Oberwolfach Preprints

Number 2023-10

Christopher French and Paul-Hermann Zieschang

Hypergroups and Twin Buildings, I

Oberwolfach Preprints (OWP)

The MFO publishes the Oberwolfach Preprints (OWP) as a series which mainly contains research results related to a longer stay in Oberwolfach, as a documentation of the research work done at the MFO. In particular, this concerns the Oberwolfach Research Fellows program (and the former Research in Pairs program) and the Oberwolfach Leibniz Fellows (OWLF), but this can also include an Oberwolfach Lecture, for example.

All information about the publication process can be found at https://www.mfo.de/scientific-programme/publications/owp

All published Oberwolfach Preprints can be found at https://publications.mfo.de
ISSN 1864-7596

License Information

This document may be downloaded, read, stored and printed for your own use within the limits of $\S 53$ UrhG but it may not be distributed via the internet or passed on to external parties.

The series Oberwolfach Preprints is published by the MFO. Copyright of the content is held by the authors.

[^0]
Hypergroups and Twin Buildings, I

Christopher French
Department of Mathematics and Statistics
Grinnell College
Grinnell, IA 50112, U. S. A.
Paul-Hermann Zieschang
School of Mathematical and Statistical Sciences
University of Texas Rio Grande Valley
Edinburg, TX 78539, U. S. A.
1201 West University Drive

Abstract

We discuss a conjecture on thick twin buildings the verification of which is needed in order to show that thick twin buildings are mathematically equivalent to regular actions of certain twin Coxeter hypergroups. (A corresponding result for buildings is shown in [5; Sections 10.2, 10.3].) We prove that the conjecture holds in the case where the support of its sagittal has cardinality 2 and in the case where its sagittal has length at most 3. (Sagittals are defined in Section 1.) Our exposition is based on an earlier treatment of the subject; cf. [3].

1. Introduction

A hypergroup (as defined in [5]) is an algebraic concept which generalizes the notion of a group. A building (as defined in [4]) is a geometric concept which generalizes the notion of a projective space. Many buildings can be identified with their automorphism group. The Fano plane, for instance, is mathematically equivalent with the simple group $P S L_{3}(2)$. Tits' result [4] on thick buildings of spherical type and rank at least 3 is a far-reaching generalization of this simple observation.
Tits' result needs to be considered under the observation that the class of thick buildings of spherical type and rank at least 3 is a quite small subclass of the class of all buildings. However, his identification of thick buildings of spherical type and rank at least 3 with their automorphism groups admits a fairly straightforward generalization to an identification of all buildings with the members of a specific class of hypergroups, the class of the so-called Coxeter hypergroups; cf. [5; Chapter 9].
The situation is more delicate when it comes to twin buildings. The analog of the above identification of buildings with Coxeter hypergroups within the theory of twin buildings (as suggested in [5; Section 10.3]) depends on the verification of a pure building theoretic question which we phrase here as a conjecture.
Throughout this note, (W, I) stands for a Coxeter system, T for a twin building of type (W, I), X for the set of chambers of T. For each element w in W, we define

$$
f_{w}:=\left\{(y, z) \in X_{-} \times X_{-} \mid \delta_{-}(y, z)=w\right\} \cup\left\{(y, z) \in X_{+} \times X_{+} \mid \delta_{+}(y, z)=w\right\}
$$

and

$$
r_{w}:=\left\{(y, z) \in X_{-} \times X_{+} \mid \delta^{*}(y, z)=w^{-1}\right\} \cup\left\{(y, z) \in X_{+} \times X_{-} \mid \delta^{*}(y, z)=w^{-1}\right\}
$$

(The symbols $X_{-}, X_{+}, \delta_{-}, \delta_{+}$, and δ^{*} are standard in the theory of twin buildings; they are introduced and used in [1].)

Conjecture C

Let t, u, and v be elements in W such that $f_{v} \cap\left(r_{t} \circ r_{u}\right)$ is not empty. Then $f_{v} \subseteq r_{t} \circ r_{u}$.
Of course, the question can be answered in the affirmative if B possesses a strongly transitive group of automorphisms. In particular, the question has a positive answer if B satisfies Condition (co) and/or is 2-spherical. (Condition (co) is defined on page 290 of [1] as well as the restriction to 2 -spherical twin buildings are standard hypotheses in the study of automorphism groups of twin buildings.) However, these conditions seem to have little to do with a general approach to Conjecture C.
To state the main results of this note we introduce the following terminology.
Let w be an element in W. We define $\operatorname{supp}(w)$ to be the set of the elements i in I such that $w \notin\langle I \backslash\{i\}\rangle$. Note that $\operatorname{supp}(w)$ is the smallest subset J of I with $v \in\langle J\rangle$. The set $\operatorname{supp}(w)$ is called the support of w.
The elements f_{w} with $w \in W$ will be called the sagittals of T, the elements r_{w} with $w \in W$ will be called the transversals of T. By the support of a sagittal f_{w} with $w \in W$ we mean the support of w (as defined in Section 8.) By the length of a sagittal f_{w} with $w \in W$ we mean the I-length of w.

The element f_{v} in Conjecture C is called its sagittal. It is the goal of this note to verify Conjecture C in the case where the support of its sagittal has cardinality 2 and in the case where its sagittal has I-length at most 3 ; cf. Theorems 8.3 and 10.2.
The following notation will be used throughout the remainder of this note.
For each element w in W, the I-length of w will be denoted by $\ell_{I}(w)$.
For each element u in W, we write $I_{-1}(u)$ to denote the set of all elements v in W such that $\ell_{I}(v)=\ell_{I}\left(v u^{-1}\right)+\ell_{I}(u)$ and $I_{1}(u)$ for the set of all elements t in W satisfying $\ell_{I}(t u)=$ $\ell_{I}(t)+\ell_{I}(u)$.
For each element w in W, we write f_{w}^{*} to denote the set of all pairs (y, z) with $(z, y) \in f_{w}$. Similarly, r_{w}^{*} stands for the set of all pairs (y, z) with $(z, y) \in r_{w}$. This notation implies that, for each element w in $W, f_{w}^{*}=f_{w^{-1}}$ and $r_{w}^{*}=r_{w^{-1}}$.

2. Composing Sagittals

In this section, we compile results from [5; Section 10.4].

Lemma 2.1

For each element i in I, we have $h_{1} \subseteq h_{i} \circ h_{i} \subseteq h_{1} \cup h_{i}$.
Proof. This is [5; Lemma 10.1.2(ii)].

Let i be an element in I. In Lemma 2.1, we saw that $h_{1} \subseteq h_{i} \circ h_{i} \subseteq h_{1} \cup h_{i}$. In the following, we will say that h_{i} is of first type if $h_{1}=h_{i} \circ h_{i}$, and we will say that h_{i} is of second type if $h_{i} \circ h_{i}=h_{1} \cup h_{i}$. Of course, h_{i} may be neither of first nor of second type.
We notice that T is thick if and only if each element f_{i} with $i \in I$ is of second type.

Lemma 2.2

Let w be an element in W, and let i be an element in I. Then the following hold.
(i) If $w \in I_{1}(i), f_{w} \circ f_{i}=f_{w i}$.
(ii) Assume that $w \in I_{-1}(i)$ and that f_{i} is of first type. Then $f_{w} \circ f_{i}=f_{w i}$.
(iii) Assume that $w \in I_{-1}(i)$ and that f_{i} is of second type. Then $f_{w} \circ f_{i}=f_{w i} \cup f_{w}$.

Proof. This is [5; Lemma 10.4.3].

Lemma 2.3

Let u and v be elements in W, and assume that $u \in I_{1}(v)$. Then $f_{u} \circ f_{v}=f_{u v}$.
Proof. This is [5; Corollary 10.4.4].

3. Composing Sagittals With Transversals

In this section, we compile results from [5; Section 10.5] and related facts.

Lemma 3.1

Let w be an element in W, and let i be an element in I. Then the following hold.
(i) If $w^{-1} \in I_{-1}(i), r_{w} \circ f_{i}=r_{i w}$.
(ii) Assume that $w^{-1} \in I_{1}(i)$ and that f_{i} is of first type. Then $r_{w} \circ f_{i}=r_{i w}$.
(iii) Assume that $w^{-1} \in I_{1}(i)$ and that f_{i} is of second type. Then $r_{w} \circ f_{i}=r_{i w} \cup r_{w}$.

Proof. This is [5; Lemma 10.5.2].
Induction now allows us to generalize Lemma 3.1(i).

Lemma 3.2

Let t and v be elements in W with $t^{-1} \in I_{-1}\left(v^{-1}\right)$. Then $r_{t} \circ f_{v}=r_{v^{-1} t}$.
Proof. There is nothing to show if $v=1$. Thus, we assume that $v \neq 1$. In this case, there exist elements i in I and v^{\prime} in W such that

$$
v=i v^{\prime} \quad \text { and } \quad \ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1
$$

It follows that $i \in I_{1}\left(v^{\prime}\right)$. Thus, as $v=i v^{\prime}$, Lemma 2.3 yields

$$
f_{v}=f_{i} \circ f_{v^{\prime}} .
$$

From $t^{-1} \in I_{-1}\left(v^{-1}\right)$ we obtain an element s in W such that

$$
t=v s \quad \text { and } \quad \ell_{I}(t)=\ell_{I}(v)+\ell_{I}(s) .
$$

Thus, setting $t^{\prime}:=v^{\prime} s$ we have

$$
t=i t^{\prime}, \quad \ell_{I}\left(t^{\prime}\right)=\ell_{I}\left(v^{\prime}\right)+\ell_{I}(s), \quad \text { and } \quad \ell_{I}(t)=\ell_{I}\left(t^{\prime}\right)+1 ;
$$

cf. [5; Lemma 2.3.8(ii)].
From $t=i t^{\prime}$ and $\ell_{I}(t)=\ell_{I}\left(t^{\prime}\right)+1$ we obtain that $t^{-1} \in I_{-1}(i)$. Thus, as $t=i t^{\prime}$, Lemma 3.1(i) yields

$$
r_{t} \circ f_{i}=r_{t^{\prime}} .
$$

From $t^{\prime}=v^{\prime} s$ and $\ell_{I}\left(t^{\prime}\right)=\ell_{I}\left(v^{\prime}\right)+\ell_{I}(s)$ we obtain that $\left(t^{\prime}\right)^{-1} \in I_{-1}\left(\left(v^{\prime}\right)^{-1}\right)$. Thus, by induction,

$$
r_{t^{\prime}} \circ f_{v^{\prime}}=r_{\left(v^{\prime}\right)^{-1} t^{\prime}} .
$$

From $f_{v}=f_{i} \circ f_{v^{\prime}}, r_{t} \circ f_{i}=r_{t^{\prime}}$, and $r_{t^{\prime}} \circ f_{v^{\prime}}=r_{\left(v^{\prime}\right)^{-1} t^{\prime}}$ we obtain that

$$
r_{t} \circ f_{v}=r_{t} \circ f_{i} \circ f_{v^{\prime}}=r_{t^{\prime}} \circ f_{v^{\prime}}=r_{\left(v^{\prime}\right)^{-1} t^{\prime}}=r_{v^{-1} t}
$$

as wanted.

Corollary 3.3

Let t and u be elements in W, and assume that $t \in I_{1}(u)$. Then the following hold.
(i) We have $r_{t u} \circ f_{t}=r_{u}$.
(ii) We have $f_{u} \circ r_{t u}=r_{t}$.

Proof. (i) We are assuming that $t \in I_{1}(u)$. Thus, by [5; Lemma 6.5.2(i)], $u^{-1} \in I_{1}\left(t^{-1}\right)$. From this we obtain that $u^{-1} t^{-1} \in I_{-1}\left(t^{-1}\right)$, whence $(t u)^{-1} \in I_{-1}\left(t^{-1}\right)$. Thus, by Lemma $3.2, r_{t u} \circ f_{t}=r_{u}$.
(ii) We are assuming that $t \in I_{1}(u)$. Thus, $u^{-1} \in I_{1}\left(t^{-1}\right)$, so that, by (i),

$$
r_{(t u)^{-1}} \circ f_{u^{-1}}=r_{u^{-1} t^{-1}} \circ f_{u^{-1}}=r_{t^{-1}} .
$$

It follows that $f_{u^{-1}}^{*} \circ r_{(t u)^{-1}}^{*}=r_{t^{-1}}^{*}$. This is equivalent to $f_{u} \circ r_{t u}=r_{t}$.

Corollary 3.4

The following hold.
(i) For each element w in W, we have $r_{w} \circ f_{w}=r_{1}$.
(ii) For each element w in W, we have $f_{w} \subseteq r_{w}^{*} \circ r_{1}$.
(iii) For each element w in W, we have $f_{w} \circ r_{w}=r_{1}$.

Proof. (i) This the case $(t, u)=(w, 1)$ in Corollary 3.3(i). ${ }^{1}$
(ii) From (i) we obtain that $f_{w} \subseteq r_{w}^{*} \circ r_{w} \circ f_{w}=r_{w}^{*} \circ r_{1}$.
(iii) Since $r_{1}^{*}=r_{1}$, this follows from (i).

[^1]
Lemma 3.5

Assume T to be thick, and let t, u, and v be elements in W. Assume that $r_{v} \cap\left(f_{u} \circ r_{t}\right)$ is not empty. Then $r_{v} \subseteq f_{u} \circ r_{t}$.

Proof. This is [5; Lemma 10.5.5(ii)].

4. Composing Transversals

In this section, we look at composites of tranversals.

