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Multi-dimensional summation-by-parts operators for general function spaces:
Theory and construction ∗

Jan Glaubitz† , Simon-Christian Klein‡ , Jan Nordström§ ¶, and Philipp Öffner∥

Abstract. Summation-by-parts (SBP) operators allow us to systematically develop energy-stable and high-order accurate
numerical methods for time-dependent differential equations. Until recently, the main idea behind existing SBP
operators was that polynomials can accurately approximate the solution, and SBP operators should thus be
exact for them. However, polynomials do not provide the best approximation for some problems, with other
approximation spaces being more appropriate. We recently addressed this issue and developed a theory for
one-dimensional SBP operators based on general function spaces, coined function-space SBP (FSBP) operators.
In this paper, we extend the theory of FSBP operators to multiple dimensions. We focus on their existence,
connection to quadratures, construction, and mimetic properties. A more exhaustive numerical demonstration
of multi-dimensional FSBP (MFSBP) operators and their application will be provided in future works. Similar
to the one-dimensional case, we demonstrate that most of the established results for polynomial-based multi-
dimensional SBP (MSBP) operators carry over to the more general class of MFSBP operators. Our findings
imply that the concept of SBP operators can be applied to a significantly larger class of methods than is currently
done. This can increase the accuracy of the numerical solutions and/or provide stability to the methods.

Key words. Summation-by-parts operators, multi-dimensional, mimetic discretization, general function spaces, initial
boundary value problems, stability
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1. Introduction. Summation-by-parts (SBP) operators mimic integration-by-parts on a discrete
level. In combination with weakly enforced boundary conditions (BCs), they allow for a systematic
development of energy-stable numerical methods for energy-bounded initial boundary value problems
(IBVPs) [75, 17, 13]. Examples include finite difference (FD) [49, 50, 69, 71], essentially non-oscillatory
(ENO) and weighted ENO (WENO) [77, 24, 7], finite/spectral element (FE/SE) [8, 1, 2], discontinuous
Galerkin (DG) [28, 12], finite volume (FV) [59, 60], flux reconstruction (FR) [45, 67, 63], and implicit
time integration [61, 53, 66] methods. At their core, existing SBP operators are constructed to be
exact for polynomials up to a certain degree. The underlying assumption—although not always stated
explicitly—is that polynomials accurately approximate the solution of the problem at hand. However,
for some IBVPs, polynomials are not the best choice, and other approximation spaces should be used.
Many previous works have pointed out the advantages of non-polynomial approximation spaces. These
include exponentially fitted schemes to solve singular perturbation problems [47, 48], DG methods [78]
and (W)ENO reconstructions [14, 46, 42] based on non-polynomial approximation spaces, radial basis
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function (RBF) schemes [22, 26, 25], and methods based on rational function approximations [57, 38].
In [36], we recently developed one-dimensional SBP operators for general (non-polynomial) function
spaces, referred to as function-space SBP (FSBP) operators. Although these can be applied to multi-
dimensional problems using a tensor-product strategy, with the advantage of being simple and often
efficient, this is not always the best choice since it limits their geometric flexibility.

Here, we develop a theory for multi-dimensional FSBP (MFSBP) operators. We focus on establish-
ing their existence, connection to quadratures, construction, and mimetic properties of diagonal-norm
MFSBP operators for general function spaces and geometries. It is demonstrated that most of the estab-
lished results for previously developed multi-dimensional polynomial SBP (MSBP) operators [60, 43, 18]
carry over to MFSBP operators. We specifically connect the existence of MFSBP operators and positive
quadratures that are exact for certain, in general, non-polynomial function spaces. Building upon the
theoretical existence investigation, we derive a general construction procedure for MFSBP operators.
An essential part of this procedure is that positive quadratures that are exact for a certain function
space must be found if an F-exact MFSBP operator approximating the partial derivative ∂x is desired.
Note that the MFSBP operators presented here are not optimized w.r.t. to their grid. While we desire
to investigate the optimal accuracy and efficiency of our MFSBP operators, such efforts need to be
tailored to specific function spaces. They will therefore be carried out in future work.

Our findings imply that the concept of MSBP operators can be applied to a significantly larger class
of methods than is currently known. Another aspect of introducing the SBP framework in an existing
“old” method is to gain stability, as done for the FV method in [59, 60] and for RBF methods in [35],
when combined with weakly enforced boundary data [33, 34]. Here, we demonstrated the advantage of
MFSBP operators for different linear problems. A more exhaustive numerical study will be provided in
future work.

The rest of this work is organized as follows. In section 2, we establish the notation that will be used
subsequently. In section 3, we introduce the concept of MFSBP operators for general function spaces
and geometries. section 4 addresses the relationship between MFSBP operators and certain surface and
volume quadratures, characterizing the theoretical existence of diagonal-norm MFSBP operators. In
section 5, we describe how diagonal-norm MFSBP operators can be constructed. Section 6 demonstrates
that the established mimetic properties of MSBP operators carry over to the larger class of MFSBP
operators. In section 7, we provide illustrative examples of MFSBP operators on triangles and circles.
Section 8 offers simplistic numerical tests demonstrating the potential advantage of MFSBP operators.
Finally, we offer concluding thoughts in section 9.

2. Notation. We use the following notation in the remainder of this work. Let d ∈ N be a positive
integer, Ω ⊂ Rd be an open and bounded domain with piecewise-smooth boundary ∂Ω, and n =
[nx1 , . . . , nxd

]T be the corresponding outward pointing unit normal. Moreover, let S = {xn}Nn=1 be a
set of N nodes on Ω and ξ ∈ Rd be an arbitrary directional vector with length one. If f ∈ C1(Ω) is a
continuously differentiable function on Ω, then

(2.1)
f = [f(x1), . . . , f(xN )]T ,

fξ = [(∂ξf)(x1), . . . , (∂ξf)(xN )]T ,

denote the nodal values of f and its directional derivative ∂ξf in ξ-direction on the node set S, respec-
tively. Here, ∂ξf is the directional derivative defined as ∂ξf = ∇f · ξ. Note that, for i ∈ {1, . . . , d}, the
usual partial derivative ∂xif corresponds to the directional derivative ∂ξf in the canonical coordinate
direction ξ = [0, . . . , 0, 1, 0, . . . , 0] with the number 1 in the ith component.

Let Pp(Rd) be the space of the d-dimensional polynomials of total degree up to p, which has di-

mension n∗
p =

(
p+d
d

)
. Given an exponent vector α = [α1, . . . , αd] ∈ Nd, recall that the total degree
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of a monomial xα1
1 · · ·xαd

d is the ℓ1-norm of α, ∥α∥1 = α1 + · · · + αd, and that the total degree of a
polynomial is the largest total degree of all (non-zero coefficient) monomials spanning the polynomial.
Pp(Rd) is therefore spanned by the monomial basis functions,

(2.2) xα := xα1
1 · · ·xαd

d , ∥α∥1 ≤ p,

where α = [α1, . . . , αd] and x = [x1, . . . , xd]. The nodal values of the monomial basis functions xα and
their derivative in ξ-direction, ∂ξx

α, on the node set S are denoted by xα and (xα)ξ, respectively.

3. Multi-dimensional SBP operators for general function spaces. We start by describing how
MSBP operators can be extended to general function spaces.

3.1. Multi-dimensional polynomial SBP operators. MSBP operators were first introduced for FV
methods in [60, 74, 73] and later for multi-block FD and SE methods in [43, 18]. The first derivative
operator is defined as follows.

Definition 3.1 (SBP operators). Dξ = P−1Qξ is an SBP operator of (total) degree p, approximating
the first derivative operator ∂ξ on the node set S, if

(i) Dξx
α = (xα)ξ for ∥α∥1 ≤ p,

(ii) the norm matrix P is symmetric and positive definite (SPD),
(iii) Qξ +QT

ξ = Bξ, and
(iv) the boundary matrix Bξ satisfies

(3.1) (xα)T Bξx
β =

∮
∂Ω

xαxβ(ξ · n) ds, ∥α∥1, ∥β∥1 ≤ q,

where q ≥ p and (ξ ·n) is the inner product of the directional vector ξ and the outward pointing
unit normal n.

Relation (i) ensures that Dξ is an accurate approximation of the continuous operator ∂ξ by requiring
the operator to be exact for all d-dimensional polynomials of total degree up to p. Condition (ii)
guarantees that P induces a proper discrete inner product and norm, which are respectively given by
⟨u,v⟩P = uTPv and ∥u∥2P = uTPu for u,v ∈ RN . Relation (iii) encodes the SBP property, which
allows us to mimic integration-by-parts (IBP) on a discrete level. Recall that IBP for the ξ-derivative
reads

(3.2)

∫
Ω
u(∂ξv) dx+

∫
Ω
(∂ξu)v dx =

∮
∂Ω

uv(ξ · n) ds, ∀u, v ∈ C1(Ω).

