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Introduction by the Organizers

The mini-workshop New Horizons in Motions in Random Media, organised by
Sebastian Andres (University of Manchester), Marek Biskup (UCLA), Alessan-
dra Faggionato (La Sapienza Rome) and Martin Slowik (Universität Mannheim)
was well attended with 20 participants (16 on-side and 4 digital) from China,
Germany, France, Hungary, Israel, Italy, Japan, United Kingdom, and USA. The
program consisted of 4 introductory lectures and 12 talks, leaving sufficient time
for discussions.
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The general topic of the workshop was to study random motions in random me-
dia which is a subject at the intersection of probability, analysis and mathematical
physics. More specifically the main topics of our prime interest were:

• general random walks in random environment (RWRE),
• random walks in balanced and divergence-free environments,
• stochastic homogenization of reversible random walks,
• reinforced jump processes,
• random walk representations of spin systems and other models in statisti-
cal mechanics.

Those areas witnessed remarkable advances over the last years, while there is a
significant overlap between these areas and progress there has happened largely in
parallel. A number of participants are experts mainly in one of these areas and
yet their work transcends to the other areas as well. The workshop provided the
unique opportunity to bring some of these experts together and allow them to
share their knowledge and technical expertise. In order to achieve those goals, the
meeting was run in a format that focused primarily on discussions, problem-solving
sessions and networking. Each day was started by one or two long lectures whose
purpose was to give overviews of specific areas and thus set the framework for other
activities for the rest of the day. Due to the very high level of interaction during
those lectures, some of them were continued in the afternoon. The afternoon
activities included a number of more specialised talks, and one after-dinner open
problem session. The selection of topics and mix of participants stimulated many
extensive and fruitful discussions. It also helped initiating new collaborations, and
strengthen existing ties between researchers in different fields of mathematics.

The overview lecture to general random walks in random environments byOfer

Zeitouni (Weizmann Institute, Israel) reviewed the classical theory of RWRE,
initiated in the early 1970s, with a particular focus on ballisticity conditions, large
deviations and perturbative approaches. In the second overview lecture Noam

Berger (TU Munich, Germany) summarized the state of the art for random
walk in balanced random environment. One subclass of RWREs which is quite
well understood is that for which the transition probabilities are reversible. In
this case the model is usually prescribed in terms of so called conductances which
are non-negative numbers attached to the edges of the underlying graph. Major
research activity has been devoted to invariance principles for random conductance
models, and the most recent state of the art result was presented by Peter Bella

(TU Dortmund). Alessandra Faggionato (La Sapienza Rome, Italy) presented
recent results and some open problems for reversible random walks on point sets
in the Euclidean space derived, for instance, from a Poisson point process by
taking its points directly or by considering Voronoi tesselations. Moreover, Paul
Dario (U Paris Est, France) explained the classical links between RWRE and
the Ginzburg-Landau ∇φ interface model in statistical mechanics via the so-called
Helffer-Sjöstrand representation.

Random walks in divergence-free environments, a subclass of non-reversible
RWREs, are characterized by the fact that the underlying shift-invariant law of
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the environment remains invariant for the “point of view of the particle”. An
overview lecture on this topic was delivered by Bálint Tóth (Budapest/Bristol).
One example falling into this class are RWRE with a so-called cycle representation,
and Weile Weng (TU Berlin, Germany) presented an invariance principle for
such RWREs obtained as part of her PhD thesis.

Percolation models were discussed in the overview lectures given by Pierre-

Francois Rodriguez (Imperial College London, UK) with a particular focus on
the current state of the art for questions concerning phase transitions in random
interlacements. David Croydon (RIMS Kyoto, Japan), explained in his talk
the Alexander-Orbach conjecture on the heat kernel behaviour of random walks
on critical percolation clusters and discussed closely related questions for random
walks on self-similar fractals and on certain classes of random trees. In the talk
by Artem Sapozhnikov (U Leipzig, Germany) some first results on continuum
percolation were discussed which may serve as a basis for future studies of diffusions
in degenerate continuum environments.

An introduction to the vertex reinforced jump process (VRJP) and its re-
lation to hyperbolic spin model in statistical mechanics was presented in the
overview lecture delivered by Pierre Tarres (NYU Shanghai, China). The talk
of Margherita Disertori (U Bonn, Germany) focussed on the random walk
representation in terms of the VRJP in the H2,2-model, which is a supersymmetric
hyperbolic spin model in statistical mechanics, motivated by the Anderson tran-
sition. Further, Silke Rolles (TU Munich, Germany) presented recent results
on the VRJP with long-range interactions. In an online presentation, Lorenzo
Taggi (La Sapienza Rome, Italy) discussed a general random walk loop soup in re-
lation to several important statistical mechanics models, such as the O(N) model,
the dimer model or the Bose Gas.





Mini-Workshop: New Horizons in Motions in Random Media 569

Mini-Workshop: New Horizons in Motions in Random Media

Table of Contents

Ofer Zeitouni
Random walk in random environment, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Noam Berger
Random walk in random environment, II . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Paul Dario
Localization and delocalization for a class of degenerate convex
∇φ-interface model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Peter Bella (joint with Mathias Schäffner)
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Abstracts

Random walk in random environment, I

Ofer Zeitouni

We review some of the history and open problems concerning nearest neighbor
random walks in random environment on Zd; one is given a collection of (typically
iid) random vectors {ω(x, e)}x,e∈Zd,|e|=1 (the environment) and a Markov chain

Xn with (random) transition kernel Pω

[

Xn+1 = x + e |Xn = e
]

= ω(x, e) (the
random walk). We always assume uniform ellipticity, i.e. the existence of a κ > 0
so that ω(0, e) ≥ κ a.s. for all |e| = 1.

Historically, there were several periods of intense activities: the seventies, where
much of the results concerning the one dimensional model were laid out, the late
nineties and early 00’s, where some of the questions concerning d > 1 were settled,
and the mid ’00’s till now, where multi-scale ideas came to the fore. Of course,
this is only a very rough divisions, and some results (for example, Kalikow’s work
[12]) are not located within this rough division.

In case d = 1, this is a conductance model, with conductances
∏x

i=1 ρ
−1
i , where

ρx = (1−ω(x, 1))/ω(x, 1). The conductances are neither ergodic nor bounded, and
this leads to unusual features. In a nutshell, the walk is recurrent iff E

[

log ρ0
]

=

0, and is directionally transient otherwise. In case E
[

log ρ0
]

< 0, the walks is
transient to the right and a critical role is played by the parameter s satisfying
E
[

ρs
]

= 1: for s > 1, the walk is ballistic, for s ≤ 1 it is sub-ballistic with stable
limit laws, for s ∈ (1, 2) there are again stable limit laws (annealed) with a jump-
like quenched behavior, and for s > 2 one has a CLT, both quenched and annealed.
Unusual large deviations, due to trapping, are also present. We refer to [16] for a
bibliographic account up to 2002, and to [8, 10, 13] for further developments.

In the case of d ≥ 2, an important role is played by regeneration times, which
for simplicity we introduce with respect to the preferred direction e1: those are an
increasing sequence of times τi so that

τi+1 = min
{

n ≥ τi : max{Xt · e1, t < n} < min{Xt · ei, t ≥ n}, i ≥ 0
}

.

Denoting by P the annealed law P×Pω, it was observed by Sznitman and Zerner
that

{ω(x, ·)}x:x·e1∈[Xτi
·e1,Xτi+1

·ei), {Xn}n∈[τi,τi+1)

forms (under P, for i ≥ 1) an iid sequence, which moreover has the same law as for
i = 1 (with τ0 = 0) under P conditioned on no-backtracking, i.e. on not visiting
the hyperplane x · e1 < 0. From this, Sznitman-Zerner [15] and Zerner [15] were
able to deduce the following theorem. Let

A+ =
{

Xn · e1 → ∞
}

, A− =
{

Xn · e1 → −∞
}

.

Theorem 1.

Xn · e1
n

−→
n→∞

v+1A+
+ v−1A− , P-a.s.
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Together with the fact that P
[

A−∪A+

]

∈ {0, 1} (proved in [12]), this puts into
focus the following open problem:

Problem 1. Is P
[

A+

]

∈ {0, 1}?

As we saw, Problem 1 has a positive answer in d = 1, and the case d = 2 was
settled in [18] using martingale techniques and intersection properties of paths in
two dimensions. The case of d ≥ 3 (which would settle the law of large numbers
for Xn) is widely open. We note that the answer to Problem 1 is negative in
certain mixing uniformly elliptic environments [6, 11]. We also note that using
regeneration times coupled with Green function estimates, one has for d ≥ 5 that
v+ · v− = 0, see [3].

