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Introduction by the Organizers

The workshop Many-Body Quantum Systems, organized by Christian Hainzl (LMU
Munich), Benjamin Schlein (University of Zurich), Robert Seiringer (IST Austria)
and Simone Warzel (TU Munich) was attended, at maximal capacity, by 48 par-
ticipants coming from Europe, North America and Asia. During the workshop we
had 21 lectures, covering a large variety of subjects in mathematical physics, with
the main focus being on quantum many-body systems, quantum spin systems and
models in (non-relativistic) quantum field theory. In addition, we had an after-
dinner lecture by Jan Philip Solovej on open problems in the analysis of quantum
gases and large atoms.
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1. Equilibrium properties of quantum gases

The last few years have seen tremendous progress in the mathematical understand-
ing of the low-energy properties of interacting Bose and Fermi gases. In this line
of research, Arnaud Triay presented a rigorous lower bound for the free energy of
a dilute Bose gas in the thermodynamic limit at low temperature, matching the
celebrated Lee–Huang–Yang formula predicted by physicists more than 65 years
ago. An upper bound on the free energy in the Gross–Pitaevskii scaling regime
was the topic of the talk by Andreas Deuchert. Giulia Basti’s talk concerned an
upper bound on the ground state energy at zero temperature that is valid even
in the singular case of hard-sphere interactions. Manfred Salmhofer discussed a
different approach to the analysis of interacting Bose gases and the emergence
of Bose–Einstein condensation, based on a (coherent state) functional integral ap-
proach. Fermions at high density were the focus of the talk of Martin Christiansen,
presenting a proof of the validity of the Gellmann–Brueckner formula in a suitable
(semiclassical mean-field) limit.

2. Time-evolution of large quantum systems

Also the time-evolution of large quantum systems, and the derivation of approx-
imating effective equations, have been closely investigated by the mathematical
physics community in recent years. Along this line of research we had four talks
at the workshop in Oberwolfach. Cristina Caraci discussed her recent work on
quantum fluctuations around the Gross–Pitaevskii equation for the dynamics of
dilute Bose gases. Nicolas Rougerie’s talk concerned the semiclassical limit of
large fermionic systems, and the emergence of a classical description via Vlasov
dynamics, in strong magnetic fields. The adiabatic evolution of quantum many-
body systems at low temperature was the focus of Marcello Porta’s talk. Finally,
Marius Lemm reported on bounds on the speed of propagation of bosonic lattice
systems, extending the celebrated Lieb–Robinson bounds to systems with infinite-
dimensional local Hilbert spaces.

3. Quantum spin systems

Many of the essential properties of many-body quantum systems are being cap-
tured by quantum spin systems, which are easier to handle analytically than con-
tinuum models. For this reason, they attracted a lot of attention in the last years.
Daniel Ueltschi discussed recent progress on the existence of phase transitions in
the random interchange model and their possible relation to problems in quantum
spin systems. Alessandro Pizzo presented a new method to investigate the spec-
tral gap above the ground state energy in quantum chains, and applied it to the
XXZ model in a magnetic field. Chokri Manai explained in his talk the analysis of
the low-energy spectrum of quantum spin systems with interactions of mean-field
type.
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4. Polarons and similar models in quantum field theory

The Fröhlich polaron model is an example of a simple quantum field theory, where
a small system (the electron) is coupled to an infinite system (a quantum field).
Other models of this kind include the Nelson and Pauli–Fierz models, for instance,
and investigations on all these models were discussed during the workshop. Morris
Brooks considered the strong coupling limit of the Fröhlich polaron model, deriving
a two-term asymptotic expansion of its energy–momentum relation, showing in
particular the emergence of the celebrated Landau–Pekar formula for its effective
mass. The scattering theory of the massless Nelson model was the topic of Gian
Michele Graf’s talk. Finally, Marcel Griesemer discussed pointwise bounds on
eigenstates of the Nelson and related models.

5. Effective theories

In the physics literature, complex many-body quantum systems are often described
through simplified effective theories. One of the main goals of mathematical statis-
tical mechanics is the rigorous justification of these theories, starting from funda-
mental, microscopic descriptions of many-body systems. Another important goal
for mathematical physicists is the study of the mathematical properties of effec-
tive theories. Along this line of research, Mathieu Lewin discussed mathematical
properties of the Gross–Pitaevskii equation in infinite space, and conditions on
the interaction potential guaranteeing the existence of a phase transition in this
model. The Bardeen–Cooper–Schrieffer model of superconductivity was the topic
of Barbara Roos’s talk, focusing on the effect of system boundaries on the critical
temperature, thereby confirming recent predictions in the physics literature based
on a numerical simulation of the model.

6. Other

In addition the the talks and topics discussed above, we had a talk by Sven Bach-
mann explaining how to use the landscape function to count the number of eigen-
values of Schrödinger operators, and a talk by David Gontier on the spectral
analysis of Dirac operators. Stefan Teufel reported on properties of subsystems
of typical quantum states, and Wojciech de Roeck presented an analysis of the
long-time behavior of disordered anharmonic chains.

Acknowledgment: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Phase Transition in Gross-Pitaevskii Theory

Mathieu Lewin

(joint work with Phan Thành Nam)

We present here recent results from [4] concerning the Gross-Pitaevskii equation

(1)
(
− ∆ + w ∗ |u|2

)
u = µu in R

d,

where µ > 0 is a fixed parameter and w is a given real-valued even function or
measure with

∫
Rd |w| < ∞ and

∫
Rd w > 0 (a Dirac delta δ0 is allowed). Although

in [4] we consider any space dimension, here we assume d ∈ {1, 2, 3} for simplicity.
The positivity of µ will imply that solutions to (1) must have positive density,
in the sense that

∫
B(τ,R)

|u|2 ≥ αRd for all τ ∈ Rd and all R large enough, with

α > 0. In particular, u cannot tend to 0 at infinity. The simplest solution of (1)
is the constant function u(x) = (µ/

∫
Rd w)1/2 but we will see that there are other

more interesting solutions.
We are interested in a particular class of solutions of (1) which we call “infinite

ground states”. Those are by definition minimizers of the associated free energy

(2) Fµ(u) :=

∫

Rd

|∇u(x)|2 dx+
1

2

∫∫

Rd×Rd

|u(x)|2|u(y)|2w(x − y) dx dy

− µ

∫

Rd

|u(x)|2 dx.

The above integrals are all infinite, so that the concept of minimizers is unclear.
We simply ask that the energy goes up when u is perturbed locally, whatever the
size of the local perturbation. In other words, we require that “Fµ(v)−Fµ(u)” ≥ 0
for any v that coincides with u outside of a bounded set. The formal difference of
the energies can be given a rigorous meaning by writing integrals of differences,
for instance

∫
Rd(|∇v|2 − |∇u|2) for the first term.

The equation (1) typically describes a system of infinitely many quantum par-
ticles in a mean-field-type approximation and w is interpreted as the interaction
potential between the particles. In particular, it can be used to model the con-
densate part of an infinite Bose gas. When u is real-valued and w = δ, the same
equation can also describe phase separation in binary fluids and living tissues, in
which case it is called Cahn-Hilliard.

The constant solution u(x) = (µ/
∫
Rd w)1/2 describes a fluid state of our system,

since it is invariant under translations and rotations. The main result which we
want to present here states informally that when the Fourier transform ŵ of the in-
teraction w takes negative values, there exists a unique fluid-solid phase transition
at some critical µc, that is, the constant solution ceases to be a ground state. This
phenomenon was predicted first in 1957 by Gross in his famous paper [2]. Numer-
ical simulations suggest that u becomes a non trivial periodic function, which is
another instance of the crystallization conjecture. For Bose-Einstein condensates,
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a periodic infinite ground state u is believed to describe a supersolid. Although
this state of matter has not yet been observed in solid helium, recent experiments
have confirmed its occurrence in ultracold atomic gases, in particular with dipolar
interactions.

We are able to rigorously prove the above claim under very general assumptions
on w. We assume that w is superstable [6], that is, can be written in the form

(3) w = ε χB(0,ε) + w2, ε > 0,

where w2 is stable in the sense that
∫∫

R2d ρ(x)ρ(y)w2(x − y)dx dy ≥ 0 for all

non-negative ρ ∈ L2(Rd). We also assume that w is decays fast enough at infinity:

(4)

{
w2(x) ≥ − κ

1+|x|s ∀x ∈ Rd,

w(x) = w2(x) ≤ κ
|x|s ∀|x| ≥ κ,

for some s > d and κ ≥ ε. Close to the origin we just assume that w+ is integrable
and can even allow a positive Dirac delta at 0.

Theorem 1 (Uniform bounds). Let Ω ⊂ Rd be any open set (bounded or un-
bounded) and µ > 0. Any solution u ∈ H1

unif(Ω) of the GP equation (1) with the
Dirichlet condition u|∂Ω = 0 satisfies the uniform bound

(5) ‖u‖L∞(Ω) ≤ C
√
µ
(

1 + µ
d
4

)

where C depends on w and d, but not on u, Ω and µ. If Ωn is a sequence of
bounded domains such that B(0, n) ⊂ Ωn, then any sequence un ≥ 0 of minimizers
for the energy (2) in H1

0 (Ωn) is bounded in L∞ and converges locally uniformly to
a non-negative infinite ground state u, after extraction of a subsequence.

The previous result provides the existence of non-negative infinite ground states
in L∞(Rd) for all µ > 0. The proof of the bound (5) is delicate under our general
assumptions on w. We had to use a combination of elliptic PDE techniques with
a localization method introduced by Ruelle in statistical mechanics in [6].

When the Fourier transform ŵ is non-negative, the energy Fµ is a strictly
convex function of |u|2 and Dirichlet minimizers in a bounded set Ω are unique,
up to multiplication by a constant phase factor. This is not true anymore in the
whole space, due to the possibility of varying the boundary condition “at infinity”.

Theorem 2 ((Non)uniqueness for positive-definite interaction). Assume ŵ ≥ 0.

(i) The constant u(x) = (µ/
∫
Rd w)1/2 is an infinite ground state for all µ > 0.

(ii) If d = 1 and s > 2, then it is the unique infinite ground state, up to
multiplication by a constant phase factor.

(iii) If d = 2, s > 3 and ŵ is radial decreasing, then for µ small enough there
exists an infinite ground state with a non-trivial phase. More precisely, we
have |u(x)| > 0 for all |x| ≥ R0 and u takes the form

u(x) = |u(x)| x1 + ix2√
x21 + x22

eiψ(x), ∀|x| ≥ R0,

with a smooth ψ. In other words, u has topological degree one at infinity.
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Recall that s is the polynomial decay of w at infinity. The last solution in 2D
describes an infinite quantum fluid rotating about a point (a vortex). It can be
seen to have an energy infinitely higher than the constant, but it is nevertheless
an infinite ground state, protected by its topological degree at infinity. Existence
of such vortices has a long history in the case of the Ginzburg-Landau equation,
which corresponds to taking w = δ0. In this setting it was even proved that the
constant and the vortex are the only two infinite ground states, up to translations,
complex conjugation and multiplication by a phase [5, 7]. It would be interesting
to extend the uniqueness to a general w and the existence to any positive µ. Our
proof uses that the equation converges to Ginzburg-Landau after an appropriate
rescaling in the limit µ→ 0.

We finally state our main theorem concerning the fluid-solid phase transition.

Theorem 3 (Fluid-solid phase transition). Assume that ŵ takes negative values.
There exists a 0 < µc <∞ such that the following holds.

(i) For µ ≤ µc, the constant solution is an infinite ground state. It is the unique
real-valued one if µ is small enough.

(ii) For µ > µc, the constant solution is not an infinite ground state. Any infinite
ground state u satisfies

max
B(τ,R)

|u| ≥ c+ min
B(τ,R)

|u|, ∀τ ∈ R
d,

for some c, R > 0.

