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Introduction by the Organizers

The workshop Teichmüller Theory: Classical, Higher, Super and Quantum, organ-
ised by Ken’ichi Ohshika (Gakushin University, Tokyo), Athanase Papadopoulos
(IRMA, Strasbourg), Robert C. Penner (IHES Paris) and Anna Wienhard (Hei-
delberg University) was well attended with 47 participants with broad geographic
representation from all continents. The main topic discussed was Teichmüller the-
ory, including its classical aspects and the ramifications, with a focus on recent
developments in higher and super Teichmüller theory. The classical part included
new results on the metric theory (in particular, the Teichmüller, Weil-Petersson,
Thurston and earthquake metrics), identities on the length spectra of hyperbolic
surfaces, the de Sitter geometry aspect, the complex analytic aspect with the the-
ory of Kleinian groups, the algebraic aspects of mapping class groups and their
relations with 3-manifolds, quantization and physics. The classical curve com-
plex, other graphs on the surface were studied from the point of view of model
theory. More generally, several problems in geometry and group actions on man-
ifolds were investigated using ideas of mathematical logic. Higher Teichmüller
theory was also well represented. This is the study of connected components of
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the representations variety Hom(π1,G)/G, where π1 is the fundamental group of a
closed surface and G a Lie group of higher rank. The stress is on the discrete and
faithful representations, with the interplay with Higgs bundles, algebraic geometry
and the theory of Anosov representations. The workshop program also included
the study of Super higher Teichmüller spaces, defined as appropriate subspaces of
varieties Hom(π1,G)/G of flat G-connections on a surface, where π1 is the funda-
mental group of the surface and G an appropriate Lie supergroup, as opposed to
a suitable ordinary Lie group, thus extending the usual theory.

This workshop was a nice blend of frontline researchers from diverse research
backgrounds.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Krishnendu Gongopadhyay and Sumio Yamada in the
“Simons Visiting Professors” program of the MFO.
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Abstracts

Domains of discontinuity for Anosov representations

Daniele Alessandrini

(joint work with Sara Maloni, Nicolas Tholozan, Anna Wienhard)

Generalized flag manifolds. Let G be a connected semisimple Lie group with
finite center. For example, G can be one of the classical matrix groups, such as
SL(n,R), Sp(2n,R), SO0(p, q). We will consider the generalized flag manifolds of
G: spaces of the form G/Q, where Q is a parabolic subgroup Q < G. For example,
in the special case when G = SL(n,R), the spaces G/Q are the projective spaces,
the Grassmannians, the partial flag manifolds and the full flag manifolds. These
are classical geometric spaces endowed with a rich and interesting geometry.

Anosov representations. Let Γ be a torsion-free Gromov-hyperbolic group.
We want to understand the geometric, topological and dynamical properties of
an action of Γ on a generalized flag manifold G/Q. These actions correspond to
representations

ρ ∶ Γ→ G.

We will consider the set of all group homomorphisms of Γ in G, here denoted by

Hom(Γ,G) = { ρ ∶ Γ → G } .

Among these representations, a special place is taken by the Anosov representa-
tions. They are the representations with the nicest dynamical properties. They
are defined with reference to a parabolic subgroup P < G, where P may be differ-
ent that the parabolic subgroup Q above. We will consider the set of P -Anosov
representations, here denoted by

AnosovP (Γ,G) ⊂ Hom(Γ,G) .

The P -Anosov representations of Γ are all discrete and faithful, and an important
characteristic is that they admit a ρ-equivariant map

ξ ∶ ∂∞Γ → G/P .

These representations have the important property of being structurally stable,
this means that a small deformation of a P -Anosov representation is still a P -
Anosov representation. Equivalently, we can say that the set AnosovP (Γ,G) is
open in Hom(Γ,G). This property is useful for the construction of interesting
examples of Anosov representations, see below.

Domains of discontinuity. The dynamics of the action of a P -Anosov represen-
tation ρ on a generalized flag manifold G/Q is described by the theory of domains
of discontinuity, introduced by Guichard-Wienhard [3] and then generalized and
improved by Kapovich-Leeb-Porti [4]. They give conditions for the existence of
a cocompact domain of discontinuity for ρ in G/Q. They consider the space of
relative positions of a point in G/P and a point in G/Q:

R = (G/P ×G/Q)/G.
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This is a finite set with a rich combinatoric structure. Kapovich-Leeb-Porti define
the notion of balanced ideal, a set I ⊂ R with some special properties. This ideal
represents the set of “bad” relative positions, that we don’t want to have in the
domain of discontinuity. Given s ∈ G/P , they define

K(s) = { r ∈ G/Q ∣ [(s, r)] ∈ I } .
Recall that the P -Anosov representation admits the ρ-equivariant curve ξ as above.
We want to remove the set

Kρ,I = ⋃
t∈∂∞Γ

K(ξ(t)) .
The complement of this set is the domain

Ωρ,I = G/Q ∖Kρ,I .

Kapovich-Leeb-Porti [4] proved that if I is a balanced ideal, the action of ρ on
Ωρ,I is properly discontinuous, free and cocompact.

The quotient manifold. This construction gives us the closed manifold

Mρ,I = Ωρ,I/ρ .
Since this manifold is a quotient of a domain in G/Q, it carries a (G,G/Q)-
structure, a geometric structure in the sense of Thurston. This gives us a way to
construct manifolds Mρ,I with a large deformation space of (G,G/Q)-structures.

One limitation of this theory is that it doesn’t say anything about the topology
of the manifoldMρ,I . Examples of such manifolds were studied by several authors,
usually in the case when Γ = π1(S) is a surface group, see the references in [1].
From these examples we see that very often the manifoldMρ,I is a bundle over the
surface. It would be tempting to conjecture that this is always true, but there are
interesting counterexamples, given by Gromov-Lawson-Thurston [2], where Mρ,I

cannot fiber over the surface. The examples in [2] are complicated, and suggest
that it is impossible to give a general theorem that describes the topology of all
the manifolds Mρ,I .

Deformations of lattices. We will restrict to a special case, that is still very
general and interesting, but is also more tractable. We will fix a connected semisim-
ple Lie group H of real rank 1 with finite center, and we will assume that Γ < H
is a torsion-free uniform lattice in H . This class of groups Γ includes the surface
groups and the fundamental groups of closed oriented (real, complex, quaternionic,
octonionic) hyperbolic n-manifolds.

Given a representation ι ∶ H → G, we can restrict it to Γ and obtain a repre-
sentation ρ0 ∶ Γ → G. These representations will be called lattice representations
of Γ, and they are always P -Anosov with reference to some parabolic subgroup of
G, see [3].

We can then use the property of structural stability, and deform the lattice
representations a little bit. The deformed representation is still P -Anosov, and
often it is Zariski-dense in G. We will say that a P -Anosov representation is
a deformation of a lattice representation if it can be obtained by continuously
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deforming a lattice representation without leaving the space AnosovP(Γ,G). In
this way we can obtain many interesting examples of P -Anosov representations.
Actually, most known Anosov representations are obtained from this construction,
just because it is an easy way to construct them.

The topology of the quotient manifold. We will now present the main theo-
rems in [1].

Theorem 1 (A., Maloni, Tholozan, Wienhard). Let Γ < H be a torsion free
uniform lattice. Recall that Γ = π1(T ), where T is a closed oriented (real, complex,
quaternionic, octonionic) hyperbolic manifold. Fix a representation ι ∶H → G, and
restrict it to ρ0 ∶ Γ → G. Fix a P < G such that ρ0 is P -Anosov. Let ρ ∶ Γ → G be
a deformation of the representation ρ0. Choose a parabolic subgroup Q such that
there exists a balanced ideal I of relative positions between G/P and G/Q, and let
M =Mρ,I be the quotient Ωρ,I/ρ.

Then M is a smooth fiber bundle over the manifold T .

We can describe the structure group of this bundle and characterize the bundle.

Theorem 2 (A., Maloni, Tholozan, Wienhard). With the same notation as in the
previous theorem, let F denote the fiber of the bundle:

F →M → T .

Denote byK the maximal compact subgroup of H, and by SH =H/K the symmetric
space of H, a (real, complex, quaternionic, octonionic) hyperbolic space. Consider
the principal K-bundle

K →H/Γ→ SH/Γ = T .
Then F has a K-action, the bundle M → T has structure group K given by this

action, and the bundle M → T is associated to the principal bundle H/Γ→ T .

Theorem 1 and 2 fully describe the topology of M , except for the fiber F . We
know the topology of the fiber F in many special cases (see [1] and the references
therein), but a general description of the fiber F is still not known.
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Flips of GL(1∣1) Graph Connections

Andrea Bourque

(joint work with Anton Zeitlin)

Classical Teichmüller space is a component of the character variety
Hom(π1(F ),G)/G, where F is a (punctured) surface, and G = PSL2(R). In order
to probe various generalizations of Teichmüller theory, it is then natural to also
consider tweaking parts of the character variety; for instance, what can we say
about it for other groups G?

The character variety has a geometric interpretation as the moduli space of flat G-
connections. It is possible to reduce the differential geometry of this interpretation
to algebra and combinatorics. In particular, the character variety can be identified
with the space of G-graph connections on a ribbon graph corresponding to F . In
this way, we can get a hands-on description of the character variety.

Another important object of study in Teichmüller theory is the mapping class
group. This group acts on classical Teichmüller space. If the surface F admits an
ideal triangulation, then there are Whitehead moves, also known as flips, which
give new triangulations. Finite sequences of flips generate the mapping class group.
The dual to a triangulation is a ribbon graph, and flips also take a ribbon graph
to another one. In light of the previous discussion, it is natural to determine how
flips interact with graph connections.

In this project we considered the case where G is the supergroup GL(1∣1),
or more specifically, the component of the identity element. We also restricted to
punctured surfaces which admit ideal triangulations. The elements of GL(1∣1) can
be written in a form which separates the odd and even elements of the superalgebra
over which you are working. Using this parametrization, we gave coordinates for
the character variety.

Furthermore, the factorization of GL(1∣1) was utilized to give a nice description
of flips. In particular, we can think of an edge in a graph connection as having
one odd element on each end, and one even element in the middle. Using this
convention, we were able to give a formula for the action of a flip on a GL(1∣1)-
graph connection, in such a way that the odd ends are fixed. In other words, the
pieces of the group elements which can interact with other edges remain the same
before and after the flip.

To end, let me give some contexts where the GL(1∣1) character variety and our
description of it may be useful. One is in a potential super-analogue of the theory of
“abelianization” via spectral networks, described by Holland and Neitzke. Another
is the quantum GL(1∣1) Chern-Simons theory.
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Identities: Equations on deformation spaces

Ara Basmajian

Let X be a compact n-dimensional hyperbolic manifold with totally geodesic
boundary. A homotopy class (rel the boundary) of a non-trivial arc from the
boundary to itself can be realized by an orthogeodesic- an oriented immersed geo-
desic perpendicular to the boundary at its initial and terminal points. This talk
will be an introduction to the study of such arcs, their properties, and the identities
they satisfy. For example, it is a consequence of the orthospectrum identity ([1])
that the set of all orthogeodesic lengths determine the area ((n − 1)-dimensional
volume) of the boundary of X . In fact, such lengths are also related to the topo-
logical entropy of the manifold.

In dimension two, there are special subclasses of orthogeodesics called prime
orthogeodesics. In work with Hugo Parlier and Ser Peow Tan ([2]) we show that
the prime orthogeodesics arise naturally in the study of maximal immersed pairs
of pants in X and are intimately connected to regions of X in the complement of
the natural collars. These considerations lead to far reaching generalizations of the
orthospectrum identity in the form of continuous families of equations (so called
identities) that remain constant on the deformation space of hyperbolic structures.

Denoting the set of orthogeodesics on X by O, the orthospectrum identity reads

ℓ(∂X) = ∑
µ∈O

2 log coth
ℓ(µ)
2

where ℓ(⋅) denotes length, and ∂X is the geodesic boundary of X .
To illustrate the more general identities proven in [2], we start with an oriented

surfaceX of genus g and n cusps with χ(X) = 2−2g−n ≤ −1 and (g,n) ≠ (0,3). Now
an orthogeodesic µ determines a closed geodesic onX in the following way: traverse
µ in the positive direction until hitting the boundary orthogonally, then turn right
along the boundary cusp, loop around it, and traverse µ in the negative direction
until hitting the boundary cusp orthogonally, loop around this cusp thereby closing
up the curve. This defines a homotopy class of closed curve we denote by γµ. If
γµ avoids the standard cusp neightborhoods of the punctures we say that the

orthogeodesic is 1⃗-prime. Denoting the set of 1⃗-prime orthogeodesics by O′ we
have

∑
µ∈O′

2

e
γµ

2 + 1
= n.
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The curve complex via model theory

Valentina Disarlo

(joint work with Javier de la Nuez Gonzalez and Thomas Koberda)

Let S be an orientable surface of finite type. In this talk I present the paper [17]
in collaboration with Javier de la Nuez Gonzalez (KIAS) and Thomas Koberda
(University of Virginia), in which we begin the first study of the curve complex
of a surface and other similar graphs as first-order countable structures with tools
coming from model theory, in particular stability theory.