The discrete version of (3.2), which follows from (iii), is

(3.3) uTP (Dξv) + (Dξu)
TPv = uTBξv, ∀u,v ∈ RN .

Note that the two terms on the left-hand side of (3.3) approximate the related terms on the left-hand
side of (3.2). Finally, (iv) in Definition 3.1 ensures that also the right-hand side of (3.3) accurately
approximates the right-hand side of (3.2). To this end, the boundary operator Bξ must be exact for
d-dimensional polynomials of total degree up to p.

3.2. Multi-dimensional SBP operators for general function spaces. The main idea behind (i) in
Definition 3.1 is that polynomials of total degree up to p approximate the PDE solution well for p high
enough, and the differentiation operator Dξ should thus be exact for them. That is, we can reformulate
(i) in Definition 3.1 as

(3.4) Dξf = fξ ∀f ∈ Pp(Rd),
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where Pp(Rd) denotes the space of the d-dimensional polynomials of total degree up to p. It is now clearly
possible to replace Pp(Rd) with any other subspace of C1(Ω). Suppose it is reasonable to approximate
the solution u using the function space F ⊂ C1(Ω). We then modify (3.4) to

(3.5) Dξf = fξ ∀f ∈ F .

Similarly, we can modify (3.1) to

(3.6) fTBξg =

∮
∂Ω

fg(ξ · n) ds, ∀f, g ∈ G,

with F ⊂ G, where for simplicity, we choose G = F . As for one-dimensional SBP operators [36], it is
now natural to formulate the following generalization of multi-dimensional SBP operators, which we
refer to as multi-dimensional function-space SBP (MFSBP) operators.

Definition 3.2 (MFSBP operators). Dξ = P−1Qξ is an F-based MFSBP operator, approximating
the first derivative operator ∂ξ on the node set S, if

(i) Dξf = fξ for all f ∈ F ,
(ii) the norm matrix P is SPD,
(iii) Qξ +QT

ξ = Bξ, and
(iv) the boundary matrix Bξ satisfies

(3.7) fTBξg =

∮
∂Ω

fg(ξ · n) ds, ∀f, g ∈ F .

Note that only (i) and (iv) in Definition 3.2 differ from Definition 3.1. Consequently, most of the
results for polynomial MSBP operators carry over to our MFSBP operators, as we will demonstrate in
the remainder of this paper. A similar observation was made in the one-dimensional case [36].

For simplicity, we focus on diagonal-norm MFSBP operators, for which the norm matrix P is di-
agonal. This allows us to connect them to certain quadratures (see section 4), which simplifies their
construction (see section 5) and analysis (see section 6). Furthermore, diagonal-norm SBP operators
enable certain splitting techniques [58, 29, 65] and the extension to variable coefficients including curvi-
linear coordinates [72, 62, 68, 11]. For the same reasons, we also restrict the discussion to diagonal
boundary matrices [62, 18, 13].

4. MFSBP operators and quadratures. We now investigate the connection between MFSBP op-
erators and certain quadratures. Similar to the one-dimensional case [36], we show that an MFSBP
operator exists if and only if a specific quadrature exists.

4.1. Volume quadratures. We start by briefly commenting on multi-dimensional volume and sur-
face quadratures [20, 15, 16]. Consider the volume quadrature IX,W on Ω ⊂ Rd with nodes X =
{xn}Nn=1 ⊂ Ω and weights W = {wn}Nn=1,

(4.1) IX,W [f ] :=
N∑

n=1

wnf(xn) ≈
∫
Ω
f(x) dx =: I[f ],

where f : Ω → R is a continuous function. We say that the quadrature IX,W is positive if its weights
are positive, i. e., if wn > 0 for all wn ∈ W . Furthermore, given a function space G, we say that IX,W is
G-exact if the exactness condition

(4.2) IX,W [g] = I[g] ∀g ∈ G

holds.
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4.2. Characterizing the existence of MFSBP operators. As stated above, the restriction to di-
agonal norm matrices P allows us to characterize the existence of diagonal-norm MFSBP operators in
terms of positive quadratures. To this end, we introduce the concept of Vandermonde matrices. Let
{f1, . . . , fK} be a basis of F ⊂ C1(Ω). Evaluating the basis functions at the nodes S = {xn}Nn=1 and
writing the corresponding function values as the columns of a matrix, we get the Vandermonde matrix

(4.3) V = [f1, . . . , fK] =


f1(x1) . . . fK(x1)

...
...

f1(xN ) . . . fK(xN )

 .

Furthermore, for ξ ∈ Rd, we denote by

(4.4) ∂ξ(F2) = { ∂ξ(fg) | f, g ∈ F } = { (∂ξf)g + f(∂ξg) | f, g ∈ F }

the space of functions corresponding to the derivative in ξ-direction of the product of two functions
from F ⊂ C1(Ω). We are now positioned to formulate our main result on the connection between
diagonal-norm MFSBP operators and positive and ∂xi(F2)-exact quadratures.

Theorem 4.1. Let F ⊂ C1(Ω) and assume that the Vandermonde matrix V in (4.3) has linearly
independent columns. Further, let Bξ be a boundary matrix satisfying (iv) in Definition 3.2. Then there
exists a diagonal-norm F-based MFSBP operator Dξ = P−1Qξ (with Qξ +QT

ξ = Bξ) on the nodes S if

and only if there exists a positive and ∂ξ(F2)-exact quadrature on Ω with nodes S.

Theorem 4.1 is well-known for polynomial MSBP operators. The assertion is proved using the same
arguments as in the proofs of [43, Theorems 3.2 and 3.3] and [18, Theorem 2].

Remark 4.2. The Vandermonde matrix V in (4.3) is ensured to have linearly independent columns
if the node set S is F-unisolvent.1 This requirement is not restrictive since we never encountered a
Vandermonde matrix V with linearly dependent columns for N ≥ K in our numerical tests. This might
not be surprising since V having linearly independent columns can be ensured if sufficiently many dense
nodes are used [32, Section 2.1].

4.3. Surface quadratures. We can also connect the existence of the boundary operator Bξ in
Definition 3.2 to certain surface quadratures on the boundary Γ = ∂Ω. Consider the surface quadrature
IΓY,V on the closed boundary Γ = ∂Ω with surface nodes Y = {xm}Mm=1 ⊂ Γ and weights V = {vm}Mm=1

satisfying

(4.5) I
(Γ)
Y,V [f ] :=

M∑
m=1

vm(ξ · n(xm))f(xm) ≈
∮
Γ
f(ξ · n) ds =: I(Γ)[f ],

where f : Ω → R again is a continuous function. We say that the surface quadrature I
(Γ)
Y,V in (4.5) is

positive if its weights v1, . . . , vM are positive. Furthermore, given a function space G ⊂ C(Ω), we say

that I
(Γ)
Y,V is G-exact if the exactness condition

(4.6) I
(Γ)
Y,V [g] = I(Γ)[g] ∀g ∈ G

holds. We pre-empt that the function space G for which we need exact surface quadratures will be F2

for reasons explained in the following.

1We say that the node set S ⊂ Ω is F-unisolvent, where F ⊂ C(Ω) is a linear function space if f ∈ F and f(x) = 0 for
all x ∈ S implies f ≡ 0.
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Remark 4.3. The relation (4.5) assumes that we have access to the exact normals. This does not
introduce a constraint for domains with a piecewise linear boundary, where the normals remain constant
on each linear boundary segment. However, for complicated geometries, the normals include higher-
order terms that must be integrated alongside F2 by the surface quadrature. This integration may
necessitate a larger number of surface points. Importantly, the added complexity is not exclusive to the
proposed MFSBP operators but is generally valid.

4.4. Characterizing the existence of boundary operators. We now connect the boundary operators
Bξ, which are crucial to Definition 3.2 of MFSBP operators Dξ = P−1Qξ with Qξ+QT

ξ = Bξ, to surface
quadratures on the boundary Γ = ∂Ω. We restrict the discussion to diagonal boundary operators
supported on the surface nodes.

Definition 4.4 (Mimetic boundary operators). Let Bξ ∈ RN×N be a boundary operator on Γ = ∂Ω
with

(4.7) fTBξg =

∮
Γ
fg(ξ · n) ds, ∀f, g ∈ F ,

where (ξ · n) is the inner product of the directional vector ξ and the outward pointing unit normal n.
Assume that Bξ is defined on the node set S = {xn}Nn=1 ⊂ Ω. We call Bξ mimetic if

(i) Bξ is diagonal, i.e., Bξ = diag(b1, . . . , bN );
(ii) Bξ only acts on the boundary nodes, i.e., bn = 0 if xn ̸∈ Γ for n = 1, . . . , N ;
(iii) The nonzero entries of Bξ are of the form bn = vn(ξ · n(xn)), where vn is a positive weight.

