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The simplicial complex of Brauer pairs of a
�nite reductive group

Damiano Rossi

Abstract

In this paper we study the simplicial complex induced by the poset of Brauer pairs ordered
by inclusion for the family of �nite reductive groups. In the de�ning characteristic case the
homotopy type of this simplicial complex coincides with that of the Tits building thanks to
a well-known result of Quillen. On the other hand, in the non-de�ning characteristic case, we
show that the simplicial complex of Brauer pairs is homotopy equivalent to a simplicial complex
determined by generalised Harish-Chandra theory. This extends earlier results of the author
on the Brown complex and makes use of the theory of connected subpairs and twisted block
induction developed by Cabanes and Enguehard.

Introduction

The poset S⋆` (G) of non-trivial `-subgroups of a �nite group G, with respect to a prime ` dividing
the order of G, gives rise to a simplicial complex ∆(S⋆` (G)) known as the Brown complex. This
simplicial complex was �rst introduced by Brown in [Bro75] and its homotopy propeties were later
described by Quillen in [Qui78]. In particular, for G =GF a �nite reductive group in characteristic
p, Quillen showed that the Brown complex ∆(S⋆p (GF )) is homotopy equivalent to the Tits building
of GF . More recently, the author considered the remaining non-de�ning characteristic case, where
p ≠ `, and showed in [Ros23a] that the homotopy type of ∆(S⋆` (GF )) can be described in terms
of the generic Sylow theory developed by Broué and Malle [BM92]. This result was then used to
obtain a connection between the so-called local-global conjectures in group representation theory
and certain statements in generalised Harish-Chandra theory introduced in [Ros22] and [Ros23b].

In this paper we extend the above-mentioned homotopy equivalences to a representation theoretic
setting by replacing `-subgroups with `-Brauer pairs. More precisely, let B be a Brauer `-block of
a �nite group G and denote by S⋆` (B) the poset of non-trivial B-Brauer pairs ordered by inclusion
as de�ned in Section 1. Observe that S⋆` (B) is non-empty if and only if B has positive defect
and that the associated simplicial complex ∆(S⋆` (B)) yields a natural generalisation of the Brown
complex: if B0(G) is the principal `-block of G, there exists a natural homeomorphism between
∆(S⋆` (B0(G))) and the Brown complex ∆(S⋆` (G)).
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Key words and phrases: Simplicial complexes, Brauer pairs, �nite reductive groups, generalised Harish-Chandra theory.
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a Leibniz Fellowship. The author would like to thank Marc Cabanes for useful comments on an earlier version of this
paper.
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We now focus on the case where G = GF is a �nite reductive group in characteristic p as before.
When p = `, in analogy with Quillen’s result, it turns out that for each p-block B with positive
defect the simplicial complex ∆(S⋆p (B)) is homotopy equivalent to the Tits building. This is shown
in Theorem 2.2 below. More interesting is the case p ≠ `. In this situation, for a Brauer `-block
B, we use the theory of connected subpairs and twisted block induction introduced by Cabanes
and Enguehard [CE99] to construct a poset L⋆e`(q)(B) consisting of pairs (L, bL) where L is an
e`(q)-split Levi subgroup of (G, F ), with e`(q) the multiplicative order of q modulo `, and bL is a
Brauer `-block of LF . We refer the reader to Section 3 for a precise de�nition. The advantage of
the simplicial complex ∆(L⋆e`(q)(B)) is that it can be determined by generalised Harish-Chandra
theory. We can describe the homotopy type of ∆(S⋆` (B)) as follows.

Theorem A. Let G be a connected reductive group de�ned over an algebraically closed �eld of char-
acteristic p and consider F ∶ G → G a Frobenius endomorphism endowing the algebraic variety G
with an Fq-rational structure. Suppose that ` ∈ π(G, F ) as de�ned in De�nition 3.1 and that ` does
not divide the order of Z(G)F . Then there exists aGF -homotopy equivalence

∆ (S⋆` (B)) ≃ ∆ (L⋆e`(q)(B))

for every Brauer `-block B of GF with non-trivial defect and where e`(q) denotes the multiplicative
order of q modulo `.

The paper is structured as follows. In Section 1 we collect some preliminary results on Brauer pairs.
In particular, we introduce the notion of almost-centric Brauer pair and show that these pairs control
the homotopy type of the simplicial complex ∆(S⋆` (B)). In Section 2 we consider the caseG =GF

and p = `, and prove the connection between the Tits building of GF and the simplicial complex
∆(S⋆p (B)). Finally, in Section 3 we consider the case p ≠ ` and prove Theorem A. We then conclude
the paper by showing how [Ros23a, Theorem A] can be recovered from our Theorem A.

