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Abstract

We discuss a conjecture on thick twin buildings the verification of which is needed
in order to show that thick twin buildings are mathematically equivalent to regular
actions of certain twin Coxeter hypergroups. (A corresponding result for buildings is
shown in [5; Sections 10.2, 10.3].) We prove that the conjecture holds in the case where
the support of its sagittal has cardinality 2 and in the case where its sagittal has length
at most 3. (Sagittals are defined in Section 1.) Our exposition is based on an earlier
treatment of the subject; cf. [3].

1. Introduction

A hypergroup (as defined in [5]) is an algebraic concept which generalizes the notion of a
group. A building (as defined in [4]) is a geometric concept which generalizes the notion
of a projective space. Many buildings can be identified with their automorphism group.
The Fano plane, for instance, is mathematically equivalent with the simple group PSL3(2).
Tits’ result [4] on thick buildings of spherical type and rank at least 3 is a far-reaching
generalization of this simple observation.

Tits’ result needs to be considered under the observation that the class of thick buildings
of spherical type and rank at least 3 is a quite small subclass of the class of all buildings.
However, his identification of thick buildings of spherical type and rank at least 3 with their
automorphism groups admits a fairly straightforward generalization to an identification of
all buildings with the members of a specific class of hypergroups, the class of the so-called
Coxeter hypergroups; cf. [5; Chapter 9].

The situation is more delicate when it comes to twin buildings. The analog of the above
identification of buildings with Coxeter hypergroups within the theory of twin buildings
(as suggested in [5; Section 10.3]) depends on the verification of a pure building theoretic
question which we phrase here as a conjecture.

Throughout this note, (W, I) stands for a Coxeter system, T for a twin building of type
(W, I), X for the set of chambers of T . For each element w in W , we define

fw := {(y, z) ∈ X− ×X− | δ−(y, z) = w} ∪ {(y, z) ∈ X+ ×X+ | δ+(y, z) = w}
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and

rw := {(y, z) ∈ X− ×X+ | δ∗(y, z) = w−1} ∪ {(y, z) ∈ X+ ×X− | δ∗(y, z) = w−1}.

(The symbols X−, X+, δ−, δ+, and δ∗ are standard in the theory of twin buildings; they are
introduced and used in [1].)

Conjecture C

Let t, u, and v be elements in W such that fv ∩ (rt ◦ ru) is not empty. Then fv ⊆ rt ◦ ru.

Of course, the question can be answered in the affirmative if B possesses a strongly transitive
group of automorphisms. In particular, the question has a positive answer if B satisfies
Condition (co) and/or is 2-spherical. (Condition (co) is defined on page 290 of [1] as well
as the restriction to 2-spherical twin buildings are standard hypotheses in the study of
automorphism groups of twin buildings.) However, these conditions seem to have little to
do with a general approach to Conjecture C.

To state the main results of this note we introduce the following terminology.

Let w be an element in W . We define supp(w) to be the set of the elements i in I such that
w /∈ 〈I \{i}〉. Note that supp(w) is the smallest subset J of I with v ∈ 〈J〉. The set supp(w)
is called the support of w.

The elements fw with w ∈ W will be called the sagittals of T , the elements rw with w ∈ W
will be called the transversals of T . By the support of a sagittal fw with w ∈ W we mean
the support of w (as defined in Section 8.) By the length of a sagittal fw with w ∈ W we
mean the I-length of w.

The element fv in Conjecture C is called its sagittal. It is the goal of this note to verify
Conjecture C in the case where the support of its sagittal has cardinality 2 and in the case
where its sagittal has I-length at most 3; cf. Theorems 8.3 and 10.2.

The following notation will be used throughout the remainder of this note.

For each element w in W , the I-length of w will be denoted by `I(w).

For each element u in W , we write I−1(u) to denote the set of all elements v in W such
that `I(v) = `I(vu

−1) + `I(u) and I1(u) for the set of all elements t in W satisfying `I(tu) =
`I(t) + `I(u).

For each element w in W , we write f ∗w to denote the set of all pairs (y, z) with (z, y) ∈ fw.
Similarly, r∗w stands for the set of all pairs (y, z) with (z, y) ∈ rw. This notation implies that,
for each element w in W , f ∗w = fw−1 and r∗w = rw−1 .

2. Composing Sagittals

In this section, we compile results from [5; Section 10.4].

Lemma 2.1

For each element i in I, we have h1 ⊆ hi ◦ hi ⊆ h1 ∪ hi.

Proof. This is [5; Lemma 10.1.2(ii)]. 2
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Let i be an element in I. In Lemma 2.1, we saw that h1 ⊆ hi ◦hi ⊆ h1∪hi. In the following,
we will say that hi is of first type if h1 = hi ◦ hi, and we will say that hi is of second type if
hi ◦ hi = h1 ∪ hi. Of course, hi may be neither of first nor of second type.

We notice that T is thick if and only if each element fi with i ∈ I is of second type.

Lemma 2.2

Let w be an element in W , and let i be an element in I. Then the following hold.

(i) If w ∈ I1(i), fw ◦ fi = fwi.

(ii) Assume that w ∈ I−1(i) and that fi is of first type. Then fw ◦ fi = fwi.

(iii) Assume that w ∈ I−1(i) and that fi is of second type. Then fw ◦ fi = fwi ∪ fw.

Proof. This is [5; Lemma 10.4.3]. 2

Lemma 2.3

Let u and v be elements in W , and assume that u ∈ I1(v). Then fu ◦ fv = fuv.

Proof. This is [5; Corollary 10.4.4]. 2

3. Composing Sagittals With Transversals

In this section, we compile results from [5; Section 10.5] and related facts.

Lemma 3.1

Let w be an element in W , and let i be an element in I. Then the following hold.

(i) If w−1 ∈ I−1(i), rw ◦ fi = riw.

(ii) Assume that w−1 ∈ I1(i) and that fi is of first type. Then rw ◦ fi = riw.

(iii) Assume that w−1 ∈ I1(i) and that fi is of second type. Then rw ◦ fi = riw ∪ rw.

Proof. This is [5; Lemma 10.5.2]. 2

Induction now allows us to generalize Lemma 3.1(i).

Lemma 3.2

Let t and v be elements in W with t−1 ∈ I−1(v−1). Then rt ◦ fv = rv−1t.

Proof. There is nothing to show if v = 1. Thus, we assume that v 6= 1. In this case, there
exist elements i in I and v′ in W such that

v = iv′ and `I(v) = `I(v
′) + 1.

It follows that i ∈ I1(v′). Thus, as v = iv′, Lemma 2.3 yields

fv = fi ◦ fv′ .

From t−1 ∈ I−1(v−1) we obtain an element s in W such that

t = vs and `I(t) = `I(v) + `I(s).
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Thus, setting t′ := v′s we have

t = it′, `I(t
′) = `I(v

′) + `I(s), and `I(t) = `I(t
′) + 1;

cf. [5; Lemma 2.3.8(ii)].

From t = it′ and `I(t) = `I(t
′) + 1 we obtain that t−1 ∈ I−1(i). Thus, as t = it′, Lemma

3.1(i) yields
rt ◦ fi = rt′ .

From t′ = v′s and `I(t
′) = `I(v

′) + `I(s) we obtain that (t′)−1 ∈ I−1((v
′)−1). Thus, by

induction,
rt′ ◦ fv′ = r(v′)−1t′ .

From fv = fi ◦ fv′ , rt ◦ fi = rt′ , and rt′ ◦ fv′ = r(v′)−1t′ we obtain that

rt ◦ fv = rt ◦ fi ◦ fv′ = rt′ ◦ fv′ = r(v′)−1t′ = rv−1t,

as wanted. 2

Corollary 3.3

Let t and u be elements in W , and assume that t ∈ I1(u). Then the following hold.

(i) We have rtu ◦ ft = ru.

(ii) We have fu ◦ rtu = rt.

Proof. (i) We are assuming that t ∈ I1(u). Thus, by [5; Lemma 6.5.2(i)], u−1 ∈ I1(t
−1).

From this we obtain that u−1t−1 ∈ I−1(t
−1), whence (tu)−1 ∈ I−1(t

−1). Thus, by Lemma
3.2, rtu ◦ ft = ru.

(ii) We are assuming that t ∈ I1(u). Thus, u−1 ∈ I1(t−1), so that, by (i),

r(tu)−1 ◦ fu−1 = ru−1t−1 ◦ fu−1 = rt−1 .

It follows that f ∗u−1 ◦ r∗(tu)−1 = r∗t−1 . This is equivalent to fu ◦ rtu = rt. 2

Corollary 3.4

The following hold.

(i) For each element w in W , we have rw ◦ fw = r1.

(ii) For each element w in W , we have fw ⊆ r∗w ◦ r1.
(iii) For each element w in W , we have fw ◦ rw = r1.

Proof. (i) This the case (t, u) = (w, 1) in Corollary 3.3(i).1

(ii) From (i) we obtain that fw ⊆ r∗w ◦ rw ◦ fw = r∗w ◦ r1.
(iii) Since r∗1 = r1, this follows from (i). 2

1Alternately: If w = 1, fw = f1, so that fw is the identity on X. It follows that rw ◦ fw = rw = r1. If
w 6= 1, I contains an element i with w−1 ∈ I−1(i), and we may apply [5; Lemma 10.3.3(i)] to w in place of
u and v. Then we obtain that rw ◦ fw = riw ◦ fiw, so that our claim follows by induction.
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Lemma 3.5

Assume T to be thick, and let t, u, and v be elements in W . Assume that rv ∩ (fu ◦ rt) is
not empty. Then rv ⊆ fu ◦ rt.

Proof. This is [5; Lemma 10.5.5(ii)]. 2

4. Composing Transversals

In this section, we look at composites of tranversals.

Lemma 4.1

Let t, u, and v be elements in W , and let i be an element in I. Assume that i ∈ I1(t). Then
the following hold.

