Oberwolfach Preprints

Number 2023-04

Michael Bate
Benjamin Martin
Gerhard Röhrle

Edifices: Building-like Spaces Associated to Linear Algebraic Groups

In memory of Jacques Tits

Oberwolfach Preprints (OWP)

The MFO publishes the Oberwolfach Preprints (OWP) as a series which mainly contains research results related to a longer stay in Oberwolfach, as a documentation of the research work done at the MFO. In particular, this concerns the Oberwolfach Research Fellows program (and the former Research in Pairs program) and the Oberwolfach Leibniz Fellows (OWLF), but this can also include an Oberwolfach Lecture, for example.

All information about the publication process can be found at https://www.mfo.de/scientific-programme/publications/owp

All published Oberwolfach Preprints can be found at https://publications.mfo.de
ISSN 1864-7596

License Information

This document may be downloaded, read, stored and printed for your own use within the limits of $\S 53$ UrhG but it may not be distributed via the internet or passed on to external parties.

The series Oberwolfach Preprints is published by the MFO. Copyright of the content is held by the authors.

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany
https://www.mfo.de

EDIFICES: BUILDING-LIKE SPACES ASSOCIATED TO LINEAR ALGEBRAIC GROUPS

MICHAEL BATE, BENJAMIN MARTIN, AND GERHARD RÖHRLE
In memory of Jacques Tits

Abstract

Given a semisimple linear algebraic k-group G, one has a spherical building Δ_{G}, and one can interpret the geometric realisation $\Delta_{G}(\mathbb{R})$ of Δ_{G} in terms of cocharacters of G. The aim of this paper is to extend this construction to the case when G is an arbitrary connected linear algebraic group; we call the resulting object $\Delta_{G}(\mathbb{R})$ the spherical edifice of G. We also define an object $V_{G}(\mathbb{R})$ which is an analogue of the vector building for a semisimple group; we call $V_{G}(\mathbb{R})$ the vector edifice. The notions of a linear map and an isomorphism between edifices are introduced; we construct some linear maps arising from natural group-theoretic operations. We also devise a family of metrics on $V_{G}(\mathbb{R})$ and show they are all bi-Lipschitz equivalent to each other; with this extra structure, $V_{G}(\mathbb{R})$ becomes a complete metric space. Finally, we present some motivation in terms of geometric invariant theory and variations on the Tits Centre Conjecture.

Contents

1. Introduction 1
2. Preliminaries 3
3. Edifices 10
4. Linear maps of vector edifices 20
5. Linear maps arising from base change 28
6. Admissible metrics 30
7. The Tits Centre Conjecture and geometric invariant theory 41
References 44

1. Introduction

Jacques Tits showed in his seminal 1974 monograph [34] how to associate a spherical building Δ_{G} to an isotropic semisimple linear algebraic group G over a field k : the simplices of the building correspond to the k-parabolic subgroups of G, ordered by reverse inclusion. This has led to a rich and fruitful interaction between the theory of algebraic groups and the theory of buildings; for example, Serre has formulated his theory of G-completely reducible subgroups of G in building-theoretic language [31], [32]. Tits's celebrated Centre Conjecture for spherical buildings - whose proof is the culmination of a series of papers involving several authors [23], [21], [26]-has consequences for algebraic groups: for instance, it implies the

2020 Mathematics Subject Classification. 51E24, 20E42, 20 G 15.
Key words and phrases. Spherical buildings, Edifices, Tits Centre Conjecture, Geometric invariant theory.

Borel-Tits Theorem [13, §3]. The authors in previous and current work have studied the interactions among the Centre Conjecture, G-complete reducibility and geometric invariant theory, e.g., see [2], [4], [5], [7], [8, §5], [10, §5.4], and [9]. The link with geometric invariant theory comes via a rational version of the Hilbert-Mumford Theorem, used to study orbits of an action of G on an affine variety, see [3], [10, §3].

The geometric realisation $\Delta_{G}(\mathbb{R})$ of Δ_{G} has a striking interpretation in terms of cocharacters of G. Given a cocharacter λ of G, one can associate to it a parabolic subgroup P_{λ} of G in a standard way, see $[28, \S 2]$, $[33, \S 8.4]$. Roughly speaking, points in $\Delta_{G}(\mathbb{R})$ correspond to formal \mathbb{R}-linear combinations of cocharacters, modulo a natural equivalence relation. If $x \in \Delta_{G}(\mathbb{R})$ is the point corresponding to λ then x belongs to the geometric realisation of the simplex corresponding to P_{λ}. This construction is based on ideas of Tits and Chevalley and is described in [16], [9] and below. See [24, Ch. 2, Sec. 2] for further discussion (note that $\Delta_{G}(\mathbb{Q})$ is called the rational flag complex in loc. cit.). For applications to geometric invariant theory, one must work with this geometric realisation rather than the simplicial building, since in the Hilbert-Mumford Theorem one is concerned with the behaviour of individual cocharacters; see Section 7.

Our purpose in this paper is to generalise the construction of a building via cocharacters to the case when G is an arbitrary connected linear algebraic k-group, not necessarily semisimple. This was achieved for reductive groups in [16]; in that case one can still form a spherical building from the k-parabolic subgroups of G, which is canonically isomorphic to the spherical building of the semisimple group $G / Z(G)^{0}$, but one sees a difference at the level of cocharacters as G may admit non-trivial cocharacters with image in $Z(G)^{0}$. We define spaces $\Delta_{G}(\mathbb{R})$ and Δ_{G} for arbitrary G in Section 3, which coincide with the spaces described above when G is semisimple or reductive. We call $\Delta_{G}(\mathbb{R})$ the spherical edifice associated to G and Δ_{G} the combinatorial edifice associated to G. We also define a space $V_{G}(\mathbb{R})$, which we call the vector edifice associated to G; this is our generalisation for arbitrary G of the vector building for a semisimple group defined in [29]. In fact, we concentrate on vector edifices rather than spherical edifices as the former have some technical advantages (see Remark 4.30).

In general $\Delta_{G}(\mathbb{R})$ is not the geometric realisation of Δ_{G} (or of any spherical building); nonetheless it enjoys some of the same properties. For instance, $G(k)$ acts on $\Delta_{G}(\mathbb{R})$ and we may endow $\Delta_{G}(\mathbb{R})$ with a $G(k)$-invariant complete metric: see Section 6 . We prove the following key property (Proposition 4.7). Let $f: G \rightarrow H$ be a homomorphism of k-groups. Then f gives rise in a natural way to a map $\kappa_{f}: V_{G}(\mathbb{R}) \rightarrow V_{H}(\mathbb{R})$, and κ_{f} is continuous with respect to the metric topologies (Corollary 6.24). For example, if G is reductive and P is a parabolic subgroup of G then $\kappa_{i}: V_{P}(\mathbb{R}) \rightarrow V_{G}(\mathbb{R})$ is a bijection, where $i: P \rightarrow G$ is inclusion (see Example 4.14). We also obtain an induced map from $\Delta_{G}(\mathbb{R})$ to $\Delta_{H}(\mathbb{R})$. Even when G and H are reductive, f need not map parabolic subgroups of G to parabolic subgroups of H, so f does not give rise to a map $\Delta_{G} \rightarrow \Delta_{H}$ of simplicial buildings (see Remark 4.27). Our constructions therefore provide extra flexibility: maps between the geometric objects exist even when maps between the corresponding combinatorial objects do not. We rely on this heavily in our forthcoming work [9].

While edifices are worth studying as objects in their own right, we have two further motivations for investigating them. First, assume G is reductive. Let P be a parabolic subgroup of G and let L be a Levi subgroup of P. For reasons discussed in Section 7, we
wish to construct a map with certain properties from $V_{G}(\mathbb{R})$ to $V_{L}(\mathbb{R})$. It is well known that such a map exists at the level of the simplicial building: this is the so-called projection map from Δ_{G} to Δ_{L}, see Section 4.6. We need a map on the geometric realisations. Our constructions give us what we want: we define the map to be $\kappa_{\pi} \circ \kappa_{i}^{-1}$, where i is the inclusion of P in G from above and $\pi: P \rightarrow L$ is the canonical projection.

Second, edifices give us a framework for studying G-complete reducibility and geometric invariant theory for non-reductive G : they play the role that the geometric realisation of the spherical building plays when G is semisimple. We mention here in particular the case of pseudo-reductive G. As explained in [25], one can associate a spherical Tits system to G [15, Thm. 4.1.7], and one can then construct a spherical building Δ_{G} using the pseudo-parabolic subgroups of G; however, there does not seem to be an analogue of the "geometric realisation by cocharacters" previously known here. Moreover, when working with pseudo-reductive G, one often needs to extend scalars to a purely inseparable field extension k^{\prime} / k; if the base change $G_{k^{\prime}}$ has non-trivial unipotent radical over k^{\prime} then Δ_{G} need no longer be a spherical building, but the formalism of edifices is flexible enough to handle this situation. The authors and their collaborators will pursue these ideas in forthcoming work.

The paper is set out as follows. In Section 2 we review some background material on algebraic groups and cocharacters, and we define the key notion of an R-parabolic subgroup. We define the vector edifice $V_{G}(\mathbb{K})$, the spherical edifice $\Delta_{G}(\mathbb{K})$ and the combinatorial edifice Δ_{G} in Section 3, where $\mathbb{K}=\mathbb{R}$ or \mathbb{Q}, and introduce some related notions: apartments (certain subsets of the vector edifice), opposites, addition, and convexity. One substantial difference from the reductive group case is that the "common apartment property" can fail: not every pair of points in $V_{G}(\mathbb{K})$ need belong to a common apartment. In Section 4 we introduce the notions of linear maps and isomorphisms between vector edifices. We show that an algebraic group homomorphism $f: G \rightarrow H$ gives rise to a linear map $\kappa_{f}: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$, and that κ_{f} is injective if $\operatorname{ker}(f)$ is finite. In Section 5 we construct linear maps of vector edifices arising from base change of the ground field k.

We turn to metrics in Section 6. We define the notion of an admissible metric on $V_{G}(\mathbb{K})$. The idea is to do this first for reductive groups, where we can work inside individual apartments; for an arbitrary G, we can embed G inside some reductive G^{\prime}, which gives an embedding of $V_{G}(\mathbb{K})$ inside $V_{G^{\prime}}(\mathbb{K})$, then pull back a metric from $V_{G^{\prime}}(\mathbb{K})$ to $V_{G}(\mathbb{K})$. Admissible metrics on $V_{G}(\mathbb{K})$ are not unique, but we prove that any two are bi-Lipschitz equivalent (Corollary 6.23); this takes some work. In the final section (Section 7), we discuss applications of our formalism to the Tits Centre Conjecture and to geometric invariant theory.

2. Preliminaries

Throughout k denotes a field with separable closure k_{s} and algebraic closure \bar{k}. We work with affine (linear) algebraic k-groups. Formally, we view such a group G as a functor from k-algebras to groups, represented by an affine k-algebra $k[G]$, the coordinate algebra of G. If X is a k-variety and k^{\prime} / k is a field extension, then $X_{k^{\prime}}$ denotes the k^{\prime}-variety given by the base change of X to k^{\prime}, with coordinate algebra $k^{\prime}\left[X_{k^{\prime}}\right]:=k[X] \otimes_{k} k^{\prime}$; if $f: X \rightarrow Y$ is a morphism of k-varieties then $f_{k^{\prime}}: X_{k^{\prime}} \rightarrow Y_{k^{\prime}}$ is the morphism obtained by base extension. Unless specified otherwise, we use the phrase "let G be a k-group" as shorthand for "let G be a smooth affine algebraic k-group". We write \mathfrak{g} for the Lie algebra of G. For a k-group G and a k-algebra A, we let $G(A)$ denote the group of A-points of G. We adopt the framework
of [14]: so by a subgroup of G we mean a k-defined subgroup, by a homomorphism we mean a k-homomorphism and by a cocharacter we mean a k-defined cocharacter. We assume, however, that subgroups are smooth; in cases when smoothness is not evident, we use the terminology subgroup scheme. By the kernel of a homomorphism we mean the schemetheoretic kernel (note that this need not be smooth). Likewise, by the centraliser $C_{G}(H)$ of a subgroup H we mean the scheme-theoretic stabiliser and by the intersection of subgroups we mean the scheme-theoretic intersection. Note that $C_{G}(H)$ is smooth if H is a torus. By an embedding of varieties we mean a closed embedding. For background on linear algebraic groups, see [14], [11], [33]. We record one crucial result here [14, Thm. C.2.3], which is used frequently in the sequel without further comment: the maximal split k-tori in a k-group G are all conjugate under the action of $G(k)$. By the rank of G we mean the k-rank: that is, the dimension of a maximal split torus of G. If T is a maximal split torus of G then $W_{k}:=\left(N_{G}(T) / C_{G}(T)\right)(k)$ is the relative Weyl group of G. If $g \in G(k)$ then $\operatorname{Inn}_{g}: G \rightarrow G$ is conjugation by g.

For an algebraic k-scheme X we let $X_{\text {red }}$ denote the unique reduced subscheme of X with the same underlying topological space as X [22, A.30]. When k is perfect $\left(X_{\text {red }}\right)_{\bar{k}}=\left(X_{\bar{k}}\right)_{\text {red }}$ is reduced, and so when X is a group scheme over a perfect field $k, X_{\text {red }}$ is smooth [22, Prop. 1.26, Cor. 1.39].

Our convention in this paper is that reductive groups are connected. If G is a k-group then we write $R_{u, k}(G)$ for the k-unipotent radical of G (the largest connected normal unipotent k-subgroup). If $R_{u}\left(G_{\bar{k}}\right)$ descends to a subgroup of G then we write $R_{u}(G)$ for $R_{u, k}(G)$. We denote by Y_{G} the set of cocharacters (one-parameter subgroups) of G - that is, an element $\lambda \in Y_{G}$ is a homomorphism λ from the multiplicative group \mathbb{G}_{m} to G. If H is a subgroup of G then we may regard Y_{H} as a subset of Y_{G} via the inclusion $H \subseteq G$. We say that $\lambda \in Y_{G}$ evaluates in H if λ arises from an element of Y_{H} in this way. We say that two cocharacters commute if their images commute. Given $\lambda \in Y_{H}$ and $g \in G(k)$, we define $g \cdot \lambda \in Y_{g H^{-1}}$ by $(g \cdot \lambda)(a)=g \lambda(a) g^{-1}$ for any k-algebra A and any $a \in \mathbb{G}_{m}(A)=A^{\times}$; this gives an action of $G(k)$ on Y_{G}.

Now suppose T is a split torus, and let X_{T} denote the group of characters of T : that is, $\chi \in X_{T}$ is a homomorphism $T \rightarrow \mathbb{G}_{m}$. There is the usual pairing between Y_{T} and X_{T} : given $\lambda \in Y_{T}$ and $\chi \in X_{T}$, the map $\chi \circ \lambda: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ is an endomorphism of \mathbb{G}_{m}, and hence is given by raising elements to a power; we denote this power by $\langle\lambda, \chi\rangle$. If now T is a subtorus of some k-group G, then for $g \in G(k)$ and $\chi \in X_{T}$, we get a character $g \cdot \chi \in X_{g T g^{-1}}$ via the formula $(g \cdot \chi)\left(g t g^{-1}\right)=\chi(t)$ for any k-algebra A and $t \in T(A)$. It is easy to check that $\langle g \cdot \lambda, g \cdot \chi\rangle=\langle\lambda, \chi\rangle$ for all $g \in G(k)$.

Throughout, the symbol \mathbb{K} denotes \mathbb{R} or \mathbb{Q}. We write \mathbb{K}^{+}for $\mathbb{K} \cap(0, \infty)$. If T is a torus then Y_{T} with the usual addition of cocharacters is a free \mathbb{Z}-module of finite rank. We define $Y_{T}(\mathbb{K}):=Y_{T} \otimes_{\mathbb{Z}} \mathbb{K}$, a finite-dimensional \mathbb{K}-vector space, and identify Y_{T} with the subset of $Y_{T}(\mathbb{K})$ consisting of elements of the form $\lambda \otimes 1$ for $\lambda \in Y_{T}$ in the usual way. We give $Y_{T}(\mathbb{K})$ the usual topology arising from a positive-definite bilinear form (this topology does not depend on the form). We may similarly define $X_{T}(\mathbb{K}):=X_{T} \otimes_{\mathbb{Z}} \mathbb{K}$, and then the pairing $Y_{T} \times X_{T} \rightarrow \mathbb{Z}$ extends to give a \mathbb{K}-bilinear $\operatorname{map} Y_{T}(\mathbb{K}) \times X_{T}(\mathbb{K}) \rightarrow \mathbb{K}$.

Below G denotes a connected k-group. At various points we make the extra assumption that G is reductive. For $f: G \rightarrow H$ a homomorphism of k-groups, we say that f is surjective
provided $f(\bar{k}): G(\bar{k}) \rightarrow H(\bar{k})$ is surjective. An isogeny is a surjective homomorphism of k-groups with finite kernel.
2.1. Limits and R-parabolic subgroups. For full details on the following construction, the reader is referred to [14, Sec. 2.1]. Let V be an affine k-scheme equipped with an action of \mathbb{G}_{m}. Given $v \in V(A)$ for some k-algebra A, we say that $\lim _{a \rightarrow 0} a \cdot v$ exists if the orbit map $\left(\mathbb{G}_{m}\right)_{A} \rightarrow V_{A}, a \mapsto a \cdot v$ over A extends to an A-morphism $\mathbb{A}_{A}^{1} \rightarrow V_{A}$, and in this case we write $\lim _{a \rightarrow 0} a \cdot v$ for that limit (which is necessarily uniquely defined). In [14, Lem. 2.1.4], it is shown that there is a closed subscheme V^{\prime} of V such that for any k-algebra $A, V^{\prime}(A)$ consists of the $v \in V(A)$ such that the limit $\lim _{a \rightarrow 0} a \cdot v$ exists. If $f: V \rightarrow W$ is an equivariant map of \mathbb{G}_{m}-varieties, $v \in V(A)$ and $\lim _{a \rightarrow 0} a \cdot v$ exists then $\lim _{a \rightarrow 0} a \cdot f(v)$ exists, and the converse holds is f is an embedding.

The construction in the previous paragraph is of central importance in this paper when $V=G$ is a k-group, and the action of \mathbb{G}_{m} on G is the conjugation action via a cocharacter $\lambda: \mathbb{G}_{m} \rightarrow G$. In this case, for each $\lambda \in Y_{G}$, one obtains a closed subgroup $P_{\lambda}(G)$ of G : for each k-algebra A,

$$
P_{\lambda}(G)(A):=\left\{g \in G(A) \mid \lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1} \text { exists }\right\}
$$

(that $P_{\lambda}(G)$ is a smooth k-subgroup scheme is in [14, Lem. 2.1.5]). We also write $\lim _{a \rightarrow 0} \lambda(a)$. g as a shorthand for the limit.

We call the subgroups of G of the form $P_{\lambda}(G)$ for $\lambda \in Y_{G}$ the R-parabolic subgroups of $G .{ }^{1}$ We usually suppress the G in $P_{\lambda}(G)$ unless there is some ambiguity - this occurs, for instance, when H is a subgroup of G and we wish to view $\lambda \in Y_{H}$ as a cocharacter of both G and H, with two corresponding subgroups $P_{\lambda}(H) \subseteq P_{\lambda}(G)$. In case G is pseudo-reductive the subgroups $P_{\lambda}(G)$ are the so-called pseudo-parabolic subgroups of G, but this is not the case in general: a pseudo-parabolic subgroup of a general connected k-group G must also contain $R_{u, k}(G)$ but P_{λ} need not; see [14, Sec. 2.2].

We define $L_{\lambda}(G)$ (or just L_{λ}) to be $C_{G}(\operatorname{Im}(\lambda))=P_{\lambda} \cap P_{-\lambda}$ and we define a subgroup $U_{\lambda}=U_{\lambda}(G)$ functorially by

$$
U_{\lambda}(G)(A):=\left\{g \in G(A) \mid \lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}=1\right\},
$$

for each k-algebra A. It follows from [14, Lem. 2.1.5, Lem. 2.1.8] that P_{λ}, L_{λ} and U_{λ} are smooth connected subgroup schemes of G, U_{λ} is a normal unipotent subgroup of P_{λ}, and $P_{\lambda}=L_{\lambda} \ltimes U_{\lambda}$. If P is an R-parabolic subgroup of G then we call any subgroup L_{λ} for $\lambda \in Y_{G}$ such that $P=P_{\lambda}$ an R-Levi subgroup of P. Given $\lambda \in Y_{G}$, we have a surjective homomorphism $c_{\lambda}: P_{\lambda} \rightarrow L_{\lambda}$ given by $c_{\lambda}(g)=\lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}$ for each k-algebra A and each $g \in P_{\lambda}(A)$.

We collect some basic properties of R-parabolic subgroups. First off, it follows from the definition of limit in this case that for any subgroup H of G and a cocharacter $\lambda \in Y_{H} \subseteq Y_{G}$, we have

$$
P_{\lambda}(H)=P_{\lambda}(G) \cap H, \quad L_{\lambda}(H)=L_{\lambda}(G) \cap H, \quad U_{\lambda}(H)=U_{\lambda}(G) \cap H
$$

see [14, Lem. 2.1.5] and the paragraph following the proof of [14, Lem. 2.1.4].

[^0]Note that every R-parabolic subgroup of G contains a maximal split torus of G - for $P=P_{\lambda}$ for some λ, and if T is a maximal split torus of G such that $\lambda \in Y_{T}$, then $T \subseteq$ $L_{\lambda} \subseteq P_{\lambda}$. It is clear that if $g \in G(k)$ and $\lambda \in Y_{G}$, then $P_{g \cdot \lambda}=g P_{\lambda} g^{-1}, L_{g \cdot \lambda}=g L_{\lambda} g^{-1}$ and $U_{g \cdot \lambda}=g U_{\lambda} g^{-1}$; in particular, if $g \in P_{\lambda}(k)$, then $P_{g \cdot \lambda}=P_{\lambda}$. If k^{\prime} / k is a field extension then $P_{\lambda_{k^{\prime}}}=\left(P_{\lambda}\right)_{k^{\prime}}, L_{\lambda_{k^{\prime}}}=\left(L_{\lambda}\right)_{k^{\prime}}$ and $U_{\lambda_{k^{\prime}}}=\left(U_{\lambda}\right)_{k^{\prime}}$.

We say the R-parabolic subgroups P and Q are opposite if there exists $\lambda \in Y_{G}$ such that $P=P_{\lambda}$ and $Q=P_{-\lambda}$: in this case, $P_{\lambda} \cap P_{-\lambda}=L_{\lambda}$.

The next result follows from [14, Prop. 2.1.8, Prop. 2.1.12].
Lemma 2.1. Let G be a k-group and let $\lambda \in Y_{G}$. Then the multiplication map $P_{\lambda} \times U_{-\lambda} \rightarrow G$ is an open immersion. If G is connected and solvable then this map is an isomorphism.

Lemma 2.2. Let $\lambda \in Y_{G}$ and let $\mu \in Y_{P_{\lambda}}$. Then there exist $u \in U_{\lambda}(k)$ and a maximal split torus T of P_{λ} such that λ and $u \cdot \mu$ belong to Y_{T}.

Proof. Choose maximal split tori T_{0} and T_{1} of P_{λ} such that $\lambda \in Y_{T_{0}}$ and $\mu \in Y_{T_{1}}$. By conjugacy of maximal split tori, there exists $g \in P_{\lambda}(k)$ such that $g T_{1} g^{-1}=T_{0}$. Write $g=l u$ with $l \in L_{\lambda}(k)$ and $u \in U_{\lambda}(k)$. Then $\lambda, u \cdot \mu \in Y_{T}$, where $T:=l^{-1} T_{0} l$.
Lemma 2.3. Let T be a maximal split torus of G, and suppose $\lambda \in Y_{T}$. We have $N_{P_{\lambda}(k)}(T)=$ $N_{L_{\lambda}(k)}(T)$ and $N_{P_{\lambda}(k)}\left(L_{\lambda}\right)=L_{\lambda}(k)$.
Proof. Suppose we have $g \in P_{\lambda}(k)$ such that $g T g^{-1}=T$. Now write $g=l u$ with $l \in L_{\lambda}(k)$ and $u \in U_{\lambda}(k)$. Note that $\lim _{a \rightarrow 0} \lambda(a) \cdot g$ normalises T, because $\lambda(a)$ and g do, thus so does $l=\lim _{a \rightarrow 0} \lambda(a) \cdot g$, and hence u normalises T also. Now the morphism $\mathbb{G}_{m} \rightarrow U_{\lambda}, a \mapsto \lambda(a) \cdot u$ extends to a morphism from all of \mathbb{A}^{1} (by definition of the limit), and this morphism has connected image contained in the normaliser of T, containing the points $1=\lim _{a \rightarrow 0} \lambda(a) \cdot u$ and $u=\lambda(1) \cdot u$. Rigidity of tori implies that the identity component of $N_{G}(T)$ is the identity component of $C_{G}(T)$, [11, 8.10, Cor. 2], and since λ evaluates in $T, C_{G}(T) \subseteq L_{\lambda}$. But we also have $u \in U_{\lambda}$, so this implies $u=1$. Thus $g \in L_{\lambda}(k)$, which proves the first statement.

Now suppose $h \in P_{\lambda}(k)$ normalises L_{λ}. Then $h T h^{-1}$ is another maximal split torus of L_{λ}, and hence is conjugate to T by some element of $L_{\lambda}(k)$. But this says that we may multiply h by an element of $L_{\lambda}(k)$ to obtain an element of $N_{P_{\lambda}(k)}(T) \subseteq L_{\lambda}(k)$, so we're done.

Lemma 2.4. Let $P=P_{\lambda}$ be an R-parabolic subgroup of G, and let T be a maximal split torus of G such that $\lambda \in Y_{T}$.
(i) Given any other maximal split torus T^{\prime} of G contained in P, there is a $\mu \in Y_{T^{\prime}}$ with $P_{\mu}=P$ and $U_{\mu}=U_{\lambda}$. In fact, we can take $\mu=u \cdot \lambda$ for some $u \in U_{\lambda}(k)$.
(ii) The R-Levi subgroup L_{λ} is the unique $P_{\lambda}(k)$-conjugate of L_{λ} containing T.
(iii) Let $\mu \in Y_{G}$ such that $P_{\mu}=P_{\lambda}$ and $L_{\mu}=L_{\lambda}$. Then $U_{\mu}=U_{\lambda}$.

Proof. (i). Since T and T^{\prime} are maximal split tori of the smooth connected k-group P, they are $P(k)$-conjugate. Let $g \in P(k)$ be such that $T^{\prime}=g T g^{-1}$. Write $g=u l$ with $u \in U_{\lambda}(k)$ and $l \in L_{\lambda}(k)$. Then $u \cdot \lambda=g \cdot \lambda \in Y_{T^{\prime}}, P_{u \cdot \lambda}=u P_{\lambda} u^{-1}=P_{\lambda}$, and $U_{u \cdot \lambda}=u U_{\lambda} u^{-1}=U_{\lambda}$, as required.
(ii). Suppose we have $g \in P(k)$ such that $T \subseteq g L_{\lambda} g^{-1}$. Then T and $g^{-1} T g$ are maximal split tori of L_{λ}, so are conjugate by an element of $L_{\lambda}(k)$. Hence, by adjusting g with an element of $L_{\lambda}(k)$ if necessary, we may assume that g normalises T. Now Lemma 2.3 implies that $g \in L_{\lambda}(k)$, as required.
(iii). Since $\operatorname{Im}(\mu) \subseteq Z\left(L_{\lambda}\right)^{0} \subseteq T \subseteq L_{\lambda}, \mu$ belongs to Y_{T}. It follows easily that $c_{\mu} \circ c_{\lambda}=$ $c_{\lambda} \circ c_{\mu}$. So let $v \in U_{\mu}(\bar{k})$. We can write $v=l u$ for some $l \in L_{\lambda}(\bar{k})$ and some $u \in U_{\lambda}(\bar{k})$. Then

$$
1=c_{\lambda}\left(c_{\mu}(v)\right)=c_{\lambda}\left(c_{\mu}(l u)\right)=c_{\lambda}\left(c_{\mu}(l)\right) c_{\lambda}\left(c_{\mu}(u)\right)=l c_{\mu}\left(c_{\lambda}(u)\right)=l
$$

so $v=u$. This shows that $U_{\mu} \subseteq U_{\lambda}$, and the reverse inclusion follows by symmetry.
If G is reductive then the R-parabolic subgroups of G are precisely the parabolic subgroups, and the R-Levi subgroups of a parabolic subgroup are precisely its Levi subgroups; furthermore, we have $U_{\lambda}=R_{u}\left(P_{\lambda}\right)$. These facts mean that the result above has a rather simpler formulation and proof for reductive G : the content of parts (i) and (ii) of Lemma 2.4 for reductive G are the well-known facts that each maximal torus of a parabolic subgroup is contained in a unique Levi subgroup, and the unipotent radical of the parabolic subgroup acts simply transitively on its Levi subgroups.

If G is not reductive then things are more complicated. We have $U_{\lambda} \subseteq R_{u, k}\left(P_{\lambda}\right)$ since U_{λ} is a connected normal unipotent subgroup of P_{λ}, but the inclusion can be proper. We can have cocharacters $\lambda, \mu \in Y_{G}$ such that $P_{\lambda} \subseteq P_{\mu}$ but $U_{\lambda} \nsupseteq U_{\mu}$. In fact, there can exist $\lambda, \mu \in Y_{G}$ such that $P_{\lambda}=P_{\mu}$ but $U_{\lambda} \nsupseteq U_{\mu}$ and L_{μ} is not conjugate to L_{λ}. For instance, take $k=\bar{k}$ and let $G=P_{\mu}\left(G^{\prime}\right)$ be a Borel subgroup of a non-trivial connected semisimple k-group G^{\prime}. Choose a maximal torus T of G such that $\mu \in Y_{T}$. Let $\lambda=0 \in Y_{G}$. Then $P_{\lambda}(G)=P_{\mu}(G)=G=L_{\lambda}(G) \neq L_{\mu}(G)=T$ but $R_{u}\left(P_{\mu}\right)=U_{\mu}(G) \nsubseteq U_{\lambda}(G)=1$.