Regeneration times are an important tool in proving central limit theorems,
both quenched and annealed, and in a multi-scale analysis of RWRE, including
effective criteria for ballisticity introduced by Sznitman. They are also important
in stating several intriguing open questions, described in details in Berger’s lecture
in these proceedings. We refer to that talk and to the review [9] for further details.

A variant of regeneration times are cut times, which do not require a ballistic
behavior but instead work well in high dimension (at least 8) and in environments
possessing certain symmetry conditions. In particular, they provide examples of
RWREs satisfying that the (annealed) drift at 0 has zero mean but the walk is
ballistic, or with annealed expected drift pointing in one direction with the walk
transient in another; see [4].

An important direction of research concerns the perturbative regime, i.e. envi-
ronments in which |ω(x, e)− 1/2d| ≤ δ, P-a.s., for some small δ. Starting with [7],
one could ask for central limit theorems in situations where the law of the envi-
ronment is symmetric under rotations or flips that preserve Zd. The basic result
of [7] is that, for d ≥ 3, an invariance principle indeed holds true for δ > 0 small
enough. A different path to an invariance principle, with more explicit induction
step was provided (in the context of diffusions in random environments) in [14].

Another approach to the perturbative regime was suggested in [5] and extended
in [1, 2]; motivated by the fact that controling exit times from balls adds an
extra layer of difficulties to proving an invariance principle, the authors consider
ΠL,ω(x, y) as the exit measure from a ball of radius L in Zd. One can compare
ΠL,ω to the exit measure πL of simple random walk from the same ball, and prove
that for any smooth test function Ψ, and for d ≥ 3,

∑

y

(

ΠL,ω(0, y)− πL(0, y)
)

Ψ(y/L) −→
L→∞

0, in probability,(1)

under a weaker symmetry condition than that of Bricmont-Kupiainen. Work in
progress of Bolthausen and the author will prove (1) in the case d = 2. This leads
to the:

Problem 2. Does the full invariance principle hold under the Bricmont-Kupiainen
conditions, for d = 2?
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We have omitted from this summary a discussion of large deviations for RWRE
and their link with the homogenization of Hamilton-Jacobi-Bellman equations, as
well as representation formulae for the quenched and annealed rate functions.
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Random walk in random environment, II

Noam Berger

In continuation with Ofer Zeitouni’s talk, here we present two topics: ballisticity
criteria for multi-dimensional RWRE and balanced RWRE.

1. Ballisticity condition

As mentioned in Zeitouni’s talk, in the one dimensional setting there are simple
and verifyable conditions for directional transience (namely that for a given ℓ we
have limXn · ℓ = ∞) and for ballisticity (i.e. that this happens with a positive
speed). We write

Lω(0) =
∑

x

xω(0, x)

for the local drift. An environment is called non-nestling if

0 /∈ conv
(

supp
(

Lω(0)
))

,

It is called nestling if

0 ∈ conv
(

supp
(

Lω(0)
))o

and marginally nestling if

0 ∈ ∂ conv
(

supp
(

Lω(0)
))

.

It is clear that non-nestling environments are directionally transient and ballistic.
Towards the late 70-s one started to ask whether this is a necessary condition.
Kalikow [10] found the first counter example to the necessity of the condition:
He found nestling examples that are directionally transient. He defined a (then)
new condition, now known as Kalikow’s condition, which guarantees directional
transience, and proved that certain nestling environments satisfy his condition.

Then the topic was quiet for more than 15 years.
The next step happened in the early 2000. In [15] and then in [16] Sznitman

defined new ballisticity conditions, named condition (T ) and condition (T ′). Con-
dition (T ) in a direction ℓ ∈ Rd \{0} was defined as one of the following equivalent
conditions:

(1) There exists α > 0 such that

E
[

exp
(

α(τ2 − τ1)
)]

< ∞.

(2) for every ℓ′ in some open neighbourhood of ℓ,

lim sup
L→∞

1

L
logP

[

inf
{

n : Xn · ℓ < −L
}

< inf
{

n : Xn · ℓ > L
}

]

< 0.

(3) Let BL be a cube of side length L one of whose axes is parallel to ℓ, and
let ∂+BL be the face in direction ℓ. Then

lim sup
L→∞

1

L
log P

[

T∂BL
6= T∂+BL

]

< 0.
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In [15] Sznitman proved that condition (T ) implies directional transience, bal-
listicity and an (annealed) CLT. Further, in the same paper it was shown that
condition (T ) implies Kalikow’s condition, but that they are not equivalent.

A year later, in [16] Sznitman introduced a new condition, formally weaker than
Conditon (T ), and named it condition (T ′). The definition of condition (T ′) is
the same as that of condition (T ), except that the decay of the various proba-
bilities, instead of exponential, needs to be stretched exponential in every order.
similarly to condition (T ), condition (T ′) too implies directional transience, bal-
listicity and an annealed CLT. In the same paper Sznitman proved that condition
(T ′) is equivalent to an effective condition, namely a condition that, at least the-
oretically, can be verified by observing a finite box rather than the entire space.
The effective condition gave rise to a variety of new ballistic examples where the
effective criterion could be verified.

The next progress in this direction came in 2014, where Berger, Drewitz and
Ramı́rez [6] showed that condition (T ′) is equivalent to a power law decay of the
return probability, with power 15d+ 5, and showed that this is also equivalent to
a (polynomial) effective condition.

Later the power 15d + 5 was improved to d − 1 by Guerra [7] in 2020, and
then in a wonderful paper in the same year, Guerra and Ramı́rez [8] proved that
conditions (T ) and (T ′) are equivalent. Thus whenever the return probability
decays faster than L1−d, it already decays exponentially with L, and the walk
satisfies everything that follows from condition (T ), e.g. the results of [17, 4, 14].

2. Balanced RWRE

We now turn to random walks in balanced environments. An environment ω is
called balanced if for every x,

∑

y∼x

ω(x, y − x) · (y − x) = 0.

Equivalently we may define an environment to be balanced if the random walk on
it is a martingale. An important special case is those of environments ω such that

∀x,z ω(x, z) = ω(x,−z).
In the nearest neighbour setting the two are equivalent.

In attempt to prove an invariance principle, we hope to use the martingale
CLT. Contrary to the case of random walks among random conductances, here
the martingale property is trivial whereas the stationarity of the process is often
difficult. Counter example shows that there are cases that are ergodic, mixing and
elliptic, but satisfy no invariance principle and no stationarity from the point of
view of the particle.

The first breakthrough was done in 1982 by Papanicolaou and Varadhan [13],
where the problem was solved for the corresponding diffusion problem. There
the object of study was diffusion in random environment in non-divergence form,
which implies that the diffusion is a martingale. Later Lawler [11, 12] transferred
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the methods to the discrete case and proved an invariance principle, and later a
Harnack principle, in the uniform elliptic case under no mixing assumptions.

Later, in 2012, Zeitouni and Guo [9] proved an invariance principle under one
of two conditions: the one is an inverse moment assumption on the transition
probabilities, and the other is iid combined with ellipticity. This required two
different proof, one under each condition.

Then in 2014 Berger and Deuschel [5] removed the requirement of ellipticity in
the iid regime, and in 2022, also together with Cohen and Guo [3], also established
a Harnack principle in this regime.

At the same time, and completely independently, Armstrong and Smart [2] and
then Armstrong and Lin [1] proved, using a completely different set of methods,
quantitative homogenization in this regime.

There are a few remaining open problems in this regime, but in my opinion,
the most interesting open problems are in connecting this regime to other regimes,
particularly the perturbative regime. For example, can we prove an invariance
principle for a slightly perturbed balanced environment? can we prove it for a
balanced environment which underwent a percolation perturbation?

Answering those questions may involve the development of new methods and is
therefore very interesting.
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Localization and delocalization for a class of degenerate convex

∇φ-interface model

Paul Dario

1. Overview

In this talk, we discuss the properties of a model of stochastic interfaces known
as the ∇φ-model or the Ginzburg-Landau interface model. The model is formally

defined as follows. We consider the discrete d-dimensional torus TL := (Z/LZ)
d

of side length L > 0 with nearest-neighbor edges and introduce the probability
measure on the set Ω◦

L :=
{

φ : TL → R :
∑

x∈TL
φ(x) = 0

}

defined by the formula

µTL
(dφ) =

1

ZTL

exp

(

−
∑

x∼y

V (φ(x) − φ(y))

)

dφ

where V : R → R is a symmetric function growing sufficiently fast at infinity, and
dφ is the Lebesgue measure on the space Ω◦

L. The study of the ∇φ-model was
initiated by Brascamp, Lieb and Lebowitz [2] who investigated the question of
the localization and delocalization of the interface, i.e., the growth of the variance
varTL

[φ(0)] as L → ∞. Specifically, they proved that under one of the following
conditions on the potential V :

(1) V (x) = ax2 + f(x) with a > 0 and f : R → R is convex.
(2) There exist constants c±, A,B,C ∈ (0,∞) such that 0 < c− ≤ V ′′(x) ≤

c+ <∞ for |x| ≥ A and
∣

∣V (x)− Bx2
∣

∣ ≤ C,

the following upper bounds hold

varµTL
[φ(0)] ≤

{

C lnL in d = 2,

C in d ≥ 3.
(1)

These bounds are expected to be sharp, and matching lower bounds can be estab-
lished under some specific assumptions (see [2, 11]).