(i) Assume that i ∈ I1(v) and that fv ⊆ r∗it ◦ ru. Then fiv ⊆ r∗t ◦ ru.

(ii) Assume that T is thick and that fiv ⊆ r∗it ◦ ru. Then fiv ⊆ r∗t ◦ ru.

Proof. (i) We are assuming that i ∈ I1(v). Thus, by Lemma 2.3,

fi ◦ fv = fiv.

From i ∈ I1(t) we also obtain rit ◦ fi = rt; cf. Corollary 3.3(i). Thus, we also have

fi ◦ r∗it = r∗t .

Since we are assuming that fv ⊆ r∗it ◦ ru, we now obtain that

fiv = fi ◦ fv ⊆ fi ◦ r∗it ◦ ru = r∗t ◦ ru,

as wanted.

(ii) We are assuming that T is thick. Thus, by Lemma 2.2(iii),

fiv ⊆ fi ◦ fiv.

We are assuming that i ∈ I1(t). Thus, by Corollary 3.3(i), rit ◦ fi = rt, so that

fi ◦ r∗it = r∗t .

Since we are assuming that fiv ⊆ r∗it ◦ ru, we now obtain that

fiv ⊆ fi ◦ fiv ⊆ fi ◦ r∗it ◦ ru = r∗t ◦ ru,

as wanted. 2

Lemma 4.2

Let t, u, and v be elements in W , and assume that t ∈ I1(v) and that u ∈ I1(v−1). Then
r∗t ◦ ruv−1 = r∗tv ◦ ru.

5



Proof. We are assuming that t ∈ I1(v). Thus, v−1 ∈ I1(t
−1). Thus, by Corollary 3.3(i),

rv−1t−1 ◦ fv−1 = rt−1 ; equivalently,
r∗tv ◦ f ∗v = r∗t .

We are also assuming that u ∈ I1(v−1). Thus, by [5; Lemma 6.5.2(i)], v ∈ I1(u−1), so that,
again by Corollary 3.3(i), rvu−1 ◦ fv = ru−1 ; equivalently

f ∗v ◦ ruv−1 = ru.

From r∗tv ◦ f ∗v = r∗t and f ∗v ◦ ruv−1 = ru we obtain that

r∗t ◦ ruv−1 = r∗tv ◦ f ∗v ◦ ruv−1 = r∗tv ◦ ru,

as wanted. 2

Lemma 4.2 has two applications which will not be needed in the remainder of this note, but
seem to be appealing.

Let t and u be elements in W , and assume that t ∈ I1(u
−1). In this case, we may apply

Lemma 4.2 to t, 1, and u−1 in place of t, u, and v. We obtain that r∗t ◦ ru = r∗tu−1 ◦ r1. On
the other hand, by Corollary 3.4(ii), ftu−1 ⊆ r∗tu−1 ◦ r1. Thus, we obtain that ftu−1 ⊆ r∗t ◦ ru.

Setting t = 1, u = 1, and v = w−1 in Lemma 4.2 we obtain that r∗1 ◦ rw = r∗w−1 ◦ r1,
equivalently, r1 ◦ rw = rw ◦ r1.

Lemma 4.3

Let t and u be elements in W , and let i be an element in I. Then the following hold.

(i) Assume that t ∈ I−1(i) or u ∈ I−1(i). Then r∗t ◦ ru ⊆ r∗ti ◦ rui.
(ii) Assume that t ∈ I1(i) or u ∈ I1(i). Then r∗ti ◦ rui ⊆ r∗t ◦ ru.

Proof. (i) From Lemma 3.1 we know that ru−1 ⊆ r(ui)−1 ◦ fi. Thus, r∗u ⊆ r∗ui ◦ fi; equivalently
ru ⊆ fi ◦ rui.
Assume first that t ∈ I−1(i). Then, by Lemma 3.1(i), rt−1 ◦ fi = r(ti)−1 ; equivalently,
r∗t ◦ fi = r∗ti.

From ru ⊆ fi ◦ rui and r∗t ◦ fi = r∗ti we obtain that

r∗t ◦ ru ⊆ r∗t ◦ fi ◦ rui = r∗ti ◦ rui.

Assume now that u ∈ I−1(i). Then interchanging the roles of t and u the above reasoning
shows that r∗u ◦ rt ⊆ r∗ui ◦ rti, and that is equivalent to r∗t ◦ ru ⊆ r∗ti ◦ rui.
(ii) We are assuming that t ∈ I−1(i) or u ∈ I−1(i). Thus, we have ti ∈ I1(i) or u ∈ I1(i).
Applying (i) to ti and ui in place of t and u we now obtain that r∗t ◦ ru ⊆ r∗ti ◦ rui. 2

Corollary 4.4

Let t, u, and v be elements in W , and assume that u ∈ I1(v). Then r∗tv ◦ ruv ⊆ r∗t ◦ ru.

Proof. We proceed by induction with respect to `I(v).
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If `I(v) = 0, there is nothing to show if v = 1. Thus, we assume that 1 ≤ `I(v). In this case,
we find elements v′ in W and i in I such that

v = v′i and `I(v) = `I(v
′) + 1.

Note that v′ ∈ I1(i). Thus, as u ∈ I1(v), we obtain from [5; Lemma 2.3.8(i)] that uv′ ∈ I1(i).
Thus, by Lemma 4.3(ii), r∗tv′i ◦ ruv′i ⊆ r∗tv′ ◦ ruv′ . Thus, as v′i = v, we obtain that r∗tv ◦ ruv ⊆
r∗tv′ ◦ ruv′ .
From u ∈ I1(v) and v′ ∈ I1(i) we obtain that u ∈ I1(v′); cf. [5; Lemma 2.3.8(i)]. Thus, by
induction, r∗tv′ ◦ ruv′ ⊆ r∗t ◦ ru.

From r∗tv ◦ ruv ⊆ r∗tv′ ◦ ruv′ and r∗tv′ ◦ ruv′ ⊆ r∗t ◦ ru we obtain that r∗tv ◦ ruv ⊆ r∗t ◦ ru. 2

We conclude this section with two results on the case where T is thick.

Lemma 4.5

Assume that T is thick. Let t and u be elements in W , let i be an element in I, and assume
that {t, u} ⊆ I1(i). Then r∗ti ◦ ru ⊆ r∗t ◦ ru.

Proof. We are assuming that u ∈ I1(i). Thus, by Lemma 3.1(iii), ru−1 ⊆ ru−1 ◦ fi. Thus,
r∗u ⊆ r∗u ◦ fi; equivalently, ru ⊆ fi ◦ ru.

We are assuming that t ∈ I1(i). Thus, ti ∈ I−1(i), so that, by Lemma 3.1(i), r(ti)−1 ◦fi = rt−1 ;
equivalently, r∗ti ◦ fi = r∗t .

From ru ⊆ fi ◦ ru and r∗ti ◦ fi = r∗t we obtain that

r∗ti ◦ ru ⊆ r∗ti ◦ fi ◦ ru = r∗t ◦ ru,

as wanted. 2

Corollary 4.6

Assume that T is thick. Let w be an element in W . Then the following hold.

(i) We have r∗w ◦ r1 ⊆ r∗1 ◦ r1.

(ii) We have fw ⊆ r∗1 ◦ r1.

Proof. (i) There is nothing to show if w = 1. Thus, we assume that w 6= 1. In this case, we
find elements v in W and i in I such that v ∈ I1(i).
Since 1 ∈ I1(i), we may apply Lemma 4.5 to v and 1 in place of t and u. We obtain that
r∗w ◦ r1 ⊆ r∗v ◦ r1. By induction, we also may assume that r∗v ◦ r1 ⊆ r∗1 ◦ r1. Thus, we have
r∗w ◦ r1 ⊆ r∗1 ◦ r1.
(ii) From Corollary 3.4(ii) we know that fw ⊆ r∗w ◦ r1, from (i) that r∗w ◦ r1 ⊆ r∗1 ◦ r1. Thus,
fw ⊆ r∗1 ◦ r1. 2

Proposition 4.7

Assume that T is thick. Let t and u be elements in W , and assume that t ∈ I1(u). Then
r∗tu ◦ r1 ⊆ r∗t ◦ r1.
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Proof. There is nothing to show if u = 1. Therefore, we assume that u 6= 1. In this case, we
find elements u′ in W and i in I such that u′i = u and u′ ∈ I1(i).
From t ∈ I1(u) and u′ ∈ I1(i) we obtain that t ∈ I1(u′); cf. [5; Lemma 2.3.8(i)]. Thus, as
`I(u

′) = `I(u)− 1, induction yields

r∗tu′ ◦ r1 ⊆ r∗t ◦ r1.

From t ∈ I1(u) and u′ ∈ I1(i) we obtain that tu′ ∈ I1(i); cf. [5; Lemma 2.3.8(i)]. Since
1 ∈ I1(i), we may apply Lemma 4.5 to tu′ and 1 in place of t and u. We obtain that

r∗tu ◦ r1 ⊆ r∗tu′ ◦ r1.

Summarizing we obtain that r∗tu ◦ r1 ⊆ r∗t ◦ r1. 2

5. Several Facts About the Bruhat Order

We define
T := {w−1iw | w ∈ W, i ∈ I}.

Given u and v in W , we say that u is a subelement of v if u = v or if W contains elements
w0, . . . , wn with u = w0, v = wn, and n a positive integer such that, for each element i in
{1, . . . , n},

w−1i−1wi ∈ T and `I(wi−1) ≤ `I(wi).

Being a subelement is an order on W . This order is called the Bruhat order on W .

Note that 1 is a subelement of each element in W .

The following lemma is the key to all the subsequent results in this section.

Lemma 5.1

Let u and v be elements in W , and assume that u 6= 1. Then the following conditions are
equivalent.