1 Preliminary results on Brauer pairs

Let G be a �nite group and �x a prime number `. A Brauer pair of G, with respect to the prime
`, is a pair (Q, bQ) where Q is an `-subgroup of G and bQ is a Brauer `-block of CG(Q). Using
the Brauer map BrQ (see [Lin18a, Theorem 5.4.1]) we can de�ne a partial order relation on the set
of Brauer pairs. If (P, bP ) and (Q, bQ) are Brauer pairs of G, then we write (Q, bQ) ≤ (P, bP ) if
Q ≤ P and there exists a primitive idempotent i such that BrP (i)ebP ≠ 0 and BrQ(i)ebQ ≠ 0 (see
[Lin18b, De�nition 6.3.2]). Here ebP and ebQ are the idempotents corresponding to the Brauer `-
blocks bP and bQ respectively. Given a Brauer pair (Q, bQ) there exists a unique Brauer `-block B
of G such that (1,B) ≤ (Q, bQ) in which case we say that (Q, bQ) is a B-Brauer pair. Moreover, if
(Q, bQ) ≤ (P, bP ) then (Q, bQ) is aB-Brauer pair if and only if (P, bP ) is aB-Brauer pair according
to [Lin18b, Proposition 6.3.6]. We denote by S⋆` (B) the poset of B-Brauer pairs (Q, bQ) satisfying
Q ≠ 1. Observe that the poset S⋆` (B) is non-empty if and only if B has non-trivial defect. In fact,
maximal B-Brauer pairs are of the form (D, bD) where D is a defect subgroup of B (see [Lin18b,
Theorem 6.3.7]). Moreover, sinceB is stable under the action ofG by conjugation, notice thatS⋆` (B)
is actually a G-poset. We denote by NG(Q, bQ) the stabiliser of the Brauer pair (Q, bQ) under the
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action ofG, that is stabiliser of the block bQ in the normaliser NG(Q). For further details on Brauer
pairs we refer the reader to the original paper of Alperin and Brouè [AB79] and to Linckelmann’s
monograph [Lin18b, Section 6.3].

Next, recall that for every poset X we can form a simplicial complex ∆(X ) whose simplices are
given by totally ordered chains of �nite length in X . In particular, if S⋆` (G) is the set of non-trivial
`-subgroups of G, then ∆(S⋆` (G)) is the Brown complex introduced in [Bro75] and further studied
in [Qui78]. In the next lemma we show that the Brown complex of G is homeomorphic to the
simplicial complex ∆(S⋆` (B0(G))) where B0(G) is the principal block of G.

Lemma 1.1. Let ` be a prime dividing the order of G and consider the Brown complex ∆(S⋆` (G)).
Then, there is a homeomorphism of∆(S⋆` (G))with∆(S⋆` (B0(G))) induced by the poset isomorphism

S⋆` (G)→ S⋆` (B0(G))
Q↦ (Q,B0(CG(Q))).

Proof. Let Q be an `-subgroup of G and suppose that bQ is a block of CG(Q) such that the Brauer
pair (Q, bQ) belongs to S⋆` (B0(G)). By Brauer’s Third Main Theorem (see [Lin18b, Theorem
6.3.14]) the block bQ must coincide with the principal block B0(CG(Q)) of CG(Q) and we con-
clude that the assignment Q ↦ (Q,B0(CG(Q))) de�nes an isomorphism of posets. The map of
simplicial complexes obtained by extending this assignment to each simplex of ∆(S⋆` (G)) is then
a homeomorphism.

In the rest of this section, we reduce the study of the homotopy type of the simplicial complex
∆(S⋆` (B)) to that of certain subcomplexes whose properties re�ects the behaviour of the connected
subpairs of Cabanes and Enguehard (see [CE99, De�nition-Proposition 2.1]). These results will be
used in Section 3 to prove Theorem A. First, we de�ne the set Ab⋆` (B) consisting of those Brauer
pairs (Q, bQ) belonging to S⋆` (B) and with Q abelian. The following result extends a well known
property of the Brown complex to the simplicial complex of Brauer pairs.

Lemma 1.2. Let B be an `-block of the �nite group G. Then the inclusion of G-posets ι ∶ Ab⋆` (B) →
S⋆` (B) induces a G-homotopy equivalence ∆(ι) ∶ ∆(Ab⋆` (B))→∆(S⋆` (B)).