We do, however, have the following result.
Lemma 2.5. Let P be an R-parabolic subgroup of G. Suppose $P=P_{\lambda}=P_{\mu}$ and $U_{\lambda} \subseteq U_{\mu}$ for some $\lambda, \mu \in Y_{G}$. Let H be a subgroup of P such that $P \cong H \ltimes U_{\mu}$. Then:
(i) H is $U_{\mu}(k)$-conjugate to L_{μ}.
(ii) H is $U_{\mu}(k)$-conjugate to a subgroup of L_{λ}. In particular, L_{μ} is conjugate to a subgroup of L_{λ}.
Proof. Since H is a complement to U_{μ} in P_{μ}, H is isomorphic to L_{μ} under the (restriction of the) projection $P_{\mu} \rightarrow L_{\mu}$, and hence H contains a maximal split torus T of P_{μ}. Using Lemma 2.4(i), by conjugating H with some element in $U_{\mu}(k)$, we may assume that μ evaluates in T as well. Now $H=P_{\mu}(H)=L_{\mu}(H) \ltimes U_{\mu}(H)$, but $U_{\mu}(H)=U_{\mu} \cap H$ is trivial, so $H=L_{\mu}(H)$. This implies that $H \subseteq L_{\mu}$, thus $H=L_{\mu}$ since H is isomorphic to L_{μ} and both are smooth and connected, proving (i).

The proof of (ii) is similar: by Lemma $2.4(\mathrm{i})$ and the fact that $U_{\lambda} \subseteq U_{\mu}$, we may also conjugate H by an element of $U_{\mu}(k)$ so that the maximal split torus T of H contains the image of λ. Then $H=P_{\lambda}(H)=L_{\lambda}(H) \ltimes U_{\lambda}(H)$. Again, since $U_{\lambda} \subseteq U_{\mu}$ and $U_{\mu} \cap H=1$, we have $H=L_{\lambda}(H)$, so H is contained in L_{λ}.

Corollary 2.6. Let $\lambda, \mu \in Y_{G}$ such that $P_{\lambda}=P_{\mu}$ and $U_{\lambda}=U_{\mu}$. Then there is a unique $u \in U_{\lambda}(k)$ such that $L_{\mu}=u L_{\lambda} u^{-1}$.

Proof. The existence of u follows from Lemma 2.5(i) with $H=L_{\lambda}$. If $u_{1}, u_{2} \in U_{\lambda}(k)$ and $u_{1} L_{\lambda} u_{1}^{-1}=u_{2} L_{\lambda} u_{2}^{-1}$ then $u_{1}^{-1} u_{2}$ normalises L_{λ}, so $u_{1}=u_{2}$ by Lemma 2.3. This proves uniqueness.

Remark 2.7. We need some notation. Let V be a rational G-module and let T be a maximal split torus of G. Let $\Phi \subseteq X_{T}$ be the set of weights of T on V. Since T is split, V splits into a direct sum of weight spaces V_{χ} for T. Given $v \in V(\bar{k})$, we can write v uniquely as
$v=\sum_{\chi \in \Phi} v_{\chi}$, where each $v_{\chi} \in V_{\chi}(\bar{k})$. We define $\operatorname{supp}(v)=\left\{\chi \in \Phi \mid v_{\chi} \neq 0\right\}$. If $g \in G(k)$ then the weights of $g T g^{-1}$ on V are the characters of the form $g \cdot \chi$, where χ runs over the set of weights of T on V, and we have $V_{g \cdot \chi}=g \cdot V_{\chi}$ for each $\chi \in \Phi$. Let $\lambda \in Y_{T}$. Set $\Phi_{\lambda, \epsilon}=\{\chi \in \Phi \mid \operatorname{sgn}(\langle\lambda, \chi\rangle)=\epsilon\}$, where $\epsilon \in\{+,-, 0\}$. We define $V_{\lambda, \epsilon}$ to be the sum of the weight spaces V_{χ} for $\chi \in \Phi_{\lambda, \epsilon}$, and $V_{\lambda, \geq 0}:=V_{\lambda, 0} \oplus V_{\lambda,+}$ (as in [10, Rem. 2.8]).

Now we consider an important special case of this set-up. By [20, Lem. 1.1(a)], there is a G-equivariant embedding ρ of G (as a G-variety under the conjugation action) into a rational G-module V. Let T, etc., be as above. For $v \in V(A), \lim _{a \rightarrow 0} \lambda(a) \cdot v$ exists if and only if $v \in V_{\lambda, \geq 0}(A)$ [14, Ex. 2.1.1]. We see that $P_{\lambda}=\rho^{-1}\left(V_{\lambda, \geq 0}\right)$, and it follows that $P_{n \lambda}=P_{\lambda}$ for every $n \in \mathbb{N}$. By similar arguments, $L_{\lambda}=\rho^{-1}\left(V_{\lambda, 0}\right)$ and $U_{\lambda}=\rho^{-1}\left(V_{\lambda,+}\right)$.

Remark 2.8. There are only finitely many R-parabolic subgroups P containing a fixed maximal torus S of G. To see this, choose a G-equivariant embedding ρ of G into a rational G-module V, as in Remark 2.7. Let T be the unique maximal split subtorus of S. By Lemma 2.4(i), we can assume that $P=P_{\lambda}$ for some $\lambda \in Y_{T}$. We have $P_{\lambda}=\rho^{-1}\left(V_{\lambda, \geq 0}\right)$. Since Φ is finite, there are only finitely many possibilities for $\Phi_{\lambda, \geq 0}$ and $V_{\lambda, \geq 0}$ and hence only finitely many possibilities for P.

Lemma 2.9. Let T be a maximal split torus of G and let $\lambda, \mu \in Y_{T}$. Suppose $P_{\lambda}=P_{\mu}$. Then $P_{\lambda+\mu}=P_{\lambda}=P_{\mu}$.

Proof. Set $P=P_{\lambda}=P_{\mu}$. We prove first that $P_{\lambda+\mu} \supseteq P$. Choose a G-equivariant embedding ρ of G into a rational G-module V, and fix a maximal split torus T of G. For any $\nu \in Y_{T}$ and any $g \in G(\bar{k})$, we have $g \in P_{\nu}(\bar{k})$ if and only if

$$
\min \{\langle\nu, \chi\rangle \mid \chi \in \operatorname{supp}(\rho(g))\} \geq 0
$$

So let $g \in P(\bar{k})$. Then

$$
\min \{\langle\lambda, \chi\rangle \mid \chi \in \operatorname{supp}(\rho(g))\} \geq 0
$$

and

$$
\min \{\langle\mu, \chi\rangle \mid \chi \in \operatorname{supp}(\rho(g))\} \geq 0,
$$

so

$$
\min \{\langle\lambda+\mu, \chi\rangle \mid \chi \in \operatorname{supp}(\rho(g))\} \geq 0 .
$$

Hence $g \in P_{\lambda+\mu}(\bar{k})$. As P and $P_{\lambda+\mu}$ are smooth, this shows that $P_{\lambda+\mu} \supseteq P$.
To complete the proof, it is enough to show that $\operatorname{Lie}\left(P_{\lambda+\mu}\right)=\operatorname{Lie}(P)$. Let Φ be the set of roots of G with respect to T. By [14, Prop. 2.1.8], if $\nu \in Y_{T}$ then $\operatorname{Lie}\left(P_{\nu}\right)=\mathfrak{g}_{\nu, \geq 0}$. Since $\operatorname{Lie}\left(P_{\lambda}\right)=\operatorname{Lie}\left(P_{\mu}\right)$, we deduce that $\Phi_{\lambda, \geq 0}=\Phi_{\mu, \geq 0}$, so we have $\Phi_{\lambda+\mu, \geq 0}=\Phi_{\lambda, \geq 0}=\Phi_{\mu, \geq 0}$ and $\mathfrak{g}_{\lambda+\mu, \geq 0}=\mathfrak{g}_{\lambda, \geq 0}=\mathfrak{g}_{\mu, \geq 0}$. The result follows.

Lemma 2.10. Let P be an R-parabolic subgroup of G and let T be a maximal torus of P. Then there exists $\lambda \in Y_{T}$ such that $P_{\lambda}=P$.

Proof. Choose a finite Galois extension k^{\prime} / k such that T is k^{\prime}-split and set $\Gamma=\operatorname{Gal}\left(k^{\prime} / k\right)$. By Lemma 2.4(i) there exists $\lambda^{\prime} \in Y_{T_{k^{\prime}}}$ such that $P_{\lambda^{\prime}}=P_{k^{\prime}}$. Now $\gamma \cdot \lambda^{\prime}$ belongs to $Y_{T_{k^{\prime}}}$ for each $\gamma \in \Gamma$ and $\sum_{\gamma \in \Gamma} \gamma \cdot \lambda^{\prime}$ is Γ-stable, so it descends to an element λ of Y_{T}. It is easily seen that $P_{\gamma \cdot \lambda^{\prime}}=\gamma\left(P_{\lambda^{\prime}}\right)=\gamma(P)=P$ for all $\gamma \in \Gamma$. It follows from Lemma 2.9 that $P_{\lambda}=P$, so we are done.

Lemma 2.11. Let P and Q be R-parabolic subgroups of G. Suppose $P \cap Q$ contains a maximal split torus T of G. Then $P \cap Q$ is smooth.

Proof. We can write $P=P_{\lambda}$ and $Q=P_{\mu}$ for some $\lambda, \mu \in Y_{T}$, by Lemma 2.4(i). Since μ evaluates in P, it follows that $P \cap Q=P_{\lambda} \cap P_{\mu}=P_{\mu}\left(P_{\lambda}\right)$. Since P_{λ} is smooth and connected, this means that the intersection is an R-parabolic subgroup of P_{λ}, and hence is also smooth and connected. (A direct proof using the Lie algebras is also possible, like the one in [14, Prop. 2.1.8].)

Lemma 2.12. Let P and Q be R-parabolic subgroups of G. The following are equivalent.
(i) $P \cap Q$ contains a maximal split torus of G.
(ii) $P \cap Q$ contains a maximal torus of G.
(iii) $P_{\bar{k}} \cap Q_{\bar{k}}$ contains a maximal torus of $G_{\bar{k}}$.

Proof. Clearly (ii) implies (iii). If $P_{\bar{k}} \cap Q_{\bar{k}}$ contains a maximal torus of $G_{\bar{k}}$ then $P_{\bar{k}} \cap Q_{\bar{k}}$ is smooth by Lemma 2.11, so $P \cap Q$ is smooth; then $P \cap Q$ contains a maximal torus and this is a maximal torus of G. This shows that (iii) implies (ii). Now suppose S is a maximal split torus of G contained in $P \cap Q$. We can choose $\lambda, \mu \in Y_{S}$ such that $P=P_{\lambda}$ and $Q=P_{\mu}$. Let T be a maximal torus of G that contains $\operatorname{Im}(\lambda)$ and $\operatorname{Im}(\mu)$; then $T \subseteq L_{\lambda} \cap L_{\mu} \subseteq P_{\lambda} \cap P_{\mu}=P \cap Q$. Conversely, suppose T is a maximal torus of G contained in $P \cap Q$. By Lemma 2.10, there exist $\lambda, \mu \in Y_{T}$ such that $P_{\lambda}=P$ and $P_{\mu}=Q$. Then $\operatorname{Im}(\lambda) \operatorname{Im}(\mu)$ is a split torus, so it is contained in a maximal split torus S of G. We have $S \subseteq L_{\lambda} \cap L_{\mu} \subseteq P_{\lambda} \cap P_{\mu}=P \cap Q$. This shows that (i) and (ii) are equivalent.

Lemma 2.13. Suppose P and Q are two R-parabolic subgroups of a k-group G. Identify Y_{P} and Y_{Q} as subsets of Y_{G} in the usual way. Then $P \subseteq Q$ if and only if $Y_{P} \subseteq Y_{Q}$.
Proof. That $Y_{P} \subseteq Y_{Q}$ when $P \subseteq Q$ is obvious. For the other implication, first observe that for any $\lambda \in Y_{G}$ such that $Q=P_{\lambda}$, and any $1 \neq u \in U_{-\lambda}(k), u \cdot \lambda$ does not evaluate in Q. To see this, note that since the image of λ normalises $U_{-\lambda}$, for every $a \in k_{s}$ we can write

$$
u \lambda(a) u^{-1}=\lambda(a)\left(\lambda(a)^{-1} u \lambda(a)\right) u^{-1}=\lambda(a) u_{a}
$$

for some $u_{a} \in U_{-\lambda}\left(k_{s}\right)$. Since $1 \neq u \in U_{-\lambda}, u$ does not centralise $\operatorname{Im}(\lambda)$, and hence there exists $a \in k_{s}$ such that $u_{a} \neq 1$, which means that $\lambda(a) u_{a} \notin P_{\lambda}$, and we're done.

Now if we assume that $Y_{P} \subseteq Y_{Q}$, then we can find a maximal split torus T in the intersection $P \cap Q$: for any split torus of P is generated by the images of its cocharacters, and these also lie in Y_{Q}. Choose cocharacters $\lambda, \mu \in Y_{T}$ such that $P=P_{\lambda}$ and $Q=P_{\mu}$. Suppose P is not contained in Q. Now $U_{-\mu}(P)$ is a non-trivial unipotent subgroup of P by Lemma 2.1. Since the image of μ acts non-trivially on this subgroup, it cannot be wound, by [14, Prop. B4.4]. In particular, $U_{-\mu}(P)$ has a non-identity k-point u. Now μ is a cocharacter of Q evaluating in P, so it is a cocharacter of P, so $u \cdot \mu \in Y_{P}$. The first paragraph of the proof shows that $u \cdot \mu \notin Y_{Q}$, which gives a contradiction.
2.2. Spherical buildings. As general references on buildings we refer to [1] and [34]. We regard a spherical building - as opposed to its geometric realisation - as a combinatorial object. It is a simplicial complex with a distinguished set of subcomplexes called apartments. If G is reductive then we can form the spherical building Δ_{G} as follows: the simplices of Δ_{G} are the parabolic subgroups ordered by reverse inclusion, and an apartment of Δ_{G} is the subcomplex consisting of all parabolic subgroups containing a fixed maximal split torus T of
G. Two simplices are opposite if the corresponding parabolic subgroups are opposite. There is a notion of convexity for subcomplexes [32, Prop. 3.1]. An automorphism of a spherical building Δ is an automorphism of simplicial complexes that maps apartments bijectively to apartments. We write $\operatorname{Aut}(\Delta)$ for the group of automorphisms of Δ. For instance, any algebraic group automorphism of G - e.g., an inner automorphism - gives rise to an automorphism of Δ_{G}. There are also automorphisms of Δ_{G} arising from automorphisms of the ground field k. Both these kinds of automorphism have counterparts for vector edifices: see Section 4.2 and Section 5.2.

3. Edifices

In order to define vector edifices, we need to understand how to glue together the \mathbb{K}-vector spaces $Y_{T}(\mathbb{K})$ for the maximal split tori of a k-group G in a suitable way, where $\mathbb{K}=\mathbb{R}$ or \mathbb{Q}. This first requires us to attach an R-parabolic subgroup to an arbitrary element of $Y_{T}(\mathbb{K})$ (above, we have defined P_{λ} just for $\lambda \in Y_{T}$). This work is achieved in the next few subsections.

First we clarify some notation. When we write, say, $\lambda \in Y_{T}(\mathbb{K})$ then it is understood that we are working with a fixed choice of T. If μ is an actual cocharacter - that is, if $\mu \in Y_{G}$ - then there can exist many different maximal split tori T such that $\mu \in Y_{T}$, so there is potential for misunderstanding. This does not cause problems, however, for we show below that our constructions when applied to such a μ don't depend on the choice of T : see the paragraph following Definition 3.7.
3.1. Linear maps induced by homomorphisms of tori. Suppose $f: T \rightarrow T^{\prime}$ is a homomorphism of split k-tori. Then we get an induced map $Y_{T} \rightarrow Y_{T^{\prime}}$ via $\lambda \mapsto f \circ \lambda$, and this extends to a \mathbb{K}-linear map $f_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{T^{\prime}}(\mathbb{K})$. This map is injective if f has finite kernel. In particular, if $T \subseteq G$ for some k-group G and $g \in G(k)$ then the conjugation map Inn_{g} induces a linear isomorphism from $Y_{T}(\mathbb{K})$ to $Y_{g T g^{-1}}(\mathbb{K})$; we denote the image of $\lambda \in Y_{T}(\mathbb{K})$ by $g \cdot \lambda$. If in fact $\lambda \in Y_{T}$, then $g \cdot \lambda \in Y_{g T g^{-1}}$ as just defined agrees with the usual definition of $g \cdot \lambda$ given in Section 2. We also have functoriality: if $f^{\prime}: T^{\prime} \rightarrow T^{\prime \prime}$ is another homomorphism of split k-tori then $\left(f^{\prime} \circ f\right)_{*}=\left(f^{\prime}\right)_{*} \circ f_{*}$. In particular, if $f: G \rightarrow H$ is a homomorphism of k-groups then, given split k-tori $T \subseteq G$ and $S \subseteq H$ such that $f(T) \subseteq S$, we have a $\operatorname{map} h_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{S}(\mathbb{K})$, where $h: T \rightarrow S$ is the restriction of f. Often we abuse notation slightly and write $f_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{S}(\mathbb{K})$ for this map.

We return to the subject of linear maps induced by group homomorphisms in Section 4.2 below.
3.2. More on R-parabolic subgroups. Now we can define P_{λ}, L_{λ} and U_{λ} for $\lambda \in Y_{T}(\mathbb{K})$, where $T \subseteq G$ is a split torus. We may as well assume that T is a maximal split torus of G and $\lambda \in Y_{T}(\mathbb{K})$. Then we may choose a G-equivariant embedding ρ of G into a rational G-module V. Using the notation from Remark 2.7, we define a subspace W of $Y_{T}(\mathbb{K})$ by

$$
W=\left\{\mu \in Y_{T}(\mathbb{K}) \mid\langle\mu, \chi\rangle=0 \text { for all } \chi \in \Phi_{\lambda, 0}\right\} .
$$

Clearly $\lambda \in W$, by the definition of $\Phi_{\lambda, 0}$. Since $\Phi_{\lambda, 0} \subseteq X_{T}, W$ is defined by equations with coefficients in \mathbb{Z} and hence is defined over \mathbb{Q}. Therefore, we get that $\operatorname{dim}_{\mathbb{Q}}\left(W \cap Y_{T}(\mathbb{Q})\right)=$ $\operatorname{dim}_{\mathbb{K}} W$, which implies that $W \cap Y_{T}(\mathbb{Q})$ is dense in W. Thus there exists a sequence $\left(\lambda_{n}\right)$ in
$W \cap Y_{T}(\mathbb{Q})$ converging to λ. For all $n \in \mathbb{N}$ and for $\lambda^{\prime}:=\lambda_{n}$, it follows from the definition of W that

$$
\begin{equation*}
\operatorname{sgn}\left(\left\langle\lambda^{\prime}, \chi\right\rangle\right)=\operatorname{sgn}(\langle\lambda, \chi\rangle) \tag{3.1}
\end{equation*}
$$

holds for all $\chi \in \Phi_{\lambda, 0}$, and for n large enough (3.1) even holds for all $\chi \in \Phi_{\lambda, \pm}$, because the linear functional $\langle-, \chi\rangle$ is continuous. An element $\lambda^{\prime} \in Y_{T}(\mathbb{Q})$ satisfying (3.1) is called a rational cocharacter approximation to λ (with respect to V) $\left(\right.$ in $Y_{T}(\mathbb{K})$). Multiplying a rational cocharacter approximation by a suitable positive integer, we may obtain an element $\lambda^{\prime} \in Y_{T}$ satisfying (3.1), which we call a cocharacter approximation to λ (with respect to $V)$. If $\lambda^{\prime} \in Y_{T}(\mathbb{Q})$ then we set $P_{\lambda^{\prime}}=P_{n \lambda^{\prime}}, L_{\lambda^{\prime}}=L_{n \lambda^{\prime}}$ and $U_{\lambda^{\prime}}=U_{n \lambda^{\prime}}$ for any $n \in \mathbb{N}$ such that $n \lambda^{\prime} \in Y_{G}$: clearly this is well-defined. We call a sequence $\left(\lambda_{n}\right)$ of rational cocharacter approximations to λ such that $\lambda_{n} \rightarrow \lambda$ a rational approximating sequence to λ (with respect to $V)\left(\right.$ in $\left.Y_{T}(\mathbb{K})\right)$.

Definition 3.2. Given $\lambda \in Y_{T}(\mathbb{K})$ and a rational cocharacter approximation λ^{\prime} to λ, we define $P_{\lambda}=P_{\lambda^{\prime}}, L_{\lambda}=L_{\lambda^{\prime}}$, and $U_{\lambda}=U_{\lambda^{\prime}}$.
Lemma 3.3. With the notation as above, we have the following.
(i) The subgroups P_{λ}, L_{λ} and U_{λ} do not depend on the choice of λ^{\prime} or the choice of ρ.
(ii) For any $g \in G(k)$, if $\lambda^{\prime} \in Y_{T}$ is a cocharacter approximation to λ then $g \cdot \lambda^{\prime} \in Y_{g T g^{-1}}$ is a cocharacter approximation to $g \cdot \lambda$. Consequently, for any $g \in G(k)$, we have $P_{g \cdot \lambda}=g P_{\lambda} g^{-1}, L_{g \cdot \lambda}=g L_{\lambda} g^{-1}$ and $U_{g \cdot \lambda}=g U_{\lambda} g^{-1}$.
Proof. (i). We have $P_{\lambda^{\prime}}=\rho^{-1}\left(V_{\lambda^{\prime}, \geq 0}\right), L_{\lambda^{\prime}}=\rho^{-1}\left(V_{\lambda^{\prime}, 0}\right)$ and $U_{\lambda^{\prime}}=\rho^{-1}\left(V_{\lambda^{\prime},>0}\right)$ (Remark 2.7), so for a given ρ the fact that these subgroups do not depend on the choice of λ^{\prime} is clear. Now let $\rho_{i}: G \rightarrow V_{i}$ be G-equivariant embeddings with Φ_{i} the sets of weights of T on V_{i} for $i=1,2$. Let $\rho: G \rightarrow V_{1} \oplus V_{2}$ be the diagonal embedding, and let $\Phi=\Phi_{1} \cup \Phi_{2}$ be the associated set of weights. Choose $\lambda^{\prime} \in Y_{T}$ such that λ^{\prime} is a cocharacter approximation to λ with respect to $V_{1} \oplus V_{2}$. Then $\operatorname{sgn}\left(\left\langle\lambda^{\prime}, \chi\right\rangle\right)=\operatorname{sgn}(\langle\lambda, \chi\rangle)$ for all $\chi \in \Phi_{1}$ and for all $\chi \in \Phi_{2}$, so λ^{\prime} is a cocharacter approximation to λ with respect to V_{1} and with respect to V_{2}. This proves part (i).
(ii). The first statement follows from the fact that the pairing $\langle-,-\rangle$ is $G(k)$-invariant, and the fact that the set of weights of $g T g^{-1}$ on V is $g \cdot \Phi$, where Φ is the set of weights of T. The second statement now follows.

Remarks 3.4. (i). Let S be any split torus of G, let $\lambda \in Y_{S}(\mathbb{K})$, and let T be any maximal split torus of G containing S. We claim that there exists a cocharacter approximation λ^{\prime} to λ contained in $Y_{S} \subseteq Y_{T}$. To see this, note that in the construction above, the S-weights on V are given by the restrictions of the T-weights on V to S, because $S \subseteq T$. We may therefore perform the construction of λ^{\prime} above entirely within $Y_{S}(\mathbb{K})$ just using these restrictions, and we obtain a cocharacter approximation $\lambda^{\prime} \in Y_{S}$ satisfying (3.1). Analogous conclusions hold for rational cocharacter approximations and rational approximating sequences in $Y_{S}(\mathbb{K})$.
(ii). Now suppose T_{1} and T_{2} are two maximal split tori of G that contain S and let i_{1}, i_{2} be the inclusions of S in T_{1}, T_{2} respectively. Let λ^{\prime} be the cocharacter approximation contained in $Y_{S} \subseteq Y_{T_{1}} \cap Y_{T_{2}}$ from part (i). It is immediate from the construction that $L_{\left(i_{j}\right)_{*}(\lambda)}=L_{i_{j} \circ \lambda^{\prime}}$ and $P_{\left(i_{j}\right)_{*}(\lambda)}=P_{i_{j} \circ \lambda^{\prime}}$ for $j=1,2$, so $L_{\left(i_{1}\right)_{*}(\lambda)}=L_{\left(i_{2}\right)_{*}(\lambda)}=L_{\lambda}$ and $P_{\left(i_{1}\right)_{*}(\lambda)}=P_{\left(i_{2}\right) *(\lambda)}=P_{\lambda}$. In particular, both T_{1} and T_{2} are contained in L_{λ}, and there is no dependence of our construction on the choice of a maximal split torus containing S.
(iii). Let T be a maximal split torus of G. It is clear from the construction that if $\lambda \in Y_{T}(\mathbb{K})$ then $T \subseteq L_{\lambda} \subseteq P_{\lambda}$. It is also clear that $P_{\lambda}=\rho^{-1}\left(V_{\lambda, \geq 0}\right), L_{\lambda}=\rho^{-1}\left(V_{\lambda, 0}\right)$ and $U_{\lambda}=\rho^{-1}\left(V_{\lambda,>0}\right)$ for any $\lambda \in Y_{T}(\mathbb{K})$.

The next result is an extension to all of $Y_{T}(\mathbb{K})$ of the obvious fact that for a cocharacter $\lambda \in Y_{T}$ we have $L_{\lambda}=G$ if and only if λ evaluates in the centre of G.

Lemma 3.5. Let T be a maximal split torus of G and let $\lambda \in Y_{T}(\mathbb{K})$. Let Z_{λ} be the unique maximal split torus of $Z\left(L_{\lambda}\right)^{0}$ and let Z be the unique maximal split torus of $Z(G)^{0}$. Then:
(i) $\lambda \in Y_{Z_{\lambda}}(\mathbb{K})$.
(ii) $L_{\lambda}=G$ if and only if $\lambda \in Y_{Z}(\mathbb{K})$.

Proof. (i). Let $\left(\lambda_{n}\right)$ be a rational approximating sequence to λ in $Y_{T}(\mathbb{K})$. Choose $a_{n} \in \mathbb{N}$ such that $a_{n} \lambda_{n} \in Y_{T}$ for each $n \in \mathbb{N}$. Then for all $n \in \mathbb{N}, L_{\lambda_{n}}=L_{a_{n} \lambda_{n}}=C_{G}\left(a_{n} \lambda_{n}\right)$, so $a_{n} \lambda_{n} \in Y_{Z_{\lambda_{n}}}$, and so $\lambda_{n} \in Y_{Z_{\lambda_{n}}}(\mathbb{K})$. But $L_{\lambda_{n}}=L_{\lambda}$ for n sufficiently large, and $Y_{Z_{\lambda}}(\mathbb{K})$ is closed in $Y_{T}(\mathbb{K})$, so $\lambda \in Y_{Z_{\lambda}}(\mathbb{K})$, as required.
(ii). The forward implication follows from part (i). The reverse implication follows from Remark 3.4(i) applied to the split torus Z - we may find a cocharacter approximation $\lambda^{\prime} \in Y_{Z}$ and then we have $L_{\lambda}=L_{\lambda^{\prime}}=G$.
3.3. The vector edifice. Now we can define $Y_{G}(\mathbb{K})$ and $V_{G}(\mathbb{K})$. We work with the disjoint union $\bigsqcup_{T} Y_{T}(\mathbb{K})$, where T ranges over the maximal split tori of G. It is convenient to write elements of $\bigsqcup_{T} Y_{T}(\mathbb{K})$ explicitly as pairs (T, λ), where T is a maximal split torus of G and $\lambda \in Y_{T}(\mathbb{K})$. The group $G(k)$ acts on $\bigsqcup_{T} Y_{T}(\mathbb{K})$ by $g \cdot(T, \lambda)=\left(g T g^{-1}, g \cdot \lambda\right)$.

We define two relations on $\bigsqcup_{T} Y_{T}(\mathbb{K})$ by

$$
\left(T_{1}, \lambda_{1}\right) \sim\left(T_{2}, \lambda_{2}\right) \text { if there exists } l \in L_{\lambda_{1}}(k) \text { such that } T_{2}=l T_{1} l^{-1} \text { and } \lambda_{2}=l \cdot \lambda_{1}
$$

and

$$
\left(T_{1}, \lambda_{1}\right) \approx\left(T_{2}, \lambda_{2}\right) \text { if there exists } g \in P_{\lambda_{1}}(k) \text { such that } T_{2}=g T_{1} g^{-1} \text { and } \lambda_{2}=g \cdot \lambda_{1} .
$$

Lemma 3.6. With the notation as above, we have the following.
(i) If $\left(T_{1}, \lambda_{1}\right) \sim\left(T_{2}, \lambda_{2}\right)$ then $L_{\lambda_{1}}=L_{\lambda_{2}}$.
(ii) If $\left(T_{1}, \lambda_{1}\right) \approx\left(T_{2}, \lambda_{2}\right)$ then $P_{\lambda_{1}}=P_{\lambda_{2}}$.
(iii) The relations \sim and \approx are equivalence relations.

Proof. Parts (i) and (ii) are a consequence of Lemma 3.3(ii), and (iii) follows from (i) and (ii).

Definition 3.7. We define

$$
Y_{G}(\mathbb{K}):=\bigsqcup_{T} Y_{T}(\mathbb{K}) / \sim
$$

and

$$
V_{G}(\mathbb{K}):=\bigsqcup_{T} Y_{T}(\mathbb{K}) / \approx,
$$

and we call $V_{G}(\mathbb{K})$ the vector edifice of G (over \mathbb{K}). When we refer to "a vector edifice V " below, it is with the understanding that $V=V_{G}(\mathbb{K})$ for some k-group G and for $\mathbb{K}=\mathbb{Q}$ or \mathbb{R}.