(a) The elements u is a subelement of v.

(b) There exist elements i1, . . ., in in I with n = `I(v) and v = i1 · · · in and elements
j1, . . . , jm in {1, . . . , n} such that (m = `I(u),) j1 ≤ . . . ≤ jm, and u = ij1 · · · ijm.

(c) For any n elements i1, . . ., in in I with n = `I(v) and v = i1 · · · in, there exist
elements j1, . . . , jm in {1, . . . , n} such that (m = `I(u),) j1 ≤ . . . ≤ jm, and
u = ij1 · · · ijm.

Proof. This is [2; Corollary 2.2.3]. 2

Corollary 5.2

Let t and u be elements in W . Then the following hold.

(i) Assume that t is a subelement of u. Then, for each element v in W with {t, u} ⊆
I1(v), tv is a subelement of uv.

(ii) Assume that t ∈ I1(u). Then t is a subelement of tu.
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Proof. (i) This follows from Lemma 5.1.

(ii) We are assuming that t ∈ I1(u). thus, by [5; Lemma 6.5.2(i)], u−1 ∈ I1(t−1). Thus, as
1 ∈ I1(t

−1), we obtain from (i) that t−1 is a subelement of u−1t−1. It follows that t is a
subelement of tu. 2

Lemma 5.3

Let v be an element in W , set n := `I(v), and let i1, . . ., in be elements in I with v = i1 · · · in.
Let u be a subelement of v with u 6= 1, and set m := `I(u). Then {1, . . . , n} contains elements
j1, . . ., jm with j1 ≤ . . . ≤ jm and u = ij1 · · · ijm such that the following conditions hold.

(i) For any two integers l with 1 ≤ l ≤ m− 1 and j with jl + 1 ≤ j ≤ jl+1− 1, we have
ij1 · · · ijl ∈ I1(ij).

(ii) For each integer j with jm + 1 ≤ j ≤ n, we have u ∈ I1(ij).

Proof. Since u is a subelement of v, {1, . . . , n} contains elements j1, . . . , jm with

j1 ≤ . . . ≤ jm and u = ij1 · · · ijm ;

cf. Lemma 5.1. Among the m-tuples (j1, . . . , jm) with j1 ≤ . . . ≤ jm and u = ij1 · · · ijm we
choose (j1, . . . , jm) such that j1 + . . . + jm is as large as possible. We will see that both
conditions (i) and (ii) hold.

We first show that (i) holds. To do so we assume, by way of contradiction, that there exist
integers l in {1, . . . ,m−1} and j in {jl + 1, . . . , jl+1−1} such that ij1 · · · ijl ∈ I−1(ij). Then,
by [2; Theorem 1.5.1], {1, . . . , l} contains an element k with

ij1 · · · ijk−1
ijk+1
· · · ijl = ij1 · · · ijlij.

It follows that
ij1 · · · ijk−1

ijk+1
· · · ijlij = ij1 · · · ijl ,

and then
ij1 · · · ijk−1

ijk+1
· · · ijlijijl+1

· · · ijm = ij1 · · · ijm = u.

However, since jk + 1 < j, we have

j1 + . . .+ jm + 1 ≤ j1 + · · ·+ jk−1 + jk+1 + · · ·+ jl + j + jl+1 + · · ·+ jm,

and that contradicts the choice of (j1, . . . , jm).

To show that (ii) holds, we assume, by way of contradiction, that there exists an integer j
with jm + 1 ≤ j ≤ n and u ∈ I−1(ij). Then, by [2; Theorem 1.5.1], {1, . . . ,m} contains an
element k with ij1 · · · ijk−1

ijk+1
· · · ijm = uij. It follows that

ij1 · · · ijk−1
ijk+1
· · · ijmij = u.

However, since jk + 1 ≤ j, we have

j1 + . . .+ jm + 1 ≤ j1 + · · ·+ jk−1 + jk+1 + · · ·+ jm + j

9



which, again, contradicts the choice of (j1, . . . , jm). 2

Lemma 5.4

Let j be an element in I, let v′ be an element in I1(j), and let u be a subelement of v′j. Then
at least one of the elements u and uj is subelement of v′.

Proof. Set n := `I(v
′j). Then, since v′ ∈ I1(j), `I(v′) = n− 1. Thus, I contains elements i1,

. . . , in−1 such that v′ = i1 . . . in−1. Set in := j. Then

v′j = i1 · · · in.

We are assuming that u is a subelement of v′j. If u = 1, u is a subelement of v′j, and we
are done. Thus, we assume that u 6= 1. Thus, by Lemma 5.1, {1, . . . , n} contains elements
j1, . . . , jm with

j1 ≤ . . . ≤ jm and u = ij1 · · · ijm .

Suppose that jm 6= n. Then, by Lemma 5.1, u is a subelement of v′, and we are done.

Suppose that jm = n. Then, as in = j, ijm = j. Thus, as u = ij1 · · · ijm , uj = ij1 · · · ijm−1 .
Since {j1, . . . , jm−1} ⊆ {1, . . . , n− 1}, this implies that uj is a subelement of v′. Again, we
are done. 2

Let v be an element in W , let u be a subelement of v, assume that u 6= 1, and set n := `I(v).
We say that u is an isolated subelement of v if I contains elements i1, . . . , in such that v =
i1 · · · in and {1, . . . , n} contains uniquely determined elements j1, . . . , jm with j1 ≤ · · · ≤ jm
and u = ij1 · · · ijm .

The above definition says that u = ij1 · · · ijm , but not that m = `I(u). From [2; Proposition
1.4.7], however, one obtains that m = `I(u).

Does the definiton depend on the choice of the elements i1, . . . , in?

Note also that, by Lemma 5.3, the elements j1, . . . , jm in the above definition satisfy the
conditions (i) and (ii) in Lemma 5.3.

We say that 1 is an isolated subelement of v if `I(v) = |supp(v)|.

Lemma 5.5

Let j be an element in I, let v′ be an element in I1(j), and let u be an isolated subelement
of v′j. Then at most one of the elements u and uj is subelement of v′.

Proof. We proceed by induction with respect to `I(u).

Assume first that `I(u) = 0. Then u = 1. Thus, as u is assumed to be an isolated subelement
of v′j, 1 is an isolated subelement of v′j. This means that `I(v

′j) = |supp(v′j)|.
We are assuming that v′ ∈ I1(j). Thus, as `I(v

′j) = |supp(v′j)|, j is not subelement of v′,
so that we are done in this case.

Set n := `I(v
′j). Then, since v′ ∈ I1(j), `I(v′) = n − 1. Thus, I contains elements i1, . . . ,

in−1 such that v′ = i1 . . . in−1. Set in := j. Then

v′j = i1 · · · in.
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Now assume that 1 ≤ `I(u). Thus, u 6= 1. Thus, as u is assumed to be an isolated subelement
of v, we obtain from Lemma 5.1 uniquely determined elements j1, . . . , jm in {1, . . . , n} with

j1 ≤ . . . ≤ jm and u = ij1 · · · ijm .

Assume that uj is a subelement of v′. We shall be done if we succeed in showing that u is
not a subelement of v′.

Since uj is a subelement of v′, uj = 1 or {1, . . . , n− 1} contains elements j′1, . . . , j
′
m′ with

j′1 ≤ . . . ≤ j′m′ and uj = ij′1 · · · ij′m′ .

Suppose that uj 6= 1. Then, since j = in, we obtain from uj = ij′1 · · · ij′m′ that

u = ij′1 · · · ij′m′ in.

Since u is assumed to be an isolated subelement of v′j we conclude from j1 ≤ . . . ≤ jm and
u = ij1 · · · ijm that (j1, . . . , jm) = (j′1, . . . , j

′
m′ , n). This is impossible, since jm ≤ n− 1.

This shows that uj = 1. As a consequence, u = j. Since j = in, this implies that u = in.
Since u is assumed to be an isolated subelement of v′j, this implies that in /∈ {i1, . . . , in−1}.
It follows that u is not a subelement of v′. 2

Lemma 5.6

Let j be an element in I, let v′ be an element in I1(j), and let u be an isolated subelement
of v′j. Then the following hold.

(i) If u is a subelement of v′, u is an isolated subelement of v′.

(ii) If uj is a subelement of v′, uj is an isolated subelement of v′.

Proof. (i) If u is a subelement of v′, u is an isolated subelement of v′, since u is an isolated
subelement of v′j.

(ii) We are assuming that v′ ∈ I1(i). Thus, `I(v
′j) = `I(v

′) + 1. Set n := `I(v
′j). Then

`I(v
′) = n− 1. Thus, I contains elements i1, . . . , in−1 such that

v′ = i1 · · · in−1.

Assume that ui is a subelement of v′. We will see that uj is an isolated subelement of v′.

Since uj is a subelement of v′ and v′ = i1 · · · in−1, uj = 1 or {1, . . . , n− 1} contains elements
j1, . . . , jm with

j1 ≤ . . . ≤ jm and uj = ij1 · · · ijm .

Suppose first that uj = 1. Then u = j. Since u is an isolated subelement of v, this implies
that `I(v

′) = |supp(v′)|. Thus, by definition, 1 is an isolated subelement of v′. Thus, as
uj = 1, uj is an isolated subelement of v′, as wanted.

Suppose now that uj 6= 1. Then we obtain from uj = ij1 · · · ijm that

u = ij1 · · · ijmj.
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Since u is assumed to be an isolated subelement of v′j, this shows that (j1, . . . , jm) is the
only finite sequence of elements in {1, . . . , n− 1} satisfying

j1 ≤ . . . ≤ jm and uj = ij1 · · · ijm .

Again, we have shown that uj is an isolated subelement of v′. 2

6. The First Two Structure Theorems and Some Consequences

Throughout this section, we assume T to be thick.

