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Automatic Differentiation for ML-family languages:
correctness via logical relations

FERNANDO LUCATELLI NUNES, Utrecht University, Netherlands
MATTHIJS VÁKÁR, Utrecht University, Netherlands

We give a simple, direct and reusable logical relations technique for languages with recursive features and
partially defined differentiable functions. We do so by working out the case of Automatic Differentiation
(AD) correctness: namely, we present a proof of the dual numbers style AD macro correctness for realistic
functional languages in the ML-family. We also show how this macro provides us with correct forward- and
reverse-mode AD.

The starting point was to interpret a functional programming language in a suitable freely generated
categorical structure. In this setting, by the universal property of the syntactic categorical structure, the dual
numbers AD macro and the basic 8Cpo-semantics arise as structure preserving functors. The proof follows,
then, by a novel logical relations argument.

The key to much of our contribution is a powerful monadic logical relations technique for term recursion and
recursive types. It provides us with a semantic correctness proof based on a simple approach for denotational
semantics, making use only of the very basic concrete model of l-cpos.
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AD for ML-family languages: correctness via logical relations 3

INTRODUCTION
AD and the PL community. Automatic differentiation (AD) is a popular technique for computing
derivatives of functions implemented by a piece of code, particularly when efficiency, scaling to high
dimensions and numerical stability are important. It has been studied in the scientific computing
community for many decades and has been heavily used in machine learning for the last decade. In
the last years, the programming languages (PL) community has turned towards studying AD from
a new perspective. Much progress has been made towards giving a formulation of (forward and)
reverse mode AD that
(1) is simple and purely functional;
(2) scales to the expressive ML-family functional languages that are popular in practice;
(3) admits a simple correctness proof that shows AD computes the derivative;
(4) provably has the correct asymptotic complexity and is performant in practice;
(5) is parallelism preserving.

Our contributions. In this paper, we present a simple solution to problems (1)-(3), our first major
contribution.

We give a proof of the correctness of the reverse and forward mode dual numbers style Automatic
Differentiation (AD) in a semantically unified way, making use only of the very simple concrete
denotational model of l-cpos.
A key challenge in achieving the correctness proofs of this paper is to have sufficiently strong

categorical logical relations techniques for reasoning about partially defined differentiable functions,
and recursive types. To that end, we develop a novel monadic logical relations construction making
no use of sheaf-theoretical methods as well as a novel general logical relations technique for
recursive types, our second major contribution.
We refer to the companion paper [37] for a performant implementation of the dual numbers

reverse-mode AD technique proved correct in the present paper. It shows that it efficiently differ-
entiates most of Haskell98, contributing towards point (4). We are currently pursuing parallelism
preservation (point (5)) for this AD technique and we plan to present it in future work.

In our work, we ensure to keep all constructions sufficiently simple such that they can easily be
generalized to more advanced AD algorithms such as CHAD [26, 44, 45], which is one of our key
motivations for this work.

Why care and why is this difficult? Given the central role that AD plays in modern scientific
computing and machine learning, the ideal of differential programming has been emerging [29, 34]:
compilers for general purpose programming languages should provide built-in support for automatic
differentiation of any programs written in the language. Such general purpose programming
languages tend to include many language features, however, which we then need to be able to
differentiate. What a correct and efficient notion of derivative is of such features might not be so
straightforward as they often go beyond what is studied in traditional calculus. In this paper we
focus on the challenge posed, in particular, by partial language features: partial primitive operations,
lazy conditionals on real numbers, iteration, recursion and recursive types.

Partial primitive operations are certainly key. Indeed, even the basic operations of division and
logarithm are examples. (Lazy) conditionals on real numbers are useful in practice for pasting
together various existing smooth functions, as basic example being the ReLU function

'4!* (G) def= if G then 0 elseG = case (sign G) of {inl _→ 0 | inr _→ G},

which is a key component of many neural networks. They are also frequently used in probabilistic
programming to paste together density functions of different distributions [4]. People have long

, Vol. 1, No. 1, Article . Publication date: June 2022.



4 Fernando Lucatelli Nunes and Matthijs Vákár

studied the subtle issue of how one should algorithmically differentiate such functions with “kinks”
under the name of the if-problem in automatic differentiation [3]. Our solution is the one also
employed by [1]: to treat the functions as semantically undefined at their kinks (at G = 0 in the case
of '4!* (G)). This is justified given how coarse the semantic treatment of floating point numbers
as real numbers is already. Our semantics based on partial functions defined on real numbers is
sufficient to prove many high-level correctness properties. However, like any semantics based on
real numbers, it fails to capture many of the low-level subtleties introduced by the floating point
implementation. Our key insight that we use to prove correctness of AD of partial programs is to
construct a suitable lifting of the partiality monad to a variant of [19]’s category of R: -indexed
logical relations used to relate programs to their derivatives. This particular monad lifting for
derivatives of partial functions can be seen as our solution to the if-problem in AD.

Similarly, iteration constructs, or while-loops, are necessary for implementing iterative algorithms
with dynamic stopping criteria. Such algorithms are frequently used in programs that AD is applied
to. For example, AD is applied to iterative differential equation solvers to perform Bayesian inference
in SIR models. This technique played a key role in modelling the Covid19-pandemic [14]. For similar
reasons, AD through iterative differential equation solvers is important for probabilistic modelling
of pharmacokinetics [42]. Other common use-cases of iterative algorithms that need to be AD’ed are
eigen-decompositions and algebraic equation solvers, such as those employed in Stan [7]. Finally,
iteration gives a convenient way of achieving numerically stable approximations to complex
functions (such as the Conway-Maxwell-Poisson density function [17]). The idea is to construct,
using iteration, a Taylor approximation that terminates once the next term in the series causes
floating-point underflow. Indeed, for a function whose 8-th terms in the Taylor expansion can be
represented by a program

8 : int, G : real ` C (8, G) : real,
we would define the underflow-truncated Taylor series by

iterate
( caseG of 〈G1, G2〉 → let~ = C (G1, G2) in
case − 2 < ~ < 2 of {inl _→ inrG2 | inr _→ inl 〈G1 + 1, G2 + ~〉})

)
fromG = 〈0, 0〉,

where 2 is a cut-off for floating-point underflow.
Next, recursive neural networks [41] are often mentioned as a use case of AD applied to recursive

programs. While basic Child-Sum Tree-LSTMs can also be implemented with primitive recursion
(a fold) over an inductively defined tree (which can be defined as a recursive type), there are
other related models such as Top-Down-Tree-LSTMs that require an iterative or general recursive
approach [47]. In fact, [20] has shown that a recursive approach is preferable as it better exposes
the available parallelism in the model. In Appendix D, we show some Haskell code for the recursive
neural network of [39], to give an idea of how iteration and recursive types (in the form of
inductive types of labelled trees) naturally arise in a functional implementation of such neural net
architectures. We imagine that many more applications of AD applied to recursive programs with
naturally emerge as the technique made available to machine learning researchers and engineers.
Finally, we speculate that coinductive types like streams of real numbers, which can be encoded
using recursive types as `U.1 → (real ∗ U), provide a useful API for on-line machine learning
applications [36], where data is processed in real time as it becomes available. Recursion and more
notably recursive types introduce one final challenge into the correctness proof of AD of such
expressive functional programs: the required logical relations arguments are notoriously technical,
limiting the audience of any work using them and frustrating application to more complicated AD
algorithms like CHAD. To mend this problem, we introduce a novel, simple but powerful logical
relations technique for open semantic logical relations for recursive types.
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AD for ML-family languages: correctness via logical relations 5

1 KEY IDEAS
In this paper, we consider how to perform forward and reverse mode numbers automatic dif-
ferentiation on a functional language with expressive partial features, by using a dual numbers
technique.

Language
We consider an idealised functional language with product types g ×f , sum types g tf , function
types g → f generated by
• a primitive type real of real numbers (in practice, implemented as floating point numbers);
• constants ` 2 : real for 2 ∈ R;
• sets (Op=)=∈N of =-ary primitive operations op, for which we include computations
G1 : real, . . . , G= : real ` op(G1, . . . , G=) : real; we think of these as implementing partial
functions R= ⇀ R with open domain of definition, on which they are differentiable; for
example, we can include mathematical operations log, exp ∈ Op1 and (+), (∗), (/) ∈ Op2;
• a construct G : real ` sign (G) : 1t 1 that computes the sign of a real number and is
undefined at 0; we can use it to define a lazy conditional on real numbers if A then C else B def

=

case sign A of {_→ C
�� _→ A } of the kind that is often used in AD libraries like Stan [7].

Next, we include two more standard mechanisms for defining partial functions:
• (purely functional) iteration: given a computation Γ, G : g ` C : g tf to iterate and a starting
value Γ ` B : g , we have a computation iterate C fromG = B : f which repeatedly calls C ,
starting from the value of B until the result lies in f ;
• recursion: given a computation Γ, G : g → f ` C : g → f , we have a program Γ ` `G .C : g → f

that recursively computes to letG = `G .C in C .

Dual numbers forward AD code transform
Let us assume that we have programs m8op(G1, . . . , G=) that compute the 8-th partial derivative of each
=-ary primitive operation op. For example, we can define m1 (∗)(G1, G2) = G2 and m2 (∗)(G1, G2) = G1.
Then, we can define a very straightforward forward mode AD code transformation D by replacing
all primitive types real by a pair D(real) def= real× real of reals and by replacing all constants 2 ,
=-ary primitive operations op and sign function sign in the program as1

D(2) def= 〈2, 0〉
D (op(A1, . . . , A=))

def
= caseD(A1) of 〈G1, G ′1〉 → . . .→ caseD(A=) of 〈G=, G ′=〉 →

〈op(G1, . . . , G=), G ′1 ∗ m1op(G1, . . . , G=) + . . . + G ′= ∗ m=op(G1, . . . , G=)〉
D (sign A ) def= sign (fstD(A )) .

We extend D to all other types and programs in the unique homomorphic (structure preserving
way), by using structural recursion. So, for example, D(g → f) def

= D(g) → D(f), D(G) def
= G ,

D(letG = C in B) = letG = D(C) inD(B) and D(C B) = D(C) D (B). We like to think of D as a
structure preserving functor D : Syn→ Syn on the syntax.

Semantics
To formulate correctness of the AD transformation D , we need to assign a formal denotational
semantics [[−]] to our language. We use the standard interpretation of types g as l-cpos [[g]]
1Actually, while our definition for D (sign A ) given here is correct, there exist more efficient implementation techniques, as
we discuss in Appx. B.
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6 Fernando Lucatelli Nunes and Matthijs Vákár

(partially ordered sets with suprema of countable chains) and programs G1 : g1, . . . , G= : g= ` C : f
as monotone l-continuous partial functions [[C]] : [[g1]] × · · · × [[g=]] ⇀ [[f]]. We interpret real
as the flat l-cpo [[real]] def

= R of real numbers, 2 as the constant [[2]] def
= 2 ∈ R, op as the partial

differentiable function [[op(G1, . . . , G=)]] : R= ⇀ R that it is intended to implement and sign as the
partial function [[sign (G)]] : R ⇀ 1 t 1 that sends A < 0 to the left copy of 1, A > 0 to the right
copy and is undefined for A = 0. Having fixed these definitions, the rest of the semantics is entirely
compositional and standard. In particular, we interpret iteration and recursion using Kleene’s
Fixpoint Theorem. We think of this semantics as a structure preserving functor [[−]] : Syn→ 8Cpo
from the syntax to the category of l-cpos and monotone l-continuous functions.

Correctness statement
Having defined a semantics, we can phrase what it means for D to be correct. We prove the
following, showing that D(C) implements the usual calculus derivative � [[C]] of [[C]].

Theorem 1.1 (Forward AD Correctness, Theorem 7.1 with : = 1 in main text). For any
program G : g ` C : f for g = real: , f = real; (where we write real= for the type real× · · · × real of
length = tuples of reals), we have that

[[D (C)]] ((G1, E1), . . . , (G: , E: )) =(
c1 ( [[C]] (G1, . . . , G: )), c; (� [[C]] ((G1, . . . , G: ), (E1, . . . , E: ))), . . . ,

c; ( [[C]] (G1, . . . , G: )), c; (� [[C]] ((G1, . . . , G: ), (E1, . . . , E: )))
)

for any (G1, . . . , G: ) in the domain of definition of [[C]] and any tangent vector (E1, . . . , E: ) to [[g]] at G .

In fact, we also establish the theorem above for general types g and f not containing function
types, but its phrasing requires slight bookkeeping that might distract from the simplicity of the
theorem. Importantly, the program C might use higher-order functions, iteration, recursion, etc..

A proof via logical relations
The proof of the correctness theorem follows a logical relations argument that we found using
categorical methods, but which can be phrased entirely in elementary terms. Let us fix some = ∈ N.
We define for all types g of our language, by induction, relations)=g ⊆ (R= → [[g]]) × ((R= ×R=) →
[[D (g)]]) and %=g ⊆ (R= ⇀ [[g]]) × ((R= × R=) ⇀ [[D (g)]]) that relate a (partial) =-curve to its
derivative =-curve:

)=real
def
= {(W,W ′) | W is differentiable and W ′ = (G, E) ↦→ (W (G), �W (G, E))}

)=g ×f
def
=

{
(G ↦→ (W1 (G), W2 (G)), (G, E) ↦→ (W ′1 (G, E), W ′2 (G, E))) | (W1, W ′1) ∈ )=g and (W2, W ′2) ∈ )=f

}
)=g tf

def
=

{
(]1 ◦ W1, ]1 ◦ W ′1) | (W1, W ′1) ∈ )=g

}
∪

{
(]2 ◦ W2, ]2 ◦ W ′2) | (W2, W ′2) ∈ )=f

}
)=g→f

def
=

{
(W,W ′) | ∀(X, X ′) ∈ )=g .(G ↦→ W (G) (X (G)), (G, E) ↦→ W ′(G, E) (X ′(G, E))) ∈ %=f

}
%=g

def
=

{
(W,W ′) | W−1 ( [[g]]) × R= = W ′−1 ( [[D (g)]]) is open and for all differentiable

X : R= → W−1 ( [[g]]) we have (W ◦ X, (G, E) ↦→ (W (X (G)), W ′(�X (G, E)))) ∈ )=g
}
.

We then prove the following “fundamental lemma”, using induction on the typing derivation of C :
If G1 : g1, . . . , G= : g= ` C : f and, for 1 ≤ 8 ≤ =, (58 , 5 ′8 ) ∈ )=g8 , then
(G ↦→ [[C]] (51 (G), . . . , 5= (G)), (G, E) ↦→ [[D (C)]] (5 ′1 (G, E), . . . , 5 ′= (G, E))) ∈ %=f .
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AD for ML-family languages: correctness via logical relations 7

For example, we use that, by assumption, [[m8op(G1, . . . , G=)]] equals the 8-th partial derivative of
[[op(G1, . . . , G=)]] combined with the chain-rule, to show that primitive operations op respect the
logical relations.
As ):

real:
contains, in particular, (id, ((G1, . . . , G: ), (E1, . . . , E: )) ↦→ ((G1, E1), . . . , (G=, E: ))), our

theorem follows.

Extending to recursive types via a novel categorical logical relations technique
Next, we extend our language with ML-style polymorphism and recursive types. That is, we allow
the formation of types g with free type variables U and we include a type variable binder `U.g ,
which binds U in g . We extend our AD transformation homomorphically on terms and types. For
example, on types, we define

D(U) def= U D(`U.g) def= `U.D(g).

A type g with = free type variables gets interpreted in our l-cpo-semantics as an =-ary mixed-
variance endofunctor [[g]] on the category of l-cpos and partial morphisms that restricts to that
of l-cpos and total morphisms. Programs with types that have free variables get interpreted as
(extra)natural transformations. As the category of l-cpos and partial morphisms has the structure
to interpret recursive types of that of l-cpos and total morphisms, we have a canonical minimal
invariant

roll : [[g]] (` [[g]], ` [[g]]) �−→ ` [[g]]

for the mixed-variance endofunctors [[g]] on8Cpo that types g denote [23]. We interpret [[`U.g]] def=
` [[g]].
To extend the correctness proof to this larger language, we would like to define the logical

relation
)=`U.g

def
=

{
(roll ◦ W, roll ◦ W ′) | (W,W ′) ∈ )=

g [`U.g/U ]

}
.

That is, we would like to be able to define relations using type recursion. If we can do so, then
extending the proof of the fundamental lemma is straightforward. We can then establish the
correctness theorem also for g and f that involve recursive types.

The traditional method is to follow the technical recipes of [33]. Instead, we develop a powerful
new logical relations technique for recursive types, which we believe to be more conceptually clear
and easier to use in situations like ours. To be precise, we prove a general result saying that under
mild conditions, that we can interpret recursive types in the category of logical relations over a
category that models recursive types itself. For simplicity, we state an important special case that
we need for our application here.

Given any right adjoint 8Cpo-enriched functor � : 8Cpo= → 8Cpo, consider the category
SScone of logical relations, which has objects (-, %), where - ∈ 8Cpo= and % is a chain-closed
subset of �- , and morphisms (-, %) → (- ′, % ′) are 8Cpo=-morphisms 5 : - → - ′ such that
~ ∈ % implies �5 (~) ∈ % ′.

Theorem 1.2 (Logical relations for recursive types, special case of theorem 8.13 in main
text). Let ) be a strong monad on SScone that lifts the usual partiality monad (−)⊥ on 8Cpo=

along the projection functor SScone → 8Cpo= . We assume that ) takes the initial object to the
terminal one, and the square in 8Cpo induced by each component of the unit of ) is a pullback. Then,
SScone ↩→ SScone) is a model for recursive types.

In particular, we can define the relations )`U.g using type recursion, as desired.
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8 Fernando Lucatelli Nunes and Matthijs Vákár

Dual numbers reverse AD
Similarly to dual numbers forward AD D , we can define a reverse AD code transformation ←−D : we
define ←−D(real) def= real× vect and

←−D(2) def= 〈2, 0v〉
←−D (op(C1, . . . , C=))

def
= case←−D(C1) of 〈G1, G ′1〉 → . . . case←−D(C=) of 〈G=, G ′=〉 →
〈op(G1, . . . , G=), G ′1 ∗v m1op(G1, . . . , G=)+v . . . +vG ′= ∗v m=op(G1, . . . , G=)〉

←−D (sign C) def= sign (fst←−D(C)) .

and extend homomorphically to all other type and term formers, as we did before. In fact, this
algorithm is exactly the same as dual numbers forward AD in code with the only differences being
that

(1) the type real of real numbers for tangents has been replaced with a new type vect, which
we think of as representing (dynamically sized) cotangent vectors to the global input of the
program;

(2) the zero 0 and addition (+) of type real have been replaced by the zero 0v and addition (+v)
of cotangents of type vect;

(3) the multiplication (∗) : real× real → real has been replaced by the operation ( ∗v ) :
vect× real→ vect: (E ∗v A ) is the rescaling of a cotangent E by the scalar A .

