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Introduction by the Organizers

Many topics in contemporary Harmonic analysis, Geometric measure theory, and
Ergodic theory are related to incidence problems. A prototypical example is the
following: given a collection of narrow tubes in Euclidean space, or in some more
exotic geometry, how often can the tubes come together to create “rich” intersec-
tions? Questions of such superficially innocent flavour often turn out to be difficult
to solve, but are also equally fundamental. Famously, they underpin two central
outstanding problems in contemporary Fourier analysis and geometric measure
theory: the Fourier restriction conjecture and the Kakeya conjecture.

In addition to spectacular progress in the Kakeya and restriction conjectures,
recent research has established a breadth of further – often unexpected – connec-
tions between Harmonic analysis, Geometric measure theory, and Ergodic theory.
The common denominator often tends to be an incidence problem. This prob-
lem does not always involve straight narrow tubes, as in the case of Kakeya and
restriction, but might be stated in terms of circles or parabolae, fractals, sums,
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products, distances and patterns generated by fractals, or orthogonal or non-linear
projections. The applications of such geometric problems range from decoupling
theory, Fourier integral operators, and dispersive partial differential equations to
problems involving spectral gaps, or effective equidistribution of random walks in
groups. Conversely, ideas stemming from Fourier restriction theory, decoupling
theory, and additive combinatorics have substantially contributed to progress in
old problems in fractal geometry, for example Falconer’s distance set conjecture,
and the broader quest for finding patterns inside fractal sets.

The explosion of recently discovered connections between Harmonic analysis,
Geometric measure theory, and Ergodic theory has greatly accelerated the progress
in all the fields. The progress has also demonstrated that a dedicated researcher
in any one field will benefit from constantly surveying the others. To make the
task more manageable, it is indispensable to organise frequent workshops and con-
ferences where experts with somewhat different specialisations may interact and
educate each other, and exchange open problems. The Oberwolfach workshop In-
cidence Problems in Harmonic Analysis, Geometric Measure Theory, and Ergodic
Theory was designed with this demand in mind.

Here we list a few major topics of the workshop:

(1) Projections and sum-product phenomena. A seminal result in geomet-
ric measure theory is Marstrand’s projection theorem from 1954, which
roughly says that orthogonal projections preserve the dimension of pla-
nar sets in almost every direction. Making the words “almost every”
precise has turned out to be an influential problem. A topic of partic-
ularly high recent activity has been to establish “restricted” versions of
Marstrand’s theorem, where the available space of projections is smaller
than in Marstrand’s statement, but the lack of “size” is compensated by
“curvature”. Sharp results have been recently achieved via decoupling
theory. Projection problems are also connected with additive combina-
torics and sum-product phenomena via the observation that orthogonal
projections of a product set A×A have the form A+ xA, x ∈ R.

(2) Advances in sum-product and projection theory have led to powerful ap-
plications on the effective equidistribution of random walks in groups. The
idea is roughly that, in suitable groups, sum-product theory can be ap-
plied to establish growth and Fourier decay for sufficiently high convolution
powers. Surprisingly, even the “restricted projections” problem mentioned
in (1) has been recently applied in this context.

(3) Patterns in fractal sets. A fundamental theorem of Roth and Szemerédi
states that subsets of the integers of positive density contain arbitrar-
ily long arithmetic progressions. This result can be viewed as a mani-
festation of a research paradigm stating that “thick” fractal sets in Rn

tend to contain “patterns”. Thickness can be measured in various differ-
ent ways, e.g. Lebesgue measure, Newhouse thickness, or Hausdorff and
Fourier dimensions. The patterns may be (multi-dimensional) arithmetic
progressions, triangles or general simplices, or non-linear patterns such as
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{x, x + t, x + t2}. Recent progress in pattern-finding problems has been
powered by advances in multi-linear singular integrals, and effective con-
vergence theorems for multiple ergodic averages.

(4) A great deal of research in fractal geometry focuses on finding the dimen-
sions of attractors of dynamical systems. The best-understood case is that
of self-similar sets and measures, but even in this case fundamental prob-
lems remain open, for example characterising the absolute continuity of
Bernoulli convolutions, and the exact overlaps conjecture on the real line.
The case of self-affine sets and measures has recently seen many significant
advances, combining techniques from ergodic theory and additive combi-
natorics. A further topic of great current interest is to establish Fourier
decay for dynamically generated measures under optimal conditions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Alan Chang in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

Dimensions of arithmetic sums of typical self-affine sets

De-Jun Feng

(joint work with Yu-Hao Xie)

In [1], Falconer introduced the concept of affinity dimension and showed that it
gives the precise value of the Hausdorff and box-counting dimensions of a typical
self-affine sets under a mild assumption (see also [5]). In an ongoing work, we in-
vestigate the Hausdorff and box-counting dimensions of arithmetic sums of typical
self-affine sets. Let {Six+ai}ℓi=1 and {Tjy+ bj}mj=1 be two affine iterated function

systems (IFSs) on Rd. Write a = (a1, . . . , aℓ), b = (b1, . . . , bm), S = (S1, . . . , Sℓ)
and T = (T1, . . . , Tm). Let E(S, a) and E(T,b) denote the attractors of these two
IFSs.

Definition 1. We say that S and T are jointly irreducible if for any two two
bases {e1, . . . , ed} and {f1, . . . , fd} of Rd, there always exist a finite word I on the
alphabet {1, . . . , ℓ} and another finite word J on the alphabet {1, . . . ,m} such that
for every k ∈ {1, . . . , d− 1},

{SIei : 1 ≤ i ≤ k} ∪ {TJfj : 1 ≤ j ≤ d− k}
is a base of Rd. Here SI = Si1 · · ·Sin for I = i1 . . . in.

It is worth pointing out that whenever d = 2, the matrix tuples S and T are
jointly irreducible if and only if not all the matrices Si, Tj share a common real
eigenvector.

Let dimAFF S, dimAFF T denote the affinity dimensions of S and T, respectively
(see [1] for the definition of affinity dimension). One of our main results is the
following.

Theorem 2. Assume that ‖Si‖ < 1/2, ‖Tj‖ < 1/2 for all i, j. Suppose one of the
following conditions holds:

(i) dimAFF S+ dimAFF T ≤ 1; or
(ii) S and T are jointly irreducible.

Then for Lℓd × Lmd-a.e. (a,b) ∈ Rℓd × Rmd,

dimH E(S, a) + E(T,b) = dimB E(S, a) + E(T,b)

= min{d, dimAFF S+ dimAFFT},(1)

where dimH and dimB stand for the Hausdorff and box-counting dimensions, re-
spectively.

We remark that the second equality in (1) can break down in certain cases when
the assumptions in Theorem 2 do not fulfil. Below we give such an example.
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Example 3. Let Ti = Sj = T for all i, j and assume that ‖T ‖ < 1/2. We are
able to prove that for Lℓm × Lmd-a.e. (a,b),

dimH E(S, a) + E(T,b) = dimB E(S, a) + E(T,b)

= max{s ∈ [0, d] : ℓmφs(T ) ≥ 1},(2)

where φs(·) is the singular value function introduced in [1]. In particular, take
T = diag(1/3, 1/5), and ℓ = m = 2. A direct check shows that

dimAFFT+ dimAFF S =
2 log 2

log 3
> 1 +

log(4/3)

log 5
= max{s ∈ [0, d] : ℓmφs(T ) ≥ 1}.

It arises a natural question how to determine the precise dimensions of E(S, a)+
E(T,b) for almost all (a,b) when the assumptions in Theorem 2 do not fulfil. We
succeed in proving a computable variational formula for the Hausdorff dimension
of E(S, a) + E(T,b) for almost all (a,b) when all the matrices Si and Tj are
assumed to be diagonal. If, in addition, all the diagonal matrices Si and Tj are
dominated, we are able to provide an easily-computed dimensional formula for the
Hausdorff and box-counting dimensions of E(S, a) +E(T,b) for almost all (a,b).
Here a diagonal matrix diag(c1, . . . , cd) is said to be dominated if |c1| ≥ · · · ≥ |cd|.

The proof of Theorem 2 uses the method of Fourier transform and some transver-
sality techniques developed in [1, 5, 3, 2]. Using a similar approach, we obtain some
dimensional properties of typical self-affine sets under orthogonal projections. To
be more precise, let V ⊂ Rd be a linear space of dimension k and let PV : Rd → V
denote the orthogonal projection onto V . Among other things, we show that under
the assumptions that ‖Si| < 1/2 for all i, and that {S∧k

i }ℓi=1 is irreducible,

dimH PV E(S, a) = min{k, dimAFF(S)}
for almost all a. Here A∧k stands for the k-th exterior product of A.

In a very recent work [4], Pyörälä studied the dimensions of arithmetic sums
of concrete planar self-affine sets. Among other things, he proved that if {Six +
ai}ℓi=1 and {Tjy+bj}mj=1 are two affine IFSs on R2 satisfying the strong separation

condition, then under the additional assumption that both {Si}ℓi=1 and {Tj}mj=1

are strongly irreducible, the conclusions in (1) (in which d = 2) hold except that
the following two scenarios occur simultaneously: (a) dimAFF S > 1 > dimAFF T
(or dimAFF T > 1 > dimAFF S); and (b) the eigenvalues of linear parts Ti, Sj

satisfy a certain arithmetic condition. Although Theorem 2 does not apply to any
concrete case, it provides a hint that the conclusions in (1) might still hold in the
above concrete case even when (a) and (b) occur.
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New bounds for the discretised sum-product problem

William L. O’Regan

(joint work with András Máthé)

Erdős and Volkmann in 1966 [1] showed that for any σ ∈ [0, 1] there exists a Borel
subgroup of the reals with Hausdorff dimension σ. They conjectured that the
same does not hold for Borel subrings, moreover, that there does not exist a Borel
subring of the reals with Hausdorff dimension strictly between zero and one. Their
conjecture was proved by Edgar and Miller in 2003 [2], using projection theorems
of fractal sets. Essentially at the same time, Bourgain independently proved the
conjecture [3] via solving the discretised ring conjecture of Katz and Tao from 2001
[4] This is an example of what is referred to as sum-product phenomena, which
loosely asserts that a structure is not ring-like.

A classical example of the occurrence of sum-product phenomena is the following
theorem from Erdős and Szeremédi from 1983 [5]. They state that there exists an
ǫ > 0 and a Cǫ > 0 such that for every finite subset of integers A at least one of
the sumset A+A or the product set A · A is large in the sense that

max(|A+A|, |A · A|) ≥ Cǫ|A|1+ǫ.

Indeed, this asserts that any finite subset of the integers can not even approxi-
mately resemble the structure of a ring. They conjectured that a positive constant
Cǫ exists for every 0 < ǫ < 1, that is, at least one of |A + A| or |A · A| must be
nearly as large as possible.

The discretised sum-product problem (or discretised ring problem) of Katz–Tao
is the discretised version of the fractal analogue of the Erdős–Szeremédi prob-
lem. Vaguely, it asks/asserts that if A ⊂ R behaves like an σ-dimensional set
at scale δ in a certain sense, then at least one of A + A and A · A behaves like
an (σ + c)-dimensional set at scale δ (in a different and slightly weaker sense),
where the positive constant c should depend only on σ. As previously mentioned,
it was first proved in 2003 by Bourgain in, and represented again with weaker
non-concentration conditions by Bourgain in 2010 [6]. No explicit bound on the
constant was presented. Further examination of Bourgain’s papers would suggest
that the explicit constant gained following his exact method would be very small.
Good explicit constants were gained by Guth, Katz, and Zahl in 2019 [7], by Chen
in 2020 [8], and by Fu and Ren [9] in 2022.

The discretised sum-product also has many other applications. For instance it
is closely related to the Falconer distance set problem [10] and the dimension of
Furstenberg sets. There are also applications to orthogonal projections [11] and
fourier decay of measures [12].
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The aim of this talk is to provide strong bound for c for the Katz–Tao discretised
sum-product problem. We show that c can be taken arbitrarily close to σ/6 if
σ ≤ 1/2 and arbitrarily close to (1 − σ)/6 when 1/2 < σ < 1 [13]. Clearly, c
cannot exceed σ nor 1− σ. It is unclear if it is reasonable to conjecture that c can
be taken to be (nearly) σ when σ is small (analogously to the Erdős–Szemerédi
conjecture).