Theorem 6.1 [First Structure Theorem]

Let t, u, and v be elements in W . Assume that fv ∩ (r∗t ◦ ru) is not empty. Then tu−1 is a
subelement of v.

Proof. Set q := tu−1. We will see that q is a subelement of v and proceed by induction with
respect to `I(v).

Assume first that `I(v) = 0. Then v = 1. Since fv ∩ (r∗t ◦ ru) is assumed not to be empty,
this means that f1 ∩ (r∗t ◦ ru) is not empty. It follows that rt = ru, and then that t = u.
Thus, as q = tu−1, q = 1, and that implies that q is a subelement of v.

Assume now that 1 ≤ `I(v). Then we find elements v′ in W and i in I such that v = v′i and
`I(v) = `I(v

′) + 1. Note that v′ ∈ I1(i).
From v′ ∈ I1(i) and v′i = v we obtain that fv′ ◦ fi = fv; cf. Lemma 2.2(i). Thus, since
fv ∩ (r∗t ◦ ru) is assumed not to be empty, (fv′ ◦ fi) ∩ (r∗t ◦ ru) is not empty. It follows that

(rt ◦ fv′) ∩ (ru ◦ fi)

is not empty. Let u′ be an element in W such that

ru′ ∩ (rt ◦ fv′) and ru′ ∩ (ru ◦ fi)

both are not empty.

Since ru′∩(rt◦fv′) is not empty, so is fv′∩(r∗t ◦ru′). Thus, by induction, tu′−1 is a subelement
of v′. Set q′ := tu′−1. Then q′ is a subelement of v′.

Since ru′ ∩ (ru ◦ fi) is not empty, u′ ∈ {iu, u}; cf. Lemma 3.1. Thus, as q′ = tu′−1, we have
q′ ∈ {tu−1i, tu−1}. It follows that

q′ ∈ {qi, q}.

Assume first that q′ = qi and `I(q) = `I(q
′) − 1. From `I(q) = `I(q

′) − 1 we obtain that
`I(q

′) = `I(q) + 1. Then, as q′ = qi, q ∈ I1(i). Thus, as q′ = qi, we obtain from Corollary
5.2(i) that q is a subelement of q′. From v′ ∈ I1(i) and v = v′i we also obtain that v′ is a
subelement of v; again, by Corollary 5.2(i). Now, as q is a subelement of q′, q′ is a subelement
of v′, and v′ is a subelement of v, we obtain from the transitivity of the Bruhat order that q
is a subelement of v.
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Next, assume that q′ = qi and `I(q) = `I(q
′) + 1. From q′ = qi we obtain that q = q′i. Thus,

as `I(q) = `I(q
′) + 1, q′ ∈ I1(i). Recall also that v′ ∈ I1(i) and that q′ is a subelement of

v′. Thus, applying Corollary 5.2(ii) to q′ and v′ in place of u and v we obtain that q is a
subelement of v.

Assume, finally, that q′ = q. Then, as q′ is a subelement of v′, q is a subelement of v′. Recall
that v = v′i and that v′ ∈ I1(i). Thus, by Corollary 5.2(i), v′ is a subelement of v. Now,
as q is a subelement of v′ and v′ is a subelement of v, we obtain from the transitivity of the
Bruhat order that q is a subelement of v. 2

Proposition 6.2

Let v be an element in W , and let u be a subelement of v. Then r∗v ◦ r1 ⊆ r∗u ◦ r1.

Proof. From Proposition 4.7 we know that rv ◦ r1 ⊆ r1 ◦ r1, so that we are done if u = 1.

Assume that u 6= 1. In this case, we set n := `I(v), and we let i1, . . ., in be elements in I
with v = i1 · · · in.
Since u is a subelement of v with u 6= 1 and m = `I(u), Lemma 5.3 provides elements j1, . . .,
jm in {1, . . . , n} contains with j1 ≤ . . . ≤ jm and u = ij1 · · · ijm such that ij1 · · · ijl ∈ I1(ij)
for any two integers l with 1 ≤ l ≤ m− 1 and j with jl + 1 ≤ j ≤ jl+1− 1 and u ∈ I1(ij) for
each integer j with jm + 1 ≤ j ≤ n.

We now define two (n+ 1)-tuples of elements of W ,

(u0, . . . , un) and (v0, . . . , vn).

Let k be an element in {0, . . . , n}.
If 0 ≤ k ≤ j1 − 1, we set uk = 1. (Note that u0 = 1.)

If j1 ≤ k ≤ n, we define uk := ij1 · · · ijl , where l is the largest integer in {1, . . . , k} with
jl ≤ k. (Note that un = u.)

Let k be an element in {1, . . . , n}, and let l denote the largest integer in {1, . . . , k} with
jl ≤ k. Then we have

jl = k or jl + 1 ≤ k.

If jl = k, we have jl−1 ≤ k − 1, so uk−1 = ij1 · · · ijl−1
, and then uk = uk−1ijl .

If jl + 1 ≤ k, we have uk−1 = ij1 · · · ijl = uk. Thus, as ij1 · · · ijl ∈ I1(ik), uk−1 ∈ I1(ik).

Thus, we have
uk = uk−1ik or uk = uk−1 ∈ I1(ik).

We set vn = 1 and, for each element k in {0, . . . , n − 1}, we define vk := in · · · ik+1. (Note
that v0 = v−1.)

From `I(v) = n and v = i1 · · · in we obtain that

vk−1 = vkik and vk ∈ I1(ik).

If uk = uk−1ik, we apply Lemma 4.3(ii) to uk−1ik, vk, and ik in place of t, u, and i to obtain

r∗uk−1
◦ rvk−1

= r∗uk−1
◦ rvkik ⊆ r∗uk−1ik

◦ rvk = r∗uk
◦ rvk .
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If uk = uk−1 ∈ I1(ik), Lemma 4.5 yields (since uk−1 ∈ I1(ik) and vk ∈ I1(ik))

r∗uk−1
◦ rvk−1

= r∗uk−1
◦ rvkik ⊆ r∗uk−1

◦ rvk = r∗uk
◦ rvk .

Thus, we have
r∗uk−1

◦ rvk−1
⊆ r∗uk

◦ rvk
in both cases.

Now recall that u0 = 1, un = u, v0 = v−1, and vn = 1. Thus, by induction,

r1 ◦ r∗v = r∗u0
◦ rv0 ⊆ r∗un

◦ rvn = r∗u ◦ r1.

On the other hand, applying Lemma 4.2 to v, v−1, and v−1 in place of t, u, and v we obtain
that r∗v ◦ r1 = r∗1 ◦ rv−1 ; equivalently, r∗v ◦ r1 = r1 ◦ r∗v. Thus, r∗v ◦ r1 ⊆ r∗u ◦ r1. 2

Theorem 6.3 [Second Structure Theorem]

Let t and v be elements in W . Then t is a subelement of v if and only if fv ⊆ r∗t ◦ r1.

Proof. Assume first that t is a subelement of v. Then, by Proposition 6.2, r∗v ◦ r1 ⊆ r∗t ◦ r1.
In Corollary 3.4(ii), we saw already that fv ⊆ r∗v ◦ r1. It follows that fv ⊆ r∗t ◦ r1.
Assume, conversely, that fv ⊆ r∗t ◦ r1. Then, by Theorem 6.1, t is a subelement of v. 2

Corollary 6.4

Let t, u, and v be elements in W . Then the following hold.

(i) Assume that t ∈ I1(u−1) and that tu−1 is a subelement of v. Then fv ⊆ r∗t ◦ ru.

(ii) Let i be an element in I. Assume that `I(tiu
−1) = `I(t) + 1 + `I(u

−1) and that tiu−1

is a subelement of v. Then fv ⊆ r∗t ◦ ru.

Proof. (i) We are assuming that t ∈ I1(u−1). Thus, applying Lemma 4.2 to 1 and u−1 in
place of u and v we obtain that r∗t ◦ ru = r∗tu−1 ◦ r1.
We are assuming that tu−1 is a subelement of v. Thus, by Theorem 6.3, fv ⊆ r∗tu−1 ◦ r1.
From fv ⊆ r∗tu−1 ◦ r1 and r∗t ◦ ru = r∗tu−1 ◦ r1 we obtain that fv ⊆ r∗t ◦ ru.

(ii) From `I(tiu
−1) = `I(t) + 1 + `I(u

−1) we obtain that ti ∈ I1(u
−1). Thus, as tiu−1 is

assumed to be a subelement of v, we obtain from (i) that fv ⊆ r∗ti ◦ ru.

Since {t, u} ⊆ I1(i), we obtain from Lemma 4.5 that r∗ti ◦ ru ⊆ r∗t ◦ ru.

From fv ⊆ r∗ti ◦ ru and r∗ti ◦ ru ⊆ r∗t ◦ ru we obtain that fv ⊆ r∗t ◦ ru. 2

Corollary 6.5

Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. Then the
following hold.

(i) We have fv ⊆ r∗tu−1 ◦ r1.
(ii) Assume that t ∈ I1(u−1). Then fv ⊆ r∗t ◦ ru.

Proof. We are assuming that fv ∩ (r∗t ◦ ru) is not empty. Thus, by Theorem 6.1, tu−1 is a
subelement of v.
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(i) Since tu−1 is a subelement of v, the claim follows from Theorem 6.3.

(ii) Since tu−1 is a subelement of v, the claim follows from Corollary 6.4(i). 2

Corollary 6.6

Let t and v be elements in W , and assume that fv ∩ (r∗t ◦ r1) is not empty. Then fv ⊆ r∗t ◦ r1.

Proof. This is the case u = 1 in Corollary 6.5(i).

7. A Reduction Theorem

Our first lemma is an inductive generalization of [1; Lemma 5.139(2)]].

Lemma 7.1

Let t and u be elements in W with t ∈ I1(u). Let x and y be elements in X with (y, x) ∈ rt.
Then X contains exactly one element z with (y, z) ∈ fu and (z, x) ∈ rtu.

