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Abstract. Over the past several decades, classical differential geometry has
undergone a remarkable expansion, helped by the integration of tools and
insights from neighboring fields like partial differential equations, complex
analysis, and geometric topology. In keeping with the spirit of previous gath-
erings, this meeting aimed to bridge the gaps between researchers working in
seemingly disparate subfields of differential geometry, illuminating the con-
nections that unite them.

Amongst other things, this meeting was centered around the theme of
scalar curvature, which has recently emerged as a fundamental element across
various fields, including differential geometry, metric geometry, topology, and
complex geometry. This shared topic presented an ideal opportunity for schol-
ars from these distinct areas to convene, discuss their individual progress, and
foster a vibrant exchange of ideas.
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Introduction by the Organizers

The workshop “Differentialgeometrie im Großen” was held from July 2 to July 7,
2023. Bringing together experts in the field of differential geometry and its adja-
cent disciplines, the event encompassed a diverse range of topics.

There were five 50-minute talks on Monday, Tuesday (three in the morning and
two in the afternoon) and three talks in the mornings of Wednesday and Friday. On
Thursday, there were three 50-minute talks in the morning, one in the afternoon,
as well as three 20-min short talks by young scholars. On Wednesday afternoon,



1618 Oberwolfach Report 29/2023

there was a hike. The number of participants on-site was 43 with a few additional
participants who tuned into the Zoom stream.

On Monday, the talks delved into geometric implications of scalar curvature and
Ricci curvature – with an intriguing highlight on the recent negative resolution of
Milnor’s Conjecture – Kähler-Ricci flow and Seiberg-Witten theory.

Tuesday morning continued with talks centered around genericity for minimal
hypersurfaces (which play a key role in comparison geometry), diameter estimates
in Kähler geometry and Einstein 4-manifolds. Tuesday afternoon was devoted to
two talks that investigated the subtleties of coordinates at infinity of asymptoti-
cally Euclidean manifolds, particularly in connection with the ADM-mass and the
Positive Mass Theorem.

The talks on Wednesday focused on minimal submanifolds and mean curvature
flow of codimension two, locally conformal Kähler metrics and epsilon regularity
in the setting of lower scalar curvature bounds.

Thursday’s main talks were on topological obstructions to positive scalar cur-
vature on manifolds with boundary in higher dimensions, macroscopic scalar cur-
vature, Ricci curvature in dimension 3 and holonomy of limits of Einstein 4-
manifolds. The short talks by junior researchers were about Morse index of
minimal surfaces, Kähler-Einstein metrics and the uniqueness of certain minimal
surfaces in the sphere and the ball.

We ended the workshop on Friday with talks on genericity in mean curvature
flow, expanding Ricci solitons and the relation of positive scalar curvature with
the Urysohn width.

The gathering offered a thorough survey of present-day progress in differen-
tial geometry, spotlighting key advancements that have shaped the field. Distin-
guished researchers from diverse corners of the world enriched the event, encom-
passing both aspiring graduate students and senior researchers in their respective
subfields. The workshop exuded a lively and amiable atmosphere, fostering rich
mathematical dialogue and fruitful collaborative efforts, further elevated by the
exceptional service of the staff and the picturesque surroundings of Oberwolfach.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Scalar curvature rigidity of warped product metrics

Bernhard Hanke

(joint work with Christian Bär, Simon Brendle, Yipeng Wang)

In the following, gSn denotes the standard round Riemannian metric on the n-
dimensional sphere Sn.

Theorem 1 (Cecchini-Zeidler [2]). Let (M, g) be a compact connected Riemannian
spin manifold of dimension n where n ≥ 3 is odd, let ρ : [θ−, θ+] → R be a positive,
strictly log-concave function (that is, (log ρ)′′ < 0), and let

Φ = (ϕ, θ) : (M, g) →
(

Sn−1 × [θ−, θ+], g0 := dθ ⊗ dθ + ρ(θ)2gSn−1

)

be a smooth 1-Lipschitz map which satisfies Φ(∂M) ⊂ Sn−1 × {−θ,+θ} and is of
non-zero degree. Moreover, we assume that

(1) Rg ≥ Rg0 ◦ Φ on M ,
(2) Hg ≥ Hg0 ◦ Φ on ∂M .

Here R denotes the scalar curvature, and H denotes the mean curvature along the
boundary with respect to the exterior normal (i.e., H is positive on the boundary
of the round ball).

Then Φ is a Riemannian isometry.

This is a “warped product” version of a classical theorem of Llarull [5] stating
that for each closed connected Riemannian spin manifold (M, g) of dimension
n ≥ 2 with Rg ≥ n(n − 1), each smooth 1-Lipschitz map of non-zero degree
(M, g) → (Sn, gSn) is a Riemannian isometry (for n ≥ 3 it suffices to assume that
the comparison map is Λ2-contracting).

Similarly to [5], the proof of Theorem 1 uses spectral properties of a twisted
Dirac operator

DE : C∞(M,S ⊗ E) → C∞(M,S ⊗ E)

where S → M is the spinor bundle, and E := ϕ∗(Σ+) where Σ = Σ+ ⊕ Σ− →
Sn−1 is the spinor bundle of the even dimensional Riemannian spin manifold
(Sn−1, gSn−1). In addition to the Llarull setting, one perturbsDE by a zeroth order
operator given by multiplication with the “potential” function − in

2 ψ(θ) : M → R

where ψ := ρ′

ρ : [θ−, θ+] → R.

Remark 1. ψ(θ) is equal to the mean curvature of the level hypersurface

Sn−1 × {θ} ⊂ (Sn−1 × [θ−, θ+], g0)

with respect to the unit normal field ∂
∂θ .

The index of the Fredholm operator DE − in
2 ψ(θ) acting on spinor fields s ∈

C∞(M,S ⊗ E) subject to the local boundary condition (where ν is the exterior
normal and • indicates Clifford multiplication)

(1) s = ∓iν • s on ∂M ∩Φ−1(Sn−1 × {±θ})
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can be shown to be positive, possibly after interchanging Σ+ and Σ− and working
with the negative of the boundary condition (1). Essentially, this is due to the fact
that deg(ϕ|∂−M : ∂−M → Sn−1) 6= 0 by assumption, and the Euler characteristic
of Sn−1 is different from zero as n − 1 is even. We hence obtain a spinor field
s ∈ C∞(M,S ⊗ E) satisfying (1) on ∂M and DEs− in

2 ψ(θ)s = 0 on M .
Recall the Schrödinger-Lichnerowicz-Weitzenböck (SLW) formula

(2) D2
E = (∇S⊗E)∗ ◦ ∇S⊗E + 1

4Rg +RE

where ∇S⊗E is the connection on S ⊗ E and RE is the curvature endomorphim
of E. Evaluation of an integrated version of the SLW formula on the spinor field
s shows that

(3) ∇S⊗E
X s+ i

2ψ(θ)X • s = 0

for all vector fields X on M . In this step it is important that the boundary term
in the integrated SLW formula has a favourable sign due to the assumption on Hg

in Theorem 1 and because s satisfies (1). It follows from (3) that s 6= 0 at each
point in M .

Using these facts, an evaluation of the (pointwise) SLW formula (2) on s together
with an estimate of RE appearing in [5] shows that Φ is a Riemannian isometry,
finishing the proof of Theorem 1.

Our first result removes the assumption that n is odd.

Theorem 2 (Bär-Brendle-H.-Wang [1]). Theorem 1 also holds for even n ≥ 4.

The generalisation uses a “suspension trick” which already appears in [5]: As-
suming that n ≥ 4 is even, instead of Φ, one studies the composition

(4) M × S1
r

Φ×id−→ Sn−1 × [θ−, θ+]× S1
r → Sn × [θ−, θ+]

where S1
r , r > 0, is the 1-sphere equipped with the metric r2 · gS1 and the second

map in this composition involves a 1-Lipschitz map

h : (Sn−1 × S1, gSn−1 + 4gS1) → (Sn, gSn)

of degree ±1, where h is independent of r. For the composition (4), the index of the
twisted Dirac operator with potential, as considered before, is positive. Theorem
2 is proven by passing to the limit of a sequence of spinor fields in the kernel of this
operator as r goes to ∞ and application of the SLW formula to the limit spinor
field.

Our second result is a comparison theorem for non-compact and possibly non-
complete Riemannian manifolds. It can be considered as a limit case of Theorem
2.

Theorem 3 (Bär-Brendle-H.-Wang [1]). Let n ≥ 3, let (Ω, g) be an n-dimensional
connected non-compact Riemannian spin manifold without boundary satisfyig Rg ≥
n(n− 1), and let

Φ: (Ω, g) →
(

Sn−1 × (0, π), dθ ⊗ dθ + sin2(θ) gSn−1

)

be a proper smooth 1-Lipschitz map of non-zero degree.
Then Φ is a Riemannian isometry.
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Note that the target of Φ is the n-sphere with north and south poles removed.
The idea for the proof of Theorem 3 is to consider

Mδ := Φ−1(Sn−1 × [δ, π − δ]) ⊂ Ω,

which is a smooth compact manifold with boundary for generic δ ∈ (0, π4 ), and

apply Theorem 1, resp. 2, to the restriction Mδ → Sn−1 × [δ, π − δ] of Φ.
Of course, the mean curvature condition in Theorem 1 need not be satisfied for

this restricted map. This problem is resolved by adjusting the potential function

ψ = sin′

sin = cos
sin : [δ, π − δ] → R so that the boundary term in the integrated SLW

formula still has a favourable sign.
With some care, for δ → 0, one obtains a non-zero limit spinor field on Ω

satisfying (3) for the original potential function ψ = cos
sin . From this point, the

proof is finished similarly as before.
A proof of Theorem 3 using µ-bubbles is sketched in Gromov’s “Four Lectures”

[3] for n ≤ 8. Moreover, a proof for n = 3 based on space-time harmonic functions
appears in Hirsch-Kazaras-Khuri-Zhang [4], and a spinor geometric proof for n ≥ 3
was announced by Wang-Xie [6] shortly after [1].

Gromov asked the following question:

Question 1 ([3]). Which subsets Σ ⊂ Sn, n ≥ 3, are “scalar curvature rigid” in
the sense that each Riemannian metric g on Sn \ Σ with g ≥ gSn and Rg ≥ RgSn

satisfies g = gSn?

By [5] and Theorem 3, we know that this holds for Σ = ∅ and for Σ consisting of
two antipodal points (hence also for Σ consisting of one point). For more general
Σ, Question 1 remains open.
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Positive mass theorems and distance estimates for spin initial data sets

Rudolf Zeidler

(joint work with Simone Cecchini, Martin Lesourd)

The positive mass theorem is a landmark result in differential geometry connect-
ing the geometry of scalar curvature to general relativity. In the Riemannian case,
the theorem states that on a complete asymptotically flat manifold of nonnegative
scalar curvature, the ADM-mass of each asymptotically flat end is nonnegative.
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Here an asymptotically flat end is an open subset E which admits a diffeomor-
phism to Rn \Dd(0) for some d > 0, such that the metric satisfies suitable fall-off
conditions in this chart, e.g.

gij = δij +O2(|x|−τ )

for some τ > n−2
2 . A Riemannian manifold is called asymptotically flat if outside

of a compact subset it consists of finitely many asymptotically flat ends.
More generally, the (spacetime) positive mass theorem considers asymptotically

flat initial data sets (M, g, k), where (M, g) is an asymptotically flat Riemannian
manifold endowed with a symmetric 2-tensor k that has a suitable fall-off, e.g. kij =
O1(|x|−τ−1) on the asymptotically flat ends. Conceptually, k is to be understood
as the second fundamental form ofM being embedded as a spacelike hypersurface
in a (hypothetical) spacetime.

In this setting, nonnegativity of the scalar curvature is replaced by the dominant
energy condition µ ≥ |J |, where

µ =
1

2
(scalg +(trg(k))

2 − |k|2g), J = div(k)− d trg(k).

The ADM mass then depends on two asymptotic quantities, the ADM energy E,
a numerical quantity, and the ADM linear momentum P, a covector at infinity,
both of which are defined for each asymptotically flat end. In this case the positive
mass theorem states:

Theorem 1 (Positive mass theorem for initial data sets [10, 11, 9, 4]). Let
(Mn≥3, g, k) be a complete asymptotically flat initial data set that satisfies the
dominant energy condition µ − |J | ≥ 0. If either n ≤ 7 or Mn is spin, then
E ≥ |P| for each asymptotically flat end.

Notably, this theorem can be viewed as a separate statement about each asymp-
totically flat end. Hence one may ask if the conclusion holds for asymptotically
flat ends in more general manifolds. In fact, Schoen–Yau conjectured in the Rie-
mannian case that the positive mass theorem holds for an asymptotically flat end
inside a general complete manifold of nonnegative scalar curvature (e.g. there may
be other ends about which nothing is assumed apart from completeness and the
curvature condition). This was in fact settled recently by various authors leading
to the following theorem: .

Theorem 2 (Positive mass theorem for complete manifolds with arbitrary ends [8,
6, 7, 12, 1, 3]). Let (Mn≥3, g) be a complete manifold that contains a distinguished
asymptotically flat end E and has nonnegative scalar curvature scal ≥ 0. Assume
either that n ≤ 7 or that Mn is spin. Then the ADM mass of E satisfies m(E) ≥ 0,
with equality if and only if (Mn, g) is Euclidean space.