In [4] we provide explicit upper and lower bounds on µc. The upper bound
is obtained by finding the value of µ for which the constant solution becomes
linearly unstable. The lower bound is more complicated; the first result in this
direction appeared in [1] in the special case w ≥ 0. It would be very interesting to
prove that u is periodic for µ > µc, as is suggested by numerical simulations [3].
The inequality (ii) means, at least, that an infinite ground state must oscillate
everywhere in space.
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The free energy of dilute Bose gases at low temperatures

Arnaud Triay

(joint work with Florian Haberberger, Christian Hainzl, Phan Thành Nam and
Robert Seiringer)

In 1957, Lee, Huang and Yang published a celebrated work [9] on the expansion in
the dilute limit of the eigenvalues of a system of Bosons at low temperature. The
rigorous justification of their approximation has been a mathematical challenge
since then. Following their work, we consider N interacting Bosons in a box of
side length L > 0. The Hamiltonian of the system is

HN =

N∑

i=1

−∆xi +
∑

1≤i<j≤N

V (xi − xj)

which acts on symmetric space L2
s([−L/2, L/2]3)N and where V is a non-negative,

radial, compactly supported and integrable function.
The most famous formula of Lee, Huang and Yang concerns the lowest eigen-

value of HN ,

λ0(HN ) ≃ 4πaρN

(
1 +

128

15
√
π

√
ρa3
)

(1)

where ρ = N/L is the density of the system and a the scattering length of the
potential V .

The mathematical derivation of this formula has been achieved over the past 60
years in a series of seminal works. Dyson proved the leading order upper bound
already in 1957 [5], but it was only until 1998 that Lieb and Yngvason gave the
proof of the matching lower bound [12]. The second order, which is known as the
Lee-Huang-Yang correction, was proven as an upper bound ten years later by Yau
and Yin [15] (see also [2] for an alternate proof) and it was only recently that the
lower bound of the LHY correction was established by Fournais and Solovej [6, 7].

Less known is the Lee-Huang-Yang formula for the low-lying eigenvalues

λj(HN ) ≃ λ0(HN ) +
∑

k 6=0

nk
√
k4 + 16πak2,

where nk ∈ N0 is the occupation number of the mode k ∈ 2πZ3/L. Deriving this
expansion for each eigenvalue is probably out of reach, therefore one might focus
on macroscopic quantities instead, like the free energy of the system. Assuming
the validity of the above formula leads to

−T log Tr e−
HN
T ≃ λ0(HN ) +

T

(2π)3

∑

p

ln

(
1 − e

−

√

p4 + 16π
ρa

T
p2
)

(2)

where T > 0 is the temperature, the trace is taken over the symmetric space and
the sum is over p ∈ 2πZ3/(LT 1/2).

We report a rigorous justification of the lower bound of (2) in the dilute limit
ρa3 → 0 and for temperatures T . ρa. As one can easily check, in the regime
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T ≃ ρa the free energy of the thermal excitations in (2) is of the same order
as the famous Lee-Huang-Yang correction in (1). The first order of was already
derived by Seiringer [13] (lower bound) and Yin [16] (upper bound), for a range of
temperatures allowing to go up to the order of the critical temperature Tc(ρ) ≃ ρ2/3

where there might not be condensation.
More precisely, in [8], we prove the following theorem.

Theorem 1. Assume V is non-increasing, then there is some ν > 0, such that in
the dilute limit ρa3 → 0, for any 0 ≤ T ≤ ρa(ρa3)−ν ,

− lim
N→∞

N/L3
→ρ

T

L3
log Tr e−

HN
T ≥ 4πaρ2

(
1 +

128

15
√
π

√
ρa3
)

+
T 5/2

(2π)3

∫

R3

log

(
1 − e

−

√

p4+
16πρa
T p2

)
dp

−O((ρa)5/2(ρa3)ν).

Our proof relies on the subadditivity of the free energy, which allows us to reduce
the problem to studying smaller subsystems. At shorter length scales, the gap of
the kinetic operator is much bigger, allowing to prove Bose-Einstein condensation
[11] and use Bogoliubov’s approximation [1, 14, 10, 3]. However, to resolve the
energy at LHY precision, one needs to consider length scales slightly larger than
the Gross–Pitaevskii one ℓ ≫ (ρa)−1/2 in order to avoid pollution coming from
the boundary effects.

This strategy of decomposing into smaller subsystems was already used in [12]
for the proof of the leading order lower bound in (1). The downside of this method
is that the smaller subsystems arise with Neumann boundary conditions, which we
cannot afford to remove by localizing without loosing the LHY precision. Work-
ing with Neumann boundary conditions is more involved than on the torus with
periodic boundary conditions. The main reason is that the Neumann momen-
tum is not conserved by the interaction potential as in the periodic case where
〈ep ⊗ eq, V (x − y)er ⊗ es〉T3 = δp+q,r+sV̂ (p− r), with ep(x) = eipx. The analysis
in configuration space is also intricate and was already investigated in [4] where
almost LHY order was reached. One of the main novelties of our work is to resolve
this problem by combining the momentum and the configuration space approaches.
We construct a symmetrized version of the full space scattering function by a re-
flexion method, defining in fact the kernel of a diagonal operator in the Neumann
basis.
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Quantum Fluctuations of Many-Body Dynamics around the

Gross-Pitaevskii Equation

Cristina Caraci

(joint work with Jakob Oldenburg and Benjamin Schlein)

We consider a system of N interacting bosons confined by an external field in a
volume of order one. The Hamilton operator describing the system, acting on
L2
s(R

3N ), is given by

(1) Htrap
N =

N∑

j=1

[
−∆xj + Vext(xj)

]
+

N∑

i<j

N2V (N(xi − xj))

with Vext(x) → ∞ as |x| → ∞ and V ≥ 0 compactly supported. It is well known
that every sequence of approximate ground states of (1), exhibit complete Bose-
Einstein condensation in the minimizer of the Gross-Pitaevskii functional.

We are interested in studying the dynamics of an equilibrium state of (1), after
switching off the trap. That is to say, at zero temperature, we look at the solution
of the time-dependent Schrödinger equation

(2) i∂tψN,t = HNψN,t

whereHN = Htrap
N −∑N

j=1 Vext(xj), for initial data ψN,0 approximating the ground

state of (1). In [9, 10], it was first proven that the time-evolution ψN,t of a
ψN,0 exhibiting Bose-Einstein condensate in a one-particle state ϕ ∈ L2(R3) still



Many-Body Quantum Systems 2259

exhibits Bose-Einstein condensation, in a new one-particle state ϕt, given by the
solution of the nonlinear time-dependent Gross-Pitaevskii equation

i∂tϕt = −∆ϕt + 8πa|ϕt|2ϕt
with the initial data ϕt=0 = ϕ. Here a > 0 denotes the scattering length of
the interaction potential V . By means of the one-particle reduced density γN,t
associated with ψN,t ∈ L2

s(R
3N ) of (2), it turns out that

(3) lim
N→∞

〈ϕt, γN,tϕt〉 = 1

for any fixed t ∈ R, if (3) holds true at time t = 0. Other related results have
been obtained in [13, 2, 5]. The convergence (3) implies that γN,t → |ϕt〉〈ϕt| in
the trace-class topology. However, (3) does not provide an approximation for the
many-body wave function ψN,t in the strong L2(R3N ) topology. To obtain a norm-
approximation, it is not enough to approximate the evolution of the condensate.
It is instead crucial to take into account the evolution of its orthogonal excitations.
Aim of this talk is to present the results in [8] that provide a norm approximation
for ψN,t for a suitable class of initial data.

The precise statement of our theorem can be found in [8, Theorem 2.2], and
it requires the introduction of several technical details. Here we report the main
ideas behind the approximation of ψN,t.

To describe the evolution of the excitations we follow the original idea of [16].
Working in Fock space F =

⊕
n≥0 L

2
s(R

3)⊗n, we construct a fluctuation dynamics

UN (t; s). This map not only factors out the condensate from the evolution ψN,t
(using a unitary map from [11]), but takes also into account the correlation struc-
ture generated by the two-body problem, through the action of an appropriate
Bogoliubov transformation, as in [5]. As a result, we can approximate the dynam-
ics UN (t; s) by a simpler fluctuation dynamics U2,N (t; s) generated by a quadratic-
in creation and annihilation operators - self-adjoint operator J2,N (t), that satisfies
the equation

(4) i∂tU2,N (t; s) = J2,N (t)U2,N (t; s)

with U2,N(s; s) = 1 for all s ∈ R.
The main difference with respect to [3, 4, 5], where a similar dynamics were con-

structed, is the implementation of a cubic transformation, similarly as in [6, 12].
However, this transformation happen to be only auxiliary to have the correct
energy of the norm of the difference between the evolution vector and the approx-
imate one. Hence, the final approximation turns out to be quasi-free.

Using (4), we approximate the evolution of the macroscopic correlations by the
Bogoliubov dynamics U2,N (t), which still depends on N . It is thus natural to
ask whether U2,N (t) approaches a limiting, N -independent, quadratic evolution
U2,∞(t), as N tends to infinity. The answer is affirmative, and is the content of
Theorem 2.3 in [8].

Moreover, since U2,∞ is generated by a quadratic operator, the evolution U2,∞(t)
acts as time-dependent Bogoliubov transformations, and its action on annihilation
and creation operators can be calculated explicitly. As a consequence, using the
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approximation in terms of the Bogoliubov dynamics U2,∞(t), we can establish a
central limit theorem for the evolution of initial data approximating ground states
ψN of the Hamiltonian (1). For details we refer to Theorem 2.5 in [8]. The proof
is based on previous results [1, 7, 15, 14].
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The Fröhlich Polaron at Strong Coupling

Morris Brooks

(joint work with Robert Seiringer)

We study the Fröhlich Hamiltonian, which is a model describing the interaction
between an electron and the optical modes of a polar crystal, acting on the space
L2
(
R3
)
⊗F

(
L2
(
R3
))

, given by the expression

H := −∆x − a (wx) − a† (wx) + N ,(1)
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where the annihilation and creation operators satisfy the rescaled canonical com-
mutation relations

[
a(f), a†(g)

]
= α−2〈f |g〉 for f, g ∈ L2

(
R3
)

with α > 0 being the

coupling strength, the interaction is given by wx(x′) := π− 3
2 |x′−x|−2 and N is the

corresponding (rescaled) particle number operator, i.e. N :=
∑∞

n=1 a
†(ϕn)a(ϕn)

where {ϕn : n ∈ N} is an orthonormal basis of L2
(
R3
)
.

In a series of two papers [2] and [3], we derived asymptotic formulas for the
ground state energy

Eα = ePek − 1

2α2
Tr
[
1 −

√
HPek

]
+Oα→∞

(
α−(2+ǫ)

)
,(2)

where ǫ > 0, as well as an asymptotically sharp lower bound on the ground state
energy Eα(P ) as a function of the total momentum

Eα(P ) ≥ ePek − 1

2α2
Tr
[
1 −

√
HPek

]
+ min

{ |P |2
2α4m

,α−2

}
+Oα→∞

(
α−(2+ǫ)

)
,

where m is an explicit constant. The corresponding upper bound has previously
been derived in [6]. This especially means that the interacting electron behaves
like a free particle having an effectively increased mass given by the celebrated
Landau-Pekar formula Meff = mα4, at least in the regime of strong coupling α
and momenta in the region α1− ǫ

2 ≪ |P | ≤
√

2mα.
The method we use is inspired by the sophisticated framework that has been

developed in the study of Bose gases, especially the recent result [1], where the
Bogoliubov approximation for a translation-invariant Bose gas has been estab-
lished. Applying this framework allows us to break the translation-invariance of
the quantum system defined in Eq. (1), which effectively introduces a confinement.
The confined problem is then analysed in a similar way as in [5] and [4], where
Eq. (2) has been verified for a system confined to a ball in R3, respectively the
three dimensional torus.
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Counting eigenvalues using the landscape function

Sven Bachmann

(joint work with Richard Froese and Severin Schraven)

Given a non-negative potential V , a landscape function is a solution u of

(1) (−∆ + V (x))u(x) = 1, (x ∈ R
d).

