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Abstract. Approximation techniques for high dimensional PDEs are cru-
cial for contemporary scientific computing tasks and gained momentum in
recent years due to the renewed interest in neural networks. It seems that
especially nonlinear parametrizations will play an essential role in efficient
and tractable approximations of high dimensional problems. We held a mini-
workshop on the relation and possible synergy of neural networks and tensor
product approximation. To reliably evaluate the prospect of different nu-
merical experiments, the traditional talks were accompanied by live coding
sessions.
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Introduction by the Organizers

The workshop Nonlinear Approximation of High-dimensional Functions in Scien-

tific Computing, organised by Mathias Oster (RWTH Aachen), Janina Schütte

(WIAS Berlin) and Philipp Trunschke (École Centrale de Nantes) was attended
by 17 people (16 on-site and 1 online) with affiliations for example in Germany,
the US, the UK, France, Italy and the Netherlands. The program consisted of 16
talks (50 minutes) and three coding sessions (90 minutes), allowing for extended
discussions throughout the workshop. Conversations with all participants lead to
a positive conclusion. The workshop was a success fostering new collaborations,
strengthening standing connections and providing the space to learn about other
attendees research in the talks, while also having time to discuss new ideas during
breaks and the coding sessions.
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Topic. Numerous state-of-the-art applications in engineering and physics rely on
the efficient solution of high-dimensional partial differential equations (PDEs) with
controllable precision and reliable error bounds. But classical methods like finite
differences, finite elements and finite volumes are limited to low dimensions due
to an exponential growth in complexity. To circumvent this curse of dimension-
ality, new approximation methods such as sparse approximations, tensor product
approximations and neural networks have been developed.

This mini-workshop explored the benefits and limitations of contemporarymeth-
ods for neural network and tensor network approximations of high-dimensional
functions and used the generated insights to discuss possible new and improved
tools. Here, the coding session allowed the participants to explore some new ideas
on-site, as for example using a combination of (global) linear transformation and
tensor trains to reduce the ranks, exploring the implicit bias observed for linear
networks as well as synthesising tensor trains with neural networks by using func-
tional tensor trains whose basis functions are parametrised by neural networks.
The following topics have been discussed in the workshop.

• Theory-to-practice gap The theory-to-practice gap describes two or-
thogonal phenomena in machine learning. On the one hand, it is often
observed that neural networks outperform their theoretical expressivity
bounds when the required accuracy is moderate. In particular, many
proofs for approximation rates of neural networks show that certain net-
work architectures are able to model classical approximation schemes.
It is thus natural to ask when the trained networks can perform better
than these classical algorithms and manifest the first interpretation of the
theory-to-practice gap. On the other hand, the theory-to-practice gap
describes the practical difficulty of estimating neural networks from point
evaluations. Theoretical constructions demonstrate that the required sam-
ple size may suffer from the curse of dimensionality and practical experi-
ments substantiate that even the approximation of “simple” functions, like
the square x 7→ x2, is difficult to high-accuracy. This obviously depends on
the distribution of the data and may be alleviated by model- and problem-
dependent importance sampling schemes. However, theoretical results in
this direction are currently sparse and first advances for the special case
of tensor networks have been discussed in the workshop. As of now, it
remains unclear if the theory-to-practice gap for general neural networks
can be bridged or if it is a fundamental limitation of the model class akin
to the concept of the “condition number” in numerical linear algebra.

• Neural Operators For neural operator techniques as Deep-O-Net or
Fourier-Neural-Operators it is often claimed that they can approximate
mappings from one functional space to another functional space with “dis-
cretisation invariant” schemes. These invariance claims have have been dis-
cussed and some counter examples have been presented. This also leads to
interesting tasks of correct sampling of functional spaces (“Besov priors”).
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• Mean-Field LimitTwo mean field generalisations of deep learning, based
on neural ordinary differential equations (neural ODEs) have been dis-
cussed. The first approach considered the learning problem in the mean-
field limit of the data. In this setting, the learning problem can be in-
terpreted as an optimal control problem in Wasserstein space, where the
initial data distributions is transported by means of a neural network (the
control). Another approach, presented the infinite width and depth limit
of neural networks as neural ODEs with Barron functions as vector fields
and formulated an corresponding abstract optimal control problem with
measure-valued controls.