We can regard $V_{G}(\mathbb{K})$ as a quotient of $Y_{G}(\mathbb{K})$, since \approx is coarser than \sim, and we denote the corresponding projection by

$$
\phi_{G}: Y_{G}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})
$$

We write $\varpi_{G}: \bigsqcup_{T} Y_{T}(\mathbb{K}) \rightarrow Y_{G}(\mathbb{K})$ for the canonical projection and we define

$$
\omega_{G}:=\phi_{G} \circ \varpi_{G}: \bigsqcup_{T} Y_{T}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K}) .
$$

Henceforth, we often abuse notation and denote elements of $Y_{G}(\mathbb{K})$ simply by λ. Note that we may regard Y_{G} as a subset of $Y_{G}(\mathbb{K})$: for given $\lambda \in Y_{G}$, the equivalence relation \sim does the job of identifying all pairs (T, λ) where T is a maximal split torus of G containing the image of λ, because all such tori are conjugate by elements of $L_{\lambda}(k)$. More generally, if S is a subtorus of two maximal split tori T_{1} and T_{2}, then \sim formally matches up the "common subspace" $Y_{S}(\mathbb{K})$ inside $Y_{T_{1}}(\mathbb{K})$ and $Y_{T_{2}}(\mathbb{K})$.
Remark 3.8. We observe that Lemma 2.2 holds not only for elements of Y_{G} but also for elements of $Y_{G}(\mathbb{K})$: If $\lambda \in Y_{G}(\mathbb{K})$ and $\mu \in Y_{P_{\lambda}}(\mathbb{K})$ then there exist a maximal split torus T of G and $u \in U_{\lambda}(k)$ such that $\lambda, u \cdot \mu$ belong to $Y_{T}(\mathbb{K})$. To see this, repeat the proof of Lemma 2.2 with $Y_{T_{0}}, Y_{T_{1}}$, and Y_{T} replaced by $Y_{T_{0}}(\mathbb{K}), Y_{T_{1}}(\mathbb{K})$, and $Y_{T}(\mathbb{K})$.

Remark 3.9. Lemmas 2.3, 2.4 and 2.5 and Corollary 2.6 extend to $Y_{G}(\mathbb{K})$: just apply each original result to suitable cocharacter approximations.

Remarks 3.10. (i). One checks easily that the action of $G(k)$ on $\bigsqcup_{T} Y_{T}(\mathbb{K})$ descends to give actions of $G(k)$ on $Y_{G}(\mathbb{K})$ and $V_{G}(\mathbb{K})$. We sketch the argument for $V_{G}(\mathbb{K})$. Suppose we have a pair (T, λ) consisting of a maximal split torus T and $\lambda \in Y_{T}(\mathbb{K})$, and elements $p \in P_{\lambda}(k)$ and $g \in G(k)$. We wish to show that

$$
\left(g T g^{-1}, g \cdot \lambda\right) \approx\left(g\left(p T p^{-1}\right) g^{-1}, g \cdot(p \cdot \lambda)\right)=\left(g p T(g p)^{-1},(g p) \cdot \lambda\right)
$$

Since both $g T g^{-1}$ and $g p T(g p)^{-1}$ are split tori of $g P_{\lambda} g^{-1}=P_{g . \lambda}$, there is a $p^{\prime} \in P_{g \cdot \lambda}(k)$ such that p^{\prime} conjugates $g T g^{-1}$ to $g p T(g p)^{-1}$. Writing $p^{\prime}=g q g^{-1}$ for some $q \in P_{\lambda}(k)$, we see that $q^{-1} p$ belongs to $N_{P_{\lambda}(k)}(T)$, and this group coincides with $N_{L_{\lambda}(k)}(T)$, by the extension of Lemma 2.3 to $Y_{G}(\mathbb{K})$ (Remark 3.9). Consequently, $q^{-1} p$ fixes λ, so

$$
p^{\prime} \cdot(g \cdot \lambda)=(g q) \cdot \lambda=(g p) \cdot \lambda,
$$

and we are done.
(ii). In a similar vein, if $(T, \lambda) \approx(T, \mu)$ then $\lambda=\mu$. For suppose $g \in P_{\lambda}(k)$ is such that $g T g^{-1}=T$ and $g \cdot \lambda=\mu$. Then, by appealing to the extension of Lemma 2.3 to $Y_{G}(\mathbb{K})$ as in (i), we see that $g \in L_{\lambda}(k)$, and hence $\lambda=\mu$.

Definition 3.11. Given $x \in V_{G}(\mathbb{K})$, we set $P_{x}:=P_{\lambda}$ for any $\lambda \in Y_{G}(\mathbb{K})$ such that $\phi_{G}(\lambda)=$ x. Since the relation \approx only identifies pairs $\left(T_{1}, \lambda_{1}\right)$ and $\left(T_{2}, \lambda_{2}\right)$ for which $P_{\lambda_{1}}=P_{\lambda_{2}}$ (Lemma 3.6(ii)), this is well-defined.
Remark 3.12. For now we regard $V_{G}(\mathbb{K})$ just as a set. In Section 6 we topologise it by endowing it with a metric.
Example 3.13. The definition of P_{λ}, L_{λ} and U_{λ} for $\lambda \in Y_{G}(\mathbb{K})$ agree with those of $[7$, Sec. 2.2] when G is reductive (where the definitions are given in terms of pairings with roots). To see this, we can assume by Remark 3.4(iii) that k is separably closed and choose a maximal
torus T of G. Choose an equivariant embedding i of G in a rational G-module V. Let $\lambda \in Y_{T}(\mathbb{K})$ and let $\lambda^{\prime} \in Y_{T}$ be a cocharacter approximation to λ. The derivative of i gives a G-equivariant embedding of \mathfrak{g} in $T_{0}(V)$, and $T_{0}(V)$ is isomorphic to V as a G-module. Hence all the roots of G with respect to T appear in the set of weights of T on V. It follows that $\operatorname{sgn}\left\langle\lambda^{\prime}, \alpha\right\rangle=\operatorname{sgn}\langle\lambda, \alpha\rangle$ for every root α. Now P_{λ} is equal to $P_{\lambda^{\prime}}$, which is generated by T together with the root groups U_{α} for the roots α such that $\left\langle\lambda^{\prime}, \alpha\right\rangle \geq 0$. This shows that P_{λ} coincides with the subgroup defined in [7, Sec. 2.2], since $\langle\lambda, \alpha\rangle \geq 0$ if and only if $\left\langle\lambda^{\prime}, \alpha\right\rangle \geq 0$ for each root α. The argument for L_{λ} and U_{λ} is similar: here $L_{\lambda^{\prime}}$ is generated by T together with the root groups U_{α} for the roots α such that $\left\langle\lambda^{\prime}, \alpha\right\rangle=0$, and $U_{\lambda^{\prime}}$ is generated by T together with the root groups U_{α} for the roots α such that $\left\langle\lambda^{\prime}, \alpha\right\rangle>0$.

Lemma 3.14. Let $f: G \rightarrow H$ be a homomorphism of connected k-groups. Let T be a maximal split torus of G and let S be a maximal split torus of H such that $f(T) \subseteq S$. Let $\lambda \in Y_{T}(\mathbb{K})$. Then there exist a G-equivariant embedding $\nu: G \rightarrow V$, an H-equivariant embedding $\psi: H \rightarrow W$, and $\lambda^{\prime} \in Y_{T}$ such that λ^{\prime} is a cocharacter approximation to λ with respect to V and $f_{*}\left(\lambda^{\prime}\right)$ is a cocharacter approximation to $f_{*}(\lambda)$ with respect to W.

Proof. Pick a G-equivariant embedding $\phi: G \rightarrow V_{1}$ for some rational G-module V_{1}, and an H-equivariant embedding $\psi: H \rightarrow W$ for a rational H-module W. Define $\nu: G \rightarrow$ $V:=V_{1} \oplus W$ by $\nu(g)=(\phi(g), \psi(f(g)))$ for $g \in G(A)$ for any k-algebra A. Then ν is a G-equivariant embedding of G in V, and it follows from the construction that if λ^{\prime} is a cocharacter approximation to λ with respect to V then $f_{*}\left(\lambda^{\prime}\right)$ is a cocharacter approximation to $f_{*}(\lambda)$ with respect to W. Here we used the fact that $\langle\lambda, \chi \circ f\rangle=\langle f \circ \lambda, \chi\rangle$, where χ is any weight of S on W and $\lambda \in Y_{T}$, and that this formula extends to all $\lambda \in Y_{T}(\mathbb{K})$ (replacing $f \circ \lambda$ with $\left.f_{*}(\lambda)\right)$.

Remark 3.15. The proof of Lemma 3.14 actually gives a stronger conclusion: in the notation of the lemma there exist equivariant embeddings such that for any $\lambda \in Y_{T}(\mathbb{K})$ and any cocharacter approximation λ^{\prime} to λ with respect to $V, f_{*}\left(\lambda^{\prime}\right)$ is also a cocharacter approximation to $f_{*}(\lambda)$ with respect to W. It follows that if $\left(\lambda_{n}\right)$ is a rational approximating sequence in $Y_{T}(\mathbb{K})$ to λ then $\left(f\left(\lambda_{n}\right)\right)$ is a rational approximating sequence in $Y_{S}(\mathbb{K})$ to $f_{*}(\lambda)$.
Corollary 3.16. Suppose G is a subgroup of a connected k-group H. Then for any $\lambda \in$ $Y_{G}(\mathbb{K})$ we have $P_{\lambda}=P_{\lambda}(H) \cap G, L_{\lambda}=L_{\lambda}(H) \cap G$ and $U_{\lambda}=U_{\lambda}(H) \cap G$.
Proof. Let $i: G \rightarrow H$ be the inclusion. By Lemma 3.14, there exists $\lambda^{\prime} \in Y_{G}$ such that we have the following equalities: $P_{\lambda}=P_{\lambda^{\prime}} ; L_{\lambda}=L_{\lambda^{\prime}} ; U_{\lambda}=U_{\lambda^{\prime}} ; P_{i^{*}(\lambda)}(H)=P_{i^{*}\left(\lambda^{\prime}\right)}(H)$; $L_{i^{*}(\lambda)}(H)=L_{i^{*}\left(\lambda^{\prime}\right)}(H)$; and $U_{i^{*}(\lambda)}(H)=U_{i^{*}\left(\lambda^{\prime}\right)}(H)$. But $P_{i^{*}\left(\lambda^{\prime}\right)}(H)=P_{\lambda^{\prime}}(H)$, because $i^{*}\left(\lambda^{\prime}\right)$ is just λ^{\prime} viewed as an element of Y_{H} via the inclusion $Y_{G} \subseteq Y_{H}$, and similarly $L_{i^{*}\left(\lambda^{\prime}\right)}(H)=$ $L_{\lambda^{\prime}}(H)$ and $U_{i^{*}\left(\lambda^{\prime}\right)}(H)=U_{\lambda^{\prime}}(H)$. The result follows since $P_{\lambda^{\prime}}=P_{\lambda^{\prime}}(H) \cap G, L_{\lambda^{\prime}}=L_{\lambda^{\prime}}(H) \cap G$ and $U_{\lambda^{\prime}}=U_{\lambda^{\prime}}(H) \cap G$.

Lemma 3.17. Let $f: G \rightarrow H$ be a homomorphism of k-groups, let T be a maximal split torus of G and let $\lambda, \mu \in Y_{T}(\mathbb{K})$. Let S be a maximal split torus of H such that $f(T) \subseteq S$.
(i) We have $f\left(P_{\lambda}\right) \subseteq P_{f_{*}(\lambda)}$ and $f\left(L_{\lambda}\right) \subseteq L_{f_{*}(\lambda)}$, with equality if f is surjective.
(ii) If f has finite kernel, then $P_{f_{*}(\lambda)}=P_{f_{*}(\mu)}$ implies $P_{\lambda}=P_{\mu}$, and similarly $L_{f_{*}(\lambda)}=$ $L_{f_{*}(\mu)}$ implies $L_{\lambda}=L_{\mu}$. Hence, if f is surjective and has finite kernel, then for $\lambda, \mu \in Y_{T}(\mathbb{K})$ we have $P_{\lambda}=P_{\mu}$ if and only if $P_{f_{*}(\lambda)}=P_{f_{*}(\mu)}$, and $L_{\lambda}=L_{\mu}$ if and only if $L_{f_{*}(\lambda)}=L_{f_{*}(\mu)}$.

Proof. (i). For any $\lambda^{\prime} \in Y_{T}$, it is immediate from the definitions that $f\left(P_{\lambda^{\prime}}\right) \subseteq P_{f_{*}\left(\lambda^{\prime}\right)}$ and $f\left(L_{\lambda^{\prime}}\right) \subseteq L_{f_{*}\left(\lambda^{\prime}\right)}$, and we have equality by [14, Cor. 2.1.9] if f is surjective (note that the hypotheses of loc. cit. hold because a surjective map of smooth affine group schemes is faithfully flat by [22, Prop. 1.70]). By Lemma 3.14 there exists $\lambda^{\prime} \in Y_{T}$ such that λ^{\prime} is a cocharacter approximation to λ and $f_{*}\left(\lambda^{\prime}\right)$ is a cocharacter approximation to $f_{*}(\lambda)$. So $f\left(P_{\lambda}\right)=f\left(P_{\lambda^{\prime}}\right) \subseteq P_{f_{*}\left(\lambda^{\prime}\right)}=P_{f_{*}(\lambda)}$, with equality if f is surjective, and similarly for L_{λ}.
(ii). As in part (i), it is enough by Lemma 3.14 to prove the result when $\lambda \in Y_{G}$. Let $P=P_{f_{*}(\lambda)}$. Since f has finite kernel, the preimage $f^{-1}(P)$ is a finite extension of the smooth connected group P_{λ}. Hence, we may conclude that $\left(\left(f_{\bar{k}}\right)^{-1}\left(P_{\bar{k}}\right)\right)_{\text {red }}$ and $\left(P_{\lambda}\right)_{\bar{k}}$ have the same identity component, which is $\left(P_{\lambda}\right)_{\bar{k}}$ itself. Setting $Q=P_{f_{*}(\mu)}$, we deduce that

$$
\begin{aligned}
P=Q & \Longrightarrow f^{-1}(P)=f^{-1}(Q) \Longrightarrow\left(\left(f_{\bar{k}}\right)^{-1}\left(P_{\bar{k}}\right)\right)_{\mathrm{red}}=\left(\left(f_{\bar{k}}\right)^{-1}\left(Q_{\bar{k}}\right)\right)_{\mathrm{red}} \\
& \Longrightarrow\left(P_{\lambda}\right)_{\bar{k}}=\left(P_{\mu}\right)_{\bar{k}} \Longrightarrow P_{\lambda}=P_{\mu} .
\end{aligned}
$$

A similar argument works for L_{λ} and L_{μ}. The final assertion now follows from part (i).
3.4. Apartments. It follows from Remark 3.10 that the restriction of ϕ_{G} gives rise to a bijection from $Y_{T}(\mathbb{K})$ onto its image in $V_{G}(\mathbb{K})$; we denote this image by $V_{T}(\mathbb{K})$ and we call this an apartment of $V_{G}(\mathbb{K})$. The set $V_{T}(\mathbb{K})$ inherits the structure of a \mathbb{K}-vector space from $Y_{T}(\mathbb{K})$. We denote the common zero of all the apartments by 0 .

Remark 3.18. Our new notation has introduced a potential inconsistency - given a split torus T in G, we have two objects labelled $V_{T}(\mathbb{K})$: the apartment of $V_{G}(\mathbb{K})$ corresponding to T, and the vector edifice of T as a k-group in its own right. It is not hard to see that these two objects are essentially the same, but we leave a proper discussion of this until we have introduced linear maps below; see Remark 4.12.

Lemma 3.19. The map $T \mapsto V_{T}(\mathbb{K})$ gives a bijection between the set of maximal split tori in G and the set of apartments in $V_{G}(\mathbb{K})$.

Proof. The given map is surjective by definition, so we just need to show that it is injective. Suppose T_{1} and T_{2} are maximal split tori in G, and suppose that $V_{T_{1}}(\mathbb{K})=V_{T_{2}}(\mathbb{K})$. Then for all $\lambda \in Y_{T_{1}}$ there exists $\mu \in Y_{T_{2}}$ such that $\left(T_{1}, \lambda\right) \approx\left(T_{2}, \mu\right)$. This means that $T_{2} \subseteq P_{\lambda}$ for every $\lambda \in Y_{T_{1}}$, and hence $T_{2} \subseteq P_{\lambda} \cap P_{-\lambda}=L_{\lambda}$ for every $\lambda \in Y_{T_{1}}$. Hence T_{2} commutes with every cocharacter of T_{1}, which implies that T_{2} commutes with T_{1}, and we conclude that $T_{2}=T_{1}$, by maximality of T_{1} and T_{2}.
3.5. Common apartments, addition, opposites. As detailed in the introduction, the structures we have just defined are generalisations to arbitrary k-groups of constructions which already appear in the literature for reductive groups, where they give rise to (vector and spherical) buildings [16], [24, Ch. 2, Sec. 2], [7, Sec. 2.4]. However, we cannot import all of the structure/properties we see in the reductive case to the case of arbitrary G. One fundamental problem is that two points of $V_{G}(\mathbb{K})$ need not lie in a common apartment, as Example 3.22 below shows. ${ }^{2}$ Before giving that example, we give a characterisation of when two points do lie in a common apartment.

[^1]Lemma 3.20. Given $x, y \in V_{G}(\mathbb{K})$, the apartments containing both x and y are precisely those of the form $V_{T}(\mathbb{K})$ where T is a maximal split torus of G contained in $P_{x} \cap P_{y}$. In particular, x and y are contained in a common apartment if and only if $P_{x} \cap P_{y}$ contains a maximal split torus of G.

Proof. If x and y are contained in $V_{T}(\mathbb{K})$ for some maximal split torus T, then we may write $x=\phi_{G}(\lambda), y=\phi_{G}(\mu)$ for $\lambda, \mu \in Y_{T}(\mathbb{K})$. But then $T \subseteq P_{\lambda} \cap P_{\mu}=P_{x} \cap P_{y}$ by Remark 3.4(iii). Conversely, let T be a maximal split torus of G contained in $P_{x} \cap P_{y}$. Choose $\lambda, \mu \in Y_{G}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(\mu)$. By Lemma 2.4(i) and Remark 3.9, there exist $u \in U_{\lambda}(k)$ and $v \in U_{\mu}(k)$ such that $u \cdot \lambda, v \cdot \mu \in Y_{T}(\mathbb{K})$. Then $x=\phi_{G}(u \cdot \lambda) \in V_{T}(\mathbb{K})$ and $y=\phi_{G}(v \cdot \mu) \in V_{T}(\mathbb{K})$.

Remark 3.21. In particular, taking $x=y$ in Lemma 3.20 we see that for any $x \in V_{G}(\mathbb{K}), x$ belongs to $V_{T}(\mathbb{K})$ if and only if T is contained in P_{x}. This also shows that if T^{\prime} is another maximal split torus of G such that $x \in V_{T^{\prime}}(\mathbb{K})$, then there is $g \in P_{x}(k)$ such that $T^{\prime}=g T g^{-1}$.

Example 3.22. Let B be a Borel subgroup of a reductive group G with G not a torus, and write $B=P_{\lambda}$ for some $\lambda \in Y_{G}$. Then $\phi_{B}(-\lambda)$ and $\phi_{B}(-u \cdot \lambda)$ do not lie in a common apartment of $V_{B}(\mathbb{K})$ for any $1 \neq u \in R_{u}(B)(k)$, because $P_{-\lambda}(B)=T$ and $P_{-u \cdot \lambda}(B)=$ $u T u^{-1}$ are distinct maximal tori of B, and $V_{T}(\mathbb{K})$ (resp., $V_{u T u^{-1}}(\mathbb{K})$) is the unique apartment containing $\phi_{B}(-\lambda)$ (resp., $\phi_{B}(-u \cdot \lambda)$), by Lemma 3.20.

The preceding discussion motivates the following definition.
Definition 3.23. We say that $V_{G}(\mathbb{K})$ has the common apartment property if every $x, y \in$ $V_{G}(\mathbb{K})$ lie in a common apartment of $V_{G}(\mathbb{K})$.

It follows from Lemma 3.20 that the common apartment property holds for G if and only if the intersection of any two R-parabolic subgroups contains a maximal split torus of G this is the case for reductive groups, and more generally for pseudo-reductive groups, where the R-parabolic subgroups are the same thing as the pseudo-parabolic subgroups, see [14, Def. 2.2.1, Ex. 2.2.2]. In fact, [14, Prop. 3.5.12(1)] shows that the intersection of two pseudoparabolic subgroups in any k-group G contains a maximal split torus, but working with pseudo-parabolic subgroups rather than R-parabolic subgroups does not give the structure we need for applications below. Returning to the example of the Borel subgroup B in Example 3.22, the only pseudo-parabolic subgroup of B is B itself; in contrast, we show below (Example 4.14) that there is a naturally arising bijection between the vector edifice $V_{B}(\mathbb{K})$ and the vector edifice $V_{G}(\mathbb{K})$.

An immediate consequence of this lack of common apartment is that there is no obvious addition law on $V_{G}(\mathbb{K})$ in general, and the notions of convexity and opposition become more complicated. One can, however, define addition when the two points one considers live in a common apartment.

Lemma 3.24. (i) Let T be a maximal split torus of G. Suppose $x, y \in V_{G}(\mathbb{K})$ are contained in the common apartment $V_{T}(\mathbb{K})$. Since $V_{T}(\mathbb{K})$ is a vector space, there is an element $x+y \in V_{T}(\mathbb{K})$. The element $x+y$ is independent of the choice of apartment containing x and y.
(ii) Let $x \in V_{G}(\mathbb{K})$ and let $a \in \mathbb{K}^{+}$. The element ax is independent of the choice of apartment containing x.

Proof. (i). The common apartments containing x and y correspond to the maximal split tori of G contained in the intersection $P_{x} \cap P_{y}$ (Lemma 3.20). By hypothesis, there is at least one such T. Let T^{\prime} be another. By Lemma 2.11, $P_{x} \cap P_{y}$ is smooth, so there exists $g \in P_{x}(k) \cap P_{y}(k)$ such that $g T g^{-1}=T^{\prime}$. Choose $\lambda, \mu \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(\mu)$. Then $x=\phi_{G}(g \cdot \lambda)$ and $y=\phi_{G}(g \cdot \mu)$. Fix a G-equivariant embedding of G in a rational G-module V, and let λ^{\prime} and μ^{\prime} be cocharacter approximations (with respect to V) in Y_{T} to λ and μ, respectively. Then $\lambda^{\prime}+\mu^{\prime} \in Y_{T}$ is a cocharacter approximation to $\lambda+\mu$, and so $P_{\lambda+\mu}=P_{\lambda^{\prime}+\mu^{\prime}}$. Since $P_{x}=P_{\lambda}=P_{\lambda^{\prime}}$ and $P_{y}=P_{\mu}=P_{\mu^{\prime}}$, we see that $\lim _{a \rightarrow 0}\left(\lambda^{\prime}+\mu^{\prime}\right)(a) \cdot g$ exists, so $g \in P_{\lambda^{\prime}+\mu^{\prime}}(k)=P_{\lambda+\mu}(k)$. Hence $\phi_{G}(g \cdot \lambda+g \cdot \mu)=\phi_{G}(g \cdot(\lambda+\mu))=\phi_{G}(\lambda+\mu)$. The result follows.
(ii). Let T, T^{\prime} be maximal split tori of G such that $x \in V_{T}(\mathbb{K}) \cap V_{T^{\prime}}(\mathbb{K})$. There exists $g \in P_{x}$ such that $g T g^{-1}=T^{\prime}$. Pick $\lambda \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$. Then $\phi_{G}(a(g \cdot \lambda))=$ $\phi_{G}(g \cdot(a \lambda))=\phi_{G}(a \lambda)$ since $P_{a \lambda}=P_{\lambda}$. The result follows.
Definition 3.25. We say that x and y are opposite in $V_{G}(\mathbb{K})$ if there is an apartment containing x and y and such that $x+y=0$ in that apartment. It follows from Lemma 3.24 that if x and y are opposite, then $x+y=0$ in every apartment containing x and y.
Remark 3.26. Note that part (ii) of Lemma 3.24 is false if $a=-1$ (or, more generally, if $a<0$): for x has many different opposites, one for each apartment containing x, and each is of the form $-x$ inside the corresponding apartment. See Remark 3.28.

Here is a criterion for points to be opposite in terms of cocharacters.
Lemma 3.27. Suppose x and y are opposite points of $V_{G}(\mathbb{K})$. Then P_{x} and P_{y} are opposite R-parabolic subgroups of G, and there is a unique $\lambda \in Y_{G}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(-\lambda)$.

Proof. First choose an apartment $V_{T}(\mathbb{K})$ such that $x, y \in V_{T}(\mathbb{K})$. Then since ϕ_{G} restricts to a linear isomorphism $Y_{T}(\mathbb{K}) \rightarrow V_{T}(\mathbb{K})$, we have a unique $\lambda \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(-\lambda)$. But then $P_{x}=P_{\lambda}$ and $P_{y}=P_{-\lambda}$, hence P_{x} and P_{y} are opposite. Any maximal split torus T^{\prime} of G such that $x, y \in V_{T^{\prime}}(\mathbb{K})$ must lie in $P_{x} \cap P_{y}=L_{\lambda}$ by Lemma 3.20. Since L_{λ} is smooth, any two such tori are conjugate by an element of $L_{\lambda}(k)$. But elements of $L_{\lambda}(k)$ fix λ and $-\lambda$, which shows that λ is indeed unique as an element of $Y_{G}(\mathbb{K})$.
Remark 3.28. Note that for a given $\lambda \in Y_{G}(\mathbb{K})$, there are in general many opposite points to $\phi_{G}(\lambda)$ in $V_{G}(\mathbb{K})$. To see this, note that any of the cocharacters $\mu=u \cdot(-\lambda)$ has this property, where $u \in U_{\lambda}(k)$ - the point here is that for such a $u, \phi_{G}(u \cdot \lambda)=\phi_{G}(\lambda)$, but $\phi_{G}(u \cdot(-\lambda)) \neq \phi_{G}(-\lambda)$ in general.
Definition 3.29. Let $x, y \in V_{G}(\mathbb{K})$. If there is an apartment in $V_{G}(\mathbb{K})$ containing x and y, then we let

$$
[x, y]:=\{a x+(1-a) y \mid a \in[0,1] \in \mathbb{K}\}
$$

denote the geodesic between x and y in $V_{G}(\mathbb{K})$ - again, Lemma 3.24 implies that this geodesic (when it exists at all) is independent of the apartment we choose to draw it in. We say a subset $S \subseteq V_{G}(\mathbb{K})$ is convex if for all $x, y \in S$ such that x and y lie in a common apartment, $[x, y] \subseteq S$.

The failure of the common apartment property makes it harder to metrise $V_{G}(\mathbb{K})$. We return to this in Section 6 .

Definition 3.30. We say that $x, y \in V_{G}(\mathbb{K})$ have the same type if $y=g \cdot x$ for some $g \in G(k)$.
Remark 3.31. Suppose $x, y \in V_{G}(\mathbb{K})$ have the same type and x and y belong to a common apartment $V_{T}(\mathbb{K})$. Choose $\lambda, \mu \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(\mu)$. Since x and y have the same type, there exists $g \in G(k)$ such that $\mu=g \cdot \lambda$. Then $\mu \in Y_{T^{\prime}}(\mathbb{K})$, where $T^{\prime}:=g T g^{-1}$. So T, T^{\prime} are maximal split tori of L_{μ}, so they are $L_{\mu}(k)$-conjugate. Now $L_{\mu}(k)$ fixes μ, so after multiplying g on the left by an element of $L_{\mu}(k)$, we can assume that g normalises T. This shows that x and y are W_{k}-conjugate, where W_{k} is the relative Weyl group. We conclude that for a fixed maximal split torus T of G and fixed $x \in V_{T}(\mathbb{K})$, the set $\left\{z \in V_{T}(\mathbb{K}) \mid x\right.$ and z have the same type $\}$ is finite.

For example, suppose $G=\mathrm{SL}_{2}$. If $x, y \in V_{G}(\mathbb{K})$ are distinct elements having the same type then x and y are opposite, because each apartment $V_{T}(\mathbb{K})$ is 1-dimensional and the non-trivial element of the relative Weyl group W_{k} acts by $z \mapsto-z$.
3.6. The spherical edifice. Recall from Lemma 3.24(ii) that we have a well-defined operation of scalar multiplication by elements of \mathbb{K}^{+}on the vector edifice $V_{G}(\mathbb{K})$, allowing the following definition.

Definition 3.32. The spherical edifice $\Delta_{G}(\mathbb{K})$ is defined to be the set of \mathbb{K}^{+}-orbits on $V_{G}(\mathbb{K}) \backslash\{0\}$. We denote the natural map from $V_{G}(\mathbb{K}) \backslash\{0\}$ to $\Delta_{G}(\mathbb{K})$ by

$$
\zeta_{G}: V_{G}(\mathbb{K}) \backslash\{0\} \rightarrow \Delta_{G}(\mathbb{K})
$$

Remark 3.33. The obvious inclusion of $V_{G}(\mathbb{Q})$ in $V_{G}(\mathbb{R})$ gives an inclusion of $\Delta_{G}(\mathbb{Q})$ in $\Delta_{G}(\mathbb{R})$.

Remark 3.34. The notions of apartment, opposite points and convexity make sense for $\Delta_{G}(\mathbb{K})$ as well. We define an apartment of $\Delta_{G}(\mathbb{K})$ to be a subset of the form $\zeta_{G}\left(V_{T}(\mathbb{K}) \backslash\{0\}\right)$ for some maximal split torus T of G. If $y_{1}, y_{2} \in \Delta_{G}(\mathbb{K})$ then we say that y_{1} and y_{2} are opposite if there exists a maximal split torus T of G and a point $x \in V_{T}(\mathbb{K})$ such that $y_{1}=\zeta_{G}(x)$ and $y_{2}=\zeta_{G}(-x)$. If $y_{1}=\zeta_{G}\left(x_{1}\right)$ and $y_{2}=\zeta_{G}\left(x_{2}\right)$ are not opposite then we define the geodesic $\left[y_{1}, y_{2}\right]$ in $\Delta_{G}(\mathbb{K})$ to be $\zeta_{G}\left(\left[x_{1}, x_{2}\right]\right)$; this does not depend on the choice of x_{1} and x_{2}. We say a subset Σ of $\Delta_{G}(\mathbb{K})$ is convex if for all $y_{1}, y_{2} \in \Sigma$ such that $\left[y_{1}, y_{2}\right]$ exists, $\left[y_{1}, y_{2}\right] \subseteq \Sigma$.

