∂∂̄u. When
u has singularities, one is not allowed to do the wedge product of currents and the
non-pluripolar Monge-Ampère measure was defined by Guedj and Zeriahi [3] as
an increasing limit of positive Radon measures. It has to be emphasized that by
construction we have ∫

X

ωn
u ≤

∫

X

ωn = 1.

Also, still by construction the resulting measure ωn
u := (ω+i∂∂̄u)n does not charge

pluripolar sets, i.e. ωn
u(P ) = 0 for any P pluripolar set.

One can then wonder about the range of the Monge-Ampére operator. More
precisely, given a positive measure µ on X can we find a ω-psh function ϕ such
that µ = (ω+ i∂∂̄ϕ)n? The answer is given by the following result we prove in [1]:

Theorem 1. Let µ be a non-pluripolar positive measure with µ(X) = m,m ∈
(0, 1]. Then there exists a unique ϕ ∈ PSH(X, ω) (normalized with supX ϕ = 0)
such that µ = (ω + i∂∂̄ϕ)n. Moreover ϕ ∈ E(X,ω, φ) where φ is a model potential
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with mass
∫
X
ωn
φ = m > 0 and

E(X,ω, φ) :=
{
u ∈ PSH(X,ω), u ≤ φ+ C,C > 0 and

∫

X

ωn
u =

∫

X

ωn
φ

}
.

We recall that φ is called a model potential if it is the least singular function
among those having fixed mass equal to m.

One can then wonder about the regularity of the solution ϕ in terms of the
regularity of µ. The next result in [2] takes care of this:

Theorem 2. The following are equivalent.

(i) µ = (ω + ddcϕ)n for some ϕ ∈ Eχ(X,ω, φ), with supX ϕ = 0.
(ii) χ(|φ − u|) ∈ L1(µ), for all u ∈ Eχ(X,ω, φ).
Here Eχ(X,ω, φ) are weighted energy classes defined as follows. A weight is

a continuous increasing function χ : [0,∞) → [0,∞) such that χ(0) = 0 and
χ(∞) = ∞. We also assume that the weight χ satisfies the following growth
condition:

∀t ≥ 0, ∀λ ≥ 1, χ(λt) ≤ λMχ(t),

where M ≥ 1 is a fixed constant. We then let Eχ(X,ω, φ) denote the set of all
u ∈ E(X,ω, φ) such that

Eχ(u, φ) :=

∫

X

χ(|u− φ|)ωn
u <∞.

In the particular case φ = 0, the above result was proved by Guedj and Zeriahi
[3] for a particular class of weights. They asked the question whether the same
result would hold for a generic weight. Theorem 2 answers that.

References

[1] T. Darvas, E. Di Nezza, and C. H. Lu. Log-concavity of volume and complex Monge-Ampère
equations with prescribed singularity. Math. Ann., 379(1-2):95–132, 2021.

[2] T. Darvas, E. Di Nezza, and C. H. Lu. Relative pluripotential theory on compact kähler
manifolds. Preprint arXiv, 2023.

[3] V. Guedj and A. Zeriahi. The weighted Monge-Ampère energy of quasiplurisubharmonic
functions. J. Funct. Anal., 250(2):442–482, 2007.

Kähler structures for holomorphic submersions

Chi Li

Let X,B be compact complex manifolds. Assume that there is a holomorphic
submersion π : X → B. We prove the following criterion for the existence of
Kähler structures on X .

Theorem 1. There is a Kähler metric on X if and only if the following two
conditions are satisfied:
(Condition I) There is a class [Q] ∈ H2(X,R) that restricts to be a Kähler class
on each fiber Xb = π−1(b), b ∈ B.
(Condition II) B is a Kähler manifold.
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As a corollary, we can answer positively a question by Harvey-Lawson ([7, Note
D])

Theorem 2. Assume that the fiber of the submersion has dimension 1. Then
there exists a Kähler metric on X if and only if the homology class of any fiber of
X is not zero.

There is a more refined version of Theorem 1. To state it, recall that there
is the Leray spectral sequence {Ep,q

r , dr : Ep,q
r → Ep+r,q−r+1

r } that converges to
Hp+q(X,R) (see [6]). There are isomorphisms:

Ep,q
2 = Hp(B,Rkπ∗R)

which is the sheaf cohomology with coefficient the local system Rkπ∗R.

Theorem 3. There is a Kähler metric on X if and only if the following conditions
are all satisfied:
(Condition Ia) There is an element [ω] ∈ H0(B,R2π∗R) restricts to be a Kähler
class on Xb for any b ∈ B.
(Condition Ib) d2[ω] = 0 in E2,1

2 = H2(B,R1π∗R).
(Condition II) B is Kähler.

Theorem 3 generalizes an old result of Blanchard in [1] who considered a special
class of isotrivial holomorphic submersions. It can also be thought as a converse
to Blanchard-Deligne’s result about the E2-degeneration of the Leray spectral
sequence of Kähler fibrations ([1, 3]). The proof of Theorem 3 generalizes Blan-
chard’s construction of closed (1, 1)-form guided by the Leray spectral sequence.
The main new ingredient is a new D′D′′-lemma, where D denotes the Gauss-
Manin connection, based on Deligne’s Hodge theory corresponding to the group
Hp(B,Rqπ∗R).

Our motivation for proving Theorem 1 comes from a question of Li-Zhang [8]
and Streets-Tian [10] about the existence of Hermitian-Symplectic (HS) structures
on non-Kähler complex manifolds. Let X be a complex manifold and Q be a
closed 2-form on X . By definition, Q is a Hermitian-Symplectic (HS) structure if
Q satisfies the following two conditions.

(1) Q is a symplectic form. In other words, QdimX is non-vanishing and
dQ = 0.

(2) If Q = Q2,0 +Q1,1+Q0,2 is the decomposition of Q into differential forms
of type (2, 0), (1, 1) and (0, 2) respectively, then Q1,1 is a positive definite
(1, 1)-form.

By adapting Blanchard-Deligne’s argument for E2-degeneration of Kähler fibra-
tions, we can show that HS submersions always satisfy (Condition Ib). By ap-
plying Theorem 3 we get the following general result.

Proposition 4. Let π : X → B be a holomorphic submersion with Kähler fibers
and a Kähler base. Assume that X admits a Hermitian-Symplectic structure. Then
the following conditions are equivalent:

(1) X is Kähler.
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(2) There exists [ω] ∈ H0(B,R2π∗R) that restricts to a Kähler class on each
fiber F .