Lemma 4.1

Let t, u, and v be elements in W, and let i be an element in I. Assume that $i \in I_{1}(t)$. Then the following hold.
(i) Assume that $i \in I_{1}(v)$ and that $f_{v} \subseteq r_{i t}^{*} \circ r_{u}$. Then $f_{i v} \subseteq r_{t}^{*} \circ r_{u}$.
(ii) Assume that T is thick and that $f_{i v} \subseteq r_{i t}^{*} \circ r_{u}$. Then $f_{i v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. (i) We are assuming that $i \in I_{1}(v)$. Thus, by Lemma 2.3,

$$
f_{i} \circ f_{v}=f_{i v}
$$

From $i \in I_{1}(t)$ we also obtain $r_{i t} \circ f_{i}=r_{t}$; cf. Corollary 3.3(i). Thus, we also have

$$
f_{i} \circ r_{i t}^{*}=r_{t}^{*} .
$$

Since we are assuming that $f_{v} \subseteq r_{i t}^{*} \circ r_{u}$, we now obtain that

$$
f_{i v}=f_{i} \circ f_{v} \subseteq f_{i} \circ r_{i t}^{*} \circ r_{u}=r_{t}^{*} \circ r_{u}
$$

as wanted.
(ii) We are assuming that T is thick. Thus, by Lemma 2.2(iii),

$$
f_{i v} \subseteq f_{i} \circ f_{i v}
$$

We are assuming that $i \in I_{1}(t)$. Thus, by Corollary 3.3(i), $r_{i t} \circ f_{i}=r_{t}$, so that

$$
f_{i} \circ r_{i t}^{*}=r_{t}^{*} .
$$

Since we are assuming that $f_{i v} \subseteq r_{i t}^{*} \circ r_{u}$, we now obtain that

$$
f_{i v} \subseteq f_{i} \circ f_{i v} \subseteq f_{i} \circ r_{i t}^{*} \circ r_{u}=r_{t}^{*} \circ r_{u}
$$

as wanted.

Lemma 4.2

Let t, u, and v be elements in W, and assume that $t \in I_{1}(v)$ and that $u \in I_{1}\left(v^{-1}\right)$. Then $r_{t}^{*} \circ r_{u v^{-1}}=r_{t v}^{*} \circ r_{u}$.

Proof. We are assuming that $t \in I_{1}(v)$. Thus, $v^{-1} \in I_{1}\left(t^{-1}\right)$. Thus, by Corollary 3.3(i), $r_{v^{-1} t^{-1}} \circ f_{v^{-1}}=r_{t^{-1}} ;$ equivalently,

$$
r_{t v}^{*} \circ f_{v}^{*}=r_{t}^{*}
$$

We are also assuming that $u \in I_{1}\left(v^{-1}\right)$. Thus, by [5; Lemma 6.5.2(i)], $v \in I_{1}\left(u^{-1}\right)$, so that, again by Corollary 3.3(i), $r_{v u^{-1}} \circ f_{v}=r_{u^{-1}}$; equivalently

$$
f_{v}^{*} \circ r_{u v^{-1}}=r_{u} .
$$

From $r_{t v}^{*} \circ f_{v}^{*}=r_{t}^{*}$ and $f_{v}^{*} \circ r_{u v^{-1}}=r_{u}$ we obtain that

$$
r_{t}^{*} \circ r_{u v^{-1}}=r_{t v}^{*} \circ f_{v}^{*} \circ r_{u v^{-1}}=r_{t v}^{*} \circ r_{u},
$$

as wanted.
Lemma 4.2 has two applications which will not be needed in the remainder of this note, but seem to be appealing.
Let t and u be elements in W, and assume that $t \in I_{1}\left(u^{-1}\right)$. In this case, we may apply Lemma 4.2 to $t, 1$, and u^{-1} in place of t, u, and v. We obtain that $r_{t}^{*} \circ r_{u}=r_{t u^{-1}}^{*} \circ r_{1}$. On the other hand, by Corollary 3.4(ii), $f_{t u^{-1}} \subseteq r_{t u^{-1}}^{*} \circ r_{1}$. Thus, we obtain that $f_{t u^{-1}} \subseteq r_{t}^{*} \circ r_{u}$. Setting $t=1, u=1$, and $v=w^{-1}$ in Lemma 4.2 we obtain that $r_{1}^{*} \circ r_{w}=r_{w^{-1}}^{*} \circ r_{1}$, equivalently, $r_{1} \circ r_{w}=r_{w} \circ r_{1}$.

Lemma 4.3

Let t and u be elements in W, and let i be an element in I. Then the following hold.
(i) Assume that $t \in I_{-1}(i)$ or $u \in I_{-1}(i)$. Then $r_{t}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ r_{u i}$.
(ii) Assume that $t \in I_{1}(i)$ or $u \in I_{1}(i)$. Then $r_{t i}^{*} \circ r_{u i} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. (i) From Lemma 3.1 we know that $r_{u^{-1}} \subseteq r_{(u i)^{-1}} \circ f_{i}$. Thus, $r_{u}^{*} \subseteq r_{u i}^{*} \circ f_{i}$; equivalently $r_{u} \subseteq f_{i} \circ r_{u i}$.
Assume first that $t \in I_{-1}(i)$. Then, by Lemma 3.1(i), $r_{t^{-1}} \circ f_{i}=r_{(t i)^{-1}}$; equivalently, $r_{t}^{*} \circ f_{i}=r_{t i}^{*}$.
From $r_{u} \subseteq f_{i} \circ r_{u i}$ and $r_{t}^{*} \circ f_{i}=r_{t i}^{*}$ we obtain that

$$
r_{t}^{*} \circ r_{u} \subseteq r_{t}^{*} \circ f_{i} \circ r_{u i}=r_{t i}^{*} \circ r_{u i} .
$$

Assume now that $u \in I_{-1}(i)$. Then interchanging the roles of t and u the above reasoning shows that $r_{u}^{*} \circ r_{t} \subseteq r_{u i}^{*} \circ r_{t i}$, and that is equivalent to $r_{t}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ r_{u i}$.
(ii) We are assuming that $t \in I_{-1}(i)$ or $u \in I_{-1}(i)$. Thus, we have $t i \in I_{1}(i)$ or $u \in I_{1}(i)$. Applying (i) to $t i$ and $u i$ in place of t and u we now obtain that $r_{t}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ r_{u i}$.

Corollary 4.4

Let t, u, and v be elements in W, and assume that $u \in I_{1}(v)$. Then $r_{t v}^{*} \circ r_{u v} \subseteq r_{t}^{*} \circ r_{u}$.
Proof. We proceed by induction with respect to $\ell_{I}(v)$.

If $\ell_{I}(v)=0$, there is nothing to show if $v=1$. Thus, we assume that $1 \leq \ell_{I}(v)$. In this case, we find elements v^{\prime} in W and i in I such that

$$
v=v^{\prime} i \quad \text { and } \quad \ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1 .
$$

Note that $v^{\prime} \in I_{1}(i)$. Thus, as $u \in I_{1}(v)$, we obtain from [5; Lemma 2.3.8(i)] that $u v^{\prime} \in I_{1}(i)$. Thus, by Lemma 4.3(ii), $r_{t v^{\prime} i}^{*} \circ r_{u v^{\prime} i} \subseteq r_{t v^{\prime}}^{*} \circ r_{u v^{\prime}}$. Thus, as $v^{\prime} i=v$, we obtain that $r_{t v}^{*} \circ r_{u v} \subseteq$ $r_{t v^{\prime}}^{*} \circ r_{u v^{\prime}}$ 。
From $u \in I_{1}(v)$ and $v^{\prime} \in I_{1}(i)$ we obtain that $u \in I_{1}\left(v^{\prime}\right)$; cf. [5; Lemma 2.3.8(i)]. Thus, by induction, $r_{t v^{\prime}}^{*} \circ r_{u v^{\prime}} \subseteq r_{t}^{*} \circ r_{u}$.
From $r_{t v}^{*} \circ r_{u v} \subseteq r_{t v^{\prime}}^{*} \circ r_{u v^{\prime}}$ and $r_{t v^{\prime}}^{*} \circ r_{u v^{\prime}} \subseteq r_{t}^{*} \circ r_{u}$ we obtain that $r_{t v}^{*} \circ r_{u v} \subseteq r_{t}^{*} \circ r_{u}$.
We conclude this section with two results on the case where T is thick.

Lemma 4.5

Assume that T is thick. Let t and u be elements in W, let i be an element in I, and assume that $\{t, u\} \subseteq I_{1}(i)$. Then $r_{t i}^{*} \circ r_{u} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. We are assuming that $u \in I_{1}(i)$. Thus, by Lemma 3.1(iii), $r_{u^{-1}} \subseteq r_{u^{-1}} \circ f_{i}$. Thus, $r_{u}^{*} \subseteq r_{u}^{*} \circ f_{i}$; equivalently, $r_{u} \subseteq f_{i} \circ r_{u}$.
 equivalently, $r_{t i}^{*} \circ f_{i}=r_{t}^{*}$.
From $r_{u} \subseteq f_{i} \circ r_{u}$ and $r_{t i}^{*} \circ f_{i}=r_{t}^{*}$ we obtain that

$$
r_{t i}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ f_{i} \circ r_{u}=r_{t}^{*} \circ r_{u}
$$

as wanted.

Corollary 4.6

Assume that T is thick. Let w be an element in W. Then the following hold.
(i) We have $r_{w}^{*} \circ r_{1} \subseteq r_{1}^{*} \circ r_{1}$.
(ii) We have $f_{w} \subseteq r_{1}^{*} \circ r_{1}$.

Proof. (i) There is nothing to show if $w=1$. Thus, we assume that $w \neq 1$. In this case, we find elements v in W and i in I such that $v \in I_{1}(i)$.
Since $1 \in I_{1}(i)$, we may apply Lemma 4.5 to v and 1 in place of t and u. We obtain that $r_{w}^{*} \circ r_{1} \subseteq r_{v}^{*} \circ r_{1}$. By induction, we also may assume that $r_{v}^{*} \circ r_{1} \subseteq r_{1}^{*} \circ r_{1}$. Thus, we have $r_{w}^{*} \circ r_{1} \subseteq r_{1}^{*} \circ r_{1}$.
(ii) From Corollary 3.4(ii) we know that $f_{w} \subseteq r_{w}^{*} \circ r_{1}$, from (i) that $r_{w}^{*} \circ r_{1} \subseteq r_{1}^{*} \circ r_{1}$. Thus, $f_{w} \subseteq r_{1}^{*} \circ r_{1}$.

Proposition 4.7

Assume that T is thick. Let t and u be elements in W, and assume that $t \in I_{1}(u)$. Then $r_{t u}^{*} \circ r_{1} \subseteq r_{t}^{*} \circ r_{1}$.

Proof. There is nothing to show if $u=1$. Therefore, we assume that $u \neq 1$. In this case, we find elements u^{\prime} in W and i in I such that $u^{\prime} i=u$ and $u^{\prime} \in I_{1}(i)$.
From $t \in I_{1}(u)$ and $u^{\prime} \in I_{1}(i)$ we obtain that $t \in I_{1}\left(u^{\prime}\right)$; cf. [5; Lemma 2.3.8(i)]. Thus, as $\ell_{I}\left(u^{\prime}\right)=\ell_{I}(u)-1$, induction yields

$$
r_{t u^{\prime}}^{*} \circ r_{1} \subseteq r_{t}^{*} \circ r_{1}
$$

From $t \in I_{1}(u)$ and $u^{\prime} \in I_{1}(i)$ we obtain that $t u^{\prime} \in I_{1}(i)$; cf. [5; Lemma 2.3.8(i)]. Since $1 \in I_{1}(i)$, we may apply Lemma 4.5 to $t u^{\prime}$ and 1 in place of t and u. We obtain that

$$
r_{t u}^{*} \circ r_{1} \subseteq r_{t u^{\prime}}^{*} \circ r_{1}
$$

Summarizing we obtain that $r_{t u}^{*} \circ r_{1} \subseteq r_{t}^{*} \circ r_{1}$.

5. Several Facts About the Bruhat Order

We define

$$
T:=\left\{w^{-1} i w \mid w \in W, i \in I\right\} .
$$

Given u and v in W, we say that u is a subelement of v if $u=v$ or if W contains elements w_{0}, \ldots, w_{n} with $u=w_{0}, v=w_{n}$, and n a positive integer such that, for each element i in $\{1, \ldots, n\}$,

$$
w_{i-1}^{-1} w_{i} \in T \quad \text { and } \quad \ell_{I}\left(w_{i-1}\right) \leq \ell_{I}\left(w_{i}\right)
$$

Being a subelement is an order on W. This order is called the Bruhat order on W.
Note that 1 is a subelement of each element in W.
The following lemma is the key to all the subsequent results in this section.

Lemma 5.1

Let u and v be elements in W, and assume that $u \neq 1$. Then the following conditions are equivalent.
(a) The elements u is a subelement of v.
(b) There exist elements i_{1}, \ldots, i_{n} in I with $n=\ell_{I}(v)$ and $v=i_{1} \cdots i_{n}$ and elements j_{1}, \ldots, j_{m} in $\{1, \ldots, n\}$ such that $\left(m=\ell_{I}(u),\right) j_{1} \leq \ldots \leq j_{m}$, and $u=i_{j_{1}} \cdots i_{j_{m}}$.
(c) For any n elements i_{1}, \ldots, i_{n} in I with $n=\ell_{I}(v)$ and $v=i_{1} \cdots i_{n}$, there exist elements j_{1}, \ldots, j_{m} in $\{1, \ldots, n\}$ such that $\left(m=\ell_{I}(u), j_{1} \leq \ldots \leq j_{m}\right.$, and $u=i_{j_{1}} \cdots i_{j_{m}}$.