We write 48 for program representing the 8-th canonical basis vector 48 of type vect and we write

WrapB (G)
def
= caseG of 〈G1, . . . , GB〉 → 〈〈G1, 41〉, . . . , 〈GB , 4B〉〉. (1.1)

We define [[vect]] def= R∞ def
=

∑∞
:=0 R

: as the infinite (vector space) coproduct of :-dimensional real
vector spaces. That is, we interpret vect as the type of dynamically sized real vectors2. We show
that ←−D(C) implements the transposed derivative � [[C]]C of [[C]] in the following sense.

Theorem 1.3 (Reverse AD Correctness, Theorem 7.1 with : = ∞ in main text). For any
program G : g ` C : f for g = realB , f = real; ,

[[letG = Wrap: (G) in
←−D(C)]] (G1, . . . , GB ) =(

(c1 ( [[C]] (G1, . . . , GB )), � [[C]]C ((G1, . . . , GB ), 41)), . . . , (c; ( [[C]] (G1, . . . , GB )), � [[C]]C ((G1, . . . , GB ), 4; ))
)

for any (G1, . . . , GB ) in the domain of definition of [[C]].

We prove this theorem again using a similar logical relations argument, defining )=g ⊆ (R= →
[[g]]) × ((R= × (R∞)=) → [[←−D (g)]]) and %=g ⊆ (R= ⇀ [[g]]) × (R= × (R∞)=) ⇀ [[←−D (g)]]) as before

2Note that, in practice, [37] actually implements vect as a type of ASTs of simple expressions computing a dynamically
sized vector. This allows us to first build up the expression during execution of the program (the forward pass) and to
only evaluate this cotangent expression later (in a reverse pass) making clever use of a distributivity law of addition and
multiplication (also known as the linear factoring rule in [6]) to achieve the correct computational complexity of reverse AD.
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AD for ML-family languages: correctness via logical relations 9

for all types g of language, setting

)=real
def
=

{
(W,W ′) | W is differentiable and W ′ = (G, !) ↦→ (W (G), !(�WC (G, 41)))

}
)=g ×f

def
=

{
(G ↦→ (W1 (G), W2 (G)), (G, !) ↦→ (W ′1 (G, !), W ′2 (G, !))) | (W1, W ′1) ∈ )=g and (W2, W ′2) ∈ )=f

}
)=g tf

def
=

{
(]1 ◦ W1, ]1 ◦ W ′1) | (W1, W ′1) ∈ )=g

}
∪

{
(]2 ◦ W2, ]2 ◦ W ′2) | (W2, W ′2) ∈ )=f

}
)=g→f

def
=

{
(W,W ′) | ∀(X, X ′) ∈ )=g .(G ↦→ W (G) (X (G)), (G, !) ↦→ W ′(G, !) (X ′(G, !))) ∈ %=f

}
)=`U.g

def
=

{
(roll ◦ W, roll ◦ W ′) | (W,W ′) ∈ )=

g [`U.g/U ]

}
%=g

def
=

{
(W,W ′) | W−1 ( [[g]]) × (R∞)= = W ′−1 ( [[←−D (g)]]) is open and for all differentiable

X : R= → W−1 ( [[g]]) we have (W ◦ X, (G, !) ↦→ W ′(X (G), ! ◦ �XC (G,−))) ∈ )=g
}
,

where we consider (R∞)= as a type of linear transformations from R= to R∞. We then prove the
following “fundamental lemma”, using induction on the typing derivation of C :

If G1 : g1, . . . , G= : g= ` C : f and, for 1 ≤ 8 ≤ =, (58 , 5 ′8 ) ∈ )=g8 , then
(G ↦→ [[C]] (51 (G), . . . , 5= (G)), (G, !) ↦→ [[←−D (C)]] (5 ′1 (G, !), . . . , 5 ′= (G, !))) ∈ %=f .

As ) B
realB

contains, in particular,

(id, ((G1, . . . , GB ), (!1, . . . , !B )) ↦→ ((G1, !141), . . . , (GB , !B4B ))),
our theorem follows.

Extending to arrays
AD tends to be applied to programs that manipulate large arrays of reals. Seeing that such arrays
are denotationally equivalent to lists `U.1tU × real, while only the computational complexity of
operations differs, our correctness result also applies to functional languages with arrays. We thus
differentiate array types g [] with elements of type g in the obvious structure preserving way, e.g.

D(g []) def= D(g) [] D (generate) def= generate D(map) def= map D(foldr) def= foldr

and similarly for dual numbers reverse AD.

2 CATEGORICAL MODELS FOR CBV LANGUAGES: ��+ PAIRS AND MODELS
The aim of this section is to establish a class of models for call-by-value (CBV) languages, and,
then, add free recursion and iteration. We assume some familiarity with basic category theory
(see, for instance, [11]). Whenever we talk about strict preservation of some structure (like products,
coproducts or exponentials), we are assuming that we have chosen structures (chosen products,
coproducts or exponentials) and the preservation is on the nose, that is to say, the canonical
comparison is the identity.

Given a cartesian closed categoryV , we can see it as aV-enriched category w.r.t. the cartesian
structure. Recall that a strongmonad T on a cartesian closed categoryV is the same as aV-monad
onV . More precisely, it is a triple

T =
(
) : V → V,m : ) 2 → ), [ : idV → )

)
, (2.1)

where ) is aV-endofunctor and m, [ areV-natural transformations, satisfying the usual associa-
tivity and identity equations, that is to say, m · (m) ) = m · ()m) and m · ([) ) = id) = m · ()[).3
3See [11, pag. 60] for the classical enriched case. For the general case of monads in 2-categories, see [40, pag. 150] or, for
instance, [27, Section 3].
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10 Fernando Lucatelli Nunes and Matthijs Vákár

Let T = (),m, [) and T ′ = () ′,m′, [ ′) be monads on V and V ′ respectively. Recall that an
oplax morphism (or a monad op-functor) between T and T ′ is a pair

(� : V → V ′, q : �) → ) ′� ) , (2.2)

where � is a functor and q is a natural transformation, such that

q · (�[) = ([ ′� ) and (m′� ) · () ′q) · (q) ) = q · (�m) . (2.3)

By the universal property of Kleisli categories, denoting by � : V → C and � : V ′ → C ′ the
universal Kleisli functors, the oplax morphims (2.2) correspond bijectively with pairs of functors(
� : V → V ′, � : C → C′

)
such that the diagram (2.5) commutes.

Definition 2.1 (��+ pair). A ��+ pair is a pair (V,T) whereV is bicartesian closed category
and T is aV-monad onV . We further require thatV has chosen finite products, coproducts and
exponentials.

A��+ pair morphism between the��+ pairs (V,T) and (V ′,T ′) is a strictly bicartesian closed
functor � such that �) = ) ′� and (�, id) defines a monad op-functor (2.2). This defines a category
of ��+ pairs and ��+ pair morphisms, denoted herein by ℭp.

Remark 2.2. If (V,T) is a��+ pair, since T isV-enriched, we get aV-enriched Kleisli category
C. We denote by

C [−,−] =
(
− ⇒: −

)
: Cop × C → V (2.4)

the V-enriched hom functor. It should be noted that, if we denote by (- ⇒ . ) = V [-,. ] the
exponential inV , we have that C [-,. ] =

(
- ⇒: .

)
= (- ⇒ ). ) which is the so called Kleisli

exponential and corresponds to the function types for our language.

Denoting by C and C′ the respective Kleisli categories, each morphism

� : (V,T) → (V ′,T ′)
of ��+ pairs gives rise to a commutative square

V

C
�
OO

V ′

C′
� ′
OOC C′� //

V V ′
�

//
(2.5)

where � and � ′ are, respectively, the universal Kleisli functors of T and T ′. In this case, � strictly
preserves Kleisli exponentials, finite coproducts and the action ofV on C. That is to say,

(
�,�

)
strictly preserves the distributive closed Freyd-categorical structure4.

2.1 ��+ models: term recursion and iteration
In order to interpret our language defined in Section 4, we need an additional support for term
recursion and iteration. Since we do not impose further equations for the iteration or recursion
constructs in our language, the following definitions establish our class of models for term recursion
and iteration.

Definition 2.3 (Free Recursion and Iteration). Let (V,T) be a ��+ pair and C the corresponding
V-enriched Kleisli category.
4Although this level of generality is not needed in our work, the interested reader can find more about Freyd-categorical
structures and basic aspects of the modelling of call-by-value languages in [24]
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• A free recursion for (V,T) is a family of morphisms

` =

(
`,,. : V [C [,,. ] , C [,,. ]] −→ C [,,. ]

)
(,,. ) ∈C×C

(2.6)

inV .
• A free iteration for (V,T) is a family of morphisms

itt =
(
itt,,. : C [,,, t . ] −→ C [,,. ]

)
(,,. ) ∈C×C

(2.7)

inV .

Definition 2.4 (��+ model). A��+ model is a quadruple (V,T , `, itt) in which (V,T) is a��+
pair, ` is a free recursion, and itt is a free iteration for (V,T).

A��+ model morphism between the��+ models (V,T , `, itt) and (V ′,T ′, ` ′, itt′) is amorphism
� between the underlying ��+ pairs such that �

(
`,,.

)
= ` ′�, ,�. and �

(
itt,,.

)
= itt′�, ,�. ,

for any (,,. ) ∈ V ×V . This defines a category of ��+ models, denoted herein by ℭBV .

It should be noted thatℭBV has finite products. Given��+ models (V0,T0, `0, itt0) and (V1,T1, `1, itt1),
the product is given by

(V0 ×V1,T0 × T1, (`0, `1) , (itt0, itt1)) (2.8)

where (`0 × `1) (,,, ′),(.,. ′) = `,,.
0 × `,

′,. ′

1 and (itt0 × itt1) (,,, ′),(.,. ′) =
(
itt,,.

0 × itt,
′,. ′

1

)
.

3 CONCRETE MODELS
The aim of this section is to establish a class of concrete ��+ pairs and models. We denote by
8Cpo the usual category of l-cpos. The objects of 8Cpo are the partially ordered sets with
colimits of l-chains, while the morphisms are functors preserving these colimits. An l-cpo is
called pointed if it has a least element, denoted herein by ⊥. We say that 5 ∈ 8Cpo (,,. ) is a
pointed 8Cpo-morphism if, is pointed and 5 preserves the least element.
It is well known that 8Cpo is bicartesian closed. We consider 8Cpo-enriched categories w.r.t.

the cartesian structure. Henceforth, ifV is an 8Cpo-enriched category and,,. are objects ofV ,
we denote byV (,,. ) the 8Cpo-enriched hom, that is to say, the l-cpo of morphisms between
, and . .

An 8Cpo-categoryV is 8Cpo-cartesian closed ifV has finite 8Cpo-products and, moreover, for
each object / ∈ V , the8Cpo-functor (/ × −) : V → V has a right8Cpo-adjointV [/,−], called,
herein, the 8Cpo-exponential of / . An 8Cpo-functor � : V → V ′ is strictly 8Cpo-cartesian
closed if it strictly preserves the 8Cpo-products and the induced comparison � ◦ V [−,−] →
V ′ [� (−), � (−)] is the identity.

LetV be 8Cpo-cartesian closed. For any / ∈ V , since the hom-functorV (/,−) : V → 8Cpo
is cartesian, it induces the change of enriching base 2-functors

GV(/,−) : V-Cat→ 8Cpo-Cat (3.1)

between the 2-categories of enriched categories w.r.t. the cartesian structures. Therefore, taking
/ = 1 (the terminal object ofV), we get that everyV-category (V-functor/V-monad) has a suitable
underlying 8CPO-category (8Cpo-functor/8Cpo-monad), given by its image byG8Cpo := GV(1,−) .

Definition 3.1 (��+ 8Cpo-pair). A��+ 8Cpo-pair is a��+ pair (V,T) in whichV is an8Cpo-
bicartesian closed category, such thatV (,,). ) is a pointed l-cpo for any (,,. ) ∈ V ×V .
A ��+ 8Cpo-pair morphism between (V,T) and (V ′,T ′) is an 8Cpo-functor � : V →
V ′ whose underlying functor yields a morphism between the ��+ pairs, and such that � :
V (,,). ) → V (�, ,�). ) is a pointed 8Cpo-morphism for any (,,. ) ∈ obV × obV . This
defines a category of ��+ 8Cpo-pairs, denoted herein by 8CPO-ℭBV .
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12 Fernando Lucatelli Nunes and Matthijs Vákár

There is, then, an obvious forgetful functorUp : 8CPO-ℭBV → ℭp.

3.1 Fixpoints: term recursion and iteration
Recall that, if � is pointed and @ : � → � is an endomorphism in 8Cpo, then @ has a least fixed
point given by the colimit of the chain

⊥ @ (⊥)// @ (⊥) · · ·// · · · @= (⊥)// @= (⊥) · · ·// (3.2)

by Kleene’s Fixpoint Theorem. Given such an endomorphism, we denote by lfp (@) its least fixed
point.
Henceforth, let (V,T) be a ��+ 8Cpo-pair, and � : V → C the corresponding V-enriched

universal Kleisli functor. We denote by − ⊗ − : V × C → C theV-tensor product in C, also called
theV-copower, which, in this case, correspond to the usual action ofV on C.
By hypothesis, for any,,., / ∈ V , the l-cpo V (/, C [,,. ]) � C (/ ⊗,,. ) is pointed.

Therefore we can define

`
,,.

/
: V (/ × C [,,. ] , C [,,. ]) → V (/, C [,,. ]) (3.3)

5 ↦→ lfp (ℎ ↦→ 5 ◦ (/ × ℎ) ◦ m/ )

it,,.

/ : C (/ ⊗,,, t . ) → C (/ ⊗,,. ) (3.4)
5 ↦→ lfp

(
ℎ ↦→ 〈ℎ, � (c. )〉 ◦ (/ ⊗ 5 ) ◦

(
diag/ ⊗ id,

) )
where m/ = (id/ , id/ ) : / → / ×/ is the diagonal morphism, and diag/ = � (id/ , id/ ) : / → / ⊗/ .
Since the morphisms above are 8Cpo-natural in / ∈ V , they give rise to the families of morphisms

`l =

(
`,,.
l

)
(,,. ) ∈C×C

def
=

(
`
,,.

V[C[,,. ],C[,,. ] ]
(
evalC[,,. ],C[,,. ]

) )
(,,. ) ∈C×C

(3.5)

itl =

(
it,,.
l

)
(,,. ) ∈C×C

def
=

(
it,,.

V[,,) (,t. ) ]
(
�
(
eval,,) (,t. )

) ) )
(,,. ) ∈C×C

(3.6)

by the Yoneda Lemma, where eval�,� : V [�, �] ×�→ � is the evaluation morphism given by the
cartesian closed structure.

Lemma 3.2 (Underlying ��+ model). There is a forgetful functorUBV : 8CPO-ℭBV → ℭBV
defined byUBV (V,T) = (V,T , `l , itl ), taking every morphism � to its underlying morphism of
��+ models.

Proof. Since � is a 8Cpo-functor and, for any (,,. ) ∈ obV × obV ,

� : V (,,). ) → V ′ (�, ,) ′�. )
is a pointed 8Cpo-morphism, we get that, indeed, � respects the free iteration and free recursion
as defined in (3.5) and (3.6). �

It should be noted that, given ��+ 8Cpo-pairs (V0,T0) and (V1,T1),
(V0,T0) × (V1,T1) = (V0 ×V1,T0 × T1) (3.7)

is the product in 8CPO-ℭBV . Moreover,UBV preserves finite products.

4 AUTOMATIC DIFFERENTIATION FOR TERM RECURSION AND ITERATION
For our purpose, we could define our macro in terms of total derivatives. However, we choose to
present it in terms of partial derivatives, in order to keep our treatment as close as possible to the
starting point of the efficient implementation of the reverse mode given in [37].
Following this choice of presentation, it is particularly convenient to establish our AD macro

D as a program transformation between a source language and a target language (see 4.4). The
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main point of this distinction is to keep track of the difference between the types corresponding to
manifolds (cartesian spaces) and the (co)tangents (vector spaces) in the target language (see [37]).

4.1 Source language as a standard call-by-value language with iteration and recursion
We consider a standard (coarse-grain) call-by-value language over a ground type real, certain real
constants 2 ∈ Op0, certain primitive operations op ∈ Op= for each nonzero natural number = ∈ N∗,
and sign . We denote Op :=

⋃
=∈N

Op= .

As it is clear from the semantics defined in 5.3, real intends to implement the real numbers.
Moreover, for each = ∈ N, the operations in Op= intend to implement partially defined functions
R= ⇀ R. Finally, sign intends to implement the partially defined function R ⇀ R defined in
R− ∪ R+ which takes R− to −1 and R+ to 1.
Although it is straightforward to consider more general settings, we also add the assumption

that the primitive operations implement differentiable functions (see 5.6).
We treat this operations in a schematic way as this reflects the reality of practical Automatic

Differentiation libraries, which are constantly being expanded with new primitive operations.
The types g, f, d , values E,F,D, and computations C, B, A of our language are as follows.
g, f, d ::= types

| real numbers
| 0 | g tf sums

E,F,D ::= values
| G,~, I variables
| 2 constants
| inl E | inr E sum inclusions

C, B, A ::= computations
| G,~, I variables
| let C = G in B sequencing
| 2 constant
| op(C1, . . . , C=) operation
| case C of { } sum match
| inl C | inr C sum inclusions

| case A of { inlG → C

| inr~ → B
} sum match

| 1 | g1 ×g2 products
| g → f function

| 〈 〉 | 〈E,F〉 tuples
| _G.C abstractions
| `G .C term recursion

| 〈 〉 | 〈C, B〉 tuples
| case B of 〈G,~〉 → C product match
| _G.C abstractions
| C B function app.
| iterate C fromG = B iteration
| `G .C term recursion
| sign C sign function

We use sugar if A then C else B def
= case sign A of {_→ C

�� _→ A }, fst C def
= case C of 〈G, _〉 → G ,

snd C
def
= case C of 〈_, G〉 → G and let rec 5 (G) = C in B

def
= let 5 = `5 ._G .C in B . In fact, we can

consider iteration as syntactic sugar as well:
iterate C fromG = B

def
= (`I._G .case C of {inlG ′→ I G ′ | inrG ′′→ G ′′}) B .