Remark 4.5. The mimetic boundary operators in Definition 4.4 incorporate all geometric and di-
rection information necessary for performing the IBP procedure, which makes them closely connected
to the encapsulated boundary operators used in [55, 4, 54].

We will see in a moment that Definition 4.4 allows us to identify the boundary matrix Bξ with a
positive and F2-exact surface quadrature.

Theorem 4.6. Let F ⊂ C(Ω), Ω be an open and bounded domain with closed boundary Γ = ∂Ω, and
S = {xn}Nn=1 be a node set on Ω. There exists a mimetic boundary operator Bξ satisfying (4.7) if and

only if there exists a positive and F2-exact surface quadrature I
(Γ)
Y,V with points Y ⊂ S ∩ Γ. Moreover,

the non-zero entries of Bξ correspond to the products of the surface quadrature weights with ξ ·n at the
corresponding surface point.

Proof. Denote the surface quadrature points by Y = {ym}Mm=1 and the weights by V = {vm}Mm=1.
The proof consists of two parts. We first show that the existence of a positive and F2-exact surface
quadrature implies the existence of a mimetic boundary operator. To this end, we construct as a
diagonal matrix Bξ = diag(b1, . . . , bN ) as

(4.8) bn =

{
vm(ξ · n(xn)) if xn = ym,

0 otherwise.

By construction, Bξ satisfies (i), (ii), and (iii) in Definition 4.4. It remains to show that (4.7) holds. To
this end, we can rewrite the left-hand side of (4.7) as

(4.9) fTBξg =
M∑

m=1

vm(ξ · n(ym))f(ym)g(ym) = I
(Γ)
Y,V [fg],
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using our above construction of Bξ. Now let f, g ∈ F . Then fg ∈ F2, and since I
(Γ)
Y,V is F2-exact, we

have I
(Γ)
Y,V [fg] = I(Γ)[fg]. Substituting this into (4.9) yields

(4.10) fTBξg = I(Γ)[fg] =

∮
Γ
fg(ξ · n) ds,

which shows that Bξ satisfies (4.7) and therefore is a mimetic boundary operator. In the second part
of the proof, similar arguments as in the first part can be used to show that the existence of a mimetic
boundary operator Bξ = diag(b1, . . . , bN ) implies the existence of a positive and F2-exact surface

quadrature I
(Γ)
Y,V .

5. Construction of MFSBP operators. Let Ω ⊂ Rd be an open and bounded reference domain, let
ξ ∈ Rd, and let F ⊂ C1(Ω) be the function space for which we want a diagonal-norm MFSBP operator
Dξ approximating ∂ξ. The construction then proceeds as follows:
(S1) Select Ns and Ni nodes on the surface and interior of Ω, respectively. The node set S is the

union of the surface and interior nodes and contains a total number of N = Ns +Ni nodes.
(S2) Find a positive and F2-exact surface quadrature supported on the Ns surface points. Use the

surface quadrature to construct a mimetic boundary matrix Bξ.
(S3) Find a positive and ∂ξ(F2)-exact volume quadrature supported on the N surface and interior

points. Use the volume quadrature to construct a diagonal-norm matrix P .
(S4) Find a matrixQξ that satisfies Definition 3.2. Then construct an MFSBP operator asDξ = P−1Qξ.
We address details on (S2), (S3), and (S4) in subsections 5.1 to 5.3. Furthermore, we comment on

(S1), particularly how the nodes can be distributed, in subsection 5.4.

5.1. The boundary matrix Bξ. We first describe how one can construct a mimetic boundary matrix
Bx, satisfying Definition 4.4. Given is a reference element Ω with piecewise smooth boundary Γ, where
we denote the smooth parts by Γ1, . . . ,ΓJ . If we find mimetic boundary matrices Bj on Γj , j = 1, . . . , J ,
with

(5.1) fTBjg =

∫
Γj

fg(ξ · n) ds, ∀f, g ∈ F ,

then we get the desired mimetic boundary matrix Bξ as Bξ =
∑J

j=1Bj . Following Theorem 4.6, we

can find such matrices Bj in two steps: (i) Construct a positive and F2-exact surface quadrature,

(5.2) I
(Γj)

X(j),V (j) [fg] =

Mj∑
m=1

v(j)m (ξ · n(x(j)
m ))f(x(j)

m )g(x(j)
m ) ≈

∮
Γj

fg(ξ · n) ds = I(Γj)[fg].

(ii) Use the products v
(j)
m (ξ · n(x(j)

m )) as the non-zero diagonal entries of Bj that correspond to the
surface nodes on Γj . That is, we get Bj = diag((bj)1, . . . , (bj)N ) as

(5.3) (bj)n =

v
(j)
m (ξ · n(x(j)

m )) if xn = x
(j)
m ∈ Γj ,

0 otherwise.

We were able to find positive and F2-exact surface quadratures using equidistant points on Γj using the
least-squares approach [37, 30, 32] and the Projection Onto Convex Sets (POCS) algorithm [76, 40, 21]
if sufficiently many grid points were used. Given the two overlapping closed convex sets C and D, the
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C D

0

Figure 1: Illustration of the POCS algorithm. The two convex sets C, and D correspond to (affine) linear
subspaces. Starting from an initial point, the POCS algorithm produces a sequence of points (illustrated by the
blue dots) that converges to a point in the intersection of C and D.

POCS algorithm finds a point x ∈ C ∩D by alternatingly projecting onto the sets C and D. To find
a positive and F2-exact surface quadrature, the sets C and D encode the positivity of the weights and
exactness conditions of an F2-exact surface quadrature, respectively. Figure 1 illustrates the POCS
algorithm for the case of C and D being (affine) linear spaces. We chose POCS because it is remarkably
versatile. POCS can be employed not only for solving the surface quadrature but also for the volume
quadrature (necessitating the enforcement of a lower bound constraint) and the anti-symmetric matrix
QA (requiring an anti-symmetric constraint). Switching between these diverse constraints demands
minimal alterations to the POCS algorithm and its implementation. Concurrently, we noted that the
computational costs of the POCS algorithm were competitive when compared to alternative methods.
See Appendix A.1 for more details on the POCS algorithm.

Remark 5.1. It is a non-trivial task in hyperbolic problems to properly treat element corners, where
the normal vector becomes undefined. To avoid that difficulty (which exists for all numerical methods),
we do not place any points on the corners of the domain Ω.

Remark 5.2. Inter-element conservation in a multi-element/block method can most easily be ensured
if the quadratures at the surface that connect two elements (i) have their points at the same locations

and (ii) use the same weights v
(j)
m at these points. Then, the inter-element contributions of both elements

cancel out, and mass is neither created nor destroyed between elements. Otherwise, special projection
and coupling methods have to be utilized [68, 9, 10].

Remark 5.3 (Computational costs). Most of the computational expense in finding the boundary
matrix is dedicated to the numerical computation of the basis functions’ moments (their integrals) up
to machine precision, which is needed for the exactness conditions. Relative to this, executing the POCS
algorithm is an inexpensive process. When executed on a single core, the total time to construct any of
the two-dimensional MFSBP operators considered in the later numerical tests (see section 7 for more
details) on the reference element was on the order of a second.

5.2. The diagonal norm matrix P . Assume that we have a positive and ∂ξ(F2)-exact volume
quadrature IX,W on Ω with nodes X and weights W = {wn}Nn=1. Following Theorem 4.1, we can
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construct a diagonal-norm MFSBP operator Dξ = P−1Qξ on the nodes X with a diagonal norm matrix

(5.4) P = diag(w1, . . . , wN ).

In general, we found such a positive and ∂ξ(F2)-exact volume quadrature using the Ns surface points
from constructing the mimetic boundary matrix Bxi (see subsection 5.1), adding Ni points in the interior
of Ω, and then using the POCS algorithm. See Appendix A.2 for more details.

Remark 5.4. Consider a discretized problem that necessitates using MFSBP operators in different
directions. For instance, in the x-direction, we have Dx = P−1Qx, while in the y-direction, we have
Dy = P−1Qy. The norm operator P must be the same for both MFSBP operators to ensure energy
stability, which we demonstrate in subsection 6.3. In such scenarios, P must correspond to a volume
quadrature that is positive and concurrently exact for both ∂x(F2) and ∂y(F2). The two-dimensional
function spaces that we examine later in sections 7 and 8 satisfy the condition ∂x(F2) = ∂y(F2). This
congruence significantly simplifies the construction procedure. On the other hand, if ∂xF2 ̸= ∂yF2,
then the union of ∂xF2 and ∂yF2 encompasses a larger function space than each individual one and a
larger number of quadrature points might be necessary.