3.7. The combinatorial edifice.

Definition 3.35. We define the combinatorial edifice Δ_{G} to be the poset formed by the R-parabolic subgroups of G under reverse inclusion. Given $\lambda \in Y_{G}(\mathbb{K}), P=P_{\lambda}$ and $x=$ $\phi_{G}(\lambda) \in V_{G}(\mathbb{K})$, we denote the corresponding element of Δ_{G} by $\sigma_{P}, \sigma_{\lambda}$ or σ_{x}, and we write \leq for the partial order on Δ_{G} : i.e., $\sigma_{Q} \leq \sigma_{P}$ if and only if $P \subseteq Q$. We let \varnothing denote the element in this poset corresponding to G itself.

The elements of the combinatorial edifice can be realised geometrically inside $V_{G}(\mathbb{K})$: given an R-parabolic subgroup P of G, consider the subset

$$
\widetilde{\sigma}_{P}=\left\{x \in V_{G}(\mathbb{K}) \mid P_{x}=P\right\}
$$

(We also define $\widetilde{\sigma}_{\lambda}:=\widetilde{\sigma}_{P_{\lambda}}$ and $\widetilde{\sigma}_{x}:=\widetilde{\sigma}_{P_{x}}$.) By choosing a maximal split torus T of P, we may realise $\widetilde{\sigma}_{P}$ as a subset of $V_{T}(\mathbb{K})$ (Lemma 2.10), so it makes sense to take linear combinations of elements in $\widetilde{\sigma}_{P}$.
Lemma 3.36. Let $x, y \in \widetilde{\sigma}_{P}$. Then $a x+b y \in \widetilde{\sigma}_{P}$ for all $a, b \in \mathbb{K}^{+}$.

Proof. Fix a maximal split torus T of P. We can choose $\lambda, \mu \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(\mu)$; then $P_{\lambda}=P_{\mu}=P$. Recall that $P_{\nu}=\rho^{-1}\left(V_{\nu, \geq 0}\right)$ for any $\nu \in Y_{T}(\mathbb{K})$ (Remark 3.4(iii)). It follows that $P_{a \lambda}=P_{\lambda}$ and $P_{b \mu}=P_{\mu}$ for any $a, b>0$. So it is enough to show that $P_{\lambda+\mu}=P$.

Fix a G-equivariant embedding ρ^{\prime} of G in a rational G-module V^{\prime}. Let V be the rational G-module $V^{\prime} \oplus \mathfrak{g}$ and let ρ be ρ^{\prime} followed by the obvious inclusion of V^{\prime} in V. Since $P_{\nu}=$ $\rho^{-1}\left(V_{\nu, \geq 0}\right)$ for any $\nu \in Y_{T}(\mathbb{K})$, the argument of the first part of the proof of Lemma 2.9 shows that $P_{\lambda+\mu} \supseteq P$.

Let $\nu \in Y_{T}(\mathbb{K})$ and let $\nu^{\prime} \in Y_{T}$ be a cocharacter approximation to ν. By our choice of ρ we have $\mathfrak{g}_{\nu, \geq 0}=\mathfrak{g}_{\nu^{\prime}, \geq 0}$, and we deduce that

$$
\operatorname{Lie}\left(P_{\nu}\right)=\operatorname{Lie}\left(P_{\nu^{\prime}}\right)=\mathfrak{g}_{\nu^{\prime}, \geq 0}=\mathfrak{g}_{\nu, \geq 0}
$$

where the middle equality is from [14, Prop. 2.1.8]. The argument of the second part of the proof of Lemma 2.9 shows that $\operatorname{Lie}\left(P_{\lambda+\mu}\right)=\operatorname{Lie}(P)$, and we deduce that $P_{\lambda+\mu}=P$, as required.

It is well known that if G is semisimple then Δ_{G} is a spherical building; in particular, it is a simplicial complex. The same is true for reductive G because the parabolic subgroups of G are in bijective correspondence with the parabolic subgroups of $[G, G]$. The following example shows that the combinatorial edifice need not be a simplicial complex for arbitrary G, and the partial order on Δ_{G} need not be realised geometrically by relationships between closures of the corresponding subsets in $V_{G}(\mathbb{K})$.

Example 3.37. Let k be algebraically closed, and set $G=\mathrm{GL}_{2} \ltimes V$, where V is the natural two-dimensional module for GL_{2}. Let e_{1} and e_{2} be the usual standard basis vectors in V, and let V_{1} and V_{2} be the corresponding one-dimensional subspaces of V. Let B^{+}denote the upper triangular Borel subgroup in GL_{2} and B^{-}the lower triangular Borel subgroup. Let T be the diagonal maximal torus in GL_{2}. Then an element of $Y_{T}(\mathbb{K})$ can be identified with a pair $(a, b) \in \mathbb{K}^{2}$, and the corresponding R-parabolic subgroup has the form $P \ltimes W$ for some parabolic subgroup P of GL_{2} and some subspace W of V as in the following table:

Conditions on (a, b)	$P \ltimes W$	Conditions on (a, b)	$P \ltimes W$
$a=b \geq 0$	G	$0>a=b$	GL_{2}
$a>b \geq 0$	$B^{+} \ltimes V$	$0>b>a$	B^{-}
$a \geq 0>b$	$B^{+} \ltimes V_{1}$	$b \geq 0>a$	$B^{-} \ltimes V_{2}$
$0>a>b$	B^{+}	$b>a \geq 0$	$B^{-} \ltimes V$

In an (abstract) simplicial complex, we can recognise any element of the complex by the vertices (minimal non-empty elements) it contains. In this case, the minimal elements in the poset Δ_{G} correspond to the maximal proper R-parabolic subgroups: thus, here we get (the conjugates in G of) $\mathrm{GL}_{2}, B^{+} \ltimes V$ and $B^{-} \ltimes V$. Consider $\sigma=\sigma_{B^{+} \ltimes V_{1}} \in \Delta_{G}$. Any $\varnothing \neq \tau \in \Delta_{G}$ with $\tau \lesseqgtr \sigma$ corresponds to an R-parabolic subgroup P of G with $P \supsetneq B^{+} \ltimes V_{1}$. Such a P must contain T, so $P=B^{+} \ltimes V$ is the only option. Thus $\tau=\sigma_{B^{+} \ltimes V}$ and σ contain the same minimal elements, and Δ_{G} is not a simplicial complex.

We leave it as an exercise for the reader to sketch the regions of the plane \mathbb{R}^{2} that correspond to each R-parabolic subgroup and show that (for example) the region $a \geq 0>b$ is not in the closure of the region $a>b \geq 0$, even though we have a containment $B^{+} \ltimes V_{1} \subseteq B^{+} \ltimes V$.

4. Linear maps of vector edifices

In this section we define the notion of a linear map between vector edifices, and show how homomorphisms between k-groups give rise to such maps. For some of the later work (especially in Section 5) it is important to consider maps between edifices for algebraic groups defined over possibly different fields, so that is how our definitions are framed in Section 4.1.

4.1. Definition and first properties.

Definition 4.1. Suppose $V_{1}=V_{G}(\mathbb{K})$ and $V_{2}=V_{H}(\mathbb{K})$ are two vector edifices, where G is a k-group and H is a k^{\prime}-group for two (possibly different) fields k and k^{\prime}. A function $\kappa: V_{1} \rightarrow V_{2}$ is called a linear map of vector edifices if for every apartment A_{1} of V_{1}, there exists an apartment A_{2} of V_{2} such that $\kappa\left(A_{1}\right) \subseteq A_{2}$ and $\left.\kappa\right|_{A_{1}}: A_{1} \rightarrow A_{2}$ is a \mathbb{K}-linear map.

It is immediate that the composition of linear maps is a linear map.
Remark 4.2. The reader is warned that the inverse of a bijective linear map of vector edifices is not necessarily itself a linear map. The reason for this is that even if V_{1} and V_{2} are in bijection with each other, it might not be the case that their systems of apartments are in bijection with each other. See Example 4.14 below.
Definition 4.3. Suppose $V_{1}=V_{G}(\mathbb{K})$ and $V_{2}=V_{H}(\mathbb{K})$ are two vector edifices as above. A linear map $\kappa: V_{1} \rightarrow V_{2}$ is an isomorphism of vector edifices if it is bijective and the inverse map is also a linear map of vector edifices. If $V_{1}=V_{2}$ then we call κ an automorphism of vector edifices. We write $\operatorname{Aut}(V)$ for the group of automorphisms of a vector edifice V.

In practice, we often wish to construct linear maps of vector edifices from corresponding maps on cocharacters. The following result shows that this process can be reversed.
Lemma 4.4. Let G be a k-group and H a k^{\prime}-group for two fields k and k^{\prime}. Let $\kappa: V_{G}(\mathbb{K}) \rightarrow$ $V_{H}(\mathbb{K})$ be a linear map. Then κ lifts uniquely to a map

$$
\widehat{\kappa}: Y_{G}(\mathbb{K}) \rightarrow Y_{H}(\mathbb{K})
$$

with the following property: for any maximal split torus T of G and for any maximal split torus S of H such that $\kappa\left(V_{T}(\mathbb{K})\right) \subseteq V_{S}(\mathbb{K})$, we have $\widehat{\kappa}\left(Y_{T}(\mathbb{K})\right) \subseteq Y_{S}(\mathbb{K})$, and the following diagram commutes:

Proof. First off, it follows from Remark 3.10 (ii) that $\widehat{\kappa}$ is unique if it exists.
Let $\lambda \in Y_{G}(\mathbb{K})$, and set $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(-\lambda)$. Since κ is linear on apartments, $\kappa(x)+\kappa(y)=\kappa(x+y)=\kappa(0)=0$, so $\kappa(x)$ and $\kappa(y)$ are opposite points in (the corresponding apartment of) $V_{H}(\mathbb{K})$. By Lemma 3.27 we can find a unique $\mu \in Y_{H}(\mathbb{K})$ such that $\phi_{H}(\mu)=$ $\kappa(x), \phi_{H}(-\mu)=\kappa(y)$. We set $\widehat{\kappa}(\lambda):=\mu$.

Now let T be a maximal split torus of G such that $\lambda \in Y_{T}(\mathbb{K})$ and let S be any maximal split torus of H such that $\kappa\left(V_{T}(\mathbb{K})\right) \subseteq V_{S}(\mathbb{K})$. Set $x=\phi_{G}(\lambda)$ and $y=\phi_{G}(-\lambda)$. Since $\kappa(x), \kappa(y) \in V_{S}(\mathbb{K})$ by construction and $\kappa(x)+\kappa(y)=0$, there exists a unique $\nu \in Y_{S}(\mathbb{K})$ such that $\phi_{H}(\nu)=\kappa(x)$ and $\phi_{H}(-\nu)=\kappa(y)$. We see that $\widehat{\kappa}(\lambda)=\mu=\nu \in Y_{S}(\mathbb{K})$, so that $\widehat{\kappa}\left(Y_{T}(\mathbb{K})\right) \subseteq Y_{S}(\mathbb{K})$, and the commutativity of the given diagram follows.

Remark 4.5. It is immediate from the construction that $\widehat{\kappa}$ restricts to a linear map from each $Y_{T}(\mathbb{K})$ to the corresponding $Y_{S}(\mathbb{K})$. We have obvious functoriality: $\widehat{\mathrm{id}}=\mathrm{id}$ and $\widehat{\tau \circ \kappa}=\widehat{\tau} \circ \widehat{\kappa}$.
4.2. Linear maps induced by group homomorphisms. Let $f: G \rightarrow H$ be a homomorphism of connected k-groups. We show that f gives rise to a linear map $\kappa_{f}: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$.
Lemma 4.6. Let T be a maximal split torus of G and let S_{1} and S_{2} be maximal split tori of H such that $f(T) \subseteq S_{1} \cap S_{2}$. Let $f_{1}: T \rightarrow S_{1}$ and $f_{2}: T \rightarrow S_{2}$ be the maps induced by f. Let $\lambda \in Y_{T}(\mathbb{K})$ and set $\lambda_{1}=\left(f_{1}\right)_{*}(\lambda), \lambda_{2}=\left(f_{2}\right)_{*}(\lambda)$. Then $\left(S_{1}, \lambda_{1}\right) \sim\left(S_{2}, \lambda_{2}\right)$.
Proof. By Remark 3.4(ii), S_{1} and S_{2} are maximal split tori of $L_{\lambda_{1}}$, and hence $l S_{1} l^{-1}=S_{2}$ for some $l \in L_{\lambda_{1}}(k)$. The conjugation map Inn_{l} gives rise to a linear map ω from $Y_{S_{1}}(\mathbb{K})$ to $Y_{S_{2}}(\mathbb{K})$, and we have $\omega \circ\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*}$ by functoriality (Section 3.1). The result follows.

For each maximal split torus T of G, choose a maximal split torus S_{T} of H such that $f(T) \subseteq S_{T}$. The maps $f_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{S_{T}}(\mathbb{K})$ for each T give rise to a map from $\bigsqcup_{T} Y_{T}(\mathbb{K})$ to $\bigsqcup_{S} Y_{S}(\mathbb{K})$. Consider the compositions $\bigsqcup_{T} Y_{T}(\mathbb{K}) \rightarrow \bigsqcup_{S} Y_{S}(\mathbb{K}) \xrightarrow{\varpi_{H}} Y_{H}(\mathbb{K})$ and $\bigsqcup_{T} V_{T}(\mathbb{K}) \rightarrow$ $\bigsqcup_{S} V_{S}(\mathbb{K}) \xrightarrow{\omega_{H}} V_{H}(\mathbb{K})$. By Lemma 4.6, these maps do not depend on the choices of the maximal split tori S_{T} for each T.
Proposition 4.7. The maps above descend to give well-defined maps $Y_{G}(\mathbb{K}) \rightarrow Y_{H}(\mathbb{K})$ and

$$
\kappa_{f}: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})
$$

Moreover, κ_{f} is a linear map of vector edifices.
Proof. We give the proof for κ_{f}. Suppose $\left(T_{1}, \lambda_{1}\right) \approx\left(T_{2}, \lambda_{2}\right)$ for $\left(T_{1}, \lambda_{1}\right),\left(T_{2}, \lambda_{2}\right) \in \bigsqcup_{T} Y_{T}(\mathbb{K})$. Then $T_{2}=g T_{1} g^{-1}$ and $g \cdot \lambda_{1}=\lambda_{2}$ for some $g \in P_{\lambda_{1}}(k)$. Let $f_{i}: T_{i} \rightarrow S_{T_{i}}$ be the map induced by f. It is enough to prove that $\left(S_{T_{1}},\left(f_{1}\right)_{*}\left(\lambda_{1}\right)\right) \approx\left(S_{T_{2}},\left(f_{2}\right)_{*}\left(\lambda_{2}\right)\right)$. By Lemma 4.6, there is no harm in taking $S_{T_{2}}$ to be $f(g) S_{T_{1}} f(g)^{-1}$. Observe that this means that $f_{2} \circ \operatorname{Inn}_{g}=\operatorname{Inn}_{f(g)} \circ f_{1}$. It follows from functoriality that

$$
f(g) \cdot\left(f_{1}\right)_{*}\left(\lambda_{1}\right)=\left(f_{2}\right)_{*}\left(g \cdot \lambda_{1}\right)=\left(f_{2}\right)_{*}\left(\lambda_{2}\right)
$$

Since $f(g)$ belongs to $P_{\left(f_{1}\right)_{*}\left(\lambda_{1}\right)(H)}(k)$ by Lemma 3.17(i), we obtain the desired result. It is also clear that κ_{f} is linear - for each maximal split torus T of G, the corresponding map $f_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{S_{T}}(\mathbb{K})$ is \mathbb{K}-linear.

The proof for the map $Y_{G}(\mathbb{K}) \rightarrow Y_{H}(\mathbb{K})$ is very similar: it just uses a conjugating element $l \in L_{\lambda_{1}}(k)$ instead.
Remarks 4.8. (i). If $\lambda \in Y_{G}$ then $\widehat{\kappa_{f}}(\lambda)=f \circ \lambda$. It is clear that $\kappa_{\mathrm{id}_{G}}=\mathrm{id}_{V_{G}(\mathbb{K})}$ and if $f: G \rightarrow H$ and $l: H \rightarrow K$ are homomorphisms of connected k-groups then $\kappa_{l \circ f}=\kappa_{l} \circ \kappa_{f}$. In particular, if $f \in \operatorname{Aut}(G)$ then κ_{f} belongs to $\operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ and has inverse $\kappa_{f^{-1}}$.
(ii). Let $f: G \rightarrow H$ be a surjective homomorphism of connected k-groups and let $x \in$ $V_{G}(\mathbb{K})$. It follows from Lemma 3.17(i) that $P_{\kappa_{f}(x)}=f\left(P_{x}\right)$.
Example 4.9. Let $g \in G(k)$. Untangling the definitions, we see that $\kappa_{\operatorname{Inn}_{g}}(x)$ is just g. x in the sense of Section 3.3. By Remark 4.8(i), $\kappa_{\operatorname{Inn}_{g}}$ is invertible with inverse $\kappa_{\operatorname{Inn}_{g-1}}$. Remark 4.8(ii) implies that $P_{g \cdot x}=P_{\kappa_{\text {Inn }_{g}}(x)}=\operatorname{Inn}_{g}\left(P_{x}\right)=g P_{x} g^{-1}$.
Remark 4.10. Let $f: G \rightarrow H$ be a homomorphism. Then κ_{f} is equivariant in the following sense: if $x \in V_{G}(\mathbb{K})$ and $g \in G(k)$ then $\kappa_{f}(g \cdot x)=f(g) \cdot \kappa_{f}(x)$. To see this, note that if $\lambda \in Y_{G}$ and $g \in G(k)$ then $f \circ(g \cdot \lambda)=f(g) \cdot(f \circ \lambda)$; the result follows from linearity. This shows that κ_{f} is type-preserving (see Definition 3.30).
4.3. Homomorphisms which induce injective linear maps. We can now show that inclusions of k-groups give inclusions of vector edifices. In fact, we can do better.

Proposition 4.11. Let $f: G \rightarrow H$ be a homomorphism of connected k-groups with finite kernel. Then the maps $Y_{G}(\mathbb{K}) \rightarrow Y_{H}(\mathbb{K})$ and $\kappa_{f}: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$ are injective.
Proof. Again, we give the proof for κ_{f}; the other proof is very similar. Let $\left(T_{1}, \lambda_{1}\right),\left(T_{2}, \lambda_{2}\right) \in$ $\bigsqcup_{T} Y_{T}(\mathbb{K})$ be such that $\left(S_{T_{1}}, f_{*}\left(\lambda_{1}\right)\right) \approx\left(S_{T_{2}}, f_{*}\left(\lambda_{2}\right)\right)$. Let $f_{i}: T_{i} \rightarrow S_{T_{i}}$ be the map induced by f for each i. Then $P_{\left(f_{1}\right)_{*}\left(\lambda_{1}\right)}(H)=P_{\left(f_{2}\right)_{*}\left(\lambda_{2}\right)}(H)$, so $P_{\left(f_{1}\right)_{*}\left(\lambda_{1}\right)}(f(G))=P_{\left(f_{2}\right)_{*}\left(\lambda_{2}\right)}(f(G))$ by Corollary 3.16, and hence by Lemma 3.17(i) we have $f\left(P_{\lambda_{1}}\right)=f\left(P_{\lambda_{2}}\right)$. It follows from Lemma 3.17(ii) (applied to the surjective homomorphism $G \rightarrow f(G)$) that $P_{\lambda_{1}}=P_{\lambda_{2}}$. Thus T_{1} and T_{2} are maximal split tori of $P_{\lambda_{1}}$, which means we can find $g \in P_{\lambda_{1}}(k)$ such that $g T_{2} g^{-1}=T_{1}$. Since $f(g) \in P_{\left(f_{1}\right)_{*}\left(\lambda_{1}\right)}(H)(k)=P_{\left(f_{2}\right)_{*}\left(\lambda_{2}\right)}(H)(k)$, we have $P_{\left(f_{2}\right)_{*}\left(g \cdot \lambda_{2}\right)}(H)=$ $P_{f(g) \cdot\left(f_{2}\right) *\left(\lambda_{2}\right)}(H)=f(g) P_{\left(f_{2}\right) *\left(\lambda_{2}\right)}(H) f(g)^{-1}=P_{\left(f_{2}\right) *\left(\lambda_{2}\right)}(H)$ by Remark 4.10 and Lemma 3.3(ii). Hence, replacing λ_{2} with $g \cdot \lambda_{2}$, we may assume that $T_{1}=T_{2}$. Now, since f has finite kernel, the map $\left(f_{1}\right)_{*}$ is injective on $Y_{T_{1}}(\mathbb{K})$, as observed in Section 3.1. Since we have reduced to the case that $\lambda_{1}, \lambda_{2} \in Y_{T_{1}}(\mathbb{K})$ with $\left(f_{1}\right)_{*}\left(\lambda_{1}\right)=\left(f_{1}\right)_{*}\left(\lambda_{2}\right)$, we conclude that $\lambda_{1}=\lambda_{2}$.

Remark 4.12. We can now resolve the potential ambiguity noted in Remark 3.18 above. If T is a maximal split torus of G then the notation $V_{T}(\mathbb{K})$ could mean the corresponding apartment of $V_{G}(\mathbb{K})$ or it could mean the vector edifice associated to T in its own right. But we see that if $i: T \rightarrow G$ is the inclusion then κ_{i} gives a linear isomorphism from the latter object to the former, so the abuse of notation is harmless. Indeed, this observation works for any subgroup H of G - we may identify the vector edifice $V_{H}(\mathbb{K})$ as a subobject of the vector edifice $V_{G}(\mathbb{K})$ via the injective linear map $\kappa_{i}: V_{H}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$ arising from the inclusion $i: H \rightarrow G$. We often do this without further comment in the rest of the paper.

Remark 4.13. If $\lambda \in Y_{G}(\mathbb{K})$ then we may regard λ as an element of $Y_{L_{\lambda}}(\mathbb{K})$ and $x:=\phi_{G}(\lambda)$ as an element of $V_{L_{\lambda}}(\mathbb{K})$ and $V_{P_{\lambda}}(\mathbb{K})$ in the obvious way. Since all maximal split tori in L_{λ} are $L_{\lambda}(k)$-conjugate, it follows that if T is a maximal split torus of L_{λ} then $x \in V_{T}(\mathbb{K})$.

Example 4.14. Suppose that G is such that $V_{G}(\mathbb{K})$ has the common apartment property, and P is an R-parabolic subgroup of G. Then the inclusion $i: P \rightarrow G$ actually induces a bijection $\kappa_{i}: V_{P}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$. To see this, note that for every maximal split torus T of G and every $\lambda \in Y_{T}(\mathbb{K})$, there is a maximal split torus $S_{T, \lambda}$ contained in $P_{\lambda} \cap P$, because of the common apartment property, and hence $(T, \lambda) \approx\left(S_{T, \lambda}, \mu\right)$, where $\mu=g \cdot \lambda$ for $g \in P_{\lambda}(k)$ conjugating T to $S_{T, \lambda}$. Therefore, if we let $x=\phi_{P}(\mu) \in V_{P}(\mathbb{K})$ and $y=\phi_{G}(\lambda) \in V_{G}(\mathbb{K})$, we have $\kappa_{i}(x)=y$. Thus κ_{i} is surjective, and we already know it is injective by Proposition 4.11. Note that, even though κ_{i} is a bijective linear map of vector edifices, it is not an isomorphism in general: e.g., in the setting of Example 3.22 we have points $x_{1}, x_{2} \in V_{P}(\mathbb{K})$ such that x_{1} and x_{2} do not lie in a common apartment of $V_{P}(\mathbb{K})$, but $\kappa_{i}\left(x_{1}\right)$ and $\kappa_{i}\left(x_{2}\right)$ do lie in a common apartment of $V_{G}(\mathbb{K})$, because G is reductive in that case (and hence $V_{G}(\mathbb{K})$ has the common apartment property).
4.4. Homomorphisms which induce surjective linear maps. Next we investigate the conditions under which a homomorphism $f: G \rightarrow H$ gives rise to a surjective linear map. It turns out that the obvious condition (that f is surjective) is not sufficient; this situation is made more complicated by, for example, the existence over imperfect fields of inseparable isogenies. This motivates the following definition. See also Remark 4.17(i) below.

Definition 4.15. Suppose $f: G \rightarrow H$ is a homomorphism of connected k-groups. We say f is apte if every maximal split torus S of H has the form $S=f(T)$ for a maximal split torus T of G.

With the key definition in hand, the following result is easy.
Lemma 4.16. Let $f: G \rightarrow H$ be an apte homomorphism of connected k-groups. Then κ_{f} is surjective.
Proof. Let S be a maximal split torus of H. The assumption that f is apte means we can find a maximal split torus T of G with $S=f(T)$. Let $h: T \rightarrow S$ be restriction of f. Since the map of character groups $h^{*}: X_{S} \rightarrow X_{T}$ is injective, the dual map $h_{*}: Y_{T} \rightarrow Y_{S}$ has finite cokernel. This implies that $f_{*}: Y_{T}(\mathbb{K}) \rightarrow Y_{S}(\mathbb{K})$ is surjective, and the result follows.
Remarks 4.17. (i). The lemma does not hold without the assumption that f is apte. For a concrete example, let $G=H=\mathrm{SL}_{2}$ over an imperfect field k in characteristic 2 , and let $f: G \rightarrow G$ be the standard Frobenius map which squares the entries of 2×2 matrices. That k is imperfect means that there is some $a \in \bar{k} \backslash k$ such that $a^{2} \in k$. Now let

$$
u=\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \in G(\bar{k})
$$

and let T be the standard (split) diagonal torus in G. The torus $u T_{\bar{k}} u^{-1}$ is not a k-subgroup, hence in particular is not k-split. However, its image $f_{\bar{k}}\left(u T_{\bar{k}} u^{-1}\right)=f(u) T_{\bar{k}} f(u)^{-1}$ descends to a split k-torus $S=f(u) T f(u)^{-1}$, since $f(u) \in G(k)$. This shows that f is not apte, and it is also clear that not every element of $V_{S}(\mathbb{K})$ belongs to $\kappa_{f}\left(V_{G}(\mathbb{K})\right)$.
(ii). Following [11, 22.11], we call a surjective homomorphism $f: G \rightarrow H$ a central isogeny if it has finite kernel which is contained in the scheme-theoretic centre of G - that is, for every k-algebra A and every A-algebra A^{\prime}, the kernel of $f(A): G(A) \rightarrow H(A)$ centralises $G\left(A^{\prime}\right) .{ }^{3}$ If (a) f is surjective and k is perfect or (b) f is a central isogeny, then f is apte: this follows from [11, 22.6 Thm.(ii)]. Neither of these hypotheses holds for the example in (i).
(iii). Let f be a surjective homomorphism. Suppose f is smooth (this is equivalent to requiring ker f to be smooth, by [22, Prop. 1.63]). Then f is apte. To see this, let S be a maximal split torus of H and let S_{1} be a maximal torus of H containing S. Then the subgroup scheme $f^{-1}\left(S_{1}\right)$ of G is smooth. Let T_{1} be a maximal torus of $f^{-1}\left(S_{1}\right)$ and let T be the unique maximal split torus of T_{1}. By [14, A.2.8], $f\left(T_{1}\right)=S_{1}$, so (the restriction of) f is a surjective map of k-tori. It follows from [11, 8.15 Prop.(3)] and surjectivity that $f(T)=S$.
(iv). Example 4.14 shows that κ_{f} can be surjective even when f is not apte.

We can now prove the key result of this subsection:
Proposition 4.18. Suppose $f: G \rightarrow H$ is an apte homomorphism with finite kernel. Then κ_{f} is an isomorphism of vector edifices.
Proof. It follows from Proposition 4.11 and Lemma 4.16 that κ_{f} is a bijective linear map. Since f is apte, for each maximal split torus S of H there is a maximal split torus T of G such that $f(T)=S$, and since f has finite kernel, this T is unique. Therefore, κ_{f} pairs up the apartments of $V_{G}(\mathbb{K})$ and $V_{H}(\mathbb{K})$, and hence κ_{f}^{-1} is also a linear map of vector edifices.

[^2]We finish with some results related to the common apartment property.
Lemma 4.19. Let N be a connected normal unipotent subgroup of G and let $\pi: G \rightarrow G / N$ be the canonical projection. Let $x_{1}, x_{2} \in V_{G}(\mathbb{K})$. Then $\kappa_{\pi}\left(x_{1}\right)=\kappa_{\pi}\left(x_{2}\right)$ if and only if $x_{2}=n \cdot x_{1}$ for some $n \in N(k)$.

Proof. If $n \in N(k)$ and $y=n \cdot x$ then $\kappa_{\pi}(y)=\kappa_{\pi}(n \cdot x)=\pi(n) \cdot \kappa_{\pi}(x)=\kappa_{\pi}(x)$ where the second equality is from Remark 4.10. Conversely, suppose $\kappa_{\pi}\left(x_{1}\right)=\kappa_{\pi}\left(x_{2}\right)$; call this common value y. For each i, let $G_{i}=P_{x_{i}} N$, let $Q_{i}=\pi\left(G_{i}\right)$ and let $\pi_{i}: G_{i} \rightarrow Q_{i}$ be the restriction of π. Then π_{i} is surjective, so $Q_{i}=\pi\left(P_{x_{i}}\right)=P_{y}(G / N)$ by Remark 4.8(ii).

Choose a maximal split torus T of G / N such that $y \in V_{T}(\mathbb{K})$. Then T is a maximal split torus of $P_{y}(G / N)$ by Remark 3.21. For each i, since π_{i} is smooth, π_{i} is apte (Remark 4.17(iii)), so there is a maximal split torus T_{i} of G_{i} such that $\pi\left(T_{i}\right)=T$. So T_{1} and T_{2} are maximal split tori of $H:=T_{1} N \cong T_{1} \ltimes N$. Hence there exists $n \in N(k)$ such that $T_{2}=n T_{1} n^{-1}$. Now x_{i} belongs to $V_{T_{i}}(\mathbb{K})$ for each i, so $n \cdot x_{1}$ and x_{2} belong to $V_{T_{2}}(\mathbb{K})$. We have $\kappa_{\pi}\left(n \cdot x_{1}\right)=\kappa_{\pi}\left(x_{2}\right)=y$ by Remark 4.10. But π induces an isomorphism from T_{2} onto T since N is unipotent, so κ_{π} induces an isomorphism from $V_{T_{2}}(\mathbb{K})$ to $V_{T}(\mathbb{K})$. We conclude that $x_{2}=n \cdot x_{1}$, as required.