The curve graph C(S) is one of the most important tools in Teichmüller theory and
geometric group theory. It is a graph where every vertex correspond to a simple
closed curve on S and edges correspond to the disjoint relation. It was first intro-
duced by Harvey [9] and employed by Brock-Canary-Minsky in the proof of the
Ending Lamination Conjecture. It is now ubiquitous in geometric topology and
geometric group theory, following the works of Masur-Minsky [12, 14], Bromberg-
Bestvina-Fujiwara [3], Hamenstädt [8], Rafi-Schleimer [18], Masur-Schleimer [13].
In the 1990s Ivanov proved that the automorphism group of the curve complex is
the mapping class group. In the following decade, many other graphs have been
shown to have the same property (see the survey by McCarthy-Papadopoulos [15]).
In response, Ivanov [11] formulated a famous metaconjecture stating that every
graph “naturally” associated to a topological surface has the mapping class group
as its isomorphism group. Later McCarthy-Papadopoulos [15] gave an example of
a natural simplicial complex - the so-called complex of domains - whose automor-
phism group is larger than the mapping class group and whose coarse geometry
is closely related to the curve complex [5]. As the complex serves as a ”natural”
counterexample to the Ivanov’s metaconjecture, McCarthy-Papadopoulos posed
the open problem of understanding which of its subgraphs are rigid. Only recently
Brendle-Margalit [4] answer the question and described a rich class of its rigid sim-
plicial subcomplexes, providing beautiful applications to the study of the normal
subgroups of mapping class group.

In this talk we approach the curve complex and its analogues from the point of view
of model theory. Our interest for the model theory of the curve graph is motivated
by the fact that the (extended) mapping class group is the automorphism group
of the curve graph (and many other geometric graphs) also as models (see the
survey [15]). Many of the rigidity proofs rely on the fact that some “natural”
topological properties on curves (i.e. being separating, non-separating, etc) can
be expressed with a first-order formula in the language of the curve complex. A
detailed reformulation of the Ivanov metaconjecture is presented in our paper [17].

1.1. Stability in model theory: a few crash notions for non-logicians.

A structure M is given by an underlying set M , some distinguished operations,
relations and elements. Given a language L, a L-structure is a structureM where
we can interpret all of the symbols of L. Two L-structuresM and N are isomor-
phic if there is a bijection between the underlying sets M →N that preserves the
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interpretation of all function, relation and constant symbols in L. A set X ⊂Mn

is definable in M if X = {ā ∈ Mn
∶ M ⊧ φ(ā, b̄)} where φ is a L-formula and

b̄ ∈Mm. A L0-structure N is definable in a L-structureM if and only if we can
find a definable subset X of Mn for some n and we can interpret the symbols ofL0 as definable subsets and functions on X so that the new structure is isomor-
phic to N . One goal of classification theory is to divide all (complete countable)
theories into stable and unstable theories. Stability theory is one of the most im-
portant branches of model theory. It was initiated in 1965 by Morley [16] and
later developed by Shelah [19]. In his proof of the Los conjecture, Morley defined
some suitable notion of rank of a formula and defined a model ω-stable if every
definable set has finite Morley rank. Most examples of (ω-)stable theories come
from number theory, such as the theory of algebraically closed fields.

1.2. The ω-stability of the curve graph and other geometric graphs. In
2017 Baudisch-Martin Pizarro-Ziegler proved that the buildings of RAAGs [1] are
also ω-stable, providing the first example of a stable theory coming from geometric
topology. In paper [17] with Javier de la Nuez Gonzalez and Thomas Koberda,
we adapt their strategy to the curve complex and prove the following theorem.

Theorem 1 (de la Nuez Gonzalez - Disarlo - Koberda [17]). Let Sb
g be a surface

with genus g and b marked points. Then the first-order theory Th(C(S)) has quan-
tifier elimination with respect to the class of ∀∃-formula. Furthermore, Th(C(S))
is ω-stable with Morley rank bounded above by ω3g+b−3.

We give sufficient conditions for a geometric graph X(S) of arcs/curves to be
interpretable in C(S). As a consequence we prove that all the “famous” geometric
graphs associated to a surface are also ω-stable with finite Morley rank, including
the marking graph [14]; the arc graph [6]; the flip graph [7]; the polygonalization
graph [2], the arc-and-curve graph [10]. As a further application of the main
theorem, we prove that there are “natural” geometric properties that cannot be
expressed by a first-order formula in the language of the curve complex:

Corollary 1. Let S be a surface of positive genus that is not a torus with fewer
than two boundary components. The (absolute value of the) integral algebraic
intersection number among curves on S is not a definable relation in C(S).
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Horocycles, laminations, and Lipschitz maps

James Farre

(joint work with Or Landesberg and Yair Minsky)

There is a rich interplay between the geodesic and horocycle flows on the frame
bundle over hyperbolic manifolds. For closed hyperbolic surfaces Σ0, every horo-
cycle is dense [Hed36] and equidistributed in T 1Σ0 [Fur73]. The geometric, topo-
logical, and dynamical behaviors of horocycles in geometrically finite hyperbolic
surfaces are well understood, e.g., [DS84, Ebe77, Dal00, Bur90, Rob03, Sch05].
We study the behavior of horocyclic and geodesic trajectories on T 1Σ where Σ is
a Z-cover of a closed hyperbolic surface Σ0. The main result that we discuss is the
construction of a cover Σ → Σ0 in which the horocycle orbit closures in T 1Σ are
completely classified (Theorem 2.1, below). This is the first classification theorem
of its kind.

1. Notation and preliminaries

1.1. Geodesic and horocyclic trajectories. Let G = PSL2R and Γ0 ≤ G be
uniform lattice. Let ϕ ∶ Γ0 → Z be a surjective homomorphism, and let Γ = kerϕ.
We endow G with a right invariant Riemannian metric. Then G/Γ ≅ T 1Σ and
G/Γ0 ≅ T

1Σ0, where Σ→ Σ0 is a cover deck group Z.
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The geodesic flow φt ∶ T
1Σ→ T 1Σ is given by x↦ atx, where

at = (et/2 0

0 e−t/2.
)

Let A = {at ∶ t ∈ R} and let N = {n ∈ G ∶ atna−t → id, t → ∞} be the contracted
horocyclic subgroup corresponding to the stable horocycle flow on T 1Σ. For x ∈
T 1Σ, Nx is the (stable) horocycle through x.

1.2. Quasi-minimizing points. Say that x ∈ T 1Σ is quasi-minimizing if there is
a constant C ≥ 0 such that

d(atx,x) ≥ t −C, for all t ≥ 0.

The following theorem of Eberlein (see also [Dal00]) gives a correspondence
between quasi-minimizing points and the “interesting” horocycle orbit closures in
T 1Σ.

Theorem 1.1. [Ebe77] For Γ◁ Γ0 as above, we have Nx /= T 1Σ if and only if x
is quasi-minimizing.

Let Q be the set of quasi-minimizing points in T 1Σ and let Q+ be those quasi-
minimizing rays that exit out the +-end of T 1Σ. With Q− defined similarly, we
have Q = Q− ⊔Q+.

A central object in our investigation is Qω ⊂ T
1Σ, the “ω-limit set of Q mod

Z:”
Qω ∶= {x ∈ T 1Σ ∶ ∃y ∈ Q s.t. {π(aty)}t>0 accumulates onto π(x)},

where π ∶ T 1Σ → T 1Σ0 is the covering projection. The A-orbits of x ∈ Qω encode
the asymptotic behaviors of the A>0-orbits of y ∈ Q.

1.3. Tight maps to the circle. The homomorphism ϕ ∶ Γ0 → Z defines uniquely
a homotopy class of maps [f ∶ Σ0 → S1] to the circle S1 satisfying deg f ∣γ = ϕ(γ)
for all closed curves γ ⊂ Σ0. A Lipschitz map τ0 ∈ [f ∶ Σ0 → S1] is called tight if

Lip(τ0) = sup
γ⊂Σ0

∣ϕ(γ)∣
ℓ(γ∗) ,

where ℓ(γ∗) is the length in Σ0 of the geodesic γ∗ homotopic to γ, and Lip(τ0)
is the (minimal) Lipschitz constant of τ0. The ratio is easily seen to be a lower
bound on the Lipschitz constant of any map in [f ∶ Σ0 → S1].

Let stretch(τ0) ⊂ Σ0 be the maximally stretched set of points whose local Lip-
schitz constant achieves the global Lipschitz constant of τ0. The following states
that tight maps exist in any homotopy class and that the maximally stretched set
contains a non-empty geodesic lamination.

Theorem 1.2 ([GK17]). There is a tight map τ0 in the class of [f ∶ Σ0 → S1].
The set

λ0 ∶=⋂
τ ′
0

stretch(τ ′0)
is a non-empty geodesic lamination on Σ0 where the intersection runs over tight
maps in [f ∶ Σ0 → S1].
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See also recent work [DU20], which provides an analytic framework for produc-
ing circle valued tight maps. By rescaling the metric on the circle S1, we can
assume that every tight map is 1-Lipschitz.

2. Identifying Qω and horocycle orbit closures

Returning to Z-covers, recall that ϕ ∶ Γ0 → Z is a surjective group homomorphism
and that Γ = kerϕ. Let λcr0 be the chain recurrent part of the lamination from
Theorem 1.2 applied to (the homotopy class of circle maps corresponding to)
ϕ. The following proposition relates the asymptotic trajectories of the quasi-
minimizing rays in T 1Σ with those x ∈ T 1Σ0 that are tangent to λcr0 .

Proposition 2.1 ([FLM23]). We have π(Qω) = T 1λcr0 . Furthermore, for all y ∈ Q,

there is an x in Qω such that Nx = Ny.

Let τ ∶ Σ → R be a lift of a 1-Lipschitz tight map τ0 ∶ Σ0 → R/cZ (with c > 0
chosen suitably). Abusing notation, we also use τ to denote the map T 1Σ → R

obtained by precomposition with the natural projection T 1Σ → Σ.
Define a function for x ∈ T 1Σ

β+(x) = lim
t→∞

τ(atx) − t ∈ [−∞,∞).
Then β+ is an N -invariant upper semi-continuous function satisfying

β−1+ (−∞,∞) = Q+.
For x ∈ Q+, τ(x) − β+(x) ≥ 0 measures “how much time x wastes before exiting
the + end of Σ.” Since β+ is N -invariant and β−1+ [β+(x),∞) is closed (by upper

semi-continuity), it follows that Nx ⊂ β−1+ [β+(x),∞).
Fix a 1-Lipschitz tight map τ0 ∶ T

1Σ0 → R/cZ, consider a fiber k = τ−10 (0) and
let X = k ∩ λcr0 . Since τ0 is locally isometric along λ0, traveling along the leaves of
λcr0 for time c induces a Poincaré first return P ∶ X →X . The dynamics of P help
us understand the behaviors of horocycle orbit closures in T 1Σ.

Theorem 2.1 ([FLM23]). Suppose P ∶ X →X is topologically weak mixing. Then
for every x, y ∈ Q+ we have

● Nx = β−1+ [β+(x),∞); and
● the Hausdorff dimension of Nx is 2; and
● there is a t ∈ R such that Nx = atNy.

An analogous statement holds for x, y ∈ Q−.

In other words, if P ∶ X →X is weak mixing, then there are exactly two families
of non-maximal N -orbit closures in T 1Σ, each indexed by R. Of course, Theorem
2.1 isn’t very useful if we cannot construct examples where P ∶ X → X is weak
mixing.