5.3. The matrix Qξ and the MFSBP operator Dξ = P−1Qξ. In the last step, we construct the
matrix Qξ from which we get the desired MFSBP operator as Dξ = P−1Qξ. To this end, Qξ is
decomposed into its symmetric and anti-symmetric parts, QS and QA. Condition (iii) in Definition 3.2
then yields

(5.5) Qξ = QA +
1

2
Bξ.

Furthermore, the accuracy condition (i) in Definition 3.2 implies

(5.6) QAV = PVξ −
1

2
BξV.

Here, Vξ = [(f1)ξ, . . . , (fK)ξ] is the Vandermonde matrix for the derivatives in ξ-direction of the basis
functions f1, . . . , fK of the function space F ⊂ C1(Ω). It remains to construct an anti-symmetric
matrix QA that satisfies (5.6). Once such QA is found, we get Q by (5.5). Finding an anti-symmetric
solution QA of (5.6) can be formulated as a classical Procrustes problem [44, 5, 39], with many available
solution procedures. For instance, [43, 18, 36] used a least-squares approach to determine QA. In our
implementation, we used the POCS algorithm to find an anti-symmetric QA that satisfies (5.6) for
efficiency reasons. We refer to Appendix A.3 for more details on how the POCS algorithm can be used
to find QA.

5.4. The surface and interior nodes. The only restriction on the surface points is that a positive
and F2-exact surface quadrature has to exist for them, while the only limitation on the inner points
is that a positive and ∂ξ(F2)-exact volume quadrature has to exist for the union of the inner and
surface points. To this end, it was proved in [31, 32] that a positive and G-exact quadrature can be
found whenever (i) G includes constants and (ii) sufficiently many points are used, where G is F2 and
∂ξ(F2) in the case of the surface and volume quadrature, respectively. It was numerically observed in
[30, 31, 32] that the number of points has to be proportional to the squared dimension of G. Finally,
the proof presented in [31, 32] allows for any class of equidistributed points [51], including equidistant
points and low discrepancy points used in quasi-Monte Carlo methods [6, 19], e.g., Halton points [41].
In our implementation, we used equidistant surface points and inner points that are Halton-distributed.
More precisely, we started by using a single surface point on each piecewise smooth boundary part and
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successively increased this number by one until we found a positive and F2-exact surface quadrature.
Afterward, starting from using only the surface points (no inner points), we successively increased the
number of inner (Halton) points by one until we found a positive and ∂ξF2-exact volume quadrature.

Remark 5.5 (Halton points). The main idea behind Halton points is to generate uniformly distributed
and well-spaced points throughout the unit cube. This is achieved by using different prime base numbers
for each dimension and creating a sequence of numbers in each dimension that avoids large gaps or
clusters. To generate Halton points within a bounded domain Ω, we initially create these points within
a cube that encloses Ω, subsequently utilizing only the subset of points that lie on Ω. For a more
comprehensive understanding of Halton points, see [41, 51]. We stress that using Halton points, while
beneficial, is not a prerequisite for our method of constructing MFSBP operators.

6. Mimetic properties of MFSBP operators. Here, we demonstrate that (i) it is necessary to
include constants in the function space F for conservation and that (ii) most other mimetic results for
polynomial MSBP operators [43, 18] also hold for our MFSBP operators. For simplicity, we illustrate
this for the scalar linear advection equation in two dimensions.

6.1. The linear advection equation. The initial boundary value problem (IBVP) for the scalar
linear advection equation with constant coefficients is

(6.1)

∂tu+ a∂xu+ b∂yu = 0, ∀(x, y) ∈ Ω, t > 0,

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω,

u(t, x, y) = g(t, x, y), ∀(x, y) ∈ Γ−, t ≥ 0,

where Γ− = { (x, y) ∈ ∂Ω | anx + bny < 0 } is the inflow part of the boundary of Ω and Γ+ = Γ \ Γ−
is the outflow part. Here, nx and ny are the first and second component of the outward pointing unit
normal n = [nx, ny]

T for the boundary Γ. Let Dx = P−1Qx and Dy = P−1Qy be MFSBP operators,
approximating the partial derivatives in the canonical directions, ∂x and ∂y, with mimetic boundary
operators Bx and By. The MFSBP-SAT semi-discretization of (6.1) is formally given by

(6.2) ut + aDxu+ bDyu = P−1(aBx + bBy)(u− g),

Here, u = [u1, . . . , uN ]T are the nodal values of the numerical solution at the nodes S = {xn}Nn=1 and
g = [g1, . . . , gN ]T is the boundary data vector with

(6.3) gn =

{
g(t,xn) if xn ∈ Γ−,

un if xn ∈ Γ+.

Note that (ii) in Definition 4.4 ensures that Bx and By only act on surface entries corresponding to
points on the boundary Γ.2 The right-hand side of (6.2) is a simultaneous approximation term (SAT)
that weakly enforces the BC by “forcing” the numerical solution toward the boundary data g at the
inflow boundary part. See [75, 17, 18] and references therein for more details on SATs.

Remark 6.1. In general, each SAT term on the right-hand side of (6.2) involves a free penalty
parameter as, for instance, σaP−1Bx(u − g) instead of aP−1Bx(u − g). We have fixed the penalty
parameter to σ = 1, which was demonstrated to minimize boundary data errors in [36, Appendix A]
(also see [3, page 11]).

2We can therefore assign arbitrary values to the entries in g that correspond to points in the interior of Ω.
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6.2. Conservation. The exact solution of (6.1) satisfies the following conservation property:

(6.4)
d

dt

∫
Ω
udx = −

(∫
Γ+

u(anx + bny) ds+

∫
Γ−

g(anx + bny) ds

)
.

This means that the total amount of the quantity u is neither created nor destroyed inside the domain
and only changes due to the flux across the boundaries. We now address how conservation can be
mimicked in the discrete case using MFSBP operators. The left-hand side of (6.4) is approximated by
1TPut. Substituting the MFSBP-SAT semi-discretization (6.2), we get

(6.5) 1TPut = −a1TPDxu− b1TPDyu+ 1T (aBx + bBy)(u− g).

The MFSBP properties transform (6.5) to

(6.6) 1TPut = a(Dx1)
TPu+ b(Dy1)

TPu− 1T
(
aBx + bBy

)
g.

The last term on the right-hand side of (6.6) approximates the right-hand side of (6.4). However, (6.6)
also contains the additional volume terms a(Dx1)

TPu and b(Dy1)
TPu, while no such terms are present

in (6.4). To avoid artificial construction or destruction of the quantity u,

(6.7) Dx1 = Dy1 = 0

must hold. This is satisfied by construction for polynomial MSBP operators since non-zero constants
are polynomials of degree zero. For MFSBP operators, we can ensure (6.7) by requiring the MFSBP
operators to be exact for constants, i.e., 1 ∈ F . In this case, (6.6) becomes

(6.8) 1TPut = −1T
(
aBx + bBy

)
g,

which is the discrete analog to (6.4).

6.3. Energy stability. The exact solution of (6.1) is energy-bounded since it satisfies

(6.9)
d

dt
∥u∥2L2

= −
∫
Γ+

(
anx + bny

)
u2 ds−

∫
Γ−

(
anx + bny

)
g2 ds,

where Γ+ and Γ− are the outflow and inflow boundary part, respectively. A similar relation to (6.9)
is desired in the discrete setting to establish discrete energy stability for the numerical solution. We
observe that the left-hand side (6.9) is approximated by d

dtu
TPu. Substituting the MFSBP-SAT semi-

discretization (6.2), we get

(6.10)
1

2

d

dt
uTPu = uTPut = −auTPDxu− buTPDyu+ uT (aBx + bBy)(u− g).

The MFSBP properties transform (6.10) to

(6.11)
1

2

d

dt
uTPu = auTDT

x Pu+ buTDT
y Pu− uT (aBx + bBy)g.

Since uTDT
x Pu and uTDT

y Pu are real numbers, they are equal to their transposes, and summing (6.10)
and (6.11) yields

(6.12)
d

dt
uTPu = uT (aBx + bBy)(u− 2g).
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Assume that Bx and By are mimetic boundary operators (see Definition 4.4). Using (i), (ii), and (iii)
in Definition 4.4, the right-hand side of (6.12) reduces to

(6.13)
d

dt
uTPu =

M∑
m=1

um
[
(vx)manx(xm) + (vy)mbny(xm)

]
(um − 2gm) ,

where (bx)m = (vx)mnx(xm) and (by)m = (vy)mny(xm) are the non-zero diagonal elements of Bx and By,
respectively. Note that the sum in (6.13) only includes the surface nodes {xm}Mm=1 ⊂ Γ. Suppose that Bx

and By are associated with the same positive and F2-exact surface quadrature, i.e. vm = (vx)m = (vy)m.
Moreover, for ease of notation, we denote

(6.14) τm = vm
[
anx(xm) + bny(xm)

]
.