In fact Theorem 2 can be reduced to a version of Theorem 1 with compact
boundary [5, 6]. The main trick here is to introduce an artificial tensor k which
blows up in a finite distance to the given end in a way to “shield” the selected
asymptotically flat end from the rest of the manifold.
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In our recent work [2], we extend the methods established in [3] to the spacetime
case and prove the initial data set version of Theorem 2 (which also follows from [1])
and a variety of new results. Start with the “shielded version” of the spacetime
positive mass theorem.

Definition 1. Let (Mn, g, k) be a Riemannian manifold, not assumed to be com-
plete. We say that (M, g, k) contains a dominant energy shield U0 ⊃ U1 ⊃ U2 if
U0, U1, and U2 are open subsets of M such that U0 ⊃ U1, U1 ⊃ U2, the closure
of U0 in (M, g) is a complete manifold with compact boundary, and we have the
following:

(1) µ− |J | ≥ 0 on U0,
(2) µ− |J | ≥ σn(n− 1) on U1 \ U2,
(3) the mean curvature H∂Ū0

on ∂Ū0 and the symmetric two tensor k satisfy

H∂Ū0
− 2

n−1

∣

∣k(ν,−)|T∂Ū0

∣

∣ > −Ψ(d, l).

Here, Ψ(d, l) is the constant defined as

Ψ(d, l) :=

{

2
n

λ(d)
1−lλ(d) if d < π√

σn
and l < 1

λ(d) ,

∞ otherwise,

where d := distg(∂U2, ∂U1), l := distg(∂U1, ∂U0), and

λ(d) :=

√
σn

2
tan

(√
σnd

2

)

.

More importantly than the precise expression, the crucial aspect of Ψ(d, l) is
that it tends to ∞ as d approaches a certain fixed quantity (and similarly for l
after fixed d > 0). This means that the boundary condition (3) becomes vacuous
after one of these thresholds are exceeded. Our first main results then states:

Theorem 3 ([2, Theorem A]). Let (Mn≥3, g, k) be an initial data set, not neces-
sarily complete, that contains an asymptotically flat end E and a dominant energy

shield as in Definition 1. Assume that U0 is spin and that E\U0 is compact. Then
EE > |PE |.

As alluded to earlier, the proof of Theorem 3 in the time-symmetric case
(i.e. k = 0) can be reduced to a spacetime positive mass theorem by introduc-
ing an artificial tensor k that makes use of the strictly dominant energy condition
on the shield. However, in the general case this strategy fails because there is
already a given k present that cannot be artificially modified without unfavorably
modifying the corresponding dominant energy condition. To resolve this issue, we
introduce another independent ‘time’ direction in the spin bundle which allows us
to introduce an additional term in the Dirac–Witten operator that is independent
of the given tensor k. Currently our main results appear to be only accessible in
the spin setting because in the context of minimal hypersurface techniques there
seems to be no counterpart of introducing an additional term in an independent
timelike direction.
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Based on similar techniques, we obtain the following result which shows that
embedding an end which violates the positive mass theorem into a complete initial
data set is obstructed in a quantitative way:

Theorem 4 ([2, Theorem B]). Let (E , g, k) be an asymptotically flat initial data
end of dimension n ≥ 3 such that EE < |PE |. Then there exists a constant R =
R(E , g, k) such that the following holds: If (M, g, k) is an n-dimensional initial
data set (without boundary) that contains (E , g, k) as an open subset and N =
NR(E) ⊆ M denotes the open neighborhood of radius R around E in M , then at
least one of the following conditions must be violated:

(1) N (metrically) complete,
(2) µ− |J | ≥ 0 on U ,
(3) N is spin.

Finally, we deduce a new proof of the spacetime positive mass theorem with
arbitrary ends and establish a corresponding rigidity result, see [2, Theorems C
and D] for details.
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Ricci Curvature, Fundamental Groups, and the Milnor Conjecture

Daniele Semola

(joint work with Elia Bruè, Aaron Naber)

In 1968 John Milnor conjectured that the fundamental group of any smooth, com-
plete Riemannian manifold (Mn, g) with nonnegative Ricci curvature should be
finitely generated [8]. In recent joint work [2] with Elia Bruè and Aaron Naber we
constructed a family of counterexamples to the Milnor conjecture. More precisely
we proved:

Theorem 1. Let Γ ≤ Q/Z ⊆ S1 be any subgroup. Then there exists a smooth
complete 7-dimensional Riemannian manifold (M7, g) with π1(M) = Γ and such
that Ric ≥ 0.

In the last sixty years, there have been several partial results toward the reso-
lution of Milnor’s conjecture. In particular, the conjecture is known to be true:

• under the stronger assumption that the sectional curvature is nonnegative,
by the soul theorem of Cheeger-Gromoll;

• in dimension 3 by the work of G. Liu [7], with previous insights by Schoen-
Yau [9] in the case of positive Ricci curvature;

• when the volume growth is maximal, by the work of P. Li [6], subsequently
generalized, with a different argument, by Anderson [1];

• when the volume growth is minimal, as proved by Sormani [10].

Moreover, the structure of finitely generated subgroups of the fundamental group
is quite well understood. Milnor proved in [8] that they have polynomial growth,
hence they must be virtually nilpotent by Gromov’s work [3]. More recently,
Kapovitch-Wilking have shown in [4] that there is a nilpotent subgroup whose in-
dex is bounded by a dimensional constant Cn and that finitely generated subgroups
have a dimensional bound on the number of generators.

In our family of counterexamples, the fundamental groups Γ ≤ Q/Z are indeed
abelian and they have cyclic finitely generated subgroups. Moreover, the volume
growth oscillates between the linear rate ∼ r and the ∼ r4 rate.

The geometry of the universal covers for the examples in Theorem 1 mimics that of
a fractal snowflake. This structure is obtained through an inductive construction,
with a twisted gluing mechanism at its hearth. The main technical tool in order
to achieve this gluing is an equivariant version of the following:

Lemma 2. Let g0 be the standard metric on S3×S3. Then given φ ∈ Diff(S3×S3)
there exists a smooth family gt of metrics with Ricgt > 0 such that g0 is the
standard metric and g1 = φ∗g0. That is, the orbit π0Diff(S3 × S3) · [g0] of the
mapping class group lives in a connected component of M+

0 (S
3 ×S3), the space of

metrics with strictly positive Ricci curvature.

The nontriviality of the above lemma comes from the statement, due to Kreck
[5], that Diff(S3 ×S3) is not path connected, i.e., there exist self-diffeomorphisms
of S3 × S3 that are not isotopic to the identity.
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Apart from the obvious open question about the validity of Milnor’s conjecture in
dimensions 4, 5, and 6, the following remain open:

Question 1. Does Milnor’s conjecture hold for Ricci flat manifolds?

Question 2. Does Milnor’s conjecture hold for Kähler manifolds with Ric ≥ 0?

Question 3. Does Milnor’s conjecture hold under the additional assumption that
the universal cover (M̃, g̃) has Euclidean volume growth?
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Two-dimensional shrinking gradient Kähler-Ricci solitons

Ronan J. Conlon

(joint work with Richard Bamler, Charles Cifarelli, and Alix Deruelle)

A shrinking Ricci soliton is a triple (M, g, X), whereM is a Riemannian manifold
endowed with a complete Riemannian metric g and a complete vector field X , such
that

(1) Ric(g) +
1

2
LXg = λg

for some λ > 0. The vector field X is called the soliton vector field. If X = ∇gf for
some smooth real-valued function f onM , then we say that (M, g, X) is gradient.
In this case, the soliton equation (1) becomes

Ric(g) + Hessg(f)− λg = 0,

and we call f the soliton potential.
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Let (M, g, X) be a shrinking Ricci soliton. If g is Kähler and X is real holo-
morphic, then we say that (M, g, X) is a shrinking Kähler-Ricci soliton. Let ω
denote the Kähler form of g. If (M, g, X) is in addition gradient, then (1) may
be rewritten as

ρω + i∂∂̄f = λω,

where ρω is the Ricci form of ω and f is the soliton potential.
Shrinking Ricci solitons are natural generalisations of Einstein manifolds with

positive scalar curvature. As such, their study and classification has become a
central topic in both Riemannian and Kähler geometry. Indeed, shrinking Kähler-
Ricci solitons are known to exist on certain Fano manifolds that have obstructions
to the existence of a Kähler-Einstein metric [WZ04]. Moreover, from the data of
a complete shrinking Ricci soliton (M, g, X), one can define an ancient solution
g(t), t < 0, of the Ricci flow

∂g(t)

∂t
= −2Ric(g(t))

with g(−1) = g. In this way, non-flat complete shrinking Ricci solitons model fi-
nite time Type I singularities of the Ricci flow [Nab10, EMT11], i.e., those singular
times of the flow for which there are curvature bounds of the form |Rm| ≤ C/(T−t)
near the finite singular time T > 0. The study of shrinking Ricci solitons is there-
fore crucial in potentially implementing higher-dimensional surgery constructions.

While in (real) dimensions 2 and 3, a full classification of shrinking Ricci soli-
tons has been achieved (these are Euclidean or quotients of spheres S2, S3 or the
cylinder S2×R) [Ham82, Per03], the situation is far from clear in (real) dimension
4. Apart from the obvious examples (R4 or quotients of S4, S3 ×R, and S2 ×R2)
and the ten del Pezzo surfaces [Tia90, WZ04], the only other example in this di-
mension was found by Feldman-Ilmanen-Knopf [FIK03] nearly 20 years ago. Its
construction was, in part, possible due to its cohomogeneity one U(2)-symmetry
which allowed the reduction of the soliton equation to a system of ODEs (the
solution of which nevertheless still posed a non-trivial problem).

Our main result is the existence of a new complete non-compact shrinking
gradient Kähler-Ricci soliton in complex dimension 2.

Theorem 1 ([BCCD22, Theorem A]). Up to automorphism, there exists a unique
complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on
Blx(C × P1), that is, the blowup of C × P1 at a fixed point x of the standard real
torus action on C× P1. Moreover, this soliton is invariant under the induced real
torus action and appears as a parabolic blowup limit of the Kähler-Ricci flow.

Being invariant under a real two-dimensional torus action, the new soliton
has cohomogeneity 2. Its underlying complex manifold, namely the blowup of
C × P1 at one point, was already identified in [CCD22] as the last remaining
Kähler surface that was unknown to admit a complete shrinking gradient Kähler-
Ricci soliton with bounded scalar curvature. Combined in addition with previous
works [Cif20, CDS19], Theorem 1 completes the classification of such solitons on
Kähler surfaces.
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Theorem 2 ([BCCD22, Theorem B]). Let (M, g, X) be a complete two-dimen-
sional shrinking gradient Kähler-Ricci soliton with bounded scalar curvature. Then
either:

(i) M is Fano and g is, up to automorphism, either Kähler-Einstein or the
shrinking gradient Kähler-Ricci soliton on M given by [WZ04], or:

(ii) (M, g, X) is, up to pullback by an element of GL(2, C), the flat Gaussian
shrinking soliton on C2, or:

(iii) (M, g, X) is, up to pullback by an element of GL(2, C), the unique U(2)-
invariant shrinking gradient Kähler-Ricci soliton of Feldman-Ilmanen-Knopf
[FIK03] on the total space of O(−1) over P1, or:

(iv) (M, g, X) is, up to automorphism, the cylinder C× P1, or:
(v) (M, g, X) is, up to automorphism, the shrinking gradient Kähler-Ricci soli-

ton of Theorem 1.

Note that a real four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature automatically has bounded curvature [MW14, Theorem 0.1]. We
also remark that the assumption of bounded scalar curvature in the statement of
Theorem 2 has recently been removed by Li-Wang [LW23].

To prove Theorem 1, we employ a novel approach in which we construct the soli-
ton indirectly as a blowup limit of a specific Kähler-Ricci flow on a compact Kähler
manifold, using recent estimates obtained by Bamler [Bam20a, Bam20b, Bam20c]
together with Kähler-Ricci flow techniques to control the singularity formation of
this flow. More precisely, we consider the blowup N := Blx(P

1 × P1) of P1 × P1

at one point x and show that there is a toric Kähler-Ricci flow that contracts the
exceptional divisor and exactly one other (−1)-curve at the singular time T > 0.
The volume of N close to the singular time is ∼ (T − t). Using the estimates from
[Bam20c], we analyse possible blowup models of this flow. Thanks to the toricity
of the flow and the topology of the underlying manifold, we are able to exclude
orbifold singularities from appearing in the limit and show that the singularity
is close to a smooth shrinking Kähler-Ricci soliton at most scales. By [CCD22],
regions that are close enough to such Kähler-Ricci solitons must contain a complex
curve of self-intersection 0 or −1. The areas of these curves, which are determined
by the Kähler class of the evolving metric, shrink by at most a linear rate. This
observation allows us to bound from below the scales at which the flow exhibits
closeness to a shrinking Kähler-Ricci soliton. Consequently, we see that the flow
must be of Type I. As a result, the singularity formation near every point can
be described by a shrinking Kähler-Ricci soliton. Among these, we are able to
exclude the soliton of Feldman-Ilmanen-Knopf [FIK03] because the volume of N
under the flow converges to zero [CCD22]. This only leaves C×P1 and its blowup
[CCD22] as possible blowup limits. Complex geometric reasons allow us to further
rule out a C× P1 forming near the exceptional divisor, demonstrating that a new
soliton, namely that given by Theorem 1, must exist.



Differentialgeometrie im Grossen 1631

References

[Bam20a] R. Bamler, Entropy and heat kernel bounds on a Ricci flow background,
arXiv:2008.07093 (2020).

[Bam20b] , Compactness theory of the space of super Ricci flows, arXiv:2008.09298
(2020).