We use recent results of [CF21] to build hyperbolic metrics and circle valued
tight maps where the stretch set is an arbitrary oriented, measurable geodesic
lamination.
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Theorem 2.2 ([FLM23]). Let S0 be a closed, oriented surface of negative Eu-
ler characteristic. For every cohomology class ϕ ∈ H1(S0;Z) and every oriented
geodesic lamination λ0 that has a measure of full support, if ϕ and λ0 satisfy a
necessary topological compatibility condition, then there is a hyperbolic metric Σ0

on S0 and a 1-Lipschitz tight map τ0 ∶ Σ0 → R/cZ in the homotopy class determined
by ϕ such that stretch(τ0) = λ0.

In particular, applying work of [AF07], our construction produces examples
satisfying the hypotheses of Theorem 2.1. See [FLM23] for a precise statement.
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Subharmonicity of a span associated with the moduli disk

Sachiko Hamano

In this talk, we give an overview of the main result of [3].

Definition (hydrodynamic differential φθ ∈ Σ θ(R)). Let θ be a real number. A
holomorphic differential φ on an open Riemann surface R is called a hydrodynamic
differential with parameter value θ (or Σ θ-differential for short) if Im [e−πiθ/2φ] is
a distinguished differential of Ahlfors [1], namely,

(1) outside a compact set on R, φ = dΦ is exact and Dirichlet finite,
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(2) on each component of ∂R, Im [e−πiθ/2Φ] = const. along ∂R.
We denote by Σ θ(R) the set of Σ θ-differentials on R.

Definition (closings). For a given open Riemann surface R of genus g (1 ≤ g <∞),
we fix a canonical homology basis χR = {AR

j ,B
R
j }gj=1 of R modulo dividing cycles.

Let S be a closed Riemann surface of the same genus g, χS = {AS
j ,B

S
j }gj=1 be

a canonical homology basis of S, and ι be a conformal embedding of R into S
such that ι(AR

j ) (resp.ι(BR
j )) are homologous to AS

j (resp.BS
j ) on S for all j =

1, . . . , g. Two triplets (S,χS , ι) and (S′, χS
′

, ι′) are called equivalent if there exists
a conformal bijection f of S onto S′ such that f ○ ι = ι′. Each equivalence class is

referred to as a closing of (R,χR), which is denoted by [(R,χR) ι↪ (S,χS)]. We
denote by C(R,χR) the set of all closings of (R,χR).

Our aim is to study the set M(R,χR) of the period matrices of C(R,χR). The
closing [(R,χR) ι↪ (S,χS)] carries uniquely normal differentials ψj (j = 1, . . . , g)
on the closed Riemann surface S. Setting τjk ∶= ∫BS

k

ψj (j, k = 1, . . . , g), we have

the so-called Riemann period matrix T [S,χS, ι]:
C(R,χR) ∋ [S,χS , ι] ↦ T [S,χS , ι] ∶= ⎛⎜⎝

τ11 . . . τ1g
⋮ ⋱ ⋮

τg1 . . . τgg

⎞⎟⎠ ∈ Sg,

where Sg is the Siegel upper half space of degree g. To characterize C(R,χ), we
shall study the set

M(R,χR) ∶= {T [S,χS , ι] ∈Sg ∣ [S,χS , ι] ∈ C(R,χR)} ⊂⊂Sg.

Oikawa [7] proved that M(R,χR) is compact and connected in the Teichmüller
space of degree g. In particular, in the case of genus one, Shiba [9] showed that the
setM(R,χR) of moduli is a closed disk inH. In the higher genus cases (2 ≤ g <∞),
Schmieder-Shiba [8] proved that the restriction Mj(R,χR) of M(R,χR) to each
diagonal element τjj of T [S,χS , ι] is a closed disk in H for 1 ≤ j ≤ g.

Definition (hydrodynamic closing). Let θ ∈ R/2Z and φθ ∈ Σ θ(R)∖{0}. A closing

[(R,χR) ι↪ (S,χS)] is called a hydrodynamic closing of (R,χR) belonging to φθ if

φθ = ι∗ψ for some holomorphic differential ψ on S. A closing of (R,χR) is called
hydrodynamic if it is a hydrodynamic closing belonging to some hydrodynamic
differential on R.

Theorem 1 ([4]; 1 ≤ g <∞). Let (R,χR) be a marked open Riemann surface of
finite genus g. Then, the period matrices T of the closings of (R,χR) satisfy a set
of inequalities in Sg: ∣c (T −P ) tc∣ ≤ c Q tc

for every c ∈ Cg ∖ {0}. Here,
∃1 P =

T θ + T θ+1

2
∈ Sg and

T θ − T θ+1

2
= eπi(θ−

1
2
)Q ∉ Sg,
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where the matrix Q is a positive definite Hermitian matrix, and each T θ (−1 <
θ ≤ 1) is the g × g complex matrix which consists of Bk-periods (k = 1, . . . , g) of
normal hydrodynamic differentials φθj (j = 1, . . . , g) on (R,χR), i.e., ∫AR

k

φθj = δjk,

τθjk ∶= ∫BR
k

φθj , T
θ
∶= (τθjk). The equality holds for some c if and only if T is the

period matrix of some hydrodynamic closing of (R,χR).
Now, we shall study how M(R(t), χR(t)) varies when R(t) deforms with com-

plex parameter t from the point of view of several complex variables. Let π ∶ R̃→∆
be a holomorphic submersion of a 2-dimensional complex manifold R̃ to a disk
∆ = {t ∈ C ∣ ∣t∣ < r}. Assume that R̃(t) ∶= π−1(t), t ∈ ∆, is non-compact and irre-

ducible. Let π∣R ∶ R → ∆ be a sub-holomorphic family of R̃ such that each fiber(π∣R)−1(t) =∶ R(t) (⊂⊂ R̃(t)) is an open Riemann surface of genus g (1 ≤ g < ∞)
with Cω smooth boundary ∂R(t) = ∑ν

j=1 Cj(t) in R̃(t). We remark that g and ν

do not depend on t ∈ ∆. We identify R with the smooth variation of R(t) in R̃.
For t ∈ ∆, we may take a canonical homology basis χ(t) = {AR

k (t),BR
k (t)}gk=1 of

R(t) mod dividing cycles Cj(t) (j = 1, . . . , ν) such that all AR
k (t) and BR

k (t) move
continuously in R with t ∈ ∆.

Theorem 2 ([5]; g = 1). Let π ∶ R → ∆ be a smooth variation of open tori(R(t), χ(t)), t∈∆. Assume that R is pseudoconvex in R̃. Then,

(1) the hyperbolic diameter σ(t) of M(R(t), χR(t)) is subharmonic on ∆.
(2) σ(t) is harmonic on ∆ if and only if R is a trivial family ∆ ×R(0).
In the proof of Theorem 2, the unique closing of (R(t), χR(t)) corresponding

to each boundary point of M(R(t), χR(t)) was used to establish the variational
formulas of φ0 and φ1. However, the method is valid only for Riemann surfaces of
genus one. In the higher genus cases, even at a boundary point of Mj(R,χR),
the closing of (R,χR) is not always uniquely determined.

The purpose of this talk is to extend the theorems in [2] for a ∈ Rg ∖{0}, to the
cases of φθ

c
normalized by c ∈ Cg

∖ {0} and every angle θ ∈ R mod 2.

Definition ([3]; the c-span for (R,χR)). Let c = Cg
∖ {0} and θ ∈ R mod 2. For

φθ
c
∈ Σ θ(R), we set τθk ∶= ∫Bk

φθ
c
(k = 1, . . . , g).

The c-modulus τθ
c
∶=

g∑
k=1

(∫
Ak

φθ
c ∫

Bk

φθ
c
)= g∑

k=1

ck τ
θ
k ∈ C.

The c-span ρc ∶= ∣e−πiθ(τθc − τθ+1c
)∣ = ∣τ1

c
− τ0

c
∣ ≥ 0.

Let R be a smooth variation of open Riemann surfaces (R(t), χR(t)), t ∈∆, of
finite genus g (1 ≤ g <∞). Fixed c = (c1, . . . , cg) ∈ Cg

∖{0} which does not depend
on t.

Theorem 3 ([3]). Let φθ
c
(t, z) = fθ

c
(t, z)dz (for c ∈ Cg

∖ {0} and θ ∈ R mod 2) by

use the local parameter z of R(t). For t ∈∆,

∂2 Im [e−πiθ τθ
c
(t)]

∂t∂t
= −

1

2 ∫∂R(t) κ(t, z)∣fθ
c
(t, z)∣2∣dz∣ − ∥∂φθc(t, z)

∂t
∥2
R(t)

.
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Here the Dirichlet norm of a holomorphic differential φ on R is denoted by ∥φ∥2R,
and κ(t, z) is the following Levi curvature due to [6, (1.2)] for a C2-smooth defin-

ing function ϕ(t, z) of ∂R in R̃:

κ(t, z) = ( ∂2ϕ
∂t∂t̄

∣∂ϕ
∂z
∣2 − 2Re{ ∂2ϕ

∂t̄∂z

∂ϕ

∂t

∂ϕ

∂z̄
} + ∣∂ϕ

∂t
∣2 ∂2ϕ

∂z∂z̄
) ∣∂ϕ
∂z
∣−3 on ∂R.

Theorem 4 ([3]). Let R be a smooth variation of open Riemann surfaces (R(t),
χR(t)), t ∈ ∆, of finite genus g (1 ≤ g < ∞). Let c ∈ C

g
∖ {0}. If R is a

pseudoconvex domain in R̃, then

(1) the c-span ρc(t) of (R(t), χ(t)) is subharmonic on ∆,
(2) ρc(t) is harmonic on ∆ if and only if

(a) each τθ
c
(t) (θ ∈ R mod 2) is holomorphic on ∆,

(b) ρc(t) ≡ ρc(0) for all t ∈ ∆.
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The earthquake metric

Yi Huang

(joint work with Ken’ichi Ohshika, Huiping Pan, Athanase Papadopoulos)

Earthquakes are natural generalisations of Fenchel–Nielsen twist deformations on
Teichmüller space T (S), where instead of twisting about a simple closed curve,
one “twists” along a measured lamination. Remarkably, Thurston’s earthquake
theorem [8] tells us that any complete hyperbolic metric on a surface S can be
deformed to any other via a unique (left) earthquake. This result was famously
employed by Kerckhoff in his solution of the Nielsen realisation problem [5], and
helped cement the importance of earthquakes in Teichmüller theory.
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Our work is the first systematic study of a particular Finsler metric conceived in
Thurston’s “Minimal stretch maps between hyperbolic surfaces” paper [9, pg. 22].

Definition 1 (earthquake norm and earthquake metric). Given an arbitrary point
x ∈ T (S), every tangent vector in TxT (S) can be uniquely expressed as the de-
rivative eλ(x) ∶= d

dt
∣
t=0

Etλ(x) of a path Etλ(x) of earthquakes of x with respect

to a measured lamination λ (see [5, Proposition 2.6]). Thurston shows [9] that the
function

∥ ⋅ ∥e ∶ TxT (S)→ R, ∥eλ(x)∥e = ℓλ(x)
defines an asymmetric norm on every tangent space, and hence defines a Finsler
metric. He refers to ∥ ⋅ ∥e as the earthquake norm, and we dub the induced metric
de(⋅, ⋅) the earthquake metric.

We establish basic properties of the earthquake metric, and discover surpris-
ing connections to both the Thurston (Lipschitz) metric and the Weil–Petersson
metric.

Main results

In [2, Section 3.4.5], Barbot and Fillastre clarified a duality first asserted by
Thurston on the last lines of pages 20 and 21 of [9]:

Theorem 1 (infinitesimal duality). For every x ∈ T (S), there is a linear isomor-
phism between the normed spaces (TxT (S), ∥ ⋅ ∥e) and (T∗xT (S), ∥ ⋅ ∥∗Th), where∥ ⋅ ∥∗Th denotes the Finsler conorm for the Thurston metric.

As an immediate consequence of the above result and the infinitesimal rigidity
of the Thurston metric [4, 7], we obtain:

Corollary 2. The extended mapping class group of S is precisely the isometry
group of (T (S), de).

Mirzakhani [6] showed that earthquake flows on Teichmüller space is measurably
isomorphic to the horocyclic flow. Since horocycles are highly inefficient ways of
navigating hyperbolic space, this heuristically suggests that earthquakes are not
candidates for geodesics on the earthquake metric. Thurston asserted this in [9],
and we verify the following:

Theorem 3. Sufficiently long earthquake paths in T (S) cannot be geodesics with
respect to the earthquake metric.

Despite appearances, Theorem 3 does not divorce earthquake paths and the
earthquake metric: we show that the earthquake metric measures the infimal
amount of some form of work needed to deform between two hyperbolic metrics
using a sequence of earthquakes.