It was introduced in [1] in the context of Anderson localization for random Schrö-
dinger operators. The initially numerical results, which have seeded a long series
of further numerical and analytical ones indicate that the inverse 1

u(x) plays the

role of an effective potential for spectral properties of the Schrödinger operator:
In the case of the Anderson model, minima of 1

u match the localization centres of

the localized eigenfunctions, the potential 1
u defines an Agmon distance [2], and

the properly coarse-grained volume of the sublevel sets of 1
u match the integrated

density of states [3].
Our work focusses on the last aspect of the list, and without disorder. The

earliest estimates on the counting function for Schrödinger operators are the exact
asymptotics due to Weyl [4]. In a similar vein but with negative potentials, the
CLR bound [5, 6, 7] is an upper bound on the number of negative eigenvalues.
Finally, the Fefferman-Phong strategy [8] yields both upper and lower bounds on
the counting function by a coarse-grained volume of the sublevel sets of V , which
are valid all the way to the bottom of the spectrum. Numerics suggests that the
same holds for the effective potential, but without coarse-graining, and for a very
general class of potentials in all dimensions.

A famous example is the potential

VS(x, y) = x2y2

in two dimensions, which was studied in details by Simon in [9]. On the one
hand, the volume of the sublevel sets below µ is infinite for all µ > 0, but on the
other hand the spectrum is discrete. This is due to the increasingly steep and
narrow ‘valleys’ of the potential along the coordinate axes. While a Weyl-type
asymptotics is therefore not valid, coarse-graining yields a finite volume and the
Fefferman-Phong bounds yield a finite number of eigenvalues below any µ.

In [10], we show that the function 1
u provides an appropriate smoothing of the

potential V to allow for both upper and lower bounds on the counting function
that do not require coarse-graining. In particular, the volumes of the sublevel
sets of the effective potential for VS are finite for all µ ∈ R. We first construct
the landscape function in the whole space as an appropriate limit of finite volume
approximations and show that the limit is a weak solution of (1). We then prove
the following:

Theorem 1. Assume that V ≥ 0, V 6≡ 0 satisfies the following conditions:

(i) There exists CK, δ > 0, such that

1

rd−2+δ

∫

B(x,r)

V (y)dy ≤ CK
1

Rd−2+δ

∫

B(x,R)

V (y)dy
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for all x ∈ Rd and all r, R with 0 < r < R.
(ii) There exists CD > 0 such that

∫

B(x,2r)

V (y)dy ≤ CD

(∫

B(x,r)

V (y)dy + rd−2

)

for all x ∈ Rd and all r > 0.

We denote by H the Friedrichs extension of the positive symmetric operator

−∆ + V

defined on C∞
c (Rd). Let N V (µ) be the rank of the spectral projection χ(∞,µ](H).

Then there exist constants c, C > 0 such that

(cµ)
d
2V(cµ) ≤ N V (µ) ≤ (Cµ)

d
2 V(Cµ)

for all µ ∈ R, where

V(µ) =

∫

{x∈Rd: 1
u(x)

≤µ}
dx.

The constants c, C depend only on CK, CD, δ and the spatial dimension d.

This immediatly yields a criterion for the discreteness of the spectrum:

Corollary 2. Let V be as in Theorem 1. Then H has discrete spectrum if and
only if limR→∞ ‖u‖L∞(Rd\B(0,R)) = 0.

When applied to the special case of polynomial potentials, we obtain the following
result that was conjectured in [9].

Corollary 3. Let V be a polynomial that is bounded from below. Then H has
discrete spectrum if and only if none of the partial derivatives of V vanishes iden-
tically.

In particular, this yields another proof of discreteness of the spectrum for VS .
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Infrared scattering states in the massless Nelson model

Gian Michele Graf

(joint work with Vincent Beaud and Wojciech Dybalski)

The Nelson model describes a particle coupled to a (bosonic) field. In the case
where the field is massless, the model is a simple caricature of QED, as both
theories share some traits in the infrared, and in particular the difficulty of defining
scattering states. A possible solution, to be discussed, is that the particle emits
an ever growing number of ever softer bosons. A precise and asymptotically (in
time) exact description of the process will be given, motivated, and compared to
earlier work by others.
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Adiabatic Evolution of Low-Temperature Many-Body Systems

Marcello Porta

(joint work with Rafael L. Greenblatt, Markus Lange, Giovanna Marcelli)

We consider interacting fermions on a lattice ΛL = Zd/LZd, exposed to an exter-
nal, slowly varying time-dependent perturbation. The time-dependent Hamilton-
ian of the system is, in second quantization:

(1) H(ηt) =
∑

x,y∈ΛL

a∗xH(x; y)ay + λ
∑

x,y∈ΛL

nxnyv(x; y) + εeηtP ,

with ax, a∗x the usual fermionic creation and annihilation operators, acting on
the fermionic Fock space; nx = a∗xax is the density operator; and P is a sum of
bounded local terms, e.g. P =

∑
x∈ΛL

µ(x)nx. The first term in (1) is the non-
interacting Hamiltonian, and it describes the hopping of the fermions on ΛL, while
the second term is the many-body interaction. We shall assume that both H(x; y)
and v(x; y) are finite ranged.

Let us denote by H the Hamiltonian H(ηt) for ε = 0. The equilibrium state of
the system with Hamiltonian H is described by the usual Gibbs state:

(2) ρβ,µ,L =
e−β(H−µN )

Tr e−β(H−µN )
, 〈O〉β,µ,L := TrOρβ,µ,L ,
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where N is the number operator, µ is the chemical potential and β is the inverse
temperature. We will be interested in the evolution of the equilibrium state, after
switching on the time-dependent perturbation. The evolution equation of the
system is:

i∂tρ(t) = [H(ηt), ρ(t)] , t ≤ 0 ,

ρ(−∞) = ρβ,µ,L ,
(3)

and we shall suppose that η > 0. We shall be interested in the time-evolution under
(3) of the expectation value of local observables OX , with X ⊂ ΛL independent of
L, in the adiabatic limit η → 0+.

Let us assume that the chemical potential µ is chosen in a spectral gap of
H : dist(σ(H), µ) ≥ δ for some δ > 0 uniform in L. The coupling λ is chosen
small enough, |λ| < λ0 with λ0 dependent on δ and independent of β, L. In this
setting, the well-known convergence of the fermionic cluster expansion implies the
analyticity of the Gibbs state of H in λ, uniformly in β and L, and the exponential
space-time decay of Euclidean (imaginary time) correlations functions. In this talk,
I will discuss how to use cluster expansion methods to investigate the real-time
quantum dynamics generated by (3). The result I will present is contained in [3].
Let ηβ ∈ 2π

β N with ηβ ≥ η. In [3] we prove the following representation formula

for the expectation values of local observables:

TrOXρ(t) = 〈OX〉β,µ,L

+
∑

n≥1

(−ε)n
n!

∫

[0,β]n
ds
[ n∏

i=1

eηβ(t−isj)
]
〈Tγs1(P); γs2(P); · · · ; γsn(P);OX〉β,µ,L

+Rβ,µ,L(ε, η, t) ,

(4)

where:

(i) γs(A) = es(H−µN )Ae−s(H−µN ) is the imaginary-time evolution of A;
(ii) T is the fermionic time-ordering;

(iii) in the correlation functions, the semicolon denotes trunctation: the series in
the right-hand side of (4) involves connected Euclidean correlation functions,
or Euclidean cumulants;

(iv) the error term Rβ,µ,L is bounded as |ε|(1/βηd+2) uniformly in L.

Under the above assumptions on the many-body Hamiltonian, the series in (4)
turns out to be absolutely summable in ε, for |ε| small enough uniformly in β,
L and η. The proof of convergence is based on suitable decay estimates for the
Euclidean correlation functions of the equilibrium Gibbs state 〈·〉β,µ,L, which hold
true for λ = 0 thanks to the spectral gap of H and to Wick’s rule, and which
are proven for λ 6= 0 via fermionic cluster expansion, whose convergence relies
on the Brydges-Battle-Federbush formula for fermionic cumulants. The first two
terms appearing in (4) coincide with the real-time Duhamel series for the dynamics
generated by the time-dependent Hamiltonian:

(5) Hβ,η(t) = H + εeηβtP ,
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after a complex deformation argument at all orders (Wick rotation), inspired by
the proof of stability of KMS states, see e.g. [2]. The term Rβ,µ,L takes into
account the error introduced by replacing H(ηt) with Hβ,η(t) in (3), and it is
estimated using Lieb-Robinson bounds. Here we focused on the special case of the
exponential switch function, but a wider class of switch functions can be considered
[3].

The representation (4) allows to prove a many-body adiabatic theorem. We
have:

(6) TrOXρ(t) =
TrOXe

−β(H(ηt)−µN )

Tr e−β(H(ηt)−µN )
+ R̃β,µ,L(ε, η, t) ,

where |R̃β,µ,L(ε, η, t)| ≤ C1|ε|/(βηd+2) + C2|ε|ηβ. Making sure that this error
term is small introduces a smallness requirement on the temperature of the sys-
tem, which has to vanish as η → 0+ however uniformly in the system’s size. In
particular, in this small temperature regime the expected renormalization of the
temperature in the instantaneous Gibbs state due to the heating introduced by
the perturbation is not visible. Another application of (4) is the proof of validity
of linear response theory: the first term in the expansion (4) reproduces Kubo for-
mula, after Wick rotation, up to smaller contributions bounded uniformly in the
size of the system. Previous results on the many-body adiabatic theorem and on
the proof of linear response theory have been obtained in [1, 4], for the dynamics
of zero temperature gapped systems.

The work [3] introduces new methods in the study of quantum dynamics for
lattice models. In particular, the convergence of the expansion (4) actually only
relies on suitable integrability properties of imaginary-time correlation functions,
which hold true for many-body perturbations of gapped systems; it is an inter-
esting open problem to understand how to apply this framework to study gapless
quantum systems, already in the absence of interactions.
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Upper bound for the grand canonical free energy of the Bose gas in

the Gross–Pitaevskii limit

Andreas Deuchert

(joint work with Chiara Boccato and David Stocker)

The dilute Bose gas, that is, a bosonic system with rare but strong collisions, is one
of the most fundamental and interesting models in quantum statistical mechanics.
Its prominence is mostly due to the occurrence of the Bose–Einstein condensation
(BEC) phase transition and its numerous phenomenological consequences. Trig-
gered by the experimental realization of BEC in ultra cold alkali gases in 1995, see
[1, 5], and by the subsequent experimental progress, in the past two decades there
have been numerous mathematical investigations of dilute Bose gases in different
parameter regimes. I refer to [11, 10, 12, 14, 15, 2, 3, 4, 6, 7, 8, 9] and to references
therein for examples concerning questions in equilibrium statistical mechanics.

In the article I was presenting in my talk in Oberwolfach, we consider a system
of bosons confined to a three-dimensional flat torus Λ with side length L in the
grand canonical ensemble. The Hamiltonian of the system is given by

(1) HN =

∫

Λ

∇a∗x∇axdx+
1

2

∫

Λ2

a∗xa
∗
yvN (d(x, y))ayaxd(x, y)

and acts on a dense domain in the bosonic Fock space. By a∗x, ax I denote the
usual bosonic creation and annihilation operators (actually operator-valued distri-
butions) of a particle at the point x ∈ Λ that satisfy the canonical commutation
relations [ax, a

∗
y] = δ(x − y), [ax, ay] = 0 = [a∗x, a

∗
y]. Here δ(x) is Dirac’s delta

distribution with unit mass at the origin. The interaction potential is of the
form vN (d(x, y)) = N2v(Nd(x, y)) with a nonnegative function v and a parame-
ter N > 0 that we choose as the expected number of particles in the system. By
d(x, y) I denote the distance between x and y in Λ. The scattering length aN of vN ,
which is a combined measure for its range and strength, scales as aN/L ∼ N−1.
This assures that the interaction energy per particle is of the same order as the
spectral gap of the Laplacian in Λ.