Note that τm ≥ 0 if xm ∈ Γ+ and τm ≤ 0 if xm ∈ Γ−. We can therefore decompose the sum in (6.15)
into two parts,

(6.15)
d

dt
uTPu =

∑
xm∈Γ+

τmum (um − 2gm) +
∑

xm∈Γ−

τmum (um − 2gm) ,

where the first contains the surface points on the outflow boundary part (xm ∈ Γ+) and the second
contains the surface points on the inflow boundary part (xm ∈ Γ−). By construction of g in (6.3), we
have gm = um in the first sum and gm = g(t,xm) in the second sum. Hence, (6.15) becomes

(6.16)
d

dt
uTPu = −

∑
xm∈Γ+

τmu2m +
∑

xm∈Γ−

τmum
(
um − 2g(t,xm)

)
.

Note that um(um − 2g(t,xm)) = [um − g(t,xm)]2 − g(t,xm)2, and we can therefore rewrite (6.16) as

(6.17)
d

dt
uTPu = −

∑
xm∈Γ+

τmu2m −
∑

xm∈Γ−

τmg(t,xm)2 +
∑

xm∈Γ−

τm
[
um − g(t,xm)

]2
.

Recall that τm = vm
[
anx(xm) + bny(xm)

]
. Hence, the first two sums on the right-hand side of (6.17)

are the discrete analog to (6.9). The additional third sum in (6.17) corresponds to a non-negative
damping term that stabilizes the semi-discretization and vanishes with increasing accuracy.

7. Examples of MFSBP operators. We now exemplify the construction of MFSBP operators on a
triangular and circular reference element Ω ⊂ R2. In both cases, we consider the non-polynomial and
polynomial function spaces

(7.1)
F1 = span

{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
,

F2 = span
{
1, x, y, sin(ω(x+ y)), cos(ω(x+ y))

}
,

where ω > 0 is a parameter that remains to be determined. Although the polynomial function space
F1 has a higher dimension than the trigonometric function space F2, we found the trigonometric one to
yield significantly more accurate numerical solutions for the specific tests carried out in subsection 8.1
and subsection 8.3. Note that for both spaces, ∂x(F2

i ) = ∂y(F2
i ), i = 1, 2. Hence, it suffices to

find a positive and ∂x(F2
i )-exact volume quadrature, for which we use equidistributed Halton points.

Although using Halton points ensures the existence of the desired volume quadratures (see [32]), they
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are not necessarily optimal in the sense that the number of quadrature points can be notably larger than
the dimension of the function space ∂x(F2

i ). Constructing optimal (so-called Gaussian) quadratures for
general multi-dimensional function spaces is an open problem. Our ambition is to further investigate
the optimization and efficiency of our MFSBP operators. However, such efforts need to be tailored to
specific function spaces and will be carried out in future work.

Remark 7.1. In the upcoming numerical tests, we deliberately choose examples that favor the non-
polynomial operators in order to exemplify the flexibility of using other function spaces as in the MFSBP
operators.

7.1. MFSBP operators on triangles. We start by exemplifying the construction of MFSBP oper-
ators on the triangular domain in Figure 2, given by

(7.2) Ω =
{
(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x

}
.

The boundary of the triangle Ω consists of three linear parts with outward pointing unit normal vectors
[0,−1]T , (1/

√
2)[1, 1]T , and [−1, 0]T . We need these normal vectors in combination with a positive

and F2
i -exact surface quadrature to construct a mimetic boundary matrix Bx. The surface quadrature

should be the same on all linear boundary parts, up to a length-dependent scaling factor, to ensure
inter-element conservation in a multi-element/block setting. For the triangle, we found a positive and
F2
1 -exact surface quadrature using 8 equidistant points on each linear part. (No nodes were placed

on the corners of the triangle to avoid undefined normal vectors.) The same number of surface points
was necessary to find a positive and F2

2 -exact surface quadrature. To find a positive and ∂x(F2
1 )-exact

volume quadrature for the polynomial MSBP operator, we had to add another 21 Halton-distributed
points in the interior of Ω, using a total number of 45 points. To find a positive and ∂x(F2

2 )-exact
volume quadrature for the trigonometric MFSBP operator, on the other hand, we had to add 12 Halton-
distributed points in the interior of Ω, using a total number of 32 points. In both cases, we could not find
desired volume quadratures using fewer Halton-distributed points in the interior of Ω. We then found
F1- and F2-exact MFSBP operators, respectively, following the construction procedure in section 5.
The point sets used to find these operators are illustrated in Figures 2a and 2b, respectively. Although
the polynomial MSBP operator has a higher dimension and uses more points than the trigonometric
MFSBP operator, we found the trigonometric F2-exact MFSBP operator to yield significantly more
accurate results for our numerical tests in subsection 8.1. To allow for a fair comparison between the
polynomial and non-polynomial function space, we did not optimize the point distribution for any of the
function spaces. As stated earlier, optimizing the point distribution, e.g., to get minimal quadratures,
needs to be tailored to specific function spaces and will be addressed in future work.

7.2. MFSBP operators on the circle. Next, we exemplify the construction of polynomial F1-exact
and trigonometric F2-exact MFSBP operators, with the function spaces F1 and F2 as in (7.1), for the
circular domain

(7.3) Ω =
{
x ∈ R2 |∥x− c∥ ≤ r

}
with center c = [1/2, 1/2]T and radius r = 1/2, see Figure 3. The boundary of the disc consists of a
single smooth part with a smoothly varying outward pointing unit normal vector n. For the polynomial
function space, we found a positive and F2

1 -exact surface quadratures using 12 equidistant points on
the surface. To next find a positive and ∂x(F2

1 )-exact volume quadrature, following the construction
procedure in section 5, we had to add another 25 points in the interior of Ω, using a total number of 37
points. Figure 3 illustrates the position of these points. We could not find desired volume quadratures
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(a) The 24 surface and 21 inner points used to construct the
polynomial F1-exact MSBP operator
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(b) The 24 surface and 12 inner points used to construct the
trigonometric F2-exact MFSBP operator

Figure 2: The surface and inner points used to construct the polynomial F1-exact and trigonometric F2-exact
MFSBP operators. The surface points are equidistant, and the inner points are Halton-distributed.
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Figure 3: The 12 surface and 25 inner points used to construct the polynomial F1-exact and trigonometric F2-
exact operators. The surface points are equidistant, and the inner points are Halton-distributed.

using fewer Halton-distributed points in the interior of Ω. For the trigonometric function space, we
found a positive and F2

2 -exact surface quadratures and a positive and ∂x(F2
1 )-exact volume quadrature

using the same points as for the polynomial F1-exact MSBP operator. Although the polynomial and
trigonometric MFSBP operators use the same points, we found the trigonometric F2-exact MFSBP
operator to yield significantly more accurate results for our numerical tests in subsection 8.4.
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Remark 7.2. Although non-polygonal elements are rarely used in the context of SE-like methods for
hyperbolic conservation laws, they are crucial in mesh-free RBF methods [23, 25]. In the recent work
[35], we established a stability theory for global RBF methods using FSBP operators. The MFSBP
operators introduced here will allow us to extend this theory to the genuine multi-dimensional case,
which will be addressed in future work, together with the extension to local RBF methods.

8. Numerical results. We focus on the homogeneous and inhomogeneous linear advection equation
because it provides prototypical examples for which non-polynomial approximation spaces are advan-
tageous. Future work will consider more sophisticated problems. We used the explicit strong stability
preserving (SSP) Runge–Kutta (RK) method of third order using three stages (SSPRK(3,3)) [70] for
all subsequent numerical tests. Furthermore, all tests are performed for conforming triangular grids.
All tests were run with the elements scaled to be of unit length. The Julia code used to generate the
numerical tests presented here is open access and can be found on GitHub.3

8.1. The linear advection equation. Consider the IBVP for the linear advection equation with
constant coefficients,

(8.1)

∂tu+ a∂xu+ b∂yu = 0, ∀(x, y) ∈ Ω, t > 0,

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω,

u(t, x, y) = g(t, x, y), ∀(x, y) ∈ Γ−, t ≥ 0,

where Ω = [0, 1]2 and Γ− = { (x, y) ∈ ∂Ω | anx + bny < 0 } is the inflow part of the boundary of Ω. In
our numerical tests, we triangulated Ω by generating K2 equally-sized squares and then decomposing
each square into two equally-sized triangles. Given MFSBP operators Dx = P−1Qx and Dy = P−1Qy

with mimetic boundary operators Bx and By, we used the multi-block semi-discretization

(8.2)
du

dt
+ aDxu+ bDyu = P−1Bx(au− fnum

x ) + P−1By(bu− fnum
y ),

where fnum
x and fnum

y are the numerical flux functions in the x- and y-direction, respectively, coupling
neighboring blocks and weakly enforcing the boundary condition u(t, x, y) = g(t, x, y) at the inflow part
of the computation domain Ω. Recall that the boundary operators Bx and By include the components
of the outward pointing unit normal n = [nx, ny]

T . We used the classical local Lax–Friedrichs (LLF)
flux [52], i.e,

(8.3)

fnum
x =

a

2
(ui + uo)− sign(nx)

cmax

2
(uo − ui) ,

fnum
y =

b

2
(ui + uo)− sign(ny)

cmax

2
(uo − ui) ,

where ui and uo are the inner and outer states at the two sides of the interface of the present block.
Furthermore, cmax is an upper bound of the advection speed, ensuring that the LLF fluxes in (8.3) are
monotonic. For the linear advection equation, we chose cmax = max{|a|, |b|}.