Proof. This is [2; Corollary 2.2.3].

Corollary 5.2

Let t and u be elements in W. Then the following hold.
(i) Assume that t is a subelement of u. Then, for each element v in W with $\{t, u\} \subseteq$ $I_{1}(v)$, tv is a subelement of uv.
(ii) Assume that $t \in I_{1}(u)$. Then t is a subelement of tu.

Proof. (i) This follows from Lemma 5.1.
(ii) We are assuming that $t \in I_{1}(u)$. thus, by [5; Lemma 6.5.2(i)], $u^{-1} \in I_{1}\left(t^{-1}\right)$. Thus, as $1 \in I_{1}\left(t^{-1}\right)$, we obtain from (i) that t^{-1} is a subelement of $u^{-1} t^{-1}$. It follows that t is a subelement of $t u$.

Lemma 5.3

Let v be an element in W, set $n:=\ell_{I}(v)$, and let i_{1}, \ldots, i_{n} be elements in I with $v=i_{1} \cdots i_{n}$. Let u be a subelement of v with $u \neq 1$, and set $m:=\ell_{I}(u)$. Then $\{1, \ldots, n\}$ contains elements j_{1}, \ldots, j_{m} with $j_{1} \leq \ldots \leq j_{m}$ and $u=i_{j_{1}} \cdots i_{j_{m}}$ such that the following conditions hold.
(i) For any two integers l with $1 \leq l \leq m-1$ and j with $j_{l}+1 \leq j \leq j_{l+1}-1$, we have $i_{j_{1}} \cdots i_{j_{l}} \in I_{1}\left(i_{j}\right)$.
(ii) For each integer j with $j_{m}+1 \leq j \leq n$, we have $u \in I_{1}\left(i_{j}\right)$.

Proof. Since u is a subelement of $v,\{1, \ldots, n\}$ contains elements j_{1}, \ldots, j_{m} with

$$
j_{1} \leq \ldots \leq j_{m} \quad \text { and } \quad u=i_{j_{1}} \cdots i_{j_{m}}
$$

cf. Lemma 5.1. Among the m-tuples $\left(j_{1}, \ldots, j_{m}\right)$ with $j_{1} \leq \ldots \leq j_{m}$ and $u=i_{j_{1}} \cdots i_{j_{m}}$ we choose $\left(j_{1}, \ldots, j_{m}\right)$ such that $j_{1}+\ldots+j_{m}$ is as large as possible. We will see that both conditions (i) and (ii) hold.
We first show that (i) holds. To do so we assume, by way of contradiction, that there exist integers l in $\{1, \ldots, m-1\}$ and j in $\left\{j_{l}+1, \ldots, j_{l+1}-1\right\}$ such that $i_{j_{1}} \cdots i_{j_{l}} \in I_{-1}\left(i_{j}\right)$. Then, by [2; Theorem 1.5.1], $\{1, \ldots, l\}$ contains an element k with

$$
i_{j_{1}} \cdots i_{j_{k-1}} i_{j_{k+1}} \cdots i_{j_{l}}=i_{j_{1}} \cdots i_{j_{l}} i_{j} .
$$

It follows that

$$
i_{j_{1}} \cdots i_{j_{k-1}} i_{j_{k+1}} \cdots i_{j_{l}} i_{j}=i_{j_{1}} \cdots i_{j_{l}}
$$

and then

$$
i_{j_{1}} \cdots i_{j_{k-1}} i_{j_{k+1}} \cdots i_{j_{l}} i_{j} i_{j_{l+1}} \cdots i_{j_{m}}=i_{j_{1}} \cdots i_{j_{m}}=u
$$

However, since $j_{k}+1<j$, we have

$$
j_{1}+\ldots+j_{m}+1 \leq j_{1}+\cdots+j_{k-1}+j_{k+1}+\cdots+j_{l}+j+j_{l+1}+\cdots+j_{m}
$$

and that contradicts the choice of $\left(j_{1}, \ldots, j_{m}\right)$.
To show that (ii) holds, we assume, by way of contradiction, that there exists an integer j with $j_{m}+1 \leq j \leq n$ and $u \in I_{-1}\left(i_{j}\right)$. Then, by [2; Theorem 1.5.1], $\{1, \ldots, m\}$ contains an element k with $i_{j_{1}} \cdots i_{j_{k-1}} i_{j_{k+1}} \cdots i_{j_{m}}=u i_{j}$. It follows that

$$
i_{j_{1}} \cdots i_{j_{k-1}} i_{j_{k+1}} \cdots i_{j_{m}} i_{j}=u
$$

However, since $j_{k}+1 \leq j$, we have

$$
j_{1}+\ldots+j_{m}+1 \leq j_{1}+\cdots+j_{k-1}+j_{k+1}+\cdots+j_{m}+j
$$

which, again, contradicts the choice of $\left(j_{1}, \ldots, j_{m}\right)$.

Lemma 5.4

Let j be an element in I, let v^{\prime} be an element in $I_{1}(j)$, and let u be a subelement of $v^{\prime} j$. Then at least one of the elements u and $u j$ is subelement of v^{\prime}.

Proof. Set $n:=\ell_{I}\left(v^{\prime} j\right)$. Then, since $v^{\prime} \in I_{1}(j), \ell_{I}\left(v^{\prime}\right)=n-1$. Thus, I contains elements i_{1}, \ldots, i_{n-1} such that $v^{\prime}=i_{1} \ldots i_{n-1}$. Set $i_{n}:=j$. Then

$$
v^{\prime} j=i_{1} \cdots i_{n}
$$

We are assuming that u is a subelement of $v^{\prime} j$. If $u=1, u$ is a subelement of $v^{\prime} j$, and we are done. Thus, we assume that $u \neq 1$. Thus, by Lemma $5.1,\{1, \ldots, n\}$ contains elements j_{1}, \ldots, j_{m} with

$$
j_{1} \leq \ldots \leq j_{m} \quad \text { and } \quad u=i_{j_{1}} \cdots i_{j_{m}}
$$

Suppose that $j_{m} \neq n$. Then, by Lemma 5.1, u is a subelement of v^{\prime}, and we are done.
Suppose that $j_{m}=n$. Then, as $i_{n}=j, i_{j_{m}}=j$. Thus, as $u=i_{j_{1}} \cdots i_{j_{m}}, u j=i_{j_{1}} \cdots i_{j_{m-1}}$. Since $\left\{j_{1}, \ldots, j_{m-1}\right\} \subseteq\{1, \ldots, n-1\}$, this implies that $u j$ is a subelement of v^{\prime}. Again, we are done.

Let v be an element in W, let u be a subelement of v, assume that $u \neq 1$, and set $n:=\ell_{I}(v)$. We say that u is an isolated subelement of v if I contains elements i_{1}, \ldots, i_{n} such that $v=$ $i_{1} \cdots i_{n}$ and $\{1, \ldots, n\}$ contains uniquely determined elements j_{1}, \ldots, j_{m} with $j_{1} \leq \cdots \leq j_{m}$ and $u=i_{j_{1}} \cdots i_{j_{m}}$.
The above definition says that $u=i_{j_{1}} \cdots i_{j_{m}}$, but not that $m=\ell_{I}(u)$. From [2; Proposition 1.4.7], however, one obtains that $m=\ell_{I}(u)$.

Does the definiton depend on the choice of the elements i_{1}, \ldots, i_{n} ?
Note also that, by Lemma 5.3, the elements j_{1}, \ldots, j_{m} in the above definition satisfy the conditions (i) and (ii) in Lemma 5.3.
We say that 1 is an isolated subelement of v if $\ell_{I}(v)=|\operatorname{supp}(v)|$.

Lemma 5.5

Let j be an element in I, let v^{\prime} be an element in $I_{1}(j)$, and let u be an isolated subelement of $v^{\prime} j$. Then at most one of the elements u and $u j$ is subelement of v^{\prime}.

Proof. We proceed by induction with respect to $\ell_{I}(u)$.
Assume first that $\ell_{I}(u)=0$. Then $u=1$. Thus, as u is assumed to be an isolated subelement of $v^{\prime} j, 1$ is an isolated subelement of $v^{\prime} j$. This means that $\ell_{I}\left(v^{\prime} j\right)=\left|\operatorname{supp}\left(v^{\prime} j\right)\right|$.
We are assuming that $v^{\prime} \in I_{1}(j)$. Thus, as $\ell_{I}\left(v^{\prime} j\right)=\left|\operatorname{supp}\left(v^{\prime} j\right)\right|, j$ is not subelement of v^{\prime}, so that we are done in this case.
Set $n:=\ell_{I}\left(v^{\prime} j\right)$. Then, since $v^{\prime} \in I_{1}(j), \ell_{I}\left(v^{\prime}\right)=n-1$. Thus, I contains elements i_{1}, \ldots, i_{n-1} such that $v^{\prime}=i_{1} \ldots i_{n-1}$. Set $i_{n}:=j$. Then

$$
v^{\prime} j=i_{1} \cdots i_{n}
$$

Now assume that $1 \leq \ell_{I}(u)$. Thus, $u \neq 1$. Thus, as u is assumed to be an isolated subelement of v, we obtain from Lemma 5.1 uniquely determined elements j_{1}, \ldots, j_{m} in $\{1, \ldots, n\}$ with

$$
j_{1} \leq \ldots \leq j_{m} \quad \text { and } \quad u=i_{j_{1}} \cdots i_{j_{m}}
$$

Assume that $u j$ is a subelement of v^{\prime}. We shall be done if we succeed in showing that u is not a subelement of v^{\prime}.
Since $u j$ is a subelement of $v^{\prime}, u j=1$ or $\{1, \ldots, n-1\}$ contains elements $j_{1}^{\prime}, \ldots, j_{m^{\prime}}^{\prime}$ with

$$
j_{1}^{\prime} \leq \ldots \leq j_{m^{\prime}}^{\prime} \quad \text { and } \quad u j=i_{j_{1}^{\prime}} \cdots i_{j_{m^{\prime}}^{\prime}}
$$

Suppose that $u j \neq 1$. Then, since $j=i_{n}$, we obtain from $u j=i_{j_{1}^{\prime}} \cdots i_{j_{m^{\prime}}^{\prime}}$ that

$$
u=i_{j_{1}^{\prime}} \cdots i_{j_{m^{\prime}}^{\prime}} i_{n}
$$

Since u is assumed to be an isolated subelement of $v^{\prime} j$ we conclude from $j_{1} \leq \ldots \leq j_{m}$ and $u=i_{j_{1}} \cdots i_{j_{m}}$ that $\left(j_{1}, \ldots, j_{m}\right)=\left(j_{1}^{\prime}, \ldots, j_{m^{\prime}}^{\prime}, n\right)$. This is impossible, since $j_{m} \leq n-1$.
This shows that $u j=1$. As a consequence, $u=j$. Since $j=i_{n}$, this implies that $u=i_{n}$. Since u is assumed to be an isolated subelement of $v^{\prime} j$, this implies that $i_{n} \notin\left\{i_{1}, \ldots, i_{n-1}\right\}$. It follows that u is not a subelement of v^{\prime}.

Lemma 5.6

Let j be an element in I, let v^{\prime} be an element in $I_{1}(j)$, and let u be an isolated subelement of $v^{\prime} j$. Then the following hold.
(i) If u is a subelement of v^{\prime}, u is an isolated subelement of v^{\prime}.
(ii) If $u j$ is a subelement of $v^{\prime}, u j$ is an isolated subelement of v^{\prime}.

Proof. (i) If u is a subelement of v^{\prime}, u is an isolated subelement of v^{\prime}, since u is an isolated subelement of $v^{\prime} j$.
(ii) We are assuming that $v^{\prime} \in I_{1}(i)$. Thus, $\ell_{I}\left(v^{\prime} j\right)=\ell_{I}\left(v^{\prime}\right)+1$. Set $n:=\ell_{I}\left(v^{\prime} j\right)$. Then $\ell_{I}\left(v^{\prime}\right)=n-1$. Thus, I contains elements i_{1}, \ldots, i_{n-1} such that

$$
v^{\prime}=i_{1} \cdots i_{n-1} .
$$

Assume that $u i$ is a subelement of v^{\prime}. We will see that $u j$ is an isolated subelement of v^{\prime}. Since $u j$ is a subelement of v^{\prime} and $v^{\prime}=i_{1} \cdots i_{n-1}, u j=1$ or $\{1, \ldots, n-1\}$ contains elements j_{1}, \ldots, j_{m} with

$$
j_{1} \leq \ldots \leq j_{m} \quad \text { and } \quad u j=i_{j_{1}} \cdots i_{j_{m}}
$$

Suppose first that $u j=1$. Then $u=j$. Since u is an isolated subelement of v, this implies that $\ell_{I}\left(v^{\prime}\right)=\left|\operatorname{supp}\left(v^{\prime}\right)\right|$. Thus, by definition, 1 is an isolated subelement of v^{\prime}. Thus, as $u j=1, u j$ is an isolated subelement of v^{\prime}, as wanted.
Suppose now that $u j \neq 1$. Then we obtain from $u j=i_{j_{1}} \cdots i_{j_{m}}$ that

$$
u=i_{j_{1}} \cdots i_{j_{m}} j
$$

Since u is assumed to be an isolated subelement of $v^{\prime} j$, this shows that $\left(j_{1}, \ldots, j_{m}\right)$ is the only finite sequence of elements in $\{1, \ldots, n-1\}$ satisfying

$$
j_{1} \leq \ldots \leq j_{m} \quad \text { and } \quad u j=i_{j_{1}} \cdots i_{j_{m}} .
$$

Again, we have shown that $u j$ is an isolated subelement of v^{\prime}.