The quantity we are interested in is the grand canonical free energy at inverse
temperatue β related to the Hamiltonian HN . It is defined as

(2) F (β,N,L) = − 1

β
ln (Tr[exp(−β(HN − µN ))]) + µN,

where the chemical potential µ is chosen such that the grand canonical Gibbs state

(3) G =
exp(−β(HN − µN ))

Tr[exp(−β(HN − µN ))]

satisfies Tr[NG] = N (N is the particle number operator).
The main result in our article is the following theorem. For the sake of simplicity

I state it only in the special case β = κβc with κ ∈ (1,∞) and the inverse critical
temperature for BEC βc in the ideal gas (condensed phase).

Theorem 1. Assume that the function v : [0,∞) → [0,∞] is nonnegative, com-
pactly supported, satisfies v(|·|) ∈ L3(Λ), and is strictly positive on a set of positive
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measure. By ̺ = N/L3 we denote the particle density. We consider the combined
limit N → ∞, β = κβc with κ ∈ (1,∞). The free energy in (2) satisfies the upper
bound

F (β,N,L) ≤ F+
0 (β,N,L) + 4πaNL

3
(
2̺2 − ̺20(β,N,L)

)
+

ln
(
4βaN/L

3
)

2β

− 1

2β

∑

p∈(2π/L)Z3\{0}

[
16πaN̺0(β,N,L)

p2
− ln

(
1 +

16πaN̺0(β,N,L)

p2

)]

+O(L−2N7/12).(4)

In the above formula F+
0 (β,N,L) denotes the free energy of the non-condensed

particles in the ideal gas with the chemical potential µ0(β,N,L), and ̺0(β,N,L)
is the related condensate density. The first two terms in (4) had been justified for
the first time for the dilute Bose gas in the thermodynamic limit, see [13, 15]. They
also appeared in [7], where the asymptotics of the canonical free energy in the GP
limit has been established with a remainder of the size o(L−2N) (The aim of this
article was to give a proof of the BEC phase transition.). It is, however, expected
that the canonical and the grand canonical free energies agree on that level of
accuracy. The main novelty of the upper bound in (4) is therefore the appearance
of the last two terms on the r.h.s., which are of the order N2/3 ln(N) and N2/3,
respectively. We highlight that the first two terms in (4) scale as L−2N5/3 and
L−2N , respectively. In the following I briefly discuss the origin of our new terms.

The third term on the r.h.s. of (4) is the free energy of the fluctuations of the
interacting BEC. It originates from the following effective free energy:

FBEC(β,N0, L, aN) = − 1

β
ln

(∫

C

exp
(
−β
(
4πaNL

−3|z|4 − µ|z|2
))

dz

)

+ µ̺0(β,N,L)L3.(5)

Here dz = dxdy/π, where x and y denote the real and imaginary part of the
complex number z, respectively. The chemical potential µ in (5) is chosen such
that the Gibbs distribution

(6) g(z) =
exp

(
−β
(
4πaNL

−3|z|4 − µ|z|2
))

∫
C

exp (−β (4πaNL−3|z|4 − µ|z|2)) dz

satisfies
∫
C
|z|2g(z)dz = ̺0(β,N,L)L3 (|z|2 should be interpreted as a particle

number). Under the assumption of Theorem 1 we have

(7) FBEC(β,N0, L, aN) = 4πaNL
3̺20 +

ln
(
4βaN/L

3
)

2β
+O

(
L−2 exp

(
−cN1/6

))
.

In combination with
∫
|z|2g(z)dz = ̺0L

3, this implies

4πaNL
−3

(∫

C

|z|4g(z)dz −
(∫

C

|z|2g(z)dz

)2
)

− 1

β
S(g) =

ln
(
16βaN/L

3
)

2β

+O
(
L−2 exp

(
−cN1/6

))
,(8)



Many-Body Quantum Systems 2269

where S(g) = −
∫
g(z) ln(g(z))dz denotes the classical entropy of g. This explains

my claim about the physical interpretation of the term on the r.h.s. from above.
The last term in (4) is related to the free energy of the Bogoliubov Hamiltonian

(9) HBog =
∑

p6=0

p2a∗pap + 4πaN̺0(β,N,L)
∑

p6=0

(
2a∗pap + a∗pa

∗
−p + apa−p

)
,

which depends on β via ̺0(β,N,L) (From a physics point of view this Hamiltonian

can be motivated by the c-number substitution a∗0, a0 7→
√
̺0(β,N,L)L3.). The

operators a∗p and ap create and annihilate a particle with momentum p ∈ 2πZ3/L,

respectively. To see the relation between HBog and the last term in (4), we note
that

− 1

β
ln Tr exp(−βHBog) =

1

β

∑

p6=0

ln
(

1 − exp
(
−β
√
p2 − µ0

√
p2 − µ0 + 16πaN̺0

))

=
1

β

∑

p6=0

ln
(
1 − exp

(
−β(p2 − µ0)

))
+ 8πaNL

3(̺− ̺0)̺0

− 1

2β

∑

p6=0

[
16πaN̺0

p2
− ln

(
1 +

16πaN̺0
p2

)]
+ o(L−2N2/3).

The first and the second term on the r.h.s. contribute to F+
0 and to the second

term on the r.h.s. of (4), respectively. The third term is the novel contribution in
the second line of (4).
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The Random Interchange Model and Quantum Spin Systems

Daniel Ueltschi

On the graph (Λ, E) one considers a random sequence of i.i.d. edges, (e1, . . . , en),
and one looks at the permutation

σ = τen ◦ · · · ◦ τe1 ,
where τei is the transposition of the endpoints of the edge ei. The number n
is typically random, n ∼ Poisson(β|E|), with β > 0 a parameter. The question
is whether a transition (in β) occurs where the permutation contains cycles of
diverging length. Namely, there should exist β0 such that cycle lengths remain
finite when β < β0, and become “infinite” when β > β0.

Among several motivations, the random interchange model can represent the
quantum Heisenberg model [12]. There are interesting results on trees [3, 7], on
the complete graph [11, 4, 2, 5], on the hypercube [9], and further (random) graphs
[1, 8, 10].

Very recently, Dor Elboim and Allan Sly have produced a remarkable analysis
of the model on Zd with d ≥ 5 [6]. It uses the “cyclic-time random walk” represen-
tation [3] and shows that it is transient with positive probability. The strategy is
rather natural but its implementation is difficult. The authors prove that the walk
satisfies several properties (in essence, that it diffuses sufficiently), which they can
prove for time intervals of the form (4m−1, 4m], inductively on m. An essential
step is to establish an “escape lemma” that guarantees that the walk does not get
trapped by its past.

I reviewed the interchange process, its relation with the Heisenberg model and
also with the Bose-Hubbard model, and I explained some of the ideas of Elboim
and Sly.
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Long persistence of localization in a disordered anharmonic chain

beyond the atomic limit

Wojciech de Roeck

(joint work with François Huveneers, Oskar A. Prośniak)

We consider the nonlinear Klein-Gordon chain with disorder, given by the classical
Hamiltonian

(1) H(q, p) =
∑

x∈ΛL

(
p2x
2

+
ω2
xq

2
x

2
+
η

2
(qx − qx+1)2 +

γ

4
q4x

)

where ΛL is the discrete torus Z/(LZ), η, γ are positive parameters, and (qx, px)
are canonically conjugate variables. The frequencies ωx are i.i.d. random variables,
with a compact density. Let us write ρ(x) for the expression between brackets in
(1), so that ρ(x) is the energy density, and

∑
x ρ(x) is conserved in time.

Numerical motivation. We study the evolution of ρ in time, i.e. under the Hamil-
tonian evolution. Our interest in this system mainly stems from the following
numerical observation, made first in [1]: If ρ is originally compactly supported,
say around x = 0, then the width w of the ρ-distribution, defined as

w2 =
∑

x

x2ρ(x)

grows as t1/6 for large times (but of course small enough so that the periodic
boundary condition is not yet relevant). This power-law growth of w is very
surprising from a theoretical point of view, as we explain next.

Harmonic limit γ → 0. Let us first introduce the Anderson Schrodinger operator
H acting on ℓ2(ΛL) and given by

Hf(x) = ω2
xf(x) − η(f(x + 1) + f(x− 1) − 2f(x)).

Since H is nonnegative, we can write its eigenvalues as ν2k and we denote the
corresponding normalized eigenfunctions as ψk ∈ ℓ2(ΛL). If the anharmonicity γ



2272 Oberwolfach Report 39/2023

in the Hamiltonian (1) is set to 0, then H is quadratic and it can be cast as a sum
over modes:

H =
∑

k

Ek, Ek =
1

2

(
P 2
k + ν2kQ

2
k

)

Here, (Qk, Pk) are conjugate variables given by Pk =
∑

x ψk(x)px and Qk =∑
x ψk(x)qx with ψk and ν2k as introduced above. As is well-known, the operator

H exhibits Anderson localization: the functions ψk are exponentially concentrated
around a k-dependent localization center. The consequence of this is that the
density ρ does not spread. More precisely, the width w is uniformly bounded (by
a disorder dependent constant) in time.

When γ > 0, the above reasoning does of course no longer apply. However,
as the width w grows, the density ρ decreases locally, since its total sum has to
be conserved. Inspection of (1) shows that the anharmonic term γ

4 q
4
x becomes

comparatively weaker when ρ tends to zero. In fact, a scaling argument allows to
recast the dynamics to make it apparent that the effective anharmonicity is ργ.
Hence, as the packet spreads, the system gets ever closer to the harmonic limit,
i.e. closer to a system that does not spread at all.

Several theoretical [2, 3] and even mathematical works [4, 5, 6, 7] have sug-
gested that a well localized system as the one in the γ = 0 limit, responds very
weakly to perturbations. In particular, we expect transport and dissipation to
manifest themselves by non-perturbative effects, in particular slower than any
power law in the perturbation parameter. We call this ubiquitous phenomenon
“Quasi-localization”, see e.g. [8].

In the light of such results, the power law spreading w(t) ∝ t1/κ for some κ > 0
seems too rapid. One would expect instead a law of the non-perturbative form
w(t) ∝ (log t)κ.

The most constructive contribution to this tension between numerics and the-
ory would be to prove a time-dependent upper bound on w(t) of the above non-
perturbative form, but that seems currently out of reach.

Our mathematical contribution. Let, for any observable A,

〈A〉 = (1/Z)

∫

RL×RL

dqdp e−HA, Z =

∫

RL×RL

dqdp e−H

denote the Gibbs state at unit temperature. For any mode k and time t ≥ 0, let
us define the decorrelation indicator

ηk(t) =
1

2

〈(Ek(t) − Ek(0))2〉
〈Ek(t)2〉 − 〈Ek(t)〉2 .

At t = 0, we obviously have ηk(0) = 0, whereas, if we pretend that the Hamiltonian
dynamics is mixing, i.e. 〈Ek(t)Ek(0)〉 → 〈Ek〉2, then ηk(t) → 1 as t → ∞. The
mixing assumption is not realistic due to conservation of energy, but the relevance
of this obstruction disappears as L→ ∞. The decorrelation indicator allows us to
quantify how fast the thermal system returns to equilibrium. In accordance with
the intuition about the non-perturbative origin of dissipation explained above, we
expect that the approach of ηk to 1 takes a time longer than any power law in
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γ. This is indeed what we prove in [9], though after an additional averaging over
modes k:

Theorem 1. For any natural number n, there exist deterministic constants Cn <
+∞ and c > 0 so that

lim sup
L→∞

1

L

L∑

k=1

ηk(t) ≤ Cn
(
γc + (γnt)2

)
a.s. ∀γ ≥ 0, ∀t ≥ 0.