• Optimisation The abundance of local minima in learning tensor net-
works and neural networks leads to an influence of the chosen optimisation
scheme on the resulting generalisation performance. Of particular interest
in this context is the implicit regularisation in the context of overparame-
terisation (more parameters than training data), i.e., which networks are
favoured by such algorithms. This implicit bias was discussed for neural
networks with linear and non-linear activation functions. In the optimi-
sation of tensor methods optimal sampling strategies and active learning
have been of interest.

• Synthesising Techniques Finally, part of the workshop was concerned
with combining tensor decomposition methods with more classical ap-
proaches, such as sparse approximation schemes, for solving time-space
discretisations of parabolic PDEs and model order reduction techniques
for optimal controls of the Navier–Stokes equation.

As expected, these complex open problems were not solved in one week. Nev-
ertheless, discussions in all considered areas were productive and new ideas and
collaborations were found.
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Abstracts

Semi-global Optimal Control Problems and their Applications to

Machine Learning

Mathias Oster

(joint work with Angela Kunoth, Reinhold Schneider)

Learning a function f : Rd → R by deep neural networks with activation function
σ in for example the L2 norm can be interpreted as an abstract optimal control
problems with measure-valued controls µ(t) of the form

min
µ(·)

J (µ(·)), J (µ(·)) =
∫

Rd

‖f(x)−
∫
aσ(A z(T, x) + b) dµ(t; a,A, b)‖2dx

s.t.
d

dt
z(t, x) =

∫
aσ(Az(t, x) + b) dµ(t; a,A, b), z(0, x) = x

and provides an interesting mathematical framework to analyse the expressivity
and optimization of deep neural networks from a continuous point of view. This
control problem can be seen as an infinitely deep neural network with distinguished
last layer. Here we exploit the ideas of Barron spaces as continuous interpretation
of infinitely wide shallow networks and neural odes as infinitely deep residual
network architectures. This continuous interpretation might allow one to deduce
new adaptive algorithms for neural network that change the depth and width of
the neural network during the training process.

First, we show the existence of minimizers to the optimal control problem by using
Prokhorov’s theorem on tight measures and some regularity assumptions on the
activation function and classical compactness and continuity arguments.
Secondly, we analyse analyse the gradient flows corresponding to optimizing the
map µ(·) → J (µ(·)) in the space of probability measures. To that end, we intro-
duce a fibered Wasserstein metric on probability measures with bounded second
moment and fixed first marginal and define the notion of absolute continuous
curves. Furthermore, we define a notion of Wasserstein gradient and exemplify
it on the example of a potential functional E(µ) =

∫
V (u)dµ(u) for some twice

continuously differentiable function V . By using the equivalence of absolute con-
tinuous curves and solutions to the continuity equation we can state the gradient
flow equations for the optimal control problem and we sketch the proof of existence
of gradient flows based on the so-called generalized minimizing movement.

Lastly, we propose a first näıve algorithm to deal with flexible architectures and
provide some very first examples.
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Approximation of high-dimensional functions with tensors and

neural networks

Ivan Oseledets

Approximation of multivariate functions is a notoriously difficult task. In this
talk, I discussed two different approaches: tensor decompositions and neural net-
works/operators.

The idea behind tensor decompositions is based on the separation of variables.
Several tensor formats exist that utilize this idea: the simple canonical decompo-
sition, which has well-known problems with stability if used as a general approxi-
mation tool, and SVD-based tensor formats such as tensor train and Hierarchical
Tucker (H-Tucker). Using those formats, one can often approximate functions with
high precision. Moreover, for a special class of functions written in the so-called in-
verse Polish notation, we can constructively represent tensors with optimal ranks.
Some applications include computation of the matrix permanent and cooperative
games, for more details see [3]. The idea of quantized tensor train (QTT) uses the
procedure of tensorization. For example, given a function f(x) = sin(x) we can
create a vector v = 2d of length d of values of this function on a uniform grid and
reshape it into a 2× 2× . . .× 2 d-dimensional tensor. For this example, the QTT-
ranks will be equal to 2, giving logarithmic complexity. Moreover, one can show
that for a certain class of functions QTT-representation gives the approximation
of a function with complexity O(logα ε), where ε is the approximation accuracy
[4, 5].

