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Abstract. Rapid progress in machine learning is enabling scientific advances
across a range of disciplines. However, the utility of machine learning for
science remains constrained by its current inability to translate insights from
data about the dynamics of a system to new scientific knowledge about why
those dynamics emerge, as traditionally represented by physical modelling.
Mathematics is the interface that bridges data-driven and physical models of
the world and can provide a foundation for delivering such knowledge. This
workshop convened researchers working across domains with a shared interest
in mathematics, machine learning, and their application in the sciences, to
explore how tools of mathematics can help build machine learning tools for
scientific discovery.

Mathematics Subject Classification (2020): 60XX, 62XX, 68XX, 85XX, 86A08, 92XX.

Introduction by the Organizers

The workshop Machine Learning for Science: Mathematics at the Interface of

Data-driven and Mechanistic Modelling, co-organised by Neil Lawrence, Jessica
Montgomery, and Bernhard Schölkopf was attended by 40 participants from 11 to
16 June 2023. It set out to consider how mathematical innovations can help pro-
duce machine learning tools that can be deployed in support of scientific discovery,
creating new interfaces between physical and data-driven modelling approaches.
In support of this objective, the workshop convened three discussion themes —
Lessons from the application of machine learning in science; Foundational concepts
and emerging methods; Machine learning for Earth and climate sciences — which
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between them included 19 talks. This workshop report presents a summary of
discussion points and insights from the workshop.

The machine learning for science community is a rendezvous point for diverse
disciplinary perspectives. Effective research, development, and deployment of ma-
chine learning in science requires insights from computer science, domains of ap-
plication, and software engineering, amongst other areas. Across these domains,
mathematics acts as the interface between machine learning and the world, provid-
ing a foundation for theories, methods, and tools that enable its safe and effective
use for scientific discovery.

Mathematics provides means of formalizing structure. In the context of machine
learning for science, it allows researchers to:

• Represent pre-existing domain knowledge, embedding this in machine
learning systems to deliver more reliable results;

• Formalize desiderata such as fairness, interpretability, or uncertainty, which
are vital to ensure machine learning models align with user needs;

• Model users, and the interactions between the user’s model of the machine
learning system and machine learning’s model of the user.

Opening this workshop, a series of talks focussing on different applications of
machine learning in the sciences explored the capabilities of today’s machine learn-
ing tools [Büttner; Igel; Machuve; Mishra; Müller]. These demonstrated how ma-
chine learning can be deployed to: stitch together different data types, allowing
researchers to gain a more nuanced view of a system; extract insights from data
— and speed up analysis of complex datasets — to gain a more accurate under-
standing of how the system works, inferring properties of the physical world; and
identify areas for experimentation and theorising, showing researchers where they
should focus their investigations.

Across scientific domains, today’s machine learning systems share a fundamen-
tal limitation: the field is not yet at the stage where these systems are directly
enabling researchers to generate new causal understandings of physical, biological,
or environmental systems. Advanced data analysis has delivered novel insights
about the dynamics of these systems, but has not yet allowed researchers to track
back from that data to the generation of new scientific knowledge about why those
dynamics emerge.

A collection of open mathematical questions — such as how to describe con-
cepts of scientific interest and exploit existing knowledge, how to mathematically
represent concepts like fairness, how to make the solutions interpretable — arise
from these existing applications. Building on this exploration, the workshop’s sec-
ond discussion theme considered how foundational concepts and methods in the
mathematics of machine learning could be applied to overcome the limitations of
today’s machine learning for science tools [Williamson; Hennig; Ek; Wilkinson;
Bah; Kappen; Gregory; Kaski; Rahaman; Macke; Kilbertus].

A combination of established techniques and progress in machine learning is
sparking innovative approaches to mathematics in this area. Effective use of es-
tablished mathematics — statistics and probability; Riemannian geometry; linear
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algebra; optimisation; graph theory; numerical analysis; structural causal models;
and time series and dynamical systems — is fundamental to further progress in
the field. Alongside these mathematical fundamentals, speakers presented ideas
for linking established domains in new ways and revisiting ideas proposed before
the current wave of progress in machine learning to see how they might apply
in today’s context. Directions identified as a result include: probabilistic nu-
merics; Imprecise Probabilities; Finslerian geometry; adjoint latent force models;
simulation-based inference; Bayesian optimisation; and equivariant models.

The challenge that follows is not only how to use machine learning for science,
but how to develop machine learning as a science, connecting progress in methods
and applications to theories of the world.

The workshop’s third theme considered how these issues collide in a scientific
area where progress in research and innovation is vital for human wellbeing: Earth
and climate science [Eyring; Reichstein; Benson; Camps-Valls; Cohrs; Diaz; Rein-
ers; Winkler]. Climate change is affecting every part of the globe, manifest in
temperature changes, extreme weather events, and knock-on effects for communi-
ties and economies. The Earth is a unique system, with highly complex dynamics
driven by interactions across land, ocean, ice, and atmospheric sub-systems. Cli-
mate models allow researchers to analyse this system, making predictions that
are vital for policy development, climate adaptation and climate mitigation. The
ability to deploy fast-evolving machine learning techniques to improve the per-
formance of climate models and deliver actionable insights would enhance both
scientific knowledge and policy responses. To deliver these, the field needs stable,
physically plausible models that generalise well, include the main causal drivers,
with reduced uncertainties and increased interpretability.

Both machine learning and physical models are needed to improve understand-
ings of Earth and climate processes and their drivers. Combining these in hy-
brid models allows researchers to exploit prior knowledge — whether mechanistic,
causal, simulation-based, or from invariant relations transferred from other set-
tings — while leveraging insights from data. Such models are helping to: charac-
terise systems for carbon dioxide exchange; analyse how cloud cover affects global
temperature change; interrogate how processes like photosynthesis influence car-
bon dynamics; predict how landscapes and ecosystem services might change under
changing climate conditions; forecast extreme weather events; and identify the
causal relationships driving these changes in Earth and climate systems.