6. The First Two Structure Theorems and Some Consequences

Throughout this section, we assume T to be thick.
Theorem 6.1 [First Structure Theorem]
Let t, u, and v be elements in W. Assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Then $t u^{-1}$ is a subelement of v.

Proof. Set $q:=t u^{-1}$. We will see that q is a subelement of v and proceed by induction with respect to $\ell_{I}(v)$.
Assume first that $\ell_{I}(v)=0$. Then $v=1$. Since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, this means that $f_{1} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. It follows that $r_{t}=r_{u}$, and then that $t=u$. Thus, as $q=t u^{-1}, q=1$, and that implies that q is a subelement of v.

Assume now that $1 \leq \ell_{I}(v)$. Then we find elements v^{\prime} in W and i in I such that $v=v^{\prime} i$ and $\ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1$. Note that $v^{\prime} \in I_{1}(i)$.
From $v^{\prime} \in I_{1}(i)$ and $v^{\prime} i=v$ we obtain that $f_{v^{\prime}} \circ f_{i}=f_{v}$; cf. Lemma 2.2(i). Thus, since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, $\left(f_{v^{\prime}} \circ f_{i}\right) \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. It follows that

$$
\left(r_{t} \circ f_{v^{\prime}}\right) \cap\left(r_{u} \circ f_{i}\right)
$$

is not empty. Let u^{\prime} be an element in W such that

$$
r_{u^{\prime}} \cap\left(r_{t} \circ f_{v^{\prime}}\right) \quad \text { and } \quad r_{u^{\prime}} \cap\left(r_{u} \circ f_{i}\right)
$$

both are not empty.
Since $r_{u^{\prime}} \cap\left(r_{t} \circ f_{v^{\prime}}\right)$ is not empty, so is $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{u^{\prime}}\right)$. Thus, by induction, $t u^{\prime-1}$ is a subelement of v^{\prime}. Set $q^{\prime}:=t u^{\prime-1}$. Then q^{\prime} is a subelement of v^{\prime}.
Since $r_{u^{\prime}} \cap\left(r_{u} \circ f_{i}\right)$ is not empty, $u^{\prime} \in\{i u, u\}$; cf. Lemma 3.1. Thus, as $q^{\prime}=t u^{\prime-1}$, we have $q^{\prime} \in\left\{t u^{-1} i, t u^{-1}\right\}$. It follows that

$$
q^{\prime} \in\{q i, q\} .
$$

Assume first that $q^{\prime}=q i$ and $\ell_{I}(q)=\ell_{I}\left(q^{\prime}\right)-1$. From $\ell_{I}(q)=\ell_{I}\left(q^{\prime}\right)-1$ we obtain that $\ell_{I}\left(q^{\prime}\right)=\ell_{I}(q)+1$. Then, as $q^{\prime}=q i, q \in I_{1}(i)$. Thus, as $q^{\prime}=q i$, we obtain from Corollary 5.2(i) that q is a subelement of q^{\prime}. From $v^{\prime} \in I_{1}(i)$ and $v=v^{\prime} i$ we also obtain that v^{\prime} is a subelement of v; again, by Corollary $5.2(\mathrm{i})$. Now, as q is a subelement of q^{\prime}, q^{\prime} is a subelement of v^{\prime}, and v^{\prime} is a subelement of v, we obtain from the transitivity of the Bruhat order that q is a subelement of v.

Next, assume that $q^{\prime}=q i$ and $\ell_{I}(q)=\ell_{I}\left(q^{\prime}\right)+1$. From $q^{\prime}=q i$ we obtain that $q=q^{\prime}$. Thus, as $\ell_{I}(q)=\ell_{I}\left(q^{\prime}\right)+1, q^{\prime} \in I_{1}(i)$. Recall also that $v^{\prime} \in I_{1}(i)$ and that q^{\prime} is a subelement of v^{\prime}. Thus, applying Corollary 5.2(ii) to q^{\prime} and v^{\prime} in place of u and v we obtain that q is a subelement of v.

Assume, finally, that $q^{\prime}=q$. Then, as q^{\prime} is a subelement of v^{\prime}, q is a subelement of v^{\prime}. Recall that $v=v^{\prime} i$ and that $v^{\prime} \in I_{1}(i)$. Thus, by Corollary $5.2(\mathrm{i}), v^{\prime}$ is a subelement of v. Now, as q is a subelement of v^{\prime} and v^{\prime} is a subelement of v, we obtain from the transitivity of the Bruhat order that q is a subelement of v.

Proposition 6.2

Let v be an element in W, and let u be a subelement of v. Then $r_{v}^{*} \circ r_{1} \subseteq r_{u}^{*} \circ r_{1}$.
Proof. From Proposition 4.7 we know that $r_{v} \circ r_{1} \subseteq r_{1} \circ r_{1}$, so that we are done if $u=1$.
Assume that $u \neq 1$. In this case, we set $n:=\ell_{I}(v)$, and we let i_{1}, \ldots, i_{n} be elements in I with $v=i_{1} \cdots i_{n}$.
Since u is a subelement of v with $u \neq 1$ and $m=\ell_{I}(u)$, Lemma 5.3 provides elements j_{1}, \ldots, j_{m} in $\{1, \ldots, n\}$ contains with $j_{1} \leq \ldots \leq j_{m}$ and $u=i_{j_{1}} \cdots i_{j_{m}}$ such that $i_{j_{1}} \cdots i_{j_{l}} \in I_{1}\left(i_{j}\right)$ for any two integers l with $1 \leq l \leq m-1$ and j with $j_{l}+1 \leq j \leq j_{l+1}-1$ and $u \in I_{1}\left(i_{j}\right)$ for each integer j with $j_{m}+1 \leq j \leq n$.
We now define two $(n+1)$-tuples of elements of W,

$$
\left(u_{0}, \ldots, u_{n}\right) \quad \text { and } \quad\left(v_{0}, \ldots, v_{n}\right)
$$

Let k be an element in $\{0, \ldots, n\}$.
If $0 \leq k \leq j_{1}-1$, we set $u_{k}=1$. (Note that $u_{0}=1$.)
If $j_{1} \leq k \leq n$, we define $u_{k}:=i_{j_{1}} \cdots i_{j_{l}}$, where l is the largest integer in $\{1, \ldots, k\}$ with $j_{l} \leq k$. (Note that $u_{n}=u$.)
Let k be an element in $\{1, \ldots, n\}$, and let l denote the largest integer in $\{1, \ldots, k\}$ with $j_{l} \leq k$. Then we have

$$
j_{l}=k \quad \text { or } \quad j_{l}+1 \leq k
$$

If $j_{l}=k$, we have $j_{l-1} \leq k-1$, so $u_{k-1}=i_{j_{1}} \cdots i_{j_{l-1}}$, and then $u_{k}=u_{k-1} i_{j_{l}}$.
If $j_{l}+1 \leq k$, we have $u_{k-1}=i_{j_{1}} \cdots i_{j_{l}}=u_{k}$. Thus, as $i_{j_{1}} \cdots i_{j_{l}} \in I_{1}\left(i_{k}\right), u_{k-1} \in I_{1}\left(i_{k}\right)$.
Thus, we have

$$
u_{k}=u_{k-1} i_{k} \quad \text { or } \quad u_{k}=u_{k-1} \in I_{1}\left(i_{k}\right)
$$

We set $v_{n}=1$ and, for each element k in $\{0, \ldots, n-1\}$, we define $v_{k}:=i_{n} \cdots i_{k+1}$. (Note that $v_{0}=v^{-1}$.)
From $\ell_{I}(v)=n$ and $v=i_{1} \cdots i_{n}$ we obtain that

$$
v_{k-1}=v_{k} i_{k} \quad \text { and } \quad v_{k} \in I_{1}\left(i_{k}\right) .
$$

If $u_{k}=u_{k-1} i_{k}$, we apply Lemma 4.3(ii) to $u_{k-1} i_{k}, v_{k}$, and i_{k} in place of t, u, and i to obtain

$$
r_{u_{k-1}}^{*} \circ r_{v_{k-1}}=r_{u_{k-1}}^{*} \circ r_{v_{k} i_{k}} \subseteq r_{u_{k-1} i_{k}}^{*} \circ r_{v_{k}}=r_{u_{k}}^{*} \circ r_{v_{k}} .
$$

If $u_{k}=u_{k-1} \in I_{1}\left(i_{k}\right)$, Lemma 4.5 yields (since $u_{k-1} \in I_{1}\left(i_{k}\right)$ and $\left.v_{k} \in I_{1}\left(i_{k}\right)\right)$

$$
r_{u_{k-1}}^{*} \circ r_{v_{k-1}}=r_{u_{k-1}}^{*} \circ r_{v_{k} i_{k}} \subseteq r_{u_{k-1}}^{*} \circ r_{v_{k}}=r_{u_{k}}^{*} \circ r_{v_{k}} .
$$

Thus, we have

$$
r_{u_{k-1}}^{*} \circ r_{v_{k-1}} \subseteq r_{u_{k}}^{*} \circ r_{v_{k}}
$$

in both cases.
Now recall that $u_{0}=1, u_{n}=u, v_{0}=v^{-1}$, and $v_{n}=1$. Thus, by induction,

$$
r_{1} \circ r_{v}^{*}=r_{u_{0}}^{*} \circ r_{v_{0}} \subseteq r_{u_{n}}^{*} \circ r_{v_{n}}=r_{u}^{*} \circ r_{1} .
$$

On the other hand, applying Lemma 4.2 to v, v^{-1}, and v^{-1} in place of t, u, and v we obtain that $r_{v}^{*} \circ r_{1}=r_{1}^{*} \circ r_{v^{-1}}$; equivalently, $r_{v}^{*} \circ r_{1}=r_{1} \circ r_{v}^{*}$. Thus, $r_{v}^{*} \circ r_{1} \subseteq r_{u}^{*} \circ r_{1}$.

Theorem 6.3 [Second Structure Theorem]
Let t and v be elements in W. Then t is a subelement of v if and only if $f_{v} \subseteq r_{t}^{*} \circ r_{1}$.
Proof. Assume first that t is a subelement of v. Then, by Proposition 6.2, $r_{v}^{*} \circ r_{1} \subseteq r_{t}^{*} \circ r_{1}$. In Corollary 3.4(ii), we saw already that $f_{v} \subseteq r_{v}^{*} \circ r_{1}$. It follows that $f_{v} \subseteq r_{t}^{*} \circ r_{1}$.
Assume, conversely, that $f_{v} \subseteq r_{t}^{*} \circ r_{1}$. Then, by Theorem 6.1, t is a subelement of v.

Corollary 6.4

Let t, u, and v be elements in W. Then the following hold.
(i) Assume that $t \in I_{1}\left(u^{-1}\right)$ and that tu u^{-1} is a subelement of v. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.
(ii) Let i be an element in I. Assume that $\ell_{I}\left(t i u^{-1}\right)=\ell_{I}(t)+1+\ell_{I}\left(u^{-1}\right)$ and that tiu ${ }^{-1}$ is a subelement of v. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. (i) We are assuming that $t \in I_{1}\left(u^{-1}\right)$. Thus, applying Lemma 4.2 to 1 and u^{-1} in place of u and v we obtain that $r_{t}^{*} \circ r_{u}=r_{t u^{-1}}^{*} \circ r_{1}$.
We are assuming that $t u^{-1}$ is a subelement of v. Thus, by Theorem 6.3, $f_{v} \subseteq r_{t u^{-1}}^{*} \circ r_{1}$.
From $f_{v} \subseteq r_{t u^{-1}}^{*} \circ r_{1}$ and $r_{t}^{*} \circ r_{u}=r_{t u^{-1}}^{*} \circ r_{1}$ we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.
(ii) From $\ell_{I}\left(t i u^{-1}\right)=\ell_{I}(t)+1+\ell_{I}\left(u^{-1}\right)$ we obtain that $t i \in I_{1}\left(u^{-1}\right)$. Thus, as $t i u^{-1}$ is assumed to be a subelement of v, we obtain from (i) that $f_{v} \subseteq r_{t i}^{*} \circ r_{u}$.
Since $\{t, u\} \subseteq I_{1}(i)$, we obtain from Lemma 4.5 that $r_{t i}^{*} \circ r_{u} \subseteq r_{t}^{*} \circ r_{u}$.
From $f_{v} \subseteq r_{t i}^{*} \circ r_{u}$ and $r_{t i}^{*} \circ r_{u} \subseteq r_{t}^{*} \circ r_{u}$ we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Corollary 6.5

Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Then the following hold.
(i) We have $f_{v} \subseteq r_{t u^{-1}}^{*} \circ r_{1}$.
(ii) Assume that $t \in I_{1}\left(u^{-1}\right)$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. We are assuming that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Thus, by Theorem $6.1, t u^{-1}$ is a subelement of v.
(i) Since $t u^{-1}$ is a subelement of v, the claim follows from Theorem 6.3.
(ii) Since $t u^{-1}$ is a subelement of v, the claim follows from Corollary 6.4(i).