In the talk we will give the proof. The approach is to start with classical theo-
rems from fractal geometry, or the recent work of Orponen, Shmerkin, and Wang
on radial projections [14], that imply that certain arithmetic operations necessarily
increase the dimension of any set A ⊂ R and then to use information inequalities
to extract that simpler arithmetic operations (in this case, addition and multi-
plication) must already increase the dimension. Bourgain’s original proof of the
discretised ring conjecture and many improvements since relied on theorems of
additive combinatorics (Ruzsa and Plünnecke–Ruzsa inequalities). Our informa-
tion inequalities make use of both the additive and multiplicative structure of the
underlying field. In particular, we also prove a ‘ring Plünnecke–Ruzsa inequality’.
(We are only interested in the Shannon entropy version of these inequalities.) All
these inequalities are immediate corollaries of certain instances of the submodu-
larity inequality, that is, that the conditional mutual information of two random
variables given a third is non-negative.
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On the Assouad dimension of the Takagi function

Balázs Bárány

(joint work with Roope Anttila and Antti Käenmäki)

Let Φ = {ϕi(x) = Aix+ti}i∈Λ be a finite collection of invertible, contracting affine
maps on R2 (called iterated function system (IFS)). It is a well-known result of
Hutchinson [11] that there exists a unique non-empty compact set X such that
X =

⋃
i∈Λ ϕi(X). The main example we consider in this talk is the graph of the

Takagi function.
Let λ ∈ (0, 1) and let b ≥ 2 be an integer. Then the Takagi function is

Tλ,b(x) =

∞∑

n=0

λndist(bnx,Z).

Clearly, Tλ,b is a 1-periodic map. The original construction is due to Takagi [16]
with parameters b = λ−1 = 2 and he showed that the function T1/2,2 has no finite
derivative at any point. For further properties and discussions, see the survey
papers of Allaart and Kawamura [2] and Lagarias [13].

If b is even then the graph of the Takagi functionGλ,b = {(x, Tλ,b(x)) : x ∈ [0, 1]}
is self-affine. For example, for b = 2, Gλ,2 = ϕ1(Gλ,2) ∪ ϕ2(Gλ,2), where

(1) ϕ1(x, y) =
(x
2
, λy +

x

2

)
and ϕ2(x, y) =

(
x+ 1

2
, λy +

1− x

2

)
.

It is easy to see that if λb > 1 then Tλ,b is − log λ
log b -Hölder continuous, furthermore,

dimB(Gλ,b) = 2 + log λ
log b , where dimB denotes the box-counting dimension. It was

shown by B., Rams and Simon [5] (based on B., Hochman and Rapaport [4]) that

for every b ≥ 2 integer and λ ∈ (b−1, 1), dimH(Gλ,b) = 2 + log λ
log b , where dimH

denotes the Hausdorff dimension.
In this talk, we focus on a third concept of dimension, namely, the Assouad

dimension. Let K ⊂ R2 be bounded and let Nr(K) be the minimal number of
balls of radius r > 0 needed to cover K. Then the box-counting dimension is

dimB(K) = lim
r→0+

logNr(K)
− log r (if the limit exists, if not then we can define the upper-

and lower box-counting dimension by taking limsup and liminf denoted by dimB

and dimB , respectively). Then the Assouad dimension dimA(K) is

dimA(K) = inf{s > 0 : there exists C > 0 such that for every 0 < r < R

and for every x ∈ K, Nr(K ∩B(x,R)) ≤ C(R/r)s}.
Käenmäki, Ojala and Rossi [12] showed that if K is compact then dimA(K) =
max{dimH(T ) : T ∈ Tan(K)}, where Tan(K) denotes the set of weak-tangent sets
of K. Thus, the Assouad dimension of compact sets equals the dim∗-dimension
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defined by Furstenberg [9]. The Assouad dimension of the attractors of IFSs is
recently an active area of research, see [1, 7, 8, 10, 14]. For further properties and
discussions, see Fraser [6].

Before we turn to the main result of this talk, we need to define the Furstenberg
directions corresponding to the IFS defining the graph Gλ,2. Let

XF =

{(̂
1
y

)
∈ RP

1 : y ∈
[ −2λ

2λ− 1
,

2λ

2λ− 1

]}
.

It is easy to see that A−1
1 (XF )∪A−1

2 (XF ) = XF , where Ai are the linear parts of
the maps of the IFS defined in (1). For every sequence i = (i1, i2, . . .) ∈ {1, 2}N,
there exists a unique V (i) ∈ XF such that {V (i)} =

⋂∞
n=1 A

−1
i1

· · ·A−1
in

(XF ). More-
over, there exists a constant C > 0 such that

C−12−n ≤ ‖Ain · · ·Ai1 |V (i)‖ ≤ C2−n and C−12n ≤ ‖A−1
i1

· · ·A−1
in

|θ‖ ≤ C2n

for every θ ∈ XF , every n ∈ N and every i = (i1, i2, . . .) ∈ {1, 2}N. These properties
allow us to embed the weak-tangent sets of Gλ,2 into Gλ,2 by rank-1 projections
and vice versa, to embed the slices of Gλ,2 into some weak-tangent set. Along this
line, we obtain the following:

Theorem 1 (Anttila, B., Käenmäki [3]). For every even b ∈ N and b−1 < λ < 1,

dimA(Gλ,b) = 1 + max
θ∈XF

x∈Gλ,b

dimH(Gλ,b ∩ θ(x)) < 2,

where θ(x) denotes the line parallel to θ ∈ RP
1 and going through the point x ∈ R2.

Computing the dimension of the slices is a very challenging problem. One
could conjecture that at least for typical choice of the parameter λ, dimH(Gλ,b) =
dimA(Gλ,b). However, this is not the case for every pair of λ and b. Yu [17] gave
examples for parameters λ, b such that dimH(Gλ,b) < dimA(Gλ,b).

In the case of the Takagi function Tλ,2, one can provide equivalent characterisa-
tions of the Assouad dimension being equal to the Hausdorff dimension by using
a dimension conservation property resembling for the one introduced by Manning
and Simon [15]. Let us denote the orthogonal projection from R2 onto θ⊥ ∈ RP

1

by projθ. Furthermore, let µ be the natural measure on Gλ,2, that is, µ is the
push-forward measure of the Lebesgue-measure on the unit interval by the map
x → (x, Tλ,2(x)). For short, let µθ := (projθ)∗µ, and let us denote the upper- and
lower local dimension of µθ at x ∈ θ⊥ by

dµθ
(x) = lim inf

r→0

logµθ(B(x, r))

log r
and dµθ

(x) = lim sup
r→0

logµθ(B(x, r))

log r
.

Theorem 2 (Anttila, B., Käenmäki [3]). For every 2−1 < λ < 1, θ ∈ XF and
x ∈ Gλ,2

dµθ
(projθ(x)) +

log 2

− logλ
dimB(Gλ,2 ∩ θ(x)) =

log 2

− logλ
, and

dµθ
(projθ(x)) +

log 2

− logλ
dimB(Gλ,2 ∩ θ(x)) =

log 2

− logλ
.
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This allows us to formulate the following corollary.

Corollary 3. The following are equivalent:

• dimA(Gλ,2) = 2 + log λ
log 2 ,

• for every θ ∈ XF , lim inf
r→0

inf
x∈Gλ,2

logµθ(B(projθ(x),r))
log r = 1,

• for every θ ∈ XF and every q > 1, the Lq-dimension of µθ is 1, where the
Lq-dimension is

lim inf
r→0

log
∫
µθ(B(y, r))q−1dµθ(y)

(q − 1) log r
.
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Polynomial Fourier decay for smooth images of self-similar measures

Amir Algom

(joint work with Yuanyang Chang, Meng Wu and Yu-Liang Wu)

Let ν be a Borel probability measure on R. For every q ∈ R the Fourier transform
of ν at q is defined by

Fq(ν) :=

∫
exp (2πiqx) dν(x).

The motivation behind the work presented in this talk stems from a Theorem of
Kaufman [2] from 1984: Recall that for 0 < r < 1 the corresponding Bernoulli
νr is defined as the law of the random variable

∑∞
n=0 ±rn, where the ± are IID

Bernoulli- 12 random variables. Kaufman proved that for every 0 < r < 1
2 and

every C2(R) diffeomorphism g such that g′′ > 0, we have that gνr has polynomial
Fourier decay. That is, for some α > 0

Fq(gνr) = O

(
1

|q|α
)
, as |q| → ∞.

This is remarkable, since by a well known Theorem of Erdős (1939), if r−1 is a
Pisot number then νr has no Fourier decay at all. Kaufman’s paper was little
known, and is tersely written. In 2018, Mosquera and Shmerkin [1] clarified, ex-
tended, and quantified this result: Specifically, they extended Kaufman’s Theorem
to all homogeneous (equi-contractive) self-similar measures on R, and gave explicit
bounds on the exponent of the decay (the α).

Since the work of Mosquera and Shmerkin it remained an open problem if one
has to assume that the self-similar measure in question is homogeneous. Our main
result answers this question negatively; Kaufman’s Theorem holds in fact for all
self-similar measures:

Theorem 1. Let µ be a non-atomic self-similar measure, and let g ∈ C2(R) be
a diffeomorphism such that g′′ > 0. Then there exists some α > 0 such that, as
|q| → ∞,

|Fq (gµ)| = O

(
1

|q|α
)
.

The technique used in the proof is flexible enough to yield some interesting
corollaries:

(1) All non-atomic self-conformal measures with respect to a Cω(R) IFS have
polynomial Fourier decay, as long as the IFS in question contains at least
one non-affine map. This follows by combining our method with a very
recent result of Algom, Rodriguez Hertz, and Wang [9].

(2) Let µ be a non-atomic self-similar measure supported on [1,∞). Then
for µ-a.e. x the sequence {xp mod 1}p∈N is uniformly distributed. This
resolves a recent Conjecture of Baker [8].

Our method relies on a certain large deviations estimate for the Fourier trans-
form proved by Tsuji [3], that extended a previous related estimate of Kaufman [2].
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This is morally similar to the arguments of Kaufman and Mosquera–Shmerkin, but
the lack of convolution structure presents significant new challenges. Curiously, we
make no use of recent methods for Fourier decay such as random walks [5, 6, 7, 11]
or additive combinatorics [4, 10].
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Effective methods in geometric measure theory

Marianna Csörnyei

I was trying to explain in my talk some of the recent techniques developed by
computer scientists for proving results in geometric measure theory.

First I briefly explained some of the basic definitions.

• For a point x ∈ Rn, the Kolgomorov complexity of x with precision r,
denoted by Kr(x), is the length of the shortest program whose output is
x with precision r.

• An oracle A is a countable set of information that the program can access
’for free’. The corresponding Kolgomorov complexity is denoted byKA

r (x).
• The Hausdorff and packing dimension of x is:

dimA
H(x) = lim inf

r→∞

KA
r (x)

r
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dimA
P (x) = lim sup

r→∞

KA
r (x)

r
.

For every oracle, the Hausdorff and packing dimensions of x ∈ Rn are between 0
and n. However, using the oracle corresponding to x, its dimensions become 0.
For a general set E ⊂ Rn:

dimA
H(E) = min

A
sup
x∈A

dimA
H(x)

and

dimA
P (E) = min

A
sup
x∈A

dimA
P (x).

This is the ‘usual’ definition of Hausdorff and packing dimension: I sketched in
my talk an argument that the alternative definitions using complexities and oracles
above give exactly the same dimensions as the standard ones used in analysis and
geometric measure theory.

After that, I explained three recent proofs, by various mathematicians, demon-
strating how these notions and techniques can be used for proving results in geo-
metric measure theory. I showed how these techniques were used for proving the
following three statements:

(1) For arbitrary sets E,F ⊂ Rn, and for a.e. z ∈ Rn, the Hausdorff dimension
of (E + z) ∩ F is at most max(0, dim(E × F )− n).

(2) For any polyhedral norm, the Hausdorff dimension of the distance set of
a set E ⊂ Rn is at least dimH E − (n− 1).

(3) Every planar Besicovitch set has dimension 2.

Thickness and a Gap Lemma in Rd

Alexia Yavicoli

A general problem that comes up repeatedly in geometric measure theory, dy-
namics and analysis is understanding when two or more “small” compact sets
intersect.

My motivation to study intersections comes from studying under which condi-
tions one can guarantee the presence of a pattern (a homothetic copy of a given
finite set) in a compact set. This is because there is a homothetic copy of P =
{p1, · · · , pn} contained in C if and only if there is a 6= 0 so that

⋂
1≤i≤n(C−api) 6=

∅.
It is well known that sets of positive Lebesgue measure contain copies of any

finite set. On the other hand, Keleti [2] constructed a full dimensional set in the
real line that doesn’t contain arithmetic progression of length 3. This shows that
Hausdorff dimension is not enough to guarantee the presence of patterns such as
arithmetic progressions. This poses the problem of finding a different geometrical
notion of size that is connected to the presence of arithmetic progressions, as well
as other patterns.
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In the 1970s, S. Newhouse [3, 4] defined thickness on the real line. Thickness is
a notion of size of a compact set, and Newhouse gave in his famous Gap Lemma a
simple checkable robust condition involving thickness that ensures that two com-
pact sets intersect. One issue is that this notion of size is strongly based on the
order structure of the reals, which makes it difficult to extend it to higher dimen-
sions. The Gap Lemma is also restricted to the intersection of two sets, so it is
still difficult to determine when many compact sets intersect.