(3) The variation of Hodge structure R2π∗R is polarizable.
(4) X satisfies the ∂∂̄-lemma.

Li-Zhang and Streets-Tian asked whether there are examples of HS structure on
non-Kähler complex manifolds. The question is still open in general, though there
are negative results which say that there are no such examples among complex
surfaces ([8, 10]), nilmanifolds with invariant complex structures ([5]), twistor
spaces ([11]), Moishezon manifolds and complex manifolds of Fujiki class ([9, 2]).
See also [4, 12] for some analytic approach to the general problem. We use the
above result (Proposition 4) to rule out HS structures for some classes of non-
Kähler complex manifolds that admit structures of holomorphic submersions.

Theorem 5. Let π : X → B be a holomorphic submersion with Kähler fibers and
a Kähler base. Assume that there is a Hermitian-Symplectic structure on X. Let
F denote a fiber of π. Then X must be Kähler if one of the following conditions
is satisfied:

(1) The holomorphic submersion is isotrivial.
(2) The fibers of π are complex tori (of possibly varying complex structures).
(3) The monodromy action of π1(B) on H2(F ) is trivial.
(4) H2,0(F ) = 0.

We end with an open problem.

Problem: Extend the main results in this paper to more general holomorphic
maps. In the case of Lefschetz fibrations, We expect that Zucker’s generalization
of Deligne’s result in [13] and a careful treatment near the singular fibers should
lead to a generalization of the Kählerian criteria in this paper.
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Hyperbolicity in presence of a large local system

Yohan Brunebarbe

Let X be a (non-necessarily smooth nor irreducible, but reduced) proper complex
algebraic variety. Following Lang, we define the special subsets Spalg(X), Spab(X),
and Sph(X) of X as the union respectively of

• all (positive-dimensional) integral closed subvarieties not of general type;
• the images of all non-constant rational maps A 99K X with source an
abelian variety A;

• all the entire curves of X , i.e. the image of all non-constant holomorphic
maps C → X .

It is not clear from their definition whether these subsets are Zariski-closed in X .
One easily check that the inclusions

(1) Spab(X) ⊂ Spalg(X)

and

(2) Spab(X) ⊂ Sph(X)

always hold.

In my talk, I discussed the following result.

Theorem 1 ([Bru22]). Let X be a projective complex algebraic variety. Assume
that X admits a large complex local system, i.e. a complex local system L such
that for every normal projective complex algebraic variety Y equipped with a non-
constant morphism Y → X the pull-back of L to Y is not trivial. Then,

(1) The inclusions in (1) and (2) are equalities;
In such a case, the special subset is denoted Sp(X) without risk of confu-
sion.

(2) Sp(X) is Zariski-closed in X;
(3) Sp(X) 6= X if and only if X is of general type. (A non-necessarily ir-

reducible projective variety is said of general type if at least one of its
irreducible component is.)

This result shows that a strong version of conjectures of Green-Griffiths [GG80]
and Lang [Lan86] holds for projective varieties admitting a large complex local
systems. Examples of such varieties include:
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(1) Projective complex algebraic varieties admitting a finite morphism to an
abelian variety. In that case, Theorem 1 follows from works of Bloch
[Blo26], Ueno [Uen75], Ochiai [Och77], Kawamata [Kaw80] and Yamanoi
[Yam15a].

(2) Projective complex algebraic varieties admitting a (graded-polarizable)
variation of Z-mixed Hodge structure with a finite period map. When
in addition the Hodge structures are pure, then it follows from works of
Griffiths and Schmid [GS69] that Spalg(X) = Spab(X) = Sph(X) = ∅.

In a nutshell, the proof of Theorem 1 consists in reducing the general case to
these two special cases by using general structure results from non-abelian Hodge
theory. A crucial input is also given by the following result, whose proof relies on
Nevanlinna’s theory.

Theorem 2 ([Bru23]). Let X → S be a proper morphism between two complex
algebraic varieties. If there exists an abelian scheme A → S and a finite S-
morphism X → A, then, for every ∗ ∈ {alg, ab, h}, the set

Sp∗(X/S) :=
⋃

s∈S

Sp∗(Xs)

is Zariski-closed in X. In particular, the set of s ∈ S such that Sp(Xs) = ∅
(respectively Sp(Xs) 6= Xs) is Zariski open in S.
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Fundamental groups of algebraic singularities

Joaqúın Moraga

We work over the field of complex numbers C. The goal of this note is to discuss
some known results regarding fundamental groups of algebraic singularities and
explain some recent developments in the topic. We are mostly interested in the
following question.

Question 1. Let Cn be a class of n-dimensional algebraic singularities. What
fundamental groups can we find among the singularities in Cn?

In what follows, we write π1(X ;x) for the fundamental group of the intersection
of the smooth locus of X and a small analytic ball centered at x. If (X ;x) is an
isolate singularity, then this group agrees with the fundamental group of the link
Link(X ;x). By the work of Milnor [11] and Durfee [5], the fundamental group
stabilizes if the radius of the ball is small enough. Furthermore, we have the
following statement.

Theorem 1. Let (X ;x) be a normal algebraic singularity. The fundamental group
π1(X ;x) is finitely presented.

Normal singularities. In [14], Mumford proved that the fundamental group of
a normal surface singularity detects smoothness. Indeed, the following theorem
holds.

Theorem 2. Let (X ;x) be a normal surface singularity. The fundamental group
π1(X ;x) is trivial if and only if X is smooth at x.

However, in [7, Chapter X], Grothendieck showed that this is far from being
the case for higher dimensional algebraic singularities. This is a consequence of
the so-called Grothendieck-Lefschetz hyperplane Theorem.

Theorem 3. Let (X ;x) be an isolated local complete intersection singularity of
dimension at least 3. The fundamental group π1(X ;x) is trivial.

The following statement, due to Kollár and Kapovich, gives a complete answer
to Question 1 in the class of normal algebraic singularities.

Theorem 4. Let G be a finitely presented group. There exists a normal isolated
3-fold singularity (XG;x) for which π1(XG;x) ≃ G.

In [9, Theorem 2], Kollár and Kapovich construct a projective simple normal
crossing surface SG with fundamental group G. Then, by taking a cone over
this surface and deforming it (to make the singularity isolated), they obtain the
singularity (XG;x).