Proof. Without loss of generality we may assume that B has non-trivial defect, for if otherwise
both S⋆` (B) and Ab⋆` (B) are empty. Now, �x an element (Q, bQ) of S⋆` (B) and denote by X
the set of pairs (P, bP ) of Ab⋆` (B) satisfying (P, bP ) ≤ (Q, bQ). By Quillen’s Theorem A [Qui78,
Proposition 1.6] (see also the statement given in [Ros23a, Lemma 1.1]) it is enough to show that the
simplicial complex ∆(X ) is NG(Q, bQ)-contractible. If c is the unique block of CG(Z(Q)) such
that (Z(Q), c) ≤ (Q, bQ) (see [Lin18b, Theorem 6.3.3]), then (Z(Q), c) is NG(Q, bQ)-invariant and
we claim that ∆(X ) is NG(Q, bQ)-join contractible via (Z(Q), c) (see [Ros23a, Section 1]). Let
(P, bp) ∈ X . Since P is contained in Q, we deduce that Z(Q) centralises P and therefore PZ(Q) is
a well-de�ned abelian `-subgroup contained in Q. By using [Lin18b, Theorem 6.3.3] once again, we
can now �nd a unique block cP of CG(PZ(Q)) such that (PZ(Q), cP ) ≤ (Q, bQ). Furthermore,
the uniqueness part of [Lin18b, Theorem 6.3.3] implies that (PZ(Q), cP ) is the join of (P, bP ) and
(Z(Q), c) and therefore ∆(X ) is NG(Q, bQ)-contractible according to [Ros23a, Corollary 1.3].

The above lemma still holds if we replace Ab⋆` (B) with the subposet of Brauer pairs (Q, bQ) such
that Q is an elementary abelian `-subgroup. We include this observation in the following remark.
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Remark 1.3. By replacing Z(Q) with the subgroup Ω1(Z(Q)) of elements of order ` in Z(Q),
the above argument shows that ∆(S⋆` (B)) is G-homotopy equivalent to the simplicial complex
associated to the subposet of Brauer pairs (Q, bQ) with Q elementary abelian. This fact, together
with Lemma 1.1, can be used to recover Quillen’s lemma [Qui78, Lemma 2.2] on the Brown complex.

Recall that a Brauer pair (Q, bQ) is called centric if bQ has defect Z(Q) in CG(Q) (see, for instance,
[Cab18, De�nition 5.6]). In this case, it follows from [Nav98, Theorem 4.8] that Z(Q) = Z(CG(Q))`
and where for any �nite abelian group H we de�ne H` ∶=O`(H). On the other hand, observe that
if (Q, bQ) is a Brauer pair satisfying Z(Q) = Z(CG(Q))` then the defect groups of bQ in CG(Q)
might still be larger than Z(Q).

Example 1.4. Let G be the direct of product of the cyclic group C2 with the symmetric group S3

and consider ` = 2. Denote byQ = Z(G) the centre ofGwhich is cyclic of order 2, and consider the
principal block B0 of G = CG(Q). In this case, Z(Q) = Q = Z(CG(Q))` while the defect groups
of B0 have order 4. Therefore (Q,B0) is not centric but satis�es the equality Z(Q) = Z(CG(Q))`.

The above discussion leads to the following de�nition of almost-centric Brauer pairs.

De�nition 1.5. An `-subgroupQ of a �nite groupG is called almost-centric if Z(Q) = Z(CG(Q))`.
Furthermore, we say that a Brauer pair (Q, bQ) is almost-centric if the `-subgroup Q is almost-
centric. We denote by S⋆` (B)ac the subset of S⋆` (B) consisting of almost-centric Brauer pairs and
by Ab⋆` (B)ac its intersection with Ab⋆` (B). Observe that the action ofG by conjugation on S⋆` (B)
restricts to the subsets S⋆` (B)ac and Ab⋆` (B)ac.

It follows from the above de�nition that S⋆` (B)ac and Ab⋆` (B)ac areG-subposets of S⋆` (B). We can
then re�ne the statement of Lemma 1.2 and show that the homotopy type of the simplicial complex
∆(S⋆` (B)) is determined by the abelian almost-centric Brauer pairs in Ab⋆` (B)ac.

Proposition 1.6. LetB be an `-block of the �nite groupG. Then the inclusion of posets ι ∶ Ab⋆` (B)ac →
S⋆` (B) induces a G-homotopy equivalence ∆(ι) ∶ ∆(Ab⋆` (B)ac)→∆(S⋆` (B)).