The computations are typed according to the rules of Fig. 4.1 and Fig. 4.2, where R ⊆ R is a fixed
set of real numbers containing 0. For now, the reader may ignore the kinding contexts Δ. They will
serve to support our treatment of ML-style polymorphism later.
We consider the standard CBV V[-equational theory of [30] for our language, which we list in

Fig. 4.3. We could impose further equations for the iteration construct as is done in [5, 16] as well as
for the basic operations op and the sign function sign . However, such equations are unnecessary
for our development.
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14 Fernando Lucatelli Nunes and Matthijs Vákár

((G : g) ∈ Γ)
Δ | Γ ` G : g

Δ | Γ ` C : f Δ | Γ, G : f ` B : g
Δ | Γ ` letG = C in B : g

(2 ∈ R)
Δ | Γ ` 2 : real

{Δ | Γ ` C8 : real}=8=1 (op ∈ Op=)
Δ | Γ ` op(C1, . . . , C=) : real

Δ | Γ ` C : 0
Δ | Γ ` case C of { } : g

Δ | Γ ` C : g
Δ | Γ ` inl C : g tf

Δ | Γ ` C : g
Δ | Γ ` inr C : g tf

Δ | Γ ` A : f t d Δ | Γ, G : f ` C : g Δ | Γ, ~ : d ` B : g
Δ | Γ ` case A of {inlG → C | inr~ → B} : g Δ | Γ ` 〈 〉 : 1

Δ | Γ ` C : g Δ | Γ ` B : f
Δ | Γ ` 〈C, B〉 : g ×f

Δ | Γ ` A : f × d Δ | Γ, G : f,~ : d ` C : g
Δ | Γ ` case A of 〈G,~〉 → C : g

Δ | Γ, G : f ` C : g
Δ | Γ ` _G.C : f → g

Δ | Γ ` C : f → g Δ | Γ ` B : f
Δ | Γ ` C B : g

Δ | Γ ` A : real
Δ | Γ ` sign A : 1t 1

Fig. 4.1. Typing rules for a basic source language with real conditionals, where R ⊆ R is a fixed set of real
numbers containing 0.

Δ | Γ, G : f ` C : f tg Δ | Γ ` A : f
Δ | Γ ` iterate C fromG = A : g

Δ | Γ, G : g ` C : g
Δ | Γ ` `G .C : g

(g = f → d)

Fig. 4.2. Typing rules for term recursion and iteration.

letG = E in C = C [E/G ] let~ = (letG = C in B) in A = letG = C in (let~ = B in A )

case inl E of {inlG → C | inr~ → B} = C [E/G ] C [E/I]
#G,~
= case E of { inlG → C [inlG/I]

| inr~ → C [inr ~/I]
}

case inr E of {inlG → C | inr~ → B} = B [E/~]
case 〈E,F〉 of 〈G,~〉 → C = C [E/G ,F/~] C [E/I]

#G,~
= case E of 〈G,~〉 → C [ 〈G,~〉/I]

(_G.C) E = C [E/G ] E
#G
= _G.E G

Fig. 4.3. Basic V[-equational theory for our language. We write
#G1,...,G=

= to indicate that the variables are
fresh in the left hand side. In the top right rule, G may not be free in A . Equations hold on pairs of computations
of the same type.

4.2 Target language
We define our target language by extending the source language adding the following syntax, with
the typing rules of Fig. 4.4.

, Vol. 1, No. 1, Article . Publication date: June 2022.



AD for ML-family languages: correctness via logical relations 15

g, f, d ::= types
| . . . as before

E,F,D ::= values
| 48 8-th canonical element
| . . . as before

C, B, A ::= computations
| . . . as before
| 48 canonical element

| vect (co)tangent

| 0 zero
| C + B addition of vectors
| C ∗ B scalar multiplication
| h8C proj. handler

| 0 zero
| C + B addition of vectors
| C ∗ B scalar multiplication
| h8C proj. handler

(8 ∈ N∗)
Δ | Γ ` 48 : vect Δ | Γ ` 0 : vect

Δ | Γ ` C : vect Δ | Γ ` B : vect
Δ | Γ ` C + B : vect

Δ | Γ ` C : vect Δ | Γ ` B : real
Δ | Γ ` C ∗ B : vect

(8 ∈ N∗) Δ | Γ ` C : vect
Δ | Γ ` h8C : real8

Fig. 4.4. Extra typing rules for the target language with iteration and recursion, where we denoteN∗ := N−{0},
real1 := real and real8+1 = real8 × real.

The operational semantics of the target language depends on the intended behavior for the ��
macro D defined in 4.4. In our context, we want vect to implement a vector space (playing the role
of the (co)tangent), with the respective operations and the usual laws between the operations such
as distributivity of the scalar multiplication over the vector addition (which is particularly useful
for efficient implementations [37]).

The terms h8C are irrelevant for the definition and correctness of the macro D , but it is particularly
useful to illustrate the expected types in 7.6 and 7.7. Although this perspective is negligible to our
correctness statement, vect can be seen as a type encompassing a linear effect with handlers given
by the terms h8C .

We are particularly interested in the case that
(
vect, +, ∗, 0

)
implements the vector space

(
R: , +, ∗, 0

)
,

for some : ∈ N ∪ {∞},5 where 48 implements the 8-th element 4:8 ∈ R: of the canonical basis if
: = ∞ or if 8 ≤ : , and 0 ∈ R: otherwise. In this case, h8C is supposed to implement

p:→8 : R
: → R8 , (4.5)

which denotes the canonical projection if 8 ≤ : and the coprojection otherwise.
For short, we say that vect implements the vector space R: to refer to the case above. It corre-

sponds to the :-semantics for the target language defined in 5.4.

4.3 The ��+ models
(
Syn+ , SynS, Syn`, Synit

)
and

(
Syntr

+
, SyntrS, Syn

tr
` , Syn

tr
it

)
As discussed in Appendix A, we can translate our coarse-grain languages to fine-grain call-by-value
languages. The fine-grain languages corresponding to the source and target languages correspond
5R∞ is the vector space freely generated by the infinite set

{
4
8
: 8 ∈ N∗

}
. In other words, it is the infinity coproduct of R8

(8 ∈ N∗). In order to implement it, one can use lists/arrays and pattern matching for the vector addition.
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to the ��+ models(
Syn+ , SynS, Syn`, Synit

)
and

(
Syntr+ , Syn

tr
S, Syn

tr
` , Syn

tr
it

)
(4.6)

with the following universal properties.

Theorem 4.1 (Universal Property of ��+ models (4.6)). Let (V,T , `, itt) be a ��+ model.
Assume that Fig. 4.7 and Fig. 4.8 are given consistent assignments.

(1) There is a unique ��+ model morphism � :
(
Syn+ , SynS, Syn`, Synit

)
→ (V,T , `, itt) re-

specting the assignment of Fig. 4.7.
(2) There is a unique ��+ model morphismH :

(
Syntr

+
, SyntrS, Syn

tr
` , Syn

tr
it

)
→ (V,T , `, itt) that

extends � and respects the assignment of Fig. 4.8.

For each primitive operation op ∈ Op= (= ∈ N) and each constant 2 ∈ R:
� (real) ∈ obV; � (sign ) ∈ C (� (real), 1 t 1) = V (� (real),) (1 t 1)) ;

� (2) ∈ V (1, � (real)) ; � (op) ∈ C (� (real)=, � (real)) = V (� (real)=,)� (real)) .

Fig. 4.7. Assignment that gives the universal property of the source language.

H(vect) ∈ obV; H(0) ∈ V (1,H(vect)) ; H (h8 ) ∈ V
(
H (vect) ,H (real)8

)
(for each 8 ∈ N∗);

H(+) ∈ V
(
H(vect)2,)H(vect)

)
; H(∗) ∈ V (H (vect) × H (real) ,)H (vect)) .

Fig. 4.8. Assignment that gives the universal property of the target language.

4.4 Dual numbers AD transformation for term recursion and iteration
Let us fix, for all = ∈ N, for all op ∈ Op= , for all 1 ≤ 8 ≤ =, computations G1 : real, . . . , G= :
real ` m8op(G1, . . . , G=) : real, which represent the partial derivatives of op. Using these terms for
representing partial derivatives, we define, in Fig. 4.9, a structure preserving macro D on the types
and computations of our language for performing AD.
We extend D to contexts: D({G1:g1, ..., G= :g=})

def
= {G1:D(g1), ..., G= :D(g=)}. This turns D into a

well-typed, functorial macro in the following sense.

Lemma 4.2 (Functorial macro). Our macro respects typing, substitution, and V[-equality:

• If Γ ` C : g , then D(Γ) ` D (C) : D(g).
• D (letG = C in B) = letG = D(C) inD(B).
• If C

V[
= B , then D(C) V[= D(B).

Our macro D can be seen as a class of macros, since it depends on the target language. More
precisely, it depends on what vect implements (see 4.2).
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D(real) def= real× vect D(0) def= 0 D(g tf) def= D(g) t D (f)
D (1) def= 1 D(g → f) def= D(g) → D(f) D (g ×f) def= D(g) × D (f)

D (G) def= G D(letG = C in B) def= letG = D(C) inD(B)
D (case A of { }) def= caseD(A ) of { }

D (inl C) def= inlD(C) D (case A of { inlG → C

| inr~ → B
}) def=

D(inr C) def= inrD(C) caseD(A ) of { inlG → D(C)
| inr~ → D(B) }

D (〈 〉) def= 〈 〉
D (〈C, B〉) def= 〈D (C),D(B)〉 D (case A of 〈G,~〉 → C) def= caseD(A ) of 〈G,~〉 → D(C)
D (_G.C) def= _G.D(C) D (C A ) def= D(C) D (A )
D (iterate C fromG = A ) def= D(`G .C) def= `G .D(C)
iterateD(C) fromG = D(A )

D (2) def= 〈2, 0〉
D (op(A1, . . . , A=))

def
= caseD(A1) of 〈G1, G ′1〉 → . . .→ caseD(A=) of 〈G=, G ′=〉 →

let~ = op(G1, . . . , G=) in
let I1 = m1op(G1, . . . , G=) in . . . let I= = m=op(G1, . . . , G=) in
〈~, G ′1 ∗ I1 + . . . + G ′= ∗ I=〉

D (sign A ) def= sign (fstD(A ))

Fig. 4.9. AD macro D (−) defined on types and computations. All newly introduced variables are chosen to be
fresh. We provide a more efficient way of differentiating sign in Appx. B.

D(real) def= real × vect ∈ ob Syntr
+
, D(2) def=

(
2, 0

)
∈ Syntr

+
(1, real × vect) ,

D(op) def= _~1 ._ . . . ._~= .
−→
3 op (~1, . . . , ~=) ∈ Syntr+

(
(real × vect)=, SynS (real × vect)

)
,

D(sign ) def= (sign ◦ c1) ∈ Syntr+
(
real × vect, SynS (1 t 1)

)
,

for each primitive operation op ∈ Op= (= ∈ N) and each constant 2 ∈ R, where
−→
3 op (~1, . . . , ~=)

def
= case~1 of 〈G1, G ′1〉 → . . .→ case~= of 〈G=, G ′=〉 →

let~ ′ = op(G1, . . . , G=) in
let I1 = m1op(G1, . . . , G=) in . . . let I= = m=op(G1, . . . , G=) in
〈~ ′, G ′1 ∗ I1 + . . . + G ′= ∗ I=〉.

Fig. 4.11. AD assignment.
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18 Fernando Lucatelli Nunes and Matthijs Vákár

4.5 AD transformation as a ��+ model morphism

By the universal property of
(
Syn+ , SynS, Syn`, Synit

)
established in Theorem 4.1, the assignment

defined in Fig. 4.11 induces a unique ��+ model morphism

D :
(
Syn+ , SynS, Syn`, Synit

)
→

(
Syntr+ , Syn

tr
S, Syn

tr
` , Syn

tr
it

)
. (4.10)

The macro D defined in Fig. 4.9 is encompassed by (4.10).

5 SEMANTICS FOR THE AD TRANSFORMATION
We establish basic facts about the semantics of the automatic differentiation.

5.1 Basic concrete model
The most fundamental example of a ��+ 8Cpo-pair is given by (8Cpo, (−)⊥) where (−)⊥ is
the lax idempotent monad that freely adds an initial object ⊥ to each l-cpo. Indeed, of course,
8Cpo (,, (. )⊥) is pointed for any pair (,,. ) ∈ ob8Cpo × ob8Cpo.
We consider the product (8Cpo, (−)⊥) × (8Cpo, (−)⊥) = (8Cpo × 8Cpo, (−)⊥), where, by

abuse of language, ((�,� ′))⊥ = ((�)⊥ , (� ′)⊥). By Lemma 3.2,UBV (8Cpo, (−)⊥) and
UBV (8Cpo × 8Cpo, (−)⊥) = UBV (8Cpo, (−)⊥) × UBV (8Cpo, (−)⊥)

are ��+ models.

5.2 Differentiable functions and interleaved derivatives
Henceforth, unless stated otherwise, the cartesian spaces R= and its subspaces are endowed with the
respective discrete 8Cpo-structures.

Definition 5.1 (Interleaving function). For each (=, :) ∈ N × (N ∪ {∞}), denoting by I= the set
{1, . . . , =}, we define the isomorphism (in 8Cpo with the respective discrete 8Cpo-structures)

q=,: : R= ×
(
R:

)= →
(
R × R:

)=
(5.1)(

(G 9 ) 9 ∈I= , (~ 9 ) 9 ∈I=
)
↦→

(
G 9 , ~ 9

)
9 ∈I= .

For each open subset* ⊆ R= , we denote by q*
=,:

: * ×
(
R:

)= → q=,:

(
* ×

(
R:

)=) the isomorphism
obtained from restricting q=,: .

In Def. 5.2, Remark 5.3 and Lemma 5.4, let 6 : * →
∐
9 ∈!

+9 be a map where* is an open subset of

R= , and, for each 8 ∈ !, +8 is an open subset of R<8 .

Definition 5.2 (Derivative). The map 6 is differentiable if, for any 8 ∈ !, 6−1 (+8 ) =,8 is open in
R= and the restriction 6|,8

:,8 → +8 is differentiable w.r.t the submanifold structures,8 ⊆ R= and
+8 ⊆ R<8 . In this case, for each : ∈ (N ∪ {∞}), we define the function:

D:6 : q=,:

(
* ×

(
R:

)=) →
∐
9 ∈!

(
q< 9 ,:

(
+8 ×

(
R:

)<8
))

(5.2)

I ↦→ ]< 9
◦ q+9

< 9 ,:

(
6(G), F̃ · 6′(G)C

)
,whenever q−1

=,:
(I) = (G,F) ∈,8 ×

(
R:

)=
in which F̃ is the linear transformationR= → R: corresponding to the vectorF , · is the composition
of linear transformations, ]<8

is the obvious 8Cℎ-coprojection of the coproduct (in the category
8Cpo), and 6′(G)C is the transpose of the derivative 6′(G) : R= → R<8 of 6|,8

:,8 → +8 at G ∈ * .
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Remark 5.3. It should be noted that, in Def. 5.2,,8 might be empty for some 8 ∈ !. In this case,
6|,8

:,8 → +8 is trivially differentiable. Analogously,* might be empty. In this case, the function
6 is differentiable andD:6 is the unique morphism with domain ∅ and codomain as in (5.2).

Lemma 5.4. Let ¤6 be a function with domain as in (5.2). The map 6 is differentiable and ¤6 = D:6 if,
and only if, 6 ◦ U is differentiable and ¤6 ◦D:U = D: (6 ◦ U) for any differentiable map U : R= → * .

Definition 5.5 (Differentiable partial maps). Let ℎ :
∐
A ∈ 
R=A →

(∐
9 ∈!
R< 9

)
⊥

be a morphism in

8Cpo. We say that ℎ is differentiable if, for each 8 ∈  , the component ℎ8 := ℎ ◦ ]8 : R=8 →(∐
9 ∈!
R< 9

)
⊥

satisfies the following two conditions:

• ℎ−18

(∐
9 ∈!
R< 9

)
= *8 is open in R=8 ;

• the corresponding total function (5.3) is differentiable.

ℎ8 = ℎ |*8
: *8 →

∐
9 ∈!
R< 9 (5.3)

d: (ℎ) :
∐
A ∈ 

(
R × R:

)=A
→

(∐
9 ∈!

(
R × R:

)< 9

)
⊥

(5.4)

In this case, for each : ∈ N ∪ {∞}, we define (5.4) to be the morphism induced by 〈d: (ℎA )〉A ∈ 
where, for each 8 ∈  , d: (ℎ8 ) is defined by (5.5), which is just the corresponding canonical extension
of the mapD:ℎ8 .

d: (ℎ8 ) :
(
R × R:

)=8 → (∐
9 ∈!

(
R × R:

)< 9

)
⊥

(5.5)

I ↦→
{
D:ℎ8 (I) , if I ∈ q=8 ,:

(
*8 ×

(
R:

)=8 ) ⊆ (
R × R:

)=8 ;
⊥, otherwise.

5.3 The semantics for the source language
We give a concrete semantics for our language, interpreting it in the��+ 8Cpo-pair (8Cpo, (−)⊥).

We denote by R the discrete l-cpo of real numbers, and we define sign : R→ (1 t 1)⊥ by (5.7),
where ]1, ]2 : 1→ 1 t 1 are the two coprojections of the coproduct.

[[−]] :
(
Syn+ , SynS, Syn`, Synit

)
→UBV (8Cpo, (−)⊥)

(5.6)
sign(G) =


⊥, if G = 0

]1 (∗), if G < 0

]2 (∗), if G > 0

(5.7)

By the universal property of
(
Syn+ , SynS, Syn`, Synit

)
, there is only one ��+ model morphism

(5.6) consistent with the assignment of Fig. 5.8 where c is the constant that 2 intends to implement,
and, for each op ∈ Op= , 5op is the partial map that op intends to implement.

[[real]] def= R ∈ ob8Cpo; [[2]] def= c ∈ 8Cpo (1,R) ;
[[op]] def= 5op ∈ 8Cpo (R=, (R)⊥) ; [[sign ]] def= sign ∈ 8Cpo (R, (1 t 1)⊥) .

Fig. 5.8. Semantics’ assignment for each primitive operation op ∈ Op= (= ∈ N) and each constant 2 ∈ R.
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The��+ model morphism (5.6) (or, more precisely, the underlying functor of the��+ morphism
[[−]]) gives the semantics for the source language. Although our work holds for more general
contexts, we consider the following assumption over the semantics of our language.

Assumption 5.6. For each = ∈ N and op ∈ Op= , [[op]] = 5op : R= → (R)⊥ is differentiable.