Since then, the model has been an intense subject of research, and we refer to
the pioneering works of [5, 9, 3, 6] and to [4, 11] for an overview of the literature.
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In this talk, we are interested in a generalization of the result of [2] to functions
V ∈ C2(R) satisfying

0 < c− ≤ lim inf
|x|→∞

V ′′(x) and V ′′(x) ≤ 1.(2)

The key tool for the study of the ∇φ-model is the so-called Helffer-Sjöstrand
representation formula originally introduced in Helffer-Sjöstrand [7] and used on
the model by Naddaf-Spencer [9], Deuschel-Giacomin-Ioffe [3] and Giacomin-Olla-
Spohn [6]. The identity, stated below in its probabilistic version and applied to
the specific observable φ(0), reads as follows

varµΛTL

[φ(0)] =

∫ ∞

0

E [Pa (t, 0)] dt,(3)

where the function Pa : (0,∞) × Zd → R is defined to be the solution of the
discrete parabolic equation







∂tPa −∇ · a∇Pa = 0 in (0,∞]× Z
d,

Pa(0, ·) = δ0 −
1

|TL|
in Z

d,

where the environment a is random, depends on the space and time variables
and is formally defined by a(t, (x, y)) := V ′′(φt(y) − φt(x)), where (φt)t≥0 is the
solution of the Langevin dynamics







dφt(x) :=
∑

y∼x

V ′(φt(y)− φt(x)) dt+
√
2 dBt(x) for (t, x) ∈ (0,∞)× TL,

φ0(x) = φ(x) for x ∈ TL,

(4)

where
{

Bt(x) : t ≥ 0, x ∈ Zd
}

is a collection of independent Brownian motions
and the initial condition φ is distributed according to µTL

independently of the
Brownian motions. The symbol E in (3) then refers to the expectation with respect
to the dynamics (φt)t≥0.

In the case where V ′′ ≥ c− > 0 (which implies a ≥ c− > 0), the Nash inequal-
ity [10] and the Poincaré inequality imply that

Pa ≤ C

(1 + t)
d
2

exp

(

− t

CL2

)

,(5)

which combined with (3) implies the bound (1). In order to extend the result to
the functions of the class described in (2), we rely on the works of Mourrat and
Otto [8] and Biskup and Rodriguez [1] which (essentially) assert that the bound (5)
can be extended to random stationnary coefficient fields a which may vanish but
satisfy an assumption of the form

P
[

∀t ∈ [0, T ], a(t, (x, y)) > 0
]

−→
T→∞

0,(6)
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with a sufficiently fast rate of convergence. Using the assumption (2), this result
can be established if we can prove that, for any constant C > 0,

P
[

∀t ∈ [0, T ], |φ(t, x) − φ(t, y)| ≥ C
]

−→
T→∞

0.(7)

In order to prove the bound (4), we decompose the Brownian motions Bt(x) into
independent increments and Brownian bridges by writing, for t ∈ [0, 1],

X(x) := B1(x), Wt(x) = Bt(x)− tB1(x) =⇒ dBt(x) = X(x)dt+ dWt(x).(8)

We may then see the dynamics (φt)t≥0 as a function of the increments and the
Brownian bridges, and we may in particular compute the derivative of the dynam-
ics with respect to the increment X(x). To this end, we use the formula (8), and
differentiate both sides of the definition (4) with respect to the increment X(x).
This operation gives an equation satisfied by the mapping ∂φ/∂X(x) which can
be solved using Duhamel’s principle and yields, for any t ≥ 1,

∂φ(t, y)

∂X(x)
=

√
2

∫ 1

0

Pa(t, y; s, x) ds,

where Pa(·, ·; s, 0) is the heat kernel started from the vertex x at time s (i.e., the
solution (4) started at time s ∈ [0, 1] instead of 0 and at the vertex x ∈ TL instead
of 0). Using this identity and the properties of the heat kernel, one may then prove
that

∂∇φ(1, (x, y))
∂X(x)

≥ c1 > 0,(9)

for some constant c1 (depending only on the dimension). Using that the law of
X(x) is Gaussian of variance 1, we may use the property (9) to prove that

P
[

|∇φ(1, (x, y))| ≤ C
]

≤ (1− ε),

where ε > 0 depends only on the constant C and the dimension d. This inequality
can then be iterates so as to show that, for any N ∈ N,

P
[

∀t ∈ [0, N ], |∇φ(t, (x, y))| ≤ C
]

≤ (1 − ε)N −→
N→∞

0,

verifying (7) and thus (6).
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Quenched invariance principle for random conductance model with

degenerate ergodic conductances

Peter Bella

(joint work with Mathias Schäffner)

Consider graph Zd, d ≥ 2, and to each nearest-neighbor edge xy with x, y ∈
Zd, |x−y| = 1 (later denoted x ∼ y), associate a random conductance ωxy ∈ (0,∞).
We consider a random walk (Xt)t≥0, which moves from a point x ∈ Zd after an
exponential clock with mean (

∑

x∼y ωxy)
−1 rings, to the vertex y chosen among

the 2d neighbors at random with probability ωxy/
∑

x∼y ωxy. Equivalently, this
reversible Markov process is described by its infinitesimal generator

Lf(x) =
∑

y∈Zd,x∼y

ωxy(f(y)− f(x)).

Starting from the origin, we want to know under which conditions on the con-
ductances the long-time large-scale behavior of the random walk can be described
by a (rescaled) Brownian Motion. More precisely, denoting X(n)(t) := 1

nXn2t for

n ≥ 1 the diffusive rescaling of the walk, we want to show that the law of X(n)(t)
converges on any finite time interval to the one of the Σ ·W - the Brownian Motion
with Covariance ΣTΣ.

Assuming the law of ωxy is stationary and ergodic with respect to shifts (τz)z∈Zd ,
one is asking what moments on the conductances and their reciprocals are needed
for the above invariance principle to hold for almost every realization ω (i.e. in
the quenched sense). Assuming E

[

ωp
xy

]

+E
[

ω−q
xy

]

<∞ for every edge xy and some
p, q > 0, Barlow, Burdzy, and Tumar showed that p < 1 and q < 1 [2] are not
sufficient to yield the quenched invariance principle - while the annealed one (i.e.
considering the convergence of X(n) in law instead of almost surely) holds.

On the positive side, using arguments restricted to the plane Biskup [5] (build-
ing on the work of Berger and Biskup [4]) showed that the quenched invariance
principle (QIP) holds under the condition p = q = 1 in the case Z2. Later An-
dres, Deuschel, and Slowik [1] showed that QIP holds provided 1

p + 1
q <

2
d for any

d ≥ 2. Using harmonic coordinates, they decomposed the position of the random
walk into a martingale part, and the remainder. While showing the CLT for the
martingale part is classical, the challenge is to deal with the remainder. More



Mini-Workshop: New Horizons in Motions in Random Media 581

precisely, the remainder is of the form 1
nϕ(Xtn2), where ϕ denotes the corrector.

After showing that Xtn2 is rarely larger than n, it is enough to show that

lim
n→∞

1

n
sup
|x|≤n

|ϕ(x)| = 0,

which will follow from the ergodicity in the form

lim
n→∞

1

n

1

(2n+ 1)d

∑

x∈[−n,n]d

|ϕ(x)| = 0.

While up to this point all the arguments work under the assumption p = q = 1
(in any dimension), it is this very last step in form of l∞ − l1 estimate for the
corrector which required the stronger assumption 1

p + 1
q <

2
d .