Proof. Without loss of generality we may assume that B has non-trivial defect. Moreover, using
Lemma 1.2, it su�ces to show that the inclusion ι ∶ Ab⋆` (B)ac → Ab⋆` (B) induces a G-homotopy
equivalence ∆(ι) ∶ ∆(Ab⋆` (B)ac)→∆(Ab⋆` (B)). By Quillen’s Theorem A [Qui78, Proposition 1.6]
(we actually use the stronger form stated in [Ros23a, Lemma 1.1 (ii)]) it is enough to show that, given
a Brauer pair (Q, bQ) ∈ Ab⋆` (B), the simplicial complex ∆(X ) is NG(Q, bQ)-contractible where X
denotes the poset of pairs (P, bP ) ∈ Ab⋆` (B)ac such that (Q, bQ) ≤ (P, bP ). We claim that the pair
(Z(CG(Q))`, bQ) is anNG(Q, bQ)-invariant minimum in the posetX from which we conclude that
∆(X ) is NG(Q, bQ)-contractible thanks to [Ros23a, Corollary 1.3]. First, notice that because Q is
abelian it is contained in Z(CG(Q))` and therefore that CG(Q) = CG(Z(CG(Q))`) by elemen-
tary group theory. In particular, it follows that the Brauer pair (Z(CG(Q))`, bQ) is well-de�ned
and belongs to Ab⋆` (B)ac. In addition, noticing that Z(CG(Q))` is a characteristic subgroup of
CG(Q) and that CG(Q) is normalised by NG(Q), we have that (Z(CG(Q))`, bQ) is invariant
under the action of NG(Q, bQ). This shows that (Z(CG(Q))`, bQ) is an NG(Q, bQ)-invariant el-
ement of X . Suppose now that (P, bP ) is an almost-centric Brauer pair in X . Since Q ≤ P and
P is abelian, we deduce that P ≤ CG(P ) ≤ CG(Q) and hence that Z(CG(Q)) ≤ CG(P ). Then
Z(CG(Q))` ≤ Z(CG(P ))` = Z(P ) = P because P is almost-centric and thus (Z(CG(Q))`, bQ) ≤
(P, bP ) by applying [Lin18b, Theorem 6.3.3] to the inclusions Q ≤ Z(CG(Q))` ≤ P and recall-
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ing that (Q, bQ) ≤ (P, bP ). Therefore (Z(CG(Q))`, bQ) is a minimum in the poset X as claimed
previously and this completes the proof.

We conclude this section with a remark on centric Brauer pairs. It follows from the proof of Propo-
sition 1.6 that for every intermediate poset Ab⋆` (B)ac ⊆ P ⊆ S⋆` (B) the inclusion ι ∶ P → S⋆` (B)
induces an homotopy equivalence of ∆(S⋆` (B)) with ∆(P). In particular, S⋆` (B)ac and S⋆` (B)
induce homotopy equivalent simplicial complexes. It is interesting to point out that, however, this
result fails if we replace almost-centric Brauer pairs with centric Brauer pairs. The following exam-
ple is due to Gelvin and Møller (see [GM15, Example 6.2]).

Example 1.7. Consider G = C2 × S3, ` = 2 and B0 the principal 2-block of G as in Example
1.4. Since O2(G) ≠ 1, it follows from [Qui78, Proposition 2.1 and Proposition 2.4] and Lemma 1.1
that ∆(S⋆` (B0)) is contractible. On the other hand the poset of centric B0-Brauer pairs induces
a discrete simplicial complex consisting of three zero dimensional simplexes corresponding to the
three Sylow 2-subgroups of G.

2 The de�ning characteristic case ` = p

Let G be a connected reductive group de�ned over an algebraically closed �eld F of prime char-
acteristic p and consider a Frobenius endomorphism F ∶ G → G corresponding to an Fq-rational
structure on the algebraic variety G for a power q of p. From now on we restrict our attention to
the case where the �nite groupG coincides with the �nite reductive group GF consisting of the Fq-
rational points in G. In this section we assume that the de�ning characteristic p of GF coincides
with the prime ` with respect to which Brauer blocks are de�ned. The non-de�ning characteris-
tic case, i.e. the case ` ≠ p, will be considered in Section 3. We start by recalling the following
well-known identity.

Lemma 2.1. LetB be an F -stable Borel subgroup ofG with unipotent radicalU. ThenCGF (UF ) =
Z(GF )Z(UF ).

Proof. By [DM20, Corollary 12.2.4 and Proposition 12.2.14] there exists an F -stable regular unipo-
tent element u of GF . Recall that u is a p-element of GF and that UF is a Sylow p-subgroup of
GF according to [DM20, Proposition 1.1.5 and Proposition 4.4.1]. We can therefore assume that
u belongs to UF . Now, [DM20, Lemma 12.2.3] implies that CGF (u) = Z(GF )CUF (u) and we
deduce that

CGF (UF ) =CGF (u) ∩CGF (UF )
= Z(GF )CUF (u) ∩CGF (UF )
= Z(GF ) (CUF (u) ∩CGF (UF ))
= Z(GF )Z(UF )

where we used Dedekind’s modular law. This completes the proof.