In [6] I established a new connection between thickness, winning sets for the
Potential Game (a game of Schmidt type) defined in [1]. This allowed me to give
a simple thickness criterion to show that many thick compact sets intersect, and I
was able to deduce that thick sets contain all finite patterns with size depending
on the thickness in a quantitative way.

Joint with Kenneth Falconer [5], we extended of the notion of thickness to “cut-
out” sets in higher dimensions. We proved a Gap Lemma and showed the presence
of many patterns in thick sets, extending the one-dimensional case. One of the
issues with this definition is that we were not able to study totally disconnected
sets, which are of great importance in fractal geometry and dynamics. In [7], I
was able to give a new definition of thickness in Rd that can be applied to any
compact set. To show that this notion is natural, I proved a Gap Lemma and
again showed the presence of patterns in thick sets.
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Orthogonal projections of fractal sets

Shaoming Guo

Let n ≥ 2. In Rn, let

γ : [−1, 1] → Rn

be a smooth non-degenerate curve, that is,

det
[
γ′(θ), . . . , γ(n)(θ)

]
6= 0
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for every θ ∈ [−1, 1]. For 1 ≤ m ≤ n, define the m-th order tangent space of γ at
θ by

Tang
(m)
θ := span

[
γ′(θ), . . . , γ(m)(θ)

]

Let Π
(m)
θ denote the orthogonal projection to Tang

(m)
θ . Let E ⊂ [0, 1]n be a Borel

measurable set. Then it is proven in [3] that

dim
(
Π

(m)
θ (E)

)
= min{dim(E),m}

for almost every θ ∈ [−1, 1]. Here dim refers to the Hausdorff dimension.
Low dimensional cases of the above estimate are known before [3]. The case

n = 3,m = 1 is due to [4] and [5]. Indeed, these two papers also proved very good
exceptional set estimates. The case n = 3,m = 2 is due to [2]. In [4] and [5],
the authors use the approach of incidence bounds; in [2] and [3], the authors use
decoupling inequalities that are rooted in the decoupling inequalities of Bourgain,
Demeter and Guth [1].
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Sharp Fourier extension from the circle for functions with
localized support

Lars Becker

The Tomas-Stein extension inequality for the circle states that there exists a con-
stant C > 0 such that for all functions f ∈ L2(σ)

(1) ‖f̂σ‖L6(R2) ≤ C‖f‖L2(σ) ,

where σ is the arc length measure on the unit circle and µ̂(ξ) =
∫
e−iξx dµ(x)

denotes the Fourier transform of a finite measure µ. We are interested in the
conjecture that constant functions are extremizers for this inequality.

This conjecture is motivated by a theorem of Foschi [4], stating that constant
functions are extremizers for the Tomas-Stein inequality for the two sphere

‖f̂σ2‖L4(R3) ≤ C‖f‖L2(σ2) ,

where σ2 denotes the surface measure on the unit sphere in R3. We outline the
proof of Foschi’s theorem, and a program by Carneiro, Foschi, Oliveira e Silva and
Thiele [3] that adapts parts of it for the unit circle. This program reduces the proof
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of the conjectured sharp version of (1) to establishing positive semidefiniteness of
the quadratic form

Q(g) :=

∫

(S1)6
δ(ω1 + ω2 + ω3 + ω4 + ω5 + ω6)(|ω1 + ω2 + ω3|2 − 1)

(|g(ω1, ω2, ω3)|2 − g(ω1, ω2, ω3)g(ω4, ω5, ω6))

6∏

j=1

dσ(ωj)

on the space of antipodal functions in L2(σ × σ × σ). Here we call a function on
S1 × S1 × S1 antipodal if it is even in each argument.

Numerical computations of Barker, Thiele and Zorin-Kranich [1] verify that Q
is positive semidefinite on the space of all antipodal functions with Fourier modes
up to degree 120, providing some support for the conjecture. Moreover, their
computations show that the eigenfunctions of Q on this space corresponding to
small eigenvalues concentrate in space. Hence, understanding the behaviour of Q
on functions with localized support seems to be a crucial step for showing positive
semidefiniteness of Q.

We present recent work from [2], where we establish positive semidefiniteness of
Q on a certain subspace of L2(σ × σ × σ) that contains in particular all functions
with localized support. As a corollary, the conjectured sharp version of (1) holds

for all functions on the circle that are supported in a
√
6/80-neighbourhood of a

pair of antipodal points.
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Quantifying Besicovitch projection theorem

Damian Dąbrowski

Given a compact set E ⊂ R2, define its Favard length as

Fav(E) =

∫

S1
H1(πθ(E)) dθ,

where πθ(x) = θ ·x is the orthogonal projection to span(θ). A classical theorem of
Besicovitch [1] says the following.

Theorem 1. If E ⊂ R2 satisfies 0 < H1(E) < ∞ and Fav(E) > 0, then there
exists a (1-dimensional) Lipschitz graph Γ ⊂ R2 such that

H1(E ∩ Γ) > 0.
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This result is called the Besicovitch projection theorem, and it is usually stated
in the following equivalent way: purely unrectifiable sets with finite length have
Lebesgue null orthogonal projection in a.e. direction.

Can this result be made quantitative? The following conjecture is wide open.

Conjecture 2. If E ⊂ [0, 1]2 is 1-Ahlfors regular and Fav(E) ≥ C > 0, then there
exist a Lipschitz graph Γ with Lip(Γ) .C 1 and H1(E ∩ Γ) &C 1.

A weaker version of this conjecture concerning “sets with plenty of big pro-
jections” was posed 30 years ago by David and Semmes [4] and recently solved
by Orponen [7]. The motivation to study this question comes from the field of
quantitative rectifiability: proving this conjecture seems necessary to complete
the solution to Vitushkin’s conjecture, which asks for relationship between Favard
length and analytic capacity. Even partial progress on the Conjecture may have
applications to this problem, see [2] and [5].

To make progress on the Conjecture, we may start by strengthening the as-
sumption “Fav(E) & 1”, and assume something better about πθ(E), or about the
projected measure πθH1|E , than just H1(πθ(E)) & 1 for many θ ∈ S1. Results of
this kind have been shown by Martikainen and Orponen [6], and Orponen [7]. In
both papers, one has to assume some nice properties of projections for directions
θ ∈ G ⊂ S1 for a large arc G ⊂ S1. Note that the assumption “Fav(E) & 1” is
equivalent to “there exists a measurable set G ⊂ S1 with H1(G) & 1 and such that
H1(πθ(E)) & 1 for all θ ∈ G.” Thus, in order to prove the Conjecture, one needs
to be able to deal with measurable sets G ⊂ S1, and not just arcs.

In [3] I proved the following result.

Theorem 3. Let E ⊂ [0, 1]2 be 1-Ahlfors regular with H1(E) & 1. Suppose there
exists a measurable set G ⊂ S1 with H1(G) & 1 and such that

(1) ‖πθH1|E‖L∞ . 1 for all θ ∈ G.

Then, there exist a Lipschitz graph Γ with Lip(Γ) . 1 and H1(E ∩ Γ) & 1.

The assumption (1) is stronger than the assumptions made on projections in
either [6] or [7], but the assumptions made on the set of good directions G ⊂ S1

are minimal, while in [6] an [7] the set G had to be an arc. In my talk, I gave an
overview of the proofs in [6] and [3], and I explained some difficulties arising from
G not being an arc.
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Some remarks on the Mizohata–Takeuchi conjecture

Marina Iliopoulou

(joint work with Anthony Carbery, Bassam Shayya)

Let Σ be a compact patch of a hypersurface in Rn. A major problem in harmonic
analysis is the restriction problem, set by Stein in the 1960s: understanding the
Fourier transform of functions defined on Σ. This is formalised as follows. Define
the extension operator associated to Σ, denoted by E, as the operator that maps
every g : Bn−1(0, 1) → C (where Bn−1(0, 1) is the unit ball centred at 0 in Rn−1)
to the function

Eg(x) :=

∫
e2πi〈x,Σ(y)〉g(y)dy, for all x ∈ Rn.

The function Eg is essentially a sum of waves, evolving in different but congruent
tubes, whose directions are normal to Σ. The restriction conjecture claims that,
when Σ has non-vanishing Gaussian curvature (in which case these normals are
all distinct), these waves will interfere very destructively on average, so that

∫

BR

|Eg| 2n
n−1 ≤ CǫR

ǫ

∫
|g| 2n

n−1 for all R ≥ 1, ǫ > 0,

where BR is the ball centred at 0 with radius R in Rn (and the contant Cǫ depends
only on Σ and ǫ). The restriction conjecture is only known to hold when n = 2.

The Mizohata–Takeuchi conjecture is about L2-weighted estimates on E, and
is open even when n = 2. It aims to understand the shape of the level sets
of Eg, and specifically how they cluster along lines. It claims that, for every
w : Rn → [0,+∞), ∫

BR

|Eg|2w ≤ C‖Xw‖∞
∫

|g|2,

where Xw is the X-ray transform of w; that is,

Xw(ℓ) =

∫

ℓ

w for every line ℓ in Rn

(and C is a constant depending only on Σ). The Mizohata–Takeuchi conjecture
is a simpler version of another conjecture proposed by Stein, which, together with
the Kakeya maximal operator conjecture, would imply the restriction conjecture
above.

A possible approach to the Mizohata–Takeuchi conjecture is to try to prove
estimates of the form∫

BR

|Eg|2qw ≤ CǫR
ǫ‖Xw‖∞

(∫
|g|2

)q

,
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for q ≥ 1 as close to 1 as possible. We focus on q = n
n−1 , as it ‘mixes’ the

numerology of the two conjectures above. Bassam Shayya indeed proved the above
estimate for n = 2 and q = n

n−1 = 2 in [1]; in other words, he showed that

(1)

∫

BR

|Eg|4w ≤ CǫR
ǫ‖Xw‖∞

(∫
|g|2

)2

in two dimensions. His proof is quite complicated, and does not seem to generalise
in higher dimensions to imply the desired estimate

(2)

∫

BR

|Eg| 2n
n−1w ≤ CǫR

ǫ‖Xw‖∞
(∫

|g|2
) n

n−1

for all n.
In this talk, we presented two simpler proofs of (1) (in two dimensions), which

in our ongoing work we are trying to combine to obtain (2) in all dimensions. The
two proofs do not seem to speak to each other: the first is based on the dispersive
properties of the operator E, and the second is based on polynomial partitioning,
which globally controls the interaction of the tubes carrying the wave packets of
E with algebraic varieties (but not the dispersion of E). As the second proof may
be viewed as standard, we present here the first one.

Without loss of generality, we may assume that w is the characteristic function
of a union of unit balls in Rn, contained in the level set

Lλ := {x ∈ BR : λ ≤ |Eg(x)| < 2λ}
of |Eg|, for some dyadic λ > 0. Therefore,

∫

BR

|Eg|2w ≥ cλ2w(BR),

for some absolute constant c > 0 (where w(BR) :=
∫
BR

w). On the other hand,

denoting by C the set of centres of the unit balls in supp w, we have that
∫

BR

|Eg| 2n
n−1w ≤ C

∑

x∈C

|Eg|2.

Now, for every or every x ∈ Rn,

Eg(x) =

∫
e2πi〈x,h(ω)〉φ(ω)g(ω)dω = 〈g, φx〉,

where φ is a bump function on Bn−1(0, 1), h is a parametrisation of Σ and φx(ω) :=
e−2πi〈x,h(ω)〉φ(ω). Therefore,

|Eg(x)|2 = Eg(x)Eg(x) = Eg(x) · 〈g, φx〉 = Eg(x) · 〈φx, g〉 = 〈Eg(x)φx, g〉,
hence
∫

|Eg|2w ≤ C
∑

x∈C

|Eg(x)|2 = C

〈∑

x∈C

Eg(x)φx, g

〉
≤ C

∥∥∥∥∥
∑

x∈C

Eg(x)φx

∥∥∥∥∥
2

‖g‖2.
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We can now exploit some orthogonality between the exponentials φx:
∥∥∥∥∥
∑

x∈C

Eg(x)φx

∥∥∥∥∥

2

2

=
∑

x,y∈C

Eg(x)Eg(y)

∫

Bn−1(0,1)

φx(ω)φy(ω)dω

=
∑

x,y∈C

Eg(x)Eg(y)

∫

Bn−1(0,1)

e2πi〈y−x,h(ω)〉φ2(ω)dω

=
∑

x,y∈C

Eg(x)Eg(y)E(φ2)(ω)

≤
∑

x,y∈C

|Eg(x)| · |Eg(y)| · 1

1 + |x− y|n−1
2

≤ Cλ2
∑

x,y∈C

1

1 + |x− y|n−1
2

,

where we bounded |E(φ2)| using non-stationary phase. Plugging this in the earlier
estimate, we obtain

λw(BR) ≤ Cλ


 ∑

x,y∈C

1

1 + |x− y|n−1
2




1/2

‖g‖2,

an L1-weighted estimate on |Eg|. Raising both sides to the power 4, rearranging
and applying the Cauchy–Schwarz inequality, we obtain

λ4w(BR) ≤ C
1

w(BR)3


 ∑

x,y∈C

1

1 + |x− y|n−1
2




2 (∫
|g|2

)2

≤ C sup
x∈C

∑

y∈C

1

1 + |x− y|n−1

(∫
|g|2

)2

.