5.4 The :-semantics for the target language
For each : ∈ N∪ {∞}, we define the :-semantics for the target language by interpreting vect as the
vector space R: . Namely, we extend the semantics [[−]] of the source language into a :-semantics
of the target language. More precisely, by Theorem 4.1, there is a unique ��+ model morphism
(5.9) that extends [[−]] and is consistent with the assignment given by the vector structure (5.10)
together with the projection (coprojection) [[h8 ]]: : R: → R8 if 8 ≤ : (8 ≥ :), for each 8 ∈ N∗.

[[−]]: :
(
Syntr+ , Syn

tr
S, Syn

tr
` , Syn

tr
it

)
→ UBV (8Cpo, (−)⊥) (5.9)(

[[vect]]: , [[+]]: , [[∗]]: , [[0]]:
)

:=
(
R: , +, ∗, 0

)
(5.10)

5.5 Prim-op-correct macro
Definition 5.7 (Sound for primitives). A macro D as defined in Fig. 4.9 and its corresponding

��+ model morphism D as defined in (4.10) are sound for primitives if, for any primitive op ∈ Op,
[[D (op)]]: = d: ( [[op]]) for any : .

For each 9 ∈ I= , given a differentiable function 5 : R= → (R)⊥, we denote by d9 (5 ) : R= →
(R × R)⊥ the function defined by d9 (5 ) (G1, . . . , G=) = d1 (5 ) ◦ q=,1

(
(G1, . . . , G=), 4=9

)
, where 4=9 the

9-th vector of the canonical basis of R= .

Lemma 5.8. The macro D defined in Fig. 4.9 is sound for primitives provided that

[[〈op(~1, . . . , ~=), m9op(~1, . . . , ~=)〉]] = d9 ( [[op]]) , (5.11)

for any primitive operation op ∈ Op= of the source language.

6 ENRICHED SCONE AND SUBSCONE
Given an 8Cpo-functor � : B → D, the comma 8Cpo-category D ↓ � of the identity along � in
8Cpo-Cat is defined as follows.

– The objects of D ↓ � are triples (� ∈ D,� ∈ B, 9 : � → � (�)) in which 9 is a morphism of
D;

– a morphism (�,�, 9) → (� ′,� ′, ℎ) between objects of D ↓ � is a pair (6.1) making (6.2)
commutative in D;

U = (U0 : � → � ′, U1 : � → � ′) (6.1)
�

� (�)
9 ��
� � ′

U0 // � ′

� (� ′)
ℎ��

� (�) � (� ′)
� (U1)

//
(6.2)

– if U = (U0 : � → � ′, U1 : � → � ′) , V = (V0 : � → � ′, V1 : � → � ′) : (�,�, 9) → (� ′,� ′, ℎ),
are two morphisms of D ↓ � , we have that U ≤ V if U0 ≤ V0 in D and U1 ≤ V1 in B.

Following the approach of [26, Section 9], we have:

Theorem 6.1. Let � : B → D be a right 8Cpo-adjoint functor. Assuming that D has finite
8Cpo-products and B has finite 8Cpo-coproducts, the 8Cpo-functor

L : D ↓ � → D × B, (6.3)
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defined by (� ∈ D,� ∈ B, 9 : � → � (�)) ↦→ (�,�), is 8Cpo-comonadic and 8Cpo-monadic. This
implies, in particular, that L creates (and strictly preserves) 8Cpo-limits and colimits.

By Theorem 6.1 and the enriched adjoint triangle theorem6, we have:

Corollary 6.2. Let � : B → D be a right 8Cpo-adjoint functor between 8Cpo-bicartesian
closed categories. In this case, D ↓ � is an 8Cpo-bicartesian closed category. Moreover, if D × B is
8Cpo-cocomplete, so is D ↓ � .

Theorem 6.1 and Corollary 6.2 are 8Cpo-enriched versions of the fundamental results of [26,
Section 9]. The details and proofs are presented in Appx. C.

6.1 Subscone
Henceforth, we assume that Sub (D ↓ �) is a full reflective and replete 8Cpo-subcategory of D ↓ � .
We denote, herein, by TBD1 the idempotent 8Cpo-monad induced by the 8Cpo-adjuntion.

Recall that amorphism@ in8Cpo is full if its underlying functor is full. In this case, the underlying
functor is also faithful and injective on objects. Moreover, a morphism 9 in an 8Cpo-category B is
full if B (�, 9) is full in 8Cpo for any � ∈ B.
Furthermore, recall that an 8Cpo-functor � : W → Z is locally full if, for any (-,, ) ∈

obW × obW, the morphism � :W (-,, ) → Z (�-,�, ) is a full 8Cpo-morphism. It should
be noted that the 2-functor underlying a locally full 8Cpo-functor is locally fully faithful. Moreover,
since every full morphism in 8Cpo is injective on objects, every locally full 8Cpo-functor is faithful
(locally injective on objects).

Assumption 6.3. We require that:
(Sub.1) whenever (� ∈ D,� ∈ B, 9) ∈ Sub (D ↓ �), 9 is a full morphism in B;
(Sub.2) � : B → D is a right 8Cpo-adjoint functor between 8Cpo-bicartesian closed categories;
(Sub.3) TBD1 strictly preserves 8Cpo-products;
(Sub.4) Diag. (6.5) commutes.

Sub (D ↓ �) D ↓ �// D ↓ � D × BL // D × B B
cB // (6.4)

D ↓ � D ↓ �
TBD1 // D ↓ �

D × B

L
��/
//
/D ↓ �

D × B

L
����
��

D × B B
cB
// D × BB

cB
oo

(6.5)

We denote by L : Sub (D ↓ �) → B the 8Cpo-functor given by the composition (6.4) where the
unlabeled arrow is the full inclusion.

Theorem 6.4. The full inclusion Sub (D ↓ �) → D ↓ � creates (and strictly preserves) 8Cpo-
limits and 8Cpo-exponentials. Moreover, if D ↓ � is 8Cpo-cocomplete, so is Sub (D ↓ �).

Proof. Sub (D ↓ �) → D ↓ � is 8Cpo-monadic and, hence, it creates 8Cpo-limits.
By (Sub.3) of 6.3, TBD1 is commutative and, hence, Sub (D ↓ �) → D ↓ � creates 8Cpo-

exponentials.
Since TBD1 is idempotent, Sub (D ↓ �) is 8Cpo-cocomplete whenever D ↓ � is. �

Corollary 6.5. Sub (D ↓ �) is an 8Cpo-bicartesian closed category. Moreover, ifD×B is 8Cpo-
cocomplete, so is Sub (D ↓ �).

Proof. It follows from Theorem 6.4 and Corollary 6.2. �

6See [10] for the original adjoint triangle theorem, and [25, Section 1] for the enriched version.
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Theorem 6.6. The 8Cpo-functor L : Sub (D ↓ �) → B is strictly (bi)cartesian closed and locally
full (hence, faithful). Moreover, L strictly preserves 8Cpo-colimits.

Proof. The 8Cpo-functors L : D ↓ � → D × B and cB : D × B → B strictly preserve
8Cpo-weighted limits and colimits. Since TBD1 is idempotent and (6.5) commutes, this implies that
L strictly preserves 8Cpo-limits and colimits.
The composition cB ◦ L has a left 8Cpo-adjoint given by � ↦→ (0,�, ]0). Since the counit of

this 8Cpo-adjunction is the identity and cB ◦ L strictly preserves 8Cpo-products, we get that
this 8Cpo-adjunction strictly satisfies the Frobenius reciprocity condition. This implies that cB ◦ L
strictly preserves 8Cpo-exponentials.
Since TBD1 strictly preserves 8Cpo-products, we get that Sub (D ↓ �) → D ↓ � strictly

preserves 8Cpo-exponentials as well. Therefore, L strictly preserves 8Cpo-exponentials.
The locally fully faithfulness (and, hence, faithfulness) of L follows from (Sub.1) of 6.3. �

Remark 6.7. Condition (Sub.1) of 6.3 ensures that our subscone indeed gives us a proof-irrelevant
approach: in particular, as stressed above, it implies thatL is faithful. Given objects (�,�, 9), (� ′,� ′, 9 ′)
and a morphism 5 : � → � ′ in B, if there is U : (�,�, 9) → (� ′,� ′, 9 ′) satisfying L(U) = 5 , then U
is unique with this property. In this case, we say that 5 defines a morphism (�,�, 9) → (� ′,� ′, 9 ′)
in Sub (D ↓ �).

7 CORRECTNESS OF DUAL NUMBERS AD
In this section, we show that, as long as the macro D defined in Fig. 4.9 is sound for primitives and
vect implements R: , D is correct according to the :-specification below. More precisely, we prove
that:

Theorem 7.1. Assume that vect implements the vector space R: , for some : ∈ N ∪ {∞}. For any
program G : g ` C : f where g, f are data types, we have that [[C]] is differentiable and, moreover,

[[D (C)]]: = d: ( [[C]]) (7.1)

provided that D is sound for primitives.

In 7.7 and 7.6, we show how we can correctly get the derivative and the transpose derivative out
of Theorem 7.1. In other words, we get forward and reverse AD out of our correct macro, provided
that vect implements a suitable vector space R: .

7.1 Basic setting
Henceforth, we follow the notation and definitions established in Section 5. In particular, unless stated
otherwise, the cartesian spaces R= and its subspaces are endowed with the discrete 8Cpo-structure.

For each (=, :) ∈ N×(N ∪ {∞}), we define the8Cpo-functor (7.2). We consider the full reflective
8Cpo-subcategory Sub

(
8Cpo ↓ �=,:

)
of 8Cpo ↓ �=,: whose objects are triples (7.3) such that 9 is

full (and, hence, injective on objects).

�=,:
def
= 8Cpo × 8Cpo

((
R=,

(
R × R:

)=)
, (−,−)

)
: 8Cpo × 8Cpo→ 8Cpo (7.2)(

� ∈ 8Cpo, (�,� ′) ∈ 8Cpo × 8Cpo,
(
9 : � → �=,: (�,� ′)

)
∈ 8Cpo

)
(7.3)

The 8Cpo-functor �=,: together with Sub
(
8Cpo ↓ �=,:

)
satisfies 6.3. Therefore:

Theorem 7.2. Sub
(
8Cpo ↓ �=,:

)
is a cocomplete 8Cpo-cartesian closed category. Moreover, the

forgetful 8Cpo-functor L
=,:

: Sub
(
8Cpo ↓ �=,:

)
→ 8Cpo × 8Cpo is locally full and strictly

cartesian closed. Furthermore, it strictly preserves 8Cpo-colimits.

Proof. It follows from Corollary 6.5 and Theorem 6.6. �
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7.2 The monad
Let (=, :) ∈ N × (N ∪ {∞}). In order to get a categorical model of our language, we need to define
a partiality monad for Sub

(
8Cpo ↓ �=,:

)
.

We denote byO= the set of proper open non-empty subsets of the cartesian space R= . For each
* ∈ O= , we define

Diff (* ,=,:)
def
=

({(
6 : R= → * ,D:6

)
: 6 is differentiable

}
,

(
* ,q=,:

(
* ×

(
R:

)=))
, incl.

)
∈ Sub

(
8Cpo ↓ �=,:

)
.

We define the Sub
(
8Cpo ↓ �=,:

)
-monad P=,: (−)⊥ on Sub

(
8Cpo ↓ �=,:

)
by

P=,: (�, (�,� ′) , 9)⊥
def
=

(
P=,: (�, (�,� ′) , 9)⊥, ((�)⊥ , (� ′)⊥) , j-

)
(7.4)

where P=,: (�, (�,� ′) , 9)⊥ is the union

{⊥} t�=,: (�,� ′) t
( ∐
* ∈O=

Sub
(
8Cpo ↓ �=,:

) (
Diff (* ,=,:) , (�, (�,� ′) , 9)

))
(7.5)

with the full 8Cpo-substructure of�=,: ((�)⊥ , (� ′)⊥) induced by the inclusion j- which is defined
by the following components:

• the inclusion {⊥} → �=,: ((�)⊥ , (� ′)⊥) of the least morphism ⊥ :
(
R=,

(
R × R:

)=) →
((�)⊥ , (� ′)⊥) in 8Cpo × 8Cpo

((
R=,

(
R × R:

)=)
, ((�)⊥ , (� ′)⊥)

)
;

• the inclusion of the total functions �=,: ([� , [�′) : �=,: (�,� ′) → �=,: ((�)⊥ , (� ′)⊥);
• for each* ∈ O= , the injection Sub

(
8Cpo ↓ �=,:

) (
Diff (* ,=,:) , (�, (�,� ′) , 9)

)
→ �=,: ((�)⊥ , (� ′)⊥)

defined by(
U0, U1 =

(
V0 : * → �, V1 : q=,:

(
* ×

(
R:

)=)
→ � ′

))
↦→

(
V0 : R

= → (�)⊥ , V1 :
(
R × R:

)=
→

(
� ′

)
⊥

)
,

where V0 and V1 are the respective corresponding canonical extensions.
For each (�,� ′) ∈ 8Cpo × 8Cpo, the component (m� ,m�′) and ([� , [�′) of the multiplication

and the unit of the monad (−)⊥ on 8Cpo × 8Cpo define morphisms

m(�,(�,�′), 9) : P=,:
(
P=,: (�, (�,� ′) , 9)⊥

)
⊥ → P=,: (�, (�,� ′) , 9)⊥ (7.6)

[ (�,(�,�′), 9) : (�, (�,� ′) , 9) → P=,: (�, (�,� ′) , 9)⊥ . (7.7)

in Sub
(
8Cpo ↓ �=,:

)
. Therefore, m and [ define the multiplication and the unit for P=,: (−)⊥,

completing the definition of our monad. Analogously, we lift, as morphisms of Sub
(
8Cpo ↓ �=,:

)
,

the strength of (−)⊥, making P=,: (−)⊥ into a strong monad (i.e. Sub
(
8Cpo ↓ �=,:

)
-enriched

monad).
In order to finish the proof that

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
is a��+ 8Cpo-pair, it is enough

to see that, for any pair of objects
(
�0,

(
�0,�

′
0

)
, 90

)
,
(
�1,

(
�1,�

′
1

)
, 91

)
of Sub

(
8Cpo ↓ �=,:

)
, the least

morphism⊥ :
(
�0,�

′
0

)
→

(
(�1)⊥ ,

(
� ′1

)
⊥
)
, of8Cpo (�0, (�1)⊥)×8Cpo

(
� ′0,

(
� ′1

)
⊥
)
defines the least

morphism
(
�0,

(
�0,�

′
0

)
, 90

)
→ P=,:

(
�1,

(
�1,�

′
1

)
, 91

)
⊥ in Sub

(
8Cpo ↓ �=,:

)
.

Finally, since the underlying endofunctor of the monad P=,: (−)⊥, the multiplication and the
identity are clearly lifted from (−)⊥ through L

=,:
as defined above, we have:

Theorem 7.3. For each (=, :) ∈ N× (N ∪ {∞}),
(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
is a��+ 8Cpo-

pair. Moreover, L
=,:

: Sub
(
8Cpo ↓ �=,:

)
→ 8Cpo×8Cpo is a��+ 8Cpo-pair morphism between(

Sub
(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
and (8Cpo × 8Cpo, (−)⊥).
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Therefore, by Lemma 3.2,UBV
(
L
=,:

)
is a ��+ model morphism between the underlying ��+

models of
(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
and (8Cpo × 8Cpo, (−)⊥).

7.3 Logical relations as a ��+ model morphism
Henceforth, we assume that the macro D is sound for primitives (see Def. 5.5). We establish the ��+
model morphism (7.16). We start by establishing the logical relations’ assignment.

Let (=, :) ∈ N × (N ∪ {∞}).We define the object (7.8) in Sub
(
8Cpo ↓ �=,:

)
.

[[[real]]]=,:
def
=

({
(5 : R= → R, 5 ∗) : 5 is differentiable, 5 ∗ = D: 5

}
,

(
R,R × R:

)
, incl.

)
(7.8)

For each < ∈ N, op ∈ Op< and 2 ∈ R, we define the morphisms (7.9), (7.10) and (7.11) in
8Cpo ×8Cpo, in which D, [[−]] and [[−]]: are the functors underlying the��+ model morphisms
respectively defined in (4.10), (5.6) and (5.9).

[[[sign ]]]:
def
=

(
sign, d: (sign)

)
= (sign, [[D (sign )]]: ) :

(
R,R × R:

)
→ ((1 t 1)⊥ , (1 t 1)⊥) (7.9)

[[[2]]]:
def
=

(
c, d: (c)

)
: (1, 1) →

(
R,R × R:

)
(7.10)

[[[op]]]:
def
=

(
[[op]], d: ( [[op]])

)
:
(
R<,

(
R × R:

)<)
→

(
(R)⊥ ,

(
R × R:

)
⊥

)
(7.11)

By Theorem 6.4, we have that the product [[[real]]]<=,: in Sub
(
8Cpo ↓ �=,:

)
is given by (7.12).

Therefore, by the chain rule for derivatives, we have that (7.9), (7.10) and (7.11) respectively define
the morphisms (7.13), (7.14), and (7.15) in Sub

(
8Cpo ↓ �=,:

)
, where 1 t 1 denotes the coproduct

of the terminal 1 = (1, (1, 1) , id) with itself.({(
59 : R

= → R, 5 ∗9
)
9 ∈I<

: 5 ∗9 is differentiable and 5 ∗9 = D: 59 ,∀9 ∈ I<
}
,

(
R,R × R:

)<
, incl.

)
�

({
(5 : R= → R<, 5 ∗) : 5 is differentiable, 5 ∗ = D: 5

}
,

(
R<,

(
R × R:

)<)
, incl.

)
. (7.12)

[[[sign ]]]=,: : [[[real]]]=,: → P=,:
(
1 t 1

)
⊥

(7.13) [[[2]]]
=,:

: 1→ [[[real]]]=,: (7.14)

[[[op]]]=,: : [[[real]]]<=,: → P=,:
(
[[[real]]]=,:

)
⊥

(7.15)

By the universal property of the ��+ model
(
Syn+ , SynS, Syn`, Synit

)
, we get:

Theorem 7.4. For each (=, :) ∈ N × (N ∪ {∞}), there is only one ��+ model morphism

[[[−]]]=,: :
(
Syntr+ , Syn

tr
S, Syn

tr
` , Syn

tr
it

)
→UBV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
(7.16)

that is consistent with the assignment given by (7.8), (7.13), (7.15), and (7.14). Moreover, Diag. (7.17)
commutes.(

Syn+ , SynS, Syn`, Synit

) (
Syn+ , SynS, Syn`, Synit

)
×

(
Syntr

+
,SyntrS,Syn

tr
` ,Syn

tr
it

)(id,D) //
(
Syn+ , SynS, Syn`, Synit

)
×

(
Syntr

+
,SyntrS,Syn

tr
` ,Syn

tr
it

)
UBV (8Cpo × 8Cpo, (−)⊥)

[[−]]×[[−]]:��

(
Syn+ , SynS, Syn`, Synit

)
UBV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)[[[−]]]=,: ��
UBV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
UBV (8Cpo × 8Cpo, (−)⊥)

UBV
(
L

=,:

) //

(7.17)
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Proof. Both ( [[−]] × [[−]]: ) ◦ (id × D) andUBV
(
L
=,:

)
◦ [[[−]]]=,: yield ��+ model morphisms

that are consistent with the assignment given by the object
(
R,R × R:

)
together with (7.9), (7.10)

and (7.11). �

7.4 AD Logical Relations for Data Types

As a consequence of Theorem 7.4, we establish a fundamental result on the logical relations [[[−]]]=,:
for data types in our setting: namely, Theorem 7.6. We start by establishing Lemma 7.5 about our
logical relations and the coproducts in Sub

(
8Cpo ↓ �=,:

)
.