Corollary 6.6

Let t and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{1}\right)$ is not empty. Then $f_{v} \subseteq r_{t}^{*} \circ r_{1}$.
Proof. This is the case $u=1$ in Corollary 6.5(i).

7. A Reduction Theorem

Our first lemma is an inductive generalization of [1; Lemma 5.139(2)]].

Lemma 7.1

Let t and u be elements in W with $t \in I_{1}(u)$. Let x and y be elements in X with $(y, x) \in r_{t}$. Then X contains exactly one element z with $(y, z) \in f_{u}$ and $(z, x) \in r_{t u}$.

Proof. We proceed by induction with respect to $\ell_{I}(u)$.
Assume that $u=1$. Then $(y, y) \in f_{u}$ and $(y, x) \in r_{t u}$. Moreover, if $(y, z) \in f_{u}$ and $(z, x) \in r_{t u}$, then $y=z$.
Assume that $u \neq 1$. Then there exist elements u^{\prime} in $\langle J\rangle$ and j in J with $u=u^{\prime} j$ and $\ell_{I}(u)=\ell_{I}\left(u^{\prime}\right)+1$. From $t \in I_{1}(u), u=u^{\prime} j$, and $\ell_{I}(u)=\ell_{I}\left(u^{\prime}\right)+1$ we obtain that

$$
t \in I_{1}\left(u^{\prime}\right) \quad \text { and } \quad t u^{\prime} \in I_{1}(j) ;
$$

cf. [5; Lemma 2.3.8(i)].
Since $t \in I_{1}\left(u^{\prime}\right)$ and $\ell_{I}(u)=\ell_{I}\left(u^{\prime}\right)+1$, induction yields that X contains exactly one element z^{\prime} with

$$
\left(y, z^{\prime}\right) \in f_{u^{\prime}} \quad \text { and } \quad\left(z^{\prime}, x\right) \in r_{t u^{\prime}}
$$

Since $\left(z^{\prime}, x\right) \in r_{t u^{\prime}}$ and $t u^{\prime} \in I_{1}(j)$, there exists exactly one element z in X such that

$$
\left(z^{\prime}, z\right) \in f_{j} \quad \text { and } \quad(z, x) \in r_{t u}
$$

cf. [1; Lemma 5.139(2)].
From $u^{\prime} \in I_{1}(j)$ we obtain that $f_{u^{\prime}} \circ f_{j}=f_{u}$; cf. Lemma 2.2. Thus, as $\left(y, z^{\prime}\right) \in f_{u^{\prime}}$ and $\left(z^{\prime}, z\right) \in f_{j},(y, z) \in f_{u}$.
So far, we have shown the existence of an element z in X satisfying $(y, z) \in f_{u}$ and $(z, x) \in r_{t u}$. In order to show uniqueness we choose an element \bar{z} in X satisfying $(y, \bar{z}) \in f_{u}$ and

$$
(\bar{z}, x) \in r_{t u}
$$

We will see that $\bar{z}=z$.
From $(y, \bar{z}) \in f_{u}$ and $f_{u^{\prime}} \circ f_{j}=f_{u}$ we obtain an element \bar{z}^{\prime} in X with

$$
\left(y, \bar{z}^{\prime}\right) \in f_{u^{\prime}}
$$

and $\left(\bar{z}^{\prime}, \bar{z}\right) \in f_{j}$.
From $\left(\bar{z}^{\prime}, \bar{z}\right) \in f_{j}$ and $(\bar{z}, x) \in r_{t u}$ we obtain that $\left(\bar{z}^{\prime}, x\right) \in f_{j} \circ r_{t u}$. Since $u=u^{\prime} j$, this implies that $\left(\bar{z}^{\prime}, x\right) \in f_{j} \circ r_{t u^{\prime} j}$. On the other hand, as $t u^{\prime} \in I_{1}(j)$, Corollary 3.3(ii) yields $f_{j} \circ r_{t u^{\prime} j}=r_{t u^{\prime}}$. Thus,

$$
\left(\bar{z}^{\prime}, x\right) \in r_{t u^{\prime}}
$$

From $\left(y, \bar{z}^{\prime}\right) \in f_{u^{\prime}}$ and $\left(\bar{z}^{\prime}, x\right) \in r_{t u^{\prime}}$ together with the choice of z^{\prime} we obtain that $z^{\prime}=\bar{z}^{\prime}$. Thus, as $\left(\bar{z}^{\prime}, \bar{z}\right) \in f_{j}$,

$$
\left(z^{\prime}, \bar{z}\right) \in f_{j}
$$

Thus, as $(\bar{z}, x) \in r_{t u}$, the choice of z forces $\bar{z}=z$.

Lemma 7.2

Let w be an element in W, let J be a subset of $I \cap I_{1}(w)$, and let t, u, and v be elements in $\langle J\rangle$. Let x^{\prime} and x be elements in X with $\left(x^{\prime}, x\right) \in f_{w}$, and let y and z be elements in X with $(y, z) \in f_{v},\left(x^{\prime}, y\right) \in r_{t},\left(x^{\prime}, z\right) \in r_{u}$, and $(x, y) \in r_{t w}$. Then $(x, z) \in r_{u w}$.

Proof. We proceed by induction on $\ell_{I}(v)+\ell_{I}(w)$.
If $v=1, y=z$. In this case, $t=u$. Thus, $(x, z)=(x, y) \in r_{t w}=r_{u w}$, and we are done.
If $w=1, x^{\prime}=x$. In this case, $(x, z)=\left(x^{\prime}, z\right) \in r_{u}=r_{u w}$, and we are done.
We assume that $v \neq 1$ and that $w \neq 1$.
Since $v \in\langle J\rangle$ and $v \neq 1$, there exist elements v^{\prime} in $\langle J\rangle$ and k in J with $v=v^{\prime} k$ and $\ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1$. Thus, by Lemma $2.2, f_{v^{\prime}} \circ f_{k}=f_{v}$. Thus, as $(y, z) \in f_{v}, X$ contains an element z^{\prime} such that $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$ and $\left(z^{\prime}, z\right) \in f_{k}$.
Since $w \in W$ and $w \neq 1$, there exist elements w^{\prime} in W and l in I with $w=w^{\prime} l$ and $\ell_{I}(w)=\ell_{I}\left(w^{\prime}\right)+1$. Thus, by Lemma 2.2, $f_{w^{\prime}} \circ f_{l}=f_{w}$. Thus, as $\left(x^{\prime}, x\right) \in f_{w}, X_{-}$contains an element $x^{\prime \prime}$ such that $\left(x^{\prime}, x^{\prime \prime}\right) \in f_{w^{\prime}}$ and $\left(x^{\prime \prime}, x\right) \in f_{l}$.
Since $\left(x^{\prime}, z\right) \in r_{u}$ and $\left(z, z^{\prime}\right) \in f_{k},\left(x^{\prime}, z^{\prime}\right) \in r_{u} \circ f_{k}$. On the other hand, by Lemma 3.1, $r_{u} \circ f_{k} \subseteq r_{k u} \cup r_{u}$. Let u^{\prime} denote the element in W with $\left(x^{\prime}, z^{\prime}\right) \in r_{u^{\prime}}$. Then $u^{\prime} \in\{k u, u\}$. In particular, $u^{\prime} \in\langle J\rangle$. Thus, as $(x, y) \in r_{t w}$, induction yields that $\left(x, z^{\prime}\right) \in r_{u^{\prime} w}$.
From $(x, y) \in r_{t w}$ and $\left(x^{\prime \prime}, x\right) \in f_{l}$ we obtain that $\left(x^{\prime \prime}, y\right) \in f_{l} \circ r_{t w}$. On the other hand, as $t w \in I_{-1}(l)$ (by [5; Lemma 2.3.8(i)]) we obtain from Lemma 3.1(i) that $f_{l} \circ r_{t w}=r_{t w^{\prime}}$. Thus, we have $\left(x^{\prime \prime}, y\right) \in r_{t w^{\prime}}$, so that, by induction, $\left(x^{\prime \prime}, z\right) \in r_{u w^{\prime}}$.
From $\left(x^{\prime \prime}, x\right) \in f_{l}$ we obtain that $\left(x, x^{\prime \prime}\right) \in f_{l}$. Thus, as $\left(x^{\prime \prime}, z\right) \in r_{u w^{\prime}},(x, z) \in f_{l} \circ r_{u w^{\prime}}$. On the other hand, by Lemma 3.1, $f_{l} \circ r_{u w^{\prime}} \subseteq r_{u w} \cup r_{u w^{\prime}}$. Thus,

$$
(x, z) \in r_{u w} \quad \text { or } \quad(x, z) \in r_{u w^{\prime}}
$$

Assume that $(x, z) \in r_{u w^{\prime}}$. Then, as $\left(x, z^{\prime}\right) \in r_{u^{\prime} w}$ and $\left(z^{\prime}, z\right) \in f_{k}, u w^{\prime} \in\left\{k u^{\prime} w, u^{\prime} w\right\}$. Since $\left\{k u^{\prime}, u^{\prime}\right\} \subseteq\langle J\rangle$, this implies that $\langle J\rangle w^{\prime}=\langle J\rangle w$, contradiction. Thus, $(x, z) \in r_{u w}$.

Lemma 7.3

Let w be an element in W, let J be a subset of $I \cap I_{1}(w)$, and let t, u, and v be elements in $\langle J\rangle$. Then $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)=f_{v} \cap\left(r_{t w}^{*} \circ r_{u w}\right)$.

Proof. We first show that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) \subseteq f_{v} \cap\left(r_{t w}^{*} \circ r_{u w}\right)$. To do this we let y and z be elements in X and assume that $(y, z) \in f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$. We will see that $(y, z) \in r_{t w}^{*} \circ r_{u w}$. From $(y, z) \in r_{t}^{*} \circ r_{u}$ we obtain an element x^{\prime} in X with $\left(y, x^{\prime}\right) \in r_{t}^{*}$ and $\left(x^{\prime}, z\right) \in r_{u}$.
From $\left(y, x^{\prime}\right) \in r_{t}^{*}$ we obtain that $\left(x^{\prime}, y\right) \in r_{t}$. Thus, as $t \in I_{1}(w), X$ contains exactly one element x with $\left(x^{\prime}, x\right) \in f_{w}$ and $(x, y) \in r_{t w}$; cf. Lemma 7.1.
From $(x, y) \in r_{t w}$ we obtain that $(y, x) \in r_{t w}^{*}$. From $\left(x^{\prime}, x\right) \in f_{w},(y, z) \in f_{v},\left(x^{\prime}, y\right) \in r_{t}$, $\left(x^{\prime}, z\right) \in r_{u}$, and $(x, y) \in r_{t w}$ we obtain that $(x, z) \in r_{u w}$; cf. Lemma 7.2. From $(y, x) \in r_{t w}^{*}$ and $(x, z) \in r_{u w}$ we obtain that $(y, z) \in r_{t w}^{*} \circ r_{u w}$.
Since $\{t, u\} \subseteq I_{1}(w)$, we obtain from Corollary 4.4 that $r_{t w}^{*} \circ r_{u w} \subseteq r_{t}^{*} \circ r_{u}$.
Lemma 7.3 can be used to prove an interesting generalization of Corollary 4.6(ii). In fact, we obtain that $f_{v} \subseteq r_{u}^{*} \circ r_{u}$ for any two elements u and v in W with $\operatorname{supp}(v) \subseteq I_{1}(u)$. To see this, we first notice that, by Corollary 4.6(ii), $f_{v} \subseteq r_{1}^{*} \circ r_{1}$. Now, applying Lemma 7.3 to $\operatorname{supp}(v), 1,1$, and u in place of J, t, u, and w we obtain that $f_{v} \cap\left(r_{1}^{*} \circ r_{1}\right)=f_{v} \cap\left(r_{u}^{*} \circ r_{u}\right)$. Thus, $f_{v} \subseteq r_{u}^{*} \circ r_{u}$. As a consequence of this observation we obtain that $f_{i} \subseteq r_{w}^{*} \circ r_{w}$ for any two elements w in W and i in $I_{1}(w)$.

Theorem 7.4 [Reduction Theorem]
Let v be an element in W. Assume that $f_{v} \subseteq r_{t^{\prime}}^{*} \circ r_{u^{\prime}}$ for any two elements t^{\prime} and u^{\prime} in W with $f_{v} \cap\left(r_{t^{\prime}}^{*} \circ r_{u^{\prime}}\right) \neq \emptyset$ and $\operatorname{supp}\left(t^{\prime}\right) \cup \operatorname{supp}\left(u^{\prime}\right) \subseteq \operatorname{supp}(v)$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$ for any two elements t and u in W with $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) \neq \emptyset$.