Fixing the x ∈ C that achieves the supremum above, and looking at all y in the
roughly C logR annuli A(x, r/2, r) with centre x, inner radius r and outer radius
2r inside BR, it follows by dyadic pigeonholing that the above sum is dominant in
one of these annuli; that is,

λ4w(BR) ≤ C logR
w(Br)

rn−1

(∫
|g|2

)2

for some dyadic 1 ≤ r ≤ R. This trivially implies (1), since

w(Br)

rn−1
≤ ‖Xw‖∞.
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Equivalences between different forms of the Kakeya conjecture and
duality of Hausdorff and packing dimensions for additive complements

Tamás Keleti

(joint work with András Máthé)

By a Besicovitch set B ⊂ Rn we mean a set that contains a unit line segment in
every direction. By a classical result of Besicovitch [1] for every n ≥ 2 there exist
Besicovitch sets of Lebesgue measure zero.

The Kakeya conjecture states that in Rn every Besicovitch set has Hausdorff
dimension n. Davies [2] proved in 1971 that the Kakeya conjecture holds for n = 2.
It is open for every n > 2.

The current best estimates for the Hausdorff dimension of a Besicovitch set
B ⊂ Rn for n ≥ 3:

n = 3 Katz-Zahl [6] (2019): dimH B ≥ 5/2 + ε,
n = 4 Katz-Zahl [7] (2021): dimH B > 3.059,
n = 5 Hickman-Rogers-Zhang [4] (2022): dimH B > 18/5,

n = 6 Katz-Tao [5] (2002): dimH B ≥ 7− 2
√
2,

n > 6 Katz-Tao [5] (2002), Hickman-Rogers-Zhang [4] (2022):

dimH B ≥ (2−
√
2)n+O(1).

We do not improve any of these estimates.
The Kakeya conjecture is often stated only for compact or Borel B. Often,

instead of line segments, we want full lines in every direction. One can also require
unit line segments only in a set of directions of positive n−1-dimensional Lebesgue
measure or n − 1-dimensional Hausdorff dimension. It was widely believed that
all of these variants are equivalent. We prove that this is indeed the case: all of
these forms of the Kakeya conjecture are equivalent:

Theorem 1. For every n there exists a real d ≤ n with the following properties:

(1) There exists a compact Besicovitch set of Hausdorff dimension d.
(2) There exists a closed set of Hausdorff dimension d that contains a line in

every direction.
(3) If S ⊂ Rn contains a line segment in a set of directions of Hausdorff-

dimension n− 1 then dimH S ≥ d.

Therefore for all possible combinations of variants we considered there exists
a set of minimal dimension, and this minimal dimension is always the same for
any fixed n. In fact, the sets that have the minimal dimension in (1) and (2)
are achieved by typical constructions in the Baire category sense, which extends a
result of Körner [10] who proved that typical Besicovitch sets in the Baire category
sense have Lebesgue measure zero.

The following conjecture and results show that in general it is not that clear
that it does not matter if we take the union of lines or line segments:

Line Segment Extension Conjecture ([8], 2015). If A is the union of line
segments in Rn and B is the union of the corresponding full lines, then dimH A =
dimH B.
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Theorem 2 ([8], 2015). (i) This conjecture for n would imply that for any Besi-
covitch set B ⊂ Rn we have dimH B ≥ n− 1.

(ii) If this conjecture holds for every n ≥ 2 then any Besicovitch set has upper
Minkowski dimension n.

Theorem 3 ([8], 2015). The Line Segment Extension Conjecture holds when
dimH A < 2 or dimH B ≤ 2. In particular the conjecture holds in the plane.

A lot of important conjectures (e.g. Kakeya problem, Besicovitch (n, k)-set
conjecture) and results in geometric measure theory are of this form:

General Principle. The union of an s Hausdorff-dimensional collection of d
Hausdorff-dimensional sets in Rn has

• positive Lebesgue measure if s+ d > n,
• Hausdorff dimension s+ d if s+ d ≤ n,

unless the sets have large intersections.

We prove that the following form of the General Principle is also equivalent to
the Kakeya conjecture:

General Kakeya Conjecture. Let E be an arbitrary subset of Rn and let D be
the set of directions in which E contains a line segment. If D 6= ∅ then

dimH E ≥ dimH D + 1.

By a result in [3] this conjecture holds if dimH D ≤ 1. It is not hard to show
using a projective transformation that the General Kakeya Conjecture implies the
Line Segment Extension Conjecture. Thus we have the following implications:

Kakeya Conjecture ⇐⇒ General Kakeya Conjecture
w�

Line Segment Extension Conjecture
w�

Every Besicovitch set in Rn has Hausdorff dimension at least n− 1
w�

Kakeya Conjecture for upper Minkowski dimension

Let dimP denote the (upper) packing dimension and and A+B = {a+ b : a ∈
A, b ∈ B}. It is easy to see that

A+B = Rn (or int(A+B) 6= ∅) =⇒ dimH A+ dimP B ≥ n.

We extend this to the following duality result between Hausdorff and packing
dimension.

Theorem 4. For every non-empty Borel set A ⊂ Rn, we have

dimH A = n− inf{dimP B : B ⊂ Rn Borel, A+B = Rn},
= n− inf{dimP B : B ⊂ Rn compact int(A+B) 6= ∅}.
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and

dimP A = n− inf{dimH B : B ⊂ Rn Borel, A+B = Rn}
= n− inf{dimH B : B ⊂ Rn compact, int(A+B) 6= ∅}.

The link between the above two seemingly unrelated topics is the following
lemma, which was essentially also proved by Shmerkin-Suomala [11] in 2018.

Lemma 5. Let A ⊂ Rn be Borel. Then

(1) If A has positive Lebesgue measure then there exists a compact set of zero
upper Minkowski dimension such that int(A+B) 6= ∅.

(2) dimH A > s =⇒ ∃B ⊂ Rn compact : dimM B = n− s, int(A+B) 6= ∅,
(3) dimH A > s =⇒ ∃B ⊂ Rn Borel : dimP B = n− s, A+B = Rn.

We prove (1) by a random construction. A fairly short argument gives that (2)
follows from (1). Clearly, (2) implies (3). Statement (1) is needed for equivalences
of the versions of the Kakeya conjecture, (3) implies the first part of Theorem 4.
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Hausdorff-dimension analogue of the Elekes–Ronyái theorem
and applications

Orit E. Raz

(joint work with Joshua Zahl)

In a recent work [2], joint with Joshua Zahl, we show how certain ideas from
combinatorial geometry can be applied in the context of geometric measure theory.
In particular, we prove the following theorem: Let γ ⊂ [0, 1]2 be a smooth curve



Incidence Problems in Harmon. Anal., Geom. Meas. Theory, Ergod. Theory 1423

with non-vanishing curvature. Then, for every E ⊂ [0, 1]2 Borel, with dimHaus E =
α, we have

dimHaus{q ∈ γ | dimHaus ∆q(E) ≤ α/2 + c} = 0,

for c = c(α) > 0; here ∆q(E) is the set of distances spanned between the point q
and the elements of E. The main ingredient in our proof, is showing a discretized
analogue of the following result from combinatorial geometry: Let q1, q2, q3 ∈ R2

be three fixed non-collinear points. Then for every finite point set P ⊂ R2, of
cardinality #P = n, we have that the set

D := ∆q1(P ) ∪∆q2(P ) ∪∆q3 (P )

is of cardinality #D ≥ cn7/12, where c > 0 is an absolute constant (this follows
by combining the results from Sharir–Solymosi [3] and Solymosi–Zahl [4]).

The “discretized setting” was introduced by Katz and Tao in [1] and can be
viewed as an intermediate setting, between the discrete and continuous ones. In
particular, it is shown in [1] that certain discretized statements (later verified by
Bourgain) imply their continuous analogues (well-known conjectures, at the time
open).

References

[1] N. H. Katz and T. Tao, Some connections between Falconer’s Distance Set Conjecture and
sets of Furstenburg type, New York J. Math. 7 (2001), 149–187.

[2] O. E. Raz and J. Zahl, On the dimension of exceptional parameters for nonlinear projec-
tions, and the discretized Elekes–Rónyai theorem, arXiv:2108.07311v2 (2021).

[3] M. Sharir and J. Solymosi, Distances from three points, Combinat. Probab. Comput. 25.4
(2016), 623–632.

[4] J. Solymosi and J. Zahl, Improved Elekes–Szabó type estimates using proximity, arXiv:
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Symmetries of Cantor sets

Michael Hochman

A Cantor set is a non-empty, compact, totally disconnected set with no isolated
points. If X,Y ⊆ R are Cantor sets and α ≥ 0, we define

Endα(X,Y )

{
f : X → Y

∣∣∣∣
f(X) = Y and f extends to a Cα

map of an open interval containingX

}

We abbreviate Endα(X) = Endα(X,X) for the semigroup of Cα onto self-maps.
In general, the size of Endω(X) is affected both by α and X . Every Cantor set

X ⊆ R has uncountably many C0-self maps, but in the regime 0 < α ≤ ∞, the
set Endα(X) may be empty, finite, countably infinite or uncountable, depending
on the structure of X .

For example, let X be the central-α Cantor, constructed from [0, 1] by removing
the open middle segment of relative length α and iterating the procedure. Then
every affine map taking X into itself contracts by an integer power of 1 − α, see
[1]. Together with a linearization argument, this implies that if f : X → X is a
local diffeomorphism, then the derivative f ′ takes values that are rational powers
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of 1−α, and in particular, if f ∈ Cω , it is affine. A similar result holds if X ⊆ [0, 1]
is a Cantor set invariant and transitive under ×a mod 1 for an integer a ≥ 2, see
[4].

More generally, Funar and Neretin showed that if X is porous (“sparse” in
their terminology) then Endα(X) is countable. But they also showed that there
are Cantor sets such that End∞(X) is uncountable [2, Theorem 2,3 and Section
5.1] (note that Theorem 1 of [2] concerns a completely different space than the
theorem below and does not imply it).

The main result of this talk is the observation that the real-analytic case α = ω
is much more constrained:

Theorem 1. If X,Y ⊆ R is a Cantor set, then Endω(X,Y ) is at most countable.

This result is apparently not known in the fractal geometry community, but
after this work was completed we learned that the main step of the argument,
which deals with increasing maps of an interval, can be derived from Proposition
3.5 of [5]. Our proof, which is based on different considerations, is more elementary
and self-contained (e.g. it does not rely on Szekeres’s theorem). We first reduce the
, using Bair’s theorem and elementary arguments, to bijective maps of an interval
preserving a Cantor set. Then we carry out an analysis of the gaps in the Cantor
set near fixed points to show that such a map can be fully characterized by certain
a finite inter sequence derived from the action on gaps. This proves countability.

Our main theorem suggests many generalizations but we have not succeeded in
proving or disproving any of them.

Problem 2. What can be said about the set of into (rather than onto) self- maps
of a Cantor set X ⊆ R?

The following related question was raised in [3], but remains open:

Problem 3. If a Cantor set X ⊆ R has dimension < 1 can there exist uncountably
many affine self-maps of X into itself?

Another direction concerns the algebraic structure of Endω(X):

Problem 4. Let Autω(X) be the invertible elements of Endω(X). What groups
arise as [subgroups] if Autω(X)? When is Autω(X) it finitely generated?

For certain structured sets this question was addressed by Funar and Neretin
[2].

It is also natural to consider higher dimensions. Certainly our proof breaks
down, as it relies very strongly on the order structure of R. One also must adjust
the statement, since if X is contained in a lower-dimensional Cα-manifold M , one
may be able to extend a self-map of X in many ways in the transverse direction
to the manifold.

Problem 5. Is the analogue of Theorem 1 true for X ⊆ Rd and real-analytic maps,
provided M ∩X has empty interior in X for every Cω-submanifold M ⊆ Rd?

In the complex case, the qualification is unnecessary:
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Problem 6. Is the analogue of Theorem 1 true for Cantor sets X ⊆ C and
analytic maps?

And finally, going back to the line,

Problem 7. If µ is a compactly supported, non-atomic Borel probability measure
on R, is

Endω(µ) = {f ∈ Endω(suppµ) | µ = µ ◦ f−1}
countable?

Of course, if the support is a Cantor set, this is answered by the results of the
present paper (because any map preserving µ must preserve its support), but if
the support an interval the answer is far from clear. The problem may be viewed
as a relative of Furstenberg’s celebrated ×2,×3 problem, but the two are not
directly related since here we consider more general measures and maps but ask
for a weaker conclusion. We remark, that for ×m invariant measures of positive
dimension, we resolved Problem 7 in [4]. It is possible that also the problem above
becomes easier under the assumption that dimµ > 0 even this remains open.
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Entropy Rates in Fractal Geometry

Lauritz Streck

We start by describing the problem setting. We let ν be a measure with finite
support on the integers and we let λ be a real number with |λ| < 1. Let ξ0, ξ1, . . .
be independent and identically distributed with respect to ν. We define the self
similar measure νλ on R by

νλ := law




∞∑

j=0

ξjλ
j


 .