Progress in machine learning could unlock a shift from today’s single-process
models — focused on local processes or dynamics — to a digital representation
of the Earth that enables the user to interrogate the impact of different policy
interventions on the Earth and climate system. Delivering this vision requires ad-
vanced application of the methods and tools discussed across the workshop to pro-
duce robust, trustworthy models. The research agenda for machine learning and
mathematics that follows includes parameter estimation and Bayesian inference;
methods to improve generalisation across changing distributions; physics-aware or
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hybrid models, and ways of managing these to ensure they capture underlying pro-
cesses; explainability and interpretability, and their mathematical underpinnings;
techniques to stitch together data or models at different levels of granularity; sim-
ulation and emulation; and causal machine learning.

Alongside these areas for mathematical progress, the machine learning for sci-
ence community is grappling with the question of how to foster engagement be-
tween different disciplines. Effective deployment of machine learning in science
requires both machine learning and domain expertise. There has been a tradition
of creating benchmark challenges as a means of engaging the machine learning
community: set a challenge, provide data, and have the community develop mod-
els in response. Removing the challenge from its scientific context lowers one type
of barrier to entry for machine learning researchers interested in the topic — no
scientific knowledge is typically required — but this decontextualization of the
research question at hand can also result in models that are not well-suited to the
scientific context.

Underpinning this question about interdisciplinary dialogue is a mathematics,
science, and engineering challenge to create user interfaces that facilitate knowl-
edge exchange between machine learning and science, and between model and user.
Methods to encode domain knowledge in the design of machine learning systems,
such as embedding physical laws or invariances that constrain the system to deliver
physically plausible results, are already being successfully deployed. Innovations
in interface design could take this knowledge exchange further.

Tools such as ChatGPT have attracted attention as a means of creating user-
friendly interfaces between scientist and machine, but at present the field lacks
a sufficiently nuanced understanding of how humans communicate uncertainty
through conversation to be able to reliably deploy these in ways that encourage
users to interrogate the outputs of these systems and assess their trustworthiness.
Progress towards a generalised suite of machine learning tools that can be de-
ployed across fields — AI assistants that can support researchers in their work
— will require the development of agents that can help users achieve their goals
in conditions where those goals might be unstated, uncertain, or changing. Both
new active learning strategies, building on progress in reinforcement learning and
Bayesian optimisation, and ways of delivering narratives describing the outputs of
a machine learning system can help in delivering this goal.

Tackling the research agenda developed through this workshop will take a com-
munity. Time at Oberwolfach has helped create connections, collaborations, and
research outputs that are helping strengthen the machine learning for science
community. The organisers would like thank the staff of the Mathematisches
Forschungsinstitut Oberwolfach for their help before, during, and after the work-
shop, and participants for their contributions to discussions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

More than the sum of its parts — single-cell multi-omics applications

in cancer research

Maren Büttner

The advent of single-cell transcriptomic, epigenomic and proteomic profiling al-
lows to characterize the cellular heterogeneity of healthy and diseased tissue at
unprecedented level. The prognosis and treatment of cancer depends on multiple
factors such as genetic predisposition, tumor microenvironment, cell-cell commu-
nication, and intra-tumor heterogeneity with distinct genetic alterations. These
multifaceted events are not reflected by a single molecular modality. Multi-omics
sequencing approaches combine several molecular modalities like chromatin acces-
sibility and gene expression profiling of the same cells. Such combined molecular
readouts provide essential insights to capture the causes and consequences of can-
cerous alterations at single-cell and high spatial resolution. At the same time, we
require novel machine learning approaches for integrative analysis of multi-omics
data.

In my talk, I introduce multimodal single-cell omics data with a particular focus
on paired measurements of gene expression and chromatin accessibility in the same
cells. The integrative analysis of multiple modalities requires novel computational
models. A NeurIPS challenge addressing modality prediction, reconstruction and
paired data integration in 2021 and 2022 attracted numerous submissions from
the machine learning community outside the genomics domain. While lowering
the entry barrier to the field of single-cell genomics, there is the potential of high
scoring in the challenge without presenting a productive solution to the field.

My work focuses on understanding the molecular drivers in prostate cancer
tumoroids at single-cell resolution, where we quantified gene expression and chro-
matin accessibility from the same cells. Joint modelling of both gene expression
and chromatin accessibility to understand gene regulatory circuitry leverages the
concept of “closeness” of regulatory element and regulated gene on the genome.
However, cancer cells often exhibit extensive genomic rearrangements (such as
copy number variations), which may shuffle regulatory elements next to different
genes. Such rearrangements can be reconstructed from high dimensional single-cell
data and used to accurately infer the perturbed biological manifold and explore
avenues to reprogram cancer cells into less aggressive states.

References

[1] Lance et al, Multimodal single cell data integration challenge: Results and lessons learned,
Proceedings of Machine Learning Research 176:162–176, 2022 NeurIPS 2021 Competition
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Regression of ecosystem properties: Bias, monotonicity,

and uncertainty

Christian Igel

This talk considers the regression of ecosystem properties from remote sensing
data, in particular of tree height and biomass from optical satellite imagery and
airborne LiDAR with a focus on removing bias, quantifying uncertainty, and im-
posing monotonicity.

When training deep learning models for least-squares regression, the training
error residuals of the final model, selected after a fixed training time or based
on performance on a hold-out data set, typically do not sum to zero. This can
introduce a systematic error that accumulates if we are interested in the total ag-
gregated performance over many data points. A simple post-processing step after
training efficiently solves this problem (Igel and Oehmcke, 2023) and improved
the predictions of tree height from satellite imagery (Li et al., 2023) as well as
aboveground tree biomass from airborne LiDAR (Oehmcke et al., 2022).