Definition 2. (magnitude). Consider a finite sequence of earthquake paths join-
ing x1, . . . , xm+1 such that xi+1 = Eλi

(xi). We refer to the quantity ∑m
i=1 ℓλi

(xi)
as the magnitude of this piecewise earthquake path.
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Theorem 4. (magnitude minimization). For arbitrary x, y ∈ T (S), the earth-
quake distance de(x, y) is equal to the infimal magnitude over the collection of
piecewise earthquake paths from x to y.

Although we presently know comparatively little about the geodesy of the earth-
quake metric, we are beginning to unravel its metrical properties. To begin with,
we obtain the following comparisons between the earthquake norm and the follow-
ing norms of Finsler/Riemannian metrics on T (S):

● the Teichmüller norm ∥ ⋅ ∥T,
● the Thurston norm ∥ ⋅ ∥Th,
● and the Weil–Petersson norm ∥ ⋅ ∥wp.

Theorem 5. There are positive constants C0,C1,C2,C3,C4 depending only on
the topology of S, so that for any x ∈ T (S) and any v ∈ TxT (S),

C0ℓsys(x)Log( 1
ℓsys(x)

)∥v∥Th ≤ ∥v∥e ≤ C1∥v∥wp ≤ C2∥v∥Th ≤ C3∥v∥T ≤ C4∥v∥wp

ℓsys(x)
,

where ℓsys(x) denotes the length of the systole on x, and Log(x) ∶=max{1, log(x)}.
Using the above comparisons, we show:

Theorem 6. There are constants C1,C2 depending only on the topology of S
such that for any two points x, y in T (S), we have

de(x, y) ≤ C1dwp(x, y) ≤ C2dTh(x, y).
The fact that the earthquake metric is bounded above by a multiple of the

Weil–Petersson metric, which is incomplete, suggests that the earthquake metric is
incomplete. This is a nuanced statement: one needs to clarify what incompleteness
means for asymmetric metrics. We do so and further define a general notion of
metric completion for asymmetric metrics.

The first inequality in Theorem 6 also tells us that the completion of the Te-
ichmüller space, endowed with the earthquake metric, should be a quotient of
the Weil–Petersson metric completion. This is known to be the augmented Te-
ichmüller space [1], obtained by adding boundary strata of stable curves to T (S).
In fact:

Theorem 7. The completion of the earthquake metric is precisely the augmented
Teichmüller space.

Corollary 8. The completion of the moduli space M(S) with respect to the
earthquake metric is the Deligne–Mumford compactification.

This is a novel instance of the real analytic hyperbolic viewpoint of moduli
space being able to access the complex analytic/algebraic geometric structure of
the moduli space. This is reminiscent of Wolpert’s result [10] that the Weil–
Petersson metric, which has complex analytical origins, is equal to a Riemannian
metric, also defined in terms of the behaviour of the hyperbolic lengths of closed
geodesics, (also) introduced by Thurston.

Given this growing list of similarities between the earthquake metric and the
Weil–Petersson, one naturally wonders if they might be metrically equivalent in



Teichmüller Theory: Classical, Higher, Super and Quantum 1863

some sense. The following result on the behaviour of these two metrics near the
thin part of moduli space can be used to tell us that they are not bi-Lipschitz.

Theorem 9. LetM(S) denote the completion of the moduli space with respect
to the earthquake metric. There exists CS > 1, depending only on the topology of
S, such that for any x ∈M(S),

2ℓsys(x)Log 1
ℓsys(x)

≤ de(x, ∂M(S)) ≤ 2CSℓsys(x)Log( 1
ℓsys(x)

),
where ℓsys(x) denotes the length of the systole on x, and Log(x) ∶=max{1, log(x)}.
Furthermore, as ℓsys(x) → 0

de(x, ∂M(S))
2ℓsys(x)Log( 1

ℓsys(x)
) → 1.

However, the two metrics are coarsely equivalent:

Theorem 10. (T (S), de) is quasi-isometric to (T (S), dwp).
This means that the (T (S), de) is also quasi-isometric to the pants graph [3],

which suggests that to efficiently navigate the Teichmüller space with respect to
the earthquake metric (especially when travelling over long distances), it might
make sense to use the pants graph as a guide and to “zig-zag” between thin parts
of Teichmüller space where the systolic pants decomposition is short.
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Moduli space of G-local systems and skein algebras

Tsukasa Ishibashi

(joint work with Hironori Oya, Linhui Shen)

Setting. Let G be a simply-connected semisimple algebraic group over C with a
fixed maximal unipotent subgroup U+ ⊂ G. Let (Σ,M) be a marked surface, which
consists of a compact oriented surface Σ and a fixed non-empty finite set M ⊂ ∂Σ
of marked points. Here we assume that each boundary component has at least
one marked point and −2χ(Σ) + ∣M∣ > 0. Let us simply denote a marked surface
by Σ, with a choice of M understood.

Background. Let AG,Σ denote the moduli space of decorated twisted G-local
system [FG06]. By choosing a basepoint ξ ∈ T ′Σ of the punctured tangent bundle
T ′Σ = TΣ∖ (0-section) and a suitable collection of curves, we get a description as
a quotient stack AG,Σ = [AG,Σ/G], where

AG,Σ ≃ Hom
tw(π1(T ′Σ, ξ),G) × (G/U+)M

is an affine G-variety. In particular, we are interested in the C-algebra O(AG,Σ) =O(AG,Σ)G of global (algebraic) functions.
Since its introduction by Fock–Goncharov [FG06], the cluster K2-structure onAG,Σ has been discovered after sequential works, including [FG06, Le19, GS19].

Here, a cluster K2-structure means a particular kind of birational atlas para-
metrized by combinatorial data i = ({Ai}i∈I , ε) called seeds, each giving rise to a
birational map

ψi ∶ AG,Σ ⇢ (C∗)I .
Their transition maps ψi

′ ○ ψ−1
i
∶ (C∗)I ⇢ (C∗)I are positive rational maps of

particular form, controlled by combinatorial operations called seed mutations µk ∶

i→ i
′ [FG09]. Put in another way, we can start with an initial seed i△ associated

with a “decorated” triangulation△ of Σ, and the other seeds are recursively created
via seed mutations. The above mentioned works establish that the entire collection
of seeds does not depend on the initial choice.

In particular, the cluster K2-structure defines a cluster algebra

Ag,Σ ∶= ⟨CV⟩C ⊂ K(AG,Σ)
in the field of rational functions on AG,Σ. Here CV denotes the set of all cluster
coordinates Ai appearing in some seed in this collection, together with the inverses
of “frozen” coordinates assigned on the boundary of Σ.

Geometric model of the cluster algebra. Our goal is to understand Ag,Σ

in terms of the geometry of the moduli space AG,Σ. There is a related algebra
Ug,Σ ⊂ K(AG,Σ) called the upper cluster algebra, which is the function algebra of
the cluster K2-variety. In the general context of cluster algebra, showing A = U is
an important problem. One inclusion A ⊆U is known as the Laurent phenomenon
of cluster variables.
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Theorem 1 ([IOS22, Theorem 1]). For a finite-dimensional simple Lie algebra g

admitting a non-trivial minuscule representation (namely, not of type E8, F4,G2)
and a connected marked surface Σ with ∣M∣ ≥ 2, we have

Ag,Σ = Ug,Σ = O(A×G,Σ).
Here A×G,Σ ⊂ AG,Σ denotes a certain Zariski open subspace.

In particular, our theorem tells us that all of the cluster coordinates are global
functions on A×G,Σ, which are a priori rational functions.

Skein model of the cluster algebra. The (upper) cluster algebras admit quan-
tizations A

q
g,Σ and U

q
g,Σ by means of Berenstein–Zelevinsky [BZ05]. Here our

choice of compatibility matrices follows that of Goncharov–Shen [GS19].
In [Mul16], Muller obtained the equality

A
q
sl2,Σ

=S
q
sl2,Σ
[∂−1] = U

q
sl2,Σ

if ∣M∣ ≥ 2, where S
q
sl2,Σ
[∂−1] denotes the boundary localization of the Kauffman

bracket skein algebra with an appropriate skein relations at the marked points.
In my joint works [IY23, IY22] with Wataru Yuasa, we obtained an inclusion
S

q
g,Σ[∂−1] ⊂ A

q
g,Σ for the cases g = sl3, sp4, where the former denotes certain higher

rank generalizations of the Muller skein algebra. Combining with the geometric
technique in [IOS22], we obtain:

Theorem 2 ([IOS22, Theorem 2]). For g = sl2, sl3, sp4 and a connected marked
surface Σ with ∣M∣ ≥ 2, we have

Ag,Σ =Ug,Σ = O(A×G,Σ) =S
1
g,Σ[∂−1].

Here the last one denotes the classical specialization q = 1 ∈ C of the Muller type
skein algebra mentioned above.
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A topological proof of Wolpert’s formula of the Weil-Petersson

symplectic form in terms of the Fenchel-Nielsen coordinates

Nariya Kawazumi

Let Σg be a closed connected oriented surface of genus g ≥ 2. Given any pants

decomposition {Ci}3g−3i=1 of the surface, one can define the Fenchel-Nielsen coordi-
nates

(ℓi, τi)3g−3i=1 ∶ Tg
≅→ (R+ ×R)3g−3

of the Teichmüller space Tg of genus g. Wolpert [8] described the Weil-Petersson
symplectic form ωWP on the space Tg as

ωWP =
3g−3∑
i=1

dτi ∧ dℓi.

The formula can be deduced from his duality theorem [7], whose topological proof
of the formula was already given by Goldman [1, 4.11 Theorem]. In this report,
we give an outline of an alternative topological proof of the formula using a cell
decomposition of the surface with an explicit groupoid cocycle representing each
point of the space Tg.

One can consider a natural cell decomposition of the surface Σg based on the

decomposition {Ci}3g−3i=1 : there are 2 faces, which we call ‘squares’, associated with
each simple closed curve Ci, and 2 faces, which we call ‘hexagons’, included in
each pair of pants. (For example, see the below figure.)

For each point of the Teichmüller space of the surface, there exists a unique
groupoind cocycle on the cell complex representing the point with some normal-
ization condition. By a classical argument essentially due to Keen [3, 4], we can
compute the cocycle explicitly. (It would be very interesting if one could get sim-
ilar explicit cocycles also for higher cases.) As was shown by Goldman [1], the
Weil-Petersson symplectic form equals the cup product on the first cohomology of
the surface with values in sl2(R) with adjoint action. We compute the cup product
of two first variations of the explicit cocycle on the cell decomposition to prove the
formula in the title. In our computation, the symplectic form is localized in the
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squares. In higher cases, the results of Goldman [2], Wienhard-Zhang [6] and Sun-
Wienhard-Zhang [5] tell us that the hexagons also have nontrivial contributions
to the symplectic form.
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An optimal fundamental domain for Γ0(p) and Γ0(pq)

Sang-hyun Kim

(joint work with Nhat Minh Doan, Mong Lung Lang, Ser Peow Tan)

For each positive integer N , let us consider the congruence subgroup

Γ0(N) ∶= {A ∈ PSL(2,Z) ∣ A ≡ (∗ ∗

0 ∗
) (mod N)} .

While it is immediate from the Kurosh subgroup theorem that Γ0(N) can be writ-
ten as a free product of copies of finite cyclic groups Z2 and Z3 along with copies
of Z, precisely describing matrix representatives of such free factors is far from be-
ing a trivial task. Using the classical Reidemeister–Schreier process, Rademacher
described such matrix representatives for the case when N is a prime [6]; see [1]
for a general case.

A geometrically intuitive method of finding such representatives was discovered
by Kulkarni [3]. His method used planar hyperbolic geometry, and turned out
to be computationally efficient, and applicable to all the finite index subgroups
of PSL(2,Z); many modern computer algebra software including MAGMA uses
his algorithm. His method is directly related to the task of finding a fundamental
domain of such a finite index subgroup. In the special case of the subgroup Γ0(N),
he made concrete computation for all the primes not exceeding 100 and conjectured
that there exists a freely independent generating set of Γ0(N) for a prime N such
that the (2,1) components of all the generators are either 0 or N .