Our numerical contribution. We perform numerics to determine the mode-averaged
decorrelation indicators

ηγ(t) =
1

L

L∑

k=1

ηk(t),

where we made explict the dependence on the anharmonicity γ. We find [10] that
the growth in time of ηγ(t), for small anharmonicities, seems to depend on the
anharmonicity γ via a scaling relation

(2) ηγ(t) = η(γ4t)

A theoretical (though non-rigorous) analysis reveals that this scaling relation is
equivalent to the numerically observed scaling relation w ∝ t1/6. In this sense we
confirm the numerical findings that motivated our work. However, and this is the
crucial point, we know that the scaling relation (2) cannot be correct for very small
γ, as it would contradict Theorem 1. Therefore, we conclude that current numerics
is not capable of probing the asymptotic regime of vanishing anharmonicity. This
makes it plausible that also the numerics on the growth of the width w did not
reach the asymptotic regime yet. We conclude hence that this system is indeed
likely described by “Quasi-localization” and the true asymptotic growth of w(t) is
slower than a power law in time.
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Bose Metaphysics

Manfred Salmhofer

Georg Christoph Lichtenberg describes metaphysics as the art of catching, in a
dark room, a black cat that is not actually in there. Replacing the dark room with
a quantum many-boson system and the cat by reflection positivity motivates the
title of this talk: the standard quantum mechanical models for interacting bosons
have been known not to be reflection-positive, yet this talk gives an account of
a search for reflection positivity for bosons on a lattice and for closely related
models.

To this end, the effect of spatial and temporal reflections is studied in a discrete-
time functional integral representation, which takes the form of a lattice spin sys-
tem with a complex action, and which converges to the grand canonical partition
function for quantum bosons in the time-continuum limit. Tracing the effect of
iterated reflections motivates the definition of a class of lattice field theories in ex-
ternal Z2 gauge fields. One of them is reflection-positive, and a variant of Gaussian
domination is shown.

The first model considered here is a spin system with a complex action on a
space-time lattice X, defined as follows. Let X = T ×X where T = ǫ(Z/ℓZ) is a

discrete torus in Euclidian time with spacing ǫ = β
ℓ and sidelength β, and X =

ηZd/LZd is a discrete torus of lattice spacing η > 0 and sidelength L = ηL̂ > 0

with L̂ ∈ N large. Spin configurations are maps a : X → C, (τ, x) 7→ aτ,x. With the
notations (f | g)X =

∫
τ,x fτ,x gτ,x (here integral notation is used for the Riemann

sums over lattice points), the partition function is

(1) ZX =
〈
e−S0,X(a)

〉
1,X

.

The action S0 is quadratic in a and given by

(2) S0(a) = (ā | −∂+τ a)X + (ā | −∆a)X

where ∂+τ denotes the forward discretized derivative with respect to τ , −∆ ≥ 0
denotes the graph Laplacian on X , and

(3) 〈F (a)〉1,X =

∫

CX

F (a)
∏

(τ,x)∈X

dµ1(aτ,x)

with

(4) dµ1(a) = e−
v
2 (|a|2−ρ)2−I1 dā∧a

2πi , ρ = µ
v .



Many-Body Quantum Systems 2275

µ1 is a positive measure on C, and the constant I1 is chosen such that µ1 is
normalized.

It is proven in [5, 6] that the limit ℓ → ∞ of ZX is the partition function of
the grand canonical ensemble at inverse temperature β and chemical potential µ,
for the Bose-Hubbard model, i.e. a quantum system of bose particles on a lattice
with the graph Laplacian −∆ as the kinetic term and an on-site repulsion v. In
the limit v → ∞, µ1 concentrates on the circle of radius

√
ρ, and in this limit,

ρ is equal to the particle density. The action is invariant under the global U(1)-
transformation a(τ, x) → eiφa(τ, x). Spontaneous breaking of this symmetry is
equivalent to Bose-Einstein condensation. In the present statistical-mechanical
setup, it can occur only in the thermodynamic limit L̂ → ∞ (η is kept fixed
throughout).

Reflection positivity has allowed to prove spontaneous breaking of continuous
symmetries in statistical-mechanical systems in a very elegant way [1]. An al-
ternative strategy is a renormalization group method, used to treat O(N) vector
models of classical statistical mechanics by Ba laban [3] and currently being applied
to the many-boson system in [4]. It is much more generally applicable and yields
very detailed information, but also much more demanding on a technical level. Its
application to the Bose condensation is still work in progress [4].

Spatial and temporal reflections r at planes in-between the lattice planes [1] can

be lifted to the natural algebra of functions of a, by setting (θF )(a) = F (ra), where
(ra)τ,x = ar(τ,x). The expectation value functional 〈 · 〉1,X, is reflection-positive,

i.e. 〈F θF 〉1,X ≥ 0 for all F that depend only on the a variables on one side of the

reflection plane [1, 2]. However, the time derivative term in the action (2) is not
invariant under spatial reflections. Alternative definitions of reflections that leave
this term invariant do not leave the term involving the Laplacian invariant.

Writing out the integral for |ZX|2 = ZXZX motivates a “doubling” of the system:
if the integration variable in ZX is called a′, it is natural to combine a and a′ into
a two-component vector a and the action is S0(a) = S0(a) + S0(ā′). This allows

for other definitions of reflections, in particular the reflection (ΘF )(a) = F (σ1ra),

where σ1 =
(

0 1

1 0

)
. The reflection Θ now also involves an exchange a ↔ a′,

and it leaves the time derivative term of S0 invariant. Its action on the spatial
derivative part of S0 motivates a natural generalization of S0 that includes an
external Z2 gauge field, where the local gauge transformation is aτ,x 7→ σhτ,xaτ,x,
with hτ,x ∈ Z2 (and σ0 the 2× 2 identity matrix) and the spatial derivative terms
are changed to gauge-covariant derivatives by including Z2 link variables σgτ,x,µ

(here µ ∈ {1, . . . , d} indexes the spatial components of vectors in X). Studying the
effect of reflections for this class of models reveals that the model with all gauge
fields σgτ,x,µ = 1 is reflection-positive, a variant of Gaussian domination holds,
and it implies a generalization of the infrared bound, corresponding to the action
S0, for the two-point correlation function of a. Moreover, in the limit v → ∞,
the lower bound on a local spin expectation value, required in proofs of symmetry
breaking using reflection positivity [1], follows from the constraint |aτ,x|2 = ρ.
Details will appear in [6] and [7].
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The Spectral Gap and Low-Energy Spectrum in Mean-Field Quantum

Spin Systems

Chokri Manai

(joint work with Simone Warzel)

Mean-field quantum spin systems are ubiquitous in effective descriptions of a va-
riety of phenomena. A popular example is the family of Lipkin-Meshkov-Glick
(LMG) Hamiltonians, which were originally conceived in [1, 2, 3] to explain shape
transitions in nuclei. This family includes the quantum Curie-Weiss (CW) Hamil-
tonian, whose simplicity continues to draw the attention of many communities [4,
5, 6, 7, 8, 9, 10]. In particular, in [11] such models were used to test conjectures
related to quantum annealing for which information about the spectral gap is
crucial.

We consider mean-field Hamiltonians which are defined in terms of a symmetric
polynomial P : R3 → R of fixed degree on which the three components of the total

spin-vector S =
∑N

n=1 S(n) is evaluated:

(1) H = N P
(

2
N S
)
,

where the scaling ensures that Hamiltonian is extensive. For a system of N inter-
acting qubits, the Hilbert space on which these operators act is the tensor product

HN =
⊗N

n=1 C
2. The vectors S(n) = 1⊗· · ·⊗ S ⊗· · ·⊗1 stand for the natural lift

of the spin vectors S = (Sx, Sy, Sy) to the n-th component of the tensor product.
On each copy of C2 the spin vector coincides with the three generators of SU(2):

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
, Sz =

1

2

(
1 0
0 −1

)
.

For example, the Quantum Curie-Weiß model is described by P (m) = −Jm2
3−γm1

with J, γ ∈ R. An important observation is that H is a function of the total spin S,

https://link.springer.com/article/10.1007/BF01608557
https://link.springer.com/article/10.1007/BF01940327
https://link.springer.com/article/10.1007/s00220-021-04010-4
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so H is block diagonal with respect to the decomposition irreducible representations
of the total spin:

HN ≡
N/2⊕

J=N
2 −⌊N

2 ⌋

MN,J⊕

α=1

C
2J+1, MN,J =

2J + 1

N + 1

(
N + 1

N
2 + J + 1

)
.

Here J = N/2, N/2 − 1, . . . denotes the total spin number and MN,J is the corre-
sponding degeneracy [12].

Let us briefly discuss the thermodynamics of the corresponding mean-field
model. The free energy is determined by minimizing a variational functional in-
volving the classical energy P on the unit ball and the (shifted) binary entropy

I(r) :=

{
− 1+r

2 ln 1+r
2 − 1−r

2 ln 1−r
2 , r ∈ (0, 1).

0, r ∈ {0, 1}

Proposition 1. For a mean-field Hamiltonian H = N P
(

2
N S
)
with a symmetric

polynomial P, the pressure for any β > 0 is given by:

p(β) := lim
N→∞

N−1 ln Tr exp
(
−βNP

(
2
NS
))

= max
r∈[0,1]

{
I(r) − β min

Ω∈S2
P (re(Ω))

}

with the unit vector e(Ω) in the angular direction Ω.

As a special case with constant field P (m) = −λm3, λ ≥ 0, one obtains the
Legendre relation

ln 2 cosh (βλ) = max
r∈[0,1]

[I(r) + βλr] .

By inverting this Legendre transform, one obtains the slightly more familiar form

p(β) = max
r∈[0,1]

min
λ≥0

{
ln 2 cosh (βλ) − β

(
min
Ω∈S2

P (re(Ω)) + λr

)}
.

As far as we know, the limiting formula for the pressure was first rigorously
established by Fannes, Spohn and Verbeurre [13]. Their approach exploits the
exchange symmetry of the mean-field Hamiltonian using a version of the quantum
de Finetti theorem and easily extends to higher spin numbers. An alternative, for
our purposes more insightful, proof strategy is based on coherent states and the
Berezin-Lieb inequality.

It is well known that the study systems of large spin quantum number J are
to be facilitated by Bloch coherent states

∣∣Ω, J〉 on the Hilbert space C2J+1 [14,

15, 16, 17, 18]. The state
∣∣Ω, J〉 ∈ C2J+1 is the normalized eigenstate of the spin

operator 〈e(Ω),S corresponding to (maximal) eigenvalue J on the Hilbert space
C2J+1. More explicit formulas can be found in [14]. The Bloch coherent states
form an overcomplete set of vectors as expressed through the resolution of unity
2J+1
4π

∫ ∣∣Ω, J〉〈Ω, J
∣∣ dΩ = 1C2J+1 . Every linear operator G on C2J+1 is associated

with a lower and upper symbol: the lower symbol is G(Ω, J) := 〈Ω, J
∣∣G
∣∣Ω, J〉, and

the upper symbol is characterized through G = 2J+1
4π

∫
g(Ω, J)

∣∣Ω, J〉〈Ω, J
∣∣ dΩ.
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The Berezin and Lieb’s semiclassical bounds [14, 19] allow to bound the parti-
tion in terms of the symbols g and G:

2J + 1

4π

∫
e−βG(Ω,J)dΩ ≤ TrC2J+1 e−βG ≤ 2J + 1

4π

∫
e−βg(Ω,J)dΩ.