However, it is also clear that there are important cases when tensor approxi-
mation fails, for example, for function with diagonal singularities like

f = e−x
2/2e−y

2/2e−|x−y|.

A big alternative are neural networks, which are universal function approximators.
However, the converger of the error with respect to the number of parameters is not
well understood. A promising class of functions seems to be Deep-ReLU networks,
especially due to the results of Yarotsky [7]. It can be shown, for example, that a
function f(x) = x2 can be well-approximated using DeepReLU network and the
error decays exponentially with the depth. Based on this result, one can show
that polynomials can be well-approximated and large classes of functions. In [6]
we showed that even for the simplest one-dimensional example it is not possible to
recover such a good Deep ReLU representation: instead of 10−6 we get 10−2−10−3

error of approximation at its best. The reason for that is the loss function is very
“narrow” in this particular point. The current understanding of the situation is
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that deep feedforward networks can be very unstable in training, and we need to
look for alternatives.

A promising direction is the approximation not of the solutions, but of the map-
pings using so-called neural operators. Neural operator is a parametrized mapping
from a function (element of a Banach space) to another function (Banach space),
and they are quickly gaining popularity. Popular approaches include DeepONet
[8] and Fourier Neural Operator (FNO). All of them still can not be considered as
real operators, and they do not improve with better discretizations, as standard
methods. However, in many cases they provide an extremely fast surrogate model.

Among open problem for training neural operators, I want to highlight the fol-
lowing one. A standard approach is to construct a dataset of input-output pairs.
The input pair (for example, coefficient in the diffusion equation) is sampled from
a certain probability distribution over functions. But this distribution is taken
empirically, like random mixture of Gaussians or random trigonometric polynomi-
als. However, it is not clear why these functions are used for training, and what is
the motivation for using such kind of functions. The research question, that needs
an answer is what the optimal (or quasioptimal) way of sampling input data for
different kinds of problems, where neural operators are used? Understanding and
the solution of the problem may be the key for the generalization of such neural
operators and their wider usage.
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Optimal Sampling for Approximate Gradient Descent

Philipp Trunschke

(joint work with Robert Gruhlke, Charles Miranda, Anthony Nouy)

We consider the problem of minimising a loss functional

minimisev∈M L(v), L(v) :=
∫
ℓ(v;x) dρ(x)

over a possibly nonlinear model class M ⊆ H in a Hilbert space H. When com-
puting the integral is infeasible, a common approach is to replace the exact loss L
with a Monte Carlo estimate before employing a standard gradient descent scheme.
This results in the well-known stochastic gradient descent (SGD) method. How-
ever, using an estimated loss instead of the true loss can result in a “generalisation
error”. Rigorous bounds for this error usually require compactness of M and Lip-
schitz continuity of L while providing a very slow decay with increasing sample
size. This slow decay is unfavourable in settings where high accuracy is required
or sample creation is costly.

To address this issue, we propose a new approach that performs successive cor-
rections on local linearisations of M. To be specific, we suppose that in every
step t ∈ N there exists a linear space Tt that approximates M locally around
the current iterate ut. Given the gradient gt := ∇L(ut) and an estimator Pnt of
the H-orthogonal projector Pt onto Tt, we then perform a linear update ūt+1 :=
ut − stP

n
t gt in direction of the (empirically) projected negative gradient −Pnt gt.

This yields the intermediate iterate ūt+1. Since the ūt+1 is not guaranteed to lie
in the original model class M, we perform a recompression step ut+1 := Rt(ūt+1),
where Rt : H → M takes the linear update ūt+1 back to the model class M with
a controllable error in the loss L. The proposed algorithm can thus be presented
in the two equations

ūt+1 := ut − stP
n
t gt, gt := ∇L(ut),

ut+1 := Rt(ūt+1).

We show that under certain assumptions on the loss L and the sequences of pro-
jectors Pnt , step sizes st and recompressions Rt, the resulting optimisation scheme
converges almost surely to a stationary point of the true loss. The corresponding
rates of convergence are displayed in Table 1. The proposed algorithm exhibits
the same convergence rates as classical gradient descent (GD) in the best case but
can never perform worse than SGD. We pay particular attention to the estimation
of the projectors Pnt , which must be carried out using optimally weighted samples
in order to achieve the presented rates.
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GD Best-case Worst-case SGD

L-smoothness O(t−1) O(t−1+ε) O(t−1/2+ε) O(t−1/2+ε)
strong convexity O(at) O(at) O(t1−2ε) O(t1−2ε)

Table 1. Almost sure convergence rates for different algorithms
with ε ∈ (0, 12 ) and a ∈ (0, 1) depending on the chosen step size.