Allometric equations are used to predict tree biomass from remote measure-
ments of crown size (Mugabowindekwe et al., 2022, Tucker et al, 2023) and height
estimates (Li et al, 2023). This talk argues for estimating the parameters of stan-
dard parametric allometric models by direct gradient-based minimization of the
prediction error (Hiernaux et al., 2023) in contrast to the state-of-the-art approach
of performing regression after log-log transforming the data. In this context, the
question of uncertainty quantification arises and conformal prediction will be dis-
cussed as a potential way to derive prediction intervals.

When learning non-parametric allometric models from data, monotonicity of the
model is a prerequisite for scientific plausibility. This talk presents a simple mod-
ification of the min-max network (MM) architecture for learning smooth (partial)
monotonic functions. The network inherits the MM asymptotic approximation
properties, can be used within larger deep learning systems trained end-to-end,
and performs well compared to more complex state-of-the-art neural networks for
monotonic modelling.
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Data-driven Solution for Poultry Diseases Diagnostics

Dina Machuve

Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that cur-
tail poultry production if they are not detected early. In Tanzania, these diseases
are not detected early due to limited access to agricultural support services by
poultry farmers. Deep learning techniques have the potential for early diagnosis
of these poultry diseases. In this study, deep learning models were developed to
diagnose poultry diseases by classifying healthy and unhealthy fecal images. Un-
healthy fecal images may be symptomatic of Coccidiosis, Salmonella, and Newcas-
tle diseases. We collected 1,255 laboratory-labeled fecal images and fecal samples
used in Polymerase Chain Reaction diagnostics to annotate the laboratory-labeled
fecal images. We took 6,812 poultry fecal photos using an Open Data Kit. Agri-
cultural support experts annotated the farm-labeled fecal images. Then we used a
baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models.
We trained models using farm and laboratory-labeled fecal images and then fine-
tuned them. The test set used farm-labeled images. The test accuracies results
without fine-tuning were 83.06 percent for the baseline CNN, 85.85 percent for
VGG16, 94.79 percent for InceptionV3, 87.46 percent for MobileNetV2, and 88.27
percent for Xception. Fine Tuning while freezing the batch normalization layer
improved model accuracies, resulting in 95.01 percent for VGG16, 95.45 percent
for InceptionV3, 98.02 percent for MobileNetV2, and 98.24 percent for Xception,
with F1 scores for all classifiers above 75 percent in all four classes. Given the
lighter weight of the trained MobileNetV2 and its better ability to generalize, we
recommend deploying this model for the early detection of poultry diseases at the
farm level. We have ongoing work to train a semantic segmentation model for pre-
diction of the diseases at pixel level using the UNET architecture. The goal of the
experiment using semantic segmentation task was to compare the performance to
the image classification models. In the last part of the talk, we shared the insights
on the deployment challenges of the data-driven solution for poultry diseases di-
agnostics at the farm level using a mobile application. Smallholder farmers are
semi-illiterate with limited access to smartphones. We propose using Conversa-
tional IVR technology as digital extension agents to offer targeted information
to smallholder farmers who may not have high-end ICT devices. Responsible AI
practices on model interpretability and explainability are fundamental.
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Mathematical conjecture generation using Machine Intelligence

Challenger Mishra

Conjectures hold a special status in mathematics. Good conjectures epitomise
milestones in the pipeline of mathematical discovery, and have historically in-
spired new mathematics and shaped progress in theoretical physics. At the turn
of the last century, David Hilbert put forward a list of 23 problems which have
since driven development in geometry, number theory, and other domains of pure
mathematics.

One such conjecture is the thirteenth problem, which ultimately led to the de-
velopment of a formidable representation theorem for real continuous multivariate
functions in the 1950’s (due to Kolmogorov and Arnold). Not only did this posit
a new vision of geometry, decades later this helped establish neurocomputing on
firmer mathematical footing [13]. Another profound example was a key observa-
tion by McKay that led to monstrous moonshine, a phenomenon connecting two
seemingly disjointed parts of mathematics, namely, monster groups and modular
forms.

Hilbert’s lecture at the International Congress of Mathematics in Paris, exem-
plified the significance of identifying noteworthy problems by making mathemat-
ical conjectures and their impact on developing new mathematics. The spirit of
proposing open problems and identifying non-trivial conjectures continues to be a
rewarding and a common practice endorsed by practitioners and institutions ded-
icated to furthering mathematics [5]. Other notable lists of problems have been
those collected by Landau [8], Weil [23], Thurston [22], and the Clay Mathematics
Institute [14].

Conjectures are unproven propositions. Formulating meaningful conjectures
can be nontrivial; albeit one can be aided by discovering new patterns and for-
mulating well defined closed form expressions. The Birch and Swinnerton-Dyer
conjecture [3, 4], an unsolved Millennium Prize Problem, was one of the early
examples of computer assisted conjecture generation, which was proposed based
on a numerical tests performed on large data in 1960s, driven by intuitions and
expert insights. It is generally known that computers are canonically good at pat-
tern recognition and processing large volumes of data algorithmically. Building
on machine intelligence and domain expertise, notable recent strides were made
in topics in knot theory, in finding formulae to equate fundamental constants as
continued fractions, improving algorithms for matrix multiplication and sorting,
among a host of other applications. A common practice in these approaches has
been to have interactions with domain experts for a machine guided discovery.

Mathematical inequalities express relations of the form f ¡ g. They are ubiq-
uitously studied across analysis, combinatorics, geometry, and so on, and are
essential to bounding quantities of interest across pure and applied natural sci-
ences. Consequently great efforts go into finding new inequalities and proving
them [12, 1, 19]. Bounds on prime gaps, ground state energies in physical systems,
are merely a couple of examples that highlight the importance of inequalities in
mathematics and natural sciences. Further, nontrivial inequalities can have a
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range of practical real world applications in a variety of scientific domains, as well
as in interdisciplinary endeavours such as machine learning.