Proof. We proceed by induction with respect to `I(u).

Assume that u = 1. Then (y, y) ∈ fu and (y, x) ∈ rtu. Moreover, if (y, z) ∈ fu and
(z, x) ∈ rtu, then y = z.

Assume that u 6= 1. Then there exist elements u′ in 〈J〉 and j in J with u = u′j and
`I(u) = `I(u

′) + 1. From t ∈ I1(u), u = u′j, and `I(u) = `I(u
′) + 1 we obtain that

t ∈ I1(u′) and tu′ ∈ I1(j);

cf. [5; Lemma 2.3.8(i)].

Since t ∈ I1(u′) and `I(u) = `I(u
′) + 1, induction yields that X contains exactly one element

z′ with
(y, z′) ∈ fu′ and (z′, x) ∈ rtu′ .

Since (z′, x) ∈ rtu′ and tu′ ∈ I1(j), there exists exactly one element z in X such that

(z′, z) ∈ fj and (z, x) ∈ rtu;

cf. [1; Lemma 5.139(2)].

From u′ ∈ I1(j) we obtain that fu′ ◦ fj = fu; cf. Lemma 2.2. Thus, as (y, z′) ∈ fu′ and
(z′, z) ∈ fj, (y, z) ∈ fu.

So far, we have shown the existence of an element z inX satisfying (y, z) ∈ fu and (z, x) ∈ rtu.
In order to show uniqueness we choose an element z̄ in X satisfying (y, z̄) ∈ fu and

(z̄, x) ∈ rtu.

We will see that z̄ = z.

From (y, z̄) ∈ fu and fu′ ◦ fj = fu we obtain an element z̄′ in X with

(y, z̄′) ∈ fu′

15



and (z̄′, z̄) ∈ fj.
From (z̄′, z̄) ∈ fj and (z̄, x) ∈ rtu we obtain that (z̄′, x) ∈ fj ◦ rtu. Since u = u′j, this
implies that (z̄′, x) ∈ fj ◦ rtu′j. On the other hand, as tu′ ∈ I1(j), Corollary 3.3(ii) yields
fj ◦ rtu′j = rtu′ . Thus,

(z̄′, x) ∈ rtu′ .

From (y, z̄′) ∈ fu′ and (z̄′, x) ∈ rtu′ together with the choice of z′ we obtain that z′ = z̄′.
Thus, as (z̄′, z̄) ∈ fj,

(z′, z̄) ∈ fj.

Thus, as (z̄, x) ∈ rtu, the choice of z forces z̄ = z. 2

Lemma 7.2

Let w be an element in W , let J be a subset of I ∩ I1(w), and let t, u, and v be elements in
〈J〉. Let x′ and x be elements in X with (x′, x) ∈ fw, and let y and z be elements in X with
(y, z) ∈ fv, (x′, y) ∈ rt, (x′, z) ∈ ru, and (x, y) ∈ rtw. Then (x, z) ∈ ruw.

Proof. We proceed by induction on `I(v) + `I(w).

If v = 1, y = z. In this case, t = u. Thus, (x, z) = (x, y) ∈ rtw = ruw, and we are done.

If w = 1, x′ = x. In this case, (x, z) = (x′, z) ∈ ru = ruw, and we are done.

We assume that v 6= 1 and that w 6= 1.

Since v ∈ 〈J〉 and v 6= 1, there exist elements v′ in 〈J〉 and k in J with v = v′k and
`I(v) = `I(v

′) + 1. Thus, by Lemma 2.2, fv′ ◦ fk = fv. Thus, as (y, z) ∈ fv, X contains an
element z′ such that (y, z′) ∈ fv′ and (z′, z) ∈ fk.

Since w ∈ W and w 6= 1, there exist elements w′ in W and l in I with w = w′l and
`I(w) = `I(w

′) + 1. Thus, by Lemma 2.2, fw′ ◦ fl = fw. Thus, as (x′, x) ∈ fw, X− contains
an element x′′ such that (x′, x′′) ∈ fw′ and (x′′, x) ∈ fl.
Since (x′, z) ∈ ru and (z, z′) ∈ fk, (x′, z′) ∈ ru ◦ fk. On the other hand, by Lemma 3.1,
ru ◦ fk ⊆ rku ∪ ru. Let u′ denote the element in W with (x′, z′) ∈ ru′ . Then u′ ∈ {ku, u}. In
particular, u′ ∈ 〈J〉. Thus, as (x, y) ∈ rtw, induction yields that (x, z′) ∈ ru′w.

From (x, y) ∈ rtw and (x′′, x) ∈ fl we obtain that (x′′, y) ∈ fl ◦ rtw. On the other hand, as
tw ∈ I−1(l) (by [5; Lemma 2.3.8(i)]) we obtain from Lemma 3.1(i) that fl ◦ rtw = rtw′ . Thus,
we have (x′′, y) ∈ rtw′ , so that, by induction, (x′′, z) ∈ ruw′ .
From (x′′, x) ∈ fl we obtain that (x, x′′) ∈ fl. Thus, as (x′′, z) ∈ ruw′ , (x, z) ∈ fl ◦ ruw′ . On
the other hand, by Lemma 3.1, fl ◦ ruw′ ⊆ ruw ∪ ruw′ . Thus,

(x, z) ∈ ruw or (x, z) ∈ ruw′ .

Assume that (x, z) ∈ ruw′ . Then, as (x, z′) ∈ ru′w and (z′, z) ∈ fk, uw′ ∈ {ku′w, u′w}. Since
{ku′, u′} ⊆ 〈J〉, this implies that 〈J〉w′ = 〈J〉w, contradiction. Thus, (x, z) ∈ ruw. 2

Lemma 7.3

Let w be an element in W , let J be a subset of I ∩ I1(w), and let t, u, and v be elements in
〈J〉. Then fv ∩ (r∗t ◦ ru) = fv ∩ (r∗tw ◦ ruw).
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Proof. We first show that fv ∩ (r∗t ◦ ru) ⊆ fv ∩ (r∗tw ◦ ruw). To do this we let y and z be
elements in X and assume that (y, z) ∈ fv ∩ (r∗t ◦ ru). We will see that (y, z) ∈ r∗tw ◦ ruw.

From (y, z) ∈ r∗t ◦ ru we obtain an element x′ in X with (y, x′) ∈ r∗t and (x′, z) ∈ ru.

From (y, x′) ∈ r∗t we obtain that (x′, y) ∈ rt. Thus, as t ∈ I1(w), X contains exactly one
element x with (x′, x) ∈ fw and (x, y) ∈ rtw; cf. Lemma 7.1.

From (x, y) ∈ rtw we obtain that (y, x) ∈ r∗tw. From (x′, x) ∈ fw, (y, z) ∈ fv, (x′, y) ∈ rt,
(x′, z) ∈ ru, and (x, y) ∈ rtw we obtain that (x, z) ∈ ruw; cf. Lemma 7.2. From (y, x) ∈ r∗tw
and (x, z) ∈ ruw we obtain that (y, z) ∈ r∗tw ◦ ruw.

Since {t, u} ⊆ I1(w), we obtain from Corollary 4.4 that r∗tw ◦ ruw ⊆ r∗t ◦ ru. 2

Lemma 7.3 can be used to prove an interesting generalization of Corollary 4.6(ii). In fact,
we obtain that fv ⊆ r∗u ◦ ru for any two elements u and v in W with supp(v) ⊆ I1(u). To
see this, we first notice that, by Corollary 4.6(ii), fv ⊆ r∗1 ◦ r1. Now, applying Lemma 7.3 to
supp(v), 1, 1, and u in place of J , t, u, and w we obtain that fv ∩ (r∗1 ◦ r1) = fv ∩ (r∗u ◦ ru).
Thus, fv ⊆ r∗u ◦ ru. As a consequence of this observation we obtain that fi ⊆ r∗w ◦ rw for any
two elements w in W and i in I1(w).

Theorem 7.4 [Reduction Theorem]

Let v be an element in W . Assume that fv ⊆ r∗t′ ◦ ru′ for any two elements t′ and u′ in W
with fv ∩ (r∗t′ ◦ ru′) 6= ∅ and supp(t′) ∪ supp(u′) ⊆ supp(v). Then fv ⊆ r∗t ◦ ru for any two
elements t and u in W with fv ∩ (r∗t ◦ ru) 6= ∅.

Proof. Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. We
have to show that fv ⊆ r∗t ◦ ru.

Set J := supp(v). Since fv ∩ (r∗t ◦ ru) is not empty, tu−1 is a subelement of v; cf. Theorem
6.1. Thus, tu−1 ∈ 〈J〉. It follows that 〈J〉t = 〈J〉u. Let q denote the uniquely determined
element of shortest length in 〈J〉t satisfying 〈J〉q = 〈J〉t. Then 〈J〉 contains elements t′ and
u′ such that

t = t′q, u = u′q, t′ ∈ I1(q), and u′ ∈ I1(q).

From u′ ∈ I1(q) we obtain that fq ◦ru′q = ru′ ; cf. Corollary 3.3(ii). Similarly, t′ ∈ I1(q) yields
fq ◦ rt′q = rt′ ; equivalently, r∗t′q ◦ f ∗q = r∗t′ . Thus, as t = t′q and u = u′q,

fv ∩ (r∗t ◦ ru) ⊆ fv ∩ (r∗t′q ◦ ru′q) ⊆ fv ∩ (r∗t′q ◦ f ∗q ◦ fq ◦ ru′q) ⊆ fv ∩ (r∗t′ ◦ ru′).