Quotient and toric singularities. Among normal singularities, finite quotient
singularities (orbifold singularities) and toric singularities are the most common
ones in the literature. In this direction, we have the following theorems that
characterizes the fundamental groups of orbifold singularities. This theorem dates
back to the work of Camille Jordan in the 1870’s [8].
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Theorem 5. There exists a constant c0(n), only depending on n, satisfying the
following. Let (X ;x) be an orbifold singularity of dimension n. Then π1(X ;x)
admits a finite normal abelian subgroup A of rank at most n and index at most
c0(n).

Furthermore, by recent work of Collins [3], we can take c0(n) = (n+1)! whenever
n ≥ 71. On the other hand, the fundamental groups of toric singularities have
been understood by Cox, Little, and Schenck [4, Theorem 2.1.10].

Theorem 6. Let (X ;x) be a n-dimensional toric singularity. Then the funda-
mental group π1(X ;x) is finite abelian of rank at most n.

The two previous theorems give a complete answer to Question 1 in the case of
quotient and toric singularities.

Rational and Cohen-Macaulay singularities. In the case of rational singu-
larities, we do not have a definitive answer for Question 1. However, due to the
work of Kollár and Kapovich, we can understand the fundamental group of their
dual complexes. The dual complex, denoted by D(X ;x), is a combinatorial object
that encodes the intersection of the exceptional divisors on a resolution.

Theorem 7. Let (X ;x) be a rational singularity. Then π1(D(X ;x)) is a Q-
superperfect group. Furthermore, for every finitely presented Q-superperfect group
G, there exists a 6-dimensional rational singularity (XG;x) for which π1(XG;x) ≃
G.

On the other hand, in [10, Theorem 4], Kollár gives a complete answer for
Question 1 in the case of Cohen-Macaulay singularities.

Theorem 8. Let G be a finitely presented group. Then, the following statements
are equivalent:

• The group G is Q-perfect, and
• The group G is the fundamental group of a Cohen-Macaulay singularity.

Log terminal singularities. Log terminal singularities are the singularities that
appear in the minimal model program. The following theorem was proved by
Braun, Filipazzi, Svaldi, and the author (see [2, Theorem 2]). It essentially says
that the fundamental group of a log terminal singularity is similar to such of a
quotient singularity.

Theorem 9. There exists a constant c1(n), only depending on n, satisfying the
following. Let (X ;x) be a n-dimensional log terminal singularity. Then π1(X ;x)
admits a finite normal abelian subgroup A of rank at most n and index at most
c1(n).

The proof of the previous theorem used local-to-global techniques from the
Minimal Model Program and the boundedness of singular Fano varieties due to
Birkar [1, Theorem 1.1]. In general, the constant c1(n) is not the same as c0(n)
in Theorem 5. It is not clear yet how to obtain sharp bounds of c1(n). In [13,
Theorem 7], the author shows that rank(A) is bounded above by the regularity of
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(X ;x), i.e., the maximum dimension of D(X,Γ;x) where (X,Γ) is log canonical
around x. In [12], the author studies how the existence of a large group A affects
the geometry of the klt singularity (X ;x). [12, Theorem 1] states that whenever A
is large (isomorphic to Zn

m with m large compared with n) the singularity (X ;x)
is similar to the deformation of a toric quotient singularity.

Log canonical singularities. Log canonical singularities appear often as limits
of log terminal singularities. Hence, these singularities emerge naturally in moduli
contexts. Although, some simple examples (for instance, the cone over an elliptic
curve) show that the fundamental groups of lc singularities may not be finite.
In [6], Figueroa and the author started a systematic study of the fundamental
groups of log canonical singularities. In dimension 2, a complete description of the
possible groups is given. More precisely, we have the following theorem (see [6,
Theorem 2]).

Theorem 10. Let (X ;x) be a log canonical surface singularity. Then, π1(X ;x)
is the extension of a solvable group of length at most 2 and a finite group of order
at most 6.

In the case of 3-dimensional lc singularities the group can be far from solv-
able. Indeed, every surface group appears as the fundamental group of a lc 3-fold
singularity:

Theorem 11. Let S be a Riemann surface without boundary and GS = π1(S).
There exists a 3-dimensional isolated lc singularity (XS ;x) for which π1(XS ;x) ≃
GS .

However, by studying the dual complexes of lc 3-fold singularities, Figueroa
and the author proved that not every finitely presented group appears as the
fundamental group of a lc 3-fold singularity (see [6, Theorem 7]). More precisely,
we have the following statement about free groups.

Theorem 12. Let r ≥ 2. The free group Fr is not the fundamental group of an
isolated lc 3-fold singularity.

In [6, Section 4], Figueroa and the author develop a technique to construct
lc singularities with interesting fundamental groups. This technique associates
a (n + 1)-dimensional lc singularity (X ;x) with π1(X ;x) ≃ π1(M) to each n-
dimensional smooth manifold M . This technique is quite involved and requires
tools from different topics in mathematics: polyhedral combinatorics, polyhedral
complexes, toric geometry, and algebraic geometry. However, this technique can
be proved to work for 3-manifolds that admit smooth embeddings into R4. Taking
Mr = #r

i=1(S
2 × S1), we obtain the following theorem.

Theorem 13. Let r ≥ 1. There exists a 4-dimensional isolated lc singularity
(X ;x) for which π1(X ;x) ≃ Fr.

This naturally leads to the following question.

Question 2. Does any finitely presented group appear as the fundamental group
of a 5-dimensional lc singularity?
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In a similar vein, we propose the following question.

Question 3. Let M be a n-dimensional smooth manifold. When is M homotopic
to the dual complex of a (n+ 1)-dimensional log canonical singularity?

Finally, it is expected that log canonical rational singularities have better-
behaved fundamental groups.