We consider (8.1) with constant velocity coefficients a = b = 1, smooth initial condition u0(x, y) =
sin
(
π(x+ y)

)
, and inflow boundary data g(x, y, t) = sin

(
π(x+ y − (a+ b)t)

)
at the inflow part of the

boundary Γ−. The exact reference solution is

(8.4) u(x, y, t) = u0 (x− at, y − bt) = sin
(
π(x+ y)− 2πt

)
3See https://github.com/simonius/MFSBP

https://github.com/simonius/MFSBP
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(a) Numerical solution for the polynomial operator (b) Numerical solution for the trigonometric operator

(c) Point-wise error for the polynomial operator (d) Point-wise error for the trigonometric operator

Figure 4: Numerical solutions and their point-wise errors of the IBVP (8.1) at t = 1 using the polynomial F1-exact
and trigonometric F2-exact MFSBP operators. We triangulated Ω by generating K2 equally-sized squares with
K = 10 and then decomposing each square into two equally-sized triangles. Although F1 is ten-dimensional and
F2 is five-dimensional, the trigonometric F2-exact MFSBP operator yields significantly more accurate results.
The contour plots do not fully cover the corners of the computational domain due to the used plotting routine. In
particular, to circumvent the issue of multivalued normals (see Remark 5.1), we refrained from positioning nodes
at the corners of the triangular reference element, thereby forgoing any extrapolation to these points.

for a = b = 1. Figure 4 illustrates the numerical solutions and their point-wise errors at time t = 1
for the polynomial F1-exact and trigonometric F2-exact MFSBP operators. Both function spaces are
described in (7.1), where we chose ω = π as the frequency parameter in F2. Recall from (7.1) that the
polynomial function space F1 is ten-dimensional, while the trigonometric one F2 is five-dimensional.
Still, comparing the errors in Figures 4a and 4c, the trigonometric F2-exact MFSBP operator yields
significantly more accurate results. We triangulated Ω by generating K2 equally-sized squares with
K = 10 and then decomposing each square into two equally-sized triangles.

We next provide a brief error analysis, further comparing the polynomial F1-exact and trigonometric
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Figure 5: Errors of the numerical solutions to the IBVP (8.1) at t = 1 using the polynomial F1-exact (plusses
along the dotted lines) and trigonometric F2-exact (dots along the straight line) MFSBP operators, along the
residual (8.6) of the trigonometric MFSBP operator (diamonds along the dashed line), for an increasing number
of triangular blocks. The trigonometric MFSBP operator yields significantly smaller errors than the polynomial
one.

F2-exact MFSBP operators. To this end, we performed the same test for the IBVP (8.1) with different
numbers of triangular blocks. Figure 5 reports on the corresponding errors. Thereby, for K = 3, . . . , 10,
we again considered the domain Ω = [0, 1]2, triangulized by first partitioning Ω into K2 equally-sized
squares and then decomposing each square into two equally-sized triangles. The errors in Figure 5 were
calculated as

(8.5) E =

√√√√ 1

N |T |
∑
T∈T

N∑
n=1

∣∣∣∣u(x(T )
n , y

(T )
n , t

)
− u

(T )
n (t)

∣∣∣∣2,
where T is the collection of all triangular elements and u

(
x
(T )
n , y

(T )
n , t

)
and u

(T )
n (t) denote the nodal

value of the reference and numerical solution at the N grid points in the elements T ∈ T , respectively.
The errors reported in Figure 5 were obtained for a fixed time step size ∆t = 10−3. We used a fixed time
step size to focus solely on the errors of the spatial semi-discretizations while making errors introduced
by the SSPRK(3,3) time integration method neglectable. Figure 5 demonstrates that the polynomial
F1-exact MSBP operator yields third- to fourth-order convergence. At the same time, we observe
fifth-order convergence for the trigonometric F2-exact MFSBP operator. A possible explanation for the
observed, higher than expected, convergence rate of the trigonometric MFSBP operator is the vanishing
residual of the operator,

(8.6) ∥DxV − Vx∥2 ,

which is shown in Figure 5 to converge to zero with a similar order. Here, ∥A∥2 =
√∑N

n,m=1[A]2n,m is

the Frobenius norm of the matrix A ∈ RN×N . A more detailed investigation of the convergence rate of
the proposed MFSBP operators will be provided in future works.
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Remark 8.1. We have conducted the above experiments with various advection directions, diverging
from the previously used a = b = 1. The different advection directions do not noticeably influence the
performance of the MFSBP-based scheme. This is because the solution is a trigonometric function and
is therefore well represented by the function space F2, regardless of the advection direction.

8.2. Including a radial basis function. We now revisit the test problem described in subsection 8.1,
this time employing an MFBP operator on the triangle that is exact for a function space including
a Gaussian RBF. This demonstration serves two objectives: Firstly, it provides an example of a non-
polynomial function space, beyond trigonometric functions. Secondly, it underscores the notion that the
efficacy of MFSBP-based methodologies relies on the degree to which the function space F encapsulates
the true underlying solution. To elaborate, note that the solution for the previously considered test
problem in subsection 8.1 was a trigonometric function. Consequently, the trigonometric function space
F2 mirrors this characteristic. In contrast, we now examine a four-dimensional function space including
an RBF function, given by

(8.7) F3 = span

{
1, x, y, exp

(
−∥x− x0∥2/d2

)}
.

This function space operates on the reference triangle, with the RBF centered at x0 = (1/3, 1/3) and
displaying a characteristic diameter of d = 1/5. Despite our ability to construct an F3-exact MFSBP
operator (see Remark 8.2 for more details on the construction), the resultant numerical solution is less
accurate than that derived using the trigonometric F2-exact MFSBP or the polynomial F1-exact MSBP
operator from before. This disparity in accuracy is depicted in Figure 6, which presents the numerical
solution and point-wise error for the F3-exact MFSBP operator, juxtaposed against the test problem
from Figure 4d. As before, we triangulated Ω by generating K2 equally-sized squares with K = 10 and
then decomposing each square into two equally-sized triangles. As anticipated, we see that the F3-exact
MFSBP operator yields less accurate results than the trigonometric F2-exact MFSBP as well as the
polynomial F1-exact MSBP operator. This can be attributed to F3’s less effective representation of the
true underlying solution.

Remark 8.2. We found a positive and F2
3 -exact surface quadrature using seven equidistant points

on each linear part. (Again, no nodes were placed on the corners of the triangle to avoid undefined
normal vectors.) Observe that ∂x(F2

3 ) = ∂y(F2
3 ) and it therefore suffices to additionally find a positive

∂x(F2
3 )-exact volume quadrature to get an MFSBP operator. To find such a volume quadrature, we

used 9 Halton-distributed points in the triangle’s interior.

8.3. The inhomogeneous linear advection equation. We next consider the IBVP for the inho-
mogenous linear advection equation with constant coefficients,

(8.8)

∂tu+ a∂xu+ b∂yu = s(u, x, y), ∀(x, y) ∈ Ω, t > 0,

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω,

u(t, x, y) = g(t, x, y), ∀(x, y) ∈ Γ−, t ≥ 0,

with source term s(u, x, y) = ω cos(ωx) sin(ωy)+ω sin(ωx) cos(ωy)+sin(ωx)+sin(ωy)−u. We consider
(8.8) on Ω = [0, 1]2 and with constant velocity coefficients a = b = 1. The generated grid was again
constructed by first partitioning Ω into K2 equally-sized squares before decomposing each square into
two equally-sized triangles. We used zero initial and inflow boundary conditions, u0 ≡ 0 and g ≡ 0. For
these choices, (8.8) admits the trigonometric steady state solution u(x, y) = sin(ωx) sin(ωy). We solved
(8.8) again using the MFSBP semi-discretization (8.2). This time, we compare the polynomial F1-exact
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(a) Numerical solution for the RBF operator (b) Point-wise error for the RBF operator

Figure 6: The numerical solution and its point-wise errors of the IBVP (8.1) at t = 1 using the F3-exact MFSBP
operators. We triangulated Ω by generating K2 equally-sized squares with K = 10 and then decomposing each
square into two equally-sized triangles. The contour plots do not cover the corners of the computational domain
due to the used plotting routine.