Lemma 7.5. Let (=, :) ∈ N × (N ∪ {∞}). If (6, ¤6) ∈
∐
9 ∈!
[[[real]]]; 9=,: , then 6 : R= →

∐
9 ∈!
R; 9 is

differentiable and ¤6 = D:6.

Proof. By Theorem 7.2, Sub
(
8Cpo ↓ �=,:

)
has coproducts. Moreover, we can conclude that

(6, ¤6) ∈
∐
9 ∈!
[[[real]]]; 9=,: implies that, for some A ∈ !, we have a pair(

6 : R= → R;A ,D:6 :
(
R × R:

)=
→

(
R × R:

);A )
(7.18)

such that (6, ¤6) =
(
]R;A ◦ 6, ] (R×R: );A ◦D:6

)
. Following Def. 5.2, this completes our proof. �

Theorem 7.6. Let (=, :) ∈ N × (N ∪ {∞}). If (6, ¤6) ∈ P=,:

(∐
9 ∈!
[[[real]]]; 9=,:

)
⊥

, then 6 : R= →(∐
9 ∈!
R; 9

)
⊥

is differentiable and ¤6 = d: (6).

Proof. Indeed, by the definition of P=,: (−)⊥, we have one of the following situations.

s1. 6 and ¤6 are the least morphisms, that is to say, they are constantly equal to ⊥;
s2. the pair (6, ¤6) come from a pair of total functions

(
6, ¤6

)
∈

∐
9 ∈!
[[[real]]]; 9=,: ;

s3. 6−1
(∐
9 ∈!
R; 9

)
= , is open. Moreover, denoting by (7.19) the pair consisting of the corre-

sponding total functions, we have that (7.20) holds for any differentiable map U : R= →, .(
6 :, →

(∐
9 ∈!
R; 9

)
, ¤6

)
(7.19)

(
6 ◦ U, ¤6 ◦D:U

)
∈

∐
9 ∈!
[[[real]]]; 9=,: . (7.20)

If (s1.) holds, following Def. 5.5, we get that 6 is differentiable and ¤6 = d: (6) by Remark 5.3.
In case of (s2.), we get 6 is differentiable and ¤6 = D:6 by Lemma 7.5. Hence 6 is differentiable

and ¤6 = d: (6).
Finally, in case of (s3.), by Lemma 7.5, we get that, for any differentiable U : R= →, , 6 ◦ U is

differentiable and ¤6 ◦D:U is well defined and equal toD:
(
6 ◦ U

)
. By Lemma 5.4, this implies that

6 is differentiable andD:6 = ¤6. Following Def. 5.5, this completes the proof that 6 is differentiable
and ¤6 = d: (6). �
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Corollary 7.7. Let : ∈ N ∪ {∞}. If, for each 8 ∈ L, the morphism (6, ¤6) in 8Cpo × 8Cpo

defines the morphism (7.21) in Sub
(
8Cpo ↓ �B8 ,:

)
, then 6 :

∐
A ∈L
RBA →

(∐
9 ∈!
R; 9

)
⊥

is differentiable

and ¤6 = d: (6).

g :
∐
A ∈L
[[[real]]]BAB8 ,: → PB8 ,:

(∐
9 ∈!
[[[real]]]; 9B8 ,:

)
⊥

(7.21) ]8 : [[[real]]]
B8

B8 ,:
→

∐
A ∈ 
[[[real]]]BAB8 ,: (7.22)

Proof. From the hypothesis, for each 8 ∈ L, we conclude that the pair (7.23) defines themorphism
(7.24), since

(
]RB8 , ] (R×R: )B8 ) defines the coprojection (7.22) in Sub

(
8Cpo ↓ �B8 ,:

)
.

(
68

def
= 6 ◦ ]RB8 , ¤68

def
= ¤6 ◦ ] (R×R: )B8 ) (7.23) g8

def
= g ◦ ]8 : [[[real]]]

B8

B8 ,:
→ PB8 ,:

(∐
9 ∈!
[[[real]]]; 9B8 ,:

)
⊥

(7.24)
Since idRB8 : RB8 → RB8 is differentiable, and D: (idRB8 ) is given by the identity

(
R × R:

)B8 →(
R × R:

)B8 , we conclude that
(68 , ¤68 ) ∈ PB8 ,:

(∐
9 ∈!
[[[real]]]; 9B8 ,:

)
⊥

. (7.25)

By Theorem7.6, (7.25) proves that 68 is differentiable and ¤68 = d: (68 ). Since this result holds for any
8 ∈ L, we conclude that 6 is differentiable and ¤6 = d: (6). �

7.5 Fundamental AD correctness theorem
We prove Theorem 7.8, which completes the proof of Theorem 7.1.

Theorem 7.8. Let C :
∐
A ∈L

realBA → SynS

(∐
9 ∈!

real; 9

)
be a morphism in Syn+ . We have that

[[C]] :
∐
A ∈L
RBA →

(∐
9 ∈!
R; 9

)
⊥

is differentiable and, for any : ∈ (N ∪ {∞}), [[D (C)]]: = d: ( [[C]]).

Proof. We assume that we have C as above. For each 8 ∈ L, the pair (7.26) is in the image of
( [[−]] × [[−]]: ) ◦ (id × D) = UBV

(
L
B8 ,:

)
◦ [[[−]]]B8 ,: . This implies that (7.26) defines the morphism

(7.27) in Sub
(
8Cpo ↓ �B8 ,:

)
. Therefore, by Corollary 7.7, we conclude that [[C]] is differentiable and

[[D(C)]]: = d: ( [[C]]).

( [[C]], [[D(C)]]: ) (7.26) [[[C]]]B8 ,: :
∐
A ∈ 
[[[real]]]BAB8 ,: → PB8 ,:

(∐
9 ∈!
[[[real]]]; 9B8 ,:

)
⊥

(7.27) �

7.6 Correctness of the dual numbers forward AD
We assume that vect implements the vector space R. It is straightforward to see that we get forward
mode AD out of our macro D : namely, for a program G : g ` C : f (where g and f are data types) in
the source language, we get a program G : D(g) ` D (C) : D(f) in the target language, which, by
Theorem 7.1, satisfies the following properties.
• [[C]] : ∐A ∈ R

=A →
(∐

9 ∈! R
< 9

)
⊥ is differentiable as in Def. 5.5;
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• if ~ ∈ R=8 ∩ [[C]]−1 (R< 9 ) = ,9 for some 8 ∈  and 9 ∈ !, we have that, for any F ∈ R=8 ,
denoting I := q=8 ,1 (~,F),

[[D (C)]]1
(
q=8 ,1 (~,F)

)
= d1 ( [[C]]) (I) = D1 [[C]] |,9

(I) = q< 9 ,1
(
[[C]] (~) , F̃ · [[C]] ′(~)C

)
= q;,1 ( [[C]] (~) , [[C]] ′(~) (F)) , (7.28)

where [[C]] ′(~) : R=8 → R< 9 is the derivative of [[C]] |,9
:,9 → R< 9 at ~.

7.7 Correctness of the dual numbers reverse AD
We assume that vect implements the vector space R: , for some fixed : ∈ N ∪ {∞}. We consider
the respective (co)projections p:→B for each B ∈ N ∪ {∞}, as defined in (4.5) . The following shows
how our macro encompasses reverse mode AD.
For each B ∈ N∗ with B ≤ : , we can define the morphism wrapB

def
=

(
c 9 , 4 9

)
9 ∈IB : realB →

(real × vect)B in Syntr
+
, which corresponds to the wrapper defined in (1.1) in the target language.

We denote wrapB
def
= [[wrapB ]]: . By the definition of the :-semantics, it is clear that wrapB (~) =

qB,:
(
~, 4:1 , . . . , 4

:
B

)
.

For a program G : realB ` C : real; (where B, ; ∈ N∗), we have that, for any ~ ∈ [[C]]−1
(
R;

)
⊆ RB ,

[[D (C) ◦wrapB ]]: (~) = d: ( [[C]]) ◦ wrapB (~) = D: [[C]] ◦ wrapB (~)

= D: [[C]] ◦ qB,:
(
~, 4:1 , . . . , 4

:
B

)
= q;,:

(
[[C]] (~) ,pB→: [[C]] ′(~)C

)
byTheorem 7.1.This gives the transpose derivativepB→: [[C]] ′(~)C as something of the type vect; .This
should be good enough whenever : = B , since, in this case, [[vect; ]]: = (RB ); and pB→: = p:→: = id.

In case of B < : , if needed, the type can be fixed by using the handler hB . More precisely, we can
define the morphism

h;,B
def
= (id, hB )8∈I; : (real × vect)

; → (real × realB );

and, by the definition of :-semantics, we conclude that

[[h;,B ◦ D (C) ◦wrapB ]]: (~) = [[h;,B ]]: ◦ q;,:
(
[[C]] (~) ,pB→: [[C]] ′(~)C

)
= q;,:

(
[[C]] (~) ,p:→B ◦ pB→: [[C]] ′(~)C

)
= q;,:

(
[[C]] (~) , [[C]] ′(~)C

)
,

since p:→B ◦ pB→: = id whenever B ≤ : .
Again, by Theorem 7.1, it is straightforward to generalize the correctness statements above to

more general data types f . Furthermore, it should be noted that, for : = ∞ (representing the case of
a type of dynamically sized array of cotangents), the above shows that our macro gives the reverse
mode AD for any program G : g ` C : f for data types g and f . This choice of : = ∞ is the easiest
route to take for a practical implementation of this form of dual-numbers reverse AD, as it leads to
a single type of cotangent vectors that works for any program.

8 AD FOR RECURSIVE TYPES AND ML-POLYMORPHISM
8.1 Syntax
We extend both our source and target languages of 4.1 and 4.2 with ML-style polymorphism and
type recursion in the sense of FPC [13]. That is, we extend types, values and computations for each
of the two languages as
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g, f, d ::= types
| . . . as before

E,F,D ::= values
| . . . as before

C, B, A ::= computations
| . . . as before

| U, V,W type variables
| `U.g recursive type

| roll E recursive intro

| roll C recursive intro
| case C of rollG → B recursive elim

The new values and computations according to the rules in Fig. 8.1.

Δ | Γ ` C : f [`U.f/U ]
Δ | Γ ` roll C : `U.f

Δ | Γ ` C : `U.f Δ | Γ, G : f [`U.f/U ] ` B : g
Δ | Γ ` case C of rollG → B : g

Fig. 8.1. Typing rules for the recursive types extension.

Here, kinding contexts Δ are lists of type variables U1, . . . , U= . We consider judgements Δ | Γ ` C : g ,
where the types in Γ and g may contain free type variables from Δ. They should be read as specifying
that C is a program of type g , with free variables typed according to Γ, that is polymorphic in the
type variables of Δ.

We use the V[-rules of Fig. 8.2.

case roll E of rollG → C = C [E/G ] C [E/I]
#G
= case E of rollG → C [rollG/I]

Fig. 8.2. The standard V[-equational theory for recursive types in CBV.

Once a language has recursive types, it is already expressive enough to get term recursion and,
hence, iteration. Namely, we can now consider term recursion at type g = f → d as syntactic sugar.
Namely, we first define j def

= `U. (U → g) and then:

unroll C
def
= case C of rollG → G

`G : g .C
def
= let1>3~ : j → g = (_~ : j._I : f.letG : g = unroll~ ~ in C I) in1>3~ (roll 1>3~).

(8.3)

The semantics of the language is, of course, expected to be consistent – meaning that term
recursion should be compatible with the definition above. Alternatively, we can consider that the
source language is given by the basic language with the typing rules given by Fig. 4.1 with the
corresponding grammar plus the recursive types established above, while the target language is
the source language plus the extension given by the grammar and typing rules defined in 4.2.

8.2 Categorical models for recursive types: A��+ models
Here, we establish the basic categorical model for the syntax of call-by-value languages with
recursive types. Let (V,T) be a��+ pair and � : V → C the corresponding universal Kleisli functor.
Moreover, let Cat (2,V-Cat) be the category of morphisms ofV-Cat.

For each= ∈ N, an=-variable (V,T)-parametric type (or a (V,T)-parametric type of degree=) is
a morphism � : (� op × � )= → � in Cat (2,V-Cat). In other words, it consists of a pair � = (�V , �C)
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ofV-enriched functors such that (8.4) commutes. A (V,T)-parametric type of degree 0 (8.6) can be
identified with the corresponding objectV .

(Vop ×V)=

(Cop × C)=

( � op×� )=

OO

V

C

�

OO

(Vop ×V)= V
�V

//

(Cop × C)= C�C //

(8.4)

We denote by Param (V,T) the collection of all (V,T)-parametric types � = (�V , �C) of any
degree = ∈ N. As the terminology indicates, the objects of Param (V,T) play the role of the
parametric types in our language. However, the parametric types in the actual language could
be a bit more restrictive. They usually are those constructed out of the primitive type formers.
Namely, in our case, tupling (finite products), cotupling (finite coproducts), exponetiation (Kleisli
exponential) and type recursion.

Definition 8.1 (Free type recursion). A free decreasing degree type operator (fddt operator) for
(V,T) is a function (8.5) identity on parametric types of degree 0which takes each (= + 1)-variable
(V,T)-parametric type � = (�V , �C) to a (V,T)-parametric type a� = (a�V , a�C) of degree =,
provided that = ∈ N.

a : Param (V,T) → Param (V,T) (8.5)

(Vop ×V)=+1

(Cop × C)=+1

( � op×� )=+1

OO

V

C

�

OO

(Vop ×V)=+1 V
�V
//

(Cop × C)=+1 C�C //

↦→

(Vop ×V)=

(Cop × C)=

( � op×� )=

OO

V

C

�

OO

(Vop ×V)= V
a�V

//

(Cop × C)= Ca�C //

A rolling for (8.5) is a collection (8.7) of natural transformations such that (8.8) is invertible for any
� = (�V , �C), that is to say, �

(
roll�

)
is a natural isomorphism.

(
(Vop ×V)0 →V, (Cop × C)0 → C

)
(8.6)

roll =
(
roll�

)
�=(�V ,�C ) ∈Param(V,T)

(8.7)

(Vop ×V)= (Vop ×V)=+1
(
id,a�opV ,a�V

)
//(Vop ×V)=

V
a�V

))RR
RRR

RRR
RRR

RRR
RRR

RR
(Vop ×V)=+1

V

�V

��
VC

�
oo

ks roll�

(8.8)
A free type recursion for (V,T) is a pair a =

(
a, roll

)
where a is an fddt operator and roll is a rolling

for a .

Definition 8.2 (� -compatible). Let � be a ��+ pair morphism between ��+ pairs (V,T) and
(V ′,T ′). A pair (�, � ′) ∈ Param (V,T) × Param (V ′,T ′) of parametric types is � -compatible if
they have the same degree = and the diagram (8.9) commutes. In particular, if = = 0, the pair (�, � ′)
is � -compatible if � (�V) = � ′V .

(Vop ×V)= V�V //(Vop ×V)=

(V ′op ×V ′)=
(� op×� )= ��

V

V ′
�
��

(V ′op ×V ′)= V ′
�′V′

//
(8.9)
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Definition 8.3 (A��+ models). An A��+ model is a triple
(
V,T , a

)
where (V,T) is a ��+ pair

and a is a free type recursion for (V,T).
An A��+ model morphism between the A��+ models

(
V,T , a

)
and

(
V ′,T ′, a ′

)
consists of a

��+ pair morphism between (V,T) and (V ′,T ′) such that, for every � -compatible pair (�, � ′) ∈
Param (V,T) × Param (V ′,T ′) of =-variable parametric types, (a�, a� ′) is � -compatible and, if
= > 0, (8.10) holds, that is to say, �

(
roll�

)
= roll�(� op×� )=−1 . The A��+ models and A��+ model

morphisms define a category, denoted herein by ℭRBV .

(Vop ×V)=−1 (Vop ×V)=
(
id,a�opV ,a�V

)
//(Vop ×V)=−1

V
a�V

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

Q (Vop ×V)=

V

�V

��
VV ′

�
oo

ks roll� =

(
V ′op ×V ′

)=−1 (
V ′op ×V ′

)=(
id,a�′opV′ ,a�

′
V′

)
//(

V ′op ×V ′
)=−1

V ′
a�′V′

))RR
RRR

RRR
RRR

RRR
RRR

R

(
V ′op ×V ′

)=
V ′

�V′

��
(Vop ×V)=−1

(
V ′op ×V ′

)=−1
(� op×� )=−1

OO

ks roll�′

(8.10)
There is, then, an obvious forgetful functorUAp : ℭRBV → ℭp.

Remark 8.4. We do not use this fact in our work, but every A��+ model has an underlying ��+
model. More precisely, free term iteration can be defined out of the free term recursion, while the
latter can be defined out of the free type recursion (see (8.3)). This defines a forgetful functor

R : ℭRBV → ℭBV . (8.11)

8.3 The A��+ models
(
SynR

+
, SynR

S, aSyn

)
and

(
SynRtr

+
, SynRtr

S , a trSyn

)
We consider the A��+ model generated by each syntax, that is to say, the free A��+ models coming
from the fine-grain CBV translations of the source and target languages. This provides us with the
A��+ models (

SynR
+ , Syn

R
S, aSyn

)
and

(
SynRtr

+ , SynRtr
S , a trSyn

)
(8.12)

with the universal property described in Theorem 8.5.

Theorem 8.5 (Universal Property of the A��+ models (8.12)). Let
(
V,T , a

)
be an A��+

model. Assume that Fig. 4.7 and Fig. 4.8 are given consistent assignments.

(1) There is a unique A��+ model morphism � :
(
SynR

+
, SynR

S, aSyn

)
→

(
V,T , a

)
respecting the

assignment of Fig. 4.7.
(2) There is a unique A��+ model morphismH :

(
SynRtr

+
, SynRtr

S , a trSyn

)
→

(
V,T , a

)
that extends

� and respects the assignment of Fig. 4.8.