Tensor train approximation of deep transport maps

Sergey Dolgov

(joint work with Tiangang Cui, Robert Scheichl, Olivier Zahm
and workshop participants)

A challenging example of high-dimensional functions is joint probability density (or
distribution) functions of multiple random variables. Sampling and computation
of expectations of high-dimensional random variables is one of the fundamental
challenges in stochastic computation. We develop a deep transport map that is
suitable for sampling concentrated distributions defined by an unnormalised den-
sity function [1]. We approximate the target distribution as the pushforward of
an easy reference distribution under a composition of inverse Rosenblatt trans-
formations of coordinates. Each transformation is formed by a tensor-train (TT)
decomposition of a bridging density, which is a simplified version of the target
density. This composition of maps moving along a sequence of bridging densities
alleviates the difficulty of approximating the concentrated target density directly.
In contrast to neural network layers, each Rosenblatt map is fully defined by its
bridging density, and can be computed independently of next layers by fast TT
cross algorithms. We propose two bridging strategies suitable for wide use: tem-
pering of the target density with a sequence of increasing powers [1], and smoothing
of an indicator function with a sequence of sigmoids of increasing scales [3]. The
latter strategy opens the door to efficient computation of rare event probabilities
in Bayesian inference problems. Numerical experiments on problems constrained
by differential equations show little to no increase in the computational complexity
with the event probability going to zero, and allow to compute hitherto unattain-
able estimates of rare event probabilities for complex, high-dimensional posterior
densities.

One drawback of the TT decomposition though is its sensitivity to the order of
variables. Probability density functions with locally correlated variables exhibit
typically low TT ranks [4], whereas if the same variables are permuted in such
a way that strongly correlated variables are far apart in the random vector, the
TT ranks may increase up to an exponential factor. Permutation (or even bet-
ter, rotation) of variables may significantly expand the applicability of TT-driven
approximation methods to higher dimensions and more complicated functions. In
principle, this is the problem that is tackled by the Rosenblatt map. However,
if the initial dimension is very high, it may still be daunting to compute a TT
approximation, even for simple bridging densities. In this case it may be useful
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to identify unimportant variables (e.g. those in which the function is almost con-
stant), and truncate them altogether. If the function to be approximated is a
posterior density function of exponential family, the eigenvalue decomposition of
the information matrix computed from the gradient of the log-likelihood can be
used to inform the permutation or rotation of variables [2]. This allowed us to solve
a Bayesian inverse problem constrained by an elasticity PDE with a thousand of
random variables.

Both techniques outlined above require a function to be of a probability density
form to compute the Rosenblatt map or the information matrix. Efficient tensor
methods for very high dimensional functions which are neither positive nor easily
differentiable are still lacking. During the workshop, we have come up with an idea
of learning a matrix of linear change of variables simultaneously with a low-rank
TT decomposition from data such as random samples of the function. Preliminary
experiments with simple functions demonstrated that a nearly optimal rotation of
variables is achievable using a moderate amount of function evaluations. However,
further research is needed to make this technique useful for higher dimensions and
concentrated functions, sampling of which is difficult.
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Curse-of-dimensionality-free deep-learning approaches to deterministic

control problems

Lars Grüne

(joint work with Dante Kalise, Luca Saluzzi, and Mario Sperl)

It is known that deep neural networks have the ability to represent certain classes of
high-dimensional functions without being affected by the curse of dimensionality.
One of these classes are the so-called Barron functions. However, the usual way
to check that a function falls into this class is by checking suitable smoothness
properties, which cannot be expected to hold for the functions to be approximated
in typical deterministic control problems.

Another prominent function class for which the curse of dimensionality can be
avoided, the so-called compositional functions, have recently been shown to be
a promising system class for problems involving deterministic dynamical systems
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[2, 4]. In this talk, we have explained the ability of the simplest functions in this
class, the so-called separable functions, to approximate control Lyapunov functions
and optimal value functions.