For ν = Unif{0, 1} the Bernoulli measure, this measure is commonly known as
a Bernoulli convolution. Questions about the Hausdorff dimension, absolute con-
tinuity (with respect to the Lebesgue measure) and Fourier decay of self-similar
measures have a long and varied history; we refer the readers to [6].
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For the study of the dimension of νλ, a crucial quantity is the Garsia Entropy.
It is defined as

hλ(ν) := lim
n→∞

H(Xn)

n

for algebraic λ, where Xn :=
∑n−1

j=0 ξjλ
j and H(·) is the Shannon entropy. To

highlight its importance, we mention that entropy rates played an important role
in Hochman’s breakthrough [5]. As a corollary of this, one can deduce that for
algebraic λ,

dim(νλ) = min

(
1,

hλ(ν)

logλ−1

)
.

Using Hochman’s result, Varjú showed that dim(νBer
λ ) = 1 for transcendental

λ ∈ (0.5, 1) [8]. In his proof, a crucial step is estimating the Garsia entropy.
The Garsia entropy is always bounded in terms of the algebraic complexity of

λ, irrespective of ν. To make this precise, we define the Mahler measure as

Mλ := |ad|
∏

σ:Q(λ)→C,|σ(λ)|>1

|σ(λ)|,

where ad is the leading coefficient of the minimal polynomial of λ over Z[X ] and
σ(λ) ranges over the Galois conjugates of λ. It is well-known that then

(1) hλ(ν) ≤ logMλ

for any ν (see for example [7], Lemma 3.3). We say that a pair λ, ν has maximal
entropy if hλ(ν) = logMλ. It was observed that roughly speaking, good things
happen if maximal entropy is attained. For example, it was shown that for ν
the Bernoulli measure and specific algebraic λ, namely those for which λ−1 is a
so-called Garsia number, νλ is absolutely continuous [4] with bounded density and
has power Fourier decay [1]. Here, power Fourier decay means that there are δ
and C such that

|ν̂λ(x)| ≤ C|x|−δ

for all x ∈ R. For those combinations of λ and ν, maximal entropy is attained
(and such λ are the only ones with maximal entropy if ν is the Bernoulli measure).
Although this is a relatively special family and both absolute continuity and power
Fourier decay are known to hold generically, they are the only explicit examples
for which both are known.

As negative examples, it is known that νλ is singular [2] and has dimension
drop [3] if λ−1 is a so-called Pisot number and ν is the Bernoulli measure. In the
proof, Erdos shows that νλ does not have Fourier decay and deduces singularity
from this. Garsia introduced the Garsia entropy to show that if νλ had Hausdorff
dimension one, it would also be absolutely continuous. Garsia’s proof is related
to the phenomenon of maximal entropy because he essentially shows (if not in
this language) that in the case of Pisot numbers, Hausdorff dimension one implies
maximal entropy which in turn implies absolute continuity.

This raises the question of how special the phenomenon of maximal entropy is
and whether there is an underlying reason for its relation to absolute continuity
of νλ. We denote the Galois conjugates of an algebraic λ by λi.
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Theorem 1 (Theorem 1.1 in [7]). Let |λ| < 1 be algebraic such that |λi| 6= 1 for
all Galois conjugates. Let ν be a finitely supported probability measure on Z. If
there is an i with |λi| > 1, then hλ(ν) < logMλ.

In the case that |λi| < 1 for all i, M := Mλ is an integer. In this case, the
measures ν with maximal entropy can be described explicitly. In [7], the notion
of complete vanishing at level m for ν. Stating this condition would make this
report too technical but we just say that it amounts to prescribing a finite list
of finite sets Ei ⊂ R/Z such that complete vanishing at level m is equivalent to
∃i : ∀θ ∈ Ei : ν̂(θ) = 0. The sets Ei can be made completely explicit by considering
certain finite groups associated with λ. The condition of complete vanishing thus
just specifies a finite union of lower-dimensional subspaces of l1(Z) of the form
{ν : ν̂(Ei) = 0} and a measure lies in one of the subspaces if and only if there is
complete vanishing. The theorem below says that a measure has maximal entropy
if and only if it lies in one of the subspaces of this form.

Theorem 2 (Theorem 1.2/1.3 in [7]). Let λ be an algebraic number such that
|λi| < 1 for all conjugates and let ν be a finitely supported probability measure on
Z. The pair ν, λ attains maximal entropy if and only if there is an m with complete
vanishing at level m. In this case, the measure νλ is absolutely continuous on R

with bounded density and has power Fourier decay.

The theorem gives a list of subspaces the measures with maximal entropy lie
in. Following the proof, they could in principle be made completely explicit, as
described in Example 1.5 in [7]. In general, the size of this list will depend on
the length of the interval ν is supported on and on the biggest denominator in
the finite set {θ ∈ Q : ν̂(θ) = 0}. However, in some cases, this bound can be
improved: If a1 and M are coprime, where adx

d + · · · + a1X +M ∈ Z[X ] is the
minimal polynomial of β := λ−1, the bound on m in the theorem depends only on
M and on the length of the interval the measure ν is supported on (see Theorem
1.4 in [7]). In this case, the bounds on m are sharp.

To end this document, we briefly talk about the proof of Theorems 1 and 2.
One considers the completions Kν of the field K := Q(λ) with respect to some
absolute value ν. These completions could be either R,C or finite field extensions
of some Qp. The product

Aλ :=
∏

ν:|λ|ν<1

Kν ,

where ν runs over all absolute of K is then a natural setting to consider questions
about the Garsia entropy. One has a natural diagonal embedding of K into Aλ

and a contracting action of λ on Aλ. The Mahler measure Mλ is exactly the factor
by which the action of λ shrinks sets in Aλ (when measured in terms of the Haar
measure on Aλ).

On this space, one obtains a self-affine measure µλ as the limit measure of the
random variables Xn =

∑
0≤j<n ξjλ

j embedded into Aλ. This measure projects
onto νλ and turns out to be nicer than νλ in many respects - for example, the
points in its support are exponentially separated.
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Both Theorem 1 and Theorem 2 are proven by showing the corresponding, more
general, result for µλ. The key point of the proof is to adapt the argument of Erdos
and Garsia to the setting of Aλ. From this argument, one can deduce that maximal
entropy must entail the vanishing of certain Fourier coefficients. This reduces the
problem to one more combinatorial in nature that can be solved explicitly.
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Semisimple linear random walks on the torus I

Nicolas de Saxcé

(joint work with Weikun He)

Given a sequence (gn)n≥1 of identically distributed independent random variables
with law µ on SLd(R), we study the random walk (sn)n≥1 defined by

sn = gngn−1 . . . g1.

More precisely, we shall be interested in the law µ∗n of sn, as n goes to infinity.
Recall Kesten’s law of large numbers for products of matrices.

Theorem 1 (Law of large numbers). If
∫
log‖g‖µ(dg) < +∞, then there exists

λ1 ≥ 0 such that almost surely and in L1

lim
1

n
log‖g1 . . . gn‖ → λ1.

In other words, ‖g1 . . . gn‖ = en(λ1+o(1)). We therefore want to study the
rescaled measure

µn = (e−nλ1)∗(µ
∗n),

seen as a measure on Md(R).

We make two important assumptions on the subgroup Γ generated by the support
of µ:

(1) Γ is unbounded, and spans E = Md(R) as a vector space.
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(2) Γ is included in SLd(Z).

We study the properties of µn at scale

δ = e−nλ1 .

Let us make some elementary observations:

(1) (Controlled support) By the law of large numbers, µn is mostly supported
on the ball BE(0, δ

−ε), for ε > 0 arbitrarily small.
(2) (Exponential growth) The assumption that Γ spans E implies that Γ is not

virtually solvable. By the Tits alternative, it must contains a free group,
and therefore, the support of µn contains at least ecn points, for some
c > 0.

(3) (Separation) Since Γ ⊂ SLd(Z), the support of µn is δ-separated.

Writing N(X, δ) for the cardinality of a maximal δ-separated subset of X , the
above implies that there exists σ > 0 such that for all large enough n, for some
subset S ⊂ BE(0, δ

−ε) ∩ Suppµn,

N(S, δ) ≥ δ−σ.

This means that µn has positive box-dimension at scale δ. Our goal will be to
exploit the multiplicative structure of µn to show that µn in fact has positive
Fourier dimension, i.e. that one can get a polynomial upper bound on the Fourier
transform of µn.

Recall that if E∗ denotes the space of linear forms on E, the Fourier transform of
a measure ν on E is the function on E∗ given by

∀ξ ∈ E∗, ν̂(ξ) =

∫

E

e−i〈ξ,x〉ν(dx).

We show the following theorem.

Theorem 2 (Fourier decay for random walks). Under the above assumptions on
Γ, and assuming also that for some ε > 0,

∫
SLd(R)

‖g‖εµ(dg) < +∞, there exists

α0 > 0 such that for all ξ ∈ E∗ such that ‖ξ‖ ≤ δ−α0 ,

|µ̂n(ξ)| ≤ ‖ξ‖−τ .

The proof of this result can be split into two parts:

(A) Fourier decay of multiplicative convolutions in E.
(B) Non-concentration of semi-simple random walks.

The first part is independent of the random walk setting; its goal is to show that
if a probability measure ν on E has positive dimension and satisfies some non-
concentration condition at scale δ, then some multiplicative convolution power
of ν will exhibit some Fourier decay at scale δ. We show this using a strategy
developed by Bourgain in the case E = R, based on the discretized sum-product
estimate and a flattening lemma.

The goal of the second part is to check that the rescaled measure µn associated
to a random walk on SLd(Z) satisfies the non-concentration condition needed in
order to apply the Fourier decay result from the first part. The proof is based on
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the fact that if the Zariski closure of Γ is semisimple, then the convolution operator
associated to µ has a uniform spectral gap on all Cayley graphs πp(Γ), where
πp : SLd(Z) → SLd(Z/pZ) is the reduction modulo p, a property first discovered
by Bourgain and Gamburd in the setting of SL2(Z), and then generalized to all
semisimple algebraic groups by Salehi Golsefidy and Varjú.
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Semisimple linear random walks on the torus, II

Weikun He

(joint work with Nicolas de Saxcé)

This is the sequel to Nicolas de Saxcé’s talk. The goal is to explain how to use
sum-product theorems to derive quantitative equidistribution for random walks
on the torus by toral automorphisms.

Namely, we consider the action of the group of automorphisms GLd(Z) on the
d-dimensional torus Rd/Zd, with d ≥ 2. Given a probability measure µ on the
group and a starting point x on the torus, a random walk is defined. We are
interested in questions regarding the quantitative equidistribution in law of such
random walks. In concrete terms, for positive integer n, let νn denote the image
measure of µ× · · · × µ by the map (g1, . . . , gn) ∈ GLd(Z)

n 7→ gn · · · g1x ∈ Rd/Zd.
We ask whether νn converges in the weak-∗ topology to the Haar measure on
Rd/Zd and how fast or how slow is that convergence.

We explain a recent result giving a satisfactory answer in a semisimple setting,
that is, when the support of the measure µ generates a subgroup whose Zariski
closure is semisimple. Put into informal words, it is the following.

Theorem 1 (Equidistribution). A semisimple linear random walk on a torus
equidistributes unless the orbit of the starting point is not dense.

Theorem 2 (Quantitative equidistribution). The equidistribution is fast unless
the starting point is close to a small invariant closed subset.

The precise and rigourous statement of the quantitative equidistribution is sharp
up to a constant. In particular, this is a generalisation of the work of Bourgain–
Furman–Lindenstrauss–Mozes [1]. Moreover, this gives rise to new proofs of the
classification of orbit closures due to Guivarc’h–Starkov [3] and Muchnik [6] and
the classification of stationary measures due to Benoist–Quint [2].
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The proof follows the strategy of Bourgain-Furman-Lindenstrauss-Mozes, where
Fourier analysis is combined with incidence geometry (or sum-product estimates).
In the original proof of Bourgain–Furman–Lindenstrauss–Mozes, the sum-product
side appears in the form of projection theorems. Instead of that, we make use of
another appearance of the sum-product phenomenon, Fourier decay. To be more
precise, we use the Fourier decay of random walks on the space of matrices, which
is explained in Nicolas de Saxcé’s talk. This is the main new input in our proof.
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Large copies of large configurations in large sets

Vjekoslav Kovač

(joint work with Polona Durcik, Kenneth J. Falconer, Luka Rimanić,
Mario Stipčić and Alexia Yavicoli)

There exist patterns in large but otherwise arbitrary structures.