Our work highlights the potential for AI-driven conjecture generation. The
initial findings in this work indicate that it is possible to generate nontrivial al-
gebraic conjectures in mathematics, which often have relationships to existing
long-standing conjectures, such as those given in the case studies inspired by
the Hardy-Littlewood conjectures (involving the prime-counting function), and
Babai’s conjecture (on diameters of Cayley graphs of non-abelian simple groups).
We expect to study properties of Hermitian matrices such as Wigner matrices and
local Hamiltonians (with applications to machine learning and quantum theory) in
the future. One wishful application of such AI-driven inequality-discovery is to find
elusive algebraic relations between computationally hard-to-compute quantities, f
(such as minimum eigenvalue of some matrix), and computationally efficient-to-
compute quantities, g1, g2 (such as Trace of functions of the matrix). Being able to
closely bound such hard quantities from above and below, g1 < f < g2, would then
lead to discovering new algorithms to efficiently approximate a computationally
hard quantity.

Another open direction is to adapt this framework for mathematics education;
wherein the oracle we develop outputs non-trivial conjectures which can be used
fruitfully to generate novel exercise problems and can be used as a pedagogical
tool to offer new practice problems for mathematics education.

These possibilities motivate a principled study of the space of classes of conjec-
tures, understanding their structure, and geometrisability, which we undertook in
this work. Giving structure to this space through symmetries, reduces the compu-
tational difficulty of the underlying optimization problem, and opens up the space
to probe using tools from geometric analysis such as Ricci Flow. Although we
take modest theoretical strides in this endeavour, further work remains to under-
stand invariants of free group actions on the conjecture space. Further, the search
problems we have devised through case studies are typically low dimensional op-
timisation problems. Including non-trivial machine architectures (such as neural
networks) to capture the latent space would result in formulating more difficult
optimization problems. As such, it would be beneficial to realise the oracle in the
proposed geometric setting in future implementations. This would require us to
address some group and invariant theoretic questions we have raised in this work.
The machine learning framework of Gaussian processes is a natural way to sample
functions from distributions, with the added constraint f < g. With further un-
derstanding of the conjecture space, and the distribution of conjectures, a machine
guided approach facilitated by Gaussian processes could be insightful.

In this work, we have effectively exploited symbolic machine learning through
our representations and parameterisations. When considering different representa-
tions, further work is required to establish interactions of our conjecture-generation
pipeline with formal proof assistants which are built on higher-order logic. In light
of the substantial reasoning abilities of natural language, it seems worthwhile to
explore natural language representations in the future.
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Impactful conjectures have certain commonalities. They are nontrivial with po-
tentially substantial evidence in favour of it. Typically their description is terse,
although this is a function of the underlying mathematical representation. Such
conjectures can also be a gateway to unlocking new theorems; exemplified by the
Riemann Hypothesis. We envision utilising these insights accumulated in [5] to
make more meaningful conjectures. In light of the outcomes in this paper, the
prospect of exploiting machine learning in exploring conjecture spaces in a geo-
metric fashion, with an aim to generating impactful conjectures is tantalising. This
would also benefit from a quantum backend. As such, a truly interdisciplinary ap-
proach which also involves domain experts from different branches of mathematics
is very much at the backbone of this proposed pipeline.
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ML meets quantum chemistry

Klaus-Robert Müller

I will introduce a large body of work on ML for quantum chemistry that I have done
with my collaborators and discuss the key (math, ML and Chemistry) challenges
(see Chmiela et al 2017, 2023, Unke et al 2021a, Keith et al 2021, Unke et al 2021b).
Interestingly ML models have been enabling novel chemical insight (Schütt et al
2017, 2018). The field ML for quantum chemistry emerged from an IPAM program
in 2011 (Rupp et al 2012, Snyder et al 2012) and is now a large community with
many hundreds of active participants.
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Models of Data for Machine Learning

Robert C. Williamson

Machine Learning usually adopts the statistical or actuarial model of data, namely
that the data is a “random sample” drawn from some probability distribution. In
this talk I will discuss why this might not be appropriate in some cases and offer
some interesting alternatives. Specifically, I will illustrate two new models from
which one can derive imprecise probabilities (or upper previsions, equivalent to
coherent risk measures) augmenting the several that already exist in terms of
subjective views of probability:

(1) when the data has relative frequencies which do not converge; and
(2) when not every event has a probability, which turns out to be an intrigu-

ing model for the problem of “intersectionality” which has gained much
attention in the social sciences.

The above two points are essentially summaries of two papers that were the
basis for the talk, details and abstracts of which are appended below:

Rabanus Derr and Robert C. Williamson, Systems of Precision: Coherent Prob-

abilities on Pre-Dynkin-Systems and Coherent Previsions on Linear Subspaces,
arXiv:2303.0352v3

In literature on imprecise probability little attention is paid to the fact that
imprecise probabilities are precise on a set of events. We call these sets systems
of precision. We show that, under mild assumptions, the system of precision of a
lower and upper probability form a so-called (pre-)Dynkin-system. Interestingly,
there are several settings, ranging from machine learning on partial data over fre-
quential probability theory to quantum probability theory and decision making
under uncertainty, in which a priori the probabilities are only desired to be precise
on a specific underlying set system. Here, (pre-)Dynkin-systems have been adopted
as systems of precision, too. We show that, under extendability conditions, those
pre-Dynkin-systems equipped with probabilities can be embedded into algebras
of sets. Surprisingly, the extendability conditions elaborated in a strand of work
in quantum probability are equivalent to coherence from the imprecise probabil-
ity literature. On this basis, we spell out a lattice duality which relates systems
of precision to credal sets of probabilities. We conclude the presentation with
a generalization of the framework to expectation-type counterparts of imprecise
probabilities. The analogue of pre-Dynkin-systems turn out to be (sets of ) linear
subspaces in the space of bounded, real-valued functions. We introduce partial ex-
pectations, natural generalizations of probabilities defined on pre-Dynkin-systems.
Again, coherence and extendability are equivalent. A related, but more general
lattice duality preserves the relation between systems of precision and credal sets
of probabilities.