Question 4. Let (X ;x) be an lc rational singularity. Is π1(X ;x) virtually nilpo-
tent?
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Hodge theory and Lagrangian fibrations

Christian Schnell

The topic of my talk was the Hodge theory of Lagrangian fibrations on holomorphic
symplectic Kähler manifolds. This setting includes both compact hyperkähler
manifolds (such as elliptic K3 surfaces) and noncompact examples (such as the
Hitchin fibration on the moduli space of stable Higgs bundles).
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Not much is known about the singular fibers of Lagrangian fibrations. One
can try to study their cohomology by applying the decomposition theorem; this
produces certain perverse sheaves on the base of the Lagrangian fibration. In some
cases, such as Ngô’s support theorem [7], these perverse sheaves are controlled by
what happens on the smooth locus, but in general, their behavior is a mystery.
Two beautiful conjectures by Shen, Yin and Maulik [12, 6] try to shed some light
on the perverse sheaves in the decomposition theorem, by relating them to the
sheaves of holomorphic forms on the holomorphic symplectic manifold. They also
predict some surprising symmetries, similar in spirit to the symmetries one finds
among the Hodge numbers of a compact hyperkähler manifold.

Let M be a holomorphic symplectic manifold of dimension 2n that is Kähler
but not necessarily compact, and let π : M → B be a Lagrangian fibration. In
the talk, I explained how one can use Saito’s theory of Hodge modules [8] and the
BGG correspondence [1, 2] between graded modules over symmetric and wedge
algebras to establish a relationship between the following two seemingly unrelated
objects: the derived direct image Rπ∗Ω

n+i
M of the sheaf of (n + i)-forms on M ,

and the i-th perverse sheaf Pi in the decomposition theorem for π. It turns out
that we need to take the associated graded with respect to a certain filtration on
both sides: in the case of Rπ∗Ω

n+i
M , this is the perverse filtration coming from the

decomposition theorem; in the case of Pi, it is the Hodge filtration of Pi, viewed
as a Hodge module. A special case of the main theorem is Matsushita’s theorem
[5], which says that

Rπ∗OM
∼=

N⊕

i=0

Ωi
B[−i].

Another general principle, which is already evident from the proof of Matsushita’s
theorem, is that the holomorphic symplectic structure and the Kähler structure
together give rise to interesting symmetries.

I mentioned several applications of the main result. One is a relative Hard
Lefschetz theorem for the action of the holomorphic symplectic form (which com-
plements the usual relative Hard Lefschetz theorem for the action of the Kähler
form); another one is a proof for the symmetry conjecture by Shen and Yin [12].
The main result also leads to a different proof for the “numerical perverse =
Hodge” symmetry for compact hyperkähler manifolds [13] that does not rely on
the existence of a hyperkähler metric. Perhaps the most useful feature of the
present work is that no restrictions on the singular fibers are needed: the main
theorem applies for example to the entire Hitchin fibration on the moduli space of
semistable Higgs bundles (provided that the rank and the degree are coprime).
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[1] Joseph N. Bernštĕın, Izrail M. Gel’fand, and Sergei I. Gel’fand, Algebraic vector bundles on
Pn and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67.
MR 509387

[2] David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free
resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426.
MR 1990756



Komplexe Analysis – Differential and Algebraic methods in Kähler spaces 1011

[3] Daniel Huybrechts and Mirko Mauri, Lagrangian fibrations, Milan J. Math. 90 (2022), no. 2,
459–483. MR 4516500

[4] Daisuke Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic symplec-

tic manifolds, Math. Res. Lett. 7 (2000), no. 4, 389–391. MR 1783616
[5] , Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math.

127 (2005), no. 2, 243–259. MR 2130616
[6] Davesh Maulik, Junliang Shen, and Qizheng Yin, Fourier-Mukai transforms and the de-

composition theorem for integrable systems, arXiv:2301.05825, 2023.
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Hyperbolicity and fundamental groups of quasi-projective varieties

Ya Deng

(joint work with Benoit Cadorel, Katsutoshi Yamanoi)

The concept of pseudo Picard hyperbolicity and pseudo Brody hyperbolicity has
been introduced for complex algebraic varieties. A complex quasi-projective nor-
mal variety X is said to be pseudo Picard hyperbolic if there exists a proper
Zariski closed subset Z $ X such that any holomorphic map f : D∗ → X from
the punctured disk D∗ with an essential singularity at the origin is contained in
Z. Similarly, X is called pseudo Brody hyperbolic if there exists a proper Zariski
closed subset Z $ X such that any non-constant holomorphic map f : C → X is
contained in Z. It is worth noting that pseudo Picard hyperbolicity implies pseudo
Brody hyperbolicity, which is a weaker form of hyperbolicity.

Another concept that has been studied extensively is the notion of log general
type. A variety X is said to be strongly of log general type if there exists a proper
Zariski closed subset Z $ X such that any closed positive-dimensional subvariety
V of X that is not of log general type is contained in Z.

In a recent paper by Cadorel, Yamanoi, and the reporter [2], the strong version
of the Green-Griffiths-Lang conjecture has been studied for varieties that admit a
big and reductive representation of their (topological) fundamental group π1(X).
This conjecture states that the four hyperbolicity properties, namely, pseudo Pi-
card hyperbolicity, pseudo Brody hyperbolicity, log general type, and strongly of
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log general type are equivalent for a given variety X . We were able to prove this
conjecture for the aforementioned class of varieties.

Theorem 1 ([2, Theorem 0.4]). Let X be a complex smooth quasi-projective
variety and ̺ : π1(X) → GLN (C) be a big and reductive representation. Then
for any automorphism σ ∈ Aut(C/Q), the strong Green-Griffiths-Lang conjecture
holds for the conjugate variety Xσ := X ×σ C, i.e. the following properties are
equivalent:

(1) Xσ is of log general type.
(2) Xσ is strongly of log general type.
(3) Xσ is pseudo Picard hyperbolic.
(4) Xσ is pseudo Brody hyperbolic.

Recall that a representation ̺ : π1(X) → G(C) is said to be big, or generically
large in [10], if for any closed subvariety Z ⊂ X containing a very general point of
X , ̺(Im[π1(Z

norm) → π1(X)]) is infinite, where Znorm denotes the normalization
of Z. It is worth noting that a stronger notion of largeness exists, where ̺ is called
large if ̺(Im[π1(Z

norm) → π1(X)]) is infinite for any closed subvariety Z of X .
We introduce four special subsets ofX that measure the non-hyperbolicity locus

from different perspectives.

Definition 2 (Special subsets). Let X be a smooth quasi-projective variety.