MSBP operator (see (7.1) for the definition of F1) with a trigonometric F4-exact MFSBP operator in
the triangular domain (7.2). Here, F4 is a seven-dimensional mixed polynomial-trigonometric function
space defined as

(8.9) F4 = span
{
1, x, y, sin(ωx) sin(ωy), cos(ωx) cos(ωy), sin(ωx) cos(ωy), cos(ωx) sin(ωy)

}
,

where we set ω = 2π in our numerical tests. For the triangle, we found a positive and F2
4 -exact surface

quadrature using 12 equidistant points on each linear part. (Again, no nodes were placed on the corners
of the triangle to avoid undefined normal vectors.) Observe that ∂x(F2

4 ) = ∂y(F2
4 ) and it therefore

suffices to additionally find a positive ∂x(F2
4 )-exact volume quadrature to get an MFSBP operator. To

find such a volume quadrature, we used 24 Halton-distributed points in the triangle’s interior.
Figure 7 illustrates the numerical solutions and their point-wise errors at time t = 2 for the poly-

nomial F1-exact and trigonometric F4-exact MFSBP operators. Although the polynomial space F1

is ten-dimensional and the trigonometric space F4 is seven-dimensional, we see in Figure 7 that the
trigonometric MSFBP operator yields a significantly more accurate numerical solution. We triangu-
lated Ω by generating K2 equally-sized squares with K = 10 and then decomposing each square into
two equally-sized triangles.

We again follow up with a brief error analysis. To this end, we performed the same test for the
IBVP (8.8) with different numbers of triangular blocks. Figure 8 reports on the corresponding errors
of the polynomial F1-exact and trigonometric F4-exact MFSBP operators. As before, the polynomial
F1-exact MSBP operator yields third- to fourth-order convergence. At the same time, in all cases,
the trigonometric F4-exact MFSBP operator yields errors around 10−10, which change only slightly
as the number of blocks increases. We suspect that the reason for this is that the trigonometric
space F4 can exactly represent the exact steady-state solution. Hence, we obtain the exact solution
module round-off errors using the F4-exact MFSBP operator. Increasing the number of blocks does
not significantly decrease these round-off errors. Similar results were reported in [78] for DG methods
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(a) Numerical solution for the polynomial operator (b) Numerical solution for the trigonometric operator

(c) Point-wise errors for the polynomial operator (d) Point-wise errors for the trigonometric operator

Figure 7: Numerical solutions and their point-wise errors of the IBVP (8.8) at t = 2 using the polynomial F1-
exact and trigonometric F4-exact MFSBP operators. Although F1 is ten-dimensional and F4 is seven-dimensional,
the trigonometric F4-exact MFSBP operator yields significantly more accurate results. We triangulated Ω by
generating K2 equally-sized squares with K = 10 and then decomposing each square into two equally-sized
triangles. The contour plots do not cover the corners of the computational domain due to the used plotting
routine.

based on non-polynomial approximation spaces—although without the SBP property and the resulting
discrete stability of the scheme.

8.4. Advection on a circular disk. We end this section by demonstrating the geometric flexibility
of MFSBP operators. To this end, we consider the IBVP (8.1) for the linear advection equation from
subsection 8.1 with constant velocities a = b = 1 on the circular disk

(8.10) Ω =
{
x ∈ R2 |∥x− c∥ ≤ r

}
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Figure 8: Errors of the numerical solutions to the IBVP (8.8) at t = 2 using the polynomial F1-exact (plusses along
the dotted lines) and trigonometric F4-exact (dots along the straight line) MFSBP operators for an increasing
number of triangular blocks. The trigonometric MFSBP operator yields significantly smaller errors than the
polynomial one.

(a) Reference solution (b) Error for the polynomial operator (c) Error for the trigonometric operator

Figure 9: The reference solution and point-wise errors of the numerical solutions of the IBVP (8.1) on the
circular disk (8.10) at t = 1 using the polynomial F1-exact and trigonometric F2-exact MFSBP operators. The
trigonometric F2-exact MFSBP operator yields significantly more accurate results.

with center c = [1/2, 1/2]T and radius r = 1/2. Also see Figure 3. We compare the polynomial F1-exact
and trigonometric F2-exact MFSBP operators already discussed in subsection 7.2. Figure 9 illustrates
the reference solution and the point-wise errors numerical solutions at time t = 1 for the polynomial F1-
exact and trigonometric F2-exact MFSBP operators. Once again, the trigonometric MSFBP operator
yields a significantly more accurate numerical solution than the polynomial MSBP operator.

9. Concluding thoughts. We introduced the concept of diagonal-norm MFSBP operators, thereby
generalizing existing one-dimensional FSBP operators [36] to multi-dimensional geometries and poly-
nomial MSBP operators [43] to general function spaces. Our new MFSBP operators allow us to sys-
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tematically develop stable and high-order accurate numerical methods that adapt to the characteristic
behavior of the underlying solution. In this first paper, we focused on first establishing their theoret-
ical foundation, including their mimetic properties and existence, and provided a general construction
procedure. In particular, we showed that most mimetic properties of polynomial SBP operators carry
over to the more general class of MFSBP operators. We stress that for MFSBP operators to mimic
conservation, the associated approximation space needs to include constants, which polynomial MSBP
operators satisfy by construction.

Furthermore, we connected the existence of MFSBP operators and positive quadratures that are
exact for certain, in general, non-polynomial function spaces. Building upon the theoretical existence
investigation, we derived a general construction procedure for MFSBP operators. An essential part of
this procedure is that a positive and ∂ξ(F2)-exact quadrature must exist if an F-exact MFSBP opera-
tors approximating the directional derivative ∂ξ is desired. While the existence and construction of such
quadratures were established in [32] using a simple least squares approach, the resulting quadratures
are not necessarily optimal in the sense that the number of quadrature points is notably larger than the
dimension of the function space for which they are exact. Constructing optimal (so-called Gaussian)
quadratures for general multi-dimensional function spaces is an open problem. We will further investi-
gate the optimization and efficiency of our MFSBP operators. However, such efforts need to be tailored
to specific function spaces and will be carried out in future work.

While we demonstrated the advantage of using MFSBP operators to solve numerical PDEs for
different linear problems, where prior knowledge of which approximation space should be used is readily
available, a more exhaustive numerical study will be provided in future work. Future research efforts
also include investigating the CFL limits and dispersion properties of MFSBP operators (similar to
[27]), strategies for adaptively changing the approximation space (see [78]), stabilization techniques,
such as split forms [75, 17, 29], artificial dissipation [56, 65, 64], and other shock-capturing procedures,
in combination with their application to discontinuous problems.

Appendix A. The Projection Onto Convex Sets algorithm.
The Projection Onto Convex Sets (POCS) algorithm, sometimes also called the alternating projec-

tion algorithm, is a method to find a point in the intersection of two closed convex sets. Given the
two overlapping convex sets C and D, the POCS algorithm finds a point x ∈ C ∩ D by alternatingly
projecting onto the sets C and D. Given an arbitrary initial point x0, the POCS algorithm produces a
sequence of points (xk)k∈N with

(A.1) xk+1 = projD
(
projC(xk)

)
,

where projC and projD are projections onto C and D, respectively. Figure 1 illustrates the POCS
algorithm for the case of C and D being (affine) linear spaces. See [76, 40, 21] for more details on the
POCS algorithm.

A.1. The POCS algorithm and surface quadratures. In subsection 5.1, we pointed out the neces-
sity of finding positive and F2-exact surface quadrature on each smooth boundary part Γj , j = 1, . . . , J ,
to then construct a mimetic boundary operator. We can find such quadratures using the POCS algo-
rithm. To this end, let {fl}Ll=1 be a basis of F2. The exactness conditions (4.6) can then be formulated
as a linear system for the weight vector v = [v1, . . . , vM ]T ,

(A.2) Av = b,
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where the coefficient matrix A and the right-hand side vector b are given by

(A.3) A =


(ξ · n(x(j)

1 ))f1(x
(j)
1 ) . . . (ξ · n(x(j)

M ))f1(x
(j)
M )

...
...

(ξ · n(x(j)
1 ))fL(x

(j)
1 ) . . . (ξ · n(x(j)

M ))fL(x
(j)
M )

 , b =


I(Γj)[f1]

...