In the semiclassical limit of large spin quantum number J , these bounds are known
to asymptotically coincide [14, 20]. In our situation, we have a more explicit
bound using the corresponding classical polynomial function on the unit ball B1,
which parametrises the Hilbert space semiclassically. With spherical coordinates
e(Ω) = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ S2, one has

sup
0≤J≤N/2

∥∥∥∥P
(

2
NS
)∣∣∣

C2J+1
− 2J + 1

4π

∫
P
(

2J
N e(Ω)

)∣∣Ω, J〉〈Ω, J
∣∣ dΩ

∥∥∥∥ ≤ O(N−1)

for the operator norm ‖ · ‖ on C2J+1. This statement is a quantitative version of
Duffield’s theorem [20].

From here one immediately obtains the result of the proposition above. How-
ever, we note that the semiclassical estimates are correct up to order O(1), so one
might hope that the semiclassics allows us to deduce more precise characteristics
of the mean-field Hamiltonian. Indeed, our main result is an explicit formula for
the spectral gap in the thermodynamic limit, which we will describe next. Our
method also allows to determine the whole low energy spectrum and the corre-
sponding eigenstates.

We will denote by E0(H) ≤ E1(H) ≤ E2(H) ≤ . . . the ordered sequence of its
eigenvalues counted with multiplicities. In particular, the existence and leading
asymptotic value of the spectral gap

gapH = E1(H) − E0(H)

can be read of from the location of the minimum m0 of the polynomial P : R3 → R

restricted to B1. In case the minimum is unique and located on the surface S2, the
operator (1) generically has a spectral gap. The situation with multiple minima
is more involved, but our methods can be extended to this situation. To leading
order in N , the value of this gap is in fact completely determined by the coefficients
of the quadratic polynomial which is uniquely associated with P . In view of the
notorious difficulty of determining the spectral gap in quantum lattice systems
[21, 22, 23, 24], this simplicity might be somewhat surprising.

Broadly speaking, our results are in accordance with the general belief of fluctu-
ation theory that the second-order approximation to P , which involves the gradient
∇P (m0) and the Hessian DP (m0) = (∂j∂kP (m0))3j,k=1, yields the description of

the low-energy spectra. Related statements have been proven in the context of
mean-field Bose systems (see e.g. [25, 26]). For the precise formulation of such a
result for quantum spin systems and in order to point out a subtlety caused by
the geometry, we need some basic geometric facts on functions on B1.

If m0 ∈ S2 is a minimum of P on B1, the gradient either vanishes or points
towards the center of the ball, ∇P (m0) = −|∇P (m0)| m0. The quadratic approx-
imation of the polynomial is then given by DP (m0) projected on the directions
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perpendicular to m0. In terms of the normalized directional vector em0 = m0

|m0|
we

set Q⊥ := 1R3 − eT
m0

em0 , which is understood as a linear projection map on R3.

Introducing a local chart Φ : R2 → Tm0S
2, the linear map on ran Q⊥ ≡ Tm0S

2

given by

D⊥
P (m0) := Q⊥DP (m0)Q⊥ + |∇P (m0)| Q⊥

is then the quadratic approximation to P ◦ Φ at m0. The shift of the Hessian in
cartesian coordinates by the norm of the gradient |∇P (m0)| is thus an effect of
the constraint due to the spherical geometry.

Theorem 2. Let H be a self-adjoint operator on HN of the form (1) with a
symmetric polynomial P : R3 → R of fixed degree. Suppose that the minimum of
P restricted to the unit ball B1 is unique and located at a point m0 ∈ S2 on the
unit sphere. Then,

gapH = 2 min

{
|∇P (m0)|,

√
detD⊥

P (m0)

}
+ o(1).

is the spectral gap above the unique ground state in case the rhs is strictly positive.
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Emergent Quasi-Bosonicity in Interacting Fermi Gases

Martin Ravn Christiansen

(joint work with Christian Hainzl, Phan Thành Nam)

We consider a Fermi gas in the mean-field setting. The Hamiltonian of such a
system can be written in the form of a quadratic Hamiltonian with respect to
“quasi-bosonic” operators. By applying the theory of Bogolubov transformations
the Hamiltonian can be approximately diagonalized to obtain the leading contri-
bution to the correlation energy. In this talk we will see how this quasi-bosonic
behaviour emerges, and how to efficiently carry out such a diagonalization proce-
dure in the non-exact case.
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Semi-classical limit of Hartree’s equation in large magnetic fields

Nicolas Rougerie

(joint work with Denis Périce)

We study the dynamics of two dimensional fermionic particles submitted to a
perpendicular magnetic field. We start from the Hartree equation for the first
reduced density matrix, describing the mean field behaviour of a large fermionic
system, and derive a gyrokinetic transport equation for the particle density. This
derivation has been considered previously as a combination of a “semi-classical
limit on the position/momentum phase-space” and a “gyrokinetic limit of Vlasov’s
equation”. Here we consider the truly ‘large magnetic field regime’ where the gap
between Landau levels is of the same order as the other energy contributions. The
aforementioned approach does not apply and a real “semi-classical limit on the
Landau level index/position of cyclotron orbit center phase-space” is called for, as
considered in works of Lieb-Solovej-Yngvason and Fournais-Madsen at the level
of ground states. We rely on vortex coherent states and the associated Husimi
functions to derive the effective dynamics.

Low energy spectrum of the XXZ model coupled to a magnetic field

Alessandro Pizzo

(joint work with Simone Del Vecchio, Jürg Fröhlich, Alessio Ranallo)

I outline a recent development concerning the control of short-range perturbations
of the Hamiltonian of an Ising chain. An example covered by our analysis is the cel-
ebrated XXZ chain. This model plays an important role also in MBL (many-body
localisation) since in fermionic variables represents fermions hopping along the
one-dimensional lattice and interacting through a Hubbard-type potential. To our
knowledge, the antiferromagnetic XXZ chains in an external magnetic field have
not been studied previously with mathematically rigorous techniques, except for
some results within the range of Bethe ansatz. Indeed, the unperturbed Hamilton-
ian of the antiferromagnetic XXZ chain, i.e., the sum of the Ising Hamiltonian and
the interaction term with the external magnetic field, has a ground-state subspace
which is two-dimensional under natural assumptions on the size of the magnetic
field and on the parity of the number of sites in the chain. But, in contrast to mod-
els such as the celebrated “AKLT model”, no “local quantum topological order
condition” holds.
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[10] S. Del Vecchio, J. Fröhlich, A. Pizzo. Block-diagonalization of infinite-volume lattice Hamil-
tonians with unbounded interactions J. Funct. Anal. V. 284, Issue 1, 1 January 2023, 109734

[11] W. De Roeck, M. Salmhofer. Persistence of Exponential Decay and Spectral Gaps for In-
teracting Fermions Comm. Math. Phys. https://doi.org/10.1007/s00220-018-3211-z

[12] F. Franchini. An Introduction to Integrable Techniques for One-Dimensional Quantum Sys-
tems Lecture Notes in Physics (LNP, volume 940)
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Pointwise bounds on eigenstates in non-relativistic

quantum field theory

Marcel Griesemer

(joint work with Valentin Kußmaul)

States of an atom or molecule with energy distribution strictly below the ioniza-
tion threshold are well localized in a neighborhood of the nuclei: both in models
of non-relativistic quantum mechanics and non-relativistic quantum field theory
(QFT), the wave function decays exponentially as the distance |x| of the electronic
configuration x ∈ R3N from the nuclear positions grows. This decay implies an
effective screening of the positive nuclear charges and it plays an important role
in the mathematical analysis of many-particle quantum systems. While this expo-
nential decay is well understood and well established in non-relativistic quantum
mechanics [1], in atomic models from non- (or pseudo-) relativistic quantum field
theory we know little more than an averaged decay of the form

(1)

∫
e2(1−ε)β|x||ψ(x)|2 dx <∞, all ε > 0,

for the wave function ψ : R3N → H ′ with |ψ(x)| the norm of ψ(x) ∈ H ′, H ′

being the tensor product of spin and Fock space [2, 5, 4, 12]. The rate of decay,
β > 0, is explicit and depends on the difference between ionization threshold and
upper bound on the energy distribution of ψ [5]. One expects that (1) implies the
corresponding pointwise decay at the same rate, at least if ψ is an eigenvector,
but a general result of this type was not yet known. In this talk we report on the
progress from [6].

To pass from (1) to the corresponding pointwise bound, one needs a Harnack
inequality or a subsolution estimate. Such an estimate, as the name suggests,
requires ψ to be a subsolution, only, rather than a solution to an elliptic equation.
We consider vector-valued functions ψ ∈ H2

loc(R
n; H ′), with H ′ some separable

Hilbert space, that are subsolutions in the sense that, pointwise in x ∈ Rn,

Re (ψ,−∆ψ) ≤ |∇ψ|2 + q−|ψ|2,(2)

where (·, ·) and | · | denote inner product and norm of H ′, respectively. On the
right of (2), q− : Rn → [0,∞) denotes a measurable function that, for some
c > 0, µ > 0, s ∈ (2, 4), all u ∈ H1(Rn) and all ε > 0 small enough, obeys

‖q1/2− u‖2 ≤ ε‖∇u‖2 + c ε−µ‖u‖2,(3)
∫
dx q−|u|s <∞.(4)
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These conditions are satisfied, for example, if q− = V− + K, with K > 0 some
constant and V− = max(0,−V ) the negative part of an N -particle potential

(5) V (x) =

N∑

j=1

vj(xj) +
∑

j<k

wjk(xj − xk), x = (x1, ..., xN ) ∈ R
3N ,

with (vj)−, (wjk)− ∈ Lp(R3) + L∞(R3) for some p > 3/2. Our main abstract
result reads:

Theorem 1. If ψ ∈ H2
loc(R

n; H ′) satisfies the pointwise bound (2), then for
every p0 > 2 and 0 < r < R there exists a constant C0 such that for all x ∈ Rn,

(6) ‖ψ‖∞,B(x,r) ≤ C0‖ψ‖p0,B(x,R).

If (2) holds without the gradient term, then (6) holds with p0 = 2.

Remarks: If H ′ = C and ψ solves a Schrödinger equation (−∆+V )ψ = Eψ, then
clearly

(7) Reψ(−∆ψ) ≤ q−|ψ|2,
with q− = (E −V )+ (or q− = V− + |E|). In this case the theorem is due to Moser
and Stampacchia [13, 14], and it traces back to work of De Giorgi and Nash. A
proof based on Assumptions (3) and (4) is given in Agmon’s book [1]. Notice that
Hypothesis (2) is weaker than (7) due to the presence of the gradient term.

In view of Kato’s distributional inequality, −∆|ψ| ≤ Re ψ(−∆ψ)/|ψ|, (7) im-
plies that −∆|ψ| ≤ q−|ψ|. In contrast, by the computation ∆|ψ|2 = 2Re (ψ,∆ψ)+
2|∇ψ|2, Hypothesis (2) means that −∆|ψ|2 ≤ 2q−|ψ|2. From this one would expect
(6) with p0 = 4, only.

Application to the Pauli-Fierz model. Theorem 1 can be applied to the Pauli-Fierz
model of non-relativistic quantum electrodynamics [2, 3]. The Hamiltonian, in the
unsual notation, reads

(8) H =

N∑

j=1

[
(−i∇j +

√
αAj)

2 +
√
ασj · Bj

]
+ V +Hf .

Suppose that V has the form (5) with vj , wjk ∈ L2(R3) + L∞(R3). Then, for all
values of the coupling constant α > 0, the Hamiltonian is self-adjoint on D(H) =
D(−∆ +Hf ) and bounded from below [10, 8].

For eigenvectors ψ of H Hypothesis (2) is easily verified and hence (6) holds by
Theorem 1. This allows us to prove the following theorem:

Theorem 2. Let ψ be a normalized eigenvector of (8) and suppose that

(9)

∫
e2(1−ε)f(x)|ψ(x)|2 dx <∞, all ε > 0,

with some Lipschitz function f : R3N → [0,∞). Then for every ε > 0 there exists
a constant Cε such that for a.e. x ∈ R3N ,

(10) |ψ(x)| ≤ Cεe
−(1−ε)f(x).