(1) Spsab(X) :=
⋃

f f(A0)
Zar

, where f ranges over all non-constant rational
maps f : A 99K X from all semi-abelian varieties A to X such that f is
regular on a Zariski open subset A0 ⊂ A whose complement A\A0 has
codimension at least two;

(2) Sph(X) :=
⋃

f f(C)
Zar

, where f ranges over all non-constant holomorphic
maps from C to X ;

(3) Sp(X) :=
⋃

V V
Zar

, where V ranges over all positive-dimensional closed
subvarieties of X which are not of log general type;

(4) Spp(X) :=
⋃

f f(D
∗)

Zar
, where f ranges over all holomorphic maps from

the punctured disk D∗ to X with essential singularity at the origin.

Another strong version of the Green-Griffiths-Lang conjecture asserts that the
four special subsets defined in Definition 2 should coincide. We establish this
conjecture under the assumption that π1(X) admits a large and reductive repre-
sentation, as stated in the following theorem.

Theorem 3 ([2, Theorem 0.6]). Let X be a smooth quasi-projective variety and
̺ : π1(X) → GLN (C) be a large and reductive representation. Then for any
automorphism σ ∈ Aut(C/Q),

(a) the four special subsets defined in Definition 2 are the same, i.e.,

Sp(Xσ) = Spsab(X
σ) = Sph(X

σ) = Spp(X
σ).

(b) These special subsets are conjugate under automorphism σ, i.e.,

Sp•(X
σ) = Sp•(X)σ,
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where Sp• denotes any of Sp, Spsab, Sph or Spp.
(c) Sp(Xσ) is a proper Zariski closed subset of Xσ if and only if X is of log general

type.

In [2], we also prove the following result:

Theorem 4 ([2, Theorem 0.1]). Let X be a complex quasi-projective normal
variety and let ̺ : π1(X) → GLN (C) be a big representation such that the Zariski
closure of ̺(π1(X)) is a semisimple algebraic group. Then, for any automorphism
σ ∈ Aut(C/Q), the variety Xσ is strongly of log general type and pseudo Picard
hyperbolic.

We remark that the condition in Theorem 4 is sharp. Theorem 4 are new even
in the case where X is projective. When the variety X in Theorem 4 is projective,
Campana-Claudon-Eyssidieux [5, Theorem 1] proved that X is of general type and
Yamanoi [12, Proposition 2.1] proved that X does not admit Zariski dense entire
curves f : C → X .

It is noteworthy that the condition of bigness for the representations ̺ in The-
orem 4 is not particularly restrictive, as demonstrated by the following result:

Corollary 5 ([2, Corollary 0.2]). Let X be a complex quasi-projective normal
variety and let G be a semisimple algebraic group over C. If ̺ : π1(X) → G(C)
is a Zariski dense representation, then there exist a finite étale cover ν : X̂ → X,

a birational and proper morphism µ : X̂ ′ → X̂, a dominant morphism f : X̂ ′ →
Y with connected general fibers, and a big and Zariski dense representation τ :
π1(Y ) → G(C) such that

(a) f∗τ = (ν ◦ µ)∗̺.
(b) the variety Y is pseudo Picard hyperbolic and strongly of log general type.

In particular, X is neither weakly special nor Brody special.

Note that by Campana [4], a quasi-projective variety X is weakly special if for

any finite étale cover X̂ → X and any birational modification X̂ ′ → X̂ , there exists

no dominant morphism X̂ ′ → Y with Y a positive-dimensional quasi-projective
normal variety of log general type. By [8] a quasi-projective variety is Brody special
if it contains a Zariski dense entire curve.

Corollary 5 generalizes the previous work by Mok [11], Corlette-Simpson [6],
and Campana-Claudon-Eyssidieux [5], in which they proved similar factorisation
results.

On the other hand, Campana’s abelianity conjecture [4, 11.2] predicts that a
smooth quasi-projective variety X that is special or Brody special has a virtually
abelian fundamental group. When a special variety X is projective, it is known
that all linear quotients of π1(X) are virtually abelian (cf. [3, Theorem 7.8]).
The same conclusion is valid for any Brody special smooth projective variety X
(cf. [12, Theorem 1.1]). While it is natural to expect similar results for smooth
quasi-projective varieties, we construct in [2] an example of a quasi-projective
surface that is special and Brody special, whose fundamental group is linear and
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nilpotent but not virtually abelian. This provides a counterexample to Campana’s
conjecture in the general case. In the same work, we prove the following theorem:

Theorem 6 ([2, Theorem 0.8]). Let X be a special or Brody special smooth
quasi-projective variety. Let ̺ : π1(X) → GLN (C) be a linear representation.
Then ̺(π1(X)) is virtually nilpotent.

To prove the above theorems, in [2] we develop new features in non-abelian
Hodge theories in both archimedean and non-archimedean settings, geometric
group theory, and Nevanlinna theory. Along the way, two difficult theorems are
established, which are of significant interest in their own right. One such technique
is a reduction theorem for Zariski dense representations ̺ : π1(X) → G(K), where
G is a reductive algebraic group defined over a non-Archimedean local field K.

Theorem 7 ([2, Theorem 0.11]). Let X be a complex quasi-projective manifold,
and let ̺ : π1(X) → GLN (K) be a reductive representation where K is a non-
archimedean local field. Then there exists a quasi-projective normal variety S̺ and
a dominant morphism s̺ : X → S̺ with connected general fibers, such that for any
connected Zariski closed subset T of X , the following properties are equivalent:

(a) the image ρ(Im[π1(T ) → π1(X)]) is a bounded subgroup of G(K).
(b) For every irreducible component To of T , the image ρ(Im[π1(T

norm
o ) → π1(X)])

is a bounded subgroup of G(K).
(c) The image s̺(T ) is a point.

When X is projective, this theorem was proved in [9, 7]. One of the build-
ing blocks of the proof of Theorem 7 is based on previous results by Brotbek,
Daskalopoulos, Mese, and the reporter [1] on the existence of harmonic mappings
to Bruhat-Tits buildings (an extension of Gromov-Schoen’s theorem to quasi-
projective cases) and the construction of logarithmic symmetric differential forms
via these harmonic mappings.

Another significant building block is the following theorem.

Theorem 8 ([2, Theorem 0.13]). Let X be a quasi-projective variety. Assume
that there is a morphism a : X → A such that dimX = dim a(X) where A is a
semi-abelian variety (e.g., when X has maximal quasi-Albanese dimension). Then
the following properties are equivalent:

(a) X is of log general type.
(b) X is strongly of log general type.
(c) X is pseudo Picard hyperbolic.
(d) X is pseudo Brody hyperbolic.