This is the main maxim of the Ramsey theory, but it is also widespread in other
areas of mathematics. Results that are addressed here can be collectively called
the Euclidean density theorems and they belong to the intersection of the arith-
metic combinatorics and the geometric measure theory. These results study large
sets, as this is what the word “density” stands for. In the present context, a mea-
surable subset A of the unit cube [0, 1]d is considered large if its Lebesgue measure
is positive. On the other hand, a measurable subset A of the whole space Rd is
considered large if it occupies a positive portion of the space, i.e., its (appropriately

defined) upper (Banach) density δ(A) is positive. The Euclidean density theorems
search inside A for congruent (i.e., isometric) copies of given configurations (pat-
terns) from a prescribed family P = {Pλ : λ ∈ (0,∞)}, indexed by a certain “size”
parameter λ. Typically, Pλ is the dilate by λ of a fixed point configuration P , i.e.,
Pλ = λP .

Using the Lebesgue density theorem one can easily find all kinds of finite con-
figurations inside a positive measure set A. Moreover, generalizing the Steinhaus
theorem one can even find inside A all sufficiently small dilates of a given finite
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point configuration P . Therefore, we have to ask for more in order to obtain
a meaningful result in this setting. There are two types of results that we are
generally aiming for. The first one is the “all large scales” formulation.

ALS: For every measurable set A ⊆ Rd satisfying δ(A) > 0 there exists a number
λ0 = λ0(P , A) > 0 such that for every λ ≥ λ0 the set A contains a
congruent copy of Pλ.

This is a rather strong but only qualitative claim, as the number λ0 depends
on more than just the density δ(A). The second one is “an interval of scales”
formulation, sometimes also known as a compact formulation (after [1]).

IOS: Take a number 0 < δ ≪ 1 and a measurable set A ⊆ [0, 1]d with measure at
least δ. Then the set of scales λ ∈ (0,∞) such that A contains a congruent
copy of Pλ contains an interval of length at least ε = FP,d(δ).

This is a weaker but quantitative claim and it enables a competition to find better
dependencies of ε on δ.

This whole topic was initiated by a question of Székely [17] on whether a pos-
itive upper density set A ⊆ R2 realizes all sufficiently large distances (i.e., in our
terminology, whether an ALS result holds for P = {0, 1}), which has been subse-
quently popularized by Erdős [8]. It was answered affirmatively by Furstenberg,
Katznelson, and Weiss [11], and independently also by Falconer and Marstrand
[10] and Bourgain [1]. Since then, a lot of work has been done in the aforemen-
tioned natural special case, when a fixed pattern P is scaled by the usual Euclidean
dilations. The most general known positive result, in both ALS and IOS formula-
tions, is due to Lyall and Magyar [16] and it holds when P = ∆1 × · · · ×∆m is a
Cartesian product of vertex-sets ∆j of nondegenerate simplices. The most general
negative result is still due to Graham [12], who showed that ALS (and similarly
IOS) results fail for configurations that cannot be inscribed in a sphere.

The purpose of this note is to inform the reader on where to look for the most
recent developments on the topic, which have become possible primarily due to
recent breakthroughs in the field of the multilinear harmonic analysis. We can
“change the rules” slightly in one of the following ways, in order to open new
interesting research directions.

Quantitative bounds. We might want to improve bounds in the IOS formula-
tions. Already when P is a set of vertices of an n-dimensional rectagular box and
A is a measurable subset of [0, 1]2n, the approach of Lyall and Magyar [16] gives
an interval of a very small length; namely ε−1 is a tower of exponentials of height
n of the number δ−3·2n . Durcik and the author [4] have increased this to a “more
reasonable” bound, ε = (exp(δ−C(n,P )))−1. A bound of the same type was later
shown, more generally, for products of simplices by Durcik and Stipčić [7].

Anisotropic dilations. One can start with a configuration P and generate the
collection P by applying to it anisotropic power-type scalings, namely (x1, . . . , xn)
7→ (λa1b1x1, . . . , λ

anbnxn), where aj , bj are fixed positive parameters. It was shown
in [13] that analogues of many classical results from [1, 15, 16] remain valid in this
modified context.
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Sizes in ℓp. Already Bourgain [1] noted that ALS results fail for a triple of
collinear points P . Cook, Magyar, and Pramanik [2] came up with an idea to
study three-term arithmetic progressions x, x+ t, x+2t ∈ Rd, but evaluate sizes of
their gaps t in other ℓp norms. Thew showed the ALS formulation whenever p 6=
1, 2,∞ and d is sufficiently large. This was generalized to corners (x, y), (x+ t, y),
(x, y + t) ∈ (Rd)2 by Durcik, Rimanić, and the author [5], but longer arithmetic
progressions are still an open problem at the time of writing. As opposed to that,
the IOS formulation (with a still “reasonable” length ε) was shown by Durcik and
the author [4]. It turns out that for n-term arithmetic progressions one needs
to avoid precisely the values 1, 2, . . . , n − 1,∞ for p. Finally, certain mixtures of
three-term progressions or corners and product-type configurations were explored
by the same authors in [3].

Very dense sets. Falconer, Yavicoli, and the author [9] considered measurable
sets with density δ(A) sufficiently close to 1 that A must contain all large dilates
of all n-point configurations. Nontrivial upper and lower bounds for the critical
density were shown in that paper, but its sharp asymptotics as n → ∞ is currently
still unknown.

Nonlinear configurations. Kuca, Orponen, and Sahlsten [14] showed that every
compact set K ⊆ R2 of Hausdorff dimension sufficiently close to 2 contains a pair
of distinct points of the form (x, y), (x, y) + (u, u2). This can be thought of as a
continuous variant of the Furstenberg–Sárközy theorem (on R2 instead of Z). One
naturally wonders what stronger property of this type holds for sets of positive
Lebesgue measure. Durcik, Stipčić, and the author [6] showed, among other things,
that a positive measure set A ⊆ [0, 1]2 contains a point (x0, y0) ∈ A such that A
nontrivially intersects parabolae y−y0 = a(x−x0)

2 for a whole interval I ⊆ (0,∞)
of parameters a ∈ I. Larger nonlinear configurations could be an interesting topic
to study.
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Counting Rational Points near Flat Hypersurfaces

Rajula Srivastava

(joint work with Niclas Technau)

Let M ⊆ Rn be a compact C1-hypersurface, and ‖ · ‖2 be the Euclidean norm on
Rn. The distance of a point y ∈ Rn to M is defined by

dist(y,M) := inf
x∈M

‖x− y‖2.

Given Q ≥ 1 and δ ≥ 0, we are interested in counting the number of rational
points with denominator q ∈ [Q, 2Q), located in a δ/q-neighbourhood of M. This
is captured by

(1) NM(δ,Q) := #

{
(q,p) ∈ Z× Zn : q ∈ [Q, 2Q), dist

(p
q
,M

)
≤ δ

q

}
.

Using compactness, we can cover M by a finite collection of open charts. Thus,
without loss of generality, we may assume (using the implicit function theorem)
that M can be represented in the Monge form as the graph

{(x, f(x)) : x ∈ B(0, 1)}
over the unit open ball in Rn−1 of a C1 scalar valued function f . We call this the
normalised Monge form of M. We now control the counting function (1) in terms
of

Nf (δ,Q) =
∑

(q,a)∈Z×Zn−1

1[1,2)(
q

Q
)1B(0,1)

(
a

q

)
1[0,δ]

(
‖qf(a

q
)‖R/Z

)
,
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where ‖ · ‖R/Z denotes the distance to the nearest integer. How large should we
expect Nf (δ,Q) to be? Suppose we replace the term ‖qf(a/q)‖R/Z by a uniformly

distributed random variable R : B(0, 1) → [0, 1/2]. There are about Qn−1 rele-
vant choices for a, and Q choices for q, while the constraint ‖R‖ < δ holds with
probability δ. Thus it is reasonable to expect that

(2) Nf (δ,Q) ≍ δQn.

However, this random model cannot predict the size of Nf (δ,Q) correctly when δ
is rather small in terms of Q, because Nf (δ,Q) counts, in particular, the points
lying on the manifold — there might be relatively many such points, or none at
all!

For instance, the cylinder

Z := {(x1, . . . , xn) ∈ Rn : x2
1 + x2

2 = 3}
is readily seen to contain no point ofQn at all. A short computation in combination
with the fact that any non-zero integer is at least one in absolute value shows that
any rational point contributing to NZ(δ,Q) when δ = o(Q−1) must in fact be a
point on Z. Hence NZ(δ,Q) = 0 in the range δ ∈ (0, (Q logQ)−1), once Q is
sufficiently large– violating (2) dramatically.

However, if there is no “local obstruction”, then the probabilistic guess (2)
should be accurate up to a Qε of room in the expected range for δ, meaning that

(3) Nf (δ,Q) ≍ δQn uniformly for anyQ ≥ 1, and δ ∈ (Qε−1, 1/2)

where ε > 0 is fixed. The implied constants are allowed to depend on f and ε.
The term “local obstruction” is deliberately vague. While there is some under-

standing of geometric properties which have to be excluded for (3) to be true, it
is currently not known what a precise characterisation all such local obstructions
should be. In a recent break-through, J.-J. Huang showed the following:

Theorem 1 ([1]). Let n ≥ 3 and M be immersed by f : [−1, 1]n−1 → R. Suppose
that f is max(⌊n−1

2 ⌋+ 5, n+ 1)-many times continuously differentiable. Let

Hf (x) :=
( ∂2

∂xi∂xj
f(x)

)
i,j≤n−1

be the Hessian of f at x ∈ Rn−1. If M is not locally flat, i.e. the Gaussian
curvature det Hf (x) does not vanish for any x ∈ [−1, 1]n−1, then (3) holds.

In other words, uniform curvature information rules out any local obstruction
for hypersurfaces. Thus (3) is true for a wide class of hypersurfaces in all dimen-
sions n ≥ 3. The main innovation in [1] was an elegant bootstrap procedure relying
on projective duality and the method of stationary phase from harmonic analysis.

On the other hand, our main result (Theorem 3 below) establishes a new heuris-
tic for a rich class of flat or rough hypersurfaces. Indeed we consider hypersurfaces
whose Hessian determinant (along with several other higher order derivatives) ei-
ther vanishes or blows up at an isolated point, say the origin. To handle such
surfaces, we have to introduce an additional new term to account for this local
flatness/roughness. This term arises quite naturally from underlying harmonic
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analysis but also from purely geometric considerations (volumes of corresponding
Knapp caps).

Main Results. In order to describe the class of hypersurfaces we consider, some
more notation is needed. Let Hd(R

n−1) denote the collection of functions f :
Rn−1 → R which are homogeneous of degree d, that is f(λx) = λdf(x) for all
x ∈ Rn−1 and all λ ≥ 0.

Definition 2. For a real number d 6= 0, denote by H0

d(R
n−1) the set of all smooth

functions f ∈ Hd(R
n−1) whose Hessian Hf (x) remains invertible away from the

origin; that is

H0

d(R
n−1) := {f ∈ Hd(R

n−1) : f is smooth on Rn−1 \ {0},
and det Hf (x) 6= 0 if x 6= 0}.

The simplest example of a function in H0

d(R
n−1) to keep in mind is

f(x) := ‖x‖d2.
Theorem 3 (Main Theorem). Let n ∈ Z≥3. Let d > 2(n−1)

2n−3 be a real number.

Fix ε > 0, and f ∈ H0

d(R
n−1). Then

Nf (δ,Q) ≍ δQn +
( δ

Q

)n−1
d

Qn

for any Q ≥ 1 and δ ∈ (Qε−1, 1/2), provided 2(n−1)
2n−3 < d < n− 1.

If d ≥ n− 1 then

δQn +
( δ

Q

)n−1
d

Qn ≪ Nf (δ,Q) ≪ δQn +
( δ

Q

)n−1
d

Qn+kε

for any Q ≥ 1 and δ ∈ (Qε−1, 1/2), where k = k(n) > 0 depends only on n.
The other implied constants in this theorem depend on ε, f, n, and d but not on

δ, or Q.

An interesting consequence of the above theorem is that the original heuristic
(3) is indeed true for a large subclass of the locally flat hypersurfaces we consider!
Thus having non-vanishing Gaussian curvature is a sufficient but not a necessary
condition for (3) to be valid. On the other hand, the ‘flat term’ that we introduce is
indeed required to count rational points near manifolds corresponding to functions
of large enough homogeneity, as a straightforward reformulation of our theorem
shows.

Corollary 4. Keep the notation and assumptions as in Theorem 3. Let ε > 0 be
small in terms of d and n.

(i) If 2(n−1)
2n−3 < d ≤ 2(n− 1), then

Nf (δ,Q) ≍ δQn for Q ≥ 1 and δ ∈ (Qε−1, 1/2).

(ii) If d > 2(n− 1), then
( δ

Q

)n−1
d

Qn ≪ Nf (δ,Q) ≪
( δ

Q

)n−1
d

QnQkε for Q ≥ 1 and δ ∈ (Qε−1, Q−n−1−kεd
d−(n−1) )
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while

Nf (δ,Q) ≍ δQn for Q ≥ 1 and δ ∈ [Q−n−1−kεd
d−(n−1) , 1/2).