Remark 8.6. ByTheorem 4.1, we have (unique)��+ modelmorphisms s :
(
Syn+ , SynS, Syn`, Synit

)
→

R
(
SynR

+
, SynR

S, aSyn

)
and st :

(
Syntr

+
, SyntrS, Syn

tr
` , Syn

tr
it

)
→ R

(
SynRtr

+
, SynRtr

S , a trSyn

)
that are iden-

tity on the primitive operations and types.
Theorem 8.5 states that � ↦→ R (� ) ◦s andH ↦→ R (H) ◦st give the bijections (8.13) and (8.14),

respectively.

ℭRBV
((
SynR

+ ,Syn
R
S,aSyn

)
,
(
V,T,a

) )
� ℭBV

((
Syn+ ,SynS,Syn` ,Synit

)
,R

(
V,T,a

) )
(8.13)

ℭRBV
((
SynRtr

+ , SynRtr
S , atrSyn

)
,
(
V,T,a

) )
� ℭBV

((
Syntr+ , Syn

tr
S , Syn

tr
` , Syn

tr
it

)
,R

(
V,T,a

) )
(8.14)
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8.4 Automatic differentiation for languages with recursive types
We extend our definition of AD to recursive types in Fig. 8.15. We note that our extension is
compatible with our previous definitions if we view term recursion (and iteration) as syntactic
sugar.

Lemma 8.7 (Type preservation). If Δ | Γ ` C : g , then Δ | D (Γ) ` D (C) : D(g).

D(U) def= U D(`U.g) def= `U.D(g)

D (roll C) def= rollD(C) D (case C of rollG → B) def= caseD(C) of rollG → D(B)

Fig. 8.15. The definitions of AD on recursive types.

8.5 AD transformation as an A��+ model morphism
By Theorem 8.5, the assignment defined in Fig. 4.11 induces a unique A��+ model morphism (8.16),
which encompasses the macro D defined by Fig. 4.9 and extended in Fig. 8.15.

ID :
(
SynR

+ , Syn
R
S, aSyn

)
→

(
SynRtr

+ ,SynRtr
S ,a trSyn

)
. (8.16)

8.6 Concrete models: A��+ 8Cpo-pairs
Although the setting of bilimit compact expansions is the usual reasonable basic framework for
solving recursive domain equations, we do not need this level of generality. Instead, we consider a
subclass of concrete models, the A��+ 8Cpo-pairs established in Def. 8.8.7

We are back again to the setting of8Cpo-enriched categories. Recall that an embedding-projection-
pair (ep-pair) D : � ↩→

↽ � in an 8Cpo-category C is a pair D = (D4 , D? ) consisting of a C-morphism
D4 : �→ �, the embedding, and a C-morphism D? : � → �, the projection, such that D4 ◦ D? ≤ id
and D? ◦ D4 = id.
It should be noted that, when considering the underlying 2-category of the 8Cpo-category,

an ep-pair consists of an adjunction8 whose unit is the identity. In this context, it is also called
a lari adjunction (left adjoint right-inverse), see [8, Sect. 1]. In particular, as in the case of any
adjunction, an embedding D4 : �→ � uniquely determines the associated projection D? : � → �

and vice-versa.
A zero object9 O in an 8Cpo-category C is an ep-zero object if, for any object �, the pair

]� = (]4 : O→ �, ]? : �→ O) consisting of the unique morphisms is an ep-pair.

Definition 8.8 (A��+ 8Cpo-pair). An A��+ 8Cpo-pair is a��+ pair (V,T) such that, denoting
by � : V → C the corresponding universal KleisliV-functor,
rl .1 V is a cocomplete 8Cpo-cartesian closed category10;
rl .2 the unit of T is pointwise a full morphism (hence, � is a locally full 8Cpo-functor);
rl .3 C has an ep-zero objectO = � (0), where 0 is initial inV;
rl .4 whenever D : � (�) ↩→↽ � (�) is an ep-pair in C, there is one morphism D̂ : �→ � inV such

that � (D̂) = D4 .
7See [23, 4.2.2] or [43, Sect. 8] for the general setting of bilimit compact expansions.
8See, for instance, [21, Sect. 2] or [27, 3.10] for adjunctions in 2-categories.
9Recall that a zero object is an object that is both initial and terminal.
10V is, hence, 8Cpo-cocomplete as well.
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An A��+ 8Cpo-pair morphism from (V,T) into (V ′,T ′) is an 8Cpo-functor � : V → V ′
that strictly preserves 8Cpo-colimits, and whose underlying functor is a morphism between the
��+ pairs. This defines a category of A��+ 8Cpo-pairs, denoted herein by 8CPO-ℭABV .

Every A��+ 8Cpo-pair (V,T) has an underlying 8Cpo-pair, and this extends to a forgetful
functor 8CPO-ℭABV → 8CPO-ℭBV . More importantly to our work, we have the following.

8.6.1 A��+ 8Cpo-pairs are A��+ models. Let (V,T) be an A��+ 8Cpo-pair. It is clear that we
have an underlying ��+ pair which, by abuse of language, we denote by (V,T) as well. Hence,
we can consider (V,T)-parametric types.

Let = ∈ N∗ and (8.4) be an =-variable (V,T)-parametric type. For each � ∈ (Vop ×V)=−1,
we get an 1-variable (V,T)-parametric type �� =

(
��V , �

�
C

)
where ��V (,,. ) def

= �V (�,, ,. )

and ��C (,
′, . ′) def

= �C (� (�),, ′, . ′). Let E�� be the diagram (8.18) in C given by the chain of
morphisms

(
04= : A= → A=+1

)
=∈N, where (0=)=∈N is the chain of ep-pairs inductively defined by

(8.17).

00
def
=

(
]4 : O→ ��C (O,O) , ]

? : ��C (O,O) → O

)
0=+1

def
=

(
��C

(
0
?
=, 0

4
=

)
, ��C

(
04=, 0

?
=

))
(8.17)

O A1
040 // A1 A2

041 // A2 A3
042 // A3 · · ·

043 // (8.18)

O A1oo 0
?

0
A1 A2oo 0

?

1
A2 A3oo 0

?

2
A3 · · ·oo 0

?

3 (8.19)

There is a unique diagram Ê�
�
such that � ◦ Ê�

�
= E�

�
by (rl .4) of Def. 8.8. Since V has 8Cpo-

colimits, we conclude that the conical 8Cpo-colimit of Ê�
�
exists and is preserved by � – hence, E�

�

has a conical 8Cpo-colimit in C as well.
By the celebrated limit-colimit coincidence [38], since (8.18) is the chain of embeddings of a chain

of ep-pairs, the colimit gives us the 8Cpo-limit of the associated chain
(
0
?
=

)
=∈N of projections (8.19),

denoted herein by P�
�
. This bilimit of ep-pairs is absolute – this means that any 8Cpo-functor

� : C → C′ preserves the conical 8Cpo-colimit (and 8Cpo-limit) of E�
�
(respectively, P�

�
).

Since the conical 8Cpo-colimit of E�
�
is absolute, the diagram (8.4) commutes, and � strictly

preserves 8Cpo-colimits, we have the invertible morphism (8.20) given by the composition of the
respective canonical comparison morphisms.

� ◦ ��V
(
colim

(
Ê�
�

)
,colim

(
Ê�
�

))
��C

(
colim

(
E�
�

)
,colim

(
E�
�

))
� // ��C

(
colim

(
E�
�

)
,colim

(
E�
�

))
colim

(
E�
�

)
� // colim

(
E�
�

)
� colim

(
Ê�
�

)
� //

(8.20)
It should be noted that, for each 5 : (� op × � )=−1 (�) → (� op × � )=−1 (�) in (Cop × C)=−1, we

have an inducedV-natural transformation E�
5
: E�

�
→ E�

�
. This association extends to aV-functor

E� from (Cop × C)=−1 into theV-category of chains in C. The association � ↦→ Ê�
�
also extends to

aV-functor Ê� from (Vop ×V)=−1 into theV-category of chains by theV-faithfulness of � , .
We define the fddt operator al as follows. For each = ∈ N∗, given a (V,T)-parametric type

� = (�V , �C), we define:

al� = (al�V , al�C)
def
=

(
colim ◦ Ê�, colim ◦ E�

)
(8.21)

where, by abuse of language, colim is theV-functor from theV-category of chains inV (respec-
tively, in C) into theV-categoryV (respectively, C).
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Since every isomorphism is an embedding, there is only one lroll�� inV such that �
(
lroll��

)
is equal to (8.20). The morphisms lroll� =

(
lroll��

)
�∈(Vop×V)=−1

gives a V-natural transfor-

mation �V
(
id, al�

op
V , al�V

)
→ al�V such that �

(
lroll�

)
is invertible. Therefore rolll

def
=(

lroll�
)
�∈Param(V,T)

is a rolling for al and we can define the (free) type recursion a
l

def
=

(
al , rolll

)
.

Theorem 8.9 (Underlying A��+ model). There is a forgetful functorUABV : 8CPO-ℭABV →
ℭRBV defined by UABV (V,T) =

(
V,T , a

l

)
, that takes every morphism � to its underlying

morphism of ��+ models.

Proof. From the definition of a
l
and the fact that � strictly preservesV-colimits, we conclude

that, indeed, � respects the condition of A��+ model morphism described in Def. 8.3. �

Remark 8.10. Theproduct of A��+ 8Cpo-pairs is given by (V0,T0)×(V1,T1) � (V0 ×V1,T0 × T1).
Moreover, it is clear thatUABV preserves finite products.

8.7 Concrete semantics
The��+ pair (8Cpo, (−)⊥) as in 5.1 clearly satisfies the conditions of Def. 8.8 and, hence, it is also
an A��+ 8Cpo-pair. By Theorem 8.5, for each : ∈ N ∪ {∞}, we have unique A��+ model mor-
phisms (8.22) and (8.23) respecting the assignments of Fig. 5.8 and (5.10). In other words, following
Remark 8.6, we have only one extension of the semantics (5.6) and (5.9) to the respective languages
with recursive types.

[[−]] :
(
SynR

+ , Syn
R
S, aSyn

)
→ UABV (8Cpo, (−)⊥) (8.22) [[−]]: :

(
SynRtr

+ , SynRtr
S , atrSyn

)
→ UABV (8Cpo, (−)⊥) .

(8.23)

Moreover, by Remark 8.10, we have that the product (8Cpo × 8Cpo, (−)⊥) as in 5.1 is an A��+
8Cpo-pair.

8.8 Subscone for A��+ 8Cpo-pairs
The first step for our logical relations proof is to verify that, for each (=, :) ∈ N × (N ∪ {∞}), the
��+ 8Cpo-pair

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
as in Theorem 7.3 yields an A��+ 8Cpo-pair. In

order to do that, we rely on Theorem 8.12 about lifting the A��+ 8Cpo-pair structure.

Definition 8.11 (Impurity preserving/purity reflecting). Let (V,T) and (V ′,T ′) be ��+ pairs.
A ��+ pair morphism � : V → V ′ is impurity preserving (or, purity reflecting) if, whenever
� (5 ) = [ ′

.
◦ 6, there is 5̂ inV such that [. ◦ 5̂ = 5 .

Theorem 8.12. Let (V ′,T ′) be an A��+ 8Cpo-pair, and (V,T) a ��+ pair such that V is a
cocomplete 8Cpo-cartesian closed category and ) (0) is terminal.
If � : V → V ′ is a locally full 8Cpo-functor that yields an impurity preserving ��+ pair

morphism (V,T) → UAp (V ′,T ′), then (V,T) is an A��+ 8Cpo-pair. If, furthermore, � strictly
preserves 8Cpo-colimits, then � yields an A��+ 8Cpo-pair morphism.

Proof. We prove that (V,T) yields an A��+ 8Cpo-pair. By hypothesis, (V,T) satisfies (rl .1).
We prove the remaining conditions of Def. 8.8 below.
(rl .2) Let [ and [ ′ be respectively the unit of T and T ′. Since � is locally full, it reflects full

morphisms. This implies that, for any � ∈ V , [� is full since [ ′
� (�) = � ([� ) is full.

(rl .3) Since ) (0) is terminal, � (0) is a zero object. Thus, for each � ∈ C, we have the pair (8.24) of
unique morphisms in C.
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Since � preserves initial objects and (V ′,T ′) is an A��+ 8Cpo-pair, we have that (8.25) is
the ep-pair of the unique morphisms. Finally, since � is a locally full 8Cpo-functor, it reflects
ep-pairs and, hence, (8.24) is an ep-pair.(

]� : � (0) → �, ]� : �→ � (0)
)

(8.24)
(
� (]�) , �

(
]�

)
: � (�) → O

)
(8.25)

(rl .4) Given an ep-pairD : � (�) ↩→↽ � (�) in C, the image� (D) : � � (�) ↩→↽ � � (�) by� is an ep-pair.
Since (V ′,T ′) is an A��+ 8Cpo-pair, there is one morphism ˆ

� (D) : � (�) → � (�) inV ′

such that � ′
(

ˆ
� (D)

)
= � (D4 ). Since the ��+ pair morphism � : (V,T) → UAp (V ′,T ′) is

impurity preserving, we conclude that there is D̂ : �→ � such that � (D̂) = D4 .
�

As a consequence, in the setting of subscones satisfying Assumption 6.3, we get:

Theorem 8.13. Let (V,T) be an A��+ 8Cpo-pair, and (8.26) the forgetful 8Cpo-functor coming
from a pair (� : V → D,TBD1) satisfying Assumption 6.3.
If D is cocomplete and T =

(
),m, [

)
is a strong monad that is a lifting of the monad T along

(8.26) such that (c.1) and (c.2) hold, then
(
Sub (D ↓ �) ,T

)
is an A��+ 8Cpo-pair and L yields an

A��+ 8Cpo-pair morphism (8.27).
c.1 ) takes the initial to the terminal object;
c.2 for any (�,�, 9) ∈ Sub (D ↓ �), denoting ) (�,�, 9) =

(
T (�,�, 9),) (�),T 9

)
, Diag (8.28)

induced by the unit [ is a pullback in D.

L : Sub (D ↓ �) → V (8.26)(
Sub (D ↓ �) ,T

)
→ (V,T) (8.27)

� T (�,�, 9)//�

� (�)

9

��

T (�,�, 9)

� () ′(�))

T 9
��

� (�) � () ′(�))
� ([� )

//

(8.28)

Proof. By Corollary 6.5, Sub (D ↓ �) is cocomplete 8Cpo-cartesian closed. Moreover, L is
locally full, strict 8Cpo-cartesian closed, and 8Cpo-colimit preserving by Theorem 6.6. Therefore,
the fact that T is a lifting of T through L implies that it yields a ��+ pair morphism (8.27).

(c.2) implies that the ��+ pair morphism (8.27) is purity reflecting. Assuming (c.1), this implies
that

(
Sub (D ↓ �) ,T

)
is indeed an A��+ 8Cpo-pair morphism and L yields an (8.27) is an A��+

8Cpo-pair morphism by Theorem 8.12. �

In the particular case of interest, we conclude:

Theorem 8.14. For each (=, :) ∈ N × (N ∪ {∞}),
(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
is an A��+

8Cpo-pair. Moreover, L
=,:

: Sub
(
8Cpo ↓ �=,:

)
→ 8Cpo × 8Cpo yields an A��+ 8Cpo-pair

morphism (
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
→ (8Cpo × 8Cpo, (−)⊥) . (8.29)

Proof. In fact, we already know that L
=,:

comes from a pair that satisfies Assumption 6.3.
Moreover, (8Cpo × 8Cpo, (−)⊥) is an A��+ 8Cpo-pair and P=,: (−)⊥ is a lifting of (−)⊥ along
L
=,:

satisfying the conditions of Theorem 8.13.
�

By Theorems 8.14 and 8.9, we get:
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Corollary 8.15. L
=,:

yields an A��+ model morphism

UABV
(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
→UABV (8Cpo × 8Cpo, (−)⊥) .

8.9 Logical relations as an A��+ model morphism
Let (=, :) ∈ N×(N ∪ {∞}), and let’s assume that D is sound for primitives (see 5.7). By the universal
property of the A��+ model

(
SynR

+
, SynR

S, aSyn

)
and the chain rule for derivatives, there is only

one A��+ model morphism

[[[−]]]=,: :
(
SynR

+ , Syn
R
S, aSyn

)
→UABV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
(8.30)

that is consistent with the assignment given by (7.8), (7.13), (7.15), and (7.14).

Lemma 8.16. For any (=, :) ∈ N × (N ∪ {∞}), Diag. (8.31) commutes.(
SynR

+
, SynR

S,aSyn

) (
SynR

+
, SynR

S,aSyn

)
×

(
SynRtr

+
,SynRtr

S ,a trSyn

)(id,ID) //
(
SynR

+
, SynR

S,aSyn

)
×

(
SynRtr

+
,SynRtr

S ,a trSyn

)
UABV (8Cpo × 8Cpo, (−)⊥)

[[−]]×[[−]]:��

(
SynR

+
, SynR

S,aSyn

)
UABV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)[[[−]]]=,: ��
UABV

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
UABV (8Cpo × 8Cpo, (−)⊥)

UABV
(
L

=,:

) //
(8.31)

Proof. Both ( [[−]] × [[−]]: )◦(id × ID) andUABV
(
L
=,:

)
◦[[[−]]]=,: yield A��+ model morphisms

that are consistent with the assignment given by the object
(
R,R × R:

)
and the morphisms (7.9),

(7.10) and (7.11). Therefore, by the universal property of
(
SynR

+
, SynR

S,aSyn

)
, we conclude that

Diag. (8.31) indeed commutes. �

8.10 AD correctness theorem for non-recursive data types
The correctness theorem for non-recursive data types follows from Lemma 8.16 and Corollary 7.7.
That is to say, we have:

Theorem 8.17. Let C :
∐
A ∈L

realBA → SynR
S

(∐
9 ∈!

real; 9

)
be a morphism in SynR

+
. We have that

[[C]] :
∐
A ∈L
RBA →

(∐
9 ∈!
R; 9

)
⊥

is differentiable and, for any : ∈ (N ∪ {∞}), [[ID (C)]]: = d: ( [[C]]).

8.11 AD on recursive data types
The LR argument we presented provides us with an easy way to compute the logical relations of
general recursive types: namely, since

(
Sub

(
8Cpo ↓ �=,:

)
,P=,: (−)⊥

)
is an A��+ 8Cpo-pair, the

recursive types will be computed out of suitable colimits. This gives us useful information about
the semantics of D(C) for a program G : g ` C : f where g and f are recursive types. In particular,
we can extend the correctness result 8.17 to any data type, including those involving recursion.