Building on a previous work with Mathias Schäffner [3] on the local bounded-
ness of solution to degenerate elliptic equations, we improved the above condition
to 1

p + 1
q < 2

d−1 . Similarly to [1], it is based on the Moser iteration, with two

additional ingredients: in the Cacciopolli inequality we choose the optimal cut-
off function among the radial symmetric functions, which then allows to use the
Sobolev inequality on spheres instead of in the bulk - hence decreasing the ex-
ponent d to d − 1. Surprisingly, Biskup and coauthors [6] showed that for this
strategy to work the condition is sharp (modulo the equality case) by showing
that in the case 1

p + 1
q >

2
d−1 one can construct ergodic environment so that the

corrector does not converge to 0 as described above.
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Random Walks in Divergence-Free Random Environments

Bálint Tóth

Let (Ω,F , π, (τz : z ∈ Zd)) be a probability space with an ergodic Zd-action.
Denote by U := {k ∈ Z

d : |k| = 1} the set of elements of Zd neighbouring the
origin which will be the set of possible elementary steps of a nearest neighbour
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random walk on Zd. Let pk : Ω → [0,∞), k ∈ U , satisfy (π-a.s.) the following
bi-stochasticity condition

∑

k∈U

pk(ω) =
∑

k∈U

p−k(τkω),(1)

and define the continuous-time random walk in random environment (RWRE),
t 7→ X(t) ∈ Zd as the Markovian nearest neighbour random walk with jump rates

Pω

[

X(t+ dt) = x+ k |X(t) = x
]

= pk(ω, x)dt,

and initial position X(0) = 0.
The environment process (as seen from the position of the random walker) is,

t 7→ ηt ∈ Ω defined as

ηt := τXt
ω.

This is a pure jump Markov process on the state space Ω. It is well known
(and easy to check, see e.g., [8]) that bi-stochasticity (1) of the jump rates pk is
equivalent to stationarity (in time) of the a priori distribution π of the environment
process t 7→ ηt ∈ Ω. Moreover, under the condition (1), spatial ergodicity of
(Ω,F , π, (τz : z ∈ Zd)) also implies time-ergodicity of the environment process
process t 7→ ηt ∈ (Ω,F , π). Hence it follows that the random walk t 7→ X(t)
will have stationary and ergodic annealed increments. (Though, in the annealed
setting the walk is not Markovian.)

It is convenient to separate the symmetric and antisymmetric parts of the jump
rates, that is, pk(ω) = sk(ω) + vk(ω), where

sk(ω) :=
pk(ω) + p−k(τkω)

2
and vk(ω) :=

pk(ω)− p−k(τkω)

2
.

Note that

sk(τxω) = s−k(τx+kω) ≥ 0 vk(τxω) = −v−k(τx+kω),

define a collection nonnegative random conductances on the unoriented edges
{x, x + k}, respectively, a random flow on the oriented edges (x, x + k) of Zd.
Also, obviously, the former dominate the latter:

|vk(ω)| ≤ sk(ω).

In terms of these variables the bi-stochasticity (1) reads as sourcelessness of the
flow

∑

k∈U

vk(ω) = 0

We assume strong ellipticity and boundedness of the conductances:

0 < s∗ ≤ sk(ω) ≤ s∗ < ∞, π − a.s.(2)

and zero mean of the flows
∫

Ω

vk(ω) dπ(ω) = 0.(3)
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From ergodicity under π of the environment process t 7→ ηt, and from (2) and (3)
the strong law of large numbers for the displacement of the random walker readily
follows:

lim
t→∞

t−1X(t) = 0, a.s..

The notorious H−1-condition for the antisymmetric flows vk(ω) imply diffusive
bounds for the displacement of the random walk. Namely, let for k, l,∈ U ,

Ck,l(x) :=

∫

Ω

vk(ω)vl(τxω) dπ(ω), Ĉk,l(p) :=
∑

x∈Zd

eix·pCk,l(x),

That is: Ck,l(x) is the covariance matrix of the drift field, and Ĉk,l(p) is its Fourier-
transform. The H−1-condition reads

∫

[−π,π)d

∑

l∈U Ĉl,l(p)
∑d

j=1(1− cos pj)
dp < ∞.(4)

This is obviously an infrared bound on the correlation decay of the field x 7→
vk(τxω). In particular, it also implies (3) which we don’t have to assume thus
separately. It is equivalent to the existence of a stream tensor hk,l ∈ L2(Ω, π),
k, l ∈ U ,
hk,l(ω) = −h−k,l(τkω) = −hk,−l(τlω) = −hl,k(ω) vk(ω) =

∑

l∈U

hk,l(ω).

The conditions (2) and (4) jointly imply the annealed diffusive bounds

0 < lim inf
t→∞

t−1E
[

|X(t)|2
]

≤ lim sup
t→∞

t−1E
[

|X(t)|2
]

< ∞

Theorem 1. Conditions (1), (2), (4) are assumed.

(i) (Source: [9]) The asymptotic annealed covariance matrix

(σ2)ij := lim
t→∞

T−1E
[

Xi(T )Xj(T )
]

exists, and it is finite and non-degenerate. For any bounded and continuous
function f : Rd → R,

lim
T→∞

∫

Ω

∣

∣

∣
Eω

[

f(T−1/2X(T ))
]

−E
[

N (0, σ2)
]

∣

∣

∣
dπ(ω) = 0.

(ii) (Source: [6], [15]) Assume the slightly stronger integrability condition hk,l ∈
L2+ε(Ω, π). For any bounded continuous function f : Rd → R,

lim
T→∞

Eω

[

f(T−1/2X(T ))|
]

= E
[

N (0, σ2)
]

, π-a.s.

Physical and mathematical motivations of the problem setting have been shown.
The results were put into the context of [13], [12], [8], [11], [5], [4], [7], [1], [2]

(in historical order).
If the H−1-condition (4) fails to hold then typically superdiffusive behaviour of

the RWRE is expected and in some cases proved. This was also illustrated with
examples from [17], [10], and [3]
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Linear response of random motion in random environment under

time-periodic perturbations

Alessandra Faggionato

During the workshop I have outlined some open questions and research subjects
on which I am currently working. In one contribution I have explained the connec-
tion between the hydrodynamic limit of particles with site-exclusion interaction,
jumping on random graphs in Rd with random conductances, and a particular
weak form of CLT for the random walk performed by a single particle (which is an
example of random conductance model). In the above setting, the graphs are built
on a simple point process and are microscopically disordered but macroscopically
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homogeneous from a statistical viewpoint. We refer to [1, 2, 3] for details. In
another contribution I have indicated some open problems concerning the linear
response of random processes in random environment when the weak external field
is time-periodic. In this report, I detail this second contribution.

In the last years there has been an intensive investigation of the linear re-
sponse for random motion in random environment, aiming in particular to derive
Einstein’s relation rigorously. This fundamental relation states that, modulo a
temperature-dependent factor, the mobility matrix of the perturbed particle equals
the diffusion matrix of the unperturbed particle (see e.g. [5, 6, 7, 8, 10] and refer-
ences therein). The perturbation comes from a spatial- and time-homogeneneous
weak external field. Regeneration times are in this setting an effective tool since
the perturbed particle moves under an asymptotic drift, thus leading to a progres-
sive regeneration of the environment viewed from the particle.

What has not been properly studied yet is the linear response of random motion
in random environment under the effect of a weak spatially-homogeneous but time-
periodic external field. A case particularly relevant in Physics (cf. [9]) is a field
of cosine-type. For example, if rx,y(ξ) represents the probability rate for a jump
from x to y for the unperturbed random walk on Zd in the random environment
ξ, the perturbed jump probability rate at time t would be

r(λ)x,y(ξ, t) := exp
(

λ cos(ωt)(y − x) · v
)

rx,y(ξ) .

In the above formula 0 < λ ≪ 1 is the tuning parameter, v is a fixed non-zero
vector of Rd, (y − x) · v is the scalar product between y− x and v and ω = 2π/T ,
T being the time-period of the external field.

We outline the program to which we are particularly interested. Let us sup-
pose to start e.g. from the random conductance model as unperturbed process.
We suppose that rx,y(ξ) equals r0,y−x(τxξ), where τxξ denotes the environment
translated by −x. A first target would be to prove the equilibration of the process
“environment viewed from the perturbed particle” towards an oscillatory steady
state (OSS), i.e. a law on the path space of the above process left invariant by
TZ-time translations. Let us call Pπ this OSS, π being its initial distribution on
the environment space. Let us call Vλ(t) the expected instantaneous velocity of

the particle in the OSS at time t, i.e. Vλ(t) :=
∫

Pπ(dξ)
∑

y r
(λ)
0,y (ξ, t)y. Accord-

ing to Statistical Physics [9], we expect that there exists a frequency–dependent
deterministic d× d–matrix σ(ω) such that

∂λ=0Vλ(t) = ℜ
(

eiωtσ(ω)v
)

.