Lemma 4.20. Let $x, y \in V_{G}(\mathbb{K})$. Then there exists $u \in R_{u, k}(G)(k)$ such that $u \cdot x$ and y lie in a common apartment.

Proof. Let $H=G / R_{u, k}(G)$ and let $\pi: G \rightarrow H$ be the canonical projection. Since H is pseudo-reductive, there is a maximal split torus S of H such that $\kappa_{\pi}(x), \kappa_{\pi}(y) \in V_{S}(\mathbb{K})$ (see the discussion following Definition 3.23). By Remark 4.17(iii), as π is smooth there is a maximal split torus T of G such that $\pi(T)=S$. The map κ_{π} gives an isomorphism from $V_{T}(\mathbb{K})$ to $V_{S}(\mathbb{K})$, so there exists $x^{\prime}, y^{\prime} \in V_{T}(\mathbb{K})$ such that $\kappa_{\pi}\left(x^{\prime}\right)=\kappa_{\pi}(x)$ and $\kappa_{\pi}\left(y^{\prime}\right)=\kappa_{\pi}(y)$. By Lemma 4.19, there exist $v, w \in R_{u, k}(G)(k)$ such that $v \cdot x=x^{\prime}$ and $w \cdot y=y^{\prime}$. Set $u:=w^{-1} v$. Then $u \cdot x=w^{-1} \cdot x^{\prime}$ and $y=w^{-1} \cdot y^{\prime}$ lie in the common apartment $V_{w^{-1} T w}(\mathbb{K})$, as required.

Remark 4.21. Even though the common apartment property may fail to hold, we can show the following: if $x, y \in V_{G}(\mathbb{K})$ then there exists $z \in V_{G}(\mathbb{K})$ such that x and z lie in a common apartment, and y and z lie in a common apartment. For instance, we can take $z=0$, although this is slightly unsatisfactory as 0 does not yield a point in $\Delta_{G}(\mathbb{K})$. More generally, we can take z to be any element of $V_{Z(G)^{0}}(\mathbb{K})$. Here is a construction which does not involve $Z(G)^{0}$.

Let $U=R_{u, k}(G)$. By Lemma 4.20, there exist a maximal split torus T of G and $u \in U(k)$ such that $u \cdot x, y \in V_{T}(\mathbb{K})$. We can pick $\lambda \in Y_{u^{-1} T u}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$ and $u \cdot x=$ $\phi_{G}(u \cdot \lambda)$. Note that x and $\phi_{G}(-\lambda)$ lie in the common apartment $V_{u^{-1} T u}(\mathbb{K})$, and $u \cdot \lambda$ and $-u \cdot \lambda$ both belong to $Y_{T}(\mathbb{K})$. By [33, 13.4.4 Cor.], there exist $v \in P_{\lambda}(U)(k)$ and $w \in U_{-\lambda}(U)(k)$ such that $u=v w$. Let $z=v \cdot \phi_{G}(-\lambda)$. Then x and z lie in the common apartment $V_{v u^{-1} T u v^{-1}}(\mathbb{K})$ since $v \cdot x=x$. Now $w \cdot \phi_{G}(-\lambda)=\phi_{G}(-\lambda)$, so $z=v w \cdot \phi_{G}(-\lambda)=u \cdot \phi_{G}(-\lambda)=\phi_{G}(-u \cdot \lambda)$ belongs to $V_{T}(\mathbb{K})$. Hence z and y lie in a common apartment, as required.
4.5. Isomorphisms of vector edifices induce isomorphisms of combinatorial edifices. Our next aim is to prove that isomorphisms between vector edifices behave nicely with respect to the structure coming from the poset of R-parabolic subgroups under reverse inclusion. Now that we have shown that for a subgroup M of G we can identify the sets $Y_{M}(\mathbb{K})$
and $V_{M}(\mathbb{K})$ inside $Y_{G}(\mathbb{K})$ and $V_{G}(\mathbb{K})$, we can extend Lemma 2.13, which is the equivalence (i) \Longleftrightarrow (ii) in the following.

Lemma 4.22. Let P, Q be R-parabolic subgroups of G. Then the following are equivalent:
(i) $P \subseteq Q$;
(ii) $Y_{P} \subseteq Y_{Q}$;
(iii) $Y_{P}(\mathbb{K}) \subseteq Y_{Q}(\mathbb{K})$.

Proof. (i) \Longleftrightarrow (ii) follows from Lemma 2.13 and that (iii) \Longrightarrow (ii) is easy to see, basically by construction of these objects. Suppose (ii) holds. Let T be a maximal split torus of P. Because of the equivalence of (i) and (ii), we have $T \subseteq Q$, so $Y_{T}(\mathbb{K}) \subseteq Y_{Q}(\mathbb{K})$. This shows that (ii) \Longrightarrow (iii).

Lemma 4.23. Let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$ be a linear map, and let $\widehat{\kappa}: Y_{G}(\mathbb{K}) \rightarrow Y_{H}(\mathbb{K})$ be the corresponding lift from Lemma 4.4. Then for any $\lambda \in Y_{G}(\mathbb{K})$, we have

$$
\widehat{\kappa}\left(Y_{L_{\lambda}}(\mathbb{K})\right) \subseteq Y_{L_{\widehat{\kappa}(\lambda)}}(\mathbb{K}) \quad \text { and } \quad \widehat{\kappa}\left(Y_{P_{\lambda}}(\mathbb{K})\right) \subseteq Y_{P_{\widehat{\kappa}(\lambda)}}(\mathbb{K})
$$

Hence also $\kappa\left(V_{L_{\lambda}}(\mathbb{K})\right) \subseteq V_{L_{\overparen{\kappa}(\lambda)}}(\mathbb{K})$ and $\kappa\left(V_{P_{\lambda}}(\mathbb{K})\right) \subseteq V_{P_{\widehat{\kappa}(\lambda)}}(\mathbb{K})$. Thus, if we set $x=\phi_{G}(\lambda)$, we have $\kappa\left(V_{P_{x}}(\mathbb{K})\right) \subseteq V_{P_{\kappa(x)}}(\mathbb{K})$.

Proof. Choose any $z \in V_{L_{\lambda}}(\mathbb{K})$: say, $z=\phi_{L_{\lambda}}(\sigma)$ for some $\sigma \in Y_{L_{\lambda}}(\mathbb{K})$. Choose any maximal split torus T of L_{λ} such that $\sigma \in Y_{T}(\mathbb{K})$. Then $\lambda \in Y_{T}(\mathbb{K})$, by Remark 4.13, and T is a maximal split torus of G. Let S be any maximal split torus of H such that $\kappa\left(V_{T}(\mathbb{K})\right) \subseteq V_{S}(\mathbb{K})$. Then $\widehat{\kappa}(\lambda)$ and $\widehat{\kappa}(\sigma)$ belong to $Y_{S}(\mathbb{K})$. Thus $S \subseteq L_{\widehat{\kappa}(\lambda)}$ and so $Y_{S}(\mathbb{K}) \subseteq Y_{L_{\widehat{\kappa}(\lambda)}}(\mathbb{K})$. This shows that $\widehat{\kappa}\left(Y_{L_{\lambda}}(\mathbb{K})\right) \subseteq Y_{L_{\widehat{\kappa}(\lambda)}}(\mathbb{K})$, by Lemma 4.22 .

For the second statement, let $w \in V_{P_{\lambda}}(\mathbb{K})$: say, $w=\phi_{P_{\lambda}}(\tau)$ for some $\tau \in Y_{P_{\lambda}}(\mathbb{K})$. Set $x=\phi_{G}(\lambda)$. Choose a maximal split torus T of P_{λ} such that $\tau \in Y_{T}(\mathbb{K})$. By Lemma 2.4(i) and Remark 3.9, there exists $u \in U_{\lambda}(k)$ such that $u T u^{-1} \subseteq L_{\lambda}$. Then $\lambda \in Y_{u T u^{-1}}(\mathbb{K})$, again by Remark 4.13, so $u^{-1} \cdot \lambda \in Y_{T}(\mathbb{K})$, so $T \subseteq L_{u^{-1} \cdot \lambda}$ by Remark 3.4(iii), so $\tau \in Y_{L_{u}-1 . \lambda}(\mathbb{K})$. By the previous paragraph, we can conclude that $\widehat{\kappa}(\tau) \in Y_{L_{\widehat{\kappa}(u-1 \cdot \lambda)}}(\mathbb{K}) \subseteq Y_{P_{\widehat{\kappa}(u-1 \cdot \lambda)}}(\mathbb{K})$. But $P_{\widehat{\kappa}\left(u^{-1} \cdot \lambda\right)}=P_{\kappa\left(u^{-1} \cdot x\right)}=P_{\kappa(x)}=P_{\widehat{\kappa}(\lambda)}$ by construction, so $\widehat{\kappa}(\tau) \in Y_{P_{\widehat{\kappa}(\lambda)}}(\mathbb{K})$, as required.

Now the corresponding statements on the level of vector edifices follow immediately.
Lemma 4.24. Let G and H be connected k-groups and let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$ be an isomorphism of vector edifices. Then κ induces a poset isomorphism $\sigma_{x} \mapsto \sigma_{\kappa(x)}$ between the corresponding combinatorial edifices.

Proof. Let $\tau \in Y_{G}(\mathbb{K})$. Then $\widehat{\kappa}\left(Y_{P_{\tau}}(\mathbb{K})\right) \subseteq Y_{P_{\widehat{\kappa}(\tau)}}(\mathbb{K})$ by Lemma 4.23. On the other hand, $\widehat{\kappa}^{-1}\left(Y_{P_{\widehat{\kappa}(\tau)}}(\mathbb{K})\right) \subseteq Y_{P_{\widehat{\kappa}}-1(\widehat{\kappa}(\tau))}(\mathbb{K})=Y_{P_{\tau}}(\mathbb{K})$ using Lemma 4.23 again, so we deduce that

$$
\begin{equation*}
\widehat{\kappa}\left(Y_{P_{\tau}}(\mathbb{K})\right)=Y_{P_{\widehat{\kappa}(\tau)}}(\mathbb{K}) \tag{4.25}
\end{equation*}
$$

for all $\tau \in Y_{G}(\mathbb{K})$.
Now let $\lambda, \mu \in Y_{G}(\mathbb{K})$ such that $P_{\lambda} \subseteq P_{\mu}$. Then $Y_{P_{\lambda}}(\mathbb{K}) \subseteq Y_{P_{\mu}}(\mathbb{K})$ by Lemma 4.22 , so $Y_{P_{\widehat{\kappa}(\lambda)}}(\mathbb{K})=\widehat{\kappa}\left(Y_{P_{\lambda}}(\mathbb{K})\right) \subseteq \widehat{\kappa}\left(Y_{P_{\mu}}(\mathbb{K})\right)=Y_{P_{\widehat{\kappa}(\mu)}}(\mathbb{K})$ using (4.25). We deduce from Lemma 4.22 that

$$
\begin{equation*}
P_{\widehat{\kappa}(\lambda)} \subseteq P_{\widehat{\kappa}(\mu)} . \tag{4.26}
\end{equation*}
$$

In particular, if $P_{\lambda}=P_{\mu}$ then $P_{\widehat{\kappa}(\lambda)}=P_{\widehat{\kappa}(\mu)}$, so the map $\sigma_{x} \mapsto \sigma_{\kappa(x)}$ is well-defined. Clearly, this map is invertible (with inverse $\sigma_{w} \mapsto \sigma_{\kappa^{-1}(w)}$), and (4.26) implies that it is a poset isomorphism.

Remark 4.27. If $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$ is an arbitrary linear map of vector edifices then the prescription $\sigma_{x} \mapsto \sigma_{\kappa(x)}$ need not give a well-defined map, even when G and H are reductive. For instance, if f is the inclusion of a torus G in a non-commutative reductive group H then $P_{x}(G)=G$ for every $x \in V_{G}(\mathbb{K})$ but there is more than one possible value for $P_{\kappa_{f}(x)}(H)$. So there are linear maps of vector buildings/vector edifices that do not correspond to any maps at the combinatorial level. We will exploit the extra flexibility yielded by this geometric approach in our forthcoming work [9].

Even if κ is bijective, the conclusion of Lemma 4.24 can fail. Let B be a Borel subgroup in a non-commutative split reductive group G and let $f: B \rightarrow G$ be inclusion. Then Example 4.14 shows that $\kappa_{f}: V_{B}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$ is a bijection. We can choose $x=0 \in V_{B}(\mathbb{K}), y \in V_{B}(\mathbb{K})$ such that $G=P_{\kappa_{f}(x)}(G) \neq P_{\kappa_{f}(y)}(G)=B$; but $P_{x}(B)=P_{y}(B)=B$.
4.6. Projection maps. We can now, as promised in the introduction, relate our constructions to the standard notion of projection for a spherical building. First, recall that given a simplicial spherical building Δ and any pair σ, τ of simplices in Δ there is a uniquely defined simplex $\sigma \tau$ which is the projection of τ onto σ, [34, 2.30, 3.19], [1, Def. 3.109]. If $\Delta=\Delta_{G}$ is the combinatorial edifice for a reductive k-group G (which is a simplicial spherical building), then this projection has a natural realisation in terms of the corresponding parabolic subgroups of G : if $\sigma=\sigma_{P}$ and $\tau=\sigma_{Q}$, then $\sigma \tau$ is the simplex corresponding to $(P \cap Q) R_{u}(P)$, which is also a parabolic subgroup of $G[12$, Prop. 4.4] and is contained in P. Further, if we choose a maximal split torus T of G contained in $P \cap Q$ and write $P=P_{\lambda}, Q=P_{\mu}$ for $\lambda, \mu \in Y_{T}$, then $(P \cap Q) R_{u}(P)=P_{n \lambda+\mu}$ for sufficiently large $n \in \mathbb{N}$ [4, Cor. 6.9].

Now let $L=L_{\lambda}$ be the Levi subgroup of P corresponding to the choice of λ above. Then L is a reductive group and the simplicial building Δ_{L} of L can be realised inside Δ_{G}. Again, this can be seen in terms of parabolic subgroups: for each parabolic subgroup Q of G contained in P, the subgroup $Q \cap L$ is a parabolic subgroup of L, all the parabolic subgroups of L arise in this way, and there is an inverse map $X \mapsto X R_{u}(P)$ mapping parabolic subgroups of L to parabolic subgroups of G contained in P [12, Prop. 4.4] - in this way we may identify Δ_{L} with the link or star of σ_{P} [34, 1.1], [1, Prop. 4.9]; in more modern terminology, Δ_{L} arises as a residue, see [1, Sec. 5.3, Cor. 5.30]. Combining this with the observations from the previous paragraph, we obtain a (surjective) map $\operatorname{proj}_{P, L}: \Delta_{G} \rightarrow \Delta_{L}$; this is the same as the projection onto a residue of [1, Def. 5.35].

The key observation of this section is that these constructions can be realised in the setting of a vector edifice $V_{G}(\mathbb{K})$ with the common apartment property (Definition 3.23). Since a reductive group G gives rise to such a vector edifice, what follows can be viewed as a generalisation of the previously described constructions. So now suppose G is any k-group such that $V_{G}(\mathbb{K})$ has the common apartment property. We have seen in Example 4.14 above that for such a G and an R-parabolic subgroup $P=P_{\lambda}$ of G, the inclusion $i: P \rightarrow G$ gives a bijective linear map $\kappa_{i}: V_{P}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$. It follows from Lemma 4.16 that if we let $L=L_{\lambda}$, the projection $f: P \rightarrow L \cong P / U_{\lambda}$ gives rise to a surjective linear map $V_{P}(\mathbb{K}) \rightarrow V_{L}(\mathbb{K})$. Hence the composition

$$
F_{P, L}:=\kappa_{f} \circ \kappa_{i}^{-1}: V_{G}(\mathbb{K}) \rightarrow V_{L}(\mathbb{K})
$$

is a surjective map. ${ }^{4}$ Note that f is apte by Remark 4.17(iii), because the kernel U_{λ} of f is smooth.

Lemma 4.28. With the notation just set up, $F_{P, L}$ induces a well-defined map of combinatorial edifices $\Delta_{G} \rightarrow \Delta_{L}$, which we denote by $\operatorname{proj}_{P, L}$. If G is reductive, then $\operatorname{proj}_{P, L}$ is the projection map on the spherical building of G described above.
Proof. To check that the map on combinatorial edifices induced by $F_{P, L}$ is well-defined, we need to check that if $\sigma_{\mu}=\sigma_{\nu}$ for $\mu, \nu \in Y_{G}(\mathbb{K})$, then $\sigma_{F_{P, L}(\mu)}=\sigma_{F_{P, L}(\nu)}$. Unwinding the definitions, this amounts to checking that if $\mu, \nu \in Y_{L}(\mathbb{K})$ give rise to the same R-parabolic subgroup of G then they give rise to the same R-parabolic subgroup of L, which is true by Corollary 3.16.

Now to check that the map induced by $F_{P, L}$ corresponds to $\operatorname{proj}_{P, L}$ in the case that G is reductive, we again translate into a condition on R-parabolic subgroups. This time, it suffices to show that given any $\mu \in Y_{L_{\lambda}}(\mathbb{K})$, we have $P_{\mu}\left(L_{\lambda}\right)=P_{n \lambda+\mu}\left(L_{\lambda}\right)$ for all $n \in \mathbb{N}$. To see this, first note that for any cocharacter approximation λ^{\prime} to λ and any $\mu^{\prime} \in Y_{L_{\lambda}}$ we have $P_{\mu^{\prime}}\left(L_{\lambda^{\prime}}\right)=P_{n \lambda^{\prime}+\mu^{\prime}}\left(L_{\lambda^{\prime}}\right)$ since the image of λ^{\prime} is central in $L_{\lambda^{\prime}}=L_{\lambda}$. Hence, the result follows after choosing any cocharacter approximation $\mu^{\prime} \in Y_{L_{\lambda}}$ to μ.
Remarks 4.29. (i). The map $F_{P, L}$ is not linear in general. For example, let $G=\mathrm{SL}_{2}$, let P be the standard upper triangular Borel subgroup B and let L be the standard diagonal maximal torus T. Choose $\lambda \in Y_{T}$ such that $P_{\lambda}=B$ and set $x=\phi_{G}(-\lambda)$. Let $y=u \cdot x$, where $1 \neq u \in U_{\lambda}(k)$. Now x and y are opposite by the example in Remark 3.31, so if $F_{P, L}$ is linear then $F_{P, L}(x)$ and $F_{P, L}(y)$ must be opposite. But this is not the case as $F_{P, L}(x)=F_{P, L}(y)=x$ by Lemma 4.19.
(ii). Still in the setting of the previous example, let $Q=P_{-\lambda}$ be the opposite Borel to B with respect to T. We can form the map $F_{P, L}$ using the projection $P \rightarrow L$ and the map $F_{Q, L}$ using the projection $Q \rightarrow L$. Then $F_{P, L}(y)=F_{P, L}(x)$; but Lemma 4.19 implies that $F_{Q, L}(y) \neq F_{Q, L}(x)$, as y is not $U_{-\lambda}(k)$-conjugate to x. This shows that $F_{P, L}$ depends on the choice of P for given L.
4.7. Linear maps of spherical edifices. Let $\kappa: V_{G_{1}}(\mathbb{K}) \rightarrow V_{G_{2}}(\mathbb{K})$ be a linear map of vector edifices. If κ is injective then we get an induced map

$$
\kappa^{b}: \Delta_{G_{1}}(\mathbb{K}) \rightarrow \Delta_{G_{2}}(\mathbb{K})
$$

between the corresponding spherical edifices given by $\kappa^{b}\left(\mathbb{K}^{+} \cdot x\right)=\mathbb{K}^{+} \cdot \kappa(x)$. Clearly this map of spherical edifices is also injective. We call a map of the form κ^{b} a linear map. (To make this definition we need κ to be injective, for otherwise there are nonzero elements of $V_{G_{1}}(\mathbb{K})$ mapped to $0 \in V_{G_{2}}(\mathbb{K})$, and then κ^{b} cannot be defined on all of $\Delta_{G_{1}}(\mathbb{K})$.)
Remark 4.30. Note that we get a linear map $\kappa_{f}: V_{G}(\mathbb{K}) \rightarrow V_{H}(\mathbb{K})$ for any homomorphism from G to a connected k-group H, but we only get a corresponding map of spherical buildings $\Delta_{G}(\mathbb{K})$ to $\Delta_{H}(\mathbb{K})$ if κ_{f} is injective. This is one of the main advantages of working with vector edifices rather than with spherical edifices.
Definition 4.31. We define an automorphism of $\Delta_{G}(\mathbb{K})$ to be a bijective linear map whose inverse is also a linear map. We write $\operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)$ for the group of automorphisms of $\Delta_{G}(\mathbb{K})$.

[^3]Clearly, if $\kappa \in \operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ then $\kappa^{b} \in \operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)$. Conversely, suppose $\kappa, \rho: V_{G}(\mathbb{K}) \rightarrow$ $V_{G}(\mathbb{K})$ are injective linear maps and $\rho^{b}=\left(\kappa^{b}\right)^{-1}$. Then $(\rho \circ \kappa)^{b}=\rho^{b} \circ \kappa^{b}=\operatorname{id}_{\Delta_{G}(\mathbb{K})}$, so $\rho \circ \kappa$ maps each ray in $V_{G}(\mathbb{K})$ to itself and each apartment in $V_{G}(\mathbb{K})$ to itself. Hence ρ is a bijection, and it follows that κ is a bijection. We see that if T, T^{\prime} are maximal split tori of G and ρ maps $V_{T}(\mathbb{K})$ to $V_{T^{\prime}}(\mathbb{K})$ then κ^{-1} also maps $V_{T}(\mathbb{K})$ to $V_{T^{\prime}}(\mathbb{K})$, so κ belongs to $\operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$. Hence $\operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)=\left\{\kappa^{b} \mid \kappa \in \operatorname{Aut}\left(V_{G}(\mathbb{K})\right)\right\}$.

5. Linear maps arising from base change

Let $\alpha: k \rightarrow k^{\prime}$ be a homomorphism of fields - for example, α could be a field isomorphism, or the inclusion arising from a field extension k^{\prime} / k - and let G be a k-group. Base change along α gives rise to a k^{\prime}-group ${ }^{\alpha} G$: from the functorial point of view, given a k^{\prime}-algebra A^{\prime}, we have ${ }^{\alpha} G\left(A^{\prime}\right)=G\left(A^{\prime} \otimes_{\alpha} k\right)$, which makes sense as $A^{\prime} \otimes_{\alpha} k$ is a k-algebra via scalar multiplication in the second factor. Note that when $\alpha: k \rightarrow k^{\prime}$ is the inclusion arising from a field extension k^{\prime} / k, then ${ }^{\alpha} G=G_{k^{\prime}}$, but this construction works more generally, for example when $\alpha: k \rightarrow k$ is a field automorphism.

Identifying a point $x \in G(k)$ with a morphism $\operatorname{Spec}(k) \rightarrow G$, we obtain by base change along α a morphism $\operatorname{Spec}\left(k^{\prime}\right) \rightarrow{ }^{\alpha} G$, which is to say a point ${ }^{\alpha} x \in{ }^{\alpha} G\left(k^{\prime}\right)$. The corresponding map

$$
\psi_{\alpha}: G(k) \rightarrow{ }^{\alpha} G\left(k^{\prime}\right), \quad x \mapsto{ }^{\alpha} x
$$

is a homomorphism of abstract groups.
5.1. Base change induces an injection of vector edifices. We first wish to show how base change gives rise to a linear map of the corresponding vector edifices.

Suppose $f: H \rightarrow G$ is a homomorphism of k-groups. Then base change gives rise to a homomorphism ${ }^{\alpha} f:{ }^{\alpha} H \rightarrow{ }^{\alpha} G$ of k^{\prime}-groups. Suppose $G=\left(\mathbb{G}_{m}\right)_{k}$ is the multiplicative group over k. Then ${ }^{\alpha} G \cong\left(\mathbb{G}_{m}\right)_{k^{\prime}}$ is the multiplicative group over k^{\prime} (the ring $A^{\prime} \otimes_{\alpha} k$ has the same units as $\left.A^{\prime}\right)$. Combining this observation with the previous one, we see that for each cocharacter $\lambda \in Y_{G}$, we obtain a cocharacter ${ }^{\alpha} \lambda \in Y^{\alpha}{ }_{G}$. We also see that a split torus T of G gives rise to a split torus ${ }^{\alpha} T$ of ${ }^{\alpha} G$, and the k-rank of T is the same as the k^{\prime}-rank of ${ }^{\alpha} T$.

Now suppose T is a maximal split torus of G. Then the map $\lambda \mapsto{ }^{\alpha} \lambda$ is an isomomorphism of abelian groups $Y_{T} \rightarrow Y_{\alpha_{T}}$, and hence induces an isomorphism $Y_{T}(\mathbb{K}) \rightarrow Y_{\alpha_{T}}(\mathbb{K})$, which we also denote by $\lambda \mapsto{ }^{\alpha} \lambda$. The map $\chi \mapsto{ }^{\alpha} \chi$ is an isomomorphism of abelian groups $X_{T} \rightarrow X^{\alpha} T$, and we have $\left\langle{ }^{\alpha} \lambda,{ }^{\alpha} \chi\right\rangle=\langle\lambda, \chi\rangle$ for all $\lambda \in Y_{T}$ and all $\chi \in X_{T}$.

Let $\lambda \in Y_{T}(\mathbb{K})$ and choose a G-equivariant embedding of G in a rational G-module V. Base change gives an ${ }^{\alpha} G$-equivariant embedding of ${ }^{\alpha} G$ in the rational ${ }^{\alpha} G$-module ${ }^{\alpha} V$. The weights of ${ }^{\alpha} V$ with respect to ${ }^{\alpha} T$ are the characters of the form ${ }^{\alpha} \chi$, where χ runs over the set of weights of V with respect to T. We see that if λ^{\prime} is a cocharacter approximation to λ with respect to V then ${ }^{\alpha} \lambda^{\prime}$ is a cocharacter approximation to ${ }^{\alpha} \lambda$ with respect to ${ }^{\alpha} V$. We have $P_{\alpha_{\lambda}}={ }^{\alpha} P_{\lambda}, L_{\alpha}={ }^{\alpha} L_{\lambda}$ and $U_{\alpha_{\lambda}}={ }^{\alpha} U_{\lambda}$ for any $\lambda \in Y_{K}(\mathbb{K})$; this holds if $\lambda \in Y_{G}$ by [14, Lem. 2.1.5] and the discussion that precedes it, and for arbitrary λ we get the result by taking cocharacter approximations. It follows that $\psi_{\alpha}\left(P_{\lambda}(k)\right) \subseteq P_{\alpha_{\lambda}}\left(k^{\prime}\right), \psi_{\alpha}\left(L_{\lambda}(k)\right) \subseteq L_{\alpha_{\lambda}}\left(k^{\prime}\right)$ and $\psi_{\alpha}\left(U_{\lambda}(k)\right) \subseteq U_{\alpha_{\lambda}}\left(k^{\prime}\right)$ for all $\lambda \in Y_{G}(\mathbb{K})$.

Lemma 5.1. Suppose $\alpha: k \rightarrow k^{\prime}$ is a homomorphism of fields. Then the map $\lambda \mapsto{ }^{\alpha} \lambda$ gives rise to well-defined injective maps $Y_{G}(\mathbb{K}) \rightarrow Y_{\alpha_{G}}(\mathbb{K})$ and $V_{G}(\mathbb{K}) \rightarrow V_{\alpha_{G}}(\mathbb{K})$, and the latter map is a linear map of vector edifices.

Proof. Since we have already observed bijectivity and linearity at the level of apartments above, the essential point is well-definedness. What we need follows from functoriality of base change: if T_{1}, T_{2} are maximal split tori of G and $g \in G(k)$ is such that $g T_{1} g^{-1}=T_{2}$, then we have $\psi_{\alpha}(g)\left({ }^{\alpha} T_{1}\right) \psi_{\alpha}(g)^{-1}={ }^{\alpha} T_{2}$. Similarly, if $g \cdot \lambda_{1}=\lambda_{2}$ for $\lambda_{1} \in Y_{T_{1}}(\mathbb{K})$ and $\lambda_{2} \in Y_{T_{2}}(\mathbb{K})$, then $\psi_{\alpha}(g) \cdot{ }^{\alpha} \lambda_{1}={ }^{\alpha} \lambda_{2}$. We can now check that the map $\lambda \mapsto{ }^{\alpha} \lambda$ behaves well with respect to the relations \sim and \approx before and after base change.

Remark 5.2. Since it is not necessarily true that every maximal split torus of ${ }^{\alpha} G$ is of the form ${ }^{\alpha} T$ for some maximal split torus T of G (for example, take α a Frobenius endomorphism of a non-perfect field k), the maps in Lemma 5.1 are not necessarily surjective.

Definition 5.3. Suppose $\alpha: k \rightarrow k^{\prime}$ is a homomorphism of fields, and G is a k-group. We denote the corresponding injective linear map of vector edifices by

$$
\nu_{\alpha}:=\nu_{G, \alpha}: V_{G}(\mathbb{K}) \rightarrow V_{\alpha}(\mathbb{K}) .
$$

We note in particular that this formalism allows us to identify the vector edifice $V_{G}(\mathbb{K})$ as a subset of the vector edifices $V_{G_{k_{s}}}(\mathbb{K})$ and $V_{G_{\bar{k}}}(\mathbb{K})$, which is helpful for later arguments on metrics.

Lemma 5.4. Suppose G and H are k-groups, and let $\alpha: k \rightarrow k^{\prime}$ be a field homomorphism. For any homomorphism $f: G \rightarrow H$, we have $\kappa_{\left(\alpha_{f}\right)} \circ \nu_{G, \alpha}=\nu_{H, \alpha} \circ \kappa_{f}$.