[Bam20c] , Structure theory of non-collapsed limits of Ricci flows, arXiv:2009.03243
(2020).

[BCCD22] R. Bamler, C. Cifarelli, R. J. Conlon, and A. Deruelle, A new complete two-
dimensional shrinking gradient Kahler-Ricci soliton, arXiv:2206.10785 (2022).

[Cif20] C. Cifarelli, Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact
toric manifolds, J. London Math. Soc. 106 (2022), no. 4, 3746–3791.

[CCD22] C. Cifarelli, R. J. Conlon, and A. Deruelle, On finite time Type I singularities of the
Kahler-Ricci flow on compact Kahler surfaces, arXiv:2203.04380 (2022).

[CDS19] R. J. Conlon, A. Deruelle, and S. Sun, Classification results for expanding and
shrinking gradient Kahler-Ricci solitons, arXiv:1904.00147 (2019), to appear in
Geom. Topol.

[EMT11] J. Enders, R. Müller, and P. Topping, On type-I singularities in Ricci flow, Comm.
Anal. Geom. 19 (2011), no. 5, 905–922.

[FIK03] M. Feldman, T. Ilmanen, and D. Knopf, Rotationally symmetric shrinking and ex-
panding gradient Kahler-Ricci solitons, J. Differ. Geom. 65 (2003), no. 2, 169–209.

[Ham82] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry
17 (1982), no. 2, 255–306.

[LW23] Y. Li, B. Wang, On Kahler Ricci shrinker surfaces, arXiv:2301.09784 (2023).
[MW14] O. Munteanu and J. Wang, Geometry of shrinking Ricci solitons, arXiv:1410.3813

(2014).
[Nab10] A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine

Angew. Math. 645 (2010), 125–153.
[Per03] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:0303109 (2003).
[Ses06] N. Sesum, Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom. 14

(2006), no. 2, 283–343. MR 2255013
[Tia90] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class,

Invent. Math. 101 (1990), no. 1, 101–172.
[WZ04] X.-J. Wang and X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first

Chern class, Adv. Math. 188 (2004), no. 1, 87–103.

Seiberg-Witten theory and moduli spaces of 4-manifolds and metrics

Hokuto Konno

(joint work with Jianfeng Lin)

The Seiberg–Witten equations are partial differential equations defined on a
smooth 4-manifold. Seiberg–Witten theory has been effectively used in 4-dimen-
sional topology and geometry. It is a natural idea to consider families of Seiberg–
Witten equations associated to a family of 4-manifolds, and use it to study the
moduli spaces of 4-manifolds and metrics. Here, by the moduli space of 4-manifolds,
we meant the classifying space BDiff(X) of the diffeomorphism group Diff(X)
of a smooth 4-manifold X . The moduli space of metrics (with a certain condi-
tion, such as of metric of positive scalar curvature) usually means the quotient
Met(X)/Diff(X) of the space of metrics Met(X) by the diffeomorohism group
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Diff(X). However, here we mainly consider the homotopy quotient which we de-
note by Met(X)//Diff(X). The homotopy quotient is defined as the quotient

Met(X)//Diff(X) = (EDiff(X)×Met(X))/Diff(X),

where EDiff(X) is a contractible space acted by Diff(X) freely. The homotopy quo-
tient Met(X)//Diff(X) is the moduli space of pairs of (M, g) whereM is a manifold
diffeomorphic to X and g is a metric onM . In other words, Met(X)//Diff(X) clas-
sifies fiber bundles with fiber X with fiberwise metrics. Similarly, if we denote by
PSC(X) the space of positive scalar curvature metrics on X , the homotopy quo-
tient PSC(X)//Diff(X) classifies fiber bundles with fiber X with fiberwise positive
scalar curvature metrics.

The first striking result by families gauge theory in the study of the diffeo-
morphism groups of 4-manifolds is work by Ruberman [8]. He proved that there
are self-diffeomorphisms of some 4-manifolds which are topologically isotopic to
the identity but smoothly not. Ruberman used 1-parameter family version of
Donaldson invariant. A similar argument works also using 1-parameter families
Seiberg–Witten theory (see such as [9, 1]). Also, 1-parameter families Seiberg–
Witten invariant has been used by Ruberman [9] to prove the disconnectivity of
PSC(X) for some 4-manifolds X . (However, there is no known example of ori-
entable 4-manifolds for which the moduli spaces of the positive scalar curvature
metrics PSC(X)/Diff(X) has non-trivial topology. Ruberman [9] gave such an
example of unorientable 4-manifolds.)

Going to the moduli space BDiff(X) of a 4-manifold, a basic question is whether
we can compute (co)homology of the moduli space BDiff(X). This is impor-
tant since cohomologies in H∗(BDiff(X)) one-to-one correspond to characteristic
classes of smooth fiber bundles with fiber X . Even for a 2-dimensional mani-
fold X , it is known to be extremely hard to determine the cohomology group
H∗(BDiff(X)). Nevertheless, a result by Harer [4] in dimension 2 and its higher
dimensional analog by Galatius and Randal-Williams [2] say that H∗(BDiff(X))
can be computed stably in the following sense.

Let W be a manifold with non-empty boundary, and let Diff∂(W ) denote the
group of diffeomorphisms that are the identity near boundary. Suppose that W
is even dimensional, say of dimension 2n. By extending identity, one can define a
natural map

s : Diff∂(W ) → Diff∂(W#Sn × Sn),

which we call the stabilization map. The results by Harer [4] when 2n = 2 and by
Galatius and Randal-Williams [2] when 2n ≥ 6 show the following: let W be a
simply-connected compact manifold W , and suppose that dimW is even but not
4. Then, for any k ≥ 0, there exists N > 0 such that the induced map

s∗ : Hk(BDiff∂(W#NSn × Sn);Z) → Hk(BDiff∂(W#(N + 1)Sn × Sn);Z)

are isomorphisms for all N ≫ k. This result is called homological stability. This
result together with the computation of the stable homology

lim
N→+∞

Hk(BDiff∂(W#NSn × Sn))
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due to Madsen–Weiss [7] in dimension 2 and in other even dimensions due to
Galatius and Randal-Williams [3] compute the (co)homologyHk(BDiff∂(W#NSn

×Sn)) for large N , at least over Q-coefficient.
In contrast, the following holds in dimension 4, which we call homological in-

stability:

Theorem 1 ([6]). Let X be a simply-connected smooth closed 4-manifold and let

X̊ denote the punctured X: X̊ = X \ int(D4). Then, for any k > 0, there exists a
sequence 0 < N1 < N2 < · · · → +∞ such that

s∗ : Hk(BDiff∂(X̊#NiS
2 × S2);Z) → Hk(BDiff∂(X̊#(Ni + 1)S2 × S2);Z)

are not isomorphisms for all i ≥ 1.

More strongly, we can prove that both of the injectivity and surjectivity fail
infinitely many times for s∗.

On the moduli space of 4-manifolds with positive scalar curvature metrics, we
can prove the following. Let Diff+(X) denote the orientation-preserving diffeo-
morphism group of an oriented manifold X . Let

ι : PSC(X)//Diff+(X) → Met(X)//Diff+(X)

denote the map induced from the inclusion PSC(X) →֒ Met(X).

Theorem 2 ([6]). Let X be a simply-connected smooth closed oriented 4-manifold.
Then, for any k > 0, there exists a sequence 0 < N1 < N2 < · · · → +∞ such that

ι∗ : Hk(PSC(X#NiS
2×S2)//Diff+(X);Z) → Hk(Met(X#NiS

2×S2)//Diff+(X);Z)

are not isomorphisms for all i ≥ 1.

For this theorem, we can prove the surjectivity fails infinitely many times, but
we do not know anything about the injectivity.

The proofs of the above two theorems use a characteristic class

SW
k
half-tot(X) ∈ Hk(BDiff+(X);Z/2)

for an oriented closed smooth 4-manifold, defined when b+(X) ≥ k + 2. This
is defined, loosely speaking, by counting the moduli spaces of solutions to the
Seiberg–Witten equations over each k-cell of BDiff+(X) (after taking a CW ap-
proximation) for all spinc structures on X with formal dimension −k, taking into
account the charge conjugation symmetry on spinc structures. The construction is
inspired by a numerical 1-parameter families Seiberg–Witten invariant SWk(X, f)
of a diffeomorphism f : X → X (which may not preserve a given spinc struc-
ture) by Ruberman [9], together with a construction of a characteristic class

SW
k(X, s) ∈ Hk(BDiff(X, s)) depending on a choice of spinc structure by the

author [5].
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Improved generic regularity of minimizing hypersurfaces

Christos Mantoulidis

(joint work with Otis Chodosh, Felix Schulze)

Let Γ be a smooth, closed, oriented, (n − 1)-dimensional submanifold of Rn+1.
Among all smooth, compact, oriented hypersurfaces M ⊂ Rn+1 with ∂M = Γ,
does there exist one with least area?

Foundational results in geometric measure theory can be used to produce an in-
tegral n-current T with least mass (“minimizing”) among all those with boundary
equal to the multiplicity-one current represented by Γ. When n+1 ≤ 7, it is known
that T is supported on a smooth, compact, oriented hypersurface that solves the
original differential geometric problem (see [1, 2, 3, 4, 5]). When n+1 ≥ 8, smooth
minimizers can fail to exist (see [6]) but it is nevertheless known that away from
a compact set sing T ⊂ Rn+1 \ Γ of Hausdorff dimension ≤ n− 7, the support of
T will be a smooth precompact hypersurface with boundary Γ (see [7, 5]).

A fundamental result of Hardt–Simon [8] shows that the singularities of 7-
dimensional minimizing currents in R8, which are necessarily isolated points, can
be eliminated by a perturbation of the prescribed boundary Γ, thus yielding solu-
tions to the original geometric problem in R8 for the perturbed boundary.

In recent work motivated from our past results on mean curvature flow (see,
e.g., [9, 10]) we obtained a generic regularity result for minimizers in higher am-
bient dimensions:
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Theorem ([11], [12]). Let Γn−1 ⊂ Rn+1 be a smooth, closed, oriented, submani-
fold. There exist arbitrarily small perturbations Γ′ of Γ such that every minimizing
integral n-current with boundary [[Γ′]] is of the form [[M ′]] for a smooth, precompact,
oriented hypersurface M ′ with ∂M ′ = Γ′ and singM ′ = M̄ ′ \M ′ satisfies

singM ′ = ∅ if n+ 1 ≤ 10, otherwise dimH singM ′ ≤ n− 9− εn

where εn ∈ (0, 1] is an explicit dimensional constant.

Let us discuss what goes into the proof of this theorem. Let us denote

M(Γ) = {minimizing integral n-currents in Rn+1 with boundary [[Γ]]}.
We agree to the following simplifying assumptions (see [12] for the general case):

• Γ is connected.
• M(Γ) is a singleton.

The above and the standard regularity theory guarantee that M(Γ) = {[[M ]]} for
a smooth, precompact, oriented hypersurface M ⊂ Rn+1 with ∂M = Γ, singM =
M̄ \M ⊂⊂ Rn+1 \ Γ, and dimH singM ≤ n− 7.

Now set Γ0 := Γ and perturb Γ smoothly to (Γs)s∈(−δ,δ) by s times the unit
normal toM along Γ (recall that singM∩Γ = ∅) for some small δ > 0. Accordingly,
for each s ∈ (−δ, δ), let M(Γs) be the set of all minimizers with boundary data
Γs; each such is still of the form [[Ms]], with Ms enjoying similar a priori regularity
as M . A cut-and-paste argument implies that

(‡) [[Ms]] ∈ M(Γs), [[Ms′ ]] ∈ M(Γs′), s 6= s′ =⇒ M̄s ∩ M̄s′ = ∅.
Define

L = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) M̄s,

S = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) singMs.

In view of (‡), the following “timestamp” function is well-defined:

t : L → (−δ, δ),
t(x) = s for all x ∈ M̄s, [[Ms]] ∈ M(Γs), s ∈ (−δ, δ).

We are now ready to state the two main tools required for our main theorem.

Tool A ([12]). It holds that dimH S ≤ n− 7.

Tool B ([12]). The timestamp function t : L → (−δ, δ) above is α-Hölder on S
for every α ∈ (0, 2 + εn), where εn ∈ (0, 1] is an explicit dimensional constant.

To obtain the Theorem from Tools A, B one can invoke a Sard-type covering
argument of Figalli–Ros-Oton–Serra, who successfully proved a generic regularity
result for free boundary singularities in the obstacle problem using tools similar
to A, B.

Proposition ([13, Proposition 7.7]). Let S ⊂ Rn, 0 < d ≤ n, and 0 < β < α.
Assume that Hd(S) <∞ and that f : S → (−1, 1) is α-Hölder continuous.

(1) If d ≤ β, then Hd/β(f(S)) = 0.
(2) If d > β, then for a.e. t ∈ (−1, 1) we have Hd−β(f−1(t)) = 0.
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Diameter estimates in Kähler geometry

Bin Guo

(joint work with Duong H. Phong, Jian Song, and Jacob Sturm)

The diameter is an important geometric invariant associated to a Riemannian met-
ric. Bounds for the diameter are essential for the study of geometric convergence of
a family of Riemannian manifolds. Previously known results require the conditions
on the curvature. For example, the Myers’ theorem states that the diameter is
bounded if the Ricci curvature is bounded below by a positive constant. Recently,
in [1] we develop a general theory of diameter estimates for Kähler metrics, which
in particular does not require any assumptions on the Ricci curvature. The non-
linear analysis of complex Monge-Ampère equations allows us to derive uniform
estimates of the Green’s functions [2], from which the diameter estimates follow.