Christian Fröhlich, Rabanus Derr, Robert C. Williamson, Strictly Frequentist

Imprecise Probability, arXiv:2302.03520
Strict frequentism defines probability as the limiting relative frequency in an

infinite sequence. What if the limit does not exist? We present a broader the-
ory, which is applicable also to random phenomena that exhibit diverging relative
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frequencies. In doing so, we develop a close connection with the theory of impre-
cise probability: the cluster points of relative frequencies yield a coherent upper
prevision. We show that a natural frequentist definition of conditional probability
recovers the generalized Bayes rule. This also suggests an independence concept,
which is related to epistemic irrelevance in the imprecise probability literature.
Finally, we prove constructively that, for a finite set of elementary events, there
exists a sequence for which the cluster points of relative frequencies coincide with
a prespecified set which demonstrates the naturalness, and arguably completeness,
of our theory.

Deep learning only works if its Bayesian, and Bayesian deep learning

is easy

Philipp Hennig

Deep learning is perceived as the bane of (not only) Bayesian machine learning.
Deep networks learn and predict solely point estimates, and they supposedly “just
work” regardless. So is Bayesian learning unnecessary overkill and “scale is all you
need”? In this talk, I will review results of Hein et al., showing that commonly
used deep architectures in fact exhibit fundamental pathologies in their predic-
tions. I will then show that these pathologies are healed by endowing the network
with a probability measure – nearly any probability measure – over the weight
space, and that such a “posterior” can help bridge the gap between deep and
nonparametric models, turning every trained deep neural network into a Gaussian
process. Finally, I will show that such a probability measure can be constructed
efficiently using automatic differentiation – at the cost of a couple extra epochs
at the end of training, and at a constant cost overhead (one extra backward pass)
at inference time, and that it can be calibrated to allow its interpretation as a
posterior measure. If time permits, I will show some example uses from scien-
tific applications. I will use these results to argue that all deep learning should
be probabilistic, albeit not necessarily Bayesian, deep learning, because it “just
works”, and “probabilities are all you need”. The talk uses results from coopera-
tions with, among others, Matthias Hein, Agustinus Kristiadi, Alexander Immer,
Eric Daxberger, Felix Dangel, Frank Schneider and Matthias Bauer.
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Machine learning and stochastic metrics

Carl Henrik Ek

Statistical learning is commonly applied to high dimensional but also highly struc-
tured data. Therefore a common step is to first learn a latent representation of the
data to reduce the dimensionality by exploiting the structures in the data. Given
a latent representation we often further analyse the data and relationship between
its different instances using simple Euclidean measures. However, for methods
that directly specify the generative mapping from the latent to the observed space
we can analyse the structure of the manifold using the Riemannian metric defined
by pulling back the Euclidean metric from the observed space. This allows us to
navigate the manifold in a manner informed by the measure of similarity defined
on the observed data and compute quantities such as length and volume.

When the mapping from the latent to the observed space is stochastic this
translates to a stochastic Riemannian metric. In this talk we will first show a
practical proof of concept on how formulating a robotics navigation using tools
from geometry simplifies the problem to that of finding geodesics. We will then
show that by propagating the uncertain pull-back metric directly to lengths and
volumes leads to a Finslerian structure. We will show that with a stochastic
immersion following a Gaussian process leads to closed form expressions of this
metric. We will conclude by discussing the benefit of dropping the quadratic
constraints and move beyond the Riemannian metrics and how it allows us to
embed interesting structures within the metric.

References
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Adjoint-aided inference for latent force models

Richard Wilkinson

Linear systems occur throughout engineering and the sciences, most notably as dif-
ferential equations. In many cases the forcing function for the system is unknown,
and interest lies in using noisy observations of the system to infer the forcing, as
well as other unknown parameters. In this talk I will show how adjoints of linear
systems can be used to efficiently infer forcing functions modelled as Gaussian pro-
cesses. Adjoints have recently come to prominence in machine learning, but mainly
as an approach to compute derivatives of cost functions for differential equation
models. Here, we use adjoints in a different way that allows us to analytically
compute the least-squares estimator, or the full Bayesian posterior distribution of
the unknown forcing. Instead of relying on solves of the original (forward model),
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we can recast the problem as n adjoint problems, where n is the number of data
points. All that is required is the ability to solve adjoint systems numerically: it
does not rely upon additional tractability of the linear system such as the ability
to compute Green’s functions. Derivation of adjoints can be automated, and is an
option in many modern ODE/PDE solvers.

When modelling the unknown forcing function as a Gaussian process, we can
convert the process into a sum of basis functions (for example, Mercer eigenfunc-
tions, random Fourier features, Laplacian basis vectors etc). We can then exploit
the linearity of the observation operator to write the inference problem as a linear
model, thus converting a high dimensional constrained optimization or inference
problem, into an unconstrained problem. The approach has a fixed and a priori
known computational cost, and results in exact inference for linear problems.

We’ll demonstrate the method on both ordinary and partial differential equa-
tions, and describe an application to estimating the sources of air pollution in
Kampala from a network of low cost air pollution sensors.

Based on Gahungu et al. 2022 (NeurIPS) and Smith et al. 2023 (J. Roy. Stat.
Soc. C).