The proof of Theorem 8 is heavily based on Nevanlinna theory.
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The Riemann-Schottky problem via singularities of theta divisors

Ruijie Yang

(joint work with Christian Schnell)

This talk is about the classical Riemann-Schottky problem: determine which com-
plex principally polarized abelian varieties (p.p.a.v.) arise as Jacobians of complex
curves. This problem has a long history, going back to the work of Riemann, and
there are many results. For a recent summary, see Grushevsky’s survey [8]. More
precisely, in this talk we would like to approach this problem using singularities
of theta divisors, which can be traced back to the work of Andreotti-Mayer [1].
There is a precise question posed by Casalaina-Martin in 2008 [4, Question 4.7].

Question 1. Let (A,Θ) be a principally polarized abelian variety. If (A,Θ) is
indecomposable as p.p.a.v., it is true that

(1) dimSingm(Θ) ≤ dimA− 2m+ 1, ∀m ≥ 2?

Here Singm(Θ) := {x ∈ Θ | multx(Θ) ≥ m}. Moreover, if the equality is achieved
in (1) by any m ≥ 2, is it true that A is either the Jacobian of a hyperelliptic
curve or the intermediate Jacobian of a cubic threefold?

If this question is true, then it implies a conjecture of Debarre, proposed by
Grushevsky [8, Conjecture 5.5] and a conjecture of Grushevsky [8, Conjecture
5.12]. Here are some evidences.

(1) If A = Jac(C) for a smooth projective curve C, then it is true by the Rie-
mann Singularity Theorem and Marten’s work on Brill-Noether varieties.
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(2) If A is the Prym variety associated to an étale double cover, then it is
true by the work of Casalaina-Martin [5]. As a corollary, the conjecture
holds when dimA ≤ 5 (under this assumption, every p.p.a.v. is a Prym
variety).

(3) If the theta divisor Θ has only isolated singularities, Mustata and Popa
[13] show that the dimension bound (1) in the question holds, using their
theory of Hodge ideals.

In this talk, I present the following result, based on the joint work with Christian
Schnell, as a new result in higher dimension to the Riemann-Schottky problem from
the point view of Question 1.

Theorem 2. Let (A,Θ) be an indecomposable principally polarized abelian variety.
Assume the “center of minimal exponent” of (A,Θ) is a one-dimensional scheme
Y , then Y must be a smooth hyperelliptic curve and

dim Singm(Θ) ≤ dimA− 2m+ 1, ∀m ≥ 2.

Moreover, if the equality is achieved by any m ≥ 2, then either A = Jac(Y ) or
dimA = 2m, g(Y ) = 2m − 1, the minimal exponent of Θ is (2m − 1)/m and Θ
has a unique singular point of multiplicity m.

To explain the notion of “center of minimal exponent” for a pair (X,D), recall
that if f is a holomorphic function on Cn, the minimal exponent α̃f [15] is the

smallest root of b̃f (−s), where b̃f (s) = bf (s)/(s+1) is the reduced Bernstein-Sato
polynomial of f introduced by Saito [16]. This can be generalized to any nonzero
divisor D on a complex manifold by setting

α̃D := min
x∈D

α̃fx ,

where fx is a local defining equation of D and fx(x) = 0. By the work of Lichtin
[11] and Kollár [10, Theorem 10.6], it is known that lct(D) = min{α̃D, 1}, where
lct(D) is the log canonical threshold of D. The numerical invariant lct(D) can
be sheafified using the multiplier ideal sheaves {J (X,αD)}α∈Q as the minimum
jumping number. The minimal exponent is sheafified in our work as the first
jumping number of what we called “higher multiplier ideals” {Jk(X,αD)}k∈N,α∈Q

and the “center of minimal exponent” of (X,D) is constructed using these ideal
sheaves, which generalizes the notion of minimal log canonical center of (X,D).

Before discussing the higher multiplier ideals, let me explain briefly why these
invariants of singularities are related to Question 1. If (A,Θ) is a principally
polarized abelian variety, Kollár [9, Theorem 17.13] showed that lct(Θ) = 1, i.e.
(A,Θ) is log canonical, which implies that

dimSingm(Θ) ≤ dimA−m, ∀m ≥ 2.

Later, Ein and Lazarsfeld [7] proved that if one assumes (A,Θ) is indecomposable,
then Θ is normal and has rational singularities, moreover dimSingm(Θ) ≤ dimA−
m− 1. By a result of Saito [15], the rationality of Θ is equivalent to

α̃Θ > 1.
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These results show that the dimension bound on the multiplicity locus Singm(Θ)
is intimately related to singularities of the pair (A,Θ) from the point view of
birational geometry. Since lct(Θ) = 1, to get the optimal bound predicted in
Question 1, we use the minimal exponent as the new invariant and compute several
examples including the p.p.a.v. in the boundary case of Question 1.

Theorem 3. Let (A,Θ) be a principally polarized abelian variety.

• If A = Jac(C) for a smooth projective curve C, then α̃Θ ≤ 2. If C is
hyperelliptic, then α̃Θ = 3/2.

• If A is the intermediate Jacobian of a cubic threefold, then α̃Θ = 5
3 .

In particular, we see that all boundary cases in Question 1 satisfy 1 < α̃Θ < 2.
The proof of Theorem 3 goes in the following way: first there is a lower bound
of the minimal exponent α̃D using log resolutions of (X,D) by Mustata-Popa [14]
and Dirks-Mustata [6] and a new upper bound obtained in our work

(2) α̃D ≤ min
m≥2

codimX(Singm(D))

m
,

where Singm(D) is the locus of singular points of multiplicity ≥ m. Then we find
an explicit log resolution of (A,Θ) where A is the Jacobian of a hyperelliptic curve
[18]. For the case of cubic threefold, Mumford [12, p. 348] proved that Θ has
only an isolated singularity whose projectivized tangent cone is the original cubic
threefold, therefore a log resolution can be achieved by blowing up the cone point.
The reason α̃Θ ∈ (1, 2) is relevant is because by way of contradiction if we assume
dimSingm(Θ) ≥ dimA− 2m+ 1 for some m ≥ 2, then α̃Θ ≤ 2m−1

m < 2 by (2).
Finally, let us explain the notion of “center of minimal exponent”. Using the

theory of complex Hodge modules in the MHM project by Sabbah and Schnell and
the language of D-algebras developed by Beilinson and Bernstein [2], we study the
notion of “twisted complex Hodge modules” and construct ideal sheaves, called
“higher multiplier ideals”, which sheafify the minimal exponent.