Let P(G, F ) be the poset consisting of F -stable parabolic subgroups of G ordered by inclusion. In
this paper we de�ne the Tits building B(G, F ) of the �nite reductive group (G, F ) to be the as-
sociated simplicial complex ∆(P(G, F )op). Here, for every given poset X , we denote by X op the
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opposite poset given by reverse inclusions. What we just de�ned is, more precisely, the barycentric
subdivision of the Tits building which is homeomorphic to it. We refer the reader to [Ben98, Section
6.8] for further details. The Tits building was shown to be homotopy equivalent to the Brown com-
plex ∆(S⋆p (GF )) by Quillen in [Qui78, Proposition 2.1 and Theorem 3.1]. The aim of this section
is to extend this result to the blockwise set-up considered in this paper and prove that the simpli-
cial complex ∆(S⋆p (B)) for a p-block B of GF with non-trivial defect is GF -homotopy equivalent
to the Tits building B(G, F ). This is the content of the following theorem. We remark that the
homotopy equivalence for the Brown complex ∆(S⋆p (GF )) can be recovered from the following
statement thanks to Lemma 1.1.

Theorem 2.2. LetB be a p-block ofGF with non-trivial defect and where p is the de�ning character-
istic ofGF . IfG is simple andGF is perfect, then the simplicial complex ∆(S⋆p (B)) isGF -homotopy
equivalent to the Tits building B(G, F ).

Proof. By [Qui78, Theorem 3.1 and Proposition 2.1] we deduce that the Brown complex ∆(S⋆p (GF ))
is homotopy equivalent to the Tits building B(G, F ). To see that this is actually a GF -homotopy
equivalence, notice that the poset of proper parabolic subgroups underlying the Tits building is
isomorphic (via a GF -equivariant map) to the opposite of the poset of proper p-radical subgroups
of GF while the latter induces a simplicial complex that is GF -homotopy equivalent to the Brown
complex ∆(S⋆p (GF )) thanks to [TW91, Theorem 2]. Therefore, it su�ces to show that ∆(S⋆p (B))
is GF -homotopy equivalent to the Brown complex. Observe that this claim follows already from
Lemma 1.1 in the case that B is the principal block. Suppose now that the block B is not principal.

Since B has non-trivial defect by assumption, [Hum71] implies that B has defect group U = UF a
Sylow p-subgroup of GF . Moreover, following the proof of [CE04, Theorem 6.18] we can �nd an
irreducible character 1 ≠ ζ of Z(GF ) that parametrises the p-block B. More precisely, by Lemma
2.1 we have CGF (U) = Z(GF )Z(U) and therefore εζ ∶= ∣Z(GF )∣−1∑z∈Z(GF ) ζ(z)z−1 determines
a primitive idempotent of the group algebra FCGF (U) where F is the algebraically closed �eld of
characteristic p over which G is de�ned. Moreover, if we denote by BU the corresponding p-block
of CGF (U), then we have the inclusion of Brauer pairs (1,B) ≤ (U,BU) and therefore (U,BU)
belongs to S⋆p (B). Now, [Lin18b, Theorem 6.3.3] shows that for every non-trivial p-subgroup Q of
GF contained in U there exists a unique p-blockBQ of CGF (Q) such that (Q,BQ) ≤ (U,BU) and,
by applying [Lin18b, Proposition 6.3.6], it follows that (Q,BQ) belongs to S⋆p (B). We can therefore
de�ne a map of posets from S⋆p (GF ) to S⋆p (B) by sending the p-subgroup Q to the B-Brauer pair
(Q,BQ). Observe that each Brauer pair (Q,BQ) is uniquely determined by Q and B and thus the
map de�ned above is an isomorphism of posets. Furthermore, since GF acts trivially onB and ζ , we
conclude that this map is GF -equivariant. We can now conclude that the induced map of simplicial
complexes is a GF -homotopy equivalence between ∆(S⋆p (GF )) and ∆(S⋆p (B)) as claimed above.
This concludes the proof according to the previous paragraph.

3 The non-de�ning characteristic case ` ≠ p

We keep G, F , p and q as in Section 2 and assume now that p ≠ `. We de�ne e`(q) to be the
multiplicative order of q modulo `. The aim of this section is to prove Theorem A and obtain a
description of the homotopy type of the simplicial complex ∆(S⋆` (B)) for each `-block B of GF
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in terms of e`(q)-Harish-Chandra theory. This result also extends [Ros23a, Theorem A] according
to Lemma 1.1.