Efficient and Robust Optimization Methods for Training Binarize

Deep Neural Networks

Bubacarr Bah

Neural network algorithms have revolutionised Machine Learning in recent years.
Successes of these algorithms are spectacular in many supervised learning tasks,
especially computer vision and natural language processing tasks.Furthermore,
there is a great potential for ML to contribute to knowledge discovery in the
form of mechanistic models. However, despite their tremendous successes these
algorithms are faced with many challenges including bias, interpretability and
robustness to noise. This work could be considered as a step towards improving
interpretability and robustness to noise of these algorithms.

Compared to classical deep neural networks its binarized versions are among
other things useful for applications on resource-limited devices due to their reduc-
tion in memory consumption and computational demands. In this work we study
deep neural networks with binary activation functions and continuous or integer
weights (BDNN). We show that the BDNN can be reformulated as a mixed-integer
linear program with bounded weight space which can be solved to global optimal-
ity by classical mixed-integer programming solvers. Additionally a local search
heuristic is presented to calculate locally optimal networks. Furthermore to im-
prove efficiency we present an iterative data-splitting heuristic which iteratively
splits the training set into smaller subsets by using the k-mean method. After-
wards all data points in a given subset are forced to follow the same activation
pattern which leads to a much smaller number of integer variables in the mixed-
integer programming formulation and therefore to computational improvements.
Finally for the first time a robust model is presented which enforces robustness of
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the BDNN during training. All methods are tested on random and real datasets
and our results indicate that all models can often compete with or even outper-
form classical DNNs on small network architectures confirming the viability for
applications having restricted memory or computing power.

This talk is based on the following papers.

(1) Kurtz, J. and Bah, B., 2020. An Integer Programming Approach to Deep

Neural Networks with Binary Activation Functions;ICML 2020 workshop
on “Beyond First Order Methods in Machine Learning”.

(2) Kurtz, J. and Bah, B., 2021. Efficient and robust mixed-integer optimiza-

tion methods for training binarized deep neural networks. arXiv preprint
arXiv:2110.11382.

Why adiabatic quantum annealing is unlikely to yield

quantum speed-up

Bert Kappen

Adiabatic quantum annealing (AQA) is a quantum version of simulated annealing
and is one of the potentially promising methods to obtain quantum speed up
over classical methods for combinatoric optimization problems. AQA maintains a
quantum system in the ground state of a Hamiltonian while slowly changing the
Hamiltonian through a control parameter z. This procedure allows to change the
system from a trivial initial state to a ground state that encodes the solution to
the combinatoric optimization problem. The time complexity of the method is
determined by the so-called minimal spectral gap, which occurs when the system
goes through a phase transition at a critical value of the control parameter z∗. The
smaller the gap, the slower the annealing and the longer the time complexity. We
study a class of AQA protocols for which we can analytically compute the minimal
spectral gap as O(1/

√

(N)) with N the total number of configurations of the
problem. We also obtain an analytic expression for z∗ as a partition sum. For some
problems, such as Grover search, z∗ can be efficiently computed and we can design
an annealing schedule (how z changes with time) such that a quadratic speed up is

obtained: the time complexity of AQA is O(
√

(N), while a classical method would
require O(N) time. However, in general z* is intractable to compute, making
an efficient AQA design unfeasible for most practical combinatoric optimization
problems. We conjecture that it is likely that this negative result also applies for
any other instance independent transverse Hamiltonians.
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Equivariant Convolutions with Tensor Images

Wilson Gregory

Convolutional neural networks [5] are one of the main tools for doing machine
learning on images. These methods assume that the input images are scalar im-
ages, but in natural-science domains, image-like data sets can have a geomet-
ric object in each pixel. These datasets obey the Geometric Principle: “The
laws of physics must all be expressible as geometric (coordinate-independent and
reference-frame-independent) relationships between geometric objects (scalars, vec-
tors, tensors, ...) that represent physical entities.” [7]. The coordinate-independent
relationships define symmetries that should be respected by any function on the
dataset, such as a neural network. We will focus on symmetry with respect to
translations, rotations of 90 degrees, and reflections.

It is well known that CNNs enforce translational symmetries. In fact, a trans-
lationally equivariant linear function can always be written as a convolution with
sufficiently large filters [4]. However, rotational and reflection symmetries do not
come for free. Symmetries can be enforced by ensuring that the convolution filters
are invariant to rotations ([1],[8]). The context of geometric images introduces
an additional wrinkle as rotations and reflections of geometric images also rotate
and reflect the vectors or tensors in the pixels. A typical CNN on a geometric
image will treat the components of the vectors and tensors as channels, but this
destroys the structure and makes rotational equivariance impossible. Fortunately,
100 years of tensor analysis dating back to the work of Ricci and Levi-Civita [6]
gives us explicit rules for functions on tensors. In particular, any linear function
from tensors to tensors can be written with tensor products, contractions, and
index permutations [2].

We use these tools from tensor analysis to build our equivariant GeometricIm-
ageNet [3]. We use a geometric generalization of convolution with outer products,
tensor index contractions, and tensor index permutations to construct vector and
tensor image functions that use and benefit from the vector or tensor structure.
The framework permits, with a very simple adjustment, restriction to function
spaces that are exactly equivariant to translations, discrete rotations, and reflec-
tions. In numerical experiments, we find that our model has good generalization
for a small simulated physics system, even when trained with a small training
set. We expect this tool will be valuable for scientific and engineering machine
learning, for example in cosmology or ocean dynamics.
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Collaborative ML for Science

Samuel Kaski

Now that research in most empirical fields of science has become computational,
in the sense that experiments are designed with simulations or insights derived
from existing data, and even replaced with simulations, it is time to ask could we
do research more efficiently with new tools, or even do research in new ways. The
same questions arise on development work in industry. If we call the constellation
of simulation tools a virtual laboratory, an important question is can we have
better tools by combining strength across the different fields and developing tools
usable across the different virtual laboratories. Many machine learning tools have
this aim - they need to have domain-specific elements, such as the specific models
which are different in, say, materials science and psychology, but operations such
as experimental design given the models are general-purpose operations.