We denote by SynR
�
the Kleisli SynR

+
-category associated with

(
SynR

+
, SynR

S

)
. Moreover, we

respectively denote by (8.32) and (8.33) the coproduct, product and =-diagonal functors.

t,× : SynR
+ × SynR

+ → SynR
+ (8.32) diag= :

(
SynR

+

)op
× SynR

+ →
((
SynR

+

)op
× SynR

+

)=
(8.33)
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Definition 8.18. Let ', �,$ :
(
SynR

+

)op × SynR
+
→ SynR

+
be the constant functors which are,

respectively, equal to real, 1 and 0.We define the setPd
(
SynR

+
, SynR

S, aSyn

)
inductively by (D1), (D2)

and (D3).

(D1) The functors ', �,$ are inPd
(
SynR

+
, SynR

S, aSyn

)
. Moreover, the projection c2 :

(
SynR

+

)op ×
SynR

+
→ SynR

+
belongs toPd

(
SynR

+
, SynR

S, aSyn

)
.

(D2) For each = ∈ N∗, if the functors (8.34) belong to Pd
(
SynR

+
, SynR

S, aSyn

)
, then the functors

(8.35) and (8.36) are inPd
(
SynR

+
, SynR

S, aSyn

)
.

(D3) If � =

(
�SynR

+
, �SynR

�

)
∈ Param

(
SynR

+
, SynR

S

)
is such that �SynR

+
∈ Pd

(
SynR

+
, SynR

S, aSyn

)
,

then
(
aSyn�SynR

+

)
is inPd

(
SynR

+
, SynR

S, aSyn

)
.

We define the set Paramd
(
SynR

+
, SynR

S, aSyn

)
of parametric data types by (8.37).

�,� ′ :
((
SynR

+

)op
× SynR

+

)=
→ SynR

+ (8.34) � ◦ diag= :
(
SynR

+

)op
× SynR

+ → SynR
+ (8.35)

× ◦ (� ×� ′) ,t ◦ (� ×� ′) :
((
SynR

+

)op
× SynR

+

)2=
→ SynR

+ (8.36)

Paramd
(
SynR

+ , Syn
R
S, aSyn

)
≔

{
� ∈ Param

(
SynR

+ , Syn
R
S

)
: �SynR

+
∈ Pd

(
SynR

+ , Syn
R
S, aSyn

)}
(8.37)

Theorem 8.19. Let � be an =-variable
(
SynR

+
, SynR

S, aSyn

)
-parametric data type, where = ∈ N∗.

There is a countable family of natural numbers
(
m( 9,T)

)
( 9,T) ∈(I=∪{0})×Tree such that, for any A��+

model morphism � :
(
SynR

+
, SynR

S, aSyn

)
→ UABV (V,T) and any � -compatible pair (�, � ),

we have that (8.39) holds, where the isomorphism � is induced by coprojections and projections11.

� (τ) =
∐
9 ∈!

� (real); 9 (8.38) �V
(
,9 , .9

)
9 ∈I= �

∐
T∈Tree

(
� (real)m(0,T) ×

=∏
9=1

.
m( 9,T)
9

)
(8.39)

As a consequence, if τ ∈ SynR
+
corresponds to a data type g , then there is a countable family

(
; 9
)
9 ∈! ∈ N!

of natural numbers such that (8.38) holds for any A��+ model morphism � :
(
SynR

+
, SynR

S, aSyn

)
→

UABV (V,T).

Proof. The result follows from induction. The non-trivial part is a consequence of the following.
Let

(
�̃, �̃

)
∈ Paramd

(
SynR

+
, SynR

S

)
× Param(UABV (V,T)) be an � -compatible pair of (= + 1)-

variable parametric typeswhere �̃V is given by (8.40) for some countable family
(
s(8,A )

)
(8,A ) ∈(I=+1∪{0})×L

of natural numbers. We prove below that
(
aSyn�̃, �

)
is � -compatible for some � such that �V satis-

fies Eq. (8.39). By the definition A��+ model morphism, we have that
(
aSyn�̃, al �̃

)
is � -compatible.

Hence, we only need to prove that al �̃V is given by (8.39).
(I) We inductively define the set Tree by the following. Let A ∈ L: (a) if s(=+1,A ) = 0, then A ∈ Tree;

(b) if s(=+1,A ) ≠ 0, then, for any T ∈ Trees(=+1,A ) , the pair (T, A ) is in Tree.

11That is to say, it is just a reorganization of the involved coproducts and products.
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(II) We inductively define the family
(
m( 9,T)

)
( 9,T) ∈(I=∪{0})×Tree of indices by the following. Let

A ∈ L: (a) if s(=+1,A ) = 0, we define m( 9,A ) ≔ s( 9,A ) for each 9 ; (b) if s(=+1,A ) ≠ 0, given
T = (T8 )8∈Is(=+1,A ) ∈ Trees(=+1,A ) , we define m( 9,(T,A )) by (8.41) for each 9 .

�̃V (,8 , .8 )8∈I=+1 =
∐
A ∈L

(
� (real)s(0,A ) ×

=+1∏
8=1

.
s(8,A )
8

)
(8.40) m( 9,(T,A )) = s( 9,A ) +

s(=+1,A )∑
8=1

m( 9,T8 ) (8.41)

Let - = (,8 , .8 )8∈I= ∈ (Vop ×V)= , F- ≔ �̃-V (0,−) and ] the obvious unique morphism. The
colimit of (8.42) is isomorphic to (8.43). Hence, by the definition of the fddt operator al of
UABV (V,T) =

(
V,T , a

l

)
, al �̃V is given by the formula given in (8.39). This completes the

proof.

0 F- (0)
] // F- (0) F2

-
(0)

F- (] ) // F2
-
(0) F3

-
(0)

F2
-
(] ) // F3

-
(0) · · ·// (8.42)

∐
T∈Tree

©«� (real)m(0,T) ×
=∏
9=1

.
m( 9,T)
9

ª®¬
(8.43)

Finally, if τ ∈ SynR
+
corresponds to a data type g , then the constant parametric type τ equal to τ is

an
(
SynR

+
, SynR

S

)
-parametric data type of degree 1. Hence, denoting by �τ the constant parametric

type equal to � (τ), since
(
τ, �τ

)
is � -compatible, we conclude that (8.39) holds for some

(
; 9
)
9 ∈!

where ! is countable. �

[[[']]]=,: =
∐
9 ∈!
[[[real]]]; 9=,: (8.44) [[']] =

∐
9 ∈!
R; 9 (8.45)

Theorem 8.20. Let C : τ → σ be a morphism in SynR
+
. If τ and σ correspond to data types,

[[C]] :
∐
A ∈L
RBA →

(∐
9 ∈!
R; 9

)
⊥

is differentiable and, for any : ∈ (N ∪ {∞}), [[ID (C)]]: = d: ( [[C]]).

Proof. First of all, indeed, by Theorem 8.19, we have that there are countable families (BA )A ∈L
and

(
; 9
)
9 ∈! such that

[[[C]]]B8 ,: :
∐
A ∈L
[[[real]]]BAB8 ,: → PB8 ,:

(∐
9 ∈!
[[[real]]]; 9B8 ,:

)
⊥

(8.46)

is a morphism in Sub
(
8Cpo ↓ �B8 ,:

)
, for each 8 ∈ L and any : ∈ N ∪ {∞}.

By the commutativity of (8.31) for any (B8 , :) ∈ N×(N ∪ {∞}), we get that the pair ( [[C]], [[ID(C)]]: )
defines the morphism (8.46) for each 8 ∈ L. By Corollary 7.7, this implies that [[C]] is differentiable
and [[ID (C)]]: = d: ( [[C]]). �

Finally, as a consequence, we get:

Theorem 8.21. Assume that vect implements the vector space R: , for some : ∈ N ∪ {∞}. For any
program G : g ` C : f where g, f are data types (including recursive data types), we have that [[C]] is
differentiable and, moreover,

[[D (C)]]: = d: ( [[C]]) (8.47)

provided that D is sound for primitives.

Following the considerations of 7.6 and 7.7, it follows fromTheorem 8.17 that D as defined in 8.4
correctly provides us with forward and reverse AD transformations for data types.
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8.12 AD on arrays
Arrays are semantically the same as lists: in our language, if g is a data type, an array of g is given
by `U.1tg ×U . It should be noted that, if G : `U.1tg ×U ` C : `U.1tg × V , we have that

[[C]] :
∞∐
8=1

[[g]] →
( ∞∐
8=1

[[f]]
)
⊥
.

By Theorem 8.21, if g and f are data types, we get that d: ( [[C]]) (as defined in (5.5)) is equal to
[[D (C)]]: . Therefore, Theorem 8.21 already encompasses the correctness for arrays (of data types).

9 RELATEDWORK
This is an improved version of the unpublished preprint [43]. In particular, we have simplified the
correctness argument to no longer depend on diffeological or sheaf-structure and to have it apply
to arbitrary differentiable (rather than merely smooth) operations. We have further simplified the
subsconing technique for recursive types.
There has recently been a flurry of work studying AD from a programming language point of

view, a lot of it focussing on functional formulations of AD and their correctness. Examples of such
papers are [1, 6, 12, 18, 19, 22, 26, 28, 32, 35, 37, 44, 45]. Of these papers, [1, 28, 32, 37] are particularly
relevant as they also consider automatic differentiation of languages with partial features. Here,
[32] considers an implementation that differentiates recursive programs and the implementation
of [37] even differentiates code that uses recursive types. They do not give correctness proofs,
however. Existing work on differential restriction categories [9] seems to give a more abstract
semantic study of the interaction between forward-mode automatic differrentiation and partiality.
We found that for our purposes, a concrete semantics in terms of l-cpos sufficed, however.

The present paper can be seen as giving a correctness proof of the techniques implemented by
[37]. [1] does give a denotational correctness proof of AD on a first-order functional language
with (first-order) recursion. The first-orderness of the language allows the proof to proceed by
plain induction rather than needing logical technique. [28] proves the correctness of basically
the same AD algorithms that we consider in this paper when restricted to PCF with a base type
of real numbers and a real conditional. Their proof relies on operational semantic techniques.
Our contribution is to give an alternative denotational argument, which we believe is simple and
systematic, and to extend it to apply to languages which, additionally, have the complex features of
recursively defined datastructures that we find in realistic ML-family languages.
Such AD for languages with expressive features such as recursion and user-defined datatypes

has been called for by the machine learning community [20, 46]. Previously, the subtlety of the
interaction of automatic differentiation and real conditionals had first been observed by [3].
Our work gives a relatively simple denotational semantics for recursive types, which can be

considered as an important special case of bilimit compact categories [23]. Bilimit compact categories
are themselves, again, an important special case of the very general semantics of recursive types in
terms of algebraically compact categories [15]. We believe that working with this special case of
the semantics significantly simplifies our presentation.
In particular, this simplified semantics of recursive types allows us to give a very simple but

powerful (open, semantic) logical technique for recursive types. It is an alternative to the two
existing techniques for logical relations for recursive types: relational properties of domains [33],
which is quite general but very technical to use, in our experience, and step-indexed logical relations
[2], which are restricted to logical relations arguments about syntax, hence not applicable to our
situation.

, Vol. 1, No. 1, Article . Publication date: June 2022.



AD for ML-family languages: correctness via logical relations 39

Finally, we hope that our work adds to the existing body of programming languages literature
on automatic differentiation and recursion (and recursive types). In particular, we believe that it
provides a simple, principled denotational explaination of how AD and expressive partial language
features should interact. We plan to use it to generalise and prove correct the more advanced AD
technique CHAD [26, 44, 45] when applied to languages with partial features.
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A FINE GRAIN CALL-BY-VALUE AND AD
In §4, we have discussed a standard coarse-grain CBV language, also known as the _� -calculus,
computational _-calculus [30], or, plainly, CBV. In this appendix, we discuss an alternative presen-
tation in terms of fine-grain CBV [23, 24] (also known as Moggi’s monadic metalanguage [31]).
While it is slightly more verbose, this presentation clarifies the precise universal property that is
satisfied by the syntax of our language.

A.1 Fine grain call-by-value
We consider a standard fine-grain call-by-value language (with complex values) over a ground type
real of real numbers, real constants 2 ∈ Op0 for 2 ∈ R, and certain basic operations op ∈ Op= for
each natural number = ∈ N.

The types g, f, d , (complex) values E,F,D, and computations C, B, A of our language are as follows.
g, f, d ::= types

| real numbers
| 0 | g + f sums

E,~,D ::= values
| G,~, I variables
| 2 constant
| case E of { } sum match
| inl E | inr E inclusions

C, B, A ::= computations
| C toG . B sequencing
| return E pure comp.
| op(E1, . . . , E=) operation
| case E of { } sum match

| 1 | g1 ×g2 products
| g → f function

| case E of { inlG → F

| inr~ → D
} sum match

| 〈 〉 | 〈E,F〉 tuples
| case E of 〈G,~〉 → F product match
| _G.C abstractions
| `G .E term recursion

| case E of { inlG → C

| inr~ → B
} sum match

| case E of 〈G,~〉 → C product match
| E F function app.
| iterate C fromG = E iteration
| sign E sign function

We will use sugar

if E then C else B
def
= sign (E) toG . caseG of {_→ B

�� _→ A }

fst E
def
= case E of 〈G, _〉 → G

snd E
def
= case E of 〈_, G〉 → G

let rec 5 (G) = C in B def
= (`5 .return (_G.C)) to 5 . B .

We could also define iteration as syntactic sugar:
iterate C fromG = E

def
= (`I._G .C to~. case~ of {inlG ′→ I G ′ | inrG ′′→ returnG ′′}) E .

The typing rules are in Figure A.1.

A.2 Equational theory
We consider our language up to the usual V[-equational theory for fine-grain CBV, which is
displayed in Fig. A.2.
Under the translation of coarse-grain CBV into fine-grain CBV, this equational theory induces

precisely that of Section 4.
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Γ `E G : g
((G : g) ∈ Γ)

Γ `2 C : g Γ, G : g `2 B : f
Γ `2 C toG . B : f

Γ `E E : g
Γ `2 return E : g Γ `E 2 : real

(2 ∈ R)

Γ `E E1 : real · · · Γ `E E= : real

Γ `2 op(E1, . . . , E=) : real
(op ∈ Op=)

Γ `E E : 0
Γ `E case E of { } : g

Γ `E E : 0
Γ `2 case E of { } : g

Γ `E E : g
Γ `E inl E : g tf

Γ `E E : f
Γ `E inr E : g tf

Γ `E E : f t d Γ, G : f `E F : g Γ, ~ : d `E D : g

Γ `E case E of {inlG → F | inr~ → D} : g

Γ `E E : f t d Γ, G : f `2 C : g Γ, ~ : d `2 B : g
Γ `2 case E of {inlG → C | inr~ → B} : g Γ `E 〈 〉 : 1

Γ `E E : g Γ `E F : f

Γ `E 〈E,F〉 : g ×f

Γ `E E : f × d Γ, G : f,~ : d `E F : g

Γ `E case E of 〈G,~〉 → F : g

Γ `E E : f × d Γ, G : f,~ : d `2 C : g
Γ `2 case E of 〈G,~〉 → C : g

Γ, G : f `2 C : g
Γ `E _G.C : f → g

Γ `E E : f → g Γ `E F : f

Γ `2 E F : g

Γ, G : f `2 C : f tg Γ `E E : f
Γ `2 iterate C fromG = E : g

Γ, G : g `E E : g
Γ `E `G .E : g

(g = f → d)
Γ `E E : real

Γ `2 sign E : 1t 1

Fig. A.1. Typing rules for the our fine-grain CBV language with iteration and real conditionals. We use a
typing judgement `E for values and `2 for computations.

return E toG . C = C [E/G ] (C toG . B) to~. A = C toG . (B to~. A )

case inl E of {inlG → F | inr~ → D} = F [E/G ] F [E/I]
#G,~
= case E of { inlG → F [inlG/I]

| inr~ → F [inr ~/I]
}

case inr E of {inlG → F | inr~ → D} = D [E/~]
case 〈E,F〉 of 〈G,~〉 → D = D [E/G ,F/~] D [E/I]

#G,~
= case E of 〈G,~〉 → D [ 〈G,~〉/I]

case inl E of {inlG → C | inr~ → B} = C [E/G ] C [E/I]
#G,~
= case E of { inlG → C [inlG/I]

| inr~ → C [inr ~/I]
}

case inr E of {inlG → C | inr~ → B} = B [E/~]
case 〈E,F〉 of 〈G,~〉 → C = C [E/G ,F/~] C [E/I]

#G,~
= case E of 〈G,~〉 → C [ 〈G,~〉/I]

(_G.C) E = C [E/G ] E
#G
= _G.E G

Fig. A.2. Standard V[-laws for fine-grain CBV. We write
#G1,...,G=

= to indicate that the variables are fresh in the
left hand side. In the top right rule, G may not be free in A . Equations hold on pairs of terms of the same type.

A.3 The ��+ model
(
Syn+ , SynS, Syn`, Synit

)
Our fine grain call-by-value language corresponds with a ��+ model (see Def. 2.4).
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We define the category Syn+ of values, which has types as objects. Syn+ (g, f) consists of (U)V[-
equivalence classes of values G : g `E E : f , where identities are G : g `E G : f and composition of
G : g `E E : f and ~ : f `E F : d is given by G : g `E F [E/~] : d .

Lemma A.1. Syn+ is bicartesian closed.

Similarly, we define the category Syn� of computations, which also has types as objects. Syn� (g, f)
consists of (U)V[-equivalence classes of computations G : g `2 C : f , where identities are G : g `2
returnG : f and composition of G : g `2 C : f and ~ : f `2 B : d is given by G : g `2 C to~. B : d .

Lemma A.2. Syn� is a Syn+ -category.

We define the Syn+ -functors

Syn� : Syn� ↩→ Syn+
g ↦→ (1→ g)
C ↦→ _〈 〉.C

Syn� : Syn+ ↩→ Syn�
g ↦→ g

E ↦→ return E .

We have that Syn� a Syn� is a (Kleisli) Syn+ -adjunction Syn� a Syn� and, hence, denoting by SynS
the induced Syn+ -monad,

(
Syn+ , SynS

)
is a ��+ pair, as defined in 2.1. Moreover, considering the

free recursion and free iteration

Synit : (G : f `2 C : f tg) ↦→ _~.(iterate C fromG = ~)
Syn` : (G : g `E E : g) ↦→ `G .E (g = f → d),

we get the ��+ model
(
Syn+ , SynS, Syn`, Synit

)
which has the following universal property.