Theorem 4. Let X be a complex manifold and let D be an effective divisor, then
for any k ∈ N and α ∈ Q, there exists a coherent ideal sheaf Jk(X,αD) ⊆ OX

such that

• If k = 0, we have J0(X,αD) = J (X,αD), the usual multiplier ideal sheaf.
• Fix k ≥ 0, then {Jk(αD)}α∈Q is discrete, right continuous and form a
decreasing sequence: Jk(X,αD) ⊆ Jk(X, βD) if α ≥ β.

• The minimal exponent is the first jumping number of all higher multiplier
ideals:

α̃D = min{k + α, k ∈ N, α ∈ [0, 1) | Jk(X,αD) ( OX}.
When D is a global hypersurface, these ideals recover the “microlocal multiplier

ideals” studied by M. Saito [17]. The first result is a reinterpretation of a result of
Budur and Saito [3]. Assume α̃D = k + α with α ∈ [0, 1), the “center of minimal
exponent” is defined as a subscheme of the zero locus of Jk(X,αD) using a further
weight filtration on Jk(X, (α−ǫ)D)/Jk(X,αD) from the theory of complex Hodge
modules.
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To finish the proof of Theorem 2, we further derive global results of the higher
multiplier ideals Jk(X,αD) including Nadel-type vanishing on abelian varieties
and use the geometry of the linear series |2Θ|.
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L
2-extension of Hodge objects

Junchao Shentu

(joint work with C. Zhao)

The purpose of this talk is to explain the works [18, 19, 20] on the transcendental
aspects of a intersection complex and the lowest Hodge piece of a pure Hodge
module.
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Transcendental aspect of the intersection complex. The intersection coho-
mology was defined by Goresky and MacPherson in [4] as a cohomology theory
on singular spaces that satisfies Poincaré duality. Later it turns out that the in-
tersection cohomology of a complex projecitve variety satisfies the hard Lefschetz
Theorem and admits a natural pure Hodge structure ([1, 13, 14]). On the transcen-
dental aspect, Cheeger [3] discovered a cohomology theory, called L2-cohomology,
which satisfies Poincaré duality for essentially the same class of spaces as that
Goresky and MacPherson had considered. Based on Cheeger’s calculations on
conical singularities [3], Cheeger-Goresky-MacPherson formulated the following
conjecture:

Conjecture 1. Let X ⊂ CPN be a projective variety. Then there is a natural
isomorphism

Hk
(2),max(Xreg, gFS) ≃ IHk(X), ∀k

where gFS is the metric on Xreg induced from the Fubini-Study metric on CPN .

Cheeger [3] confirmed this conjecture in the case when X has only conical
singularities. Later, Hsiang-Pati [5] and Nagase [11] proved the conjecture for
X being a normal surface. When X has only isolated singularities, Saper [15,
16] constructed a family of complete Kähler metrics, whose L2-cohomology is
isomorphic to the intersection cohomology. Based on Saper’s work, Ohsawa [12]
successfully verified Conjecture 1 for this case.

Conjecture 1 has been generalized to spaces with coefficients in a polarized
variation of Hodge structure and has been demonstrated by many authors; see for
example [21, 22, 2, 7, 9, 17]. These works suggest the following problem.

Let X be a compact Kähler space and Xo ⊂ Xreg a dense Zariski open subset.
Let V = (V ,∇, F •, Q) be a polarized variation of Hodge structure on Xo, with hQ
its Hodge metric. The L2-de Rham complex of sheaves D•

X,V;ds2,hQ
is defined by

assigning to every open subset U ⊂ X the complex of C∞ V-valued forms α on
U ∩Xo such that α and dα are locally square integrable at every point of U . Let
ICX(V) be the intermediate extension of V.

Problem 2. Find a complete Kähler metric ds2 on Xo (independent of the choice
of V) such that

(1) D•
X,V;ds2,hQ

is a complex of fine sheaves, and

(2) there is a quasi-isomorphism

D•
X,V;ds2,hQ

≃ ICX(V).

In particular, there is a natural isomorphism

Hk
(2)(X

o,V; ds2, hQ) ≃ IHk(X,V)

for every k.
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In [20], the authors give a solution to Problem 2. Let V be a semisimple complex
local system on Xo endowed with the Corlette-Jost-Zuo metric h ([6],[10]).

Theorem 3 (C. Zhao and –, [20]). There exists a complete Kähler metric ds2Dist

on Xo such that

(1) D•
X,V;ds2

Dist
,h

is a complex of fine sheaves, and

(2) there is a canonical quasi-isomorphism

D•
X,V;ds2

Dist
,h ≃ ICX(V).

In particular, when V = CX is the trivial local system endowed with the trivial
metric, one has an isomorphism

Hk
(2)(X

o, ds2Dist) ≃ IHk(X), ∀k.

The metric ds2Dist is independent of the choice of (V, h). However, it is not canoni-
cal and depends on a certain desingularization of (X,Xo). There are some unsolved
problems concerning the transcendental aspects of the intersection complex.

• Is there a canonical complete Kähler metric ds2 on Xo so that Theorem
3 holds for ds2?

• Does the quasi-isomorphism in Theorem 3 preserve the L2-Hodge filtration
on the left handside and Saito’s Hodge filtration on the right handside?

• Is there an extremal Kähler metric in the quasi-isometric class of ds2Dist in
Theorem 3?

Transcendental aspect of the lowest Hodge piece of a pure Hodge mod-
ule. Let X be a complex projective variety and Xo ⊂ Xreg a Zariski open subset.
Let V = (V ,∇, F •, Q) be a polarized variation of Hodge structure on Xo. Kollár
[8] introduced a coherent sheaf SX(V) associated with V and made a conjecture
on various properties on the higher direct images of SX(V) [8, §5], including the
torsion freeness, a Kollár type vanishing theorem, and a decomposition theorem.
Saito settled Kollár’s conjecture Hodge theoretically, depending on the observation
that SX(V) is isomorphic to the lowest Hodge piece of the intermediate extension
ICX(V) as a Hodge module.