Proof. This is basically just functoriality of base change: it is clear that for $\lambda \in Y_{G}$ we have ${ }^{\alpha}(f \circ \lambda)={ }^{\alpha} f \circ{ }^{\alpha} \lambda$, and the result follows by chasing through the definitions.
5.2. Field automorphisms and vector edifice automorphisms. First observe that if $\alpha: k \rightarrow k^{\prime}$ is an isomorphism of fields and G is a k-group, then the linear maps $\nu_{G, \alpha}$ and $\nu_{\alpha_{G, \alpha^{-1}}}$ are inverses of each other, and hence $V_{G}(\mathbb{K})$ and $V_{\alpha_{G}}(\mathbb{K})$ are isomorphic.

We also wish to consider the possibility that ${ }^{\alpha} G$ and G are isomorphic as k-groups. For ease of exposition, suppose $\alpha \in \operatorname{Aut}(k)$ - i.e., α is given to us as a field automorphism so that G and ${ }^{\alpha} G$ are both k-groups. Then if there exists an isomorphism $f:{ }^{\alpha} G \rightarrow G$, we obtain a linear automorphism

$$
\kappa_{\alpha, f}:=\kappa_{f} \circ \nu_{\alpha}
$$

of $V_{G}(\mathbb{K})$.
We discuss this further in [9]. Here we give two examples of this construction, showing how it captures naturally occurring phenomena.

Example 5.5. Suppose $\alpha \in \operatorname{Aut}(k)$ and let k^{α} be the fixed field of α. Suppose that G has a k^{α}-descent - that is, that $G=H_{k}$ for some k^{α}-group H. Then we claim that ${ }^{\alpha} G$ and G are naturally isomorphic as k-groups via a homomorphism f_{α} (say). To see this, note that for a k-algebra A, when we base change and form the algebra $A \otimes_{\alpha} k$ (recall, the k-multiplication happens in the second factor), we have an isomorphism of these two as k^{α}-algebras $A \otimes_{\alpha} k \mapsto A$ given by $a \otimes 1 \rightarrow a$. This gives rise to the corresponding natural isomorphisms

$$
f_{\alpha}(A):{ }^{\alpha} G(A)=G\left(A \otimes_{\alpha} k\right)=H\left(A \otimes_{\alpha} k\right) \rightarrow H(A)=G(A)
$$

for each k-algebra A, defining the isomorphism f_{α}.
A particular instance of this set-up is if k / k_{0} is a Galois extension, and G is a k-group for which we can fix a k_{0}-descent G_{0}. Then we obtain from the various elements $\kappa_{\alpha, f_{\alpha}}$ an action
of the Galois group $\Gamma=\operatorname{Gal}\left(k / k_{0}\right)$ on $V_{G}(\mathbb{K})$. Moreover, the set of fixed points $V_{G}(\mathbb{K})^{\Gamma}$ naturally identifies with the vector edifice $V_{G_{0}}(\mathbb{K})$.

Example 5.6. Suppose k is a perfect field of characteristic p, so that the Frobenius map $\alpha_{p}: k \rightarrow k, x \mapsto x^{p}$ is a field automorphism. Let $G=\mathrm{GL}_{n}$ be the general linear group over k. Then this is a situation as in the previous example, where the group ${ }^{\alpha} G$ is naturally isomorphic to G, say via a map f_{p}, so we obtain an automorphism of the vector building $\kappa_{p}:=$ $\kappa_{\alpha_{p}, f_{p}}$. We also have the apte homomorphism $F_{p}: G \rightarrow G$ which is the standard Frobenius morphism raising matrix entries to the $p^{\text {th }}$ power (i.e., acting by α_{p} in each coordinate), which gives rise to a linear automorphism $\kappa_{F_{p}}$ of $V_{G}(\mathbb{K})$. We can compare the effects of κ_{p} and $\kappa_{F_{p}}$ by looking at the standard diagonal maximal torus T.

First, it is clear $\kappa_{F_{p}}(\lambda)=p \lambda$ for all $\lambda \in Y_{T}(\mathbb{K})$. Second, because the natural isomorphism $f_{p}:{ }^{\alpha} G \rightarrow G$ is induced by the maps on A-points $G\left(A \otimes_{\alpha_{p}} k\right) \rightarrow G(A)$ given by $a \otimes 1 \mapsto a$ in each coordinate (as described in the previous example), the net effect on a diagonal cocharacter after precomposing with base change along α_{p} is to do nothing! Note (and this is important) that we are not claiming that κ_{p} is the identity map on all of $V_{G}(\mathbb{K})$. For a general split maximal torus T^{\prime}, there exists $g \in G(k)$ such that $T^{\prime}=g T g^{-1}$. Then for $x \in V_{T}(\mathbb{K}), \kappa_{F_{p}}$ sends $g \cdot x \in V_{T^{\prime}}(\mathbb{K})$ to $F_{p}(g) \cdot(p x) \in V_{F_{p}(g) T F_{p}(g)^{-1}}(\mathbb{K})$, by Remark 4.10. On the other hand, it can be shown that κ_{p} sends $g \cdot x$ to $F_{p}(g) \cdot x$ - the key point is that for $g \in \mathrm{GL}_{n}(k)$, applying $f_{p} \circ \psi_{\alpha_{p}}$ has the same effect as applying F_{p}. Thus we see that both $\kappa_{F_{p}}$ and κ_{p} permute the apartments of $V_{G}(\mathbb{K})$, in the same way, but $\kappa_{F_{p}}$ also scales by p.

Finally, we note that if H is a subgroup of GL_{n} such that $F_{p}(H)=H$, then this conclusion naturally extends to the corresponding linear maps on $V_{H}(\mathbb{K})$ given by restriction from $V_{G}(\mathbb{K})$.

We finish this section by recalling that in the case where G is a simple k-group of rank at least 2, Tits has shown [34, Cor. 5.9, Cor. 5.10] that all automorphisms of the spherical building Δ_{G} can be constructed by considering those induced by automorphisms of the group G together with suitable automorphisms of the field k and certain exceptional Frobenius isogenies in characteristics 2 and 3. Our constructions in the previous two sections show how to realise all these automorphisms on the level of the edifice $V_{G}(\mathbb{K})$ as well.

6. Admissible metrics

In this section we show how to put a metric on $V_{G}(\mathbb{K})$. Recall that two metrics d_{1} and d_{2} on a set X are said to be bi-Lipschitz equivalent if there exist $c, C>0$ such that $d_{1}(x, y) \leq$ $c \cdot d_{2}(x, y) \leq C \cdot d_{1}(x, y)$ for all $x, y \in X$; in this case, d_{1} and d_{2} induce the same topology on X. When G is reductive then (following [20, Sec. 2], [7]) we can equip $V_{G}(\mathbb{K})$ with a metric, as follows. Fix a maximal split torus T of G. The space $V_{T}(\mathbb{R})$ can be equipped with a W_{k}-invariant metric (this is standard: just take any positive-definite bilinear form on $V_{T}(\mathbb{R})$, average over the finite group W_{k}, and take the metric defined by the associated norm). Now for any other maximal split torus T^{\prime} in G, there exists $g \in G(k)$ such that $g T^{\prime} g^{-1}=T$ this choice of g is not unique, but any two such differ by an element of W_{k}, and so we can translate the $W_{k^{\prime}}$-invariant metric on $V_{T}(\mathbb{K})$ to $V_{T^{\prime}}(\mathbb{K})$. This allows us to define $d(x, y)$ for any $x, y \in V_{G}(\mathbb{K})$, since the common apartment property holds. We thus obtain a metric d on $V_{G}(\mathbb{K})$ with the property that $d(x, y)=d(g \cdot x, g \cdot y)$ for all $x, y \in V_{G}(\mathbb{K}), g \in G(k)$; we call such a metric arising from a W_{k}-invariant bilinear form on $V_{T}(\mathbb{K})$ admissible.

As explained in Section 3.5, for general G the vector edifice $V_{G}(\mathbb{K})$ may fail to have the common apartment property, so we cannot immediately metrise $V_{G}(\mathbb{K})$ using this construction. However, with Proposition 4.11 in hand, we can make the following definition.
Definition 6.1. Let $i: G \rightarrow G^{\prime}$ be an embedding of G in a reductive k-group G^{\prime}. Choose an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{K})$. Recall that the map $\kappa_{i}: V_{G}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$ is injective (Proposition 4.11). We obtain a pullback metric d on $V_{G}(\mathbb{K})$ defined by

$$
d(x, y):=d^{\prime}\left(\kappa_{i}(x), \kappa_{i}(y)\right)
$$

for all $x, y \in V_{G}(\mathbb{K})$. We also denote this metric by $i^{*}\left(d^{\prime}\right)$, and call a metric obtained in this way an admissible metric on $V_{G}(\mathbb{K})$. Note that the equivariance of κ_{i} observed in Remark 4.10, together with the $G^{\prime}(k)$-invariance of d^{\prime}, implies that d is $G(k)$-invariant and the restriction of d to any apartment of $V_{G}(\mathbb{K})$ is given by a positive-definite bilinear form. An admissible metric d gives rise to a topology on $V_{G}(\mathbb{K})$. Below we write "open" instead of " d-open" if d is understood.

Given an admissible metric d on $V_{G}(\mathbb{K})$ we let $\|\cdot\|=\|\cdot\|_{d}$ denote the corresponding norm: $\|x\|:=d(x, 0)$ for $x \in V_{G}(\mathbb{K})$.
Remarks 6.2. (i). Since any G can be embedded into some GL_{n}, admissible metrics always exist.
(ii). It is clear that if G is reductive then the two notions of admissible metric coincide.
(iii). Let H be a connected subgroup of G and let d be an admissible metric on $V_{G}(\mathbb{K})$, arising from an embedding of G in a reductive group G^{\prime} and an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{K})$. Then the restriction of d to $V_{H}(\mathbb{K})$ (regarded as a subset of $V_{G}(\mathbb{K})$) is admissible: for it is the metric obtained from d^{\prime} via the inclusion of H in G^{\prime}.
(iv). Let d be an admissible metric on $V_{G}(\mathbb{Q})$. It is easily checked that there is a unique extension of d to an admissible metric on $V_{G}(\mathbb{R})$.
(v). If d is an admissible metric on $V_{G}(\mathbb{K})$ arising from an embedding $i: G \rightarrow G^{\prime}$ and an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{K})$, then we have

$$
d(a x, a y)=d^{\prime}\left(\kappa_{i}(a x), \kappa_{i}(a y)\right)=d^{\prime}\left(a \kappa_{i}(x), a \kappa_{i}(y)\right)=a d^{\prime}\left(\kappa_{i}(x), \kappa_{i}(y)\right)=a d(x, y)
$$

for all $a \in \mathbb{K}^{+}$and $x, y \in V_{G}(\mathbb{K})$. This uses the linearity of κ_{i} and the fact that the edifice $V_{G^{\prime}}(\mathbb{K})$ has the common apartment property (because G^{\prime} is reductive).
(vi). If d is an admissible metric on $V_{G}(\mathbb{K})$, then the subspace topology on any apartment $V_{T}(\mathbb{K})$ is just the Euclidean topology induced by the positive-definite bilinear form obtained by restricting the metric to $V_{T}(\mathbb{K})$.
Remark 6.3. Note that since an admissible metric is $G(k)$-invariant, so is the norm arising from it: in particular, if $\left(x_{n}\right)$ is a bounded sequence in $V_{G}(\mathbb{K})$ and $\left(g_{n}\right)$ is a sequence of elements of $G(k)$, then the sequence $\left(g_{n} \cdot x_{n}\right)$ is also bounded. We use this fact often in what follows.
Remark 6.4. If G has the common apartment property - e.g., if G is pseudo-reductive then any two admissible metrics on $V_{G}(\mathbb{K})$ are bi-Lipschitz equivalent - this follows from the common apartment property, the conjugation-invariance of the metrics and the standard fact that any two positive-definite bilinear forms on a finite-dimensional vector space over \mathbb{K} induce bi-Lipschitz equivalent metrics. In particular, the induced topology on $V_{G}(\mathbb{K})$ does not depend on the choice of metric. Below we extend these results to arbitrary connected k-groups (Proposition 6.21).

Definition 6.5. Given an admissible metric d on $V_{G}(\mathbb{K})$, we define $\operatorname{Isom}_{d}\left(V_{G}(\mathbb{K})\right)$ to be the subgroup of $\operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ consisting of the isometries with respect to the metric d.

Example 6.6. Not every automorphism is an isometry: for a simple example, choose $a \in \mathbb{K}^{+}$ with $a \neq 1$ and take $f_{a} \in \operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ to be the map that sends x to $a x$. See also the paragraph following Conjecture 7.4.

Lemma 6.7. Fix an admissible metric d on $V_{G}(\mathbb{K})$. Let $\left(x_{n}\right)$ be a Cauchy sequence in $V_{G}(\mathbb{K})$ such that all the x_{n} have the same type. Then $\left(x_{n}\right)$ is eventually constant.

Proof. Clearly we can assume without loss that G is reductive. Let $x \in V_{G}(\mathbb{K})$, and define

$$
\epsilon(x)=\inf \{d(x, y) \mid x \neq y \text { and } x \text { and } y \text { have the same type }\} .
$$

Remark 3.31 implies that if we choose an apartment $V_{T}(\mathbb{K})$ with $x \in V_{T}(\mathbb{K})$, then

$$
\inf \left\{d(x, y) \mid x \neq y \in V_{T}(\mathbb{K}) \text { and } x \text { and } y \text { have the same type }\right\}>0
$$

But given any other apartment $V_{T^{\prime}}(\mathbb{K})$ containing x, T^{\prime} is conjugate to T by an element fixing x by Remark 3.21, and so this lower bound does not vary from apartment to apartment containing x. Since G has the common apartment property we conclude that $\epsilon(x)>0$. Further, $\epsilon\left(x^{\prime}\right)=\epsilon(x)$ if x and x^{\prime} have the same type, as d is conjugation-invariant, so $\epsilon\left(x_{n}\right)$ does not depend on n. The result follows.

Proposition 6.8. Let G be a k-group and let d be an admissible metric on $V_{G}(\mathbb{R})$. Then $\left(V_{G}(\mathbb{R}), d\right)$ is a complete metric space.

Proof. The argument of [1, Prop. 12.10] establishes this result when G is semisimple; our proof is a slight variation on that theme. By definition, there exist an embedding i of G in some reductive k-group G^{\prime} and an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{R})$ such that $d=i^{*}\left(d^{\prime}\right)$. To ease notation, we regard $V_{G}(\mathbb{R})$ as a subset of $V_{G^{\prime}}(\mathbb{R})$ via κ_{i}, so that d is just the restriction of d^{\prime}. Let $\left(x_{n}\right)$ be a Cauchy sequence in $V_{G}(\mathbb{R})$. Fix a maximal split torus T of G. By conjugacy of maximal split tori in G, for each n we can choose $h_{n} \in G(k)$ such that $z_{n}:=h_{n} \cdot x_{n}$ belongs to the apartment $V_{T}(\mathbb{R})$ of $V_{G}(\mathbb{R})$. Note that the sequence $\left(z_{n}\right)$ is bounded, because $\left(x_{n}\right)$ is (see Remark 6.3). Fix a maximal split torus S of G^{\prime} such that $T \subseteq S$. Then each z_{n} belongs to the apartment $V_{S}(\mathbb{R})$ of $V_{G^{\prime}}(\mathbb{R})$. There is no harm in passing to a subsequence of $\left(x_{n}\right)$, so without loss we can assume that the parabolic subgroups $P_{z_{n}}\left(G^{\prime}\right)$ are all equal by Remark 2.8. Since the restriction of d^{\prime} to $V_{S}(\mathbb{R})$ yields a complete metric and any closed ball in $V_{S}(\mathbb{R})$ is compact, we can assume after passing to a subsequence again that $\left(z_{n}\right)$ converges to some limit $z \in V_{S}(\mathbb{R})$. Each z_{n} belongs to $V_{T}(\mathbb{R})$ and $V_{T}(\mathbb{R})$ is a subspace of the vector space $V_{S}(\mathbb{R})$, so $z \in V_{T}(\mathbb{R})$.

Define a sequence $\left(y_{n}\right)$ in $V_{G}(\mathbb{K})$ by $y_{n}=h_{n}^{-1} \cdot z$. Then $d^{\prime}\left(x_{n}, y_{n}\right)=d^{\prime}\left(h_{n} \cdot x_{n}, h_{n} \cdot y_{n}\right)=$ $d^{\prime}\left(z_{n}, z\right) \rightarrow 0$; hence $\left(y_{n}\right)$ is Cauchy, since $\left(x_{n}\right)$ is. But the y_{n} all have the same type as each other as elements of $V_{G^{\prime}}(\mathbb{K})$, so $\left(y_{n}\right)$ must eventually become constant by Lemma 6.7: say, $y_{n}=y$ for sufficiently large n. We see that $x_{n} \rightarrow y$, so we are done.

We now consider admissible metrics on the edifice for a product of groups. Let G_{1} and G_{2} be k-groups. The maximal split tori of $G_{1} \times G_{2}$ are precisely the subgroups of the form $T_{1} \times T_{2}$, where T_{i} is a maximal split torus of G_{i}. There is an obvious linear isomorphism from $V_{T_{1}}(\mathbb{K}) \oplus V_{T_{2}}(\mathbb{K})$ to $V_{T_{1} \times T_{2}}(\mathbb{K})$. For $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in V_{T_{1} \times T_{2}}(\mathbb{K})$, we claim that $P_{\lambda}\left(G_{1} \times G_{2}\right)=$ $P_{\lambda_{1}}\left(G_{1}\right) \times P_{\lambda_{2}}\left(G_{2}\right), L_{\lambda}\left(G_{1} \times G_{2}\right)=L_{\lambda_{1}}\left(G_{1}\right) \times L_{\lambda_{2}}\left(G_{2}\right)$ and $U_{\lambda}\left(G_{1} \times G_{2}\right)=U_{\lambda_{1}}\left(G_{1}\right) \times U_{\lambda_{2}}\left(G_{2}\right)$.

This is clear if $\lambda_{1} \in Y_{T_{1}}$ and $\lambda_{2} \in Y_{T_{2}}$. To see this in general, choose a G_{i}-equivariant embedding of G_{i} in a rational G_{i}-module V_{i} for $i=1,2$, then embed $G_{1} \times G_{2}$ in $V_{1} \oplus V_{2}$ in the obvious way. Then $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ is a cocharacter approximation to (λ_{1}, λ_{2}) if and only if λ_{i}^{\prime} is a cocharacter approximation to λ_{i} for $i=1,2$, and the claim follows. It is now easily checked that the maps $V_{T_{1}}(\mathbb{K}) \oplus V_{T_{2}}(\mathbb{K}) \rightarrow V_{T_{1} \times T_{2}}(\mathbb{K})$ paste together to give a bijection from $V_{G_{1}}(\mathbb{K}) \times V_{G_{2}}(\mathbb{K})$ to $V_{G_{1} \times G_{2}}(\mathbb{K})$.

Now let $d_{1}=i_{1}^{*}\left(d_{1}^{\prime}\right)$ and $d_{2}=i_{2}^{*}\left(d_{2}^{\prime}\right)$, where i_{j} is an embedding of G_{j} in a reductive k-group G_{j}^{\prime} and d_{j}^{\prime} is an admissible metric on $V_{G_{j}^{\prime}}(\mathbb{K})$. We get an admissible metric d^{\prime} on $V_{G_{1}^{\prime} \times G_{2}^{\prime}}(\mathbb{K})=V_{G_{1}^{\prime}}(\mathbb{K}) \times V_{G_{2}^{\prime}}(\mathbb{K})$ given by

$$
d^{\prime}\left(\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right)=\sqrt{d_{1}^{\prime}\left(x_{1}^{\prime}, y_{1}^{\prime}\right)^{2}+d_{2}^{\prime}\left(x_{2}^{\prime}, y_{2}^{\prime}\right)^{2}}:
$$

on each apartment $V_{T_{1}^{\prime} \times T_{2}^{\prime}}(\mathbb{K})=V_{T_{1}^{\prime}}(\mathbb{K}) \oplus V_{T_{2}^{\prime}}(\mathbb{K})$, the positive-definite bilinear form corresponding to d^{\prime} is the orthogonal direct sum of the positive-definite bilinear forms on $V_{T_{j}^{\prime}}(\mathbb{K})$ corresponding to d_{j}^{\prime} for $j=1,2$. We have an embedding $i_{1} \times i_{2}$ of $G_{1} \times G_{2}$ in $G_{1}^{\prime} \times G_{2}^{\prime}$ and we define an admissible metric d on $V_{G_{1} \times G_{2}}(\mathbb{K})$ by $d=\left(i_{1} \times i_{2}\right)^{*}\left(d^{\prime}\right)$. We write $d=d_{1} \times d_{2}$ and we call a metric of this form a product metric. We have

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{G_{1}}(\mathbb{K}) \times V_{G_{2}}(\mathbb{K})=V_{G_{1} \times G_{2}}(\mathbb{K})$.
6.1. Central tori. Suppose G has a non-trivial split central torus Z. We need an argument for reducing from G to G / Z. Let d be an admissible metric on $V_{G}(\mathbb{K})$. Then there exist an embedding i of G in a reductive group G^{\prime}, and an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{K})$ such that $d=i^{*}\left(d^{\prime}\right)$. Set $Z^{\prime}=i(Z)$. We can replace G^{\prime} with the reductive group $C_{G^{\prime}}\left(Z^{\prime}\right)$ if necessary, so without loss we can assume that Z^{\prime} is central in G^{\prime}.

Now let T^{\prime} be any maximal split torus of G^{\prime}. Since T^{\prime} contains Z^{\prime}, we may regard $V_{Z^{\prime}}(\mathbb{K})$ as a subspace of $V_{T^{\prime}}(\mathbb{K})$. Set $W_{T^{\prime}}=V_{Z^{\prime}}(\mathbb{K})^{\perp}$, where ${ }^{\perp}$ denotes the orthogonal complement corresponding to the bilinear form that defines d^{\prime}. Given $x^{\prime} \in V_{T^{\prime}}(\mathbb{K})$, we have a unique decomposition $x^{\prime}=x_{Z^{\prime}}^{\prime}+x_{\perp}^{\prime}$, where $x_{Z^{\prime}}^{\prime} \in V_{Z^{\prime}}(\mathbb{K})$ and $x_{\perp}^{\prime} \in W_{T^{\prime}}$. Note that since any other maximal split torus S^{\prime} of G^{\prime} with $x^{\prime} \in V_{S^{\prime}}(\mathbb{K})$ is conjugate to T^{\prime} by an element of $G^{\prime}(k)$ fixing x^{\prime} (essentially by definition of $V_{G^{\prime}}(\mathbb{K})$), and Z^{\prime} is central in G^{\prime}, the elements $x_{Z^{\prime}}^{\prime}$ and x_{\perp}^{\prime} do not depend on the choice of T^{\prime} with $x^{\prime} \in V_{T^{\prime}}(\mathbb{K})$.

Given $x^{\prime}, y^{\prime} \in V_{T^{\prime}}(\mathbb{K})$, we define $d_{Z^{\prime}}^{\prime}\left(x^{\prime}, y^{\prime}\right)=d^{\prime}\left(x_{Z^{\prime}}^{\prime}, y_{Z^{\prime}}^{\prime}\right)$ and $d_{\perp}^{\prime}\left(x^{\prime}, y^{\prime}\right)=d^{\prime}\left(x_{\perp}^{\prime}, y_{\perp}^{\prime}\right)$. For any $g^{\prime} \in G^{\prime}(k), g^{\prime}$ fixes $V_{Z^{\prime}}(\mathbb{K})$ pointwise (since it fixes $Y_{Z^{\prime}}$ pointwise), so $W_{g^{\prime} T^{\prime}\left(g^{\prime}\right)^{-1}}=g^{\prime} \cdot W_{T^{\prime}}$ and for any $x^{\prime} \in V_{T^{\prime}}(\mathbb{K})$,

$$
\begin{equation*}
\left(g^{\prime} \cdot x^{\prime}\right)_{Z^{\prime}}=g^{\prime} \cdot x_{Z^{\prime}}^{\prime}=x_{Z^{\prime}}^{\prime} \text { and }\left(g^{\prime} \cdot x^{\prime}\right)_{\perp}=g^{\prime} \cdot x_{\perp}^{\prime} \tag{6.9}
\end{equation*}
$$

It follows easily that $d_{Z^{\prime}}^{\prime}$ and d_{\perp}^{\prime} give well-defined $G^{\prime}(k)$-invariant functions from $V_{G^{\prime}}(\mathbb{K}) \times$ $V_{G^{\prime}}(\mathbb{K})$ to \mathbb{R}. We define $d_{Z}(x, y)=d_{Z^{\prime}}^{\prime}\left(\kappa_{i}(x), \kappa_{i}(y)\right)$ and $d_{\perp}(x, y)=d_{\perp}^{\prime}\left(\kappa_{i}(x), \kappa_{i}(y)\right)$ for $x, y \in V_{G}(\mathbb{K})$. We also have $d(x, y)=d^{\prime}\left(\kappa_{i}(x), \kappa_{i}(y)\right)$, by definition, so we can conclude that

$$
\begin{equation*}
d(x, y)=\sqrt{d_{Z}(x, y)^{2}+d_{\perp}(x, y)^{2}} \text { for all } x, y \in V_{G}(\mathbb{K}) \tag{6.10}
\end{equation*}
$$

because the corresponding equation holds for $d^{\prime}, d_{Z^{\prime}}^{\prime}, d_{\perp}^{\prime}$ and for all $\kappa_{i}(x), \kappa_{i}(y) \in V_{G^{\prime}}(\mathbb{K})$. Note that d and d_{Z} agree on $V_{Z}(\mathbb{K}) \times V_{Z}(\mathbb{K})$.

Now let $G_{1}=G / Z$ and let $G_{1}^{\prime}=G^{\prime} / Z^{\prime}$. Let $\pi: G \rightarrow G_{1}$ and $\pi^{\prime}: G^{\prime} \rightarrow G_{1}^{\prime}$ denote the canonical projections. Then i gives rise to an embedding i_{1} of G_{1} in G_{1}^{\prime}. Choose an admissible metric d_{1}^{\prime} on $V_{G_{1}^{\prime}}(\mathbb{K})$ and let $d_{1}=i_{1}^{*}\left(d_{1}^{\prime}\right)$.
Lemma 6.11. Let the notation be as above. Then there exist $c, C>0$ such that

$$
\begin{equation*}
d_{1}\left(\kappa_{\pi}(x), \kappa_{\pi}(y)\right) \leq c \cdot d_{\perp}(x, y) \leq C \cdot d_{1}\left(\kappa_{\pi}(x), \kappa_{\pi}(y)\right) \tag{6.12}
\end{equation*}
$$

for all $x, y \in V_{G}(\mathbb{K})$.
Proof. It is enough to show that there exist $c, C>0$ such that

$$
\begin{equation*}
d_{1}^{\prime}\left(\kappa_{\pi^{\prime}}\left(x^{\prime}\right), \kappa_{\pi^{\prime}}\left(y^{\prime}\right)\right) \leq c \cdot d_{\perp}^{\prime}\left(x^{\prime}, y^{\prime}\right) \leq C \cdot d_{1}^{\prime}\left(\kappa_{\pi^{\prime}}\left(x^{\prime}\right), \kappa_{\pi^{\prime}}\left(y^{\prime}\right)\right) \tag{6.13}
\end{equation*}
$$

for all $x^{\prime}, y^{\prime} \in V_{G^{\prime}}(\mathbb{K})$. So fix a maximal split torus T_{1}^{\prime} of G_{1}^{\prime}. Since π^{\prime} is smooth and surjective, π^{\prime} is apte by Remark 4.17(iii), so there is a maximal split torus T^{\prime} of G^{\prime} such that $\pi^{\prime}\left(T^{\prime}\right)=T_{1}^{\prime}$. It is straightforward to check that $\kappa_{\pi^{\prime}}$ gives an isomorphism of \mathbb{K}-vector spaces from $V_{T^{\prime}}(\mathbb{K}) / V_{Z^{\prime}}(\mathbb{K})$ to $V_{T_{1}^{\prime}}(\mathbb{K})$, so $\kappa_{\pi^{\prime}}$ gives an isomorphism of \mathbb{K}-vector spaces from $W_{T_{1}^{\prime}}$ to $V_{T_{1}^{\prime}}(\mathbb{K})$. Since any two positive-definite bilinear forms on a vector space yield equivalent norms, there exist $c, C>0$ such that (6.13) holds for all $x^{\prime}, y^{\prime} \in V_{T^{\prime}}(\mathbb{K})$. It follows from the $G^{\prime}(k)$-invariance of d_{1}^{\prime} and d_{\perp}^{\prime} that the same c and C work for any maximal split torus of G^{\prime}. This gives the result.

Consider the product group $G_{1} \times Z$. The maximal split tori of $G_{1} \times Z$ are precisely the subgroups of the form $T_{1} \times Z$, where T_{1} is a maximal split torus of G_{1}. Keeping the notation above, we endow $V_{G_{1} \times Z}(\mathbb{K})$ with the product metric $\widetilde{d}:=d_{1} \times d_{Z}$, where d_{Z} is the restriction of d to $V_{Z}(\mathbb{K})$. Given a maximal split torus T_{1} of G_{1}, pick a maximal split torus T of G such that $\pi(T)=T_{1}$. Since T contains $\operatorname{ker}(\pi)=Z, T$ is in fact unique. Define

$$
\beta_{Z, T}: V_{T}(\mathbb{K}) \rightarrow V_{T_{1}}(\mathbb{K}) \times V_{Z}(\mathbb{K})=V_{T_{1} \times Z}(\mathbb{K})
$$

by $\beta_{Z, T}(x)=\left(\kappa_{\pi}(x), x_{Z}\right)$.
Lemma 6.14. The maps $\beta_{Z, T}$ paste together to give a well-defined isomorphism $\beta_{Z}: V_{G}(\mathbb{K}) \rightarrow$ $V_{G_{1} \times Z}(\mathbb{K})$. Moreover, β_{Z} is a bi-Lipschitz map from $\left(V_{G}(\mathbb{K}), d\right)$ to $\left(V_{G_{1} \times Z}(\mathbb{K}), \widetilde{d}\right)$.
Proof. That β_{Z} is well-defined follows from (6.9) and Remark 4.10. Since each $\beta_{Z, T}$ is bijective, β_{Z} is bijective and the linearity of β_{Z} and β_{Z}^{-1} is a consequence of the definitions. The bi-Lipschitz property follows from (6.12).
6.2. Bi-Lipschitz equivalence of norms. We have seen that the common apartment property can fail for $V_{G}(\mathbb{K})$. We can, however, prove a weaker local version.
Lemma 6.15. Let d be an admissible metric on $V_{G}(\mathbb{K})$. Let $x \in V_{G}(\mathbb{K})$. Then there exists a d-open neighbourhood O of x in $V_{G}(\mathbb{K})$ such that
(i) $P_{y} \subseteq P_{x}$ for all $y \in O$;
(ii) $O \subseteq V_{L_{\lambda}}(\mathbb{K})$ for any $\lambda \in Y_{G}(\mathbb{K})$ such that $\phi_{G}(\lambda)=x$.