The above matrix σ(ω) would be the so called complex mobility matrix. We expect
that σ(ω) converges to the diffusion matrix of the unperturbed random walk as
ω → 0 and we also expect an implicit representation for σ(ω) in terms of Pπ similar
to the one in [4][Theorem 5.1]. This characterization would correspond to a gen-
eralization of the Einstein’s relation, as it would express a linear response matrix
of the OSS in terms of suitable expectations w.r.t. the unperturbed equilibrium
state.
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When considering the simplified setting giving by a random walk on Zd in a
periodized environment, the above program has been implemented and the corre-
sponding results are detailed in [4, Section 5]. As a natural continuation of this
work, we are now focusing on random walks in random environments.
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Quenched functional CLT for random walks in bounded cyclic and

divergence-free random environments

Weile Weng

(joint work with Jean-Dominique Deuschel, Martin Slowik)

We first show quenched functional CLT (or quenched invariance principle) for
random walks in random environments that admit bounded cycle representation
with non-negative random cycle weights (BCR≥0). In other words, the random
environments are generated by random cycle weights associated to a collection
of bounded prototype cycles shifting over Zd (d ≥ 2). Precisely, let (Ω,F ,P) be
the probability space for the random environments ω ≡ (ω(x, y))(x,y)∈ ~Ed

, where

~Ed denotes the set of oriented edges on Zd. Then there exists a collection of
prototype cycles C of bounded length N ∈ 2N and a collection of non-negative

random variables (WC)C∈C , such that for P-a.e. ω, (x, y) ∈ ~Ed,

(A0) ω(x, y) =
∑

C∈C

∑

z∈Zd WC(τzω)1(x,y)∈C+z.

Further we assume

(A1) P is stationary and ergodic with respect to the space shifts (τx)x∈Zd ,
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(A2) the symmetric part of ω, i.e., ∀(x, y) ∈ ~Ed, ω
S(x, y) := 1

2 (ω(x, y)+ω(y, x))
satisfies the following p− q moment condition

E
[

(ωS(x, y))p
]

+ E
[

(ωS(x, y))−q
]

< ∞,

where p, q ∈ [1,∞], and 1
p + 1

q <
2
d .

Now for a given random environment ω ∈ Ω, a particle starts from the origin and
jumps at rate ω to the nearest-neighbor sites. Let (Xt)t≥0 be the continuous time

random walk of the particle, and define X
(n)
t := 1

nXn2t, ∀t ≥ 0.

Theorem 1 (Quenched functional CLT (QFCLT) Deuschel, Slowik, Weng 2023+).

Suppose d ≥ 2, and (A0), (A1), (A2) are satisfied. Then for P-a.e. ω, (X
(n)
t )t≥0

converges weakly under the quenched law Pω
0 to a Brownian motion on Rd with a

deterministic covariance matrix Σ that is non-degenerate.

Random conductance model (RCM) (see [6]) is a special case of BCR≥0, with
N = 2. QFCLT has been studied by [12][3][1][5][11] for i.i.d. setting (stricter
than (A1)). QFCLT for RCM under (A1)(A2) has been proven by [2] with PDE
techniques. Recently, [4] improves [2]’s result by relaxing (A2) to 1

p +
1
q <

2
d−1 , d ≥

3 (while for d = 2, QFCLT has been addressed by [6] for the minimal moment
requirement p = q = 1). The BCR≥0 model was first appeared in [7], and they
show QFCLT under a weak version of uniform ellipticity condition. The model
was also included in [9].

To show QFCLT, the canonical three steps are

(1) martingale decomposition
Let Π : Ω×Zd → Rd be the random position field, with Π(ω, x) := x, ∀ω, x.
We are looking for a decomposition Π = χ+Φ with

• χ,Φ : Ω× Zd → Rd are random fields.
• LωΦi(ω, ·) = 0 on Zd, for P-a.e. ω, ∀i ∈ [d] ≡ {1, · · · d}, where Lω is
the quenched generator, with

Lωf(x) =
∑

y∼x

ω(x, y)(f(y)− f(x))

for all f : Zd → R bounded.
• For ∀i ∈ [d], (χi(·, z))z∼0 ∈ L2

pot, which is the closure of horizontal
gradients of bounded and measurable functions from Ω to R in the
Hilbert space L2

cov. We refer further details to [6].
(2) sublinearity of the corrector

To show the χ vanishes under the diffusive scaling, in the sense that
1
nχ(·, Xn2t) converges weakly to 0 with respect to Pω

0 , for P-a.e. ω, it
is enough to have for P-a.e. ω,

∀i ∈ [d] : lim
n→∞

1

n
sup

x∈B(n)

|χi(ω, x)| = 0,
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with B(n) := {x ∈ Zd : ||x||∞ ≤ n}, n ∈ N. It is essential to obtain
following quenched energy estimate (QEE),

Eω(ηf)

|B(n)| ≤ CN2||∇η||2ℓ∞ ||µω||p,B(n)||f ||2p∗,B(n),

where η is the cut-off function on B(n), f is non-negative Lω-subharmonic,
µω(x) :=

∑

y∼x ω(x, y), || · ||p,B(n) is the space-averaged ℓp norm, and
finally p∗ is the Hölder conjugate of p.

(3) functional CLT for quenched martingales
The weak convergence of 1

nΦ(ω,Xn2t) in the quenched probability to non-
degenerate d-dimensional Brownian motion is dealt with Helland’s mar-
tingale functional CLT (see [8]).

We prove the theorem by adapting the PDE techniques used in [2] to show (2).
Compared to RCM (the reversible case), the difference for the BCR≥0 case arises
first in the construction of corrector χ, since one cannot obtain χ via the orthogonal
decomposition of Π over L2

cov = L2
pot

⊕

L2
sol (see [6][2]). Instead, to solve the

Poisson equation Lωχ(ω, x) = LωΦ(ω, x) for P-a.e. ω, and x ∈ Zd, the bounded
cyclic structure provides two nice properties to apply the Lax-Milgram theorem,
which are sector condition and the bounded operator property of the local drift
V i(ω) := ωei − ω−ei . Precisely, ∀φ, ϕ : Ω → R suitable, E(φ, ϕ) := E[φ(−Lϕ)],
and Lϕ(ω) =∑y∼x ω(x, y)(ϕ(τyω)− ϕ(τxω)),

E(φ, ϕ)2 ≤ 4N2E(φ, φ)E(ϕ, ϕ)

E[V iφ]2 ≤ 1

2
N3

E[µ]E(φ, φ)

The second difference, or rather challenge, is to obtain (QEE). For which we
decompose the quenched generator into symmetric and anti-symmetric part along
the cycles and evaluate them separately, where bounded cycle length N plays a
role.

The BCR≥0 is a special case of doubly stochastic random environment (or
divergence-free random environment). [13] showed QFCLT for this case under
the assumption that ωS satisfies uniform elliptity and is (L2-) bounded, and the
stream tensor that is associated with the anti-symmetric part ωA exists and is L2+ε

integrable. Since stream tensor can be characterized as length four cycles with
anti-symmetric values when the orientation is reversed, it motivates and aspire
to adapt [2]’s PDE scheme to show QFCLT under (A1) and (A2)-type moment
assumption to the following two cases

• divergence-free random environment admits stream tensor (or stream cy-
cle) representation1, which requires the existence of the second moment of
ωA,

• random environment admit bounded cycle representation with R-valued
cycle weights, as long as ω ≥ 0.

1This is an ongoing joint work with B. Fehrman and M. Slowik.
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We particularly emphasize that the result for divergence-free case does not cover
the result for the BCR≥0 case, since the former needs p ≥ 2 for ωA, but the latter
does not assume this even for ωS (≥ ωA).
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Random Walks and Percolation

Pierre-François Rodriguez

Consider the ‘porous medium’ obtained by eliminating sites from a d-dimensional
torus (d ≥ 3) of large side length N by running a random walk up to time uNd,
for a parameter u ∈ (0,∞). The walk deletes the vertices it visits. This model
features in an article by M. Brummelhuis and H.J. Hilhorst [5]; its rigorous study
was initiated in work of I. Benjamini and A.-S. Sznitman [1].

Similarly as its short-ranged (SR) ‘Bernoulli’ analogue, in which vertices are
removed independently with probability p = e−u, the vacant set of the walk has
long been conjectured to undergo an abrupt percolation phase transition across a
non-degenerate value u∗(d) ∈ (0,∞), across which a unique macroscopic connected
component in the vacant set disappears, leaving room for tiny clusters only. Due
to the long-range (LR) effects induced by the walk, the critical regime u ≈ u∗
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is nonetheless believed to display rather drastically different behavior than its
(SR)-cousin, governed by other scaling laws.

The vacant set of the walk is known [13] to have a (local) ‘Gibbsian’ limit
Vu ⊂ Zd as N → ∞, characterized by the exact formula

P[Vu ⊃ K] = exp{−ucap(K)},
for all finite K ⊂ Zd, where cap(K) refers to the capacity of K. The set Vu is
the vacant set of random interlacements, introduced by Sznitman in [12]. The
long-range dependence inherent to the model is articulated by the fact that

Cov
[

1{x∈Vu}, 1{y∈Vu}

]

∼ c(d, u)|x− y|2−d, as |x− y| → ∞,(LR)

which renders its analysis delicate. The strong correlations implied by (LR) do
however lead to certain rigidity constraints (see for instance [4] for an illustrative
example), which, if properly accounted for, can lead to a much improved under-
standing, notably in the near-critical regime.