In this talk, we settle Kulkarni’s conjecture and also extend it to the case when
N is the square of a prime; we also describe a similar result for the case whenN = pq



1868 Oberwolfach Report 33/2023

with p and q being sufficiently close primes. Our proof comes from an investigation
of an optimal fundamental domain of Γ0(N). More concretely, let us denote by
m(Γ0(N)) the smallest possible value of the maximum of the denominators of the
cusps of a fundamental domain for Γ0(N). A fundamental domain of Γ0(N) is
optimal if it realizes m(Γ0(N)). Our main result is to establish that

⌊√N⌋ ≤m(Γ0(N)) ≤ ⌊√4N/3⌋,
in the case when N is a prime or its square. Kulkarni’s conjecture follows from this
main result. We remark that our near-optimal choice of a fundamental domain
can also be utilized to obtain equidistribution results of closed geodesics on the
quotient orbifolds H2/Γ0(N) [2, 4, 5].

References

[1] Yasuhiro Chuman, Generators and relations of Γ0(N), J. Math. Kyoto Univ. 13 (1973),
381–390.

[2] Peter Humphries and Asbjørn Christian Nordentoft, Sparse equidistribution of geometric
invariants of real quadratic fields, 2022.

[3] Ravi S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the
modular group, Amer. J. Math. 113 (1991), no. 6, 1053–1133.

[4] Asbjørn Christian Nordentoft, Concentration of closed geodesics in the homology of modular
curves, 2023.

[5] , Equidistribution of q-orbits of closed geodesics, 2023.
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First order theory of homeomorphism groups of manifolds,

and applications

Thomas Koberda

(joint work with Sang-hyun Kim, J. de la Nuez González)

In this talk, we describe an approach to investigating problems in geometric topol-
ogy and group actions on manifolds using ideas informed by mathematical logic.
Basic motivating questions are as follows.

Question 1. Let M be a compact, smooth manifold, and let r ∈ [1,∞). Does
there exist a countable, or perhaps finitely generated group Γr,M ≤ Diffr(M) such
that for all s > r, all actions of Γr,M on M by Cs diffeomorphisms are trivial (or
have a large kernel at least)?

This question was answered by Kim and the speaker for manifolds in dimension
one in [1], cf. [2]. In dimension one, it is possible to exploit features specific to
dimension one, such as linear orderability and circular orderability of groups of
homeomorphisms, in order to explicitly produce examples of the desired groups.
In higher dimensions, the dynamics of group actions are much wilder, and it is not
clear where to begin looking for candidate groups.

Another basic motivating question connects this talk more directly with the
main theme of this workshop. Recall that the mapping class group of a compact,
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orientable surface is the group of isotopy classes of homeomorphisms, and this
group naturally acts by isometries on the Teichmüller space of the surface.

Question 2. Let Σ be a compact, orientable surface of genus at least three. Is
the mapping class group of Σ a linear group? Can this question be understood in
a way that is more intrinsic to Σ?

We approach the motivating questions by studying the homeomorphism groups
of manifolds, viewed as abstract groups. It was proved by Whittaker [8] that if M
and N are compact manifolds then an abstract isomorphism between Homeo0(M)
and Homeo0(N) is induced by a homeomorphism between M and N , where here
the subscript indicates the identity components of the underlying groups.

The first step in approaching the motivating questions is to weaken the hy-
potheses of Whittaker’s Theorem. To do this, we view homeomorphism groups
as abstract structures in the language of groups, and investigate their first order
theory; see [5, 7] for model theoretic background.

In 1989, Rubin [6] conjectured that two homeomorphism groups of manifolds
are elementarily equivalent to each other if and only if the underlying manifolds
are homeomorphic, which would greatly strengthen Whittaker’s Theorem. In [3],
we prove an even stronger version of Rubin’s Conjecture, at least for compact
manifolds.

Theorem 1. Let M be a compact, connected manifold. There is a sentence φM
in the language of group theory such that for each compact manifold N , we have
φM holds in Homeo0(N) if and only if M and N are homeomorphic.

For a homeomorphism group or diffeomorphism group of a compact smooth
manifold, we may now produce many candidate groups for resolving Question 1.
Specifically, one considers a countable subgroup which is elementarily equivalent
to the ambient homeomorphism or diffeomorphism group, which exists by the
classical Löwenheim–Skolem Theorem.

Conjecture. Let M be a compact, connected, smooth manifold, and let Γr,M ≤
Diffr(M) be an elementary subgroup. Then for s > r, every action of Γr,M on M

by Cs diffeomorphisms is trivial.

As for Question 2, we investigate the expressive power of the language of groups
in the context of homeomorphism groups. In [4], we prove that the first order
theory of homeomorphism groups of manifolds can interpret large collections of
subsets of Homeo(M), such as arbitrary finite tuples and arbitrary sequences.

Theorem 2. The group Homeo0(M) interprets weak second order logic.

As a corollary, we get an answer to Question 2 above:

Corollary. There is a sentence that, for a compact surface Σ, is true in the
homeomorphism group of Σ if and only if the mapping class group of Σ is linear.

Many further avenues relating model theory, dynamics of group actions, and
geometric topology remain to be explored.
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Higgs bundles in the Hitchin section over non-compact hyperbolic

Riemann surfaces

Qiongling Li

Let X be a Riemann surface and (E, ∂̄E , θ) be a Higgs bundle on X . Let h be a
Hermitian metric of E. We obtain the Chern connection ∇h = ∂̄E + ∂E,h and the

adjoint θ∗h of θ. The metric h is called a harmonic metric of the Higgs bundle(E, ∂̄E , θ) if ∇h + θ + θ
∗h is flat, i.e., ∇h ○ ∇h + [θ, θ∗h] = 0. It was introduced by

Hitchin [4], and it has been one of the most important and interesting mathemat-
ical objects. A starting point is the study of the existence and the classification
of harmonic metrics. If X is compact, the results of Hitchin [4] and Simpson
[8] show that a Higgs bundle is polystable of degree 0 if and only if it admits a
harmonic metric. Together with the work of Corlette [2] and Donaldson [3], one
obtains the non-Abelian Hodge correspondence which says the moduli space of
polystable SL(n,C)-Higgs bundles is isomorphic to the representation variety of
the surface group π1(S) into SL(n,C). The study of harmonic metrics for Higgs
bundles in the non-compact case was pioneered by Simpson [8, 9], and pursued by
Biquard-Boalch [1] and Mochizuki [7].

Let q⃗ = (q2,⋯, qn), where qj is a holomorphic j-differential on X . One can nat-
urally construct a Higgs bundle (KX,n, θ(q⃗)) as follows. Let KX be the canonical
line bundle of X . The multiplication of qj induces the following morphisms:

K
(n−2i+1)/2
X

→K
(n−2i+2(j−1)+1)/2
X

⊗KX (j ≤ i ≤ n).
We also have the identity map for i = 1, . . . , n − 1:

K
(n−2i+1)/2
X →K

(n−2(i+1)+1)/2
X ⊗KX .
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They define a Higgs field θ(q⃗) of KX,n = ⊕
n
i=1K

(n+1−2i)/2
X . The natural pairings

K
(n−2i+1)/2
X ⊗K

−(n−2i+1)/2
X → OX induce a non-degenerate symmetric bilinear form

CK,X,n of KX,n. There exists a basis of SL(n,C)-invariant homogeneous poly-
nomials pi of deg i(i = 2,⋯, n) on sl(n,C) such that pi(θ(q⃗)) = qi. The Hitchin
fibration is from the moduli space of polystable SL(n,C)-Higgs bundles to the
vector space ⊕n

i=2H
0(X,Ki

X) given by

[(E,θ)] z→ (p2(θ),⋯, pn(θ)).
Such Higgs bundles (KX,n, θ(q⃗)) were introduced by Hitchin in [5] for compact
hyperbolic Riemann surfaces. They form a section of the Hitchin fibration. For
this reason, for arbitrary (not necessarily compact) Riemann surfaces, we call(KX,n, θ(q⃗)) Higgs bundles in the Hitchin section.

For the compact hyperbolic surface case, Hitchin in [5] showed that (KX,n, θ(q⃗))
are always stable and the Hitchin section corresponds to Hitchin component, a con-
nected component in the representation variety of π1(X) into SL(n,R) which con-
tains embedded Fuchsian representations. In particular, when n = 2, the Hitchin
section parametrize the Teichmüller space. Hitchin component has been the cen-
tral object in the field of higher Teichmüller theory.

We want to study Higgs bundles in the Hitchin section in general case: tuples
of holomorphic differentials on an arbitrary non-compact Riemann surfaces, e.g.,
unit disk, of infinite topology, etc. We focus on the following natural question.

Given a tuple of holomorphic differentials q⃗ = (q2,⋯, qn) on a non-compact
Riemann surface X ,
(1) does there exist a harmonic metric on (KX,n, θ(q⃗)) compatible with CK,X,n?
(2) If so, can one find a notion of “best” harmonic metric such that it uniquely
exists?

Main Results

Suppose X is a non-compact hyperbolic Riemann surface, equivalently, it is not
C nor C

∗ . Let gX be the unique complete hyperbolic Kähler metric on X . Let

hX = ⊕
n
k=1ak ⋅g

−n+1−2k
2

X , where ak are some fixed constants. Such ak’s are chosen so
that hX is a harmonic metric for the Higgs bundle (KX,n, θ(0)).

Let Fk = ⊕l≤kK
n+1−2l

2

X
. Then {0 ⊂ F1 ⊂ F2 ⊂ ⋯ ⊂ Fn} forms an increasing

filtration of KX,n. We call a Hermitian metric h on KX,n weakly dominates hX
if

det(h∣Fk
) ≤ det(hX ∣Fk

), 1 ≤ k ≤ n − 1.

Our main result in this paper is the following two theorems, as an answer to the
above question.

Theorem 1. ([6]) On a non-compact hyperbolic surface X, there exists a harmonic
metric h on (KX,n, θ(q⃗)) satisfying (i) h weakly dominates hX ; (ii) h is compatible
with CK,X,n.

As a result, the associated harmonic map f ∶ (X̃, g̃X)→ SL(n,R)/SO(n) satis-
fies the energy density e(f) ≥ n2(n2−1)

6
. The equality holds if q⃗ = 0.



1872 Oberwolfach Report 33/2023

Theorem 2. ([6]) On a non-compact hyperbolic surface X, suppose qi(i = 2,⋯, n)
are bounded with respect to gX. Then there uniquely exists a harmonic metric h
on (KX,n, θ(q⃗)) satisfying (i) h weakly dominates hX ; (ii) h is compatible with
CK,X,n.

Moreover, h is mutually bounded with hX .

As an application of Theorem 2, we reprove the existence and uniqueness of
a harmonic metric on (KX,n, θ(q⃗)) over a compact hyperbolic Riemann surface.
Note that our proof here does not invoke the Hitchin-Kobayashi correspondence
by using the stability of Higgs bundle.

Theorem 3. Given a tuple of holomorphic differentials q⃗ = (q2,⋯, qn) on a com-
pact hyperbolic surface X, there uniquely exists a harmonic metric h on (KX,n, θ(q⃗))
satisfying h is compatible with CK,X,n.

Moreover, h weakly dominates hX .

Acknowledgement. The author would like to thank the organisers of Oberwol-
fach’s workshop Teichmüller Theory: Classical, Higher, Super and Quantum, 30
July - 4 August 2023, for the organization and invitation.
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Double infinitesimal structures on Teichmüller space

Hideki Miyachi

First of all, I would like to thank the organizers, Professor Ken’ichi Ohshika, Pro-
fessor Athanase Papadopoulos, Professor Robert C. Penner, and Professor Anna
Wienhard for giving me a great opportunity. I thank MFO for giving an atmo-
sphere to concentrate on Mathematics, and their warm hospitalities. I also thank
Professor Krishnendu Gongopadhyay for editing this report.

In my talk at 2023 conference at MFO, I announced a description of a model
space of the holomorphic double tangent space for the Teichmüller space Tg of
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Riemann surfaces of genus g ≥ 2. In this note, we give a survey of (a part of)
results on this research. The details will be appeared elsewhere.

1. Motivation

The purpose of this research is to develop the complex geometry of the Teichmüller
space. Especially, I am now focusing to develop the complex Finsler geometry with
the Teichmüller metric. In a technique to study a complex Finsler bundle E →M

with a Finsler fiber metric F , we consider a projective bundle P(E)→M and the
pull-back bundle

Ẽ ÐÐÐÐ→ E×××Ö
×××Ö

P(E) ÐÐÐÐ→ M.