Let (X,ωX) be an n-dimensional compact Kähler manifold equipped with a
Kähler metric ωX . Let γ be a non-negative continuous function and A,B,K > 0,
p > n be given parameters. We define a subset of W := W(X,ωX , n, A, p,K, γ) of
the space of Kähler metrics on X by

W =

{

ω : (Vω)
−1 ω

n

ωn
X

≥ γ, [ω] · [ωX ]n−1 ≤ A, NX,ωX ,p(ω) ≤ K

}

,
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where Vω =
∫

X
ωn = [ω]n is the volume of ω, and

NX,ωX ,p(ω) =
1

Vω

∫

X

∣

∣

∣

∣

log

(

(Vω)
−1 ω

n

ωn
X

)∣

∣

∣

∣

p

ωn,

is the p-Nash entropy of ω relative to ωX . Our main result is:

Theorem. [1] Let X be an n-dimensional connected Kähler manifold, and let γ
be a nonnegative continuous function on X satisfying

dimH{γ = 0} < 2n− 1, γ ≥ 0,

where dimH is the Hausdorff dimension. Then for any A,K > 0 and p > n, there
exist C > 0, c > 0 that depend on n,A, p,K, γ, and α = α(n, p) > 0 such that for
any ω ∈ W, the following hold:

(a) The Green’s function G associated to ω:
∫

X

|G(x, ·)|ωn +

∫

X

|∇G(x, ·)|ωωn +

(

− inf
y∈X

G(x, y)

)

Vω ≤ C

for any x ∈ X;
(b) The diameter: diam(X,ω) ≤ C;
(c) The volume element: for any x ∈ X and any R ∈ (0, 1],

Volω(Bω(x,R))

Volω(X)
≥ cRα.

An immediate consequence of the theorem is the Gromov-Hausdorff (pre)com-
pactness of the Kähler metrics in W . The theorem also applies to the cases of
long-time (normalized) Kähler-Ricci flow

∂ω

∂t
= −Ric(ω)− ω, t ∈ [0,∞);

and the finite-time KRF

∂ω

∂t
= −Ric(ω), t ∈ [0, T ), T <∞

when the volumes do not collapse to zero. The idea of proof is to verify that the
metrics along these flows lie in the set W for some bounded parameters p,A,K.
In particular, along these flows, the diameters are uniformly bounded and these
metrics are pre-compact in the Gromov-Hausdorff topology.
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Einstein Manifolds, Weyl Curvature, & Conformally Kähler Geometry

Claude LeBrun

In what follows, an Einstein metric will be understood to mean a Riemannian
metric g of constant Ricci curvature on some smooth n-manfold M ; equivalently,
it is a metric g whose Ricci tensor r satisfies [3]

r = λg

for a real constant λ that is called the Einstein constant of g. Any metric of
constant sectional curvature is Einstein, but the converse is only generally true if
the manifold M has dimension n = 2 or 3. By contrast, this talk concerns the
transitional case of n = 4, where Einstein metrics on closed manifolds generally
do not have constant sectional curvature, but nonetheless exhibit strong rigidity
phenomena that are reminiscent of the constant-sectional-curvature paradigms.

As an illustration of this last point, there are a number of smooth compact
4-manifolds M where we completely understand the moduli space

E (M) = {Einstein metrics on M}/(Diff(M)× R+)

of Einstein metrics modulo isometries and and constant rescalings. For example,
if M admits a real or complex-hyperbolic metric, the moduli space consists of
exactly one point [4, 8], and the given locally-symmetric metric represents the
unique Einstein geometry on M . By contrast, the Einstein moduli spaces for the
4-torus and K3 are more complicated, with dimension 9 and 57, respectively, but
these examples still enjoy an important feature of the previous ones, because the
corresponding moduli spaces once again turn out to be connected [1, 2, 6, 7, 13, 15].

Now, for some of the 4-manifolds M we’ve just discussed, the key to under-
standing the moduli space E (M) lies in showing that every Einstein metric on M
must be Kähler. This strategy can however only stand a chance of working when
the 4-manifold admits a symplectic structure. Are there other 4-manifolds where a
symplectic structure helps reveal something about Einstein metrics? The following
result [5, 9] shows that this question can sometimes be surprisingly fruitful:

Theorem 1. Suppose that M is a smooth compact oriented 4-manifold which
carries a symplectic form ω. Then M admits an (a priori unrelated) Einstein
metric g with λ > 0 if and only if

M≈diff

{

CP2#kCP2, 0 ≤ k ≤ 8, or

S2 × S2

These ten diffeotypes exactly catalog the smooth compact 4-manifolds that arise as
Del Pezzo surfaces, which are by definition the compact complex 2-manfolds with
ample anti-canonical line bundle. The proof shows that each of these 4-manifolds
admits a λ > 0 Einstein metric that is conformally equivalent to a Kähler metric
with vanishing Bach tensor. Conversely, Seiberg-Witten theory, the theory of
pseudo-holomorphic curves, and the Hitchin-Thorpe inequality are together used
to show that no other smooth compact 4-manifold can admit both a λ > 0 Einstein
metric and an orientation-compatible symplectic structure.
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But while Theorem 1 asserts that the Einstein moduli space is non-empty for
each of the ten Del Pezzo 4-manifolds, it otherwise tells us nothing at all regarding
the structure of the relevant moduli spaces. For example, are these Einstein moduli
spaces connected? We currently just don’t know. However, we do at least now
have two different Riemannian characterizations of one component of each moduli
space. The first such characterization [10] involves the use of a global self-dual
harmonic 2-form:

Theorem 2. Let (M, g) be a compact oriented connected Einstein 4-manifold, and
suppose that there is a self-dual harmonic 2-form ω on (M, g) with the property
that W+(ω, ω) > 0 at every point of M , where W+ denotes the self-dual Weyl
curvature. Then M is orientedly diffeomorphic to a Del Pezzo surface, and g is
conformally Kähler. Conversely, each Del Pezzo 4-manifold M carries Einstein
metrics with this property, and these metrics precisely sweep out a single connected
component of the Einstein moduli space E (M).

This may seem reasonably satisfying, but the use of a global harmonic form
unfortunately makes this criterion rather non-local. Fortunately, a purely local
characterization was later proposed by Peng Wu, and two entirely different proofs
of this characterization were then given by Wu [14] and the present author [11]:

Theorem 3. Let (M, g) be a simply-connected compact oriented Einstein 4-mani-
fold whose self-dual Weyl curvature W+ : Λ+ → Λ+ satisfies det(W+) > 0 at every
point of M . Then M is orientedly diffeomorphic to a Del Pezzo surface, and g is
conformally Kähler. Conversely, each Del Pezzo 4-manifold M carries Einstein
metrics with this property, and these metrics precisely sweep out a single connected
component of the Einstein moduli space E (M).

In the author’s current joint work with Tristan Ozuch, these criteria have
also proved useful in classifying the Kähler-Einstein orbifolds that are Gromov-
Hausdorff limits of λ > 0 Einstein 4-manifolds. These results, which extend the
previous work of Odaka-Spotti-Sun [12], should be publicly available very soon.
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Coordinates are messy in General (Relativity)

Carla Cederbaum

(joint work with Melanie Graf, Jan Metzger)

It is customary to use the existence of an asymptotic coordinate chart with certain
properties as a venue to defining asymptotic flatness of the underlying manifold.
This has proven extremely successful for the study of (total) mass which turns out
to be independent of the choice of such an asymptotic coordinate chart and plays
a central role in many important results. The situation turns out to be drastically
different for the (total) center of mass which is not generally well-defined; this
is usually addressed by assuming seemingly suitable additional properties of the
asymptotic coordinate charts; we show that these additional properties are not a
good solution of the underlying issue(s), see Section 3. See also [3] for a review.

1. Setup and context

A general relativistic initial data set (IDS) is a (smooth) 3-dimensional Riemannian
manifold (M, g) carrying a symmetric (0, 2)-tensor field K, a function µ and a 1-
form J satisfying the Einstein constraint equations

R−|K|2 + (trK)2 = 2µ

div (K − (trK)g) = J
(1)

on M . Here, R, | · |, tr, and div denote the scalar curvature of and the ten-
sor norm, trace, and divergence w.r.t. the metric g, respectively. IDSs arise as
spacelike hypersurfaces (or “time-slices”) in 4-dimensional relativistic spacetimes
(i.e., time-orientable Lorentzian manifolds) (L, g) satisfying the Einstein equa-
tion Ric− 1

2 Rg = T, where Ric, R denote the Ricci and scalar curvature of the
Lorentzian metric g, respectively, and T is the stress-energy-momentum tensor
encoding the physical properties of the system. In this framework, the metric g of
the IDS arises as the metric induced on the spacelike hypersurfaceM ⊂ L, K plays
the role of its second fundamental form, and µ and J are suitable components of
T restricted to M called the energy density and momentum density, respectively.
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An IDS (M, g,K, µ, J) models an isolated system if it is asymptotically Eu-
clidean (AE), i.e., if there is a k ≥ 2, an ε > 0, a compact set C ⊂ M , a ball
B ⊂ R3, and a diffeomorphism Φ: M \C → R3 \B such that the decay conditions

(Φ∗g)ij = δij +Ok(r
− 1

2
−ε), (Φ∗K)ij = Ok−1(r

− 3

2
−ε)(2)

hold as r = |~x| → ∞ w.r.t. the coordinates (xi) induced on M by Φ and the
integrability conditions

Φ∗µ, (Φ∗J)i ∈ L1(R3 \B) or Φ∗µ, (Φ∗J)i = O(r−3−2ε)(3)

hold as r = |~x| → ∞, see also Section 2. The index k in the decay conditions (2),
(3) indicates that derivatives up to order k must decay as corresponding derivatives
of the argument of Ok. The decay in (2), (3) can be modeled in weighted Ck- or
Sobolev spaces.

2. Mass, energy, and linear momentum

In the 1960’s, Arnowitt, Deser, and Misner [1] gave by now well-known definitions

of (total) energy EADM ∈ R, (total) linear momentum ~PADM ∈ R3, and (total)
mass mADM ∈ R of an AE IDS in terms of flux integrals “at infinity”, e.g.

EADM =
1

16π
lim
r→∞

∫

S2
r
(0)

3
∑

i,j=1

(gij,i − gii,j)
xj

r
dAδ,(4)

where S2r(0) denotes a coordinate sphere of radius r around the coordinate origin
in the chosen asymptotic coordinates (xi) and dAδ denotes the area measure in-
duced on it by the Euclidean metric. In the 1980’s, Bartnik [2] and Chruściel [7]
proved that EADM and mADM are independent of the choice of asymptotic co-

ordinates (and that ~PADM transforms appropriately under change of asymptotic
coordinates). One can modify an example by Denissov and Soloviev [8] to see why

ε > 0 is necessary in (2): Take g = δ onM = R3\B1(0) ∋ ~x and choose new asymp-

totic coordinates ~y = ~x + a~x√
|~x|

for some a 6= 0. Then (M, δ,K = 0, µ = 0, J = 0)

is an IDS which satisfies (2), (3) for ε = 0 w.r.t. the asymptotic coordinates (yi).
Yet, one computes that EADM ∝ a, in particular EADM 6= 0 even though we are
just looking at Euclidean space which should not contain any mass/energy. On the
other hand, the conditions in (3) are motivated by the analogous integrability con-
dition(s) on the matter density of a Newtonian gravitating system in a Lebesgue
or indefinite Riemann sense, respectively.

3. Center of mass and RT conditions

By analogy to Newtonian gravity, we should expect that defining the (total) center
of mass requires to assume better integrability, namely µxi ∈ L1(R3 \ B) or µ =
O(r−4−2ε) as r = |~x| → ∞ (see [5]). From special relativity, we should expect that
the center of mass of an AE IDS should depend on the relative velocity/momentum
measured by the observer locating the center of mass, i.e., should depend on the
second fundamental form K of the IDS. Indeed, with Sakovich [6], we gave a
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definition of (total) center of mass via asymptotic foliations by spacetime constant
mean curvature surfaces with leaves ΣH satisfying H2 = H2− (trΣH

K)2 = const.,
where H denotes the mean curvature of ΣH in (M, g), trΣH

K denotes the (partial)
trace of K over ΣH, and H equals the Lorentzian length of the codimension 2 or
“spacetime” mean curvature vector. Our definition has many desirable properties
[6], yet the (coordinate) center of mass of the foliation

lim
Hց0

1

|ΣH|

∫

ΣH

~x dAδ(5)

does not always converge [5, 6, 3, 4], even when assuming additional decay of µ.
This problem is well-known to occur for other definitions of center of mass

[9, 3, 4] and has a counterpart in Newtonian gravity: Indeed, if one has a –
relativistic or Newtonian – isolated system for which the center of mass converges
w.r.t. asymptotic coordinates (xi), changing the (asymptotic) coordinates by the

implicit transformation ~y + ~a sin ln(|~y|) = ~x for a fixed vector ~a ∈ R3, ~a 6= ~0,
necessarily leads to a divergence of the center of mass w.r.t. (yi) (see [3, 4] for
more details).