Proof. Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. We have to show that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.
Set $J:=\operatorname{supp}(v)$. Since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty, $t u^{-1}$ is a subelement of v; cf. Theorem 6.1. Thus, $t u^{-1} \in\langle J\rangle$. It follows that $\langle J\rangle t=\langle J\rangle u$. Let q denote the uniquely determined element of shortest length in $\langle J\rangle t$ satisfying $\langle J\rangle q=\langle J\rangle t$. Then $\langle J\rangle$ contains elements t^{\prime} and u^{\prime} such that

$$
t=t^{\prime} q, \quad u=u^{\prime} q, \quad t^{\prime} \in I_{1}(q), \quad \text { and } \quad u^{\prime} \in I_{1}(q) .
$$

From $u^{\prime} \in I_{1}(q)$ we obtain that $f_{q} \circ r_{u^{\prime} q}=r_{u^{\prime}}$; cf. Corollary 3.3(ii). Similarly, $t^{\prime} \in I_{1}(q)$ yields $f_{q} \circ r_{t^{\prime} q}=r_{t^{\prime}} ;$ equivalently, $r_{t^{\prime} q}^{*} \circ f_{q}^{*}=r_{t^{\prime}}^{*}$. Thus, as $t=t^{\prime} q$ and $u=u^{\prime} q$,

$$
f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) \subseteq f_{v} \cap\left(r_{t^{\prime} q}^{*} \circ r_{u^{\prime} q}\right) \subseteq f_{v} \cap\left(r_{t^{\prime} q}^{*} \circ f_{q}^{*} \circ f_{q} \circ r_{u^{\prime} q}\right) \subseteq f_{v} \cap\left(r_{t^{\prime}}^{*} \circ r_{u^{\prime}}\right)
$$

Since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, this shows that $f_{v} \cap\left(r_{t^{\prime}}^{*} \circ r_{u^{\prime}}\right)$ is not empty. On the other hand, $\left\{t^{\prime}, u^{\prime}\right\} \subseteq\langle J\rangle$, so that $\operatorname{supp}\left(t^{\prime}\right) \cup \operatorname{supp}\left(u^{\prime}\right) \subseteq \operatorname{supp}(v)$. Thus, by hypothesis, $f_{v} \subseteq r_{t^{\prime}}^{*} \circ r_{u^{\prime}}$.
From $f_{v} \subseteq r_{t^{\prime}}^{*} \circ r_{u^{\prime}}$ together with Lemma 7.3 we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

8. The Case Where the Sagittal has Cardinality at Most 2

In this section, T is assumed to be thick. We shall see that, for any three elements t, u, and v in $W, f_{v} \subseteq r_{t^{-1}} \circ r_{u}$ if $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty and $|\operatorname{supp}(v)| \leq 2$; cf. Theorem 8.3. In
other words, we prove that Conjecture C holds if the support of its sagittal has cardinality at most 2. We will refer to Theorem 7.4.

Lemma 8.1

Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that I contains a subset H with $|H|=2$ and $\{t, u, v\} \subseteq\langle H\rangle$. Assume finally that H contains elements j and k with $\left\{t^{-1}, v^{-1}\right\} \subseteq I_{-1}(j)$ and $\left\{v, u^{-1}\right\} \subseteq I_{-1}(k)$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. We first claim that $\ell_{I}(t)+1 \leq \ell_{I}(v)$.
Assume, by way of contradiction, that $\ell_{I}(v) \leq \ell_{I}(t)$. Then, since $|I|=2$ and $\left\{t^{-1}, v^{-1}\right\} \subseteq$ $I_{-1}(j), t^{-1} \in I_{-1}\left(v^{-1}\right)$. Thus, by Lemma 3.2, $r_{t} \circ f_{v}=r_{v^{-1} t}$. On the other hand, we are assuming that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty, and that implies that $r_{u} \cap\left(r_{t} \circ f_{v}\right)$ is not empty. Thus, $r_{u}=r_{v^{-1}}$. It follows that $v^{-1} t=u$; equivalently, $t=v u$. Since we are assuming that $\ell_{I}(v) \leq \ell_{I}(t)$, this implies that $\ell_{I}(v) \leq \ell_{I}(v u)$.
On the other hand, since $\left\{v, u^{-1}\right\} \subseteq I_{-1}(k)$, we have $\ell_{I}(v u) \leq \ell_{I}(v)-1$, contradiction.
This contradiction shows that $\ell_{I}(t)+1 \leq \ell_{I}(v)$. Since $|I|=2$ and $\left\{t^{-1}, v^{-1}\right\} \subseteq I_{-1}(j)$, this implies that $v^{-1} \in I_{-1}\left(t^{-1}\right)$, so that

$$
v=t w \quad \text { and } \quad \ell_{I}(v)=\ell_{I}(t)+\ell_{I}(w)
$$

for some element $w \in W \backslash\{1\}$.
Recall that $v \in I_{-1}(k)$. Thus, as $v=t w$ and $\ell_{I}(v)=\ell_{I}(t)+\ell_{I}(w)$,

$$
w \in I_{-1}(k)
$$

From $v=t w$ and $\ell_{I}(v)=\ell_{I}(t)+\ell_{I}(w)$ we also obtain that

$$
f_{v}=f_{t} \circ f_{w}
$$

cf. Lemma 2.3. Thus, as $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, the intersection $\left(f_{t} \circ f_{w}\right) \cap$ $\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. It follows that

$$
\left(f_{t}^{*} \circ r_{t}^{*}\right) \cap\left(f_{w} \circ r_{u}^{*}\right)
$$

is not empty. On the other hand, by Corollary 3.4(iii), $f_{t}^{*} \circ r_{t}^{*}=r_{1}$. Thus, $r_{1} \cap\left(f_{w} \circ r_{u}^{*}\right)$ is not empty. It follows that $f_{w} \cap\left(r_{1} \circ r_{u}\right)$ is not empty. Thus, by Theorem 6.1, u^{-1} is a subelement of w.
Since $\left\{u^{-1}, w\right\} \subseteq I_{-1}(k)$ and u^{-1} is a subelement of w, we have

$$
w=s u^{-1} \quad \text { and } \quad \ell_{I}(w)=\ell_{I}(s)+\ell_{I}\left(u^{-1}\right)
$$

for some element s in W. Thus, as $v=t w$ and $\ell_{I}(v)=\ell_{I}(t)+\ell_{I}(w)$, we have

$$
v=t s u^{-1} \quad \text { and } \quad \ell_{I}(v)=\ell_{I}(t)+\ell_{I}(s)+\ell_{I}\left(u^{-1}\right)
$$

If $t \in I_{1}\left(u^{-1}\right)$, we know that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$ already from Corollary 6.5(ii).

Now assume that $t \notin I_{1}\left(u^{-1}\right)$. Then, $\ell_{I}(s)$ is odd. Thus, there exist elements l in I and s^{\prime} in W such that $s=l s^{\prime}$ and $\ell_{I}(s)=\ell_{I}\left(s^{\prime}\right)+1$. It follows that W contains an element q such that

$$
v=t l u^{-1} q \quad \text { and } \quad \ell_{I}(v)=\ell_{I}(t)+1+\ell_{I}\left(u^{-1}\right)+\ell_{I}(q) .
$$

Thus, by Corollary 6.4(ii), $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proposition 8.2

Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that I contains a subset H with $|H|=2$ and $\{t, u, v\} \subseteq\langle H\rangle$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. Assume first that $v=1$. Then $f_{1} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty, whence $t=u$. It follows that $f_{v}=f_{1} \subseteq r_{t}^{*} \circ r_{t}=r_{t}^{*} \circ r_{u}$, so that we are done in this case. Therefore, we assume that $v \neq 1$. In this case, I contains elements j and k with

$$
v^{-1} \in I_{-1}(j) \quad \text { and } \quad v \in I_{-1}(k) .
$$

Case I: Assume that $t^{-1} \in I_{-1}(j)$ and $u^{-1} \in I_{-1}(k)$. In this case, we are done by Lemma 8.1.

Case II: Assume that $t^{-1} \in I_{1}(j)$ and $u^{-1} \in I_{-1}(k)$.
Set $v^{\prime}:=j v$. Then, as $v^{-1} \in I_{-1}(j)$,

$$
v=j v^{\prime} \quad \text { and } \quad \ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1 .
$$

Thus, by Lemma 2.3,

$$
f_{j} \circ f_{v^{\prime}}=f_{v}
$$

Since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, this implies that $\left(f_{j} \circ f_{v^{\prime}}\right) \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. It follows that

$$
\left(f_{j} \circ r_{t}^{*}\right) \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)
$$

is not empty. On the other hand, by Lemma 3.1, $r_{t} \circ f_{j} \subseteq r_{j t} \cup r_{t}$. It follows that $f_{j} \circ r_{t}^{*} \subseteq$ $r_{j t}^{*} \cup r_{t}^{*}$. Thus, one of the intersections

$$
r_{j t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right) \quad \text { and } \quad r_{t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)
$$

is not empty.
Assume first that $r_{j t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)$ is not empty. Then $f_{v^{\prime}} \cap\left(r_{j t}^{*} \circ r_{u}\right)$ is not empty. Thus, as $\ell_{I}\left(v^{\prime}\right)=\ell_{I}(v)-1$, induction yields

$$
f_{v^{\prime}} \subseteq r_{j t}^{*} \circ r_{u}
$$

Thus, applying Lemma 4.1(i) to v^{\prime} and j in place of v and i we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$, as wanted.
Assume now that $r_{t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)$ is not empty. Then, by Lemma 3.5,

$$
r_{t}^{*} \subseteq f_{v^{\prime}} \circ r_{u}^{*} .
$$

From Lemma 3.1 we also know also that $r_{j t} \subseteq r_{t} \circ f_{j}$; equivalently,

$$
r_{j t}^{*} \subseteq f_{j} \circ r_{t}^{*}
$$

Thus, since $f_{j} \circ f_{v^{\prime}}=f_{v}$, we have

$$
r_{j t}^{*} \subseteq f_{j} \circ f_{v^{\prime}} \circ r_{u}^{*}=f_{v} \circ r_{u}^{*}
$$

It follows that $f_{v} \cap\left(r_{j t}^{*} \circ r_{u}\right)$ is not empty. Thus, as $\left\{(j t)^{-1}, v^{-1}\right\} \subseteq I_{-1}(j)$ and $\left\{v, u^{-1}\right\} \subseteq$ $I_{-1}(k)$, we obtain from Lemma 8.1 that

$$
f_{v} \subseteq r_{j t}^{*} \circ r_{u}
$$

Applying Lemma 4.1(ii) to v and j in place of $i v$ and i we now obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$, as wanted.
Case III: Assume that $t^{-1} \in I_{-1}(j)$ and $u^{-1} \in I_{1}(k)$. This is Case II with u, t, and v^{-1} in place of t, u and v.
Case IV: Assume that $t^{-1} \in I_{1}(j)$ and $u^{-1} \in I_{1}(k)$.
Set $v^{\prime}:=j v$. Then, as $v^{-1} \in I_{-1}(j)$,

$$
v=j v^{\prime} \quad \text { and } \quad \ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1
$$

Thus, by Lemma 2.3,

$$
f_{j} \circ f_{v^{\prime}}=f_{v}
$$

Since $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, this implies that $\left(f_{j} \circ f_{v^{\prime}}\right) \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. It follows that

$$
\left(f_{j} \circ r_{t}^{*}\right) \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)
$$

is not empty. On the other hand, by Lemma 3.1, $r_{t} \circ f_{j} \subseteq r_{j t} \cup r_{t}$. It follows that $f_{j} \circ r_{t}^{*} \subseteq$ $r_{j t}^{*} \cup r_{t}^{*}$. Thus, one of the intersections

$$
r_{j t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right) \quad \text { and } \quad r_{t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)
$$

is not empty.
Assume first that $r_{j t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)$ is not empty. Then $f_{v^{\prime}} \cap\left(r_{j t}^{*} \circ r_{u}\right)$ is not empty. Thus, as $\ell_{I}\left(v^{\prime}\right)=\ell_{I}(v)-1$, induction yields

$$
f_{v^{\prime}} \subseteq r_{j t}^{*} \circ r_{u}
$$

Thus, applying Lemma 4.1(i) to v^{\prime} and j in place of v and i we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$, as wanted.
Assume now that $r_{t}^{*} \cap\left(f_{v^{\prime}} \circ r_{u}^{*}\right)$ is not empty. Then, by Lemma 3.5,

$$
r_{t}^{*} \subseteq f_{v^{\prime}} \circ r_{u}^{*}
$$

From Lemma 3.1 we also know that $r_{j t} \subseteq r_{t} \circ f_{j}$; equivalently,

$$
r_{j t}^{*} \subseteq f_{j} \circ r_{t}^{*}
$$

Thus, since $f_{j} \circ f_{v^{\prime}}=f_{v}$, we have

$$
r_{j t}^{*} \subseteq f_{j} \circ f_{v^{\prime}} \circ r_{u}^{*}=f_{v} \circ r_{u}^{*}
$$

It follows that $f_{v} \cap\left(r_{j t}^{*} \circ r_{u}\right)$ is not empty. Thus, as $(j t)^{-1} \in I_{-1}(j), u^{-1} \in I_{1}(k)$, and $v \in I_{-1}(k)$, we obtain from Case III that

$$
f_{v} \subseteq r_{j t}^{*} \circ r_{u}
$$

Applying Lemma 4.1(ii) to v and j in place of $i v$ and i we now obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$, as wanted.

Theorem 8.3 [First Main Theorem]
Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that $|\operatorname{supp}(v)| \leq 2$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. From Proposition 8.2 we know that $f_{v} \subseteq r_{t^{\prime}}^{*} \circ r_{u^{\prime}}$ for any two elements t^{\prime} and u^{\prime} in W such that $f_{v} \cap\left(r_{t^{\prime}}^{*} \circ r_{u^{\prime}}\right)$ is not empty and $\operatorname{supp}\left(t^{\prime}\right) \cup \operatorname{supp}\left(u^{\prime}\right) \subseteq \operatorname{supp}(v)$. Thus, the claim follows from Theorem 7.4.

9. The Third Structure Theorem

In this section, we show that Condition C holds if the quotient of the subscripts of its transversals is an isolated subelement of its sagittal.
We begin with an application of Lemma 3.1.