All the implied constants may depend on ε, f, n, d but not on δ, or Q.

Indeed, values of d > 2 lead to hypersurfaces whose Gaussian curvature vanishes
at the origin. On the other hand, d < 2 leads to unbounded Gaussian curvature
near the origin (and indeed the hypersurface is not even C2), unless d = 0.
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Intersections and projections in the first Heisenberg group

Terry Harris

This talk discusses the problem of generalising the Marstrand–Mattila projection
theorem to the first Heisenberg group. In Euclidean space, the Marstrand–Mattila
projection theorem says that the Hausdorff dimension of sets of dimension ≤ m
generically does not decrease under projection onto m-planes, and that projec-
tions of sets of dimension > m generically have positive m-dimensional Lebesgue
measure. The conjectured Heisenberg analogues are similar, with the Hausdorff di-
mension defined through a natural metric related to the group structure, and with
projections defined through a natural semidirect decomposition of the Heisenberg
group into homogeneous subgroups.

Although the Heisenberg group H has the same topology as R3, it has Hausdorff
dimension 4 with respect to the Heisenberg metric, and the vertical 2-planes in
H = R3 that we project onto have dimension 3. The main conjecture (due to
Balogh, Durand–Cartagena, Fässler, Mattila and Tyson [1]) says that if dimA = s,
then for s ≤ 3 the Hausdorff dimension of A does not decrease generically under
vertical projection, and if s > 3 then vertical projections of A generically have
positive area. In the range s ≤ 1, this conjecture has been known since 2011 (it
was solved in this range in the same paper it was introduced). This conjecture was
recently solved in the range s ∈ [0, 2]∪{3} by Fässler and Orponen [5], with partial
results between 2 and 3. This talk presents a result of the author [7] which solves
the conjecture in the range s > 3, building on the ideas of Fässler and Orponen.
The problem is still open for s ∈ (2, 3).

The proof uses the endpoint trilinear Kakeya inequality (in particular, the end-
point result without δ−ǫ loss is crucial, though the exponent p is not). I do not
know if this is the first application which requires the endpoint version. The end-
point trilinear Kakeya was first proved by Guth [6]. The affine-invariant version
(used in the proof) was first proved by Bourgain and Guth [3], and a simpler
proof was later found by Carbery and Valdimarsson [4]. Guth’s original version
of trilinear Kakeya is probably also sufficient for the application. (One only needs
some dependence C(ρ) on the angle ρ of transversality; the precise dependence is
not important. By a scaling argument, the version with coefficients aT in front of
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the functions χT is implied by the version without coefficients (without any δ−ǫ

loss), since repetitions of tubes in the inequality are allowed.)
The method also gives a solution to the problem of extending the Marstrand–

Mattila intersection theorem to the first Heisenberg group. Previously this was
known only for generic intersections with vertical planes ([2]), but it is now solved
for generic intersections with horizontal lines too.

Notes/corrections. In my talk/preprint I implied that the affine-invariant ver-
sion of trilinear Kakeya was originally due to Carbery–Valdimarsson rather than
Bourgain–Guth. This will be corrected in the proofs of the preprint. Thanks to
R. Zhang for this correction.

In my talk I mentioned that the SL2 Kakeya conjecture was solved by Katz-
Wu-Zahl, but forgot to mention that it was also solved by Fässler-Orponen.
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L
p-estimates of projections, analytic interpolation, and applications

Bochen Liu

There are two equivalent ways to define the Hausdorff dimension of a Borel set E
in the Euclidean space by measures. The first one is

dimH E = sup{s : ∃µ ∈ M(E), Cs(µ) := sup
x

µ(B(x, r))

rs
< ∞}.

Here M(E) denotes the class of finite Borel measures supported on E. We call a
measure µ ∈ M(E) satisfying Cs(µ) < ∞ for some s a Frostman measure on E.

The second equivalent definition is

dimH E = sup{s : ∃µ ∈ M(E), Is(µ) < ∞},
where

Is(µ) :=

∫∫
|x− y|−s dµ(x) dµ(y) = c

∫
|µ̂(ξ)|2 |ξ|−d+s dξ.

We call Is(µ) the s-dimensional energy of µ.
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Let πe(x) = x · e, x ∈ R2, e ∈ S1, denote the orthogonal projection. One of
the most classical results in geometric measure theory is the Marstrand projection
theorem, which states that, for every Borel set E ⊂ R2, dimH E > 1, the set
πe(E) ⊂ R has positive Lebesgue measure for almost all e ∈ S1. Marstrand’s
original proof is very complicated. In 1968, Kaufman gave a one-line proof using
Fourier analysis. Moreover, he proved that, if dimHE > 1 then there exists a
Frostman measure µ on E such that for almost all e ∈ S1 the induced measure
πeµ on πe(E) has L2 density with respect to the 1-dimensional Lebesgue measure.
Similar results hold in higher dimensions, with orthogonal projections denoted by
πV : Rd → V ≈ Rn, where V ∈ G(d, n) is a n-dimensional subspace of Rd and
G(d, n) denotes the Grassmannian. We refer to [5] for details of these classical
results.

Of course πV µ has L2 density is not a necessary condition for |πV (E)| > 0. But
for technical reasons the L2-method is the most popular approach to this type of
problems. There is also some discussion on Lp estimates of orthogonal projections
[6], but for a while it does not draw much attention due to the lack of geometric
applications.

In 2019, Orponen [4] proved the following Lp estimate on radial projections
that solves the visibility problem: for x 6= y in Rd, denote by

πy(x) :=
x− y

|x− y| ∈ Sd−1

the radial projection. Then for every s > d− 1, s+ t > 2(d− 1), there exists p > 1
such that ∫

‖πyµ‖p
Lp(Sd−1)

dν(y) ≤ C · Is(µ)p/2 · It(ν)1/2

for all finite Borel measures µ, ν on Rd of disjoint supports. As a corollary, if
E,F ⊂ Rd are Borel sets satisfying dimH E > d− 1, dimH E+dimH F > 2(d− 1),
then there exists y ∈ F such that πy(E) ⊂ Sd−1 has positive surface measure.

Later Orponen’s Lp estimate plays an important role in the breakthrough on
Falconer distance conjecture. See, for example, [3][2].

We would like to point out that for all applications above, the existence of some
p > 1 is enough. So a natural question is, does the range of p matter? Recently,
Dąbrowski, Orponen, Villa [1] proved that, if µ is a Frostman measure on Rd of
exponent s > n, then

∫
‖πV µ‖pLp(Hn) dγd,n(V ) < ∞, ∀ 2 ≤ p < 2 +

s− n

d− s
.

This estimate has applications in incidence estimates, Furstenburg-type problems,
and sum-product problems. Moreover, their range of p does help improve the
exponents.

As a summary, we have Lp estimates on orthogonal and radial projections,
and the range of p on orthogonal projections has geometric applications. So it
is very natural to ask if one can improve Lp estimates of radial projections and
find geometric applications that the range of p helps. We would like to remind
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the reader that Orponen’s range in [4] is 1 ≤ p < min
{

t
2(d−1)−s , 2− t

d−1

}
that

is always less than 2.
In [7] we prove the following result on mixed-norm estimates of projections.

Theorem 1. Suppose µ, ν are Frostman measures of exponents s, t respectively,
of disjoint supports, and s+ t > 2(d− 1), then

∫
‖πyµ‖q

Lp(Sd−1)
dν(y) < ∞

given

q = 2+
s+ t− 2n

d− s
, 1 ≤ p <

2(d− 1)

d− 1 + t
·
(
1 +

s+ t− 2(d− 1)

2(d− s)

)
.

In fact we prove a more general result on

πyµ(V ) :=

∫

y+V ⊥

µ dHd−n = πV µ(πV y), V ∈ G(d, n)

assuming µ has continuous density. Notice that the map πyµ(V ) is not a projection
when n ≥ 2, because two points cannot determine an n-plane. So in general
we prefer calling our result a mixed-norm estimate of orthogonal projections as
πyµ(V ) = πV µ(πV y).

Then, by solving for p > m, we obtain the following geometric application.

Theorem 2. Suppose E,F ⊂ Rd satisfying dimH F > t(d,m, dimH E), then there
exists y ∈ F such that

γd,m({W ∈ G(d,m) : W = Span{x1 − y, . . . , xm − y} : xi ∈ E}) > 0.

Here the threshold t(d,m, dimHE) can be computed explicitly. A remark is,
when m = 1 our result coincides with Orponen’s result on radial projection (the
visibility problem), and when m ≥ 2 previous results do not help as they could
not go beyond p = 2 as pointed out above.

The technique in our proof has its own interest. To work on radial projec-
tions, the argument of Dąbrowski, Orponen, Villa seem not to help. So we need
new understandings of Lp estimates of projections. Our idea is to run analytic
interpolations on the Riesz potential

µz :=
π

z
2

Γ( z2 )
| · |−d+z ∗ µ(x).

To make the interpolation work, we introduce a new notion called the s-dimensional
amplitude, defined by

As(µ) := sup
x∈Rd

∫
|x− y|−s dµ(y).

This definition is very natural and it can be easily checked that it gives another
equivalent definition of Hausdorff dimension of Borel sets, namely

dimH E = sup{s : ∃µ ∈ M(E), As(µ) < ∞}.
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Unlike Cs(µ) introduced at the very beginning, As(µ) is well defined for µz, more
precisely, if 0 < s−Re(z) < d, then

As(µz) =
∥∥| · |−s ∗ µz

∥∥
L∞

= C
∥∥| · |−s ∗ | · |−d+z ∗ µ

∥∥
L∞

≤ C
∥∥∥| · |−s+Re(z) ∗ µ

∥∥∥
L∞

.

Then we propose a general mechanism to study ‖Tµ‖p, where T is a linear
operator and µ is a Frostman measure, by interpolating between ‖Tµz‖k, k ∈ Z+.
Moreover, if one applies this mechanism to orthogonal projections, it provides an
alternative proof of the result of Dąbrowski, Orponen, Villa. For our mixed-norm
estimate, it follows in the same routine with more complicated computation.
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[1] D. Dąbrowski, T. Orponen, M. Villa, Integrability of orthogonal projections, and applications
to Furstenberg sets, Advances in mathematics 4077 (2022), 108567.

[2] L. Guth, A. Iosevich, Y. Ou, H. Wang, On Falconer’s distance set problem in the plane,
Inventiones Mathematicae 219 (2020), 779–830.

[3] T. Keleti, P. Shmerkin, New bounds on the dimensions of planar distance sets, Geometric
and Functional Analysis 29 (2019), 1886–1948.

[4] T. Orponen, On the dimension and smoothness of radial projections, Analysis & PDE 12
(2019), 1273–1294.

[5] P. Mattila, Fourier analysis and Hausdorff dimension, Cambridge University Press 150
(2015).

[6] Y. Peres, W. Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension
of exceptions, Duke Mathematical Journal 102 (2000), 193–251.

[7] B. Liu, Mixed-norm of orthogonal projections and analytic interpolation on dimensions of
measures, arXiv:2203.02973.

Sharp isoperimetric inequalities on the hypercube

David Beltran

(joint work with José Madrid and Paata Ivanisvili)

Let n ≥ 1 be an integer and {0, 1}n be the hypercube of dimension n. One can
regard {0, 1}n as a graph where two vertices x, y ∈ {0, 1}n are joined by an edge if
the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) differ in exactly one coordinate.
We denote such an edge by (x, y). Let A ⊂ {0, 1}n and Ac := {0, 1}n\A. Define
the edge boundary of A by ∇A := {(x, y) : x ∈ A, y ∈ Ac}. Associated to ∇A, we
define the function hA : {0, 1}n → R by hA(x) = 0 if x ∈ Ac, and if x ∈ A we let
hA(x) be the number of edges joining x with a vertex in Ac. Let µ be the uniform
probability measure on {0, 1}n and let E denote the expectation operator.

The classical edge isoperimetric inequality in {0, 1}n says that

(1)
|∇A|
2n

= EhA ≥ µ(A)∗ log2

( 1

µ(A)∗

)
,

where t∗ = min{t, 1 − t} for all t ∈ [0, 1]. Note this becomes an equality on
subcubes of co-dimension k for any 0 ≤ k ≤ n. It has been of interest to obtain

lower bounds for Ehβ
A for other values of 1/2 ≤ β < 1. The case β = 1/2 was first
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considered by Talagrand in [3]. By an inductive argument, he proved that there
is a universal constant K > 1 such that

E
√

hA ≥ Kµ(A)∗
√
log2(1/µ(A)

∗)(2)

for all A ⊆ {0, 1}n. Furthermore, he also proved that

E
√

hA ≥
√
2µ(A)(1 − µ(A))(3)

holds for all A ⊂ {0, 1}n. Bobkov and Götze [1] came up with an improved and

elegant inductive argument and, in particular, one of their results implies that
√
2

can be replaced by
√
3 in (3). Recently, Kahn and Park [2] showed that

Eh
log2(3/2)
A ≥ 2µ(A)(1 − µ(A)),(4)

and the constant 2 in the right-hand side of (4) is sharp: the inequality becomes
an equality for subcubes of co-dimension 1 and 2. Our main result is an improved
version of (4), which becomes tight on all subcubes (and not only co-dimension 1
and 2).