To start, we recall the de�nition of the set π(G, F ) from [Ros23a, De�nition 2.1]. Let Gsc ∶=
([G,G])sc be the group introduced in [GM20, Example 1.5.3 (b)] and consider a pair (G∗, F ∗) in
duality with (G, F ) as de�ned in [GM20, De�nition 1.5.17]. We refer the reader to [GM20, 2.7.14]
for the de�nition of good primes.

De�nition 3.1. Let π′(G, F ) be the set of primes ` that are good for G, do not divide 2, q or
∣Z(Gsc)F ∣, and satisfy ` ≠ 3 whenever (G, F ) has a rational component of type 3D4. Then, we
de�ne π(G, F ) to be the set of primes ` ∈ π′(G, F ) not diving ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶
Z○(G∗)F ∣.

We will make use of the theory of Φe-tori and e-split Levi subgroups as introduced in [BM92] where
e is a positive integer. In particular, for an F -stable Levi subgroup T, we denote by TΦe its Sylow
Φe-torus which is well-de�ned thanks to [BM92, Theorem 3.4]. Then, we say that an F -stable Levi
subgroup L of G is e-split if it satis�es L =CG(Z○(L)Φe). In the next lemma we collect some well-
known results on centralisers of abelian `-subgroups and their connection to e-split Levi subgroups.

Lemma 3.2. Let Q be an abelian `-subgroup ofGF and assume that ` is good for G. Then:

(i) H ∶=C○

G(Q) is an F -stable Levi subgroup of (G, F );

(ii) L ∶=CG(Z○(H)Φe) is an e-split Levi subgroup of (G, F ) andH ≤ L;

(iii) if ` does not divide ∣Z(G)F ∶ Z○(G)F ∣, then L =C○

G(Z(L)F` );

(iv) if ` does not divide ∣Z(G∗)F ∶ Z○(G∗)F ∣, then C○

G(Q)F =CGF (Q);

(v) if ` ∈ π(G, F ) and e = e`(q), then L =G if and only if Q ≤ Z(G)F` ;

Proof. The statement in (i) follows from [CE04, Proposition 13.16 (ii)] while (ii) is an immediate
consequence of the de�nition of e-split Levi subgroup. For (iii) and (iv) see [CE04, Proposition 13.19]
and [CE04, Proposition 13.16 (i)] respectively. Finally (v) follows from [Ros23a, Lemma 3.10].

Next, we recall the notion of connected subpairs and of twisted block induction introduced in [CE99,
Section 2]. We say that (U, bU)○ is a connected subpair of (G, F ) if U is an abelian `-subgroup of
GF such that U ≤ C○

G(U) and bU is a Brauer `-block of C○

G(U)F . If V is another abelian `-
subgroup of GF with V ≤ U , then there exists a unique Brauer `-block bV of C○

G(V )F such that
BrU(bV )bU ≠ 0 in which case we write (V, bV )○ ⊲ (U, bU)○. Observe that, because the index of
C○

G(U)F in CGF (U) is a power of `, there exists a unique `-block b̂U of CGF (U) that covers bU .
The relation between the Brauer pair (U, b̂U) and the connected subpair (U, bU)○ is described in
[CE99, Proposition 2.2] and will be used in what follows without further reference. Next, assume
that ` is good for G and consider an e`(q)-split Levi subgroup L of (G, F ). For any `-block bL
of LF it was shown in [CE99, Theorem 2.5], using Deligne–Lusztig induction, that bL corresponds
to a unique `-block bG of GF . This uniquely de�ned `-block of GF is denoted by bG = RG

L (bL)
(see [CE99, Notation 2.6]). Furthermore, whenever L = C○

G(Z(L)F` ), we have the inclusion of
connected subpairs (1,RG

L (bL))○ ⊲ (Z(L)F` , bL)○.
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Using the notion of twisted block induction we can now introduce an analogue of the simplicial
complex ∆(S⋆` (B)) adapted to �nite reductive groups. These two complexes will then be shown
to be homotopy equivalent.

De�nition 3.3. Assume that ` is good for G and let e = e`(q). For every `-blockB of GF we de�ne
the set L⋆e(B) of pairs (L, bL) where L is an e-split Levi subgroup of (G, F ) such that L <G and
bL is an `-block of LF satisfying RG

L (bL) = B.