Lemma 9.1

Let w be an element in W, let i be an element in I, and let x, y, and z be elements in X. Then the following hold.
(i) Assume that $(y, z) \in f_{i}$ and that $(x, z) \in r_{w}$. Then $(x, y) \in r_{i w} \cup r_{w}$.
(ii) Assume that $(y, z) \in f_{i}$ and that $(z, x) \in r_{w}$. Then $(y, x) \in r_{w i} \cup r_{w}$.

Proof. (i) From $(y, z) \in f_{i}$ we obtain that $(z, y) \in f_{i}$. Thus, as $(x, z) \in r_{w},(x, y) \in r_{w} \circ f_{i}$. On the other hand, by Lemma 3.1, $r_{w} \circ f_{i} \subseteq r_{i w} \cup r_{w}$. It follows that $(x, y) \in r_{i w} \cup r_{w}$.
(ii) We are assuming that $(z, x) \in r_{w}$. Thus, we have $(x, z) \in r_{w^{-1}}$. Thus, by (i), $(x, y) \in$ $r_{i w^{-1}} \cup r_{w^{-1}}$. It follows that $(y, x) \in r_{w i} \cup r_{w}$.

Lemma 9.2

Let t, u, and v^{\prime} be elements in W, and let j be an element in I. Let x, z^{\prime}, and z be elements in X with $\left(z^{\prime}, z\right) \in f_{j}$ and $(x, z) \in r_{u}$. Suppose that X contains an element y with $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$ and $(y, x) \in r_{t}^{*}$. Then the following hold.
(i) Assume that $t(j u)^{-1}$ is not a subelement of v^{\prime}. Then $\left(x, z^{\prime}\right) \notin r_{j u}$.
(ii) Assume that tu u^{-1} is not a subelement of v^{\prime}. Then $\left(x, z^{\prime}\right) \notin r_{u}$.

Proof. (i) Assume that $\left(x, z^{\prime}\right) \in r_{j u}$. Then, as $(y, x) \in r_{t}^{*}$, we have $\left(y, z^{\prime}\right) \in r_{t}^{*} \circ r_{j u}$. Since $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$, this implies that $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{j u}\right)$ is not empty, so that, by Theorem 6.1, $t(j u)^{-1}$ is a subelement of v^{\prime}.
(ii) Assume that $\left(x, z^{\prime}\right) \in r_{u}$. Then, as $(y, x) \in r_{t}^{*}$, we have $\left(y, z^{\prime}\right) \in r_{t}^{*} \circ r_{u}$. Since $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$, this implies that $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty, so that, by Theorem 6.1, $t u^{-1}$ is a subelement of v^{\prime}.

Lemma 9.3

Let t, u, and v^{\prime} be elements in W, and let j be an element in I. Assume that $v^{\prime} \in I_{1}(j)$. Assume further that $f_{v^{\prime} j} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Then the following hold.
(i) Assume that $t(j u)^{-1}$ is not a subelement of v^{\prime}. Then $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty.
(ii) Assume that $t u^{-1}$ is not a subelement of v^{\prime}. Then $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{j u}\right)$ is not empty.

Proof. We are assuming that $f_{v^{\prime} j} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Thus, X contains elements x, y, and z with $(y, z) \in f_{v^{\prime} j}$,

$$
(y, x) \in r_{t}^{*}, \quad \text { and } \quad(x, z) \in r_{u}
$$

We are assuming that $v^{\prime} \in I_{1}(j)$. Thus, by Lemma 2.2(i), $f_{v^{\prime}} \circ f_{j}=f_{v^{\prime} j}$. Since $(y, z) \in f_{v^{\prime} j}$, this implies that $(y, z) \in f_{v^{\prime}} \circ f_{j}$. Thus, X contains an element z^{\prime} with

$$
\left(y, z^{\prime}\right) \in f_{v^{\prime}} \quad \text { and } \quad\left(z^{\prime}, z\right) \in f_{j} .
$$

Applying Lemma 9.1(i) to u, j, and z^{\prime} in place of w, i, and y we obtain from $\left(z^{\prime}, z\right) \in f_{j}$ and $(x, z) \in r_{u}$ that

$$
\left(x, z^{\prime}\right) \in r_{j u} \cup r_{u}
$$

(i) We are assuming that $t(j u)^{-1}$ is not a subelement of v^{\prime}. Thus, by Lemma 9.2(i), $\left(x, z^{\prime}\right) \notin$ $r_{j u}$. It follows that

$$
\left(x, z^{\prime}\right) \in r_{u}
$$

From $\left(y, z^{\prime}\right) \in f_{v^{\prime}},(y, x) \in r_{t}^{*}$, and $\left(x, z^{\prime}\right) \in r_{u}$ we obtain that $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty.
(ii) We are assuming that $t u^{-1}$ is not a subelement of v^{\prime}. Thus, by Lemma 9.2(ii), $\left(x, z^{\prime}\right) \notin r_{u}$. It follows that

$$
\left(x, z^{\prime}\right) \in r_{j u} .
$$

From $\left(y, z^{\prime}\right) \in f_{v^{\prime}},(y, x) \in r_{t}^{*}$, and $\left(x, z^{\prime}\right) \in r_{j u}$ we obtain that $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{j u}\right)$ is not empty.

Lemma 9.4

Assume that T is thick. Let t, u, and v^{\prime} be elements in W, and let i and j be elements in I. Assume that $\{t, u\} \subseteq I_{1}(i)$ and that $v^{\prime} \in I_{1}(j)$. Assume further that $j u=u i$, and that $f_{v^{\prime} j} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty. Then $t(j u)^{-1}$ and $t u^{-1}$ both are subelements of v^{\prime}.

Proof. We are assuming that $f_{v^{\prime} j} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty. Thus, X contains elements x, y, and z with $(y, z) \in f_{v^{\prime} j}$,

$$
(y, x) \in r_{t i}^{*}, \quad \text { and } \quad(x, z) \in r_{u i} .
$$

We are assuming that $v^{\prime} \in I_{1}(j)$. Thus, by Lemma 2.2(i), $f_{v^{\prime}} \circ f_{j}=f_{v^{\prime} j}$. Since $(y, z) \in f_{v^{\prime} j}$, this implies that $(y, z) \in f_{v^{\prime}} \circ f_{j}$. Thus, X contains an element z^{\prime} with

$$
\left(y, z^{\prime}\right) \in f_{v^{\prime}} \quad \text { and } \quad\left(z^{\prime}, z\right) \in f_{j} .
$$

We are assuming that $j u=u i$. Thus, as $(x, z) \in r_{u i},(x, z) \in r_{j u}$. Moreover, since $\left(z^{\prime}, z\right) \in f_{j}$, we have $\left(z, z^{\prime}\right) \in f_{j}$. It follows that

$$
\left(x, z^{\prime}\right) \in r_{j u} \circ f_{j}
$$

We are assuming that $u \in I_{1}(i)$. Thus, $\ell_{I}(u i)=\ell_{I}(u)+1$. Since $u i=j u$, this implies that $\ell_{I}(j u)=\ell_{I}(u)+1$. It follows that $(j u)^{-1} \in I_{-1}(j)$, so that, by Lemma 3.1(i),

$$
r_{j u} \circ f_{j}=r_{u}
$$

From $\left(x, z^{\prime}\right) \in r_{j u} \circ f_{j}$ and $r_{j u} \circ f_{j}=r_{u}$ we obtain that $\left(x, z^{\prime}\right) \in r_{u}$. Thus, as $(y, x) \in r_{t i}^{*}$, we conclude that $\left(y, z^{\prime}\right) \in r_{t i}^{*} \circ r_{u}$. Now recall that $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$. Thus, $f_{v^{\prime}} \cap\left(r_{t i}^{*} \circ r_{u}\right)$ is not empty.
Since $f_{v^{\prime}} \cap\left(r_{t i}^{*} \circ r_{u}\right)$ is not empty, we obtain from Theorem 6.1 that $t i u^{-1}$ is a subelement of v^{\prime}. Since we are assuming that $j u=u i$, this implies that $t(j u)^{-1}$ is a subelement of v^{\prime}.
We are assuming that T is thick and that $\{t, u\} \subseteq I_{1}(i)$. Thus, we obtain from Lemma 4.5 that $r_{t i}^{*} \circ r_{u} \subseteq r_{t}^{*} \circ r_{u}$. On the other hand, we have seen that $f_{v^{\prime}} \cap\left(r_{t i}^{*} \circ r_{u}\right)$ is not empty. Thus, $f_{v^{\prime}} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty, so that, by Theorem 6.1, $t u^{-1}$ is a subelement of v^{\prime}.

Proposition 9.5

Assume that T is thick. Let t, u, and v be elements in W, and assume that $t u^{-1}$ is an isolated subelement of v. Let i be an element in I with $\{t, u\} \subseteq I_{1}(i)$, and assume that $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty. Let x, y, and z be elements in X with $(y, z) \in f_{v},(y, x) \in r_{t}^{*}$, and $(x, z) \in r_{u}$. Then X contains an element x^{\prime} with $\left(x^{\prime}, x\right) \in f_{i},\left(y, x^{\prime}\right) \in r_{t i}^{*}$, and $\left(x^{\prime}, z\right) \in r_{u i}$.

Proof. From Lemma 3.1 we know that $r_{t^{-1}} \subseteq r_{i t^{-1}} \circ f_{i}$; equivalently, $r_{t}^{*} \subseteq r_{t i}^{*} \circ f_{i}$. Since we are assuming that $(y, x) \in r_{t}^{*}$, this implies that $(y, x) \in r_{t i}^{*} \circ f_{i}$. Thus, X contains an element x^{\prime} with

$$
\left(y, x^{\prime}\right) \in r_{t i}^{*} \quad \text { and } \quad\left(x^{\prime}, x\right) \in f_{i} .
$$

Applying Lemma 9.1(ii) to u, z, x^{\prime}, and x in place of w, x, y, and z we obtain from $\left(x^{\prime}, x\right) \in f_{i}$ and $(x, z) \in r_{u}$ that

$$
\left(x^{\prime}, z\right) \in r_{u i} \cup r_{u} .
$$

We shall be done if we succeed in showing that $\left(x^{\prime}, z\right) \in r_{u i}$.
We proceed by induction with respect to $\ell_{I}(v)$.
If $\ell_{I}(v)=0, v=1$. Since we are assuming that $(y, z) \in f_{v}$, this implies that $y=z$ and that $t=u$. Thus, as $\left(y, x^{\prime}\right) \in r_{t i}^{*}$, we obtain that $\left(z, x^{\prime}\right) \in r_{u i}^{*}$; equivalently, $\left(x^{\prime}, z\right) \in r_{u i}$.
Assume that $1 \leq \ell_{I}(v)$. Then there exist elements v^{\prime} in W and j in I such that

$$
v=v^{\prime} j \quad \text { and } \quad \ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1
$$

From $v=v^{\prime} j$ and $\ell_{I}(v)=\ell_{I}\left(v^{\prime}\right)+1$ we obtain that $v^{\prime} \in I_{1}(j)$. Thus, as $v=v^{\prime} j$, Lemma 2.2(i) yields that $f_{v^{\prime}} \circ f_{j}=f_{v}$. Since we are assuming that $(y, z) \in f_{v}$, this implies that $(y, z) \in f_{v^{\prime}} \circ f_{j}$, so that X contains an element z^{\prime} with

$$
\left(y, z^{\prime}\right) \in f_{v^{\prime}} \quad \text { and } \quad\left(z^{\prime}, z\right) \in f_{j}
$$

We claim that $j u \neq u i$. Assume, by way of contradiction, that $j u=u i$. Then, as $\{t, u\} \subseteq I_{1}(i), v^{\prime} \in I_{1}(j)$, and $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is assumed to be not empty, Lemma 9.4 yields that $t(j u)^{-1}$ and $t u^{-1}$ both are subelements of v^{\prime}. Since $t u^{-1}$ is assumed to be an isolated subelement of v, this is impossible; cf. Lemma 5.5. Thus, we have shown that

$$
j u \neq u i .
$$

We claim that $j u \in I_{1}(i)$. If $u^{-1} \in I_{-1}(j)$, this follows from $u \in I_{1}(i)$; cf. [5; Lemma 2.3.8(ii)]. Assume that $u^{-1} \in I_{1}(j)$. Then, by [5; Lemma 6.5.2(i)], $j \in I_{1}(u)$. Thus, as $u \in I_{1}(i), j u=u i$ or $j u \in I_{1}(i)$. Since $j u \neq u i$, this shows that

$$
j u \in I_{1}(i)
$$

We are assuming that $t u^{-1}$ is an isolated subelement of v. Since $t u^{-1}$ is a subelement of v, we obtain from Lemma 5.4 that one of the elements $t u^{-1}$ and $t(j u)^{-1}$ is a subelement of $v j$. Assume first that $t u^{-1}$ is a subelement of v^{\prime}. Then, by Lemma 5.6(i),

1. $t u^{-1}$ is an isolated subelement of v^{\prime}.

Since $t u^{-1}$ is assumed to be a subelement of v^{\prime}, we obtain from Lemma 5.5 that $t(j u)^{-1}$ is not a subelement of v^{\prime}. Recall also that $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is assumed not to be empty. Thus, applying Lemma 9.3(i) to $t i$ and $u i$ in place of t and u we obtain that
2. $f_{v^{\prime}} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty.