Theorem 1. Let β0 := log2(3/2). Then the inequality

Ehβ0

A ≥ µ(A)∗(log2(1/µ(A)
∗))β0(5)

holds for all A ⊂ {0, 1}n. In particular, if µ(A) ≤ 1/2 we have

Ehβ
A ≥ µ(A)(log2(1/µ(A)))

β for all β ≥ log2(3/2).(6)

The equality holds in both (5) and (6) for any subcube A ⊂ {0, 1}n.
Our second main result is an improvement of the constant

√
3 in Bobkov’s

inequality E
√
hA ≥

√
3µ(A)(1 − µ(A)).

Theorem 2. For any β ∈ [1/2, log2(3/2)] we have

Ehβ
A ≥ Cβ µ(A)(1 − µ(A))(7)

for all A ⊂ {0, 1}n, where Cβ = 2
√
2β+1 − 2.

The theorem applied to the case β = 1/2 gives the improved constant C1/2 =

1.82... >
√
3 = 1.73.... Testing the inequality Ehβ

A ≥ Cβµ(A)(1−µ(A)) on subcubes
of co-dimension 2, we obtain the upper bound Cβ ≤ 2β+2/3 for 1/2 ≤ β ≤
log2(3/2). For β = log2(3/2) the inequality (7) coincides with (4).

We also obtain a further improvement of (4) in the sense that we are able to
lower the exponent log2(3/2) = 0.5849... to 0.53 when restricted to sets of measure
µ(A) ≥ 1/2.

Theorem 3. If µ(A) ≥ 1/2 then

Eh0.53
A ≥ 2µ(A)(1 − µ(A)).

This result can be immediately applied to make progress on a conjecture of [2]
regarding separating the hypercube. Furthermore, all of our results have applica-
tions to two-sided boundary isoperimetric bounds.
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The proofs of all theorems are based on induction in the dimension n ≥ 1. In
particular, we follow the induction scheme of [2], but in the proof of Theorem 1
we enhance the induction using the inequality (4) for sets A of measure µ(A) ∈
[1/4, 1/2]. This allows to focus our attention to µ(A) ∈ [0, 1/4]. In order to
close the induction, we need to verify the non-negativity of certain functions of
two-variables. We refer to the article for further details.
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ory Relat. Fields 114 (1999), no. 2, 245–277.

[2] J. Kahn, J. Park, An isoperimetric inequality for the Hamming cube and some conse-
quences, Proc. Amer. Math. Soc. 148 (2020), 4213-4224.

[3] M. Talagrand, Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and
Margulis graph connectivity theorem, Geom. Funct. Anal. 3 (1993), no. 3, 295–314. pp.
295–314 1993.

Quantitative norm convergence for multiple ergodic averages of
several commuting transformations

Christoph Thiele

(joint work with Polona Durcik, Lenka Slav́ıková)

Given a probability space X , a bijective and measure preserving map T : X → X ,
and a bounded measurable function f on X , the classical ergodic averages are
defined as

ANf(x) =
1

N

N∑

n=1

f(T nx).

One may be interested in convergence of these averages as N → ∞ in L2(X),
this is guaranteed by von Neumann’s theorem, or convergence in an almost every-
where sense, this is Birkhoff’s theorem. One may also be interested in quantitative
convergence results in norm or almost everywhere. One form of quantitative con-
vergence is expressed by variation norm estimates. The r-variation in norm of the
sequence of functions ANf is defined as

‖ANf‖V r(N) := sup
J

sup
0<N0<N1<···<NJ




J∑

j=1

∥∥ANj
f −ANj−1f

∥∥r
2




1/r

.

It was observed by Jones, Ostrovskii, and Rosenblatt that for f ∈ L2(X) and
r ≥ 2 we have

‖ANf‖V r(N) ≤ C‖f‖2.
This is a strong form of convergence of ANf in L2(X) norm.
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Given commuting bijective measure preserving transformations T1, T2, . . . , Td

and functions f1, f2, . . . , fd, one can form the multiple ergodic averages

AN (f1, f2, . . . , fN )(x) =
1

N

N∑

n=1

d∏

k=1

fk(T
n
k x).

For functions fk ∈ L∞(X), norm convergence in L2(X) is known due to the work
of Tao, with earlier work in d = 2 by Conze and Lesigne on the one hand and
Furstenberg and Weiss on the other hand. Pointwise almost everywhere conver-
gence of these multiple averages is not known for any d ≥ 2 and remains a very
interesting open question. We are interested in bounds for the variation in norm.
This has been shown for two commuting transformations in [2] for r ≥ 2. In this
talk, we present work in progress with P. Durcik and L. Slav́ıková for three com-
muting transformations and r > 4. It is not known, whether the threshold r = 4
is sharp, in principle r ≥ 2 as for one or two commuting transformations may be
true as well. Present techniques however fail unless r > 4.

Our approach to these multiple ergodic averages is to use the Calderon transfer
principle to pass to estimates in harmonic analysis. We define for 3 functions in
R3

AN (f1, f2, f3)(x) =
1

N

∫ N

0

f(x1 + t, x2, x3)f(x1, x2 + t, x3)f(x1, x2, x3 + t) dt.

Here Rd is to be compared with Z3, which in turn occurs as it parameterizes the
orbit of a point x under the action of T1, T2, T3. We the prove bounds for the
variation norm of AN (f1, f2, f3) as announced above in the ergodic setting. We
use the theory of singular Brascamp Lieb forms, which has seen rapid progress in
recent years, see for example [1], [3].
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Sharp sparse domination results for Bochner–Riesz means at the
critical index

Andreas Seeger

(joint work with David Beltran and Joris Roos)

New results from [2] were presented on the Bochner–Riesz means Rλ
t of index λ,

defined by R̂λ
t f(ξ) = (1 − t−2|ξ|2)λ+f̂(ξ). Given 1 ≤ p < 2d

d+1 , d ≥ 2, the value

λ(p) := d
(

1
p − 1

2

)
− 1

2 is referred to as the critical index. It is conjectured that
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Rλ
t are bounded operators on Lp for λ > λ(p). This conjecture was proved by

Carleson–Sjölin [6] for d = 2, 1 < p < 4/3; and in higher dimensions many partial
results are known (the currently best results are in [12]). For the critical λ(p)
one should have a weak type (p, p) inequality; this was first proved for p = 1 and
λ(1) = d−1

2 by Christ [7] and extended to weighted weak type estimate involving
A1 weights by Vargas [21]. For other p see [8], [18], [19] and finally the black-box
result by Tao [20].

We aim to prove an extension of Vargas’ L1(w) → L1,∞(w) result, with w ∈ A1:

Theorem 1. For every w ∈ A1 there exists an exponent p1(w) > 1 such that for

1 ≤ p < p1(w), the operators R
λ(p)
t , t > 0, are uniformly bounded as operators from

Lp(w) to Lp,∞(w). Moreover, limt→∞ ‖Rλ(p)
t f − f‖Lp,∞(w) = 0 for all f ∈ Lp(w).

Essential for the proof of this result are new sparse domination results for
Bochner–Riesz means at the critical index.

To formulate the sparse domination results, we need to review some defini-
tions (for basic ideas on sparse bounds [15, 16, 17, 5, 10, 1]). Let D denote a
dyadic lattice in the sense of the monograph by Lerner and Nazarov [17, §2]. For
a locally integrable function f , a cube Q ∈ D and 1 ≤ p < ∞, let 〈f〉Q,p =

(|Q|−1
∫
Q |f(y)|pdy)1/p. The collection S ∈ D is called γ-sparse if for every Q ∈ S

there is a measurable subset EQ ⊂ Q so that |EQ| ≥ |Q|/2 and {EQ : Q ∈ S} is
a collection of pairwise disjoint sets. Let 1 ≤ p, q < ∞. For a sparse family S of
cubes we define a sparse form ΛS

p,q by ΛS
p,q(f1, f2) =

∑
Q∈S

|Q|〈f1〉Q,p〈f2〉Q,q;

moreover a corresponding maximal form Λ∗
p,q(f1, f2) = sup

S sparse Λ
S
p,q(f1, f2),

where the sup is taken over all sparse families (which are allowed to be subcol-
lections of different dyadic lattices). These definitions are of interest in the range
p ≤ q < p′. A linear operator T : C∞

c (Rd) → D′(Rd) satisfies a (p, q) sparse bound
if for all f1, f2 ∈ C∞

c the inequality |〈Tf1, f2〉| ≤ CΛ∗
p,q(f1, f2) holds with some

constant C independent of f1, f2. In this case, we say that T belongs to the space
Sp(p, q;Rd) and we denote by ‖T ‖Sp(p,q;Rd) the best constant. A Sp(p, q) bound
for T with q < p′ implies that T is of weak type (p, p) and restricted strong type
(q′, q′). The above theorem can de deduced by combining Sp(p, q)-bounds with
the fact that every A1 weight belongs to a reversed Hölder class RHσ for some
σ > 1, and a result of Frey and Nieraeth [11] on weighted weak type inequalities
for weights belonging to A1 ∩RH(q′/p)′ .

Given 0 < λ ≤ d−1
2 , let Td(λ) denote the closed trapezoid with corners

P1 = (2λ+d+1
2d , d−2λ−1

2d ), P2 = (2λ+d+1
2d , d−1

2d + λ(d+1)
d(d−1) ),

P3 = (d−1
2d + λ(d+1)

d(d−1) ,
2λ+d+1

2d ), P4 = (d−2λ−1
2d , 2λ+d+1

2d ) .

Standard necessary conditions ([4], see also [1]) suggest the conjecture that sparse
bounds for Rλ

t and λ > 0 hold for all ( 1p ,
1
q ) ∈ Td(λ). It was observed in [4,

14] that for ( 1p ,
1
q ) in the interior of the trapezoid, Sp(p, q) bounds for Rλ

t can

be obtained via a single-scale analysis, with affirmative results depending on the
partial knowledge on the Bochner–Riesz conjecture. In our work we focus on the
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endpoint cases in which ( 1p ,
1
q ) belongs to the boundary of Td(λ). Note that the

critical case λ = λ(p), and p < 2d
d+1 corresponds to the vertical line segment P1P2.

Almost sharp results at the critical line P1P2 had been obtained in the case
λ = d−1

2 (that is, p = 1) by Conde-Alonso–Culiuc–Di Plinio–Ou [9]; namely they
proved a (1, q) sparse bound for all q > 1. Partial results on that line for p > 1
were obtained in two dimensions by Kesler and Lacey [13] with the restrictive
assumption that q > 4. We fully state our results in two dimensions where they
are most complete. For 0 < λ < 1/2, let pλ = 4

3+2λ (so that λ(pλ) = λ).

Theorem 2. For 0 < λ < 1/2, we have Rλ
t ∈ Sp(pλ, q;R

2), for q > 4
1+6λ .

This means that in two dimension we obtain the Sp(p, q) bound for Rλ
t for all

( 1p ,
1
q ) in T2(λ)\P2P3 and it remains open what happens on the line segment P2P3.

The case λ = 1/6 (where P2 = (56 ,
1
2 ), the Stein-Tomas endpoint) is special and

allows a complete result:

Theorem 3. For λ∗ = 1/6 we have Rλ∗

t ∈ Sp(p, q;R2) for every ( 1p ,
1
q ) ∈ T2(λ∗).

In higher dimensions, we obtain similar optimal results but only for a partial
range of λ. This is natural in view of the currently incomplete knowledge on
Lp → Lr bounds for Bochner–Riesz type operators. Our main result here ([2, 3])
is a conditional result, which can be seen as a sparse analogue of Tao’s black box

result on weak-type estimates at the critical index [20]. Fix 2(d+1)
d+3 ≤ p◦ < 2d

d+1 .

Assume that for all r◦ ∈ [p◦,
d−1
d+1p

′
◦), (a) the Fourier restriction operator maps

Lp◦(Rd) → Lr◦(Sd−1) and (b) the Bochner–Riesz operator (1 − ρ(D))λ+ maps

Lp◦(Rd) → Lr◦(Rd) for all λ > λ(r◦). The conclusion than is that R
λ(p)
t ∈ Sp(p, q)

for 1 ≤ p < p◦ and q > qopt :=
(d−1)p
d+1−2p . This can be used to obtain Sp(p, q) bounds

for R
λ(p)
t (up to the q-endpoint) in a range including 1 ≤ p < 2(d+2

d+4 .

Finally, for the special value λ∗(d) = d−1
2(d+1) we can do better and obtain an

optimal result for the entire trapezoid Td(λ∗), analogous to the two-dimensional
result in Theorem 3.
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