Given common interfaces for the tools in the virtual laboratories in different
fields, we can ask could the researchers be helped even more than the current
tools are able to. I discussed machine learning based ‘sidekick’ assistants, able to
help other agents research their goals, even when they are not able to yet specify
the goal explicitly, or it is evolving. Such assistants can help with tasks rang-
ing from prior knowledge elicitation in modelling, at the simplest, to zero-shot
assistance in design and decision making tasks, for instance in drug design. Ulti-
mately they should be helpful for human domain experts in running experiments
and solving research problems in simulation-based virtual laboratories. The assis-
tants will be useful tools of domain experts who run such virtual laboratories, and
serve as platforms for machine learning researchers to contribute to advancing re-
search across a number of fields, each field running their virtual laboratories which
combine field-specific models and domain-agnostic modelling and assistance tools.
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Beyond Simulation-based inference

Jakob Macke

Many fields of science make extensive use of mechanistic forward models which
are implemented through numerical simulators. Simulation-based inference aims
to make it possible to perform Bayesian inference on such models by only using
model-simulations, but not requiring access to likelihood evaluations. While much
progress has recently been made, a lot still remains to be done: spoke about ours,
and others, recent work on developing simulation based inference methods using
flexible density estimators parameterised with neural networks, on improving their
robustness and efficiency, and applications to modelling problems in neuroscience
and astrophysics. Finally, I spoke about the prospect of building large-scale models
of neural computations in the Drosophila melanogaster by combining connectomic
measurements and machine learning.
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Experiment design as sequential instrument selection

Niki Kilbertus

Instrumental variable (IV) methods are used to estimate causal effects in settings
with unobserved confounding, where we cannot directly experiment on the treat-
ment variable. Instruments are variables which only affect the outcome indirectly
via the treatment variable(s). Most IV applications focus on low-dimensional
treatments and crucially require at least as many instruments as treatments. This
assumption is restrictive: in the natural sciences we often seek to infer causal
effects of high-dimensional treatments (e.g., the effect of gene expressions or mi-
crobiota on health and disease), but can only run few experiments with a limited
number of instruments (e.g., drugs or antibiotics). In such under-specified prob-
lems, the full treatment effect is not identifiable in a single experiment even in
the linear case. We show that one can still reliably recover the projection of the
treatment effect onto the instrumented subspace and develop techniques to con-
sistently combine such partial estimates from different sets of instruments. We
then leverage our combined estimators in an algorithm that iteratively proposes
the most informative instruments at each round of experimentation to maximize
the overall information about the full causal effect.
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Machine learning for improved understanding and projections of

climate change

Veronika Eyring

Climate models are fundamental to understanding and projecting climate change.
The models have continued to improve over the years, but considerable biases
and uncertainties in their projections remain (Eyring et al., 2021a; Lee et al.,
2021). Machine learning provides promising new avenues to improve Earth system
models and Earth system understanding (Eyring et al., 2021b; Gentine et al., 2021;
Reichstein et al., 2019).
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A large contribution to long-standing systematic errors in Earth system models
stems from differences in the representation of clouds and convection (i.e., deep
clouds) occurring at scales smaller than the resolved model grid resolution that is
typically in the order of 40-100 km in the horizontal. This impacts the models’
ability to accurately project global and regional climate change, climate variability,
and extremes (Gentine et al., 2021). High-resolution, cloud resolving models with
horizontal resolution of a few kilometers alleviate many biases of coarse-resolution
models for deep clouds and convection (Stevens et al., 2019), but they cannot be
run at climate timescales for multiple decades or longer due to high computational
costs.

One novel and promising path forward is hybrid climate models that combine
ML-based parameterizations of smaller-scale processes with conventional treat-
ments of larger-scale processes (Gentine et al., 2021). Deep learning trained against
global storm resolving model output has been successfully substituted for conven-
tional parameterizations of deep convection and cloud cover in climate models,
thereby enhancing the fidelity of the host Earth system model to explicitly-resolved
clouds and convection (Gentine et al., 2018; Rasp et al., 2018; Grundner et al.,
2022). Hybrid models improved in this way have the potential to eliminate system-
atic biases present in state-of-the-art models participating in the Coupled Model
Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016) and to provide
more reliable climate projections.

However, “unconstrained” (standard) deep learning algorithms, such as feedfor-
ward neural networks, often learn spurious non-physical relationships which can
substantially limit their performance in climate simulations. Combining causal dis-
covery and deep learning can mitigate this problem by identifying direct physical
drivers of subgrid-scale processes. Prognostic climate simulations with causally-
informed neural network parameterization are stable, accurately represent mean
climate and variability of the original climate model, and clearly outperform its
non-causal counterpart. Causal discovery can play a key role in improving data-
driven parameterizations (informed by causally-consistent physical fields) for both
their design and trustworthiness, with implications also in other scientific disci-
plines (Iglesias-Suarez et al., 2023). Trust and generalizability of the ML models
can be further improved by introducing climate invariant variables (Beucler et al.,
2021), physical constraints, or equation discovery (Grundner et al., 2023). This
approach can drive a paradigm shift in current climate and Earth system mod-
elling towards a new data-driven, yet still physics-aware, ML-based hybrid climate
model for improved understanding and projections of climate change.