The divergence issue sketched above is usually “remedied” by assuming addi-
tional asymptotic parity assumptions known as weak (resp. strong) Regge–Teitel-
boim (RT) conditions [10], requiring that for η = 1

2 (resp. η = 1), one has

goddij = O2(r
− 1

2
−η−ε), Keven

ij = O1(r
− 3

2
−η−ε), µodd, Jodd

i = O(r−3−η−ε)(6)

as r = |~x| → ∞. Here, the even and odd parts are taken w.r.t. the asymptotic
coordinates (xi). However, with Graf and Metzger [4], we prove that

(1) not all AE IDSs possess asymptotic coordinate charts satisfying the RT
conditions,

(2) the RT conditions do not transform equivariantly under asymptotic (co-
ordinate) translations.

Here, asymptotic (coordinate) translations represent a subgroup of the asymptotic
Poincaré group of the underlying asymptotically flat spacetime (L, g). This sug-
gests that the Regge–Teitelboim conditions are not the final answer to addressing
the well-definition of the center of mass. Instead, we are looking for geometric,
Poincaré equivariant (PDE) conditions selecting asymptotic coordinates (xi) on an
arbitrary AE IDS with µxi, Jjx

i ∈ L1(R3\B) with respect to which the coordinate
center of mass (5) of the STCMC-foliation will always converge.

References

[1] Richard Arnowitt, Stanley Deser, and Charles W. Misner, The dynamics of general relativ-
ity, in: Gravitation: An introduction to current research, Wiley, New York (1962), 227–265.

[2] Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math.
39(5) (1986), 661–693.

[3] Carla Cederbaum and Melanie Graf, Coordinates are messy – not only in General Relativity,
in Gravity, Cosmology, and Astrophysics – A Journey of Exploration and Discovery with
Female Pioneers, editors Betti Hartmann, Jutta Kunz, Springer, Heidelberg (2023).

[4] Carla Cederbaum, Melanie Graf, and Jan Metzger, Initial data sets that do not satisfy the
Regge–Teitelboim conditions, Work in Progress (2023).



Differentialgeometrie im Grossen 1643

[5] Carla Cederbaum and Christopher Nerz, Explicit Riemannian manifolds with unexpectedly
behaving center of mass, Ann. Henri Poincaré 16(7) (2015), 1609–1631.
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ADM mass for C
0 metrics and distortion under Ricci-DeTurck flow

Paula Burkhardt-Guim

In recent years considerable attention has been devoted to the study of Riemannian
metrics with lower scalar curvature bounds in various nonsmooth settings. In the
C0 setting, Gromov [1] showed that pointwise lower scalar curvature bounds are
preserved under uniform convergence. Somewhat more recently, the Ricci and
Ricci-DeTurck flows have emerged as useful tools in this setting, since they provide
a smoothing of the metric under which the scalar curvature has a well-behaved
evolution equation (a Ricci-DeTurck flow is a parabolic flow that is related to
a Ricci flow via pullback by a family of diffeomorphisms). For instance, in [2],
Bamler provided a Ricci-DeTurck flow proof of Gromov’s [1] result.

In light of this context, it is natural to ask whether other metric quantities
associated with the scalar curvature may be formulated using only C0 data of the
metric, and whether anything can be learned about these quantities by letting
the metric evolve by Ricci or Ricci-DeTurck flow. One such quantity is the ADM
mass. Recall that if (Mn, g) is a smooth Riemannian manifold and Φ : M \K →
Rn \B(0, 1) is a smooth coordinate chart for M , where K is a compact subset of
M , then the ADM mass is given by:

(1) mADM (g) := lim
r→∞

1

4π(n− 1)ωn−1

∫

S(r)

n
∑

i=1

(∂igij − ∂jgii)ν
jdS,

where the coordinate expression in the integrand corresponds to the coordinates
Φ,

S(r) = {x ∈ Rn : (x1)2 + · · ·+ (xn)2 = r2},
ν denotes the outward unit normal to S(r) with respect to the Euclidean metric,
ωn−1 denotes the Euclidean volume of the (n − 1)-dimensional unit sphere, and
dS denotes the Euclidean surface measure on S(r). Henceforth, if we wish to
emphasize the coordinate chart Φ, then we write mADM (g,Φ).

A priori it is not clear whether the limit (1) should always exist, or whether the
limit depends on the choice of Φ, but Bartnik [3, Theorems 4.2 and 4.3] (see also [4]
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for the asymptotically Minkowski case) showed that under certain conditions the
ADM mass does indeed exist, is finite, and is independent of choice of coordinate
chart:

Theorem 1 (cf. [3]). Let (Mn, g) be a smooth Riemannian manifold. Suppose
that for some compact set K ⊂ M there exists a coordinate chart Φ : M \ K →
Rn \B(0, 1) for M such that, for some τ > 1

2 (n− 2), we have

(2) |(Φ∗g)ij − δij |
∣

∣

x
= O(|x|−τ

δ ),

(3) |∂k(Φ∗g)ij |
∣

∣

x
= O(|x|−τ−|k|

δ ) for |k| = 1, 2,

where δ denotes the Euclidean metric and k is a multiindex, and

(4)

∫

M

|R(g)| <∞,

where R(g) denotes the scalar curvature of g. Then the limit from (1) with respect
to Φ exists, is finite, and is independent of choice of Φ satisfying (2) and (3).

Henceforth we will say that a continuous Riemannian metric is C0-asymptotically
flat if, for some smooth coordinate chart, it satisfies (2) but not necessarily (3). In
view of the well-known Riemannian Positive Mass Theorem, we henceforth impose
the condition that the C0 Riemannian metric have nonnegative scalar curvature
“in the sense of Ricci flow”. Broadly speaking, this condition is a pointwise con-
dition for C0 metrics, which, when it holds globally, implies that a Ricci-DeTurck
flow starting from the C0 metric will have nonnegative scalar curvature (in the
classical sense) for all positive times; see [5] and [6] for the precise statement.

Towards the C0 setting, observe that mADM (g,Φ) is computed by integrat-
ing over a single coordinate sphere, but when the limit mADM (g,Φ) exists, one
may alternatively compute mADM (g,Φ) by integrating over a family of spheres
weighted by some test function, since, if ϕ : R → R is any smooth function with
∫ 1.1

.9
ϕ(ℓ)dℓ 6= 0, then

∫ 1.1r

.9r ϕ( ℓr )
∫

§(ℓ)
∑n

i=1(∂igij − ∂jgii)ν
jdSdℓ

4π(n− 1)ωn−1r
∫ 1.1

.9 ϕ(ℓ)dℓ

=

∫ 1.1

.9
ϕ(ℓ)

∫

§(ℓr)
∑n

i=1(∂igij − ∂jgii)ν
jdSdℓ

4π(n− 1)ωn−1

∫ 1.1

.9
ϕ(ℓ)dℓ

−−−→
r→∞

mADM (g,Φ).

(5)

The significance of the left-hand side of (5) is that it may be expressed solely in
terms of the C0 data of g after integrating by parts; we denote the result of this
calculation byMC0(g,Φ, ϕ, r); see [6, Definition 2.1] for the details. In order to get
a well-defined limit at infinity we replace ϕ with a family of functions ϕr that vary
with r. Specifically, the ϕr are time-zero slices of an evolving family of smooth
functions satisfying a particular backwards evolution that is chosen in order to
bound the distortion of the “C0 local mass” under Ricci-DeTurck flow; see [6,
Lemma 2.6]. We summarize this fact in the following theorem (see [6, Theorem
2.9] for the precise statement):
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Theorem 2. Let Mn be a smooth manifold, and g a continuous Riemannian

metric on M . Suppose there is a smooth coordinate chart Φ :M \K → Rn\B(0, 1)
for M , where K is some compact set. For any smooth cutoff function ϕ : R → R≥0

with Supp(ϕ) ⊂⊂ (.9, 1.1) and for any r > 0, there exists a smooth family of

functions (ϕr)r>0 : R → R such that ϕr C∞

−−−→
r→∞

ϕ, and there exists a quantity

MC0(g,Φ, ϕr, r), depending on only the C0 data of Φ∗g, for which the following is
true:

(1) If g is C2 andmADM (g,Φ) exists, thenmADM (g,Φ)= limr→∞MC0(g,Φ,ϕr, r).
(2) If g has nonnegative scalar curvature in the sense of Ricci flow on M \

K and the decay condition (2) holds for Φ for some τ > (n − 2)/2, then
limr→∞MC0(g,Φ, ϕr, r) exists, is either finite or +∞, and is independent of
choice of such Φ and ϕ. Moreover, this limit is finite if and only if a particular
condition involving the scalar curvature of time slices of Ricci-DeTurck flows
associated to g is satisfied.

Furthermore, in the case that M has multiple ends, the result holds if M \ K is

replaced by a neighborhood of an end of M that is diffeomorphic to Rn \B(0, 1).

Theorem 2 follows from a monotonicity result for the C0 local mass; see [6,
Theorem 2.11]:

Theorem 3. Let M be a smooth manifold and g a C0 metric on M . Suppose that
U1 and U2 are open subsets of M for which, for m = 1, 2, there exist coordinate
charts Φm : Um → Rn \B(0, 1) that determine the same end of M and such that,
for some τm > 1

2 (n − 2), (2) holds for Φm and τm. If g has nonnegative scalar
curvature in the sense of Ricci flow and ϕm ≥ 0 are smooth cutoff functions with
Supp(ϕm) ⊂⊂ (.9, 1.1), then, for all sufficiently large r,

MC0(g,Φ1, ϕ200r
1 , 200r) ≥MC0(g,Φ2, ϕr

2, r)− cr−ω

for some ω > 0, where c and ω do not depend on r.

Question 1. How does limr→∞MC0(g,Φ, ϕr, r) relate to Huisken’s isoperimetric
mass [7, Definition 11] and Jauregui’s isocapacitary mass [8, Definition 4]?

Question 2. If g satisfies the hypotheses of the second item in Theorem 2 and
moreover g has nonnegative scalar curvature in the sense of Ricci flow everywhere
on M , do we have limr→∞MC0(g,Φ, ϕr, r) ≥ 0?

References

[1] M. Gromov, Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math 12
(2014), 1109–1156.

[2] R. H. Bamler, A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature,
Math. Res. Lett. 23 (2016), 325–337.

[3] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39
(1986), 661–693.
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Minimal submanifolds and mean curvature flows of codimension 2 via
adiabatic limits

Daniel Stern

(joint work with Davide Parise and Alessandro Pigati)

Since the 1970s, the correspondence between Allen–Cahn-type energies Eǫ(u) :=
∫

M
ǫ
2 |du|2+

W (u)
ǫ for scalar-valued functions u :M → R and the (n−1)-area func-

tional for hypersurfaces has inspired many developments in geometry and PDE.
While early results emphasized convergence of minimizers uǫ to area-minimizing
hypersurfaces as ǫ → 0 in a BV sense, in the ’90s, a series of papers confirmed
a long-suspected link between the gradient flow of Eǫ and the mean curvature
flow of hypersurfaces, culminating in Ilmanen’s work [10] proving convergence of

solutions to the parabolic Allen–Cahn equations ∂uǫ

∂t = ∆uǫ − W ′(uǫ)
ǫ2 to (n − 1)-

Brakke flows in a measure-theoretic sense. In the decades since, Ilmanen’s results
have been refined in various directions, e.g. in Tonegawa’s work showing that the
limiting hypersurfaces appearing in those weak mean curvature flows come with
integer multiplicity–i.e., they are Brakke flows of integral varifolds [20]. Recently,
the stationary case of these results–giving convergence of critical points of Eǫ to
minimal hypersurfaces–has been exploited to great effect by the geometry com-
munity to study the space of minimal hypersurfaces in Riemannian manifolds. In
particular, work of Guaraco [8] and Gaspar–Guaraco [7] uses the variational the-
ory for the functionals Eǫ as an appealing regularization of the GMT min-max
framework of Almgren–Pitts for producing minimal hypersurfaces, while work of
Chodosh–Mantoulidis provides some dramatic geometric applications, including
the first proof of the multiplicity one conjecture for min-max minimal surfaces in
3-manifolds [4] and surprising regularity results for min-max geodesic networks on
surfaces [5].

It is natural to ask whether any meaningful analogs of this correspondence can
be found in higher codimension. In the late 1990s and early 2000s, a series of
papers (e.g., [11, 12, 1, 2]) suggested a possible analog in codimension two via

the formally similar Ginzburg–Landau energies EGL
ǫ (u) :=

∫

M
|du|2 + (1−|u|2)2

ǫ2

for complex–valued maps u : M → C. The results of [11, 12, 1] show that crit-
ical points uǫ subject to the natural energy bound Eǫ(uǫ) = O(| log ǫ|) give rise
as ǫ → 0 to stationary rectifiable (n − 2)-varifolds, with [2] proving a parabolic
analog. However, in spite of the formal similarities with the scalar Allen–Cahn
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energies, the behavior of solutions to the elliptic or parabolic Ginzburg–Landau
equations differs fundamentally from that of their Allen–Cahn counterparts: most
significantly, while the energy of Allen–Cahn solutions uǫ is highly concentrated
in an O(ǫ)-neighborhood of the zero set u−1

ǫ {0}, the energy of Ginzburg–Landau
solutions vǫ spreads over a large annular region around v−1

ǫ {0}, giving the energy a
more non-local flavor, with nontrivial interactions between distant components of
v−1
ǫ {0}. One concrete consequence of these qualitative differences can be seen in
the problem of integrality: while the results of [9, 20] show that the limit hypersur-
faces obtained from solutions of the elliptic and parabolic Allen–Cahn equations
have the structure of integral varifolds, the results of [1, 2] only show rectifiability
in the Ginzburg–Landau setting, leaving the question of their integrality open.
Last spring, with Pigati, we showed that in fact integrality fails in general even
in the stationary case, exhibiting families of critical points of EGL

ǫ for which the
density of the limit varifold may take prescribed values anywhere in the range
{π} ∪ [2π,∞) [17].