We define an Hermitian metric gF (Z,Z) = ∑
1≤j,k≤n

∂2F

∂ζi∂ζj
(z, ζ)ZiZj on Ẽ, where

(z, ζ) and Z are coordinates of E and of the fiber of Ẽ respectively. Then, the

geometry of E → M with a Finsler metric F is studied from the bundle Ẽ →
P(E) with the Hermitian metric gF (e.g. [3]). To develop the complex Finsler
geometry of the Teichmüller metric under this technique, we need to formulate
the double tangent space, which is the tangent space to the tangent bundle over
the Teichmüller space.

2. Notation

2.1. Double tangent space. Let M be a complex manifold and TM the holo-
morphic tangent bundle. The (holomorphic) double tangent space TvTM at v ∈
TM is the holomorphic tangent space to TM at v ∈ TM .

Naively speaking, double tangent vectors appear as second derivatives of holo-
morphic maps from a 2-dimensional polydisk. Namely, consider M = Cn for sim-
plicity. Let vt (∣t∣ < ε) be a holomorphic family of tangent vectors to C

n. Then,

we have a holomorphic map F ∶{∣t∣ < ε} × {∣s∣ < ε} → C
n such that ∂F

∂s
(t,0) = vt

for ∣t∣ < ε. The family {vt}∣t∣<ε is thought of a path in TCn = C
n
× C

n. Hence,
the double tangent vector of the family {vt}∣t∣<ε is given by the pair (u, v̇) where
u = ∂F

∂t
(0,0) and v̇ = ∂2F

∂t∂s
(0,0).

2.2. Kodaira-Spencer theory. Let M be a closed Riemann surface of genus g.
Let ΘM be the sheaf of germs of holomorphic vector fields on M . Let Ap,q(ΘM)
be the sheaf of germs of (p, q)-C∞ vector fields on M . Let U = {Ui}i∈I be a
locally finite covering of M . We assume that H1(Ui,ΘM) = 0 for i ∈ I. Then, the
(holomorphic) tangent space to Tg at a marked Riemann surface with conformal
structure M is identified with H1(M,ΘM) ≅ H1(U ,ΘM) (cf. [2, §7.2.4] and [4,
Lemma 5.2]). Indeed. the exact sequence

(2.1) 0 Ð→ C∗(U ,ΘM) Ð→ C∗(U ,A0,0(ΘM)) −∂Ð→ C∗(U ,A0,1(ΘM)) Ð→ 0
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leads the Dolbeaut isomorphism

H0(M,A0,1(ΘM))/∂H0(M,A0,0(ΘM)) ≅H1(M,ΘM)
where the left-hand side is thought of as the space of (infinitesimal) smooth Bel-
trami differentials and the first cohomology with coefficient ΘM .

3. Model spaces

In the following, for a sheaf F on M and a k-the cochain C ∈ Ck(U ,F), Ci0i1⋯ik ∈
Γ(Ui0 ∩⋯∩Uik ,F) the (i0, ⋯, ik)-th component of C. For α ∈ C0(U ,ΘM), X , Y ∈
C1(U ,ΘM), we consider the following cochains K(α,X), K ′(α,X) ∈ C1(U ,ΘM),
ζ(X,Y ) ∈ Z2(U ,ΘM) by

K(α,X)ij = [αi,Xij]
K ′(α,X)ij = [αj ,Xij]
ζ(X,Y )ijk = 1

2
([Xij , Yjk] + [Yij ,Xjk])

for i, j, k ∈ I. The cocycle ζ(X,Y ) is called the primary obstruction (cf. [4, §5.1]).
For Y ∈ Z1(U ,ΘM), we define two linear maps

DY
0 ∶C

0(U ,ΘM)⊕2 → Z1(U ,ΘM)⊕C1(U ,ΘM)
DY

1 ∶Z
1(U ,ΘM)⊕C1(U ,ΘM)→ C1(U ,ΘM)⊕C2(U ,ΘM)

by

DY
0 (α,β) = (δα, δβ +K(α,Y ))

DY
1 (X, Ẏ ) = (Ẏ + Ẏ ∗ + [X,Y ], δ (Ẏ + 1

2
[X,Y ]) − ζ(X,Y ))

We can check that DY
1 ○D

Y
0 = 0 and define the model space of the double tangent

space for cocycle Y by

TY [U] = Ker(DY
1 )/Im(DY

0 ).
The equivalence classes of (X, Ẏ ) ∈ Ker(DY

1 ) is denoted by ⟦X, Ẏ ⟧
Y
. For β ∈

C0(U ,ΘM), two model spaces TY [U] and TY +δβ[U] are isomorphic by

⟦X, Ẏ ⟧
Y
↦ ⟦X, Ẏ +K ′(β,X)⟧

Y +δ
.

This define the model space T[Y ][U] for [Y ] ∈ H1(U ,ΘM). By taking the direct
limit via the refinements of locally finite coverings, we define the model space T[Y ]
for [Y ] ∈H1(M,ΘM).

The model space T[Y ][U] is canonically identified with the double tangent space

T[Y ]TTg at [Y ] ∈ H1(U ,ΘM) ≅H1(M,ΘM) as follows. Notice that any holomor-
phic map from a polydiskD to the Teichmüller space is thought of as a holomorphic
family of closed Riemann surfaces of genus g over D, since the Teichmüller space
Tg is the universal space of such holomorphic families (cf. [5], [6]).

LetM→D = {(t, s) ∣ ∣t∣ < ε, ∣s∣ < ε} be a holomorphic family of closed Riemann
surfaces of genus g over D with the fiber M at (0,0) ∈ D. Since the fiber space
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M→D is trivial as a differentiable family, a family {Ui ×D}i∈I can be thought of
as a locally finite covering ofM =M ×D for coordinates. Let Ui ×D ∋ (p, t, s) →(zt,si (p), t, s) is the chart and set zt,sij = z

t,s
i ○ (zt,sj )−1 for i, j ∈ I with Ui ∩Uj ≠ ∅.

We define

Xt
ij =

∂z
t,0
ij

∂t
○ z

t,0
ji

∂

∂z
t,0
i

, Y t
ij =

∂z
t,s
ij

∂s

RRRRRRRRRRRs=0 ○ z
t,0
ji

∂

∂z
t,0
i

, Ẏij =
∂Y t

ij

∂t
∣
t=0

∂

∂z
0,0
i

.

We set Ẏii = 0, Xij = X
0
ij and Yij = Y

0
ij . Then, it can be shown that (X, Ẏ ) ∈

Ker(DY
1 ).

The short exact sequence (2.1) leads the Dolbeaut type presentation TY [U] =
L1/((∂ ⊕ ∂)L0) where

L1 = {(µ, ν̇) ∈ Γ(M,A0,1(ΘM))⊕C0(U ,A0,1(ΘM) ∣ δν̇ + [µ,Y ] = 0}
L0 = {(ξ, η) ∈ Γ(M,A0,0(ΘM))⊕C0(U ,A0,1(ΘM) ∣ δη + [ξ, Y ] = 0}.

4. Differential formulas

The holomorphic cotangent bundle T ∗Tg of the Teichmüller space is presented by
the holomorphic bundle Qg → Tg of holomorphic quadratic differentials via the
pairing

⟨µ, q⟩ =∬
M
µ(z)q(z)dxdy

for µ ∈ H0(U ,A0,1(ΘM)) and q ∈ H0(M,Ω⊗2M ) where ΩM is the sheaf of germs of
holomorphic 1-forms onM . The pairing is a holomorphic function on the Whitney
product TTg ⊕ T

∗Tg = TTg ⊕ Qg. In [1], Hubbard and Masur formulated the
tangent space at q0 ∈ Qg as the hypercohomology group H1(Lq0) of the sequence

Lq0 ∶ΘM

L⋅(q0)→ Ω⊗2M , where LX(q0) is the Lie derivative of q0 along X .
With our formulation of the double tangent space, we obtain the (intrinsic)

differential formulas for the pairing on TTg ⊕Qg, the L
1-norm ∥ ⋅ ∥1 on Qg, and

the Teichmüller metric κT on TTg as follows:

D⟨⋅, ⋅⟩∣(v0,q0)[V,W ] = − 1

2i
∬

M
(dAi −Lξi(d(ηiq0i )))dz ∧ dz

D∥ ⋅ ∥1∣q0[W ] = 1

4i
∬

M

q0i∣q0i ∣ (ϕi −Lξi(q0i ))dz ∧ dz
DκT ∣v0[V ] = 1

4i∬M
(ν̇iQi + κT (v0)Lξi(∣Qi∣))dz ∧ dz,

where

● v0 = [Y ] ∈ H1(M,ΘM) is a tangent vector, Q = {Qi}i∈I ∈ H0(M,Ω⊗2
M
)

defines the corresponding Teichmüller Beltrami differential to v0, and q0 ={q0i }i∈I ∈H0(M,Ω⊗2M );
● V = ⟦X, Ẏ ⟧

Y
∈ TY [U] ≅ Tv0TTg and W = [X,ϕ] ∈H1(Lq0) ≅ Tq0T ∗Tg;

● ν̇ = {ν̇i}i∈I is the second coordinate of the Dolbeaut presentation of V =⟦X, Ẏ ⟧
Y
;
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● ξ ∈ C0(U ,A0,0(ΘM)) and η ∈ C0(U ,A0,0(ΘM)) with δξ =X and δη = Y ;
● ηiq

0
i = ηi(z)q0i (z)dz; and

● Ai = Ai(z)dz satisfies

Ai(z0ij(z))dz
0
ij

dz
(z) −Aj(z) = Ẏji(z)q0j (z) + Yji(z)ϕj(z) +LXji

(ηiq0i )(z)
for z ∈ z0j (Ui ∩Uj) and i, j ∈ I, where ϕ = {ϕi}i∈I .
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Teichmüller Theory: Classical, Higher, Super and Quantum

Paul Norbury

1. A new finite measure on the moduli space of curves

The main aim of this talk is to define a new finite measure on the moduli space
of oriented hyperbolic surfaces. The measure is defined using spin structures via
a procedure analogous to the definition of the Weil-Petersson metric. In fact, it
arises naturally out of the super Weil-Petersson metric defined over the moduli
space of super curves. We summarise the construction of the measure here:

● construct a natural Euler form e(E) of a vector bundle E defined over the
moduli space of spin curves;
● together with the Weil-Petersson form, e(E) expωWP defines a finite mea-
sure which pushes forward to a measure on the moduli space of curves.

The total measure can be identified with the volume of the moduli space of super
hyperbolic surfaces. It can be calculated in many examples, and conjecturally
satisfies a recursion analogous to Mirzakhani’s recursion for Weil-Petersson vol-
umes of moduli spaces of hyperbolic surfaces. This conjecture has been verified
in many cases, including the Neveu-Schwarz case where it coincides with the re-
cursion of Stanford and Witten [3]. The Ramond case produces deformations of
the Neveu-Schwarz volume polynomials, again satisfying Mirzakhani-like recursion
relations.
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2. The moduli space of spin hyperbolic surfaces

Define the moduli space of oriented, spin, hyperbolic surfaces with fixed length
geodesic boundary components by

Mspin
g,n (L1, ..., Ln) = {(Σ, β1, ..., βn) ∣Σ genus g, oriented, spin, hyperbolic surface,

geodesic boundary ∂Σ = ⊔βi, Li = ℓ(βi)}/ ∼
where the quotient is by isometries preserving each βi. An oriented, spin, hyper-
bolic surface is defined by a hyperbolic representation

ρ ∶ π1Σ
hyp.Ð→ SL(2,R)

which determines a quotient Σ ≃ H/ρ(π1Σ) and an associated flat real rank 2 vector

bundle T
1
2

Σ
→ Σ which we identify with the associated locally constant sheaf. A

boundary component β ⊂ ∂Σ is defined to be

● Neveu-Schwarz if tr(ρ(β)) < 0
● Ramond if tr(ρ(β)) > 0.

Homological considerations imply that the number of Ramond boundary compo-
nents is even, which decomposes the moduli space into 2n−1 components

Mspin
g,n = ⊔

σ∈{0,1}n
Mspin

g,σ

for σ = (σ1, ..., σn), where σi = 1 corresponds to a Neveu-Schwarz boundary compo-
nent βi and σi = 0 corresponds to a Ramond boundary component. Each compo-
nentMspin

g,σ is connected except for the case of σ = (1n) which decomposes further
into two connected components labeled odd and even.

3. A vector bundle equipped with a natural Euler form

Define a bundle with fibre Eg,n∣Σ = H1
dR(Σ, T 1

2

Σ ), the sheaf cohomology of the

locally constant sheaf of sections of T
1
2

Σ
, which can be calculated via a twisted de

Rham cohomology.