Proof. First suppose G is reductive. Recall (see Lemma 5.1, Definition 5.3) that we have an embedding of $Y_{G}(\mathbb{K})$ in $Y_{G_{k_{s}}}(\mathbb{K})$ and of $V_{G}(\mathbb{K})$ in $V_{G_{k_{s}}}(\mathbb{K})$; we denote the image of $\mu \in Y_{G}(\mathbb{K})$ in $Y_{G_{k_{s}}}(\mathbb{K})$ by $\widetilde{\mu}$, and of $y \in V_{G}(\mathbb{K})$ in $V_{G_{k_{s}}}(\mathbb{K})$ by \widetilde{y}. Choose a maximal split torus T of G such that $x \in V_{T}(\mathbb{K})$, and choose a maximal torus \widetilde{T} of $G_{k_{s}}$ such that $T_{k_{s}} \subseteq \widetilde{T}$: then $\widetilde{x} \in V_{\widetilde{T}}(\mathbb{K})$. Choose $\lambda \in Y_{T}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$, and recall that in this case we
can determine the R-parabolic subgroup $P_{\widetilde{\lambda}}$ by considering the pairing of $\widetilde{\lambda}$ with roots of $G_{k_{s}}$ (see Example 3.13). Let $\alpha_{1}, \ldots, \alpha_{s}$ be the roots of $U_{\widetilde{\lambda}}$ with respect to \widetilde{T}. The set $\left\{\mu \in Y_{T}(\mathbb{K}) \mid\left\langle\widetilde{\mu}, \alpha_{i}\right\rangle>0\right.$ for $\left.1 \leq i \leq s\right\}$ is open and contains λ, so its image \widetilde{O} in $V_{T}(\mathbb{K})$ is an open neighbourhood of x. Hence there exists $\epsilon>0$ such that $y \in \widetilde{O}$ for all $y \in V_{T}(\mathbb{K})$ such that $d(x, y)<\epsilon$.

Let O be the open ball $B(x, \epsilon)$ in $V_{G}(\mathbb{K})$. Let $y \in O$. Since G is reductive, the common apartment property holds, so there is a maximal split torus T_{0} of G such that $x, y \in V_{T_{0}}(\mathbb{K})$. Now T_{0} is a maximal split torus of P_{x}, so there exists $g \in P_{x}(k)$ such that $g T_{0} g^{-1}=T$. We have $g \cdot x=x$, so $d(x, g \cdot y)=d(g \cdot x, g \cdot y)=d(x, y)<\epsilon$. It follows from Example 3.13 and by construction that $U_{g \cdot y} \supseteq U_{x}$, so $P_{g \cdot y} \subseteq P_{x}$ (this conclusion holds because G is reductive). Hence $P_{y}=g^{-1} P_{g \cdot y} g \subseteq g^{-1} P_{x} g=P_{g^{-1 \cdot x}}=P_{x}$ by Example 4.9. This proves part (i) when G is reductive.

Now let G be arbitrary and let $x \in V_{G}(\mathbb{K})$. There exist an embedding i of G in a reductive k-group G^{\prime} and an admissible metric d^{\prime} on $V_{G^{\prime}}(\mathbb{K})$ such that $d=i^{*}\left(d^{\prime}\right)$. By the reductive case, there is a d^{\prime}-open neighbourhood O^{\prime} of $\kappa_{i}(x)$ such that $P_{w}\left(G^{\prime}\right) \subseteq P_{\kappa_{i}(x)}\left(G^{\prime}\right)$ for all $w \in O^{\prime}$. By construction, $O:=\kappa_{i}^{-1}\left(O^{\prime}\right)$ is a d-open neighbourhood of x. Let $y \in O$. Then $P_{\kappa_{i}(y)}\left(G^{\prime}\right) \subseteq P_{\kappa_{i}(x)}\left(G^{\prime}\right)$, so $P_{y} \subseteq P_{x}$ by Corollary 3.16. This finishes the proof of (i).

To prove (ii), let $y \in O$. Choose $\lambda, \mu \in Y_{G}(\mathbb{K})$ such that $\phi_{G}(\lambda)=x$ and $\phi_{G}(\mu)=y$. Since $P_{y} \subseteq P_{x}, \mu$ belongs to $Y_{P_{x}}(\mathbb{K})$, so by Remark 3.8 there exist a maximal split torus T of P_{x} and $u \in U_{\lambda}(k)$ such that $\lambda, u \cdot \mu \in Y_{T}(\mathbb{K})$. Since $P_{\kappa_{i}(u \cdot y)}\left(G^{\prime}\right)=P_{\widehat{\kappa}_{i}(u \cdot \mu)}\left(G^{\prime}\right)$ is contained in $P_{\kappa_{i}(x)}\left(G^{\prime}\right)=P_{\widehat{\kappa}_{i}(\lambda)}\left(G^{\prime}\right)$, it follows from the description of R-parabolic subgroups and RLevi subgroups of reductive groups given in Example 3.13 that $L_{\widehat{\kappa}_{i}(u \cdot \mu)}\left(G^{\prime}\right)$ is contained in $L_{\widehat{\kappa}_{i}(\lambda)}\left(G^{\prime}\right)$. We deduce from Corollary 3.16 that $L_{u \cdot \mu}$ is contained in L_{λ}, so $u \cdot y \in V_{L_{u \cdot \mu}}(\mathbb{K}) \subseteq$ $V_{L_{\lambda}}(\mathbb{K})$. Now $U_{\widehat{\kappa}_{i}(\lambda)}\left(G^{\prime}\right) \subseteq U_{\widehat{\kappa}_{i}(\mu)}\left(G^{\prime}\right)$ because $P_{\widehat{\kappa}_{i}(\mu)}\left(G^{\prime}\right) \subseteq P_{\widehat{\kappa}_{i}(\lambda)}\left(G^{\prime}\right)$ and G^{\prime} is reductive. It follows that $U_{\lambda}=U_{\widehat{\kappa}_{i}(\lambda)}\left(G^{\prime}\right) \cap G \subseteq U_{\widehat{\kappa}_{i}(\mu)}\left(G^{\prime}\right) \cap G=U_{\mu}$ by Corollary 3.16, so $u \in U_{\mu}(k)$, so $u \cdot y=y$. Hence $y \in V_{L_{\lambda}}(\mathbb{K})$, and we are done.
Lemma 6.16. Let d be an admissible metric on $V_{G}(\mathbb{K})$. Let $x \in V_{G}(\mathbb{K})$. Then there is a d-open neighbourhood O of x such that for all $y \in O, x$ and y lie in a common apartment.
Proof. We use induction on $\operatorname{dim}(G)$. The statement is vacuous if $\operatorname{dim}(G)=0$. If $x \in$ $V_{Z(G)^{\mathrm{o}}}(\mathbb{K})$ then every $y \in V_{G}(\mathbb{K})$ lies in a common apartment with x, so $O=V_{G}(\mathbb{K})$ will do. Suppose $x \notin V_{Z(G)^{0}}(\mathbb{K})$. Pick $\lambda \in Y_{G}(\mathbb{K})$ such that $\phi_{G}(\lambda)=x$. We identify $V_{L_{\lambda}}(\mathbb{K})$ with its image in $V_{G}(\mathbb{K})$; the restriction d_{1} of d to $V_{L_{\lambda}}(\mathbb{K})$ is an admissible metric. By Lemma 6.15, there is an open neighbourhood O_{1} of x such that $O_{1} \subseteq V_{L_{\lambda}}(\mathbb{K})$. Since $\operatorname{dim}\left(L_{\lambda}\right)<\operatorname{dim}(G)$ by Lemma 3.5(ii), our induction hypothesis implies that there is an open neighbourhood O_{2} of x in $V_{L_{\lambda}}(\mathbb{K})$ such that for all $y \in O_{2}, x$ and y lie in a common apartment of $V_{L_{\lambda}}(\mathbb{K})$. But an apartment of $V_{L_{\lambda}}(\mathbb{K})$ is also an apartment of $V_{G}(\mathbb{K})$, so we can take $O=O_{1} \cap O_{2}$.
Lemma 6.17. Let T, T^{\prime} be maximal split tori of G. Let $\left(\lambda_{n}\right)$ and $\left(\lambda_{n}^{\prime}\right)$ be sequences in $Y_{T}(\mathbb{K})$ and $Y_{T^{\prime}}(\mathbb{K})$, respectively, and let $\lambda \in Y_{T}(\mathbb{K}), \lambda^{\prime} \in Y_{T^{\prime}}(\mathbb{K})$ such that $\lambda_{n} \rightarrow \lambda$ and $\lambda_{n}^{\prime} \rightarrow \lambda^{\prime}$. Suppose $\left(T, \lambda_{n}\right) \approx\left(T^{\prime}, \lambda_{n}^{\prime}\right)$ for all $n \in \mathbb{N}$. Then $(T, \lambda) \approx\left(T^{\prime}, \lambda^{\prime}\right)$.
Proof. For each n, there exists $g_{n} \in P_{\lambda_{n}}(k)$ such that $g_{n} T g_{n}^{-1}=T^{\prime}$ and $g_{n} \cdot \lambda_{n}=\lambda_{n}^{\prime}$. The conjugation map $\operatorname{Inn}_{g_{n}}$ gives rise to a linear map $h_{n}: V_{T}(\mathbb{K}) \rightarrow V_{T^{\prime}}(\mathbb{K})$. Since W_{k} is finite, the set $\left\{h_{n} \mid n \in \mathbb{N}\right\}$ is finite. By passing to subsequences, we can assume that the h_{n} are all equal - say, to h. So $h(\lambda)=\lambda^{\prime}$ by the continuity of h. We have $h(\lambda)=g_{n} \cdot \lambda$ for each $n \in \mathbb{N}$. Lemma 6.15 implies that $g_{n} \in P_{\lambda}(k)$ for large n. The result follows.

Lemma 6.18. Let κ be a linear map from $V_{G}(\mathbb{Q})$ to $V_{H}(\mathbb{Q})$. Then there is a unique extension of κ to a linear map $\bar{\kappa}: V_{G}(\mathbb{R}) \rightarrow V_{H}(\mathbb{R})$.

Proof. We can extend κ uniquely on each apartment in the obvious way. We just need to check that these maps paste together to give a well-defined map $\bar{\kappa}$ from $V_{G}(\mathbb{K})$ to $V_{H}(\mathbb{K})$ (it is clear that the map is linear if it is well-defined, and uniqueness is also clear). Recall from Lemma 4.4 that κ lifts to a map $\widehat{\kappa}: Y_{G}(\mathbb{Q}) \rightarrow Y_{H}(\mathbb{Q})$. Let T, T^{\prime} be maximal split tori of G and choose maximal split tori S and S^{\prime} of H such that $\widehat{\kappa}$ maps $Y_{T}(\mathbb{Q})$ into $Y_{S}(\mathbb{Q})$ and $Y_{T^{\prime}}(\mathbb{Q})$ into $Y_{S^{\prime}}(\mathbb{Q})$. Let $\widehat{\kappa}_{T, S}: V_{T}(\mathbb{R}) \rightarrow V_{S}(\mathbb{R})$ (resp., $\widehat{\kappa}_{T^{\prime}, S^{\prime}}: V_{T^{\prime}}(\mathbb{R}) \rightarrow V_{S^{\prime}}(\mathbb{R})$) be the extension of $\widehat{\kappa}$. Pick $\lambda \in Y_{T}(\mathbb{R})$ and $\lambda^{\prime} \in Y_{T^{\prime}}(\mathbb{R})$ such that $(\lambda, T) \approx\left(\lambda^{\prime}, T^{\prime}\right)$. It is enough to show that $\left(S, \widehat{\kappa}_{T, S}(\lambda)\right) \approx\left(S^{\prime}, \widehat{\kappa}_{T^{\prime}, S^{\prime}}\left(\lambda^{\prime}\right)\right)$.

Pick a rational approximating sequence $\left(\lambda_{n}\right)$ to λ in $Y_{T}(\mathbb{R})$. By hypothesis, there exists $g \in P_{\lambda}(k)$ such that $g \cdot \lambda=\lambda^{\prime}$ and $g T g^{-1}=T^{\prime}$. Set $\lambda_{n}^{\prime}=g \cdot \lambda_{n}$ for each $n \in \mathbb{N}$. Then $\lambda_{n}^{\prime} \rightarrow \lambda^{\prime}$, since conjugation by g induces an isomorphism from $V_{T}(\mathbb{R})$ to $V_{T^{\prime}}(\mathbb{R})$. Further, $g \in P_{\lambda}(k)=P_{\lambda_{n}}(k)$, so $\left(T^{\prime}, \lambda_{n}^{\prime}\right) \approx\left(T, \lambda_{n}\right)$ and $\phi_{G}\left(\lambda_{n}^{\prime}\right)=\phi_{G}\left(\lambda_{n}\right)$ for each $n \in \mathbb{N}$. It follows that $\kappa\left(\phi_{G}\left(\lambda_{n}^{\prime}\right)\right)=\kappa\left(\phi_{G}\left(\lambda_{n}\right)\right)$ and hence $\left(S^{\prime}, \widehat{\kappa}\left(\lambda_{n}^{\prime}\right)\right) \approx\left(S, \widehat{\kappa}\left(\lambda_{n}\right)\right)$ for each $n \in \mathbb{N}$. But $\widehat{\kappa}\left(\lambda_{n}^{\prime}\right) \rightarrow \widehat{\kappa}_{T^{\prime}, S^{\prime}}\left(\lambda^{\prime}\right)$ and $\widehat{\kappa}\left(\lambda_{n}\right) \rightarrow \widehat{\kappa}_{T, S}(\lambda)$ as $\widehat{\kappa}_{T^{\prime}, S^{\prime}}$ and $\widehat{\kappa}_{T, S}$ are isomorphisms. It follows from Lemma 6.17 that $\left(S^{\prime}, \widehat{\kappa}_{T^{\prime}, S^{\prime}}\left(\lambda^{\prime}\right)\right) \approx\left(S, \widehat{\kappa}_{T, S}(\lambda)\right)$, as required.

Definition 6.19. Let G and G^{\prime} be connected k-groups and let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$ be a linear map. We say that κ is strongly type-preserving if for all $g \in G(k)$, there exists $g^{\prime} \in G^{\prime}(k)$ such that $\kappa(g \cdot x)=g^{\prime} \cdot \kappa(x)$ for all $x \in V_{G}(\mathbb{K})$.

Remarks 6.20. (i). Let G and G^{\prime} be connected k-groups and let d^{\prime} be an admissible metric on $V_{G^{\prime}}(\mathbb{K})$. Let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$ be a strongly type-preserving linear map. Because d^{\prime} is $G^{\prime}(k)$-invariant, we have

$$
d^{\prime}(\kappa(g \cdot x), \kappa(g \cdot y))=d^{\prime}(\kappa(x), \kappa(y))
$$

for all $x, y \in V_{G}(\mathbb{K})$.
(ii). It follows from Remark 4.10 that if $f: G \rightarrow G^{\prime}$ is a homomorphism of connected k groups then κ_{f} is strongly type-preserving. Now let G be a connected k-group and let $\alpha: k \rightarrow$ k^{\prime} be a field homomorphism. It follows from Lemma 5.4 (applied to the homomorphism $f=\operatorname{Inn}_{g}$ for $\left.g \in G(k)\right)$ that ν_{α} is a strongly type-preserving linear map; note that ${ }^{\alpha}\left(\operatorname{Inn}_{g}\right)=$ $\operatorname{Inn}_{\alpha}$, where we regard $g \in G(k)$ as a map $\operatorname{Spec}(k) \rightarrow G$ and obtain ${ }^{\alpha} g \in{ }^{\alpha} G\left(k^{\prime}\right)$ by base extension.

We can now prove:
Proposition 6.21. Let G be a connected k-group and let G^{\prime} be a connected k^{\prime}-group, where k^{\prime} is a field. Let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$ be a strongly type-preserving linear map. Let d, d^{\prime} be admissible metrics on $V_{G}(\mathbb{K})$, $V_{G^{\prime}}(\mathbb{K})$, respectively. Then there exists $C>0$ such that for all $x_{1}, x_{2} \in V_{G}(\mathbb{K})$, we have $d^{\prime}\left(\kappa\left(x_{1}\right), \kappa\left(x_{2}\right)\right) \leq C \cdot d\left(x_{1}, x_{2}\right)$.

Proof. We may assume that $\mathbb{K}=\mathbb{R}$, for if the result holds in that case then it quickly follows for $\mathbb{K}=\mathbb{Q}$ by Lemma 6.18 and Remark $6.2(\mathrm{iv})$. Let T be any maximal split torus of G and let $x_{1}, x_{2} \in V_{T}(\mathbb{K})$. Then $\kappa\left(V_{T}(\mathbb{K})\right)$ is contained in $V_{T^{\prime}}(\mathbb{K})$ for some maximal split torus T^{\prime} of G^{\prime}. The restriction of d (resp., d^{\prime}) to $V_{T}(\mathbb{K})$ (resp., $V_{T^{\prime}}(\mathbb{K})$) is a metric arising from a symmetric positive-definite bilinear form, so there exists $D>0$ depending on d, d^{\prime} but independent of x_{1}, x_{2} such that $d^{\prime}\left(\kappa\left(x_{1}\right), \kappa\left(x_{2}\right)\right) \leq D \cdot d\left(x_{1}, x_{2}\right)$. Note that D is independent
of the choice of T : for if $\widetilde{T}=g T g^{-1}$ is another maximal split torus of G for some $g \in G(k)$ then, taking g^{\prime} as in Definition 6.19, we have

$$
d^{\prime}\left(\kappa\left(g \cdot x_{1}\right), \kappa\left(g \cdot x_{2}\right)\right)=d^{\prime}\left(\kappa\left(x_{1}\right), \kappa\left(x_{2}\right)\right) \leq D \cdot d\left(x_{1}, x_{2}\right)=D \cdot d\left(g \cdot x_{1}, g \cdot x_{2}\right)
$$

for all $x_{1}, x_{2} \in V_{T}(\mathbb{K})$ by Remark $6.20(\mathrm{i})$. Hence we are done when x_{1} and x_{2} belong to a common apartment of $V_{G}(\mathbb{K})$; in particular, this is the case when one of x_{1}, x_{2} belongs to $V_{Z(G)^{0}}(\mathbb{K})$. Taking $x_{1}=x$ and $x_{2}=0$ yields

$$
\begin{equation*}
\|\kappa(x)\| \leq D\|x\| \tag{6.22}
\end{equation*}
$$

for all $x \in V_{G}(\mathbb{K})$.
Now we use induction on $\operatorname{dim}(G)$. The result is trivial if $\operatorname{dim}(G)=0$ or G is itself a split torus. Suppose that G is not a split torus and that G contains a non-trivial central split torus Z; let $G_{1}=G / Z$ as above. Then $\operatorname{dim}\left(G_{1}\right), \operatorname{dim}(Z)<\operatorname{dim}(G)$. Let d_{1} be as in Section 6.1 and let d_{Z} be the restriction of d to $V_{Z}(\mathbb{K})$. By Lemma 6.14 we have a linear map $\kappa_{1}:=\kappa \circ \beta_{Z}^{-1}$ from $V_{G_{1} \times Z}(\mathbb{K})$ to $V_{G^{\prime}}(\mathbb{K})$. By Lemma 6.14, we can replace $V_{G}(\mathbb{K})$ and κ with $V_{G_{1} \times Z}(\mathbb{K})$ and κ_{1}. But the result follows in this case by applying the induction hypothesis to $\left(V_{G_{1}}(\mathbb{K}), d_{1}\right)$ and $\left(V_{Z}(\mathbb{K}), d_{Z}\right)$ and the linear maps $V_{G_{1}}(\mathbb{K}) \xrightarrow{\kappa_{j_{1}}} V_{G_{1} \times Z}(\mathbb{K}) \xrightarrow{\kappa_{7}} V_{G^{\prime}}(\mathbb{K})$ and $V_{Z}(\mathbb{K}) \xrightarrow{\kappa_{j}} V_{G_{1} \times Z}(\mathbb{K}) \xrightarrow{\kappa_{\mathcal{L}}} V_{G^{\prime}}(\mathbb{K})$, where j_{1} and j_{Z} are the inclusions of G_{1} and Z in $G_{1} \times Z$, respectively.

So we may assume that G has no non-central split torus and hence, by Lemma 3.5(ii), that L_{λ} is a proper subgroup of G for every nonzero $\lambda \in Y_{G}(\mathbb{K})$. Suppose for a contradiction that no constant C as in the statement of the lemma exists. Then there are sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $V_{G}(\mathbb{K})$ such that $d^{\prime}\left(\kappa\left(x_{n}\right), \kappa\left(y_{n}\right)\right)>n \cdot d\left(x_{n}, y_{n}\right)$ for all $n \in \mathbb{N}$. We claim that by scaling and then successively replacing $\left(x_{n}\right)$ and $\left(y_{n}\right)$ with suitable subsequences and conjugates, we may assume that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded sequences converging to a common limit x. First, we may assume (interchanging x_{n} and y_{n} at any given step if necessary), that $\left\|x_{n}\right\| \geq\left\|y_{n}\right\|$ for all $n \in \mathbb{N}$. By scaling, using Remark 6.2(v), we can further assume that $\left\|x_{n}\right\|=1$ and $\left\|y_{n}\right\| \leq 1$ for all $n \in \mathbb{N}$. Now fix a maximal split torus T of G. For each n, after conjugating both x_{n} and y_{n} by an appropriate element of $G(k)$, we can assume each x_{n} belongs to $V_{T}(\mathbb{K})$; by Remark $6.20(i)$ we can do this without changing the value of $d^{\prime}\left(\kappa\left(x_{n}\right), \kappa\left(y_{n}\right)\right)$. Now $\left(x_{n}\right)$ is a bounded sequence in the d-complete space $V_{T}(\mathbb{K})$, and hence some subsequence of $\left(x_{n}\right) d$-converges to an element $x \in V_{T}(\mathbb{K})$ (recall that $\mathbb{K}=\mathbb{R}$); replace $\left(x_{n}\right)$ by this subsequence and $\left(y_{n}\right)$ by the corresponding subsequence, and note that $x \neq 0$ since $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}$. Now $\left(\left\|\kappa\left(x_{n}\right)\right\|\right)$ and $\left(\left\|\kappa\left(y_{n}\right)\right\|\right)$ are bounded by (6.22), so $\left(d^{\prime}\left(\kappa\left(x_{n}\right), \kappa\left(y_{n}\right)\right)\right)$ is bounded. Since we have $d^{\prime}\left(\kappa\left(x_{n}\right), \kappa\left(y_{n}\right)\right)>n \cdot d\left(x_{n}, y_{n}\right)$, it follows that $d\left(x_{n}, y_{n}\right) \rightarrow 0$, so $y_{n} \rightarrow x$ also.

Choose $\lambda \in Y_{G}(\mathbb{K})$ such that $x=\phi_{G}(\lambda)$. By hypothesis, we have $\operatorname{dim}\left(L_{\lambda}\right)<\operatorname{dim}(G)$. Let $i_{\lambda}: L_{\lambda} \rightarrow G$ be the inclusion map, let $\kappa_{\lambda}:=\kappa_{i_{\lambda}}: V_{L_{\lambda}}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$ be the corresponding inclusion of vector edifices, and identify $V_{L_{\lambda}}(\mathbb{K})$ as a subset of $V_{G}(\mathbb{K})$ via κ_{λ}, as usual. Let O be an open neighbourhood of x as in Lemma 6.15 , so that $O \subseteq V_{L_{\lambda}}(\mathbb{K})$. Then for all n sufficiently large we have $x_{n}, y_{n} \in O \subseteq V_{L_{\lambda}}(\mathbb{K})$. By our induction hypothesis applied to L_{λ} and the map $\kappa \circ \kappa_{\lambda}: V_{L_{\lambda}}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$, there exists some $C>0$, independent of n, such that $d^{\prime}\left(\kappa\left(x_{n}\right), \kappa\left(y_{n}\right)\right) \leq C \cdot d\left(x_{n}, y_{n}\right)$, a contradiction. The result now follows by induction.

Corollary 6.23. Let G be a k-group and let d_{1}, d_{2} be admissible metrics on $V_{G}(\mathbb{K})$. Then d_{1} and d_{2} are bi-Lipschitz equivalent. In particular, the topology on $V_{G}(\mathbb{K})$ does not depend on the choice of admissible metric.

Proof. This follows by applying Proposition 6.21 to the identity map from $V_{G}(\mathbb{K})$ to $V_{G}(\mathbb{K})$.

We call the topology arising from any admissible metric the metric topology. Below when we refer to open and closed sets, we mean relative to the metric topology.

The next result is an immediate consequence of Proposition 6.21.
Corollary 6.24. Let G and G^{\prime} be k-groups and let $\kappa: V_{G}(\mathbb{K}) \rightarrow V_{G^{\prime}}(\mathbb{K})$ be a strongly typepreserving linear map. Let d and d^{\prime} be admissible metrics on $V_{G}(\mathbb{K})$ and $V_{G^{\prime}}(\mathbb{K})$, respectively. Then κ is continuous.

Corollary 6.25. Let H be a subgroup of G and let $i: H \rightarrow G$ be inclusion. Let e and d be admissible metrics on $V_{H}(\mathbb{K})$ and $V_{G}(\mathbb{K})$, respectively. Then κ_{i} is a continuous closed map. In particular, $\kappa_{i}\left(V_{H}(\mathbb{K})\right)$ is a closed subset of $V_{G}(\mathbb{K})$.
Proof. By Corollary 6.23 we can assume that $e=i^{*}(d)$. If $\left(x_{n}\right)$ is any sequence in $V_{H}(\mathbb{K})$ then $\left(x_{n}\right)$ is Cauchy if and only if $\left(\kappa_{i}\left(x_{n}\right)\right)$ is Cauchy. The result follows.

Example 6.26. Let G be reductive and let P be a proper parabolic subgroup of G. Fix admissible metrics e on $V_{P}(\mathbb{K})$ and d on $V_{G}(\mathbb{K})$. Let $i: P \rightarrow G$ be inclusion. Then κ_{i} is a bijective linear map which is not an isomorphism of vector edifices (Example 4.14), but it is a homeomorphism. If $e=i^{*}(d)$ then κ_{i} is even an isometry.
Example 6.27. Let k / k_{0} be a Galois field extension and suppose G has a descent to a k_{0}-group G_{0}. Recall from Example 5.5 that the Galois group $\Gamma=\Gamma\left(k / k_{0}\right)$ acts on $V_{G}(\mathbb{K})$ by automorphisms of the form $\kappa_{\alpha, f_{\alpha}}$, and we may identify the fixed point set $V_{G}(\mathbb{K})^{\Gamma}$ with $V_{G_{0}}(\mathbb{K})$. Now each $\kappa_{\alpha, f_{\alpha}}$ is strongly type-preserving as it is a composition of strongly typepreserving linear maps (Remark 6.20 (ii)), so it is continuous by Corollary 6.24. We deduce that $V_{G_{0}}(\mathbb{K})$ is a closed subset of $V_{G}(\mathbb{K})$.

We finish this subsection by extending Corollary 6.25 to the case of homomorphisms with finite kernel.
Lemma 6.28. Let $f: G \rightarrow H$ be an isogeny of connected k-groups. Let $x, y \in V_{G}(\mathbb{K})$. Then x and y lie in a common apartment of $V_{G}(\mathbb{K})$ if and only if $\kappa_{f}(x)$ and $\kappa_{f}(y)$ lie in a common apartment of $V_{H}(\mathbb{K})$.
Proof. It is clear from the construction that if x and y lie in a common apartment of $V_{G}(\mathbb{K})$ then $\kappa_{f}(x)$ and $\kappa_{f}(y)$ lie in a common apartment of $V_{H}(\mathbb{K})$. Conversely, suppose $\kappa_{f}(x)$ and $\kappa_{f}(y)$ lie in a common apartment of $V_{H}(\mathbb{K})$: say, $\kappa_{f}(x), \kappa_{f}(y) \in V_{S}(\mathbb{K})$, where S is a maximal split torus of H. Then $S \subseteq P_{\kappa_{f}(x)}(H) \cap P_{\kappa_{f}(y)}(H)$, so $S^{\prime} \subseteq P_{\kappa_{f}(x)}(H) \cap P_{\kappa_{f}(y)}(H)$ for some maximal torus S^{\prime} of H (Lemma 2.12). Extending scalars to \bar{k} and applying Lemma 3.17(i) gives $S_{\bar{k}}^{\prime} \subseteq f_{\bar{k}}\left(\left(P_{x}\right)_{\bar{k}}\right) \cap f_{\bar{k}}\left(\left(P_{y}\right)_{\bar{k}}\right)$. We have $f_{\bar{k}}^{-1}\left(\left(P_{x}\right)_{\bar{k}}\right)^{0}=\left(P_{x}\right)_{\bar{k}}$ and $f_{\bar{k}}^{-1}\left(\left(P_{y}\right)_{\bar{k}}\right)^{0}=\left(P_{y}\right)_{\bar{k}}$ by the proof of Lemma 3.17 (ii), so $f_{\bar{k}}^{-1}\left(S^{\prime}\right)^{0} \subseteq\left(P_{x}\right)_{\bar{k}} \cap\left(P_{y}\right)_{\bar{k}}$. But $f_{\bar{k}}^{-1}\left(S^{\prime}\right)^{0}$ contains a maximal torus of $G_{\bar{k}}$ since $f_{\bar{k}}$ is an isogeny. The result follows from Lemma 2.12.
Proposition 6.29. Let $f: G \rightarrow H$ be a homomorphism of connected k-groups with finite kernel. Then κ_{f} is a closed map. In particular, $\kappa_{f}\left(V_{G}(\mathbb{K})\right)$ is closed in $V_{H}(\mathbb{K})$.