On the other hand, in a series of papers with Pigati and Parise–Pigati [16,
14, 15], we identified a compelling analog of the Allen-Cahn–minimal hypersur-
face correspondence in codimension two, replacing the complex Ginzburg–Landau
functionals with the self-dual U(1)-Higgs functionals from gauge theory, defined
for sections u ∈ Γ(L) and hermitian connections ∇ on Hermitian line bundles
L→M by

Eǫ(u,∇) :=

∫

M

|∇u|2 + ǫ2|F∇|2 + (1− |u|2)2
4ǫ2

.

Finite-energy solutions over R2 were classified by Taubes [18, 19], and solve a spe-
cial first-order system known as the vortex equations ; solutions of this first-order
system were later studied on higher-dimensional Kähler manifolds as well, where a
correspondence was exhibited between the moduli space of solutions and the space
of complex hypersurfaces [3, 6]. In [16], Pigati and I showed that bounded-energy
critical points of Eǫ on arbitrary manifolds converge in a measure-theoretic sense
to stationary, integral varifolds of codimension two, with applications to the exis-
tence theory for minimal varieties of codimension two. In many ways the analysis
is strikingly similar to that of [10, 9] in the Allen–Cahn setting, with a delicate bal-

ancing between the Yang–Mills term ǫ2|F∇|2 and the nonlinear potential (1−|u|2)2
4ǫ2

playing a role analogous to the balancing between Dirichlet and potential terms in
[10, 9]. Later, with Parise [14], we established a Γ-convergence theory analogous
to that of [13] in this setting, showing convergence of the functionals Eǫ to the
area functional on integral (n− 2)-cycles at the variational level.

In forthcoming work with Parise and Pigati [15], we demonstrate convergence of
gradient flows (uǫt,∇ǫ

t) for the energy Eǫ to codimension-two integral Brakke flows
in a measure-theoretic sense–analogous in spirit to the work of Ilmanen [10] and
Tonegawa [20] in the Allen–Cahn setting. Together with the Γ-convergence theory
developed in [14], this can be used to produce nontrivial weak mean curvature
flows starting from any initial integral cycle of codimension two, similar to those
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produced by Ilmanen via elliptic regularization. With an eye to geometric appli-
cations, it would be interesting to understand whether this approximation can be
used to obtain any kind of gauge-theoretic regularization for the Lagrangian mean
curvature flow of surfaces in Kähler-Einstein manifolds of complex dimension two.
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Towards canonical locally conformally Kähler metrics

Cristiano Spotti

(joint work with Daniele Angella, Simone Calamai, Francesco Pediconi)

Finding interesting notions of best metrics for non-Kähler complex manifolds
turned out to be a quite subtle problem, in particular due to the many possible
different generalizations of familiar notions in Kähler geometry. Partially guided
by the idea that canonical metrics should be of some help in the study of moduli
spaces of complex manifolds, in [1] we investigated an extension of the infinite
dimensional Donaldson-Fujiki moment map picture in the so-called locally con-
formally Kähler case, introducing a possible notion of canonical metrics in this
setting. In particular, it’s worth noting that the co-differential of the Lee form
(as well as the Chern scalar curvature) appears in the proposed equation for the
metric. Moreover, as a by-product of this setup, we also obtained a Futaki type
obstruction, which may lead to notion of stability.
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Epsilon regularity for spaces with scalar curvature lower bounds

Robin Neumayer

A central theme in geometric analysis is the study of the structure and a priori
regularity of a Riemannian manifold when certain constraints are imposed on the
curvature tensor. Following a remarkably successful program in the past three
decades studying (lower and two-sided) bounds on the Ricci curvature, there has
been interest in recent years in the structure and regularity of manifolds that only
have bounds on the scalar curvature.

A first step toward develop such a theory is an epsilon regularity theorem,
which in the context of lower bounds on scalar curvature says: if a Riemannian
manifold (M, g) has Rg ≥ −ǫ and is “ǫ-flat,” then locally it is geometrically close
to Euclidean space, where the notions of ǫ-flat and geometric closeness and defined
appropriately.

For Riemannian manifolds with almost-Euclidean lower bounds on Ricci curva-
ture, ǫ-flatness is measured by the volumes of balls via a non-collapsing assumption
volg(Bg(x, 1)) ≥ (1 − ǫ)ωn. Here ωn is the volume of a Euclidean unit ball. By
Bishop-Gromov volume comparison, if such a non-collapsing condition holds and
Ricg ≥ −ǫg in Bg(x, 1) for ǫ small enough, then in fact

(1) (1 − cnǫ)ωnr
n ≤ volg(B(x, r)) ≤ (1− cnǫ)ωnr

n for all r ∈ (0, 1] .

For spaces with (weaker) almost-Euclidean lower bounds on scalar curvature, it
is reasonable to expect that a stronger form of noncollapsing must be imposed to
obtain an epsilon regularity theorem. One notion of non-collapsing is formulated
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in terms of the Perelman entropy, a one-parameter family of optimal constants
µ(g, τ) for a log-Sobolev inequality on M at varying scales τ1/2 > 0, introduced
by Perelman [4] as a monotone quantity for the Ricci flow. For any complete
Riemannian manifold (M, g), infτ>0 µ(g, τ) ≤ 0 with equality if and only if (M, g)
is isometric to Euclidean space. The assumption infτ∈(0,2] µ(g, τ) ≥ −ǫ is another
notion of non-collapsing or ǫ-flatness. It relates to volume non-collapsing in the
following way: for any ǫ > 0, there exists δ > 0 such that if (M, g) is complete
with bounded curvature and has Rg ≥ −δ and infτ∈(0,2] µ(g, τ) ≥ −δ, then the
volume lower bound in (1) holds. Here Rg is the scalar curvature.

With Lee and Naber in [1] (see also [2]), we investigate complete Riemannian
manifolds with almost nonnegative scalar curvature and almost-Euclidean Perel-
man entropy. We construct examples in dimensions n ≥ 4 showing that distance
functions are not uniformly controlled under these assumptions and thus “geomet-
ric closeness” in an epsilon regularity theorem cannot hold with respect to a metric
space distance such as the Gromov-Hausdorff distance or intrinsic flat distance in
this context. Instead, we prove an ǫ-regularity theorem that measures geometric
closeness with respect to a new notion called the dp distance that is based on the
distance between W 1,p Sobolev spaces.

These examples show dp closeness is in a sense optimal, However, this is an
atypical notion of regularity and it is important to understand under what addi-
tional assumptions the geodesic distance is controlled and thus more conventional
regularity estimates hold. A shared feature of the examples we construct is that
the degeneration of distance functions leads to blowup of the volumes of geodesic
balls. This suggests the possibility of imposing a notion of ǫ-flatness that implies
both upper and lower bounds on the volumes of balls along the lines of (1).

Indeed, in [3], we prove a different type of ǫ-regularity result. Here, for a com-
plete Riemannian manifold (M, g), in addition to almost-Euclidean lower bounds
on the scalar curvature, Rg ≥ −ǫ, and Perelman entropy, infτ∈(0,2] µ(g, τ) ≥ −ǫ,
we assume an almost-Euclidean upper bound on volumes of balls: volg(Bg(x, r)) ≤
(1 + ǫ)ωnr

n for all x ∈ M and r ∈ (0, 2]. These assumptions imply that geodesic
balls of radius r ∈ (0, 1] are Gromov-Hausdorff close and bi-W 1,p homeomorphic
to Euclidean balls. The Gromov-Hausdorff closeness can alternatively be deduced
from work of B. Wang [5], while the W 1,p estimates are based on a decomposition
theorem shown in [1]. We also prove a compactness and limit space structure
theorem under the same assumptions.
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Positive scalar curvature on manifolds with boundary and
their doubles

Jonathan Rosenberg

(joint work with Shmuel Weinberger)

In high dimensions, there is now a good obstruction theory for psc (positive scalar
curvature) Riemannian metrics. For example, it is known that on a closed con-
nected spin manifold Mn with n ≥ 5, the question of whether or not M admits a
psc metric only depends on the image in kon(Bπ1(M)) of the ko-fundamental class
[M ] ∈ kon(M) under the classifying map for the universal cover c : M → Bπ1(M).
And on a closed oriented totally non-spin manifold (totally non-spin means that
there are no spin covers), the same holds with kon replaced by ordinary integral ho-
mology Hn. In some nice cases, one knows the GLR (Gromov-Lawson-Rosenberg)
conjecture that in the spin case, the vanishing of c∗([M ]) is both necessary and
sufficient for M to admit a psc metric.

So we wanted to see if there is a corresponding theory for compact manifolds X
with non-empty boundary. In this case, imposing boundary conditions is essential,
since Gromov observed a long time ago that if ∂X 6= ∅, then X always admits a
Riemannian metric on X with positive sectional curvature, albeit with no good
properties near the boundary. Thus we consider two different boundary conditions:

(1) the metric on X is required to be a product metric dt2 + g∂X in a neigh-
borhood of ∂X ; or

(2) the boundary ∂X is required to have positive mean curvature H (with the
sign convention that X is mean convex, or that pushing ∂X away from
the interior makes the (n− 1)-dimensional area increase).

With regard to boundary condition (1), there is a very satisfactory obstruction
theory.

Theorem 1 ([4]). The question of whether or not a compact connected spin man-
ifold X of dimension n ≥ 6 with non-empty boundary admits a psc metric which
is a product metric in a neighborhood of the boundary only depends on the image
of the ko-fundamental class [X, ∂X ] in kon(BΓ, BΛ) under the classifying map c.
Here Γ = π(X) and Λ = π(∂X) are the fundamental groupoids. (Note that we
need groupoids and not just groups since ∂X can be disconnected.) If X is oriented
and totally non-spin, the same holds with kon replaced by Hn.

In many cases (when everything is spin), one can deduce from the index theorem
of Chang, Weinberger, and Yu, or of Schick and Seyedhosseini [5], that vanishing
of the image of [X, ∂X ] in kon(BΓ, BΛ) is both necessary and sufficient for a
existence of a psc metric on X with product structure near the boundary.
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Clearly, if ∂X does not admit a psc metric, then boundary condition (1) can
never be satisfied. However, boundary condition (2) is weaker, in that according
to Bär and Hanke [1, Corollary 40], if ∂X admits a psc metric g0, then existence
of solutions to condition (1) restricting to g0 on the boundary is equivalent to
existence of solutions to condition (2) restricting to g0 on the boundary. But when
∂X does not admit a psc metric, it may still be possible to satisfy condition (2).

In [2, Theorem 5.7], it was shown that existence of a solution to boundary
condition (2) implies that M = Dbl(X, ∂X), the double of X along its boundary,
admits psc.

Conjecture 1 (Doubling Conjecture). The converse to the Gromov-Lawson The-
orem holds, in that existence of a psc metric onM = Dbl(X, ∂X) implies existence
of a psc metric on X with H > 0 on the boundary.

Our other main results are proofs of this in many cases, using surgery techniques
coming from [3].

1. Open Problems

(1) Is the Doubling Conjecture always true? In particular, does it fail when X =
Y × [0, 1], Y a smooth simply connected non-spin 4-manifold with a non-zero
Seiberg-Witten invariant (so that Y does not admit a psc metric)? Note that
in this case, M = Dbl(X, ∂X) = Y × S1 does admit a psc metric, so our
Theorem 1 about obstructions to product-type boundary conditions definitely
fails in this case.

(2) What can one say about the homotopy type of the space of psc metrics on
X satisfying boundary conditions (1) or (2)? A bit is known at present, but
there is a lot more work to be done.
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Volume and macroscopic scalar curvature

Roman Sauer

(joint work with Sabine Braun)

We report on the following result in [2] which is the non-sharp macroscopic cousin
of the well-known conjecture that rationally essential manifolds do not admit a
metric of positive scalar curvature (the stateminent for R = 1 readily implies the
one for all R > 0 by scaling the metric). Let V

(M̃,g̃)
(R) denote the maximal volume

of an R-ball on the universal cover of a Riemannian manifold (M, g).

Theorem. There is a dimensional constant ǫ(d) > 0 with the following property.
For every rationally essential Riemannian manifold (M, g) of dimension d and
every R > 0 we have

V
(M̃,g̃)

(R) > ǫ(d) · Rd.

If ǫ(d) could be chosen to be the volume of a Euclidean d-ball, then the above
conjecture would follow. A closed oriented manifold is rationally essential if its
classifying map sends the fundamental class to a non-zero class in rational ho-
mology. Guth proves the above theorem in [3] for closed aspherical manifolds.
The extension to rationally essential manifolds needs a number of new tools from
topological dynamics of actions on Cantor spaces and equivariant topology.

We also report on recent work of H. Alpert who made the constant ǫ(d) explicit:
ǫ(d) = 1/d!. To this end, she combined the above ideas from topological dynamics
with recent work of Papasoglu [4].
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On the Hamilton-Lott conjecture

Alix Deruelle

(joint work with Felix Schulze and Miles Simon)

In this report, we consider smooth solutions (Mn, g(t))t∈(0,T ) to Ricci flow defined
on smooth, connected manifolds satisfying for t ∈ (0, T ),

(1) |Rm(g(t))| ≤ c0
t

and Ric(g(t)) ≥ −g(t),

where c0 is a positive time-independent constant. This setting has been shown to
occur in many situations, one prominent one being that of expanding solitons with
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non-negative curvature operator coming out of cones with non-negative curvature
operator: see for example [11], [6], [12], [1].