Eg,n ↩H1
dR(Σ, T 1

2

Σ )↓Mspin
g,σ

The moduli space of spin, hyperbolic surfaces is the reduced space of the moduli
space of super hyperbolic surfaces, and Eg,n arises as the normal bundle of the
reduced space inside the super space

Mspin
g,n (L1, ..., Ln)→ M̂g,n(L1, ..., Ln).

The Euler form is defined via a natural holomorphic structure and hermitian
metric on Eg,n which gives rise to a Chern connection. The bundle Eg,n has a
holomorphic structure due to a natural isomorphism

H1
dR(Σ, T 1

2

Σ ) ≅H1(C, θ∨)∨.
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where C is a compact curve related to Σ by Σ = C −D for D = {p1, ..., pn} ∈ C. The
sheaf θ⊗2 ≅ ωlog

C is a spin structure corresponding to the spin structure on Σ.
The Hermitian metric on Eg,n arises similarly to the Weil-Petersson metric so

we first recall that definition. For [C] ∈Mg,n,

T[C]Mg,n ≅H
1(C,TC(−D)) ≅H0(C,K⊗2C (D))∨

and the Weil-Petersson metric is defined on the cotangent bundle by

(3.1) ⟨η1, η2⟩ ∶= ∫
Σ

η1η2

h
, η1, η2 ∈H

0(C,K2
C(D))

where h is the hyperbolic metric. Analogously, for Eg,n,

H1
dR(Σ, T 1

2

Σ ) ≅H1(C,T 1
2

C (−D))∨ ≅H0(Σ,K3/2
C (D))

where T
1
2

C (−D) is essentially θ∨. (More precisely T
1
2

C (−D) is the push-forward of θ∨

from a twisted curve to its underlying coarse curve—see [2].) The 3/2 differentials
give the analogue of holomorphic quadratic differentials used to define the Weil-
Petersson metric. Define a Hermitian metric on Eg,n by

(3.2) ⟨η, ξ⟩ ∶= ∫
Σ

ηξ√
h
, η, ξ ∈H0(Σ,K3/2

Σ
(D))

where
√
h is the hyperbolic metric on the spin bundle T

1
2

Σ . This hermitian metric
and the holomorphic structure on the rank N vector bundle Eg,n defines a unique
Chern connection A. With this we define an Euler form and measure

(3.3) µ = e(Eg,n) expωWP , e(Eg,n) ∶= ( 1

4π
)N pf(FA).

The push-forward under the forgetful map Mspin
g,σ →Mg,n defines a measure µσ

onMg,n for each σ ∈ {0,1}n.
The proof that (3.2) is well-defined requires convergence of the integral if Σ is

non-compact. The proof that this defines a finite measure uses an extension of
the Hermitian metric to the compactification by stable spin curves, which requires
convergence of the same integral in (3.2), proven as follows. Consider a local
coordinate z with z = 0 corresponding to a point of D and a cusp of the metric.

Locally, the hyperbolic metric is given by h =
∣dz∣2

∣z∣2(log ∣z∣)2
and the 3/2 differentials

are given by η = f(z)dz3/2

z
and ξ = g(z)dz3/2

z
where f(z) and g(z) are holomorphic

at z = 0. The local contribution to the metric ∫∣z∣<ε fg log ∣z∣∣dz∣2

∣z∣
exists since

(3.4) ∫
∣z∣<ε

∣ log ∣z∣∣
∣z∣ ∣dz∣2 = ∫

ε

0
∣ log r∣drdθ = 2π∣ε log ε − ε∣ < 2π ⇐ ε < 1.

Note that similar issues arise in the definition of the Weil-Petersson metric,
however in this case the convergence of (3.1) holds whereas the extension to the
Deligne-Mumford compactification does not.
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4. Volume polynomials

A powerful method pioneered by Mirzakhani [1] to study Weil-Petersson volumes is
to consider a family of symplectic deformations ω(L1, ..., Ln) of the Weil-Petersson
form for (L1, ..., Ln) ∈ Rn

≥0 where ωWP = ω(0, ...,0), and corresponding volumes
Vg,n(L1, ..., Ln) ∶= ∫Mg,n

expω(L1, ..., Ln). We use the same deformation of the

Weil-Petersson form to study the measure defined in (3.3). Define

V̂g,n(s,L1, ..., Ln) ∶= ∞∑
m=0

sm

m!
∫
Mspin

g,(1n,0m)

e(E∨g,(1n,0m)) expω(L1, ..., Ln,0
m)

which deforms the symplectic form only at the Neveu-Schwarz points, and allows
an arbitrary number, or gas, of Ramond punctures.

Conjecture 1.

L1V̂g,n(s, L⃗) = 1
2 ∫

∞

0
∫ ∞

0
xyD̂(L1, x, y)P (x,↑y)dxdy+

n∑
i=2
∫ ∞

0
xR̂(L1, Li, x)Q(xÕ××

)dx
P (x,y)=V̂g−1,n+1(s,x,y,L2,..,Ln)+ ∑

g1+g2=g
I⊔J={2,..,n}

V̂g1,∣I∣+1(s,x,LI)V̂g2,∣J ∣+1(s,y,LJ)

Q(x)=V̂g,n−1(s,x,L2,..,L̂i,..Ln)

The conjecture is proven up to O(s4), and in particular the s = 0, or Neveu-
Schwarz, case is derived via supergeometry by Stanford and Witten [3] and proven
rigorously in [2]. The (0,1) disk case, which needs an extra term, is also proven:

V̂0,1(s,L) = s2
2!
+

1

2L
∫ ∞

0
∫ ∞

0
xyD(L,x, y)V̂0,1(s, x)V̂0,1(s, y)dxdy.

References

[1] Mirzakhani, M. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces. Invent. Math. 167 (2007), 179–222.

[2] Norbury, P. Enumerative geometry via the moduli space of super Riemann surfaces.
http://arxiv.org/abs/2005.04378

[3] Stanford, D. and Witten, E. JT gravity and the ensembles of random matrix theory. Adv.
Theor. Math. Phys. 24, (2020), 1475–1680.

Maximal submanifolds of pseudo-hyperbolic space and

their applications

Andrea Seppi

(joint work with Graham Smith and Jérémy Toulisse)

Motivated by the asymptotic Plateau problem in the hyperbolic three-space, which
is the question of existence of a minimal surface having a prescribed Jordan curve
as asymptotic boundary, in this talk we discussed a similar problem in the pseudo-
hyperbolic space H

p,q of any signature (p, q). This is the space of unoriented
negative lines in the pseudo-Euclidean space R

p,q+1, and its boundary at infinity
∂∞H

p,q is thus the space of unoriented isotropic lines. The main result of [11] is
the following:
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Theorem 1. Given any non-negative (p − 1)-sphere Λ in ∂∞H
p,q, there exists a

unique complete maximal submanifold Σ in H
p,q such that ∂∞Σ = Λ.

To explain the statement, a subset Λ of ∂∞H
p,q is non-negative (resp. positive)

if, for any triple of pairwise distinct points x, y, z of Λ, their span in R
p,q+1 does not

contain any negative definite 2-plane (resp. has signature (2,1)). A submanifold
of Hp,q is complete if its first fundamental form is a complete Riemannian metric,
and it is maximal if its second fundamental form has vanishing trace. Theorem 1
is a generalization of the results obtained in [2] and [5] for q = 1, and in [6] and
[10] for p = 2.

A key feature of this result is that we consider submanifolds of dimension p,
namely having the maximal possible dimension among spacelike submanifolds. For
spacelike submanifolds of dimension lower than p — although no general results
of existence were available at the time of the talk — uniqueness certainly does
not hold, as one easily sees by considering Jordan curves in ∂∞H

3 spanning sev-
eral minimal surfaces (from [1] or [9]), and embedding H

3 as a totally geodesic
submanifold of Hp,q for p ≥ 3.

We have briefly discussed the strategy of the proof of the existence part of
Theorem 1, which consists in a continuity method, via a deformation from Λ to the
boundary of a totally geodesic copy ofHp. While the most difficult part of the proof
consists in achieving the openness of the set of solutions, the closedness follows
from the following “dichotomy” that completely describes the non-compactness of
the space of complete maximal submanifolds.

Proposition 1. Let {Σn}n∈N be a sequence of complete maximal p-dimensional
submanifolds of Hp,q. Up to subsequences, either Σn converges smoothly on com-
pact sets to a complete maximal submanifold, or Σn converges in the Hausdorff
topology to a Lipschitz submanifold which is foliated by lightlike geodesics.

In the second part of the talk, we have discussed applications to the study of
Anosov representations. In the following, let Γ be a word hyperbolic group whose
Gromov boundary is homeomorphic to Sp−1. Following [7], a representation ρ of
Γ in PO(p, q + 1), which is the isometry group of Hp,q, is positive P1-Anosov (i.e.,
roughly speaking, it admits a proximal limit set Λρ which is a positive sphere) if
and only if it has finite kernel and ρ(Γ) acts convex cocompactly on H

p,q (i.e. there
exists a convex region, which can be taken to be the convex hull of Λρ, on which
ρ(Γ) acts properly discontinuosly and cocompactly). An immediate consequence
of Theorem 1 is:

Corollary 1. If ρ ∶ Γ → PO(p, q + 1) is a positive P1-Anosov representation, then
ρ(Γ) preserves a unique complete maximal submanifold Σ in H

p,q, and the action
of ρ(Γ) on Σ is properly discontinuous and cocompact.

Corollary 1 has been an important ingredient in [4], which exhibited new ex-
amples of “higher higher Teichmüller spaces”, that is, connected components of
the space of representations of Γ into a Lie group G which consist entirely of
discrete and faithful representations. Indeed, [4] proves that the space of posi-
tive P1-Anosov representations is a union of connected components in the space
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of representations of Γ in PO(p, q + 1). One key idea to achieve this result is to
consider a sequence {ρn}n∈N of positive P1-Anosov representations converging to
some representation ρ∞. By Corollary 1, each ρn preserves a complete maximal
submanifold Σn, and by the dichotomy of Proposition 1, ρ∞ preserves the limit
Σ∞, which however might a priori be degenerate in the sense of Proposition 1.
Then [4] proves a converse of Corollary 1, even in case the invariant submanifold
is degenerate in the sense of Proposition 1, thus showing that ρ∞ is positive P1-
Anosov. A posteriori, combining [4] and [11], Corollary 1 is actually an “if and
only if”.

Corollary 1 permits to make some partial progress on the question of which
hyperbolic groups Γ as above do admit Anosov representations.

Corollary 2. If Γ is torsion-free and admits a positive P1-Anosov representation
ρ ∶ Γ → PO(p, q + 1), then Γ is isomorphic to the fundamental group of a closed
smooth p-dimensional manifold M whose universal cover is diffeomorphic to R

p.

Observe that, from [3], when p ≥ 6 any torsion-free hyperbolic group Γ with
Gromov boundary homeomorphic to Sp−1 is isomorphic to the fundamental group
of a closed topological p-dimensional manifold M whose universal cover is home-
omorphic to R

p. However, for p = 4k, k ≥ 2, there are examples where M cannot
be made a smooth manifold as in Corollary 2. The following result follows.

Corollary 3. For every k ≥ 2, there exists a torsion-free hyperbolic group Γ with
Gromov boundary homeomorphic to S4k−1 which does not admit any positive P1-
Anosov representation into PO(4k, q + 1).

Based on the questions during and after the talk, and the feedbacks from the
participants, it appears that the existence of new examples of higher higher Te-
ichmüller spaces has been accepted as a very interesting phenomenon, opening
up many questions in higher Teichmüller theory. There has been also a rich dis-
cussion, and interest, around Corollaries 2 and 3 and related questions. Finally,
we have briefly mentioned another application to the topology of the quotient of
Guichard-Wienhard’s domain of discontinuity Ωρ, introduced in [8], in the space
of maximally isotopic subspaces of Rp,q+1. Indeed, it can be proved that Ωρ/ρ(Γ)
has a fiber bundle structure over the manifold M constructed in Corollary 2.
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Super-representations of 3-manifolds and torsion polynomials

Stavros Garoufalidis

Torsion polynomials connect the genus of a hyperbolic knot (a topological invari-
ant) with the discrete faithful representation (a geometric invariant). Using a new
combinatorial structure of an ideal triangulation of a 3-manifold that involves edges
as well as faces, we associate a polynomial to a cusped hyperbolic manifold that
conjecturally agrees with the C

2-torsion polynomial, which conjecturally detects
the genus of the knot. The new combinatorics is motivated by super-geometry in
dimension 3, and more precisely by super-Ptolemy assignments of ideally triangu-
lated 3-manifolds and their OSp2∣1(C)-representations. Joint work with Seokbeom
Yoon which has appeared in four parts:

● Twisted Neumann–Zagier matrices, (with S. Yoon),
preprint 2021, arXiv:2109.00379
● 1-loop equals torsion equals for fibered 3-manifolds, (with N. Dunfield and
S. Yoon),
preprint 2023, 2304.00469.
● Super-representations of 3-manifolds and torsion polynomials, (with S.
Yoon),
preprint 2022, 2301.11018.
● Asymptotically multiplicative quantum invariants, (with S. Yoon),
preprint 2022, 2211.00270.