The talk will survey existing results regarding the above phase transition, both
for the random walk model and its infinite-volume limit Vu. Various findings
exhibiting well-behaved sub- and supercritical phases, targeting for instance a
quenched functional central limit theorem and Gaussian heat kernel bounds on
the infinite cluster [9, 10], thus mirroring by now classical results in the (SR)-case
[2, 3, 8, 11], are so far only known in perturbative regimes. The discussion will lead
up to several recent developments, one based on ongoing work with H. Duminil-
Copin, S. Goswami, F. Severo, A. Teixeira, regarding the long purported equality
of various critical parameters naturally associated to this phase transition. We will
also get a glimpse of its associated universality class, which, following a likely sce-
nario, presumably corresponds to that recently derived in work with A. Prévost and
A. Drewitz [6] for a related model in d = 3 exhibiting the same (LR)-dependence.
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Random walks on random graphs in critical regimes

David A. Croydon

Interest in understanding random walks on percolation clusters goes back at least
to 1976, when the Nobel prize-winning physicist de Gennes raised questions about
how the mean-square displacement of what he called the ‘ant in the labyrinth’
behaved near the critical threshold of percolation [15]. Describing the expected
anomalous behaviour of random walks on percolation clusters at criticality itself
soon thereafter became a question of interest. In this direction, Alexander and
Orbach famously conjectured that the spectral dimension of a critical percolation
cluster on Zd (i.e. the exponent ds := limt→∞ −2 log pt(x, x)/ log t capturing the
on-diagonal decay of the corresponding heat kernel) is given by 4/3, independent of
the dimension of the underlying space [1]. (This statement is now only expected to
be true in suitably high dimensions.) Mathematically, a remarkable contribution
was made by Kesten in 1986 [17, 18]. In these papers, he not only constructed what
he called an ‘incipient infinite cluster’ for critical percolation in two dimensions,
which can be viewed as a critical percolation cluster conditioned to be infinite, but
also showed that the associated random walk is sub-diffusive, in that it moves a

distance smaller than n
1
2
−ε in time n. (See [14] for a related estimate.) Moreover,

in [18], Kesten undertook a similar study for the random walk on a critical Galton-
Watson tree, and proved more detailed results in that case, including one that
supported the Alexander-Orbach conjecture. In my overview talk, I discussed
progress towards understanding randomwalks on random graphs in critical regimes
since Kesten’s seminal work.

The two main focuses of my talk were as follows. (I highlight that the citations
to the literature are not meant to provide an exhaustive survey of the relevant
research areas.)

Heat kernel estimates: It is known that sub-Gaussian heat kernel (i.e.
transition density) estimates for a random walk on an infinite, locally
finite, connected graph are closely connected to the volume growth and
effective resistance of the graph in question. For instance, if the volume
of a ball of radius r, with respect to the graph distance d, is given up to
multiplicative constants by rα and the effective resistance between vertices
x and y is given, again up to multiplicative constants, by d(x, y)β−α, then
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(under certain technical conditions) the transition density of the associated
random walk satisfies a bound of the form

pt(x, y) ≤ Ct−α/β exp

(

−
(

d(x, y)β

Ct

)

1
β−1

)

,

where C is a constant, and a similar lower bound holds, see [4, Theorem
1.3]. Significant progress has been made in deriving related heat kernel
estimates under weaker conditions that are suitable for random graphs; see
[22] for some generally applicable bounds. Notable examples where this
has been done (with α = 2 and β = 3) include critical Galton-Watson trees
[6], critical oriented percolation clusters in high dimensions [5] and critical
(unoriented) percolation clusters in high dimensions [21]. In particular, in
each of these cases, the Alexander-Orbach conjecture has been shown to
hold. Evidence that it does not hold in lower dimensions is provided in
[16].

Scaling limits: Using the framework of Kigami’s resistance forms (see [19,
20]), in [12], it is shown that if one can rescale the effective resistance met-
rics and invariant measures of the random walks on a sequence of graphs
in such a way that they converge to a non-trivial limit, then so do the
corresponding stochastic processes. See [13] for an earlier version of this
result, and [3] for a related result that applies in the case of tree-like met-
ric spaces. This viewpoint has proved particularly useful for understand-
ing the random walks on random graphs in critical regimes, and can be
applied to deduce the scaling limits of random walks on critical Galton-
Watson trees from [9, 10], on critical Erdős-Rényi random graphs from
[11] and on stable looptrees, which can be related to the boundary of crit-
ical percolation clusters on random planar maps, from [2]. Moreover, the
resistance-convergence criterion is closely related to the ‘four conditions’
given for deriving scaling limits of ants in high-dimensional labyrinths of
[8], which have been applied to obtain a scaling limit for the random walk
on a critical branching walk in high dimensions, a structure expected to
be extremely closely related to a critical percolation cluster [7].

Many of the approaches followed in the above areas grew out of the study of self-
similar fractals. One of the original motivations for studying the stochastic pro-
cesses on such spaces was to give insight into how stochastic processes behaved on
media with disorder at all scales, as was expected in the case of critical percolation
clusters. (Suggesting that analysis for the two kinds of model should be similar,
the early physics work of Alexander and Orbach, for example, also included pre-
dictions concerning the Sierpinski gasket.) By now, the techniques have developed
to the point where they are capable of handling models of random graphs with
random fractal scaling limits. And, questions relating to random walks on critical
percolation clusters on Z

d are starting to be answered. It is exciting to envisage
how this work will continue to progress over the coming years...
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Continuum percolation models

Artem Sapozhnikov

(joint work with Yingxin Mu)

In the first part of this talk, we discuss several examples of continuum percolation
models in R

d, such as the Boolean model, the Brownian interlacements and the
Poisson cylinder model. Recently, some progress has been made in understanding
of the percolation phase transition for the vacant set of these models, see e.g.
[1, 6, 2, 4, 10, 3]. The goal of this exposition is to stimulate research on motions
in continuum random media.

In the second part of the talk, we present our resent results about the uniqueness
of the infinite connected component in the vacant set of Brownian interlacements.
Brownian interlacements, introduced by Sznitman in [8], is the continuous coun-
terpart of random interlacements on Z

d (see [7]); while random interlacements is a
Poisson cloud of doubly-infinite random walks on Zd, Brownian interlacements is
a Poisson cloud of doubly-infinite Wiener sausages of fixed positive radius, whose
density is controlled by a parameter α > 0. Due to similarities in the constructions
as well as large-scale properties of random walks and Wiener sausages, Brownian
interlacements share basic properties with random interlacements, such as slow
algebraic decay of correlations and absence of the so-called finite energy property.

In [5],we prove that in any dimension d ≥ 3 and for any density parameter
α > 0,

the vacant set of Brownian interlacements contains at most one
infinite connected component almost surely.

The uniqueness for the vacant set of random interlacements on Zd was proved
by Teixeira in [9]. The situation in continuum is much more delicate because of
complicated microstructure. Our method is different from the one of Teixeira and,
in fact, gives a new robuster proof of his result.

One of the key ingredients in our proof is a result about microscopic uniqueness
for ensembles of independent Wiener sausages, which may be of independent inter-
est: Let W (1), . . . ,W (K) be independent Brownian motions in Rd (d ≥ 3) started
on the boundary of the balll B(0, 2) and let

VK = R
d \
( K
⋃

k=1

∞
⋃

tk=0

B
(

W
(k)
tk
, 1
)

)

be the vacant set of the ensemble of K respective Wiener sausages of radius 1.
Then for any K ≥ 1 and ε ∈ (0, 1),

P

[

VK ∩B(0, ε) contains at least 2
connected components

]

≤ C logm
(

1
ε

)

εd+1,

for some dimension dependent constants C and m. The exponent d + 1 in the
bound is sharp for K ∈ {1, 2}.
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Self-interacting random walks and statistical physics

Pierre Tarrès

(joint work with C. Sabot, M. Disertori, F. Merkl, S. Rolles)

Let G = (V,E) be a non-oriented locally finite graph and, for all e ∈ E(G),
let We : N −→ (0,∞) be a weight function. Then (Xn)n∈N is called an Edge
Self-Interacting Random Walk (ESIRW) if, for all n ≥ 0, Xn = i, then

P
[

Xn+1 = j | Xk, k ≤ n
]

= 1i∼j

W{i,j}(Zn({i, j}))
∑

k∼iW{i,k}(Zn({i, k}))
.

with

Zn({i, j}) :=
n
∑

k=1

1{Xk−1,Xk}={i,j}

number of crossings of the nonoriented edge {i, j}.
Similarly, a Vertex Self-Interacting Random Walk (VSIRW) has the same def-

inition, replacing the numbers of crossings of edges Zn({i, j}) by the numbers of
visits to vertices

Zn(j) =

n
∑

k=0

1{Xk=j}.