Since fv∩(r∗t ◦ru) is assumed not to be empty, this shows that fv∩(r∗t′ ◦ru′) is not empty. On
the other hand, {t′, u′} ⊆ 〈J〉, so that supp(t′) ∪ supp(u′) ⊆ supp(v). Thus, by hypothesis,
fv ⊆ r∗t′ ◦ ru′ .
From fv ⊆ r∗t′ ◦ ru′ together with Lemma 7.3 we obtain that fv ⊆ r∗t ◦ ru. 2

8. The Case Where the Sagittal has Cardinality at Most 2

In this section, T is assumed to be thick. We shall see that, for any three elements t, u, and
v in W , fv ⊆ rt−1 ◦ ru if fv ∩ (r∗t ◦ ru) is not empty and |supp(v)| ≤ 2; cf. Theorem 8.3. In
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other words, we prove that Conjecture C holds if the support of its sagittal has cardinality
at most 2. We will refer to Theorem 7.4.

Lemma 8.1

Let t, u, and v be elements in W , and assume that fv∩(r∗t ◦ru) is not empty. Assume further
that I contains a subset H with |H| = 2 and {t, u, v} ⊆ 〈H〉. Assume finally that H contains
elements j and k with {t−1, v−1} ⊆ I−1(j) and {v, u−1} ⊆ I−1(k). Then fv ⊆ r∗t ◦ ru.

Proof. We first claim that `I(t) + 1 ≤ `I(v).

Assume, by way of contradiction, that `I(v) ≤ `I(t). Then, since |I| = 2 and {t−1, v−1} ⊆
I−1(j), t

−1 ∈ I−1(v
−1). Thus, by Lemma 3.2, rt ◦ fv = rv−1t. On the other hand, we are

assuming that fv ∩ (r∗t ◦ ru) is not empty, and that implies that ru ∩ (rt ◦ fv) is not empty.
Thus, ru = rv−1t. It follows that v−1t = u; equivalently, t = vu. Since we are assuming that
`I(v) ≤ `I(t), this implies that `I(v) ≤ `I(vu).

On the other hand, since {v, u−1} ⊆ I−1(k), we have `I(vu) ≤ `I(v)− 1, contradiction.

This contradiction shows that `I(t) + 1 ≤ `I(v). Since |I| = 2 and {t−1, v−1} ⊆ I−1(j), this
implies that v−1 ∈ I−1(t−1), so that

v = tw and `I(v) = `I(t) + `I(w)

for some element w ∈ W \ {1}.
Recall that v ∈ I−1(k). Thus, as v = tw and `I(v) = `I(t) + `I(w),

w ∈ I−1(k).

From v = tw and `I(v) = `I(t) + `I(w) we also obtain that

fv = ft ◦ fw;

cf. Lemma 2.3. Thus, as fv ∩ (r∗t ◦ ru) is assumed not to be empty, the intersection (ft ◦fw)∩
(r∗t ◦ ru) is not empty. It follows that

(f ∗t ◦ r∗t ) ∩ (fw ◦ r∗u)

is not empty. On the other hand, by Corollary 3.4(iii), f ∗t ◦ r∗t = r1. Thus, r1 ∩ (fw ◦ r∗u)
is not empty. It follows that fw ∩ (r1 ◦ ru) is not empty. Thus, by Theorem 6.1, u−1 is a
subelement of w.

Since {u−1, w} ⊆ I−1(k) and u−1 is a subelement of w, we have

w = su−1 and `I(w) = `I(s) + `I(u
−1)

for some element s in W . Thus, as v = tw and `I(v) = `I(t) + `I(w), we have

v = tsu−1 and `I(v) = `I(t) + `I(s) + `I(u
−1).

If t ∈ I1(u−1), we know that fv ⊆ r∗t ◦ ru already from Corollary 6.5(ii).
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Now assume that t /∈ I1(u−1). Then, `I(s) is odd. Thus, there exist elements l in I and s′

in W such that s = ls′ and `I(s) = `I(s
′) + 1. It follows that W contains an element q such

that
v = tlu−1q and `I(v) = `I(t) + 1 + `I(u

−1) + `I(q).

Thus, by Corollary 6.4(ii), fv ⊆ r∗t ◦ ru. 2

Proposition 8.2

Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. Assume
further that I contains a subset H with |H| = 2 and {t, u, v} ⊆ 〈H〉. Then fv ⊆ r∗t ◦ ru.

Proof. Assume first that v = 1. Then f1 ∩ (r∗t ◦ ru) is not empty, whence t = u. It follows
that fv = f1 ⊆ r∗t ◦ rt = r∗t ◦ ru, so that we are done in this case. Therefore, we assume that
v 6= 1. In this case, I contains elements j and k with

v−1 ∈ I−1(j) and v ∈ I−1(k).

Case I: Assume that t−1 ∈ I−1(j) and u−1 ∈ I−1(k). In this case, we are done by Lemma
8.1.

Case II: Assume that t−1 ∈ I1(j) and u−1 ∈ I−1(k).

Set v′ := jv. Then, as v−1 ∈ I−1(j),

v = jv′ and `I(v) = `I(v
′) + 1.

Thus, by Lemma 2.3,
fj ◦ fv′ = fv.

Since fv ∩ (r∗t ◦ ru) is assumed not to be empty, this implies that (fj ◦ fv′) ∩ (r∗t ◦ ru) is not
empty. It follows that

(fj ◦ r∗t ) ∩ (fv′ ◦ r∗u)

is not empty. On the other hand, by Lemma 3.1, rt ◦ fj ⊆ rjt ∪ rt. It follows that fj ◦ r∗t ⊆
r∗jt ∪ r∗t . Thus, one of the intersections

r∗jt ∩ (fv′ ◦ r∗u) and r∗t ∩ (fv′ ◦ r∗u)

is not empty.

Assume first that r∗jt ∩ (fv′ ◦ r∗u) is not empty. Then fv′ ∩ (r∗jt ◦ ru) is not empty. Thus, as
`I(v

′) = `I(v)− 1, induction yields

fv′ ⊆ r∗jt ◦ ru.

Thus, applying Lemma 4.1(i) to v′ and j in place of v and i we obtain that fv ⊆ r∗t ◦ ru, as
wanted.

Assume now that r∗t ∩ (fv′ ◦ r∗u) is not empty. Then, by Lemma 3.5,

r∗t ⊆ fv′ ◦ r∗u.
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From Lemma 3.1 we also know also that rjt ⊆ rt ◦ fj; equivalently,

r∗jt ⊆ fj ◦ r∗t .

Thus, since fj ◦ fv′ = fv, we have

r∗jt ⊆ fj ◦ fv′ ◦ r∗u = fv ◦ r∗u.

It follows that fv ∩ (r∗jt ◦ ru) is not empty. Thus, as {(jt)−1, v−1} ⊆ I−1(j) and {v, u−1} ⊆
I−1(k), we obtain from Lemma 8.1 that

fv ⊆ r∗jt ◦ ru.

Applying Lemma 4.1(ii) to v and j in place of iv and i we now obtain that fv ⊆ r∗t ◦ ru, as
wanted.

Case III: Assume that t−1 ∈ I−1(j) and u−1 ∈ I1(k). This is Case II with u, t, and v−1 in
place of t, u and v.

Case IV: Assume that t−1 ∈ I1(j) and u−1 ∈ I1(k).

Set v′ := jv. Then, as v−1 ∈ I−1(j),

v = jv′ and `I(v) = `I(v
′) + 1.

Thus, by Lemma 2.3,
fj ◦ fv′ = fv.

Since fv ∩ (r∗t ◦ ru) is assumed not to be empty, this implies that (fj ◦ fv′) ∩ (r∗t ◦ ru) is not
empty. It follows that

(fj ◦ r∗t ) ∩ (fv′ ◦ r∗u)

is not empty. On the other hand, by Lemma 3.1, rt ◦ fj ⊆ rjt ∪ rt. It follows that fj ◦ r∗t ⊆
r∗jt ∪ r∗t . Thus, one of the intersections

r∗jt ∩ (fv′ ◦ r∗u) and r∗t ∩ (fv′ ◦ r∗u)

is not empty.

Assume first that r∗jt ∩ (fv′ ◦ r∗u) is not empty. Then fv′ ∩ (r∗jt ◦ ru) is not empty. Thus, as
`I(v

′) = `I(v)− 1, induction yields

fv′ ⊆ r∗jt ◦ ru.

Thus, applying Lemma 4.1(i) to v′ and j in place of v and i we obtain that fv ⊆ r∗t ◦ ru, as
wanted.

Assume now that r∗t ∩ (fv′ ◦ r∗u) is not empty. Then, by Lemma 3.5,

r∗t ⊆ fv′ ◦ r∗u.

From Lemma 3.1 we also know that rjt ⊆ rt ◦ fj; equivalently,

r∗jt ⊆ fj ◦ r∗t .
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Thus, since fj ◦ fv′ = fv, we have

r∗jt ⊆ fj ◦ fv′ ◦ r∗u = fv ◦ r∗u.

It follows that fv ∩ (r∗jt ◦ ru) is not empty. Thus, as (jt)−1 ∈ I−1(j), u
−1 ∈ I1(k), and

v ∈ I−1(k), we obtain from Case III that

fv ⊆ r∗jt ◦ ru.

Applying Lemma 4.1(ii) to v and j in place of iv and i we now obtain that fv ⊆ r∗t ◦ ru, as
wanted. 2

Theorem 8.3 [First Main Theorem]

Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. Assume
further that |supp(v)| ≤ 2. Then fv ⊆ r∗t ◦ ru.

Proof. From Proposition 8.2 we know that fv ⊆ r∗t′ ◦ ru′ for any two elements t′ and u′ in W
such that fv ∩ (r∗t′ ◦ ru′) is not empty and supp(t′) ∪ supp(u′) ⊆ supp(v). Thus, the claim
follows from Theorem 7.4. 2

9. The Third Structure Theorem

In this section, we show that Condition C holds if the quotient of the subscripts of its
transversals is an isolated subelement of its sagittal.

We begin with an application of Lemma 3.1.