Many-Body Quantum Systems 2285

Remarks: Suppose wjk(x) → 0 as |x| → ∞, in addition to the previous as-
sumptions. It is then well-known that H has a ground state ψ provided that
E := inf σ(H) < Σ, where Σ denotes the ionization threshold of H , see [7, 5].
Moreover, (9) (and hence (10)) holds with f(x) =

√
Σ − E|x|. Previously, similar

pointwise exponential bounds - with some positive rate of decay - were established
by Hiroshima and Hikada [11, 9].

A result similar to Theorem 2 holds for the Nelson model [6].
In the case of one electron in three-dimensional space (Hydrogen atom), the

statement of Theorem 2 holds for all ψ from some spectral subspace RanPλ(H) of
H . It is then not necessary for ψ to be an eigenvector. This is interesting because
all vectors ψ ∈ RanPλ(H) with λ < Σ decay exponentially in sense of (9) (and
hence (10)) with f(x) =

√
Σ − λ|x|. A similar remark applies to the one-particle

density of N -electron systems in three space dimensions [6].
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à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15:189–258, 1965.



2286 Oberwolfach Report 39/2023

Propagation bounds for lattice bosons

Marius Lemm

(joint work with Jérémy Faupin, Carla Rubiliani, Israel Michael Sigal,
Jingxuan Zhang)

We consider a system of lattice bosons on a discrete box Λ ⊂ Zd of side length L.
On the bosonic Fock space over ℓ2(Λ), we consider the Hamiltonian

(1) H = −
∑

x,y∈Λ

hxyb
†
xby +

∑

x,y∈Λ

wxynxny

where b†x and bx are the usual bosonic creation and annihilation operators. The
hopping matrix (hxy) is Hermitian and the density-density interaction (wxy) is
real-valued. Moreover, we assume the power-law decay condition

|hxy| ≤ C(1 + |x− y|)−α

for some α > 0. The special case where h is the adjacency matrix of Λ shifted by
a multiple of the identity and w(x, y) = Uδx,y corresponds to the paradigmatic
Bose-Hubbard model that arises in modern experiments with ultracold bosons in
optical lattices [BDZ08].

We are interested in proving propagation bounds in the spirit of Lieb-Robinson
bounds (LRBs) [LR72] for quantum spin systems which have been widely extended
and applied starting with [Has04, HW05, NS06, Has07]. The standard LRB mea-
sures the dynamical growth of the support of two bounded local observables A
and B whose supports are at some distance d(A,B) > 0 and so [A,B] = 0. (The
support of an observable A is defined as the maximal lattice region X such that
A acts as the identity away from X , i.e., A = A′

X ⊗ 1Xc .) For a quantum spin
system with rapidly decaying and bounded interactions, the standard LRB says
that the commutator remains small in norm if A(t) = e−itHAeitH is Heisenberg
time evolved, i.e.,

(2) ‖[A(t), B]‖ ≤ C‖A‖‖B‖eξ(vt−d(A,B)).

The interpretation of the LRB (2) is that quantum propagation is exponentially
suppressed outside of the spacetime “light cone” vt = d(A,B). For quantum
spin systems with long-range (power-law) interactions, the light cone deteriorates
for power law exponents α ∈ (2d, 2d + 1) until it becomes logarithmic (i.e., very
weak) at α = 2d [TGB+21]. Crucially, the LR velocity v depends on the operator
norm of the terms in the Hamiltonian and this prevents the standard bound from
being useful for bosonic Hamiltonians such as (1). Moreover, there are examples
of translation-invariant lattice bosons with exponentially accelerating information
propagation which shows that the topic is subtle [EG09].

The purpose of this talk was to report on recent progress on bosonic propagation
bounds. The propagation bounds control three types of quantities roughly of in-
creasing precision: macroscopic particle transport, microscopic particle transport,
and general local observables (i.e., the LRB).
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We write PA for the spectral projection associated to a self-adjoint operator A.
Set A(t) = eitHAe−itH with H given by (1).

Theorem 1 (Macroscopic particle transport [FLS22b, VKS23]). Suppose that
α > d. For all numbers 0 < η < ξ ≤ 1, we have for any initial state ρ0 with
Tr(ρ0PNXc≤ηN ) = 1 that

Tr(ρ0PNY ≥ξN (t)) ≤ Cǫ,η,ξtd(X,Y )−min{1,⌊α−d−ǫ⌋}

This can be interpreted as saying that the transport of the macroscopic number
of particles (ξ − η)N between regions X and Y takes time proportional to their
distance if α > d+1 (and the corresponding light cone deteriorates as α approaches
d). The work [FLS22b] used the ASTLO method (adiabatic spacetime localization
observables) to obtain the result for α > d + 2. This was improved to the above
in [VKS23] by optimal transport theory together with an argument for optimality.
Thus, the problem of macroscopic transport is essentially settled, including in the
long-range case.

Theorem 2 (Microscopic particle transport [FLS22a, KVS22, LRZ23]). Let p ≥ 1.
Suppose that α > 2dp+ 1. Then there exists v > 0 such that any initial state with
Tr(ρ0n

p
x) ≤ λp for all x ∈ Λ satisfies for all 0 < r < R that

sup
0<t<R−r

v

Tr(Np
Br

(t)) ≤
(

1 +
C

R− r

)
Tr(Np

BR
) + Cλp

This statement says that, given a bounded-density initial state ρ0, only parti-
cles that were initially in BR can make it into Br after time t. The long-range
case was first obtained in [FLS22a] by the ASTLO approach but with a mild N -
dependence, see also [LRSZ23]. The nearest-neighbor case was treated in [KVS22]
by a hands-on Gronwall argument. The mild N -dependence in the long-range case
was recently removed by a multiscale iteration [LRZ23].

Finally, one can use microscopic particle propagation bounds to obtain LRBs
for lattice bosons which we do not state explicitly here but which were presented
in the talk. The idea is roughly that the microscopic particle propagation bound
allows to control the accumulation of bosons and therefore the growth of the Lieb-
Robinson velocity but implementing this intuition is subtle. According to the
current state-of-the art, there appears to be a qualitative dichotomy of bosonic
information propagation depending on the properties of the initial state:

(i) localized state of bounded density ⇒ LRB with v ∼ 1 (linear light cone)
[FLS22a, LRSZ23]

(ii) general bounded-density state ⇒ LRB with v ∼ td−1 for n.n. (bent light
cone) [KVS22]

The work [KVS22] contains a heuristic that (ii) is sharp. Understanding rigorously
if and when this accelerated bosonic information propagation occurs, both for
nearest-neighbor and long-range interactions is a fundamental open problem.
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Keller estimates for Dirac operators

David Gontier

(joint work with Jean Dolbeault, Fabio Pizzichillo, and Hanne Van Den Bosch)

In [1], Keller asked whether one can control the lowest eigenvalue of a Schrödinger
operator of the form −∆ − V with the Lp–norm of V . More specifically, he was
asking whether the minimization problem

ΛS(α, p) := inf
{
λ1(V ), V ∈ Lp(Rd), ‖V ‖p = α

}
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is well-posed, where λ1(V ) is the lowest eigenvalue of −∆− V , given by the mini-
mization problem

λ1(V ) = inf

{∫

Rd

|∇u|2 − V |u|2, u ∈ H1(Rd), ‖u‖2 = 1

}
.

It is known that an optimal potential V and eigenfunction u do exist whenever
p > max{1, d2}. The Euler–Lagrange equations for this minimization problem

shows that V = |ũ| 2
p−1 with ũ an unormalized eigenfunction of −∆ − V , and that

ũ solves the non-linear Schrödinger equation (NLS)

−∆ũ− |ũ| 2
p−1 ũ = ΛS(α, p)ũ, with

∫

Rd

|ũ| 2p
p−1 =

∫

Rd

V p = αp.

In dimension d = 1, Keller solved this NLS equation, and finds the explicit solution
V (x) = A/ cosh2(Bx) for some (undisplayed) A,B > 0.

By scaling, it is not difficult to see that, setting γ = p − d
2 , the constant

LS := ΛS(α = 1, d)γ is optimal for the inequality

∀V ∈ Lp(Rd,R+), |λ1(V )|γ ≤ LS

∫

Rd

V γ+
d
2 .

This inequality was then extended by Lieb and Thirring in [2] to the sum of
eigenvalues. Namely, for all γ > max{0, 1 − d

2}, there is an optimal (lowest)
constant Lγ,d so that

∀V ∈ Lp(Rd,R+),
∞∑

n=1

|λn(V )|γ ≤ LS

∫

Rd

V γ+
d
2 .

In our work [3], we study a similar problem for the Dirac operator, and ask
whether one can control the lowest eigenvalue of /Dm − V with an Lp–norm of V .
Here /Dm is the massive Dirac operator

/Dm :=
d∑

j=1

αj(−i∂xj ) +mβ,

where m > 0 is the mass, and α1, · · · , αd, β are N ×N hermitian matrices, with

N = 2⌊
d+1
2 ⌋, chosen to satisfy some commutation rules. These rules ensure in

particular that

/D
2
m = −∆ +m2 and σ( /D) = (−∞,−m] ∪ [m,∞).

Note that the spectrum of /Dm is no longer bounded from below, so the notion of
lowest eigenvalue is unclear. Actually, our goal is to control the lowest eigenvalue
in the gap (−m,m), which we denote by λD(V ). We therefore study

ΛD(α, p) := inf
{
λD(V ), V ∈ Lp(Rd,R+), ‖V ‖p = α

}
.

Note that we require the potential V to be positive. Our main results can be
stated as follows.
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Theorem 1.

(i) For all p ≥ d ≥ 1, there is α∗(p) > 0 such that, for all V ∈ Lp(Rd,R+) with
‖V ‖p < α∗(p), λD(V ) is well-defined, and belongs to (−m,m]. In addition,
ΛD(α, p) > −m.

(ii) The map α 7→ ΛD(α, p) is continuous decreasing from [0, α∗(p)) to [m,−m).
(iii) If (p, d) 6= (1, 1), there is an optimal potential V = V∗ and (unormalized)

eigenstate Ψ = Ψ∗. They satisfies V∗ = |Ψ∗|
2

p−1 and the non-linear Dirac
(NLD) equation

/DmΨ∗ − |Ψ∗|
2

p−1 Ψ∗ = ΛD(α, p)Ψ∗,

∫

Rd

|Ψ∗|
2p

p−1 =

∫

Rd

V p∗ = αp.

(iv) In dimension d = 1 and p > 1, the optimal potential (up to translations) is
of the form:

V (x) =
1

cosh2(Bx) + C
, if α < α∗, and V (x) =

A

1 +Bx2
if α = α∗,

for some (undisplayed) constants A,B,C > 0.

In particular, if the potential V is positive–valued (as we assume here), we
expect the eigenvalues of /Dm − V to emerge from the upper essential spectrum,
a fact that we indeed prove. This result is optimal in the sense that at α = α∗,
there is a potential V with ‖V ‖p = α∗ so that the energy −m, corresponding to
the lower essential spectrum, is an eigenvalue (or a resonance).

One main difference with the Schrödinger case is that we no longer have a
scaling property for the map α 7→ ΛD(α, d). Also, we do not have a min-max
principle to characterize λD. The main idea of the proof is to study the inverse
map of α 7→ ΛD(α, d), that we denote by λ 7→ AD(λ, d), and which is defined by

AD(λ, d) := inf
{
‖V ‖Lp , λ ∈ σ( /Dm − V ), V ∈ Lp(Rd,R+)

}
.

This function is much easier to study. For instance, to detect whether λ is in the
spectrum of /Dm − V , one can use the Birmann-Schwinger principle, and detect
whether 1 is in the spectrum of the (compact) operator

√
V ( /Dm − λ)−1

√
V .