Theorem A.3 (Universal Property of the Syntax). Let (V,T , `, ) be a��+ model with chosen
finite products, coproducts and exponentials. For each consistent assignment

� (real) ∈ obV (A.3)
� (2) ∈ V (1, � (real)) (A.4)
� (op) ∈ C (� (real)=, � (real)) = V (� (real)=,)� (real)) , for each op ∈ Op= (A.5)

� (sign ) ∈ C (� (real), 1 t 1) = V (� (real),) (1 t 1)) (A.6)

there is a unique��+ model morphism � between
(
Syn+ , SynS, Syn`, Synit

)
and (V,T , `, ) respect-

ing it.

Theorem A.4 (Universal Property of the Syntax). Let (V,T , `, ) be a��+ model with chosen
finite products, coproducts and exponentials. For each consistent assignment

� (real) ∈ obV (A.7)
� (2) ∈ V (1, � (real)) (A.8)
� (op) ∈ C (� (real)=, � (real)) = V (� (real)=,)� (real)) , for each op ∈ Op= (A.9)

� (sign ) ∈ C (� (real), 1 t 1) = V (� (real),) (1 t 1)) (A.10)

there is a unique��+ model morphism � between
(
Syn+ , SynS, Syn`, Synit

)
and (V,T , `, ) respect-

ing it.
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A.4 A translation from coarse-grain CBV to fine-grain CBV
This translation (−)† operates on types and contexts as the identity. It faithfully translates terms
Γ ` C : g of coarse-grain CBV into computations Γ `2 C† : g of fine-grain CBV. This translation
illustrates the main difference between coarse-grain and fine-grain CBV: in coarse-grain CBV,
values are subset of computations, while fine-grain CBV is more explicit in keeping values and
computations separate.Thismakes it slightly cleaner to formulate an equational theory, denotational
semantics, and logical relations arguments.

We list the translation (−)† below where all newly introduced variables are chosen to be fresh.

coarse-grain CBV computation C fine-grain CBV translation C†
G returnG
letG = C in B C† toG . B†

2 return 2
inl C C† toG . return inlG
inr C C† toG . return inrG
〈 〉 return 〈 〉
〈C, B〉 C† toG . B† to~. return 〈G,~〉
_G.C return _G.C†

op(C1, . . . , C=) C
†
1 toG1. . . . C

†
= toG= . op(G1, . . . , G=)

case C of { } C† toG . caseG of { }
case C of {inlG → B | inr~ → A } C† to I. case I of {inlG → B† | inr~ → A †}
case C of 〈G,~〉 → B C† to I. case I of 〈G,~〉 → B†

C B C† toG . B† to~. G ~
iterate C fromG = B B† to~. iterate C† fromG = ~

sign C C† toG . sign G
`I.C `I._G .C† to~.~G

A.5 Dual numbers forward AD transformation
As before, we fix, for all = ∈ N, for all op ∈ Op= , for all 1 ≤ 8 ≤ =, computations G1 : real, . . . , G= :
real `2 m8op(G1, . . . , G=) : real, which represent the partial derivatives of op. Using these terms for
representing partial derivatives, we define, in Fig. A.11, a structure preserving macro D on the
types, values, and computations of our language for performing forward-mode AD. We observe that
this induces the following AD rule for our sugar: D C (if E then C else B ) = caseDV (E) of 〈G, _〉 →
if G thenD C (C) elseD C (B) . In fact, by the universal property of Syn� , D is the unique structure
preserving functor on D that has the right definition for constants, primitive operations and sign .
It automatically follows that D respects V[-equality.

Under the translation of coarse-grain CBV into fine-grain CBV, this code transformation induces
precisely that of §4.

B A MORE EFFICIENT DERIVATIVE FOR sign

We can define by mutual induction (for both D = D ,←−D: )

, Vol. 1, No. 1, Article . Publication date: June 2022.



AD for ML-family languages: correctness via logical relations 45

G : D(g) ` pg (G) : g
G : D(real) ` fst (G) : real

G : D(g) × D (f) ` 〈pg (fstG), pf (sndG)〉 : g ×f
G : D(g) t D (f) ` caseG of {inl~ → inl pg (~) | inr I → inr pf (I)} : g tf
G : D(g) → D(f) ` _~.pf (G (zg (~))) : g → f

G : `U.D(g) ` caseG of roll~ → roll pg (G) : `U.g
G : U ` G : U

D(real) def= real× vect D(0) def= 0 D(g tf) def= D(g) t D (f)
D (1) def= 1 D(g → f) def= D(g) → D(f) D (g ×f) def= D(g) × D (f)

DV (G)
def
= G

DV (case E of { })
def
= caseDV (E) of { }

DV (inl E)
def
= inlDV (E)

DV (inr E)
def
= inrDV (E)

DV (case E of {
inlG → F

| inr~ → D
}) def= caseDV (E) of {

inlG → DV (F)
| inr~ → DV (D)

}

DV (〈 〉)
def
= 〈 〉

DV (〈E,F〉)
def
= 〈DV (E),DV (F)〉

DV (case E of 〈G,~〉 → D) def= caseDV (E) of 〈G,~〉 → DV (D)
DV (_G.C)

def
= _G.D C (C)

D C (C toG . B)
def
= D C (C) toG .D C (B)

D C (return E)
def
= returnDV (E)

D C (case E of { })
def
= caseDV (E) of { }

D C (case E of {
inlG → C

| inr~ → B
}) def= caseDV (E) of {

inlG → D C (C)
| inr~ → D C (B)

}

D C (case E of 〈G,~〉 → C) def= caseDV (E) of 〈G,~〉 → D C (C)
D C (E F)

def
= DV (E) DV (F)

D C (iterate C fromG = E) def= iterateD C (C) fromG = DV (E)
D C (`G .C)

def
= `G .D C (C)

DV (2)
def
= 〈2, 0〉

D C (op(E1, . . . , E=))
def
= caseDV (E1) of 〈G1, G ′1〉 → . . .→ caseDV (E=) of 〈G=, G ′=〉 →

op(G1, . . . , G=) to~.
m1op(G1, . . . , G=) to I1. . . . m=op(G1, . . . , G=) to I= .
return 〈~, G ′1 ∗ I1 + . . . + G ′= ∗ I=〉

D C (sign E)
def
= sign (fstDV (E))

Fig. A.11. A forward-mode AD macro defined on types as D (−), values as DV (−), and computations as
D C (−). All newly introduced variables are chosen to be fresh.
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and

G : g ` zg (G) : D(g)
G : real ` 〈G, 0〉 : D(real)
G : g ×f ` 〈zg (fstG), zf (sndG)〉 : D(g) × D (f)
G : g tf ` caseG of {inl~ → inl zg (~) | inr I → inr zf (I)} : D(g) t D (f)
G : g → f ` _~.zf (G (pg (~))) : D(g) → D(f)
G : `U.g ` caseG of roll~ → roll zg (G) : `U.D(g)
G : U ` G : U.

Then, observe that, for any G1 : g1, . . . , G= : g= ` C : real, we have
[[sign (fstD(C))]] = [[letG1 = pg1 (G1) in · · · letG= = pg= (G=) in · · · sign C]].
Therefore, we can define, for G1 : g1, . . . , G= : g= ` C : real,

D(sign C) def= letG1 = pg1 (G1) in · · · letG= = pg= (G=) in · · · sign C .
This yields more efficient definitions of the forward and reverse derivatives of sign and if then else
as we do not need to differentiate C at all.

C ENRICHED SCONE
We present straightforward generalizations (enriched versions) of the results presented in [26,
Section 9] below.

Considering the 8Cpo-category 2 with two objects and only one non-trivial morphism between
them, the 8Cpo-category 2 t D of morphisms of D can be described as the 8Cpo-category
8Cpo-Cat [2,D] of 8Cpo-functors 2→ D.

Explicitly, the objects of 2 t D are morphisms 5 : .0 → .1 of D. A morphism between 5 and 6
is a pair U = (U0, U1) : 5 → 6 such that U1 5 = 6U0, that is to say, a (8Cpo-)natural transformation.
Finally, the 8Cpo-structure is defined by (U0, U1) ≤ (V0, V1) if U0 ≤ V0 and U1 ≤ V1 in D.

Given an 8Cpo-functor� : C → D, the comma categoryD ↓ � of the identity onD along� in
8Cpo-Cat is also known as the8Cpo-scone orArtin glueing of� . It can be described as the pullback
(C.1) in 8Cpo-Cat, in which codom : 2 t D → D, defined by (U = (U0, U1) : 5 → 6) ↦→ U1, is the
codomain 8Cpo-functor.

D ↓ �

C

projC
��

D ↓ � 2 t D
proj2tD // 2 t D

D

codom

��
C D

�
//

(C.1)

Since codom is an isofibration, the pullback (C.1) is equivalent to the pseudo-pullback of codom
along � , which is the 8Cpo-category defined as follows. The objects of the pseudo-pullback are
triples (

(5 : .0 → .1) ∈ 2 t D,� ∈ C, b : (codom5 ) �−→ � (�)
)

where b is an isomorphism in D. A morphism (5 ,�, b) → (5 ′,� ′, b ′) is a pair of morphisms
(U : 5 → 5 ′, ℎ : � → � ′) such that � (ℎ) ◦ b = b ′ ◦ codom (U). Finally, the 8Cpo-structure of the
homs are given pointwise. That is to say, (U,ℎ) ≤ (U ′, ℎ′) if U ≤ U in 2 t D and ℎ ≤ ℎ′ in C.

Lemma C.1. The forgetful 8Cpo-functor L : D ↓ � → D ×C, defined in (6.3), creates all absolute
(weighted) limits and colimits.
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Proof. Clearly, the 8Cpo-functor L reflects isomorphisms.
Let � be a diagram in D ↓ � such that the weighted (co)limit (2>)lim (,,L�) exists and is

preserved by any8Cpo-functor. SinceD ↓ � is the pullback (C.1), there is a unique pair of diagrams
(�0, �1) such that

proj2tD ◦ � = �0, projC ◦ � = �1, codom ◦ �0 = � ◦ �1,

hold.
Since dom◦�0 = cD ◦L◦� and codom◦�0 = � ◦cC ◦L◦� , we get that (2>)lim (,, dom�0) �

cD ((2>)lim (,,L ◦ �)) and (2>)lim (,, codom ◦ �0) � � ◦ cC ((2>)lim (,,L ◦ �)). Therefore,
(2>)lim (,,L ◦ �0) exists in 2 t D, pointwise constructed out of (2>)lim (,, dom ◦ �0) and
(2>)lim (,, codom ◦ �0).
Moreover, since �1 = cC ◦ L ◦ � , we have that (2>)lim (,,�1) � cC ((2>)lim (,,L ◦ �)).
Therefore, the isomorphism b given by

codom ((2>)lim (,,�0)) � (2>)lim (,, codom ◦ �0)
� � ◦ cC ((2>)lim (,,L ◦ �))
� � ((2>)lim (,,�1))

together with the pair ((2>)lim (,,�0) , (2>)lim (,,�1)) defines, up to isomorphism, an object of
D ↓ � , which satisfies the universal property for (2>)lim (,,�) = (2>)lim (,, (�0, �1)).
Moreover, by the construction above, we conclude that (2>)lim (,,�) is preserved by L. In

particular:

L ((2>)lim (,,�0) , (2>)lim (,,�1) , b) = ((2>)lim (,, dom ◦ �0) , (2>)lim (,,�1)) .
The above completes the proof that the 8Cpo-functor L creates (2>)lim (,,�). �

The 8Cpo-functor L has a right 8Cpo-adjoint provided that D has binary 8Cpo-products. It is
given by (� ∈ D,� ∈ C) ↦→

(
� ×� (�) ,�, c� (�)

)
. Therefore:

Theorem C.2. The forgetful 8Cpo-functor L : D ↓ � → D × C is 8Cpo-comonadic provided
that D has binary 8Cpo-products.

By duality, we get that the forgetful 8Cpo-functor � ↓ C → D × C is 8Cpo-monadic provided
that C has finite 8Cpo-coproducts. Therefore:

Theorem C.3. The forgetful 8Cpo-functor L : D ↓ � → D × C is 8Cpo-monadic whenever �
has a left 8Cpo-adjoint and C has finite 8Cpo-coproducts.

Proof. Indeed, by the 8Cpo-adjunction � a � , we get an isomorphism D ↓ � � � ↓ C which
composed with the forgetful 8Cpo-functor � ↓ C → D × C is equal to L : D ↓ � → D × C. �

As a consequence, we conclude that:

Theorem C.4. Let � : C → D be a right 8Cpo-adjoint functor between 8Cpo-bicartesian closed
categories. We have that the forgetful 8Cpo-functor L is 8Cpo-monadic and comonadic. In particular,
D ↓ � is an 8Cpo-bicartesian closed category.
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D SOME HASKELL CODE FOR A RECURSIVE NEURAL NETWORK

1 −− example implementation of https :// icml . cc /2011/ papers /125_icmlpaper . pdf
2 −− Some of the basic datatypes we use −− we elide the implementation of some
3 data Tree a
4 = Leaf a
5 | Node (Tree a) (Tree a)
6 deriving (Eq) −− \mu b. a + (b x b ), leaf a = roll ( iota_1 a ), node l r = roll ( iota_2 ( l , r ))
7

8 data Vector
9

10 data Scalar
11

12 data Matrix
13

14 type ActivationVectors = [Vector]
15

16 type AdjacencyMatrix = [(Tree Int , Tree Int )]
17

18 −− Some basic data and operations that we need for the RNN
19 −− Again, we elide much of the implementation as it is beside the point of this example
20 f :: Vector −> Vector −− some non−linear function , usually elementwise applied sigmoid function
21 f = undefined
22

23 conc :: Vector −> Vector −> Vector −− concatenate vectors
24 conc = undefined
25

26 mult :: Matrix −> Vector −> Vector −− matrix vector multiplication
27 mult = undefined
28

29 add :: Vector −> Vector −> Vector −− elementwise vector addition
30 add = undefined
31

32 innerprod :: Vector −> Vector −> Scalar −− vector inner product
33 innerprod = undefined
34

35 a :: ActivationVectors
36 a = undefined −− input ( for example, sequence of words as vectors or image segments as vectors )
37

38 adjMat :: AdjacencyMatrix
39 −− start with matrix that only stores (Leaf i , Leaf j ) pairs in case i is a neighbour of j ;
40 −− we later extend adjacency to parent nodes
41 adjMat = undefined −− input ( specify which words/image segments are neighbours )
42

43 w :: Matrix
44 w = undefined −− parameter to learn : weights
45

46 b :: Vector
47 b = undefined −− parameter to learn : biases
48

49 wScore :: Vector
50 wScore = undefined −− parameter to learn : scoring vector
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51

52 −− The implementation of the RNN
53 −− version 1, without caching
54 modelH ((w, b, wScore), (adjMat, globalScore )) =
55 let getNode (Leaf i ) = a ‼ i
56 in let getNode (Node l r ) = f (w ‘mult‘ conc (getNode l ) (getNode r )) ‘add‘ b
57 in let parentsScores =
58 map
59 (\ i −> ( i , innerprod wScore (getNode (uncurry Node i ))))
60 adjMat −− compute scores for all parent nodes of neighbours ;
61 −− super inefficient without caching getNode, but conceptually cleaner
62 in let (( bp1, bp2 ), bestScore ) =
63 foldl
64 (\( i , s ) ( i ’, s ’) −>
65 if s > s ’
66 then ( i , s )
67 else ( i ’, s ’))
68 (head parentsScores)
69 parentsScores −− find the neighbours that have the higest score
70 in let globalScore2 = globalScore + bestScore
71 −− add the local contribution of our chosen neighbour pair to the global score
72 in let bestPar = Node bp1 bp2
73 −− actually compute our favourite parent ;
74 −− I guess we’d already done this before but it ’ s cheap to redo
75 in let mergeParH i
76 | i == bp1 || i == bp2 = bestPar
77 in let mergeParH i
78 | otherwise = i
79 in let mergePar ( i , j ) =
80 (mergeParH i, mergeParH j)
81 in let adjMat2 =
82 filter
83 (/= ( bestPar , bestPar ))
84 [ mergePar ( i , j )
85 | ( i , j ) <− adjMat
86 ]
87 −− replace bp1 and bp2 with bestPar in adjacencyMatrix ,
88 −− but we have a convention that nodes are not neighbours
89 −− of themselves
90 in if null adjMat2
91 then Right globalScore2
92 else Left (adjMat, globalScore2 )
93 −− if we run out of neighbours that can be merged, we are done;
94 −− otherwise iterate with new adjacency matrix and score
95

96 it :: (( c , a) −> Either a b) −> (c , a) −> b −− functional iteration
97 it f (c , a) =
98 case f (c , a) of
99 Left a’ −> it f (c , a ’)

100 Right b −> b
101

102 model :: ((Matrix, Vector , Vector ), (AdjacencyMatrix, Scalar )) −> Scalar
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103 model = it modelH
104

105 −− The implementation of the RNN
106 −− version2 , with caching of getNode
107 modelH2 ((w, b, wScore), (adjMat, values , globalScore )) =
108 let getNode (Leaf i ) = look (Leaf i ) values
109 in let getNode (Node l r ) =
110 let lv = look l values
111 in let rv = look r values
112 in f (w ‘mult‘ conc lv rv) ‘add‘ b
113 in let parentsValScores =
114 map
115 (\ i −>
116 let v = getNode (uncurry Node i)
117 in ( i , v , innerprod wScore v))
118 adjMat
119 in let (( bp1, bp2 ), bestVal , bestScore ) =
120 foldl
121 (\( i , v , s ) ( i ’, v ’, s ’) −>
122 if s > s ’
123 then ( i , v , s )
124 else ( i ’, v ’, s ’))
125 (head parentsValScores)
126 parentsValScores
127 in let globalScore2 = globalScore + bestScore
128 in let bestPar = Node bp1 bp2
129 in let mergeParH i
130 | i == bp1 || i == bp2 = bestPar
131 in let mergeParH i
132 | otherwise = i
133 in let mergePar ( i , j ) =
134 (mergeParH i, mergeParH j)
135 in let adjMat2 =
136 filter
137 (/= ( bestPar , bestPar ))
138 [ mergePar ( i , j )
139 | ( i , j ) <− adjMat
140 ]
141 in if null adjMat2
142 then Right globalScore2
143 else Left
144 ( adjMat
145 , ( bestPar , bestVal ) : values
146 , globalScore2 )
147

148 −− initial values will be zip (map Leaf [0..], a)
149 look :: Tree Int −> [(Tree Int , b )] −> b −− a map operation for looking up cache
150 look k m =
151 case lookup k m of
152 Just x −> x
153

154 model2 :: ((Matrix, Vector , Vector ), (AdjacencyMatrix, Scalar )) −> Scalar
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155 model2 ((w, b, wScore), (adjMat, globalScore )) =
156 it modelH2 ((w, b, wScore), (adjMat, zip (map Leaf [0 ..]) a , globalScore ))
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