Extensive computer code to test the 1-loop equals torsion conjecture for the about
70000 cusped hyperbolic manifolds in the SnapPy census was written by Nathan
Dunfield, and this included testing the conjecture (which is proven for fibered
cusped hyperbolic manifolds) for the census manifold t07035 made out of 8 tetra-
hedra, whose invariant trace field is degree 90, which is fibered with a genus 122
surface and whose C

2 and C
3-torsion polynomials have degrees 486 and 729 and

coefficients in the trace field.

https://arxiv.org/abs/2109.00379
https://arxiv.org/abs/2304.00469
https://arxiv.org/abs/2301.11018
https://arxiv.org/abs/2211.00270
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Asymmetric intersection number and Fock–Goncharov duality

Zhe Sun

(joint work with Linhui Shen, Daping Weng)

I will talk about the Fock–Goncharov duality conjecture and webs on surfaces.
In [FG06], Fock and Goncharov introduce a pair of mutually dual moduli spaces(X
G,Ŝ

,A
GL,Ŝ
), which generalizes the enhanced Teichmüller space and the deco-

rated Teichmüller space [Pen87]. In loc. cit., Fock and Goncharov conjecture that
the ring of regular functions on one space has a canonical linear basis parameterized
by the tropical points of the dual space, and the parametrization is equivariant
under the action of the cluster modular group. They prove the conjecture for
G = SL2 by relating Thurston’s transversely integer measured laminations [Thu79]
to the tropical A coordinates using the topological intersection numbers with the
ideal edges of the ideal triangulation, and to the trace functions of the laminations.
As pointed out by Goncharov and Shen [GS15], when the surface Ŝ has marked
points on its boundary, the space X

G,Ŝ
should be replaced by P

G,Ŝ
, an enhance-

ment of X
G,Ŝ

. It is further conjectured in loc.cit. that when the tropical points

of AGL,Ŝ are cut out by the condition that the tropical potential function being

non-negative, the dual space should be changed into the character variety LG,Ŝ,

and the modified duality is proven for G = SL2 in loc. cit.. By a different approach
using scattering diagrams and broken lines to construct theta bases, Gross, Hack-
ing, Keel and Kontsevich [GHKK18] proved the duality conjecture under certain
conditions where the conditions are checked for most of our cases [GS18, GS19].
But their theta bases are hard to compute explicitly. Recently, Mandel and Qin
[MQ23] showed that for PGL2, the theta bases and the Fock–Goncharov’s bracelet
bases are the same. We are eager to see the generalization of Fock–Goncharov’s
orignial approach to the duality for general Lie groups.

The SL3-web is the collection of Z>0-weighted oriented arcs, Z>0-weighted ori-
ented loops and oriented 3-valent graphs (1-valent on the boundary) with only
sinks (all pointing inward) and sources (all pointing outward). By the condition
that we have only sinks and sources, the interior faces of the web have only 2k-gons.
The SL3-web is reduced if it is a disjoint collection without any self-intersection,
and there is no 0-faces, 2-faces, 4-faces in the interior, and at least d-gons for d ≥ 5
along the boundary. Kuperberg [K96] introduces these reduced webs to construct
natural bases of the tensor invariant spaces of irreducible representations of SL3.
Motivated by Fock–Goncharov’s original approach, the duality was established for
G = SL3 by using web bases as follows. Let WA

3,Ŝ
be the collection of reduced

(SL3,A)-webs which ends at boundary intervals. Following the confluence the-
ory used by Kuperburg [K96] for the polygon cases, Sikora and Westbury [SW07]
showed the trace functions of the reduced (SL3,A)-webs provide a linear basis of
the ring O(LSL3,Ŝ

) of regular functions of SL3 character variety. But for the rank

≥ 3 Lie group cases, the confluence property fails, which means that we have more
than two webs for a given tropical point.
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Let A+
PGL3,Ŝ

(Zt) be the cone of nonnegative tropical points introduced by Gon-

charov and Shen. Douglas and Sun [DS20a, DS20b] constructed a mapping class
group equivariant bijection1

Φ ∶ WA
3,Ŝ

∼Ð→ A+
PGL3,Ŝ

(Zt).
Therefore the tropical set A+

PGL3,Ŝ
(Zt) parameterizes a linear basis of O(L

SL3,Ŝ
).

This parametrization can be extended to a canonical bijection between a basis ofO(P
PGL3,Ŝ

) and A
PGL3,Ŝ

(Zt) by adding Z-weighted loops around the punctures

and Z-weighted arcs around the boundary corners. When Ŝ is a punctured surface
without marked points, Kim [Kim20] showed that the highest degree of the above
trace functions are the tropical coordinates of A

PGL3,Ŝ
(Zt). However, till here, the

generalization of the intersection number in Fock–Goncharov’s original approach
for SL2 is still missing.

Joint with Linhui Shen and Daping Weng, we introduce the asymmetric geometric
intersection numbers between ordered pairs of the SL3-webs. Using that, we prove
the mutation equivariant property of the bijection Φ between the reduced SL3-webs
and A+

PGL3,Ŝ
(Zt).

Definition 1 (Intersection number). For any SL3-webs W,V on S intersecting
transversely, suppose p lies on the oriented edge ep(W ) of W and ep(V ) of V . We
define the intersection number of the ordered pair (W,V ) at p

εp(W,V ) ∶= {1 if ep(W ) crossing ep(V ) towards the right side of ep(V );
2 if ep(W ) crossing ep(V ) towards the left side of ep(V ).

Then the intersection number of (W,V )
i(W,V ) ∶=∑

p

εp(W,V ).
The intersection number of ([W ], [V ])

i([W ], [V ]) ∶= inf
w∈[W ],v∈[V ]

{i(w,v)}
among all the w, v in the homotopy classes of W , V respectively such that they
intersect each other transversely.

For any seed s of the moduli space A
SL3,Ŝ

, there is a family of (SL3,X)-webs
ending at marked points and punctures, corresponding to cluster variables in the
seed s. We define is for any reduced (SL3,A)-web W to be the intersection num-
bers between W and this particular family of (SL3,X)-webs. Then we prove that

Theorem 1. [SSW] For the seed s associated with an arbitrary ideal triangulation

T of Ŝ, we have is = ΦT . For two seeds s and s′ related by any mutation µ in the
flip from the ideal triangulation T to T ′ of the square ◻, we have

µ ○ is = is′ .

1Frohman and Sikora [FS22] provided a different topological integer coordinate system for
the reduced SL3-webs depending on the ideal triangulation chosen.
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The fact that each mutation changes one tropical A coordinate into another
is understood as replacing the intersection number with one (SL3,X)-web V by
the intersection number with another (SL3,X)-web V ′. The proof of mutation
equivariant is to interprete the tropical mutation formula as the tropicalized SL3-
skein relation for V intersecting V ′.

Further research. For the Sp4 case, joint with Tsukasa Ishibashi and Wataru
Yuasa (in progress) [ISY], we construct the intersection number coordinates for
the crossroad webs [IY22].

In [FP16], Fomin and Pylyavskyy conjectured that all the cluster variables could
be represented by the webs. If their conjecture is true, we believe that our mutation
equivariance property should be true for any mutation between any seeds.

It is interesting to see the positivity of the structure constants for the reduced
SL3-web basis. Further more, if the structure constants are positive, it is interest-
ing to see their log-concave property conjectured by Okounkov [Ok03] in a more
general setting.

We also would like to investigate the relation among webs, k-differentials, the
possible higher geodesic measured laminations where the webs are the integer
points inside and the compactification of the higher Teichmüller spaces in the
future.
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Timelike Convex Geometry

Sumio Yamada

(joint work with Athanase Papadopoulos)

This topic concerns a Finsler generalization of the de Sitter space. Thurston has
called the de Sitter space as “exterior hyperbolic space” and our idea is to exploit
further the “exterior” aspect of the Lorentian geometry, and to introduce a new
convex geometry in the context of projective space. In particular, we introduce a
new class of metric spaces (X,d) which satisfies the timelike inequality, which is
the reverse triangle inequality

d(p, r) ≥ d(p, q) + d(q, r),
a notion first axiomatized by H. Busemann in 1967 in [3]. The logarithm of cross
ratios defined in the exterior of a pair of convex sets on the standard sphere Sn

has been shown in [1] to satisfy the timelike inequality, due to its variational
formulation.

Among the examples of the timelike spaces equipped with Hilbert metrics con-
structed using the cross ratio, an important subclass is when the two convex sets
(the past set Ω1 and the future set Ω2) are antipodal, i,e. Ω2 = −Ω1 ∶= Ω̃1. In that
case, a great circle tangential to one of the convex sets is automatically tangential
to the other, making the cross ratio to become one, consequently making the dis-
tance between any pair of points on the great circle becomes zero. Infinitesimally
each tangent vector to the circle is lightlike, a situation reminiscent of the the
de Sitter space. Indeed the de Sitter space can be realized when the past and
future convex sets Ω, Ω̃ are antipodal discs of the sphere Sn. As the projective
transformations of the ambient space R

n+1 preserves cross ratios, the projective
transformations leaving the convex sets are isometries of the timelike geometry.
Hence we call this construction of timelike metric space (Sn

∖(Ω∪Ω̃)) “generalized
de Sitter spaces” in analogy with the situation where the Hilbert geometry in the
interior of a convex set can be regarded as “ generalized hyperbolic space.” Re-
call that historically the first model of a hyperbolic plane was the Klein-Beltrami
model, which is nothing but the Hilbert geometry of the unit disc in R

2.
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We have constructed in [2] a timelike space based on the 2-dimensional spherical
simplex

∆2 = {(x1, x2, x3) ∣x21 + x22 + x23 = 1, and xi > 0 (i = 1,2,3)}.
and its antipodal set ∆̃2 in S2. The space (S2

∖(∆2∪ ∆̃2)) is isometric to a union
of six normed spaces, each corresponding to one of the 6 spherical orthants, with
an abelian subgroup of the isometry group, induced by the affine map

(x, y) ↦ (λ1x,λ2y) (λi > 0)
of R

2, which corresponds to the hyperplane {xi = i}. It also have a discrete
isometric action of Z2 ×Z3, where Z2 is the antipodal map p ↦ −p in R

3 and Z3 is
generated by the rotation around the central axis (x1, x2, x3)↦ (x2, x3, x1).

This construction in [2] is not special to the dimension 2. Hence the n-dimen-
sional spherical disc and n-dimensional spherical simplex are the two extreme cases
of the generalized de Sitter spaces, and there are many in between them interpo-
lating the two spaces. In the classical Hilbert geometry, namely the Hilbert metric
defined by the cross ration inside a convex set, this interpolation was important
in describing the moduli space of projective structures on Riemann surfaces as in
the work of W. Goldman [4]. The subject is now called “divisible convex sets.”
We believe that our construction of the generalized de Sitter spaces merits an
analogous attention in the coming years.
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4 place Jussieu
P.O. Box Case 247
75252 Paris Cedex
FRANCE

Prof. Dr. Hideki Miyachi

School of Mathematics and Physics
College of Science and Engineering
Kanazawa University
Kakuma-machi
Kanazawa, Ishikawa 920-1192
JAPAN



Teichmüller Theory: Classical, Higher, Super and Quantum 1891

Prof. Dr. Martin Möller

FB 12 - Institut für Mathematik
Goethe-Universität Frankfurt
Robert-Mayer-Straße 6-8
60325 Frankfurt am Main
GERMANY

Prof. Dr. Paul Norbury

School of Mathematics and Statistics
University of Melbourne
Melbourne VIC 3010
AUSTRALIA

Prof. Dr. Ken’ichi Ohshika

Department of Mathematics
Faculty of Science
Gakushuin University
Megiro 1-5-1
Tokyo 171-8588
JAPAN

Prof. Dr. Athanase Papadopoulos

Institut de Mathématiques
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