From

$$
\left(y, z^{\prime}\right) \in f_{v^{\prime}}, \quad\left(z^{\prime}, z\right) \in f_{j}, \quad(y, x) \in r_{t}^{*}, \quad \text { and } \quad(x, z) \in r_{u}
$$

together with the fact that $t(j u)^{-1}$ is not a subelement of v^{\prime} we obtain that $\left(x, z^{\prime}\right) \notin r_{j u}$; cf. Lemma 9.2(i). Thus, applying Lemma 9.1(i) to u, j, and z^{\prime} in place of w, i, and y we obtain from $\left(z^{\prime}, z\right) \in f_{j}$ and $(x, z) \in r_{u}$ that
3. $\left(x, z^{\prime}\right) \in r_{u}$.

Recall also that
4. $\left(y, z^{\prime}\right) \in f_{v^{\prime}}$ and $(y, x) \in r_{t}^{*}$.

Thus, by induction, X contains an element $x^{\prime \prime}$ with

$$
\left(x^{\prime \prime}, x\right) \in f_{i}, \quad\left(y, x^{\prime \prime}\right) \in r_{t i}^{*}, \quad \text { and } \quad\left(x^{\prime \prime}, z^{\prime}\right) \in r_{u i}
$$

From $\left(x^{\prime}, x\right) \in f_{i}$ and $\left(x^{\prime \prime}, x\right) \in f_{i}$ we obtain that

$$
\left(x^{\prime}, x^{\prime \prime}\right) \in f_{1} \quad \text { or } \quad\left(x^{\prime}, x^{\prime \prime}\right) \in f_{i} ;
$$

cf. Lemma 2.2.

Suppose that $\left(x^{\prime}, x^{\prime \prime}\right) \in f_{i}$. Then, as $\left(y, x^{\prime}\right) \in r_{t i}^{*}$, we have $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*} \circ f_{i}$.
Since $t \in I_{1}(i)$, we have $t i \in I_{-1}(i)$. Thus, by Lemma 3.1(i), $r_{(t i)^{-1}} \circ f_{i}=r_{t^{-1}}$; equivalently, $r_{t i}^{*} \circ f_{i}=r_{t}^{*}$. Thus, as $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*} \circ f_{i}$, we conclude that $\left(y, x^{\prime \prime}\right) \in r_{t}^{*}$, contrary to $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*}$. Thus, we have $\left(x^{\prime}, x^{\prime \prime}\right) \in f_{1}$ which means that $x^{\prime}=x^{\prime \prime}$. Since $\left(x^{\prime \prime}, z^{\prime}\right) \in r_{u i}$, this implies that

$$
\left(x^{\prime}, z^{\prime}\right) \in r_{u i}
$$

Since $\left(z^{\prime}, z\right) \in f_{j}$, we have $\left(z, z^{\prime}\right) \in f_{j}$. Applying Lemma 9.1(i) to $u i, j, x^{\prime}, z$, and z^{\prime} in place of w, i, x, y, and z we obtain from $\left(z, z^{\prime}\right) \in f_{j}$ and $\left(x^{\prime}, z^{\prime}\right) \in r_{u i}$ that

$$
\left(x^{\prime}, z\right) \in r_{j u i} \cup r_{u i}
$$

Applying Lemma 9.1(ii) to u, z, x^{\prime}, and x in place of w, x, y, and z we obtain from $\left(x^{\prime}, x\right) \in f_{i}$ and $(x, z) \in r_{u}$ that

$$
\left(x^{\prime}, z\right) \in r_{u i} \cup r_{u} .
$$

Since $j u \neq u i, j u i \notin\{u i, u\}$. Thus, $\left(x^{\prime}, z\right) \in r_{u i}$, so that we are done in this case.
Assume now that $t(j u)^{-1}$ is a subelement of v^{\prime}. Then, by Lemma 5.6(ii),

1. $t(j u)^{-1}$ is an isolated subelement of v^{\prime}.

Since $t(j u)^{-1}$ is assumed to be a subelement of v^{\prime}, we obtain from Lemma 5.5 that $t u^{-1}$ is not a subelement of v^{\prime}. Recall also that $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is assumed not to be empty. Thus, applying Lemma 9.3(ii) to $t i$ and $u i$ in place of t and u we obtain that
2. $f_{v^{\prime}} \cap\left(r_{t i}^{*} \circ r_{j u i}\right)$ is not empty.

From

$$
\left(y, z^{\prime}\right) \in f_{v^{\prime}}, \quad\left(z^{\prime}, z\right) \in f_{j}, \quad(y, x) \in r_{t}^{*}, \quad \text { and } \quad(x, z) \in r_{u}
$$

together with the fact that $t u^{-1}$ is not a subelement of v^{\prime} we obtain that $\left(x, z^{\prime}\right) \notin r_{u}$; cf. Lemma 9.2(ii). Thus, applying Lemma 9.1(i) to u, j, and z^{\prime} in place of w, i, and y we obtain from $\left(z^{\prime}, z\right) \in f_{j}$ and $(x, z) \in r_{u}$ that
3. $\left(x, z^{\prime}\right) \in r_{j u}$.

Recall also that
4. $\left(y, z^{\prime}\right) \in f_{v^{\prime}},(y, x) \in r_{t}^{*}$, and $j u \in I_{1}(i)$.

Thus, by induction, X contains an element $x^{\prime \prime}$ with

$$
\left(x^{\prime \prime}, x\right) \in f_{i}, \quad\left(y, x^{\prime \prime}\right) \in r_{t i}^{*}, \quad \text { and } \quad\left(x^{\prime \prime}, z^{\prime}\right) \in r_{j u i} .
$$

From $\left(x^{\prime}, x\right) \in f_{i}$ and $\left(x^{\prime \prime}, x\right) \in f_{i}$ we obtain that

$$
\left(x^{\prime}, x^{\prime \prime}\right) \in f_{1} \quad \text { or } \quad\left(x^{\prime}, x^{\prime \prime}\right) \in f_{i}
$$

cf. Lemma 2.2.
Suppose that $\left(x^{\prime}, x^{\prime \prime}\right) \in f_{i}$. Then, as $\left(y, x^{\prime}\right) \in r_{t i}^{*}$, we have $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*} \circ f_{i}$.
Since $t \in I_{1}(i)$, we have $t i \in I_{-1}(i)$. Thus, by Lemma 3.1(i), $r_{(t i)^{-1}} \circ f_{i}=r_{t^{-1}}$; equivalently, $r_{t i}^{*} \circ f_{i}=r_{t}^{*}$. Thus, as $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*} \circ f_{i}$, we conclude that $\left(y, x^{\prime \prime}\right) \in r_{t}^{*}$, contrary to $\left(y, x^{\prime \prime}\right) \in r_{t i}^{*}$.

Thus, we have $\left(x^{\prime}, x^{\prime \prime}\right) \in f_{1}$ which means that $x^{\prime}=x^{\prime \prime}$. Since $\left(x^{\prime \prime}, z^{\prime}\right) \in r_{j u i}$, this implies that

$$
\left(x^{\prime}, z^{\prime}\right) \in r_{j u i} .
$$

Since $\left(z^{\prime}, z\right) \in f_{j}$, we have $\left(z, z^{\prime}\right) \in f_{j}$. Applying Lemma 9.1(i) to jui, j, x^{\prime}, z, and z^{\prime} in place of w, i, x, y, and z we obtain from $\left(z, z^{\prime}\right) \in f_{j}$ and $\left(x^{\prime}, z^{\prime}\right) \in r_{j u i}$ that

$$
\left(x^{\prime}, z\right) \in r_{u i} \cup r_{j u i} .
$$

Applying Lemma 9.1(ii) to u, z, x^{\prime}, and x in place of w, x, y, and z we obtain from $\left(x^{\prime}, x\right) \in f_{i}$ and $(x, z) \in r_{u}$ that

$$
\left(x^{\prime}, z\right) \in r_{u i} \cup r_{u} .
$$

Since $j u \neq u i, j u i \notin\{u i, u\}$. Thus, $\left(x^{\prime}, z\right) \in r_{u i}$, so that we are done also in this case.

Corollary 9.6

Assume that T is thick. Let t, u, and v be elements in W, and assume that t^{-1} is an isolated subelement of v. Let i be an element in I, and assume that $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty. Then we have $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) \subseteq f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$.

Proof. Assume first that $t \in I_{-1}(i)$ or $u \in I_{-1}(i)$. In this case, we know from Lemma 4.3(i) that $r_{t}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ r_{u i}$. It follows that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) \subseteq f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$, so that we are done in this case.
Assume now that $\{t, u\} \subseteq I_{1}(i)$. In this case, we let y and z be elements in X, and we assume that $(y, z) \in f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$. We have to show $(y, z) \in r_{t i}^{*} \circ r_{u i}$.
Since $(y, z) \in r_{t}^{*} \circ r_{u}, X$ contains an element x such that $(y, x) \in r_{t}^{*}$ and $(x, z) \in r_{u}$. Thus, as $(y, z) \in f_{v}, X$ contains an element x^{\prime} with $\left(x^{\prime}, x\right) \in f_{i},\left(y, x^{\prime}\right) \in r_{t i}^{*}$, and $\left(x^{\prime}, z\right) \in r_{u i}$; cf. Proposition 9.5.
From $\left(y, x^{\prime}\right) \in r_{t i}^{*}$ and $\left(x^{\prime}, z\right) \in r_{u i}$ we obtain that $(y, z) \in r_{t i}^{*} \circ r_{u i}$.
Theorem 9.7 [Third Structure Theorem]
Assume that T is thick. Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that $t u^{-1}$ is an isolated subelement of v. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. We proceed by induction with respect to $\ell_{I}(u)$. If $\ell_{I}(u)=0, u=1$. In this case, the claim follows from Corollary 6.6. Therefore, we assume that $1 \leq \ell_{I}(u)$. In this case, I contains an element i with $u \in I_{-1}(i)$.
From $u \in I_{-1}(i)$ we obtain that $r_{t}^{*} \circ r_{u} \subseteq r_{t i}^{*} \circ r_{u i}$; cf. Lemma 4.3(i). Thus, as $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed to be not empty, $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right)$ is not empty. Moreover, since $t u^{-1}$ is assumed to be an isolated subelement of $v,(t i)(u i)^{-1}$ is an isolated subelement of v. From $u \in I_{-1}(i)$ we also obtain that $\ell_{I}(u i)=\ell_{I}(u)-1$. Thus, by induction,

$$
f_{v} \subseteq r_{t i}^{*} \circ r_{u i}
$$

Since $(t i)(u i)^{-1}$ is an isolated subelement of v and $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is assumed not to be empty, we may apply Corollary 9.6 to $t i$ and $u i$ in place of t and u. We obtain that

$$
f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right) \subseteq f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right) .
$$

From $f_{v} \cap\left(r_{t i}^{*} \circ r_{u i}\right) \subseteq f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ and $f_{v} \subseteq r_{t i}^{*} \circ r_{u i}$ we obtain that $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

10. The Case Where the Sagittal has Length at Most 3

Considering Theorem 6.1 the following theorem is an immediate consequence of Theorem 9.7.

Theorem 10.1

Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that $\ell_{I}(v)=|\operatorname{supp}(v)|$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. Since $\ell_{I}(v)=|\operatorname{supp}(v)|$, each subelement of v is isolated. On the other hand, since $f_{v} \cap\left(r_{t} \circ r_{u}\right)$ is assumed to be not empty, $t u^{-1}$ is a subelement of v; cf. Theorem 6.1. Thus, by Theorem 9.7, $f_{v} \subseteq r_{t} \circ r_{u}$.

Theorem 10.2 [Second Main Theorem]
Let t, u, and v be elements in W, and assume that $f_{v} \cap\left(r_{t}^{*} \circ r_{u}\right)$ is not empty. Assume further that $\ell_{I}(v) \leq 3$. Then $f_{v} \subseteq r_{t}^{*} \circ r_{u}$.

Proof. If $\ell_{I}(v)=2$, we have $|\operatorname{supp}(v)| \leq 2$, so that the claim follows from Theorem 8.3. If $\ell_{I}(v)=3$, we have $|\operatorname{supp}(v)| \leq 2$ or $\ell_{I}(v)=|\operatorname{supp}(v)|$. In the first case, the claim follows from Theorem 8.3, in the second case, the claim follows from Theorem 10.1.

Acknowledgement

This research was supported through the program "Oberwolfach Research Fellows" by the Mathematisches Forschungsinstitut Oberwolfach in 2023.

References

1. Abramenko, P., Brown, K.S.: Buildings: Theory and Applications, Graduate Texts in Mathematics 248, Springer, New York, 2008.
2. Björner, A., Brenti, F.:, Combinatorics of Coxeter Groups. Graduate Texts in Mathematics 231, Springer, New York, 2005.
3. French, C.: Subwords, manuscript.
4. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. (Lecture Notes in Math. 386) Springer, Berlin Heidelberg New York, 1974.
5. Zieschang, P.-H.: Hypergroups, manuscript.

[^0]: Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
 Schwarzwaldstrasse 9-11
 77709 Oberwolfach-Walke
 Germany
 https://www.mfo.de

[^1]: ${ }^{1}$ Alternately: If $w=1, f_{w}=f_{1}$, so that f_{w} is the identity on X. It follows that $r_{w} \circ f_{w}=r_{w}=r_{1}$. If $w \neq 1, I$ contains an element i with $w^{-1} \in I_{-1}(i)$, and we may apply [5; Lemma 10.3.3(i)] to w in place of u and v. Then we obtain that $r_{w} \circ f_{w}=r_{i w} \circ f_{i w}$, so that our claim follows by induction.