The Edge (resp. Vertex) Reinforced Random Walk (ERRW, resp. VRRW) corre-
spond to the affine caseWe(n) = ae+n, and were first introduced by Coppersmith
and Diaconis [3].
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We start by a short survey on the behaviors of those walks. First, we note
that the W -urns, corresponding to the case of star-shaped graphs, display a phase
transition in behavior around the linear reinforcement case. We also note that
the VRRW and ERRW offer strikingly different behavior on Z: the VRRW a.s.
eventually localizes on five consecutive sites [11], whereas it is easy to show that
the ERRW visits all sites infinitely often (i.o.). Note that, by a simple Borel-
Cantelli argument, one can show that, for any ESIRW with W nondecreasing and
∑

W (n)−1 = ∞, if the walk visits one site i.o., then all sites are a.s. visited i.o. if
the graph is connected.

Then we review the results by Tóth [12] on the ESIRW on Z, using Ray-Knight
(1963), or equivalently, Kesten-Kozlov-Spitzer (1975) arguments to find the various
scalings for the position of the random walk for W = We not depending on the
edges.

The rest of the talk focuses on ERRW on general graphs. It is partially ex-
changeable in the sense of Diaconis and Freedman (1980), i.e. the probability
of a path only depends on the number of crossings of edges, which implies that
it is a mixture of Markov Chains, in other words a Random Walk in Random
Environment (RWRE).

Now, we have shown with Sabot [8] that the ERRW can be seen (at jump
times) as mixture (for random weights β) of the so-called Vertex-Reinforced Jump
Process (VRJP) [4], also partially exchangeable, which jumps from i to j at time
t a rate βijLj(t), where

Lj(t) = 1 +

∫ t

0

1{Ys=j}ds

is the local time (plus one) spent by the process at site j.
Next, we explain a new argument that allows to guess the mixing measure, based

on a Bayesian approach, see the OOPS minicourse on YouTube (2019) for more
details. That measure for the VRJP can be seen as the marginal in horospherical
coordinates of the supersymmetric hyperbolic sigma model H2|2 in quantum field
theory [8], studied by Disertori, Spencer and Zirnbauer [6]. We also explain the
link between the VRJP with a random Schrödinger operator [9, 10]. All those
techniques allow one to deduce that there is a unique phase transition between
recurrence and transience in dimension d ≥ 3 [8, 6, 1, 5, 10, 7]. We also discuss
the Dynkin isomorphisms obtained by Bauerschmidt, Helmuth and Swan [2], which
appear for the VRJP directly in hyperbolic coordinates Hn and H

2|2 coordinates.
Finally, we discuss a few open problems on self-interacting random walks.
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Macroscopic loops in random walk loop soups

Lorenzo Taggi

(joint work with Alexandra Quitmann)

We consider a general system of interacting random loops which includes several
models of interest, such as the Spin O(N) model, random lattice permutations, a
version of the interacting Bose gas in discrete space and of the loop O(N) model.
We consider the system in Zd, with d > 2, and prove the occurrence of macroscopic
loops, whose length is proportional to the volume of the system.

1. Definitions

Let TL be a torus of side length L in Zd, whose elements can be identified
with the set {x = (x1, . . . , xd) ∈ Zd : xi ∈ (−L

2 ,
L
2 ] for each i = 1, . . . d}.

Let L be the set of rooted oriented loops, i.e., finite ordered sequences of ver-
tices in TL, ℓ =

(

ℓ(0), ℓ(1), . . . ℓ(k)
)

, such that ℓ(i) is a nearest-neighbour of
ℓ(i − 1) for each i ∈ {1, . . . , k}, ℓ(k) = ℓ(0) and k > 1. For any such sequence
ℓ =

(

ℓ(0), ℓ(1), . . . , ℓ(k)
)

∈ L, we denote by |ℓ| := k the length of the loop ℓ. We let
Ω := ∪∞

n=0Ln be the configuration space, whose elements are ordered collections
of rooted oriented loops. Given any configuration ω ∈ Ω we denote by |ω| the
number of loops, i.e., |ω| is defined as the integer n ∈ N0 such that ω ∈ Ln. For
any ω ∈ Ω, we define by

nx(ω) :=

|ω|
∑

n=1

|ℓn|−1
∑

j=0

1{ℓn(j)=x}

the local time at x ∈ TL.
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We first define a potential, v : Zd → R satisfying v(x) = v(−x) for each x ∈ Zd

and make the interaction periodic under torus translations by introducing the
function vL : TL × TL → R, which depends on v and L, and is defined as

vL(x, y) :=
∑

z∈Zd

v(y + Lz − x).

Moreover, we define the weight function, U : N0 → R
+
0 , which weights the local

time at sites and may, for example, suppress configurations with local time above
a certain threshold. We also introduce two parameters λ,N ∈ R+. Our measure
assigns to any realisation ω ∈ Ω with n ∈ N0 loops, ω =

(

ℓ1, ℓ2, . . . ℓn
)

∈ Ln, the
weight,

PL,U,v,N,λ(ω) :=
1

ZL,U,v,N,λ

1

n!

n
∏

i=1

λ|ℓi|

|ℓi|

(

N

2

)n
∏

x∈TL

U(nx(ω)) exp
(

−VL(ω)
)

,

(1)

where for any ω ∈ Ω,

VL(ω) :=

|ω|
∑

i=1

|ω|
∑

j=1

|ℓi|−1
∑

m=0

|ℓj |−1
∑

n=0

vL
(

ℓi(m), ℓj(n)
)

,

and ZL,U,v,N,λ is a normalisation constant, to which we refer as partition function.

1.1. Special cases. Interacting Bose gas. When N = 2, and U(n) = 1 for any
n ∈ N0, our loop soup is a version of the discrete Bose gas in the grand-canonical
ensemble with chemical potential logλ and unit inverse temperature, the only
difference with the Bose gas in continuous space is that the particles are located
in Zd rather than in Rd and that a single-step random walk trajectory rather than
a Brownian bridge of time β (the inverse temperature) connects two consecutive
particles.

Spin O(N) model and BFS representation. When N ∈ N, v(x) = 0 for any
x ∈ Z

d, and

U(n) =
Γ(N2 )

2nΓ(N2 + n)
,

our model corresponds to the Brydges, Fröhlich and Spencer representation of the
Spin O(N) model with inverse temperature λ ≥ 0 [1].

Lattice permutations, loop O(N) model and other models. When v(x) = 0 for
any x ∈ Zd and

U(n) =

{

1 if n ≤ R,

0 otherwise,

our model is such that the local time at each vertex is upper bounded by R ∈ N.
When R = 1, our model reduces to random lattice permutations [4], which, in
turn, reduce to the double dimer model when λ = ∞ [4].
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2. Main result about the occurrence of macroscopic loops

Our main theorem states that, if λ is large enough, the expected length of any
loop is of the order of the volume of the torus. In particular, the probability of
existence of a loop connecting any pair of sites having distance proportional to the
diameter of the box is uniformly positive. Such a general result requires a further
assumption on the potential, to which we refer as separability. Here we provide
two main examples of potentials fulfilling such an assumption, i.e.,

v1(x) = α1{x=0} − β e−ι|x|11{x 6=0}, and v2(x) = α1{x=0} − β |x|−s
1 1{x 6=0},

for parameters α, β, ι, s ∈ [0,∞) such that s > d, where | · |1 is the ℓ1 distance on
the torus. These two examples correspond to a local repulsive interaction and to a
long-range attractive interaction which decays exponentially or polynomially with
the distance. Such potentials are tempered if α is large enough with respect to β.

We now state our first main theorem. Let Γx be the first loop visiting the vertex
x, namely for any ω = (ℓ1, . . . , ℓ|ω|) ∈ Ω, we let wx(ω) := inf{i ∈ {1, . . . , |ω|} : x ∈
ℓwi

} be the smallest index of the loops visiting x, where |ω| is the total number of
loops in ω. We then define for any ω = (ℓ1, . . . , ℓ|ω|) ∈ Ω,

Γx(ω) :=

{

ℓwx(ω) if wx(ω) <∞
∅ otherwise.

Furthermore, we let EL,U,v,N,λ be the expectation with respect to (1). Finally, we
say that the weight function U : N0 → R

+
0 has range R if

R := sup{n ∈ N0 : U(n) > 0}.
We also let T

o
L be the set of sites x = (x1, . . . , xd) ∈ TL such that xi ∈ 2N0 + 1

for every coordinate i ∈ [d] and denote the origin by o ∈ TL. The main result of
this presentation is the following theorem, which has been proved in [2] (see also
[3] for a further extension involving the double dimer model).