Lemma 9.1

Let w be an element in W , let i be an element in I, and let x, y, and z be elements in X.
Then the following hold.

(i) Assume that (y, z) ∈ fi and that (x, z) ∈ rw. Then (x, y) ∈ riw ∪ rw.

(ii) Assume that (y, z) ∈ fi and that (z, x) ∈ rw. Then (y, x) ∈ rwi ∪ rw.

Proof. (i) From (y, z) ∈ fi we obtain that (z, y) ∈ fi. Thus, as (x, z) ∈ rw, (x, y) ∈ rw ◦ fi.
On the other hand, by Lemma 3.1, rw ◦ fi ⊆ riw ∪ rw. It follows that (x, y) ∈ riw ∪ rw.

(ii) We are assuming that (z, x) ∈ rw. Thus, we have (x, z) ∈ rw−1 . Thus, by (i), (x, y) ∈
riw−1 ∪ rw−1 . It follows that (y, x) ∈ rwi ∪ rw. 2

Lemma 9.2

Let t, u, and v′ be elements in W , and let j be an element in I. Let x, z′, and z be elements
in X with (z′, z) ∈ fj and (x, z) ∈ ru. Suppose that X contains an element y with (y, z′) ∈ fv′
and (y, x) ∈ r∗t . Then the following hold.

(i) Assume that t(ju)−1 is not a subelement of v′. Then (x, z′) /∈ rju.

(ii) Assume that tu−1 is not a subelement of v′. Then (x, z′) /∈ ru.
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Proof. (i) Assume that (x, z′) ∈ rju. Then, as (y, x) ∈ r∗t , we have (y, z′) ∈ r∗t ◦ rju. Since
(y, z′) ∈ fv′ , this implies that fv′ ∩ (r∗t ◦ rju) is not empty, so that, by Theorem 6.1, t(ju)−1

is a subelement of v′.

(ii) Assume that (x, z′) ∈ ru. Then, as (y, x) ∈ r∗t , we have (y, z′) ∈ r∗t ◦ru. Since (y, z′) ∈ fv′ ,
this implies that fv′ ∩ (r∗t ◦ ru) is not empty, so that, by Theorem 6.1, tu−1 is a subelement
of v′. 2

Lemma 9.3

Let t, u, and v′ be elements in W , and let j be an element in I. Assume that v′ ∈ I1(j).
Assume further that fv′j ∩ (r∗t ◦ ru) is not empty. Then the following hold.

(i) Assume that t(ju)−1 is not a subelement of v′. Then fv′ ∩ (r∗t ◦ ru) is not empty.

(ii) Assume that tu−1 is not a subelement of v′. Then fv′ ∩ (r∗t ◦ rju) is not empty.

Proof. We are assuming that fv′j ∩ (r∗t ◦ ru) is not empty. Thus, X contains elements x, y,
and z with (y, z) ∈ fv′j,

(y, x) ∈ r∗t , and (x, z) ∈ ru.

We are assuming that v′ ∈ I1(j). Thus, by Lemma 2.2(i), fv′ ◦ fj = fv′j. Since (y, z) ∈ fv′j,
this implies that (y, z) ∈ fv′ ◦ fj. Thus, X contains an element z′ with

(y, z′) ∈ fv′ and (z′, z) ∈ fj.

Applying Lemma 9.1(i) to u, j, and z′ in place of w, i, and y we obtain from (z′, z) ∈ fj and
(x, z) ∈ ru that

(x, z′) ∈ rju ∪ ru.

(i) We are assuming that t(ju)−1 is not a subelement of v′. Thus, by Lemma 9.2(i), (x, z′) /∈
rju. It follows that

(x, z′) ∈ ru.

From (y, z′) ∈ fv′ , (y, x) ∈ r∗t , and (x, z′) ∈ ru we obtain that fv′ ∩ (r∗t ◦ ru) is not empty.

(ii) We are assuming that tu−1 is not a subelement of v′. Thus, by Lemma 9.2(ii), (x, z′) /∈ ru.
It follows that

(x, z′) ∈ rju.

From (y, z′) ∈ fv′ , (y, x) ∈ r∗t , and (x, z′) ∈ rju we obtain that fv′ ∩ (r∗t ◦ rju) is not empty. 2

Lemma 9.4

Assume that T is thick. Let t, u, and v′ be elements in W , and let i and j be elements in
I. Assume that {t, u} ⊆ I1(i) and that v′ ∈ I1(j). Assume further that ju = ui, and that
fv′j ∩ (r∗ti ◦ rui) is not empty. Then t(ju)−1 and tu−1 both are subelements of v′.

Proof. We are assuming that fv′j ∩ (r∗ti ◦ rui) is not empty. Thus, X contains elements x, y,
and z with (y, z) ∈ fv′j,

(y, x) ∈ r∗ti, and (x, z) ∈ rui.
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We are assuming that v′ ∈ I1(j). Thus, by Lemma 2.2(i), fv′ ◦ fj = fv′j. Since (y, z) ∈ fv′j,
this implies that (y, z) ∈ fv′ ◦ fj. Thus, X contains an element z′ with

(y, z′) ∈ fv′ and (z′, z) ∈ fj.

We are assuming that ju = ui. Thus, as (x, z) ∈ rui, (x, z) ∈ rju. Moreover, since (z′, z) ∈ fj,
we have (z, z′) ∈ fj. It follows that

(x, z′) ∈ rju ◦ fj.

We are assuming that u ∈ I1(i). Thus, `I(ui) = `I(u) + 1. Since ui = ju, this implies that
`I(ju) = `I(u) + 1. It follows that (ju)−1 ∈ I−1(j), so that, by Lemma 3.1(i),

rju ◦ fj = ru.

From (x, z′) ∈ rju ◦ fj and rju ◦ fj = ru we obtain that (x, z′) ∈ ru. Thus, as (y, x) ∈ r∗ti,
we conclude that (y, z′) ∈ r∗ti ◦ ru. Now recall that (y, z′) ∈ fv′ . Thus, fv′ ∩ (r∗ti ◦ ru) is not
empty.

Since fv′ ∩ (r∗ti ◦ ru) is not empty, we obtain from Theorem 6.1 that tiu−1 is a subelement of
v′. Since we are assuming that ju = ui, this implies that t(ju)−1 is a subelement of v′.

We are assuming that T is thick and that {t, u} ⊆ I1(i). Thus, we obtain from Lemma 4.5
that r∗ti ◦ ru ⊆ r∗t ◦ ru. On the other hand, we have seen that fv′ ∩ (r∗ti ◦ ru) is not empty.
Thus, fv′ ∩ (r∗t ◦ ru) is not empty, so that, by Theorem 6.1, tu−1 is a subelement of v′. 2

Proposition 9.5

Assume that T is thick. Let t, u, and v be elements in W , and assume that tu−1 is an isolated
subelement of v. Let i be an element in I with {t, u} ⊆ I1(i), and assume that fv ∩ (r∗ti ◦ rui)
is not empty. Let x, y, and z be elements in X with (y, z) ∈ fv, (y, x) ∈ r∗t , and (x, z) ∈ ru.
Then X contains an element x′ with (x′, x) ∈ fi, (y, x′) ∈ r∗ti, and (x′, z) ∈ rui.

Proof. From Lemma 3.1 we know that rt−1 ⊆ rit−1 ◦ fi; equivalently, r∗t ⊆ r∗ti ◦ fi. Since we
are assuming that (y, x) ∈ r∗t , this implies that (y, x) ∈ r∗ti ◦ fi. Thus, X contains an element
x′ with

(y, x′) ∈ r∗ti and (x′, x) ∈ fi.

Applying Lemma 9.1(ii) to u, z, x′, and x in place of w, x, y, and z we obtain from (x′, x) ∈ fi
and (x, z) ∈ ru that

(x′, z) ∈ rui ∪ ru.

We shall be done if we succeed in showing that (x′, z) ∈ rui.
We proceed by induction with respect to `I(v).

If `I(v) = 0, v = 1. Since we are assuming that (y, z) ∈ fv, this implies that y = z and that
t = u. Thus, as (y, x′) ∈ r∗ti, we obtain that (z, x′) ∈ r∗ui; equivalently, (x′, z) ∈ rui.
Assume that 1 ≤ `I(v). Then there exist elements v′ in W and j in I such that

v = v′j and `I(v) = `I(v
′) + 1.
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From v = v′j and `I(v) = `I(v
′) + 1 we obtain that v′ ∈ I1(j). Thus, as v = v′j, Lemma

2.2(i) yields that fv′ ◦ fj = fv. Since we are assuming that (y, z) ∈ fv, this implies that
(y, z) ∈ fv′ ◦ fj, so that X contains an element z′ with

(y, z′) ∈ fv′ and (z′, z) ∈ fj.

We claim that ju 6= ui. Assume, by way of contradiction, that ju = ui. Then, as
{t, u} ⊆ I1(i), v

′ ∈ I1(j), and fv ∩ (r∗ti ◦ rui) is assumed to be not empty, Lemma 9.4 yields
that t(ju)−1 and tu−1 both are subelements of v′. Since tu−1 is assumed to be an isolated
subelement of v, this is impossible; cf. Lemma 5.5. Thus, we have shown that

ju 6= ui.

We claim that ju ∈ I1(i). If u−1 ∈ I−1(j), this follows from u ∈ I1(i); cf. [5; Lemma
2.3.8(ii)]. Assume that u−1 ∈ I1(j). Then, by [5; Lemma 6.5.2(i)], j ∈ I1(u). Thus, as
u ∈ I1(i), ju = ui or ju ∈ I1(i). Since ju 6= ui, this shows that

ju ∈ I1(i).

We are assuming that tu−1 is an isolated subelement of v. Since tu−1 is a subelement of v,
we obtain from Lemma 5.4 that one of the elements tu−1 and t(ju)−1 is a subelement of vj.