Observe that GF -acts by conjugation on the set L⋆e(B) and consider the order relation on L⋆e(B)
given by (L, bL) ≤ (K, bK) if and only if RK

L (bL) = bK, for every (L, bL) and (K, bK) belonging to
L⋆e(B). Then, we can construct a GF -simplicial complex ∆(L⋆e(B)) as explained in Section 1. We
point out that the order relation ≤ de�ned above is closely related to the one introduced in [CE99,
Notation 1.11] (see also [Ros22, Section 3 and Section 4]).

Our aim is now to show that the simplicial complex of Brauer pairs ∆(S⋆` (B)) is homotopy equiv-
alent to ∆(L⋆e(B)). First we construct a suitable underlying map of posets. By Proposition 1.6 we
can restrict our attention to the poset of almost-centric abelian Brauer pairs.

Proposition 3.4. Suppose that ` ∈ π(G, F ) does not divide the order of Z(G)F . For every `-block B
ofGF with non-trivial defect there exists a map ofGF -posets

φ ∶ Ab⋆` (B)ac → L⋆e(B)op

given by sending a Brauer pair (Q, bQ) to the pair (L, bL) where L = CG(Z○(C○

G(Q))Φe) and the
block bL is determined by the inclusion (Z(L)F` , bL) ≤ (Q, bQ).

Proof. Fix (Q, bQ) ∈ Ab⋆` (B)ac and de�ne H ∶= C○

G(Q) and L ∶= CG(Z○(H)Φe). By Lemma 3.2
(i-ii) we know that H is an F -stable Levi subgroup and L an e-split Levi subgroup of (G, F ) with
H ≤ L. In particular, it follows from the de�nition of Levi subgroup that Z(L)F` ≤ Z(H)F` . On the
other hand, Z(H)F` = Z(HF )` while HF =CGF (Q) by Lemma 3.2 (iv). Now, using the fact thatQ
is almost-centric, we have Z(H)F` = Z(CGF (Q))` = Q and therefore we conclude that Z(L)F` ≤ Q.
Then, according to [Lin18b, Theorem 6.3.3] there exists a unique block bL of CGF (Z(L)F` ) such
that (Z(L)F` , bL) ≤ (Q, bQ). Observe that CGF (Z(L)F` ) = LF by Lemma 3.2 (iii-iv) and so bL is a
block of LF . We now de�ne

φ(Q, bQ) ∶= (L, bL)

and claim that φ is a well-de�ned map ofGF -posets. To start, we check that the pair (L, bL) actually
belongs to L⋆e(B). Since Q is non-trivial and ` does not divide the order of Z(G)F , it follows from
Lemma 3.2 (v) that L < G. Next, once again using the fact that L = C○

G(Z(L)F` ), we can apply
[CE99, Theorem 2.5] to obtain the inclusion of connected subpairs (1,RG

L (bL))○ ⊲ (Z(L)F` , bL)○.
The latter is equivalent to the inclusion of Brauer pairs (1,RG

L (bL)) ≤ (Z(L)F` , bL) according to
[CE99, Proposition 2.2 (v)] because ` does not divide ∣Z(G∗)F ∶ Z○(G∗)F ∣. Then, we get

(1,RG
L (bL)) ≤ (Z(L)F` , bL) ≤ (Q, bQ)

and therefore that RG
L (bL) = B because (Q, bQ) is a B-Brauer pair and by the uniqueness part of

[Lin18b, Theorem 6.3.3]. This shows that (Z(L)F` , bL) belongs to the set L⋆e(B). Furthermore,
it follows from the construction of (L, bL) = φ(Q, bQ) that for every g ∈ GF we have Lg =
CG(Z○(C○

G(Qg))Φe) and (Lg, bgL) ≤ (Qg, bgQ). In other words, we have φ((Q, bQ)g) = φ(Q, bQ)g .
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To conclude, let (P, bP ) ∈ Ab⋆` (B)ac satisfying (Q, bQ) ≤ (P, bP ) and set (K, bK) ∶= φ(P, bP ). We
want to show that (K, bK) ≤ (L, bL). By the discussion above, we already know that Z(L)F` ≤ Q
and similarly that Z(K)F` ≤ P . Moreover, using the fact that Q ≤ P , we deduce that C○

G(P ) ≤
C○

G(Q) and therefore that K ≤ L and Z(L)F` ≤ Z(K)F` .