I(Γj)[fL]

 .

If M > L and A has linearly independent rows, then (A.2) has infinitely many solutions, which form an
affine linear subspace of RM . In particular, the solution space is a closed convex set and can therefore
be used as C in the POCS algorithm, i.e.,

(A.4) C =
{
v ∈ RM | Av = b

}
.

The second restriction on the surface quadrature is positivity, i.e., vm > 0 for all m = 1, . . . ,M . This
motivates us to use

(A.5) D =
{
v ∈ RM | vm ≥ 0, m = 1, . . . ,M

}
as the second closed convex set in the POCS algorithm. We restrict the vm’s to be non-negative instead
of positive to ensure that D is a closed convex set. While this does only ensure that the surface
quadrature is non-negative, we can go over to a positive quadrature by removing all zero weights and
the corresponding points. The orthogonal projections onto C and D are

(A.6)
projC(v) = v +A+ (b−Av) ,[

projD(v)
]
m

= max(vm, 0), m = 1, . . . ,M,

where
[
projD(v)

]
m

denotes the m-th component of projD(v) ∈ RM and A+ is the Moore–Penrose

pseudo-inverse of A. Since A has linearly independent rows, AAT is invertible and A+ = AT (AAT )−1

constitutes a left inverse. See [44, 21] for more details.

Remark A.1. It was proved in [31, 32] that a positive and F2-exact least-squares quadrature is
found whenever (i) F2 includes constants and (ii) sufficiently many points are used. This implies that,
under the same assumptions, the intersection of the closed and convex sets C and D is non-empty, and
the POCS algorithm is ensured to converge to the desired weights of a positive and F2-exact surface
quadrature.

Remark A.2. If a basis of F2 is not readily available, the linear system (A.2), encoding F2-exactness
of the desired surface quadrature, can also be formulated using a generating set of F2. If {fk}Kk=1 is

a basis of F , then {gk}K
2

k=1 with gi+K(j−1) = fifj , i, j = 1, . . . ,K, is a natural generating set. The

price we have to pay for the gained simplicity is that {gk}K
2

k=1 contains more elements than the basis
of F2, which makes the linear system (A.2) larger and therefore computationally more expensive to
solve. However, in our implementation, we observed the additional costs as insignificant compared to
the overall computational costs.

A.2. The POCS algorithm and volume quadratures. As described in subsection 5.2, we need to
find a positive and ∂ξ(F2)-exact volume quadrature before we can construct an FSBP operator. To
this end, we proceed similarly as in Appendix A.1 and use the POCS algorithm. Given a basis {fl}Ll=1

of ∂ξ(F2), the exactness conditions (4.2) can again be formulated as the linear system

(A.7) Aw = b
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for the weight vector w = [w1, . . . , wN ]T , where

(A.8) A =


f1(x1) . . . f1(xN )

...
...

fL(x1) . . . fL(xN )

 , b =


I[f1]
...

I[fL]

 .

Like before, this yields the closed convex set

(A.9) C =
{
w ∈ RN | Aw = b

}
.

The second restriction on the volume quadrature is positivity, i.e., wn > 0 for all n = 1, . . . , N . However,
because of conditioning considerations, we further restrict the quadrature weights to lie above a certain
threshold wmin and choose

(A.10) D =
{
w ∈ RN | wn ≥ wmin, n = 1, . . . , N

}
.

The motivation for introducing the threshold wmin is that it bounds the condition number of the inverse
diagonal norm matrix by ∥P−1∥ ≤ 1/wmin. Without such a threshold, a single small weight wn ≈ 0
could yield the inverse norm matrix to have an undesirable high condition number, which might translate
into an ill-conditioned MFSBP operator Dξ = P−1Qξ. In our implementation, we choose wmin = 1

10N ,
although we do not claim the optimality of this choice. The orthogonal projections onto C and D are
given by

(A.11)
projC(w) = w +A+ (b−Aw) ,[

projD(w)
]
n
= max(wn, wmin), n = 1, . . . , N,

Similar arguments as in Remark A.1 ensure that the intersection of C and D is non-empty and that
the POCS algorithm converges to a positive and ∂ξ(F2)-exact volume quadrature.

Remark A.3. Following up on the discussion in Remark A.2, the linear system (A.7) can also be
formulated using a generating set of ∂ξ(F2), if no basis is readily available. If {fk}Kk=1 is a basis of F ,

then {gk}K
2

k=1 with gi+K(j−1) = ∂ξ(fifj), i, j = 1, . . . ,K, spans ∂ξ(F2).

A.3. Using POCS for constructing QA. We now comment on some computational details for
constructing the anti-symmetric matrixQA discussed in subsection 5.3, which has to satisfy the exactness
condition (5.6). We can determine such a matrix QA using the POCS algorithm. To this end, note that
the exactness condition (5.6) and the restriction to anti-symmetric QA’s (Q

T
A = −QA) define nonempty

closed convex sets,

(A.12)
C =

{
QA ∈ RN×N | QAV = PVξ −

1

2
BξV

}
,

D =
{
QA ∈ RN×N | QA +QT

A = 0
}
,

in the space of N ×N matrices. If the intersection between the two convex sets C and D is non-empty,
then the POCS algorithm finds a point in the intersection by alternatingly projecting onto C and D.
The orthogonal projections onto the sets in (A.12) are given by

(A.13)
projC(QA) = QA +

(
PVξ −

1

2
BξV −QAV

)
V +,

projD(QA) =
(
QA −QT

A

)
/2,
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respectively. Here, V + is the Moore–Penrose pseudo-inverse of V . Since V has linearly independent
columns, V TV is invertible and V + = (V TV )−1V T constitutes a right inverse. See [44, 21] for more
details.

A.4. Robust implementation. In some cases, the coefficient matrix A in the exactness conditions
Aw = b, see (A.2) and (A.7), was observed to be ill-conditioned. We formulated and solved the
exactness conditions for a reduced discrete orthonormal basis in such cases. Starting from a potentially
over-complete spanning set {gl}Ll=1 of a function space G (G = F2 or G = ∂ξ(F2)), we will now describe
an algorithm that computes an orthonormal basis spanning approximately the same space. We start
by computing the coefficient matrix A in the exactness conditions (A.2) and (A.7) using the original
spanning set {gl}Ll=1. We then determine the singular value decomposition (SVD) of A. Recall that the
SVD of A ∈ RL×N with L ≤ N is given by

(A.14) A = UΣV T ,

where U ∈ RL×L and V ∈ RN×N are orthogonal matrices and Σ ∈ RL×N is a rectangular diagonal
matrix with non-negative singular values σ1 ≥ · · · ≥ σL on the diagonal. Let ε > 0 be a fixed threshold
that remains to be determined. We can now “compress” the original set {gl}Ll=1 in the sense that
a sizeable rank-deficient collection of these functions is replaced with an orthonormal basis {hm}Mm=1

whose dimension is the numerical rank of the spanning set up to precision ε. The basis is orthonormal
in the sense that hm

Thn is equal to one if m = n and zero otherwise. We get the orthonormal basis
functions as

(A.15) hm(x) =
1

σm

N∑
l=1

ul,mgl(x), m = 1, . . . ,M,

where M is the largest integer such that σM ≥ ε. If A was invertible and ε = 0, this construction is
equivalent to multiplying both sides of the SVD A = UΣV T from the left-hand side with Σ−1UT , yields

(A.16) V T = Σ−1UTA.

The functions h1, . . . , hM constitute an orthonormal basis for the span of the input functions g1, . . . , gL
to precision ε. Since the basis is orthonormal, the condition number of the resulting coefficient matrix
Aε is equal to one. The new basis can be used to calculate a new corresponding right side bε and
therefore allows us to represent the exactness constraints in a stable manner. A crucial part is selecting
the threshold ε. Too large values discard too many dimensions and lead to a matrix Aε that describes
fewer exactness conditions than the original one. At the same time, too small values inflate the norm
of bε. In our implementation, we solve Aεw = bε for ε ∈ {10−16, . . . , 10−5} and ultimately select
the resulting weight vector wε that minimizes ∥Awε − b∥2, i.e., the weights that best-fit the original
exactness conditions.
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[1] R. Abgrall, J. Nordström, P. Öffner, and S. Tokareva, Analysis of the SBP-SAT stabilization for finite
element methods part i: Linear problems, Journal of Scientific Computing, 85 (2020), pp. 1–29.
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[63] P. Öffner, J. Glaubitz, and H. Ranocha, Stability of correction procedure via reconstruction with summation-by-
parts operators for Burgers’ equation using a polynomial chaos approach, ESAIM: Mathematical Modelling and
Numerical Analysis, 52 (2018), pp. 2215–2245.
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