Theorem 1. Let d, N ∈ N, be such that d ≥ 3 and N ≥ 2, let R be a large
enough integer depending on d and N , suppose that v : Zd → R is tempered and
separable, and let U be a good weight function with range at least R. Then, there
exists λ0 <∞ such that, for any λ > λ0, the following two properties hold:

(i) There exists c1 ∈ (0,∞), which does not depend on L, such that,

lim inf
L→∞:
L∈2N

EL,U,v,N,λ(|Γx|)
Ld

> c1,

for any vertex x ∈ TL.
(ii) There exist c2, c3 ∈ (0, 1), which do not depend on L, such that, for any

L ∈ 2N, any x ∈ To
L such that dL(o, x) ≤ c2 L,

PL,U,v,N,λ

(

∃n ∈ {1, . . . , |ω|} : o, x ∈ ℓn
)

> c3,(2)

where dL(x, y) is the torus graph distance.
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On the contrary, if λ is sufficiently small the model exhibits a quite different
behaviour, indeed EL,U,v,N,λ(|Γx|) = O(1) in the limit as L→ ∞ and the quantity
in the left-hand side of (2) decays exponentially with the distance between x and
y (with exponential moments uniformly bounded in L). This can be proved using
the cluster expansion method. Hence, the combination of these facts and of our
theorem imply the occurrence of a phase transition with respect to the variation
of the parameter λ.
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Grassmann variables and their connection with reinforced

random walks

Margherita Disertori

Edge reinforced random walk (ERRW)[1, 2] and vertex reinforced jump processes
(VRJP)[3, 4, 8] are history dependent stochastic processes where the particle tends
to come back more often on sites it has already visited in the past. In both cases,
on a finite undirected graph G = (V,E) the process can be described via a random
walk in random conductances cij = Wije

ui+uj , where {i, j} ∈ E and Wij > 0 is
an edge weight that may be deterministic or random. Finally {ui}i∈V is a family
of real random variables with probability measure

µV
W,i0 (du) =

√

∑

S∈S

∏

{i,j}∈S

Wijeui+uj

∏

{i,j}∈E

e−Wij(cosh(ui−uj)−1)
∏

i∈V \{i0}

e−ui

√
2π

dui dδ(ui0)

(1)

where i0 is the starting point of the process and S is the set of spanning trees over
the graph G. We denote the corresponding average by EV

W,i0
[·]. Key properties of

this measure were obtained [5, 6, 8, 9, 7] using its relation to a certain non-linear
sigma model where the spin has both real and Grassmann components. The goal
of this presentation is to introduce Grassmann variables and their use to derive
the above measure.

Set {ξ1, . . . , ξN} be N abstract generators. We construct an algebra by requiring
that these objects anticommute: ξiξj = −ξjξi and ξ2j = 0. The real Grassmann
algebra generated by {ξ1, . . . , ξN} is the set of polynomes in these variables with
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real coefficients. Since ξ2j = 0 each generator can appear with power 0 or 1 only:

GR

[

ξ1, . . . , ξN
]

=

{

X =
∑

I⊂{1,...,N}

cIξ
I
∣

∣

∣
cI ∈ R

}

where cI is an antisymmetric tensor and ξI =
∏

j∈I ξj according to some fixed or-
dering. Of particular importance is the subalgebra made of polynomes containing
only even degree monomials

Geven
R

[

ξ1, . . . , ξN
]

=

{

X ∈ GR

∣

∣

∣
X =

∑

I⊂{1,...N}, |I|even

cIξ
I

}

Each element X ∈ Geven
R

commutes with all elements of the algebra GR and can
be uniquely decomposed as X = x + n where x ∈ R and n is nilpotent. Using
this decomposition we can extend every smooth function f ∈ C∞(R) to a function
f : Geven

R
→ Geven

R
as follows.

f(X) = f(x+ n) =
∑

k≥0

f (k)(x)

k!
nk.

The sum above is finite since n is nilpotent. The operations of partial derivation
and integration can be extended to elements in GR as follows. Every X ∈ GR can
be uniquely written as X = X1 + ξiX2, where X1, X2 are independent of ξi. The
partial derivative with respect to ξi is then defined via

∂ξiX := X2.

The integral with respect to ξi can be defined as a map Ij : GR → GR such
that (a) Ij(v) is independent of ξj , (b) Ij is linear and (c) Ij(∂ξjX) = 0. With
these constraints we obtain Ij(1) = 0 so we only need to define Ij(ξj). With the
convention Ij(ξj) := 1 we obtain

∫

dξjX = ∂ξjX.

We are now ready to introduce the non-linear sigma model related to ERRW and
VRJP. Consider the Grassmann algebra GR[{ξj , ηj}j∈V ]. We associate to each
point j ∈ V a spin vj = (xj , yj, zj , ξj , ηj), where x, y, z are even elements in the
algebra x, y, z ∈ Geven

R
. We introduce the non-positive definite bilinear form

〈v, v′〉 = xx′ + yy′ − zz′ + ξη′ − ηξ′.

Then, by inserting the non-linear constraint 〈v, v〉 = −1 we further obtain that

z = ±
√

1 + x2 + y2 + 2ξη. After selecting the + part we obtain the space H2

with two additional Grassmann components, which motivates the name H2|2. In
analogy with statistical mechanics we define the energy of a spin configuration
v = {vj}j∈V as

SV (v) :=
∑

{i,j}∈E

Wij 〈vi − vj , vi − vj〉 = −
∑

{i,j}∈E

Wij(1 + 〈vi, vi〉).
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Note that SV (v) ∈ Geven
R

and hence e−SV (v) is well defined. To break the non-
compact symmetry we introduce the analog of a magnetic field by setting vi0 =
o := (0, 0, 1, 0, 0). The ’Gibbs’ measure can be written as

〈f(v)〉VW,i0
:=

∫

(H2|2)V \{i0}

dδ(vi0 − o)
∏

j 6=i0

(

dxjdyj
(2π)

∂ξj∂ηj

1

zj

)

e−SV (v)f(v)

for regular enough functions. The factor 1
z appears because we are integrating on

the non-linear manifold H2|2. This model is connected to the probability measure
µV
W,i0

(u) (cf. (1)) as follows

E
V
W,i0 [f(e

u)] = 〈f(x+ z)〉VW,i0
.

This can be seen by performing the change of coordinates (x, y, ξ, η) → (u, s, ψ̄, ψ)
(horospherical coordinates) defined via

x = sinhu− eu
(

s2

2
+ ψ̄, ψ

)

, y = eus, ξ = euψ̄, η = euψ.

Conditioned on u, the variables s, ψ̄, ψ are Gaussian distributed with covariance
C(u), hence the corresponsing integral can be performed exactly. The result is
formula (1).
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The vertex-reinforced jump processes on Zd with long range

interactions

Silke Rolles

(joint work with Margherita Disertori, Franz Merkl)

Consider the vertex-reinforced jump process on the complete graph with vertex
set Zd, d ≥ 1, and edge weights

Wij = w(‖i− j‖∞), i, j ∈ Z
d,

with a decreasing weight function w : [1,∞) → (0,∞). Assume that

∑

i∈Zd\{0}

w(‖i‖∞) < ∞ and w(x) ≥ W
(log2 x)

α

x2d
for all x ≥ 1

for some α > 3 and W large. In an ongoing joint project, we show that under
these conditions the vertex-reinforced jump process is a.s. transient.

Consider the discrete time process associated to the vertex-reinforced jump
process on finite boxes ΛN = {0, 1, . . . , 2N−1}d∪{ρ}, N ∈ N, with wired boundary
conditions and wiring point ρ. The transience proof uses the representation of this
process as a random walk in random conductances, which was discovered by Sabot
and Tarrès [4]. The random conductances are given by

Wij e
ui+uj , i, j ∈ ΛN ∪ {ρ},

where uρ = 0 and ui, i ∈ ΛN , are distributed according to the non-linear hyperbolic

supersymmetric sigma model, also called H2|2 model, which was introduced by
Zirnbauer in [5]. Our key estimate shows that there exists c > 0 such that for all
N , all i ∈ ΛN , and all m ∈ [0, cW ], one has

EΛN
[

(coshui)
m
]

≤ 2,

where the expectation is with respect to the H2|2 model on ΛN ∪ {ρ}. Using
a monotonicity result of Poudevigne [3], an upper bound for this expectation is
given by the expectation of (coshui)

m with respect to another H2|2 model with
hierarchical interactions. The task of studying coshui in the last model can be
reduced to studying it in an effective H2|2 model as is shown in [1]. Using some
monotonicity, we can compare the effective model with an H2|2 model on a finite
piece of a line graph with vertex set {1, . . . , N} and nearest neighbor edges only.
We analyse this one-dimensional H2|2 model using methods inspired by the work
of Disertori, Spencer, and Zirnbauer [2].
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