Z(L)F`

Q

Z(K)F`

P

bL, cL

bQ

bK

bP

By the de�nition of φ we know that (Z(L)F` , bL) ≤ (Q, bQ) and (Z(K)F` , bK) ≤ (P, bP ). Let
now cL be the unique block satisfying (Z(L)F` , cL) ≤ (Z(K)F` , bK) and observe that it satis�es
(Z(L)F` , cL) ≤ (P, bP ). On the other hand, since (Q, bQ) ≤ (P, bP ) we get (Z(L)F` , bL) ≤ (P, bP )
and the uniqueness of [Lin18b, Theorem 6.3.3] implies that cL = bL. This shows that (Z(L)F` , bL) ≤
(Z(K)F` , bK) holds inside G which is true if and only if (1, bL) ≤ (Z(K)F` , bK) holds inside L
according to [CE99, Proposition 2.2 (i)] and because ` does not divide ∣Z(G∗)F ∶ Z○(G∗)F ∣. Then,
by applying [CE99, Theorem 2.5] to the block bK of the e-split Levi subgroup K of (L, F ), we
conclude that bL = RK

L (bK). This �nally shows that (K, bK) ≤ (L, bL) as wanted and the proof is
now complete.

Next, we show that the �bres of the map φ are contractible. Recall that, given a poset X and an
element x ∈ X , we denote by X≥x the subposet consisting of those y ∈ X such that x ≤ y.

Lemma 3.5. Consider the setting of Proposition 3.4. For every pair (L, bL) of L⋆e(B), the simplicial
complex ∆(X ) induced by the �bre X ∶= φ−1(L⋆e(B)op

≥(L,bL)
) isNGF (L, bL)-contractible.

Proof. We claim that the pair (Z(L)F` , bL) is the minimum of the poset X . First, observe that
LF = CGF (Z(L)F` ) by Lemma 3.2 (iii-iv) and therefore that Z(L)F` is an almost-centric abelian
`-subgroup as de�ned in Section 1. Then, since (L, bL) coincides with φ(Z(L)F` , bL), it follows that
(Z(L)F` , bL) belongs to the �bre X . Consider now a Brauer pair (P, bP ) ∈ X and set (K, bK) ∶=
φ(P, bP ). By the de�nition of X we have (K, bK) ≤ (L, bL) and so bL = RL

K(bK). Then, [CE99,
Theorem 2.5] shows that (1, bL)○ ≤ (Z(K)F` , bK)○ holds in (L, F ). By [CE99, Proposition 2.2 (i)
and (v)] the latter is equivalent to the inclusion of Brauer pairs (Z(L)F` , bL) ≤ (Z(K)F` , bK). How-
ever, by the de�nition of φ, we know that (Z(K)F` , bK) ≤ (P, bP ) and therefore we conclude that
(Z(L)F` , bL) ≤ (P, bP ). This shows that (Z(L)F` , bL) is the minimum of X and, since (Z(L)F` , bL)
is also NGF (L, bL)-invariant, the result follows by applying [Ros23a, Corollary 1.3].

We can �nally prove Theorem A. This follows by combining Proposition 1.6, Proposition 3.4, and
Lemma 3.5.

Proof of Theorem A. Set e = e`(q). By applying Proposition 1.6 and recalling that opposite posets in-
duce homeomorphic simplicial complexes, it is enough to show that ∆(Ab⋆` (B)ac) isGF -homotopy

9



equivalent to ∆(L⋆e(B)op). For this purpose, consider the map φ of GF -posets constructed in
Proposition 3.4. Then, the induced map ∆(φ) of simplicial complexes is a GF -homotopy equiva-
lence according to Quillen’s Theorem A (see the formulation given in [Ros23a, Lemma 1.1]) whose
hypotheses are satis�ed thanks to Lemma 3.5.

We conclude the paper by observing that [Ros23a, Theorem A] is a direct consequence of our The-
orem A. In fact, by Lemma 1.1 we know that the Brown complex ∆(S⋆` (GF )) is GF -homotopy
equivalent to the simplicial complex ∆(S⋆` (B0(GF ))) whereB0(GF ) denotes the principal `-block
of GF . On the other hand, if we denote by L⋆e`(q)(G, F ) the poset of proper e-split Levi subgroups
of (G, F ) (see [Ros23a, Section 1.4]), then the assignment L ↦ (L,B0(LF )) de�nes an isomor-
phism of between the GF -posetsL⋆e`(q)(G, F ) andL⋆e`(q)(B0(GF )) thanks to Brauer’s Third Main
Theorem (see [Lin18b, Theorem 6.3.14]). Finally, Theorem A implies that ∆(S⋆` (B0(GF ))) is GF -
homotopy equivalent to ∆(L⋆e`(q)(B0(GF ))) and we conclude that ∆(S⋆` (GF )) is GF -homotopy
equivalent to ∆(L⋆e`(q)(G, F )) as in [Ros23a, Theorem A].
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