Assume first that tu−1 is a subelement of v′. Then, by Lemma 5.6(i),

1. tu−1 is an isolated subelement of v′.

Since tu−1 is assumed to be a subelement of v′, we obtain from Lemma 5.5 that t(ju)−1 is
not a subelement of v′. Recall also that fv ∩ (r∗ti ◦ rui) is assumed not to be empty. Thus,
applying Lemma 9.3(i) to ti and ui in place of t and u we obtain that

2. fv′ ∩ (r∗ti ◦ rui) is not empty.

From
(y, z′) ∈ fv′ , (z′, z) ∈ fj, (y, x) ∈ r∗t , and (x, z) ∈ ru

together with the fact that t(ju)−1 is not a subelement of v′ we obtain that (x, z′) /∈ rju; cf.
Lemma 9.2(i). Thus, applying Lemma 9.1(i) to u, j, and z′ in place of w, i, and y we obtain
from (z′, z) ∈ fj and (x, z) ∈ ru that

3. (x, z′) ∈ ru.

Recall also that

4. (y, z′) ∈ fv′ and (y, x) ∈ r∗t .
Thus, by induction, X contains an element x′′ with

(x′′, x) ∈ fi, (y, x′′) ∈ r∗ti, and (x′′, z′) ∈ rui.

From (x′, x) ∈ fi and (x′′, x) ∈ fi we obtain that

(x′, x′′) ∈ f1 or (x′, x′′) ∈ fi;

cf. Lemma 2.2.
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Suppose that (x′, x′′) ∈ fi. Then, as (y, x′) ∈ r∗ti, we have (y, x′′) ∈ r∗ti ◦ fi.
Since t ∈ I1(i), we have ti ∈ I−1(i). Thus, by Lemma 3.1(i), r(ti)−1 ◦ fi = rt−1 ; equivalently,
r∗ti ◦fi = r∗t . Thus, as (y, x′′) ∈ r∗ti ◦fi, we conclude that (y, x′′) ∈ r∗t , contrary to (y, x′′) ∈ r∗ti.
Thus, we have (x′, x′′) ∈ f1 which means that x′ = x′′. Since (x′′, z′) ∈ rui, this implies that

(x′, z′) ∈ rui.

Since (z′, z) ∈ fj, we have (z, z′) ∈ fj. Applying Lemma 9.1(i) to ui, j, x′, z, and z′ in place
of w, i, x, y, and z we obtain from (z, z′) ∈ fj and (x′, z′) ∈ rui that

(x′, z) ∈ rjui ∪ rui.

Applying Lemma 9.1(ii) to u, z, x′, and x in place of w, x, y, and z we obtain from (x′, x) ∈ fi
and (x, z) ∈ ru that

(x′, z) ∈ rui ∪ ru.

Since ju 6= ui, jui /∈ {ui, u}. Thus, (x′, z) ∈ rui, so that we are done in this case.

Assume now that t(ju)−1 is a subelement of v′. Then, by Lemma 5.6(ii),

1. t(ju)−1 is an isolated subelement of v′.

Since t(ju)−1 is assumed to be a subelement of v′, we obtain from Lemma 5.5 that tu−1 is
not a subelement of v′. Recall also that fv ∩ (r∗ti ◦ rui) is assumed not to be empty. Thus,
applying Lemma 9.3(ii) to ti and ui in place of t and u we obtain that

2. fv′ ∩ (r∗ti ◦ rjui) is not empty.

From
(y, z′) ∈ fv′ , (z′, z) ∈ fj, (y, x) ∈ r∗t , and (x, z) ∈ ru

together with the fact that tu−1 is not a subelement of v′ we obtain that (x, z′) /∈ ru; cf.
Lemma 9.2(ii). Thus, applying Lemma 9.1(i) to u, j, and z′ in place of w, i, and y we obtain
from (z′, z) ∈ fj and (x, z) ∈ ru that

3. (x, z′) ∈ rju.

Recall also that

4. (y, z′) ∈ fv′ , (y, x) ∈ r∗t , and ju ∈ I1(i).
Thus, by induction, X contains an element x′′ with

(x′′, x) ∈ fi, (y, x′′) ∈ r∗ti, and (x′′, z′) ∈ rjui.

From (x′, x) ∈ fi and (x′′, x) ∈ fi we obtain that

(x′, x′′) ∈ f1 or (x′, x′′) ∈ fi;

cf. Lemma 2.2.

Suppose that (x′, x′′) ∈ fi. Then, as (y, x′) ∈ r∗ti, we have (y, x′′) ∈ r∗ti ◦ fi.
Since t ∈ I1(i), we have ti ∈ I−1(i). Thus, by Lemma 3.1(i), r(ti)−1 ◦ fi = rt−1 ; equivalently,
r∗ti ◦fi = r∗t . Thus, as (y, x′′) ∈ r∗ti ◦fi, we conclude that (y, x′′) ∈ r∗t , contrary to (y, x′′) ∈ r∗ti.
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Thus, we have (x′, x′′) ∈ f1 which means that x′ = x′′. Since (x′′, z′) ∈ rjui, this implies that

(x′, z′) ∈ rjui.

Since (z′, z) ∈ fj, we have (z, z′) ∈ fj. Applying Lemma 9.1(i) to jui, j, x′, z, and z′ in place
of w, i, x, y, and z we obtain from (z, z′) ∈ fj and (x′, z′) ∈ rjui that

(x′, z) ∈ rui ∪ rjui.

Applying Lemma 9.1(ii) to u, z, x′, and x in place of w, x, y, and z we obtain from (x′, x) ∈ fi
and (x, z) ∈ ru that

(x′, z) ∈ rui ∪ ru.

Since ju 6= ui, jui /∈ {ui, u}. Thus, (x′, z) ∈ rui, so that we are done also in this case. 2

Corollary 9.6

Assume that T is thick. Let t, u, and v be elements in W , and assume that tu−1 is an
isolated subelement of v. Let i be an element in I, and assume that fv ∩ (r∗ti ◦ rui) is not
empty. Then we have fv ∩ (r∗t ◦ ru) ⊆ fv ∩ (r∗ti ◦ rui).

Proof. Assume first that t ∈ I−1(i) or u ∈ I−1(i). In this case, we know from Lemma 4.3(i)
that r∗t ◦ ru ⊆ r∗ti ◦ rui. It follows that fv ∩ (r∗t ◦ ru) ⊆ fv ∩ (r∗ti ◦ rui), so that we are done in
this case.

Assume now that {t, u} ⊆ I1(i). In this case, we let y and z be elements in X, and we
assume that (y, z) ∈ fv ∩ (r∗t ◦ ru). We have to show (y, z) ∈ r∗ti ◦ rui.
Since (y, z) ∈ r∗t ◦ ru, X contains an element x such that (y, x) ∈ r∗t and (x, z) ∈ ru. Thus,
as (y, z) ∈ fv, X contains an element x′ with (x′, x) ∈ fi, (y, x′) ∈ r∗ti, and (x′, z) ∈ rui; cf.
Proposition 9.5.

From (y, x′) ∈ r∗ti and (x′, z) ∈ rui we obtain that (y, z) ∈ r∗ti ◦ rui. 2

Theorem 9.7 [Third Structure Theorem]

Assume that T is thick. Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is
not empty. Assume further that tu−1 is an isolated subelement of v. Then fv ⊆ r∗t ◦ ru.

Proof. We proceed by induction with respect to `I(u). If `I(u) = 0, u = 1. In this case,
the claim follows from Corollary 6.6. Therefore, we assume that 1 ≤ `I(u). In this case, I
contains an element i with u ∈ I−1(i).
From u ∈ I−1(i) we obtain that r∗t ◦ ru ⊆ r∗ti ◦ rui; cf. Lemma 4.3(i). Thus, as fv ∩ (r∗t ◦ ru)
is assumed to be not empty, fv ∩ (r∗ti ◦ rui) is not empty. Moreover, since tu−1 is assumed
to be an isolated subelement of v, (ti)(ui)−1 is an isolated subelement of v. From u ∈ I−1(i)
we also obtain that `I(ui) = `I(u)− 1. Thus, by induction,

fv ⊆ r∗ti ◦ rui.

Since (ti)(ui)−1 is an isolated subelement of v and fv ∩ (r∗t ◦ ru) is assumed not to be empty,
we may apply Corollary 9.6 to ti and ui in place of t and u. We obtain that

fv ∩ (r∗ti ◦ rui) ⊆ fv ∩ (r∗t ◦ ru).
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From fv ∩ (r∗ti ◦ rui) ⊆ fv ∩ (r∗t ◦ ru) and fv ⊆ r∗ti ◦ rui we obtain that fv ⊆ r∗t ◦ ru. 2

10. The Case Where the Sagittal has Length at Most 3

Considering Theorem 6.1 the following theorem is an immediate consequence of Theorem
9.7.

Theorem 10.1

Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. Assume
further that `I(v) = |supp(v)|. Then fv ⊆ r∗t ◦ ru.

Proof. Since `I(v) = |supp(v)|, each subelement of v is isolated. On the other hand, since
fv ∩ (rt ◦ ru) is assumed to be not empty, tu−1 is a subelement of v; cf. Theorem 6.1. Thus,
by Theorem 9.7, fv ⊆ rt ◦ ru. 2

Theorem 10.2 [Second Main Theorem]

Let t, u, and v be elements in W , and assume that fv ∩ (r∗t ◦ ru) is not empty. Assume
further that `I(v) ≤ 3. Then fv ⊆ r∗t ◦ ru.

Proof. If `I(v) = 2, we have |supp(v)| ≤ 2, so that the claim follows from Theorem 8.3. If
`I(v) = 3, we have |supp(v)| ≤ 2 or `I(v) = |supp(v)|. In the first case, the claim follows
from Theorem 8.3, in the second case, the claim follows from Theorem 10.1. 2
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