Using [12, Lemma 3.1], we see that the above setting guarantees that the dis-
tances dt := d(g(t)) on M converge locally in a strong sense. More explicitly,
assuming (1), we have:

for all x0 ∈M, there exists a connected open set Ux0
⊂M and S(x0) > 0

s.t. et−sds ≥ dt ≥ ds − c0
√
t− s for 0 < s ≤ t < S(x0), on Ux0

,
(2)

and hence there exists a unique limit d0 := limt→0 dt on Ux0
, which is attained

uniformly, such that (Ux0
, d0) is a metric space. Note that if for different points

x0, y0 ∈ M we obtain d0 = limt→0 dt on Ux0
and d̃0 = limt→0 dt on Uy0

then we

have d0 = d̃0 on Ux0
∩ Uy0

, since they both are obtained as the uniform limit of
d(g(t)) as t → 0. For this reason we do not include a quantifier depending on
x0 in the definition of d0 := limt→0 dt on Ux0

. We are interested in the following
problem:

Problem 1. Let (Mn
i , gi(t))t∈(0,T ), i = 1, 2 be two smooth, connected (possibly

incomplete) Ricci flows satisfying (1) and (2) and converging locally to the same
metric space, up to an isometry as t tends to 0, that is: limt→0 d(g1(t)) = d0,1
on Up,1 limt→0 d(g2(t)) = d0,2, on Up,2 and ψ0(Up,1) = Up,2, where ψ0 : Up,1 →
Up,2 = ψ0(Up,1) is a homeomorphism with ψ∗

0(d0,2) = d0,1. Then we are concerned
with the following problems:

What further assumptions on the regularity of d0 ensure that

• there is a suitable gauge in which we can compare the solutions (g1(t))t∈(0,T )

and (g2(t))t∈(0,T ) effectively?
• the solutions (g1(t))t∈(0,T ) and (g2(t))t∈(0,T ) remain close to one another for t
close to zero in this gauge?

Our fundamental regularity assumption on d0 is the following Reifenberg property:
(3)
for all p ∈M, for all x ∈ Up, every tangent cone at x of (Up, d0) is (R

n, d(δ)),

where d(δ) stands for Euclidean distance. In fact, if (M,d0) is the local limit of a
non-collapsing sequence of complete, smooth Riemannian manifolds with bounded
curvature and Ricci curvature uniformly bounded from below, this condition can
be turned into a uniform Reifenberg condition,

for all p ∈M and for all ǫ > 0, there exist r > 0 and a neighborhood Up ⊂⊂M

such that dGH(Bs−1d0
(x, 1),B(0, 1)) < ǫ, for all s < r, and for all x ∈ Up

such that Bd0
(x, s) ⊂⊂ Up.

(4)

Assumption (3) is infinitesimal and means that there are no singular points in
(Up, d0) for any p ∈ M . However, it does not necessarily mean that the distance
is induced by a Hölder continuous Riemannian metric, let alone a Lipschitz Rie-
mannian metric: see [5, Theorem 1.2] for such a counterexample.
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We assume as a further regularity assumption on d0 that there is a bi-Lipschitz
chart around each point in (Up, d0) given by distance coordinates, and that the
Lipschitz constant is ǫ0 close to 1:

For any x0 ∈ Up, there is a radius R = R(x0) > 0 such that Bd0
(x0, 4R) ⊂⊂ Up

and points a1, . . . , an ∈ Bd0
(x0, 3R) such that the map

D0 :

{

Bd0
(x0, 4R) → Rn

x → (d0(a1, x)− d0(a1, x0), . . . , d0(an, x)− d0(an, x0)),

is a (1 + ǫ0) bi-Lipschitz homeomorphism on Bd0
(x0, 2R).

(5)

Assumption (5) is local and always holds true in the case that (Up, d0) is an
Alexandrov space with curvature bounded from below satisfying (3): see [2, The-
orem 10.8.4]. For example, this would be the case, if we assume (3) and replace
the lower bound on the Ricci curvature in (1), by secg(t) ≥ −1, t ∈ (0, T ), where
sec refers to sectional curvature.

Our main result is an initial stability estimate which addresses the question posed
in Problem 1: see [8, Theorem 1.2].

As an application of this result, we show that the approach of Lott [10] leads
to a resolution of a conjecture posed by Hamilton [4, Conjecture 3.39] and Lott
[10, Conjecture 1.1] provided the metric has bounded curvature.

Recall that a Riemannian manifold (Mn, g) is uniformly Ricci pinched if Ric(g)≥
0 and there exists a constant c > 0 such that on M ,

Ric(g) ≥ cRgg,

in the sense of quadratic forms where Rg denotes the scalar curvature of the metric
g. Notice that such a condition is invariant under rescalings.

Theorem 1. Let (M3, g) be a smooth complete Riemannian manifold with bounded
and uniformly pinched Ricci curvature. Then (M3, g) is either smoothly isotopic
to a spherical space form or flat. In particular, if M is non-compact then (M3, g)
is flat.

Hamilton introduced the Ricci flow in [9], and in the case that (M3, g) is com-
pact with non-negative uniformly pinched Ricci curvature and the scalar curvature
is positive at least at one point, the paper shows that the volume preserving Ricci
flow of (M3, g) exists for all time and converges smoothly to a spherical space
form. In the case that (M3, g) is compact and has non-negative uniformly pinched
Ricci curvature and the scalar curvature is zero everywhere, then M3 is Ricci-flat
and hence flat. That is, the results of Hamilton imply Theorem 1 immediately in
the case that M3 is compact.

In case (M3, g) is non-compact with bounded curvature, Lott [10] has proven
Theorem 1 under the assumption that the sectional curvature of g has a lower
bound decaying at least quadratically in the distance from a fixed point, improving
a result of Chen-Zhu [3] where it is assumed that the metric g has non-negative
sectional curvature. Finally, Theorem 1 can be interpreted as an extension of
Myers’ theorem in dimension 3.
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Holonomy of limits of Einstein 4-manifolds

Tristan Ozuch

(joint work with Claude LeBrun)

Recent developments [Biq13, Biq16, Ozu22a, Ozu22b] have led to a complete re-
construction of the moduli space of Einstein 4-metrics in a Gromov-Hausdorff
(GH) neighborhood of any noncollapsed singular metric.

This new description gave more structure to the moduli space of Einstein 4-
manifolds close to its boundary, [Ozu20].

This arbitrarily precise reconstruction has been use to show that not every singular
(or synthetic in Naber’s sense) Einstein 4-metric could be a limit of smooth Ein-
stein 4-manifolds, [Ozu21b]. Spherical and hyperbolic orbifolds with the simplest
singularities cannot be limits of Einstein 4-manifolds in the Gromov-Hausdorff
sense. A natural question becomes: what are the possible limits of smooth Ein-
stein 4-manifolds? Do these limits have a specific structure?

In [Ozu21a] indications that being Kähler may be a necessary condition for an
Einstein singular space to be a limit of smooth Einstein 4-manifolds with expected
topology. The natural question is then: Can any Kähler-Einstein singular metric
be desingularized by Einstein 4-manifolds? It is known [Kol07, OSS16] that this is
not the case for some Kähler-Einstein limits. Can this still be achieved by Einstein
metrics that are not necessarily Kähler, [And10]?
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With Claude LeBrun, we however show that the Kähler condition is not sufficient
when the scalar curvature is positive. Specifically, our work demonstrates that if
a real Einstein 4-metric is close to a conformally Kähler, Einstein orbifold with
positive scalar curvature, it must be conformally Kähler, which rules out most
desingularizations.

To prove this, we combine the above reconstruction and a flexible criterion
developed by Wu [Wu21] and improved by LeBrun [LeB21] to detect Kähler-
Einstein metrics among Einstein metrics: an Einstein metric with positive scalar
curvature is conformally Kähler if and only if detW+ > 0 at every point, where
W+ is the selfdual part of the Weyl curvature seen as an endomorphism on 2-forms.
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Morse index of minimal surfaces in R3 and the half-space

Shuli Chen

In this talk I report about my work [2] on the study of the Morse index of min-
imal surfaces in R3 and minimal surfaces with free boundary in a half-space of
R3. We observe that for a minimal surface with free boundary in a half-space,
the Neumann index can be bounded from below by the sum of the Dirichlet index
and the Dirichlet nullity. We use this to answer a question of Ambrozio, Buzano,
Carlotto, and Sharp [1] concerning the non-existence of index two embedded min-
imal surfaces with free boundary in a half-space. Using the reflection symmetry,
we also give a simplified proof of a result of Chodosh and Maximo [3] showing
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the index of the Costa deformation family M2,x, x ≥ 1 is bounded below by 4.
Here M2,1 denotes the Costa surface. More generally, for each k ≥ 2, the surfaces
Mk,x, x ≥ 1 denote the 1-parameter family of embedded minimal surfaces of genus
k − 1 with three ends constructed by Hoffman–Meeks. Lastly, we discuss about
work in progress about computing the index of Mk,x when the parameter x is
sufficiently large.
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Kähler–Einstein metrics on families of Fano varieties

Chung-Ming Pan

(joint work with Antonio Trusiani)

Fano varieties and their families are central objects in complex geometry. They
often have rich geometry as they can have many interesting birational models, and
they are also terminal objects in the classification theory of projective varieties.
Moreover, singular Fano varieties arise naturally as degenerations of Fano mani-
folds from a moduli space point of view. The construction of well-behaved moduli
spaces of Fano varieties has recently been advanced by studying Fano Kähler–
Einstein metrics.

The resolution of the Yau–Tian–Donaldson (YTD) correspondence by Chen–
Donaldson–Sun [CDS15] established a deep connection between the existence of
Kähler–Einstein metrics on Fano manifolds and an algebro-geometric notion called
“K-stability”. On mildly singular varieties, it is still possible to define “singular”
Kähler–Einstein metrics. These metrics are genuine Kähler–Einstein metrics on
the smooth part of varieties and have “bounded potentials” near the singular
locus. Specifically, on a Q-Fano variety X , considering a fixed Kähler metric
ω ∈ c1(−KX), singular Kähler–Einstein metrics are obtained by solving the fol-
lowing complex Monge–Ampère equation:

(ω + ddcϕ)n = e−ϕµ and ϕ ∈ PSH(X,ω) ∩ L∞(X),

where µ is an adapted probability measure associated to ω (i.e. Ric(µ) = ω). The
Kähler–Einstein problem remains meaningful ifX has Kawamata log terminal (klt)
singularities, wherein the measure µ possesses finite mass near the singular set.
In the singular context, pluripotential theory has led to significant breakthroughs
in understanding the singular Kähler–Einstein problem, as the contributions in
[BBEGZ19, BBJ21, LTW22, Li22].
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As mentioned earlier, the degenerate families of Fano varieties are important in
the (relative) Minimal Model Program and moduli theory. Therefore, it becomes
highly desirable to comprehend the behavior of singular Kähler–Einstein metrics
in families of Fano varieties.

In the sequel, we focus on one-parameter families of Q-Fano varieties. More pre-
cisely, we assume that the family π : X → D fulfills the following setting:

Setting. Let X be an (n+1)-dimensional Q-Gorenstein variety and let π : X → D

be a proper holomorphic surjective map with connected fibres. In addition, suppose
that −KX/D is relatively ample, the central fibre X0 is klt, and Aut(X0) is finite.

In [PT23], we first provide an analytic proof of the (Euclidean) openness of the
existence of unique Kähler–Einstein metric:

Theorem 1 ([PT23, Thm. A]). Under Setting, if the central fibre X0 admits a
Kähler–Einstein metric, then so do the nearby fibres.

In the case where the family π : X → D is smooth, Koiso [Koi83] showed
the openness using an implicit function theorem argument. For families that are
smoothings of the central fibre, Spotti, Sun and Yao [SSY16, Thm. 1.1] estab-
lished the openness through a sophisticated cone metrics technique originally in-
troduced by Chen–Donaldson–Sun. However, these two approaches strongly use
the smoothness of generic fibres and they are hard to be extended to the case of
a general family as considered in our situation. Therefore, we resort to the vari-
ational approach and pluripotential theory, which have successfully addressed the
YTD conjecture in the singular setting to proceed with our proof.

Furthermore, the finiteness of the automorphism group on the central fibre is an
important hypothesis as there are arbitrary small deformations of the Mukai–
Umemura threefold which do not admit Kähler–Einstein metrics (see [Tia97,
Don07]).

From the algebraic perspective, recently, the (Zariski) openness of K-stability has
been established by Blum and Liu [BL22]. As a consequence, the openness of a
unique Kähler–Einstein metric can be deduced by combining the openness of K-
stability with the singular YTD correspondence [LTW22]. Notably, our analytic
approach to achieve Euclidean openness does not depend on the aforementioned
two deep results.

Our results go beyond by establishing uniform a priori estimates on the Kähler–
Einstein potentials, and the continuous variation of the Kähler–Einstein currents:

Theorem 2 ([PT23, Thm. B]). Under Setting, letting ω ∈ c1(−KX/D) be a Kähler
metric, there exists a uniform constant C > 0 such that for all t sufficiently close
to 0,

osc
Xt

ϕt < C.

where ϕt ∈ PSH(Xt, ωt)∩L∞(Xt) is the Kähler–Einstein potential with respect to
the Kähler metric ωt := ω|Xt

.
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In addition, (ϕt)t varies smoothly away from the singular locus, and for all
k ∈ {0, 1, · · · , n}, the following map is continuous near 0 ∈ D

t 7−→ ωk
KE,t ∧ [Xt] ∈ (D(n−k,n−k)(X ))′,

where (D(n−k,n−k)(X ))′ is the space of currents of bidimension (n− k, n− k).