In [18] we give a transcendental proof to Kollár’s conjecture, based on the L2-
Dolbeault resolution of SX(V). Let us consider a Hermitian vector bundle (E, h)
on Xo. Define the subsheaf SX(E, h) ⊂ j∗(KXo⊗E) consisting of the holomorphic
forms which are locally square integrable at every point of X where j : Xo → X
denotes the open immersion. An interesting example is the following.

Theorem 4 (C. Zhao and –,[18]). Let V = (V ,∇, F •, Q) be a polarized variation
of Hodge structure on Xo. Let S(V) := Fmax{p|Fp 6=0} and let hQ be the Hodge
metric associated with the polarization Q. Then there is an isomorphism

SX(S(V), hQ) ≃ SX(V).
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This example, applied to the following “meta” Kollár package, implies Kollár’s
conjecture.

Theorem 5 (C. Zhao and –,[19]). Let f : X → Y be a proper locally Kähler
morphism from a complex space X to an irreducible complex space Y . Assume
that every irreducible component of X is mapped onto Y . Let Xo ⊂ Xreg be a
dense Zariski open subset and (E, h) a Hermitian vector bundle on Xo. Let F
be a Nakano semi-positive vector bundle on X. Assume that (E, h) is Nakano
semipositive and SX(E, h) is coherent. Then the following statements hold.

• (torsion freeness): Rqf∗(SX(E, h)⊗F ) is torsion free for every q ≥ 0 and
vanishes if q > dimX − dimY .

• (injectivity theorem): If L is a semi-positive holomorphic line bundle so
that L⊗l admits a nonzero holomorphic global section s for some l > 0,
then the canonical morphism

Rqf∗(×s) : Rqf∗(SX(E, h)⊗ F ⊗ L⊗k) → Rqf∗(SX(E, h)⊗ F ⊗ L⊗k+l)

is injective for every q ≥ 0 and every k ≥ 1.
• (vanishing theorem): If Y is a projective algebraic variety and L is an
ample line bundle on Y , then

Hq(Y,Rpf∗(SX(E, h)⊗ F )⊗ L) = 0, ∀q > 0, ∀p ≥ 0.

• (decomposition theorem): Assume moreover that X is a compact Kähler
space. Then Rf∗(SX(E, h)⊗ F ) splits in D(Y ), i.e.,

Rf∗(SX(E, h)⊗ F ) ≃
⊕

q

Rqf∗(SX(E, h)⊗ F )[−q] ∈ D(Y ).

As a consequence, the Leray spectral sequence

Epq
2 : Hp(Y,Rqf∗(SX(E, h)⊗ F )) ⇒ Hp+q(X,SX(E, h)⊗ F )

degenerates at the E2 page.
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The Kobayashi Conjecture for Compact Hyperkähler Manifolds

Christian Lehn

(joint work with Ljudmila Kamenova)

This is a report about a joint work with Ljudmila Kamenova [2], where we prove
Kobayashi’s conjecture for compact hyperkähler varieties under certain natural
assumptions. In particular, the result applies to any currently known compact
hyperkähler manifold.

1. Kobayashi’s conjecture

We start with a reminder on Kobayashi hyperbolicity. Let X be a complex variety.
The Kobayashi pseudometric dX is defined as the largest pseudometric on X such
that f∗dX ≤ dP for all holomorphic maps f : ∆ → X where dP is the Poincaré
metric on the unit disk ∆. We call X Kobayashi hyperbolic if dX is a metric. We
will be concerned with the opposite case: Kobayashi’s conjecture [4, Problem F.2,
p. 405] predicts that for varieties with trivial canonical bundle, this pseudometric
vanishes identically.
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2. Assumptions and Main Result

Our assumptions concern the second Betti number of the hyperkähler variety and
the existence of Lagrangian fibrations. More precisely, we prove:

Theorem 1. Let X be a compact hyperkähler manifold with b2(X) ≥ 7. Suppose
that every compact hyperkähler manifold deformation equivalent to X satisfies the
rational SYZ conjecture. Then the Kobayashi pseudometric dX vanishes identi-
cally.

Let us recall the rational SYZ conjecture: it states that given a compact hy-
perkähler manifold X with a nontrivial line bundle L such that qX(L) = 0 where
qX denotes the Beauville–Bogomolov–Fujiki form, some multiple of L gives a ra-
tional Lagrangian fibration f : X 99K B.

In [2], we actually prove a somewhat stronger result than Theorem 1. Our result
also holds for singular varieties, more precisely, for primitive symplectic varieties in
the sense of [1]. As in the known examples of compact hyperkähler manifolds, we
always have second Betti number at least 7 and also the SYZ conjecture is known
to hold in those cases, our result in particular applies to all currently known
examples of compact hyperkähler manifolds. Thereby, it completes the results by
Kamenova–Lu–Verbitsky [3].

3. Previous Results and Outline of the Argument

Verbitsky had shown that any irreducible symplectic manifold with second Betti
number at least 5 is non-hyperbolic (building on Campana’s result that any twistor
family of irreducible symplectic manifolds contains at least one non-hyperbolic
member).

The vanishing of the Kobayashi pseudometric has previously been shown by
Kamenova–Lu–Verbitsky [3] assuming SYZ and that the second Betti number be
at least 13. Their idea was to deform to a variety with two transverse Lagrangian
fibrations. Such a variety is in particular chain connected by abelian varieties and
their degenerations and the restriction of dX to those vanishes. Then, they use the
ergodicity of the monodromy action on the marked moduli space and they prove
the upper semi-continuity of the Kobayashi diameter to transport the result to
any other manifold of the same deformation type.

Our key discovery is that for the pseudometric to vanish it is already enough
to have one Lagrangian fibration instead of two. Our proof uses an inductive
argument (passing through singular symplectic varieties, even if one starts with
a smooth one) involving birational geometry and then a theorem of Campana on
almost holomorphic maps associated to covering families of analytic cycles.

4. Open Questions

Unlike for smooth hyperkähler varieties, there are examples known with second
Betti number smaller than 7, in fact, even with b2 = 3. While the SYZ conjecture
is considered a major open problem, removing the hypotheses on the second Betti
number might be an interesting problem to think about. One possibility would be
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to pass to a terminalization and then to a finite quasi-étale cover (as holomorphic
maps are distance decreasing for the Kobayashi metrics). While this helps in
examples, getting rid of the b2-assumption in general would certainly require a
new idea.
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