Proof. We can factor f as a homomorphism onto its image followed by a closed embedding, so we can assume without loss by Corollary 6.25 that f is an isogeny. Choose embeddings $i_{i}: G \rightarrow M_{1}$ and $i_{2}: H \rightarrow M_{2}$, where M_{1} and M_{2} are connected reductive k-groups. Choose admissible metrics d_{1} and d_{2} on $V_{M_{1}}(\mathbb{K})$ and $V_{M_{2}}(\mathbb{K})$, respectively, and let d be the product metric on $M_{1} \times M_{2}$. Define $i: G \rightarrow M_{1} \times M_{2}$ by $g \mapsto\left(i_{1}(g), i_{2}(f(g))\right.$.

Consider the metrics $e:=i^{*}(d)$ and $e_{2}:=\left(i_{2} \circ f\right)^{*}\left(d_{2}\right)$ on $V_{G}(\mathbb{K})$. Then e (resp., $\left.i_{2}^{*}\left(d_{2}\right)\right)$ is an admissible metric on $V_{G}(\mathbb{K})$ (resp., $V_{H}(\mathbb{K})$) by construction, but we do not claim that e_{2} is an admissible metric on $V_{G}(\mathbb{K})$. Nonetheless e and e_{2} are $G(k)$-invariant and are given by a bilinear form on any fixed apartment. It follows from an argument similar to the one in the proof of (6.12) that there exist $c, C>0$ such that

$$
\begin{equation*}
c \cdot e(x, y) \leq e_{2}(x, y) \leq C \cdot e(x, y) \tag{6.30}
\end{equation*}
$$

for all $x, y \in V_{G}(\mathbb{K})$ belonging to a common apartment.
Let $\left(x_{n}\right)$ be an e_{2}-convergent sequence in $V_{G}(\mathbb{K})$ with limit x. To complete the proof, it is enough to show that $\left(x_{n}\right) e$-converges to x. Let O be an $i_{2}^{*}\left(d_{2}\right)$-open neighbourhood of $\kappa_{f}(x)$ as in Lemma 6.16. Then $\kappa_{f}^{-1}(O)$ is an e-open neighbourhood of x by Corollary 6.24. By omitting finitely many terms at the start of the sequence, we can assume that $x_{n} \in \kappa_{f}^{-1}(O)$ for all $n \in \mathbb{N}$. For any $n \in \mathbb{N}, \kappa_{f}\left(x_{n}\right)$ and $\kappa_{f}(x)$ lie in a common apartment of $V_{H}(\mathbb{K})$, so x_{n} and x lie in a common apartment of $V_{G}(\mathbb{K})$ by Lemma 6.28. It follows from (6.30) that the sequence $\left(x_{n}\right)$ e-converges to x, since it e_{2}-converges to x. This completes the proof.

Remark 6.31. Let $f: G \rightarrow H$ be a homomorphism of connected k-groups and suppose k is perfect. Then $\kappa_{f}\left(V_{G}(\mathbb{K})\right)$ is closed in $V_{H}(\mathbb{K})$. To see this, observe that f factors as $G \xrightarrow{f_{1}} G / N_{\text {red }} \xrightarrow{f_{2}} G / N \xrightarrow{i_{3}} H$, where $N:=\operatorname{ker}(f)$; note that $N_{\text {red }}$ is k-defined as k is perfect. Then $\kappa_{f_{1}}$ is surjective by Lemma 4.16 and Remark 4.17(iii), and $\kappa_{f_{2}}$ and $\kappa_{f_{3}}$ are closed maps by Proposition 6.29 and Corollary 6.25 , respectively, so $\kappa_{f}\left(V_{G}(\mathbb{K})\right)$ is closed.

We conjecture that the same result holds without the hypothesis that k is perfect.
6.3. The metric topology and the quotient topology. Recall that $\varpi_{G}: \bigsqcup_{T} Y_{T}(\mathbb{K}) \rightarrow$ $Y_{G}(\mathbb{K})$ denotes the canonical projection and $\omega_{G}: \bigsqcup_{T} Y_{T}(\mathbb{K}) \rightarrow V_{G}(\mathbb{K})$ is the composition $\phi_{G} \circ \varpi_{G}$. We may endow $V_{G}(\mathbb{R})$ with the quotient topology that it inherits via ω_{G}, where we regard $\bigsqcup_{T} Y_{T}(\mathbb{R})$ as the disjoint topological union of the $Y_{T}(\mathbb{R})$ and each $Y_{T}(\mathbb{R})$ is topologised as a Euclidean space. We observed in Remark 6.2(vi) above that if d is an admissible metric on $V_{G}(\mathbb{R})$, then d induces on the subspaces $V_{T}(\mathbb{R})$ this Euclidean topology, because d coincides with the metric on $V_{T}(\mathbb{R})$ coming from a positive-definite bilinear form. Together with the fact that the restriction of ω_{G} gives a linear isomorphism ω_{T} from $Y_{T}(\mathbb{R})$ to $V_{T}(\mathbb{R})$, this implies that the topology on $V_{T}(\mathbb{R})$ arising from d coincides with that arising from the quotient topology. Below we show that the metric topology and the quotient topology on $V_{G}(\mathbb{R})$ actually coincide, for which we need a result of Whitehead (see [17, 3.3.17]). ${ }^{5}$

Lemma 6.32. Let X, Y, Z, Z^{\prime} be topological spaces with Z locally compact, let $f: X \rightarrow Y$ be a quotient map and let $g: Z \rightarrow Z^{\prime}$ be a homeomorphism. Then $f \times g: X \times Z \rightarrow Y \times Z^{\prime}$ is a quotient map.

Proposition 6.33. The quotient topology on $V_{G}(\mathbb{R})$ coincides with the topology induced by any admissible metric d. If $C \subseteq V_{G}(\mathbb{R})$ then C is d-closed (resp., d-open) if and only if

[^4]$C \cap V_{T}(\mathbb{R})$ is closed (resp., open) with respect to the subspace topology on $V_{T}(\mathbb{R})$ for every maximal split torus T of G.

Proof. Let $C \subseteq V_{G}(\mathbb{R})$. By definition of the quotient topology, C is closed if and only if $\omega_{G}^{-1}(C)$ is closed in $\bigsqcup_{T} Y_{T}(\mathbb{R})$, and this is the case if and only if $\omega_{G}^{-1}(C) \cap Y_{T}(\mathbb{R})$ is closed for every maximal split torus T of G. But it follows from Lemma 2.4(i) and Remark 3.9 that $\omega_{T}\left(\omega_{G}^{-1}(C) \cap Y_{T}(\mathbb{R})\right)=C \cap V_{T}(\mathbb{R})$. This shows that C is closed in the quotient topology if and only if $C \cap V_{T}(\mathbb{R})$ is closed for every maximal split torus T of G. Likewise, C is open in the quotient topology if and only if $C \cap V_{T}(\mathbb{R})$ is open for every maximal split torus T of G. Hence the second assertion of the proposition follows from the first. It also follows that if a subset of $V_{G}(\mathbb{R})$ is metric-open (resp., metric-closed) then it is open (resp., closed) in the quotient topology.

To prove the first assertion of the proposition, we use induction on $\operatorname{dim}(G)$. The result holds trivially if $\operatorname{dim}(G)=0$. Suppose G contains a non-trivial split central torus Z. Let $G_{1}=G / Z$, and fix an admissible metric d_{1} on $V_{G_{1}}(\mathbb{R})$. We may identify $V_{T}(\mathbb{R})$ with $Y_{T}(\mathbb{R})$, and likewise for $Y_{T_{1}}(\mathbb{R})$ and $Y_{Z}(\mathbb{R})$, so we may regard each map $\beta_{Z, T}$ from Section 6.1 as a map from $Y_{T}(\mathbb{R})$ to $Y_{T_{1}}(\mathbb{R}) \times Y_{Z}(\mathbb{R})$; these paste together to give a homeomorphism γ_{Z} from $\bigsqcup_{T} Y_{T}(\mathbb{R})$ to $\left(\bigsqcup_{T_{1}} Y_{T_{1}}(\mathbb{R})\right) \times Y_{Z}(\mathbb{R})$, where T runs over the maximal split tori of G and T_{1} runs over the maximal split tori of G_{1}. We have a commutative diagram

where we give $V_{G}(\mathbb{R})$ and $V_{G_{1}}(\mathbb{R}) \times V_{Z}(\mathbb{R})$ the quotient topology from ω_{G} and $\omega_{G_{1}} \times \omega_{Z}$, respectively. Since γ_{Z} is a homeomorphism and β_{Z} is a bijection, we see that β_{Z} must also be a homeomorphism. Now $\operatorname{dim}\left(G_{1}\right), \operatorname{dim}(Z)<\operatorname{dim}(G)$, so the quotient topology on $V_{G_{1}}(\mathbb{R})$ from $\omega_{G_{1}}$ (resp., on $V_{Z}(\mathbb{R})$ from ω_{Z}) coincides with the metric topology by our induction hypothesis. Since $V_{Z}(\mathbb{R})$ is locally compact, Lemma 6.32 applied to $\omega_{G_{1}} \times \omega_{Z}$ implies that the quotient topology on $V_{G_{1}}(\mathbb{R}) \times V_{Z}(\mathbb{R})$ is the product of the quotient topologies on the factors. Hence the quotient topology on $V_{G_{1}}(\mathbb{R}) \times V_{Z}(\mathbb{R})$ is the product of the metric topologies on the factors, which coincides with the topology coming from the product metric \widetilde{d}. But β_{Z} is a bi-Lipschitz map from $\left(V_{G}(\mathbb{R}), d\right)$ to $\left(V_{G_{1}}(\mathbb{R}) \times V_{Z}(\mathbb{R}), \widetilde{d}\right)$ by Lemma 6.14. It follows that the quotient topology and the metric topology on $V_{G}(\mathbb{R})$ coincide.

So assume G does not contain a non-trivial split central torus. If $C \subseteq V_{G}(\mathbb{R})$ is d-open then $C \cap V_{T}(\mathbb{R})$ is open for every maximal split torus T of G, so C is open in the quotient topology. Conversely, suppose $C \subseteq V_{G}(\mathbb{R})$ is open in the quotient topology. Let $x \in C$. It is enough to show that $B_{d}(x, \epsilon) \subseteq C$ for some $\epsilon>0$. By Lemma 3.5(ii), Lemma 6.15 and our hypothesis on G, there exist $\delta>0$ and a proper R-Levi subgroup L of P_{x} such that $B_{d}(x, \delta) \subseteq V_{L}(\mathbb{R})$. Set $C_{0}=C \cap B_{d}(x, \delta)$. The first paragraph of the proof implies that C_{0} is an open neighbourhood of x with respect to the quotient topology on $V_{G}(\mathbb{R})$. Likewise, C_{0} is an open neighbourhood of x with respect to the quotient topology on $V_{L}(\mathbb{R})$. But $\operatorname{dim}(L)<\operatorname{dim}(G)$ and the restriction d_{0} of d is an admissible metric on $V_{L}(\mathbb{R})$, so by our induction hypothesis there exists $\epsilon>0$ such that $\epsilon<\delta$ and $B_{d_{0}}(x, \epsilon) \subseteq C_{0}$. Finally, observe that $B_{d}(x, \epsilon)=B_{d_{0}}(x, \epsilon)$ since $B_{d}(x, \delta) \subseteq V_{L}(\mathbb{R})$. The result now follows by induction.

Remark 6.34. Proposition 6.33 generalises [7, Lem. 2.7].
6.4. Admissible metrics on the spherical edifice. Let d be an admissible metric on $V_{G}(\mathbb{K})$. Recall that if $\mathbb{K}=\mathbb{Q}$ then we have a unique extension of d to an admissible metric on $V_{G}(\mathbb{R})$. We may identify $\Delta_{G}(\mathbb{R})$ with the unit sphere in $V_{G}(\mathbb{R})$ (hence the terminology "spherical edifice"), and $\Delta_{G}(\mathbb{Q})$ with a subset of the unit sphere in $V_{G}(\mathbb{R})$: explicitly, we can take $\Delta_{G}(\mathbb{Q})$ to be the set of all $x \in V_{G}(\mathbb{R})$ such that $\|x\|_{d}=1$ and the ray $\mathbb{R}^{+} \cdot x$ contains a \mathbb{Q}-point. We give $\Delta_{G}(\mathbb{K})$ the metric d^{b} it inherits as a subspace of $V_{G}(\mathbb{R})$, where the induced map d^{b} is defined in Section 4.7. ${ }^{6}$ We call any such metric on $\Delta_{G}(\mathbb{K})$ an admissible metric. It follows from Corollary 6.23 that any two admissible metrics on $\Delta_{G}(\mathbb{K})$ are bi-Lipschitz equivalent, so they define the same topology. Given an admissible metric d on $\Delta_{G}(\mathbb{K})$, we define $\operatorname{Isom}_{d}\left(\Delta_{G}(\mathbb{K})\right)$ to be the subgroup of $\operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)$ consisting of isometries.

Let d be an admissible metric on $V_{G}(\mathbb{K})$. Clearly, if $\kappa \in \operatorname{Isom}_{d}\left(V_{G}(\mathbb{K})\right)$ then we have $\kappa^{b} \in \operatorname{Isom}_{d^{b}}\left(\Delta_{G}(\mathbb{K})\right)$. The converse, however, is false. For example, if f_{a} is as in Example 6.6 then $\left(f_{a}\right)^{b}=\operatorname{id}_{\Delta_{G}(\mathbb{K})}$ is an isometry but f_{a} is not.

7. The Tits Centre Conjecture and geometric invariant theory

We finish by discussing some motivation for our constructions, elaborating on the summary in Section 1. In this section we assume G is reductive, although some of the ideas below make sense for arbitrary G. For more details, see [7] or [9].

Let Δ be a spherical building. We call a subcomplex Σ of Δ completely reducible (cr for short) if every simplex of Σ has an opposite in Σ. Let Γ be a subgroup of $\operatorname{Aut}(\Delta)$ that stabilises Σ. We say that a simplex σ is a simplicial Γ-centre ${ }^{7}$ of Σ if σ is nonempty and σ is fixed by Γ.

The following is the Tits Centre Conjecture (TCC), which was proved in a series of papers [23], [21], [26].

Conjecture 7.1 (Tits Centre Conjecture). Assume Δ is thick, let Σ be a convex non-cr subcomplex of Δ and let Γ be a subgroup of $\operatorname{Aut}(\Delta)$ that stabilises Σ. Then Σ has a simplicial Γ-centre.

We are concerned with the special case when $\Delta=\Delta_{G}$, where G is reductive. We mention in passing a connection with Serre's theory of G-complete reducibility. We say that a subgroup H of G is G-completely reducible over k (G-cr over k) if whenever H is contained in a parabolic subgroup P of G, H is contained in some Levi subgroup L of P. Let Σ be the fixed point set $\left(\Delta_{G}\right)^{H}$. It is not hard to show that Σ is a convex subcomplex of Δ_{G} and that H is G-cr if and only if Σ is cr. So if H is not G-cr then Σ is a convex non-cr subcomplex of Δ_{G}, and one can apply the Tits Centre Conjecture. This yields results on G-complete reducibility. See [2], [4], [5], [8], [10], [6], [32] for more details.

We say that a simplicial Γ-centre of Σ is unopposed if it has no opposite in Σ. The usual formulations of the TCC don't touch on this. Note, however, that the proof of the TCC in

[^5]type A in [23] automatically produces a Γ-centre that is unopposed. We return to this idea shortly.

For reasons related to geometric invariant theory, we want an analogue to the Tits Centre Conjecture but working with points in $\Delta_{G}(\mathbb{K})$ rather than with simplices. We have notions of convexity and opposition of points (see Section 3.5). We say that a closed convex subset Σ of $\Delta_{G}(\mathbb{K})$ is completely reducible (cr) if every $x \in \Sigma$ has an opposite in Σ.

Definition 7.2. Let Γ be a subgroup of $\operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)$ that stabilises Σ. We say that $x \in \Sigma$ is a Γ-centre of Σ if $x \neq 0$ and σ_{x} is fixed by Γ. We say that a Γ-centre x of Σ is unopposed if x has no opposite in Σ.

Remark 7.3. (i). We do not insist in Definition 7.2 that x is fixed by Γ. It can be shown, however, that if $\Gamma \subseteq \operatorname{Isom}_{d}\left(V_{G}(\mathbb{K})\right)$ for some admissible metric d and if Σ admits a Γ-centre then Σ admits a Γ-centre that is fixed by Γ. See [9].
(ii). A simplicial Γ-centre always corresponds to a proper R-parabolic subgroup of G. If $Y_{Z(G)^{0}} \neq 0$, however, then there can exist a Γ-centre x such that $P_{x}=G$.

Conjecture 7.4. Let Σ be a closed convex non-cr subset of $\Delta_{G}(\mathbb{K})$ and let Γ be a subgroup of $\operatorname{Aut}\left(\Delta_{G}(\mathbb{K})\right)$ that stabilises Σ. Then Σ has an unopposed Γ-centre.

We call Conjecture 7.4 the strong Tits Centre Conjecture (sTCC). It is weaker than the version given in [7, Conj. 2.10], which asserts the existence of a Γ-fixed point in Σ; this turns out to be false if we don't insist that Γ acts by isometries (cf. Remark 7.3). For a discussion of these and related matters, we refer the reader yet again to [9] and to [7].

Any convex subcomplex of $\Delta_{G}(\mathbb{K})$ is closed [7, Lem. 2.7], so there is clearly - as the terminology suggests - a close link between the TCC and the sTCC. To make this concrete, however, one needs to understand the relationship between automorphisms of Δ_{G} and automorphisms of $\Delta_{G}(\mathbb{K})$. This is not completely straightforward. Note, for example, that there can exist automorphisms of $\Delta_{G}(\mathbb{K})$ which arise from very natural operations on G, but which are not isometries. For more details, see [9].

It is convenient to work with the vector edifice rather than the spherical edifice. We define a cone in $V_{G}(\mathbb{K})$ to be a subset that is stable under multiplication by \mathbb{K}^{+}. We say that a closed convex cone C in $V_{G}(\mathbb{K})$ is completely reducible (cr) if every $x \in C$ has an opposite in C. Here is our formulation of the sTCC for vector edifices.

Conjecture 7.5. Let C be a closed convex non-cr cone in $V_{G}(\mathbb{K})$ and let Γ be a subgroup of $\operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ that stabilises C. Then C has an unopposed Γ-centre.

Conjectures 7.5 and 7.4 are closely related: one can show that if Σ is a closed convex non-cr subset of $\Delta_{G}(\mathbb{K})$ then $\zeta_{G}^{-1}(\Sigma) \cup\{0\}$ is a closed convex non-cr cone in $V_{G}(\mathbb{K})$, and conversely if C is a closed convex non-cr cone in $V_{G}(\mathbb{K})$ then $\zeta_{G}(C \backslash\{0\})$ is a closed convex non-cr subset of $\Delta_{G}(\mathbb{K})$ (see [7, Lem. 2.6]).

Now we can describe the relationship to GIT. We keep our assumption that G is reductive. Suppose G acts on an affine variety X. Let $x \in X(k)$ and let $\lambda \in Y_{G}$. We say that λ destabilises x if $\lim _{a \rightarrow 0} \lambda(a) \cdot x$ exists. We say that λ properly destabilises x over k if $x^{\prime}:=\lim _{a \rightarrow 0} \lambda(a) \cdot x$ lies outside the orbit $G(k) \cdot x$. We say that the orbit $G(k) \cdot x$ is cocharacter-closed over k if there does not exist any λ in Y_{G} such that λ properly destabilises x over k, see [10, Sec. 3] and [3, Sec. 3].

We define a subset Λ_{x} of V_{G} and a subset D_{x} of $V_{G}(\mathbb{Q})$ by

$$
\Lambda_{x}:=\left\{\phi_{G}(\lambda) \mid \lambda \in Y_{G}, \lambda \text { destabilises } x\right\}
$$

and

$$
D_{x}=\left\{c \lambda \mid \lambda \in \Lambda_{x}, c \in \mathbb{Q}^{+}\right\} .
$$

We call D_{x} the destabilising locus for x. In [10] it is shown that D_{x} is a closed convex subset of $V_{G}(\mathbb{Q})$ and D_{x} is stabilised by the building automorphisms arising from $G_{x}(k)$ (by G_{x} we mean the scheme-theoretic stabiliser of x). Moreover, D_{x} is non-cr if and only if there exists $\lambda \in Y_{G}$ such that λ properly destabilises x over k. Note, however, that D_{x} is not in general a subcomplex of $V_{G}(\mathbb{Q})$.

Fix an admissible metric d on $V_{G}(\mathbb{K})$; this amounts to fixing a "length function" in the sense of [20, Sec. 2]. Kempf proved the following theorem [20, Thm. 3.4, Cor. 3.5] (Hesselink [19] and Rousseau [29] found closely related results).

Theorem 7.6. Suppose k is algebraically closed. Let G, X and x be as above, and suppose $G \cdot x$ is not closed. Then there exists $\lambda_{\mathrm{opt}} \in Y_{G}$ such that λ_{opt} properly destabilises x over k and $G_{x}(k) \subseteq P_{\lambda}(k)$.

The cocharacter $\lambda_{\text {opt }}$ is often referred to as the optimal destabilising cocharacter; it arises by optimising a certain real-valued function on D_{x}. Note that $\lambda_{\text {opt }}$ can depend on the choice of d.

Now we come to our key insight: in the language above, $\phi_{G}\left(\lambda_{\text {opt }}\right)$ is an unopposed Γ-centre of D_{x} for a certain subgroup Γ of $\operatorname{Isom}_{d}\left(V_{G}(\mathbb{Q})\right) .{ }^{8}$ This suggests two complementary paths.
(a). Use methods from GIT, including optimality, to prove cases of the sTCC, at least when $k=\bar{k}$. For some steps in this direction, see [7, Sec. 5].
(b). Use known cases of the sTCC to prove the existence of optimal destabilising cocharacters. There is no known generalisation of Theorem 7.6 to arbitrary fields, although there are some partial results [20, Thm. 4.2], [19, Thm. 5.2], [7, Sec. 6], [10, Thm. 4.7], [3, Thm. 4.3]. For further discussion, see [10, Sec. 1]. Recall that D_{x} need not be a subcomplex of $V_{G}(\mathbb{Q})$, so we need the full force of the sTCC to deduce the existence of a Γ-centre. On the other hand, if D_{x} does happen to be a subcomplex then we can apply the TCC; for one such result in the context of G-complete reducibility, see [6, Thm. 1.1].

As the above discussion makes clear, we are concerned with finding unopposed Γ-centres. We finish by sketching an approach for finding an unopposed Γ-centre, given a Γ-centre. Let C be a closed convex non-cr cone in $V_{G}(\mathbb{K})$ and let $\Gamma \leq \operatorname{Aut}\left(V_{G}(\mathbb{K})\right)$ such that Γ stabilises C. Let $x \in C$ be a Γ-centre. If x has no opposite in C then we are done. Otherwise there exists $\lambda \in Y_{G}(\mathbb{K})$ such that $x=\zeta_{G}(\lambda)$ and $\zeta_{G}(-\lambda) \in C$. Set $L=L_{\lambda}$. We can regard $V_{L}(\mathbb{K})$ as a subset of $V_{G}(\mathbb{K})$ via the inclusion $i: L \rightarrow G$. Recall from Section 4.6 that we have a map $F_{P, L}:=\kappa_{\pi} \circ \kappa_{i}^{-1}$ from $V_{G}(\mathbb{K})$ to $V_{L}(\mathbb{K})$. The strategy is to show that Γ gives rise to a group Γ^{\prime} of automorphisms of $V_{L}(\mathbb{K})$ and that $F_{P, L}(C)$ is a closed convex non-cr cone in $V_{L}(\mathbb{K})$ stabilised by Γ^{\prime}. Then one can look for a Γ^{\prime}-centre x^{\prime} of $F_{P, L}(C)$, and show that $\kappa_{i}\left(x^{\prime}\right)$ is a Γ-centre of C. Repeating this process, one hopes eventually to find an unopposed Γ-centre of C. We will explore this idea in more detail in [9].

[^6]Acknowledgements: We are grateful to Bernhard Mühlherr for his encouragement and for helpful conversations. We thank the editors of this special volume in honour of Jacques Tits for inviting us to contribute, and for their forbearance during the manuscript's slow gestation. The second author was supported by a VIP grant from the Ruhr-Universität Bochum. Some of this work was completed during visits to the Mathematisches Forschungsinstitut Oberwolfach: we thank them for their support.

We are also indebted to the referees for their careful reading of the paper and for many suggestions making various arguments more transparent.

References

[1] P. Abramenko, K. Brown, Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, New York, 2008. xxii+747 pp.
[2] M. Bate, S. Herpel, B. Martin, G. Röhrle, Cocharacter-closure and spherical buildings, Pacific J. Math. 279 (2015), no. 1-2, 65-85.
[3] , Cocharacter-closure and the rational Hilbert-Mumford Theorem, Math. Z. 287 (2017), 39-72.
[4] M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161, no. 1 (2005), 177-218.
[5] , On Tits' Centre Conjecture for fixed point subcomplexes, C. R. Math. Acad. Sci. Paris 347 (2009), 353-356.
[6] , Complete reducibility and separable field extensions, C. R. Acad. Sci. Paris 348 (2010), 495-497.
[7] _ The strong Centre Conjecture: an invariant theory approach, J. Algebra 372 (2012), 505-530.
[8] , Semisimplification for subgroups of reductive algebraic groups, Forum Math. Sigma 8 (2020), Paper No. e43, 10pp.
[9] , The strong Centre Conjecture: reduction to type A, in preparation.
[10] M. Bate, B. Martin, G. Röhrle, R. Tange, Closed orbits and uniform S-instability in geometric invariant theory, Trans. Amer. Math. Soc., 365 (2013), no. 7, 3643-3673.
[11] A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag 1991.
[12] A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150.
[13] , Éléments unipotents et sous-groupes paraboliques des groupes réductifs, I, Invent. Math. 12 (1971), 95-104.
[14] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, Second edition, New Mathematical Monographs 26, Cambridge University Press, Cambridge (2015).
[15] B. Conrad, G. Prasad, Structure and classification of pseudo-reductive groups, in Algebraic groups: structure and actions, Proc. Sympos. Pure Math. 94, 127-276 (2017).
[16] C. W. Curtis, G. I. Lehrer, J. Tits, Spherical buildings and the character of the Steinberg representation, Invent. Math. 58 (1980), no. 3, 201-210.
[17] R. Engelking, General topology, Second edition., Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). Translated from the Polish by the author.
[18] S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann paths. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2605-2657.
[19] W.H. Hesselink, Uniform instability in reductive groups, J. Reine Angew. Math. 303/304 (1978), 74-96.
[20] G.R. Kempf, Instability in invariant theory, Ann. Math. 108 (1978), 299-316.
[21] B. Leeb, C. Ramos-Cuevas, The center conjecture for spherical buildings of types F_{4} and E_{6}, Geom. Funct. Anal. 21 (2011), no. 3, 525-559.
[22] J.S. Milne, Algebraic groups. The theory of group schemes of finite type over a field. Cambridge Studies in Advanced Mathematics, 170. Cambridge University Press, Cambridge, 2017.
[23] B. Mühlherr, J. Tits, The Centre Conjecture for non-exceptional buildings, J. Algebra 300 (2006), no. 2, 687-706.
[24] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin, 1994.
[25] G. Prasad, Weakly-split spherical Tits systems in quasi-reductive groups, Amer. J. Math. 136 (2014), no. 3, 807-832.
[26] C. Ramos-Cuevas, The center conjecture for thick spherical buildings, Geom. Dedicata 166 (2013), 349-407.
[27] R.W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1-28.
[28] , Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57, (1988), no. 1, 1-35.
[29] G. Rousseau, Immeubles sphériques et théorie des invariants, C.R.A.S. 286 (1978), 247-250.
[30] , Masures affines. Pure Appl. Math. Q. 7 (2011), no. 3, Special Issue: In honor of Jacques Tits, 859-921.
[31] J-P. Serre, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [36] (1997).
[32] _ Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003-2004, nº 932.
[33] T.A. Springer, Linear algebraic groups, Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA (1998).
[34] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386, Springer-Verlag (1974).
[35] _ , A local approach to buildings, In: The geometric vein, Springer, New York (1981), 519-547.
[36] __ Résumés des Cours au Collège de France, (1973-2000), Documents Mathématiques 12, Soc. Math. France (2013).

Department of Mathematics, University of York, York YO10 5DD, United Kingdom
Email address: michael.bate@york.ac.uk
Department of Mathematics, University of Aberdeen, King's College, Fraser Noble Building, Aberdeen AB24 3UE, United Kingdom

Email address: b.martin@abdn.ac.uk
Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Email address: gerhard.roehrle@rub.de

[^0]: ${ }^{1}$ The " R " here is in honour of Roger Richardson, who made extensive use of the link between cocharacters and parabolic subgroups in reductive groups, in the context of geometric invariant theory (see [28]).

[^1]: ${ }^{2}$ For another example of building-like structures where the same phenomenon occurs, see the theory of hovels [30], [18].

[^2]: ${ }^{3}$ For G reductive, Borel [11, 22.3] gives another definition of central isogeny, but this is shown to be equivalent to the scheme-theoretic one just given in [11, 22.15 Prop.].

[^3]: ${ }^{4}$ The notation $F_{P, L}$ makes sense because U_{λ} does not depend on the choice of λ for fixed P and L : see Lemma 2.4(iii).

[^4]: ${ }^{5}$ The proof given in loc. cit. is for $Z^{\prime}=Z$ and $g=\mathrm{id}_{Z}$, but the generalisation in Lemma 6.32 is immediate.

[^5]: ${ }^{6}$ For spherical buildings it is traditional to use the spherical metric on each apartment rather than the metric inherited from the ambient Euclidean space, but we cannot do this for $\Delta_{G}(\mathbb{K})$ for arbitrary G because the common apartment property can fail.
 ${ }^{7}$ Usually in the literature this is referred to as a Γ-centre. We have added the adjective "simplicial" to distinguish these from the Γ-centres introduced in Definition 7.2.

[^6]: ${ }^{8}$ For more discussion of Γ, see [7, Sec. 6.2]; note that Γ contains all the building automorphisms arising from inner automorphisms of $G(k)$.