In dimension d = 1, we are able to solve the NLD equation in order to find the
optimal potential (this is the fourth point of the Theorem). In higher dimension,
and for the critical point α = α∗, we conjecture that the optimal potential is also
of the Aubin–Talentin form V (x) = A

1+B|x|2 . If correct, it would imply that the

critical value α∗(p, d) has the explicit formula

α∗(p, d)p = ppπ
d
2

(
2

p− d

)p−d Γ(p− d
2 )

Γ(p)
.

This is confirmed by numerical simulations.

Finally, concerning Lieb–Thirring inequalities for Dirac operators, we have the
following result. We denote by −m < λ1 ≤ λ2 ≤ · · · ≤ m the eigenvalues in the
gap, and set ek := ek(m,V ) := m − λk the distance between the k-th eigenvalue
and the upper essential spectrum.
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Theorem 2. For all γ > d
2 and all p ∈ (d, γ + d

2 ], there is a constant Lγ,d,p > 0

so that, for all V ∈ Lp(Rd,R+) and all m > 0, we have

∞∑

k=1

ek(m,V )γ ≤ Lγ,d,pm
d
2

∫

Rd

V
γ+d

2−p
m V p, with Vm := min{m,V }.
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Upper bounds on the energy of dilute gases of hard–sphere bosons

Giulia Basti

(joint work with Serena Cenatiempo, Alessandro Giuliani, Alessandro Olgiati,
Giulio Pasqualetti, Benjamin Schlein)

Consider N bosons moving in the three dimensional unitary torus Λ. In the Gross-
Pitaevskii regime the Hamilton operator takes the form

HN =
N∑

i=1

−∆xi +
∑

i<j

N2V (N(xi − xj))

where V is a generic potential positive and with finite scattering length a. Let EN
be the ground state energy of HN , it was proven in [16], [17], [18] that, to leading
order in N , it is given by

EN = 4πaN + o(N)

as N → +∞. More recently, it was shown in [1] (see also [7, 13, 19]) that, for
V ∈ L3(R3),

EN = 4πa(N − 1) + eΛa
2

− 1

2

∑

p∈2πZ3\{0}

[
p2 + 8πa−

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+ o(1)

(1)

where

eΛ = 2 − lim
M→+∞

∑

p∈Z
3\{0}:

|p1|,|p2|,|p3|≤M

cos(|p|)
p2

.
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I will report on the result obtained in [4] where we proved an upper bound on
EN in agreement with (1) in the case of hard-sphere interaction i.e. when the
potential V is formally replaced by

V hc =

{
+ ∞ |x| < a

0 otherwise
.

More precisely, se consider

Ehs
N = inf

〈
Ψ,

N∑

j=1

−∆xjΨ
〉

where the infimum is taken over all normalized wave functions Ψ ∈ L2
s(Λ

N ) satis-
fying the hard-core condition

Ψ(x1, . . . , xN ) = 0

almost everywhere on the set

N⋃

i<j

{
(x1, . . . , xN ) ∈ R

3N : |xi − xj | ≤ a/N
}
.

Unfortunately, a trial state inspired by Bogoliubov approximation as the one com-
ing from the analysis in [1], doesn’t seem to be well suited for hard-sphere inter-
actions since Bogoliubov transformations are not in the right domain. Hence, in
[4], we consider instead a trial state of the form

(2) ΨN (x1, . . . , xN ) =

N∏

i,j=1
i6=j

fℓ(xi − xj)Φ(x1, . . . , xN )

thus taking the product of an N -wave function Φ with the Bijl-Dingle-Jastrow
factor (see [6, 8, 14])

N∏

i,j=1
i6=j

fℓ(xi − xj) .

The advantage of the trial state in (2) is that it allows us to use the Bijl-Dingle-
Jastrow factor to fulfill the hard-sphere condition and to implement correlations
at small scale by choosing fℓ as the solution of the Neumann problem:





− ∆fℓ(x) = λℓfℓ(x)χℓ(x) for a/N ≤ |x| ≤ ℓ

fℓ(x) = 0 if |x| < a/N

fℓ(x) = 1 if |x| > ℓ

∂rfℓ(x) = 0 if |x| = ℓ

.

On the other hand, since the Bijl-Dingle-Jastrow becomes difficult to be handled
at large scales, we take a/N ≪ ℓ ≪ 1 and use Φ to describe correlations up to
length scales of order ℓ0 ∼ 1 i.e. the healing length in this regime. In particular
Φ will be chosen as the minimizer of an effective Hamiltonian (in a less singular
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regime than Gross-Pitaevskii) using Bogoliubov transformations similarly to what
is done in [2].

In this talk I will also address the natural question of whether the same method
could be pushed to cover more singular regimes, and in particular whether it allows
to treat the thermodynamic limit in which N bosons are confined to a torus ΛL of
side length L in the limit N,L→ +∞ with particle density ρ = N/L3 kept fixed.
Assuming ρa3 ≪ 1 the ground state energy density e(ρ) has been predicted in [15]
to satisfy the following expansion

(3) e(ρ) = 4πaρ2
(

1 +
128

15
√
π

(ρa3)1/2 + . . .
)
.

The rigorous validity of (3) has been established at first order in [9, 17] while
the second order correction was obtained as a lower bound in [10, 11] for a very
general class of potentials also including the hard-sphere case (see also [12]). On
the contrary, un upper bound in agreement with (3) was shown in [20] and later
extended in [5] to cover potentials in L3(R3) thus leaving open the hard-sphere
case.

While the strategy adopted in [4] can be expected to be extended to treat
regimes in which the scattering goes scales as N−1+κ for small κ ≥ 0 (Gross-
Pitaevskii regime thus corresponding to κ = 0) a trial state as in (2) would cer-
tainly become substantially more difficult to be handled as soon as κ > 1/3, thus
well before the thermodynamic limit corresponding (after appropriate rescaling)
to κ = 2/3 but also smaller than the κ = 1/2 : the threshold above which, through
a well known box method also used in [5, 20], an upper bound on the ground state
energy in the thermodynamic limit can be infered.

As a matter of fact the best available upper bound on the ground state energy
density in the thermodynamic limit for hard-sphere interactions is the one recently
obtained in [3] where we proved that there exists C > 0 such that

e(ρ) ≤ 4πaρ2
(

1 + C(ρa3)1/2
)
.

Remarkably, the trial state used in [3] is as simple as a Bijl-Dingle-Jastrow factor
on a length scale ℓ = c(ρa)−1/2 for a constant c > 0 small enough.
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Boundary Superconductivity in BCS Theory

Barbara Roos

(joint work with Robert Seiringer)

Bardeen-Cooper-Schrieffer (BCS) theory is a model of superconductivity. Re-
cently, physicists discovered that BCS theory predicts boundary superconductivity,
the phenomenon that a material is superconducting at the boundary but a normal
metal in the bulk [9]. In particular, the Cooper-pair wave function appears to be
localized at the boundary, in contrast to the results of Abrikosov [1] and de Gennes
[2].

We would like to justify the results of Samoilenka and Babaev [9] in a math-
ematically rigorous way. However, BCS theory is non-linear and computing the
Cooper-pair wave function is currently out of reach. Fortunately, there is a simpler
way to estimate the critical temperature. We focus on proving that the presence
of a boundary increases the critical temperature.

The BCS model is based on a functional defined on self-adjoint operators Γ of

the form Γ =

(
γ α
α 1 − γ

)
acting on L2(Ω) ⊕ L2(Ω), where Ω is the shape of the

system and 0 ≤ Γ ≤ 1. The BCS functional is given by

FT (Γ) = Tr(−∆ − µ)γ + T Tr Γ ln Γ +

∫

Ω×Ω

|α(x, y)|2V (x− y)dxdy,
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where α(x, y) is the integral kernel of α, T the temperature, µ the chemical po-
tential, and V the effective interaction between the electrons in the metal. The
system is superconducting iff α 6≡ 0 for the minimizer Γ of FT . For more details
about the BCS functional we refer to [4].

The minimizer of FT has to satisfy the Euler–Lagrange equation. However, this
equation is non-linear and cannot be solved in general. There is one solution with
α = 0 though, the so-called normal state Γ0. One can consider the Hessian HT at
the normal state. If the spectrum of the Hessian satisfies inf σ(HT ) < 0, the normal
state is unstable and the system is in the superconducting state. On the other
hand, if inf σ(HT ) > 0, the normal state is a local minimum of the functional, but
we do not know whether it is also the global minimum, i.e. whether the system is in

the normal state. An explicit computation shows that for variations Γ̃ =

(
γ̃ α̃
α̃ −γ̃

)

one has d2

dt2

∣∣∣
t=0

FT (Γ0+tΓ̃) = 2〈γ̃, GT γ̃〉+2〈α̃, (KT +V )α̃〉, where we interpret the

integral kernels of γ̃ and α̃ as functions in L2(Ω × Ω), GT is a positive operator,
and

KT =
−∆x − ∆y − 2µ

tanh
(

−∆x−µ
2T

)
+ tanh

(
−∆y−µ

2T

)

was computed in [3]. In particular, inf σ(HT ) = 2 inf σ(KT + V ). We define the
(local) critical temperature Tc := inf{T > 0| inf σ(KT + V ) ≥ 0}. It follows from
the above discussion that the system is superconducting for T < Tc and in an
unknown state for T > Tc. For translation invariant systems it was shown in [5]
that the system is in the normal state for T > Tc.

We show that half-spaces in dimensions d ∈ {1, 2, 3} with generic inter-particle
interactions V have a strictly higher (local) critical temperature than Rd, at least at
weak enough coupling [7]. Since Rd is translation invariant, this shows that there
is a temperature range where a half-space is superconducting while the system
on Rd is in the normal state. This generalizes the results from [6], where a half-
infinite wire with delta interaction was considered. Furthermore, we show that the
(local) critical temperature is higher on a quadrant than on a half-space in two
dimensions [8]. It would be interesting to know whether the half-space system is in
the normal state above its (local) critical temperature and whether the quadrant
can be superconducting while the half-space is in the normal state. This is one
possible direction for future research, besides considering other shapes and external
fields.
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Concentration of measure and properties of typical quantum states

Stefan Teufel

(joint work with Roderich Tumulka and Cornelia Vogel)

Lévy’s lemma states that a Lipschitz function defined on a D-dimensional sphere
(equipped with the normalized uniform distribution) is close to its mean-value on
a set that has measure close to one whenever D is large [1, 2]. In [3] we generalize
Lévy’s lemma to a much more general class of measures, so-called GAP measures
[4, 5]. For any given density matrix ρ on a separable Hilbert space H, GAP(ρ) is
the most spread out probability measure on the unit sphere of H that has density
matrix ρ and thus forms the natural generalization of the uniform distribution. We
prove concentration-of-measure whenever the largest eigenvalue ‖ρ‖ of ρ is small.
We use this fact to generalize and improve well-known and important typicality
results of quantum statistical mechanics to GAP measures, namely canonical typ-
icality [7, 6] and dynamical typicality [8, 9]. Canonical typicality is the statement
that for “most” pure states ψ of a given ensemble, the reduced density matrix of
a sufficiently small subsystem is very close to a ψ-independent matrix. Dynamical
typicality is the statement that for any observable and any unitary time-evolution,
for “most” pure states ψ from a given ensemble the (coarse-grained) Born distribu-
tion of that observable in the time-evolved state ψt is very close to a ψ-independent
distribution. So far, canonical typicality and dynamical typicality were known for
the uniform distribution on finite-dimensional spheres, corresponding to the micro-
canonical ensemble, and for rather special mean-value ensembles. Our result shows
that these typicality results hold in general for systems described by a density ma-
trix ρ with small eigenvalues. Since certain GAP measures are quantum analogs
of the canonical ensemble of classical mechanics, our results can also be regarded
as a version of equivalence of ensembles.
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ETH Zürich
Wolfgang-Pauli-Straße 27
8093 Zürich
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