The work shown in the presentation is performed as part of the European
Research Council (ERC) Synergy Grant “Understanding and Modelling the Earth
System with Machine Learning (USMILE, https://www.usmile-erc.eu/)”.
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Practical AI challenges for Earth and Sustainability

Markus Reichstein

Humankind is facing environmental challenges well beyond climate, rather a
quadruple climate-biodiversity-water-health crises with systemic, interconnected
elements. The role of AI can go much beyond improving models only. Integrating
different AI systems can be instrumental in tackling global environmental chal-
lenges by enhancing monitoring, analysis, and response capabilities. By combining
various AI technologies, such as machine learning, computer vision, and natural
language processing, it becomes possible to process and analyze vast amounts
of data from diverse sources. This integration enables the identification of pat-
terns, early detection of environmental risks, and the development of targeted
strategies for mitigation and adaptation. Additionally, AI systems can assist in
decision-making processes by providing data-driven insights and recommendations
to policymakers and stakeholders, thereby facilitating more informed and effective
responses to environmental challenges.

Living in the machine learning and physics interplay for the

Earth sciences

Gustau Camps-Valls

Most Earth science problems involve making inferences about the system, where
accurate predictions are just a tiny part of the problem. Inferences mean un-
derstanding variables relations and deriving physically interpretable models that
are simple, parsimonious, and mathematically tractable. Machine learning models
alone are excellent approximators but often do not respect the most elementary
laws of physics, like mass or energy conservation, so consistency and confidence
are compromised [1-4]. I will review the main challenges ahead in the field and
introduce several ways to live in the Physics and machine learning interplay that
allow us (1) to encode differential equations and learn parameters and processes
[1], (2) constrain data-driven models with physics-priors and causal dependence
constraints [2], (3) improve parameterizations [1-3], (4) emulate physical models
for the sake of speed up simulations, explainability and tractability [1,4], and (5)
blend data-driven and process-based models that improve robustness and allow
better extrapolations [1,3]. This is a collective long-term AI agenda towards de-
veloping and applying algorithms capable of discovering knowledge in the Earth
system.
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Machine Learning for Uncovering Hidden Relationships and

Improving Predictions in Coupled Earth System Models

Christian Reiners, Alexander Winkler

Future climatic changes, particularly the warming of the Earth’s land surface, are
fundamentally influenced by the evolution of biosphere-atmosphere interactions
involving carbon, water, and energy in response to increasing greenhouse gases
[1]. The understanding and modeling of these biogeochemical and -physical ef-
fects are associated with significant uncertainties primarily attributed to limited
understanding of underlying processes. However, these effects play a critical role
in shaping feedback mechanisms within the interconnected Earth system across
different time scales. In this context, our current research focuses on three key
processes: On a short time-scale, the response of ecosystems to water and heat
stress is of paramount importance, on an intermediate time-scale, phenological
shifts in response to climatic changes become prominent and on a long time-scale,
the long-term land sink of carbon emissions becomes a crucial factor.

To address the processes occurring at these different time scales, we employ
machine learning in two main approaches. Firstly, we utilize machine learning
techniques to uncover hidden relationships from observational data to improve our
process understanding. An example is the relationship between measurements of
plant greenness and meteorological conditions. We applied diverse machine learn-
ing techniques to learn the functioning of phenology from observational data and
interpret the resulting models [2,3]. Secondly, we use machine learning to incor-
porate observation-informed process parameterizations and submodels into com-
plex coupled Earth’s system models, which are difficult to capture solely through
process-based modeling. This approach, called hybrid modeling, allows us, for
example, to predict the intricate plant-control over the land-atmosphere flux of
water and CO2 inferred from in-situ measurements [4].

Our research in these two directions is primarily focused on recognizing, com-
prehending, and addressing common challenges. We identify three recurrent key
challenges in our studies:

(1) Equifinality
To address the challenge of equifinality, we investigate diverse approaches,
including the utilization of regularization techniques (e.g., multi-task learn-
ing) and the integration of additional prior knowledge as constraints. More
concretely, in [4], we employ a neural network within a hybrid model to
predict high-frequent water fluxes from land to the atmosphere by inferring
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multiple latent factors that control the flux. We investigate two aforemen-
tioned strategies to control for equifinality. Although the solutions in that
particular study are tailored to the specific problem at hand, they serve
as an initial step towards developing more generalized approaches in the
future.

(2) Combining different scales in space and time
Another critical challenge stems from the substantial heterogeneity and
non-stationarity inherent in the Earth’s system arising from the intri-
cate interplay among processes operating at different temporal and spatial
scales. Although these interconnections make it difficult to disentangle
and isolate specific processes, such as the relationship between soil mois-
ture and air temperature in controlling carbon uptake by plants [5], they
also offer valuable opportunities for insights. In one study, we capitalized
on the disparity in time scales between meteorological influences and the
influence of elevated CO2 levels of plant productivity. Here, we estimate
the climate effect on plant productivity using machine learning and the in-
termediate time-scales to isolate the CO2 fertilization effect that crucially
controls the long-term sink of anthropogenic carbon [6].

(3) Generalization
Further, interpreting the effects isolated by machine learning poses chal-
lenges. It is crucial to ensure the neural network accurately captures the
intended process to enable correct extrapolation. We aim to develop and
use neural networks to simulate factorial experiments and shed light on
the functioning on captured relations. In one study, we test extrapolation
and estimate the impact of late spring frost events under future global
warming as predicted by a neural network trained on contemporary cli-
mate data [7]. Furthermore, many existing interpretation methods for
neural networks lack the capability to detect patterns arising from multi-
ple interacting inputs that contribute to a specific effect. To this end, we
used a specialized method to interpret the prediction of phenology using
meteorological data. This method not only identifies the precise timing
but also determines the timescale responsible for shifts in phenology, i.e.,
the seasonality of vegetation [3]. In summary, our use of machine learning
involves leveraging it for both uncovering hidden relationships in observa-
tional data and improving the predictions using coupled Earth’s system
models and hybrid modelling.
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