To accomplish Theorem 1 and 2, we introduce and explore a notion of conver-
gence for sequences of quasi-plurisubharmonic functions on a sequence of fibres.
Roughly speaking, the convergence is defined by patching functions along local
isomorphisms on the smooth part while overlooking the singular locus. Subse-
quently, we analyze the upper semi-continuity of the energy functional and the
continuity of weighted integration of the adapted measures with respect to this
convergence. These two essential properties form the lower semi-continuity of the
Ding functional, which plays a crucial role in our proofs.
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Uniqueness and Morse index of minimal surfaces in the sphere and ball

David Wiygul

(joint work with Alessandro Carlotto, Mario B. Schulz, Nikolaos Kapouleas)

I will present some recent work with Alessandro Carlotto and Mario Schulz that
partially complements earlier work with Nicos Kapouleas, which I will also review.
Specifically, I will review the result [5] with Kapouleas that each of Lawson’s
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embedded minimal surfaces in the round 3-sphere (constructed in [6]) is uniquely
determined by its genus and symmetry group, and I will review the calculation
[4], also with Kapouleas, of the Morse index of an infinite subfamily (namely
{ξg,1}∞g=0 in the notation of [6]) of these same surfaces. Then I will describe the
construction [1] with Carlotto and Schulz of a family of embedded free boundary
minimal surfaces in the Euclidean 3-ball having the same topological type and
symmetry group as the members of a previously identified family (constructed
in [3]), and I will finally describe some index estimates [2] for our new surfaces,
including the result that each has equivariant index exactly two.
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Mean curvature flow with generic initial data

Felix Schulze

(joint work with Otis Chodosh, Kyeongsu Choi and Christos Mantoulidis)

Mean curvature flow is the natural heat equation for submanifolds. A family of
surfaces M(t) ⊂ R3 flows by mean curvature flow if

(1)
(

∂
∂tx

)⊥
= HM(t)(x),

where HM(t)(x) denotes the mean curvature vector ofM(t) at x. When the initial
surfaceM(0) is compact, mean curvature flow is guaranteed to become singular in
finite time. The simplest way to analyze such a singularity is to parabolically dilate
around a singular point in space-time. Huisken’s monotonicity formula guarantees
that a subsequential limit of such dilations will weakly limit to a tangent flow
which will be a weak solution to (1), evolving only by homothety. Ilmanen has
showed that such a tangent flow will be supported on a smooth surface Σ ⊂ R3 so
that (−∞, 0) 7→ √−tΣ is a solution to (1). Such a surface is called a self-shrinker.

A deeper understanding of such tangent flows is necessary in order to continue
the flow past the onset of singularities (either by constructing a flow with surgery,
or by showing that weak solutions to the flow have good partial regularity and
well-posedness properties). The two main obstructions to doing so are the poten-
tial presence of multiplicity and of tangent flows supported on self-shrinkers whose
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scalar mean curvature changes sign. By a result of Huisken [Hui90] (cf. [CM12a])
a shrinker whose mean curvature does not change sign is either a plane or a round
sphere or cylinder. Such singularities (when they occur with multiplicity one)
are known to be well-behaved, thanks to regularity results of Colding–Minicozzi
[CM16] and the resolution of the mean convex neighborhood conjecture by Choi–
Haslhofer–Hershkovits [CHH22].

In this work, we show that the second obstruction does not occur for generic
initial data M(0) ⊂ R3. Our main result is roughly as follows:

Theorem (Mean curvature flow of generic initial data in R3). For M(0) ⊂ R3

closed embedded surface, there is M ′(0) ⊂ R3 an arbitrarily small C∞ normal
graph over M(0) so that the mean curvature flow t 7→ M ′(t) satisfies one of the
following conditions:

• all tangent flows at singular points are multiplicity one shrinking spheres
or cylinders, or

• at the first time this fails, some tangent flow has multiplicity ≥ 2.

This confirms—up to the potential occurrence of multiplicity—a long-standing
conjecture of Huisken [Ilm03, # 8]. The well-known multiplicity-one conjecture
posits that multiplicity never occurs, but this is widely open even for generic
initial data.

There is strong evidence that the generic hypothesis in the above result is
necessary. Indeed, Ilmanen–White have indicated [Whi02] a construction of a
closed surface M(0) ⊂ R3 whose mean curvature flow is not well-posed after the
onset of singularities. (On the other hand, if M(0) ⊂ R3 has genus zero, an
important work of Brendle [Bre16] shows that the statement above holds without
“generic.”)

Remark. By combining our main result with a surgery construction by Daniels-
Holgate [DH22], one can construct a mean curvature flow with surgery for a generic
initial M(0) ⊂ R3 until the first time multiplicity occurs for the weak flow above.

The no-cylinder conjecture. At the first time singularities appear (or more
generally, the first time that some singularity other than multiplicity-one spheri-
cal/cylindrical singularities occur) we have seen that any tangent flow is supported
on a smooth self-shrinker Σ (possibly with multiplicity). A fundamental result of
Wang [Wan16a] shows that if Σ ⊂ R3 is a non-compact self-shrinker then any
end of Σ is smoothly asymptotic—with multiplicity one—to a smooth cone or a
cylinder.

Ilmanen has asked if it is possible that a non-cylindrical shrinker has a cylindrical
end (the no-cylinder conjecture [Ilm03, # 12]). See [Wan16b] for some partial
progress towards non-existence. Moreover, we note that are by now many con-
structions of self-shrinkers (both numerical and rigorous) but no example with a
cylindrical end has been found.
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The main new ingredient this work can be stated as follows:

Even if a non-cylindrical shrinker with a cylindrical end exists, it does not arise
generically (with multiplicity one at the first singular time).

This builds on our previous work with Mantoulidis [CCMS20] where we proved
that asymptotically conical and compact shrinkers do not arise generically, but
left open the possibility of a shrinker with a cylindrical end.

References

[Bre16] Simon Brendle. Embedded self-similar shrinkers of genus 0. Ann. of Math. (2),
183(2):715–728, 2016.

[CCMS20] Otis Chodosh, Kyeongsu Choi, Christos Mantoulidis, and Felix Schulze. Mean curva-
ture flow with generic initial data. https://arxiv.org/abs/2003.14344, 2020.

[CHH22] Kyeongsu Choi, Robert Haslhofer, and Or Hershkovits. Ancient low-entropy flows,
mean-convex neighborhoods, and uniqueness. Acta Math., 228(2):217–301, 2022.

[CM12a] Tobias H. Colding and William P. Minicozzi, II. Generic mean curvature flow I:
generic singularities. Ann. of Math. (2), 175(2):755–833, 2012.

[CM16] Tobias Holck Colding and William P. Minicozzi, II. The singular set of mean curvature
flow with generic singularities. Invent. Math., 204(2):443–471, 2016.

[DH22] J. M. Daniels-Holgate. Approximation of mean curvature flow with generic singular-
ities by smooth flows with surgery. Adv. Math., 410(part A):Paper No. 108715, 42,

2022.
[Hui90] Gerhard Huisken. Asymptotic behavior for singularities of the mean curvature flow.

J. Differential Geom., 31(1):285–299, 1990.
[Ilm03] Tom Ilmanen. Problems in mean curvature flow. https://people.math.ethz.ch/ ilma-

nen/classes/eil03/problems03.ps, 2003.
[Whi02] Brian White. Evolution of curves and surfaces by mean curvature. In Proceedings of

the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 525–538.
Higher Ed. Press, Beijing, 2002.

[Wan16a] Lu Wang. Asymptotic structure of self-shrinkers. https://arxiv.org/abs/1610.04904,
2016.

[Wan16b] Lu Wang. Uniqueness of self-similar shrinkers with asymptotically cylindrical ends.
J. Reine Angew. Math., 715:207–230, 2016.

Expanding Ricci solitons asymptotic to cones with non-negative
scalar curvature

Eric Chen

(joint work with Richard Bamler)

The Ricci flow starting from a compact Riemannian manifold (Mn, g0) consists of
a family of metrics g(t) on Mn which satisfies ∂

∂tg = −2Ricg and g(0) = g0, for
t ∈ [0, T ) and some maximal time T ∈ (0,∞]. When n = 2, after normalizing to
fix the volume, the flow always converges to a metric of constant Gauss curvature,
providing another proof of the uniformization theorem [4]. When n = 3, a complete
understanding of singularity formation as t → T makes possible Ricci flow with
surgery and its subsequent applications to three-manifold topology [7, 8, 9].

To develop a theory of Ricci flow with surgery in higher dimensions for potential
new topological applications, especially in dimension n = 4, an understanding of
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singularity formation would again be essential [1]. One family of singularities aris-
ing in higher dimensions are the conical singularities; in fact, any asymptotically
conical gradient shrinking soliton arises as a singularity model for some compact
Ricci flow [10]. Recent work of Bamler further indicates the importance of this
class—any four-dimensional compact Ricci flow with a finite-time singularity has a
blowup model which is either a smooth compact gradient shrinking soliton, S2×R2,
S3/Γ× R, or a cone (R+ ×N3, dr2 + r2h) with non-negative scalar curvature [2].

The appearance of such conical singularities along the flow might be resolved
by cutting and gluing in an expanding Ricci soliton, if one asymptotic to the
same cone exists. When restricting to cones with positive curvature operator, the
existence of such expanders is known [5], and using these it is indeed possible to
resolve such isolated conical singularities [6]. Relaxing to cones of non-negative
scalar curvature, with Richard Bamler we obtain the existence of expanding Ricci
solitons asymptotic to such cones over S3/Γ [3].

Theorem 1. For any cone metric dr2 + r2h on R+ × S3/Γ with non-negative
scalar curvature, there is a gradient expanding soliton metric g on R4/Γ with non-
negative scalar curvature that is asymptotic to it.

This result arises from a degree theory we establish for the natural projection
map from the space of asymptotically conical expanding solitons on a fixed smooth
orbifold with boundary X4 to the space of cone metrics with non-negative scalar
curvature. Let Mgrad,R≥0(X) denote the space of isometry classes [(g,∇f, γ)] of
expanding gradient solitons with non-negative scalar curvature on the interior of
X with metric g and potential field ∇f , asymptotic to the conical metric γ on
a tubular neighborhood of ∂X via a fixed set of coordinates at infinity. Also let
ConeR≥0(∂X) denote the space of conical metrics γ on R+ × ∂X . Then when
X has isolated singularities, a regular boundary, and satisfies certain additional
topological assumptions, we have (roughly):

Theorem 2. The projection map Π : Mgrad,R≥0(X) → ConeR≥0(∂X) is proper
in a suitable topology and has a well-defined, integer valued degree, degexp(X) ∈ Z.
This degree is an invariant of the smooth structure of X.

If the expander degree degexp(X) ∈ Z is nonzero, then Π is surjective, and
therefore any member of ConeR≥0(∂X) is indeed the asymptotic cone of some
expanding soliton on X . When X ≈ D4 or D4/Γ, an argument showing that the
Gaussian expander is the unique expander asymptotic to the flat cone over S3

implies that degexp(X) = 1, from which the existence result stated earlier follows.
One issue that arises during our construction is that Mgrad,R≥0(X) may not

have a local Banach manifold structure, due to analytical properties of the linear
operator Lf := △−∇∇f+2Rm associated with the expanding soliton equation. We
must therefore work with the space GenCone(∂X) of generalized cone metrics γ =
dr2+r(dr⊗β+β⊗dr)+r2h on R+×∂X together with the larger space of expanding
solitons M(X) asymptotic to these. This adds additional complications, but also
yields deformations to infinitely many non-gradient expanding solitons near any
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asymptotically conical gradient expander with non-negative scalar curvature; all
gradient expanders must be asymptotic to elements of Cone(∂X).

For possible applications to Ricci flow with surgery on four-manifolds, it would
be desirable to extend our existence result to cover all cones with non-negative
scalar curvature. The link of such a cone must be diffeomorphic to a connected
sum (S3/Γ1)# · · ·#(S3/Γk)#(#ℓS2 × S1), and therefore in light of our degree
theory it is natural to ask:

Question. Is there any relation between the degrees degexp(X1), degexp(X2), and

degexp(X1#∂X2)? What is degexp(D
3 × S1)?

Above, the connected sum involves cutting along half-balls intersecting the
boundaries ∂Xi to study expanders asymptotic to cones over ∂X1#∂X2. If these
degrees can be shown to be nonzero, this would yield natural candidates for resolv-
ing the conical singularities encountered along the Ricci flow in four dimensions.
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Urysohn width and scalar curvature

Yevgeny Liokumovich

(joint work with Davi Maximo; Zhichao Wang; Boris Lishak,
Alexander Nabutovsky, Regina Rotman; Otis Chodosh, Chao Li)

I discuss the interplay between results about PSC and macroscopic PSC. These
include:

• (with D. Maximo [3]) There is a Morse foliation of PSC closed 3-manifolds
by surfaces of controlled area, diameter and genus.

• (with Z. Wang [4]) There is a Morse foliation of PSC complete non-compact
3-manifolds by surfaces of controlled area and diameter.
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• (with B. Lishak, A. Nabutovsky, and R. Rotman [2]) A metric space with
positive macroscopic PSC has controlled Urysohn width.

• (with O. Chodosh and C. Li [1]) PSC 4-manifolds with π2(M) = 0 admits
finite cover homeomorphic to S4 or ♯S3 × S1.
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