For control Lyapunov functions, the requirement of separability is closely linked
to the kind of Lyapunov functions that can be obtained from nonlinear small-gain
theory, which is used for this purpose in a control context e.g. in [1]. While this
approach is in principle constructive, it suffers from the fact that the construction
of the resulting control Lyapunov functions is quite complicated. Here neural
networks can provide a remedy, because the theory is only used for designing the
architecture of the network, while the actual separable structure is learned in the
training process of the network [3]. More precisely, small-gain theory ensures the
existence of a control Lyapunov function V of the separable form

V (x) =

s∑

i=1

Vi(zi),




z1
...
zs


 = Tx,

where the low-dimensional subvectors zi are obtained from the original high-
dimensional state vector x by some coordinate transformation T , but the com-

putation of T and of the individual Vi is left to the training process of the neural
network.

For optimal value functions, separability is in general a too demanding property,
as exploiting the interaction between different subsystems is usually a prerequisite
for achieving optimality. However, when the subsystems are connected via a graph,
it seems reasonable to expect that subsystems that are far away (in terms of
the graph distance) only interact with each other very weakly. This heuristic
expectation can be made rigorous in the framework of decaying sensitivity [5]
and exploited for a curse-of-dimensionality-free approximation of optimal value
functions V via overlapping separable functions

V (x) =

s∑

i=1

Wi(zi), zi =




xj1
...
xjk


 ,

where each component xj of the state vector may occur in several of the subvectors
zi but the number k of components appearing in each zi is bounded independent of
the overall dimension. Under an exponential sensitivity assumption, first rigorous
error estimates for such an overlapping separable approximation were obtained in
[6].
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A statistical Tensor Train - POD approach for feedback boundary

optimal control in fluid dynamics

Luca Saluzzi

(joint work with Sergey Dolgov and Dante Kalise)

Consider the optimal control problem

(1)

{
inf
u∈U

J(u(·, x)) :=
∫ +∞

0 y(s)⊤Qy(s) + u⊤(s)Ru(s) ds ,

subject to ẏ(s) = f(y(s)) +B(y(s))u(s), s ∈ (0,+∞),

where y(0) = x and U = L∞([0,+∞);U) is the set of admissible controls. For
a given initial condition x ∈ R

d, we define the value function associate to the
optimal control problem (1) as

V (x) = inf
u∈U

J(u(·, x))

which, by standard dynamic programming arguments, satisfies the following Hamil-
ton-Jacobi-Bellman PDE

(2) min
u∈U

{
(f(x) +B(x)u)⊤∇V (x) + x⊤Qx+ u⊤Ru

}
= 0, x ∈ R

d.

The HJB PDE (2) is a challenging first-order fully nonlinear PDE cast over Rd,
where d can be arbitrarily large, and thus intractable through conventional grid-
based methods. However, in the unconstrained case, i.e. U = Rm, the minimizer
of the l.h.s. of eq. (2) can be computed explicitly as

(3) u∗(x) = −1

2
R−1B(x)⊤∇V (x).

In this context we propose to approximate the value function together with
its gradient in a data-driven approach, learning a surrogate model for the value
function via adaptive sampling of the solution of the HJB (2). The synthetic data
are generated via the so-called State-Dependent Riccati Equation (SDRE), an
extension of the Riccati solution to nonlinear dynamics. By writing the dynamics
in semilinear form

(4) ẏ = A(y(t))y(t) +B(y(t))u(t),

equation (2) can be approximated as

(5) A⊤(x)Π(x) + Π(x)A(x) −Π(x)B(x)R−1B(x)⊤Π(x) +Q = 0 ,
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which is obtained by applying the ansatz V (x) = x⊤Π(x)x with a gradient ap-
proximation ∇V (x) ≈ 2Π(x)x. At this point, similarly to [1], the value function
is represented in Functional Tensor Train (FTT) format
(6)

V (x) ≈ Ṽ (x) :=

r0∑

α0=1

r1∑

α1=1

· · ·
rd∑

αd=1

G
(1)
(α0,α1)

(x1) · · · G(k)
(αk−1,αk)

(xk) · · · G(d)
(αd−1,αd)

(xd),

with

G
(k)
(αk−1,αk)

(xk) =

nk∑

i=1

Φ
(i)
k (xk)H

(k)
(αk−1,i,αk)

,

where {Φ(i)
k (xk)}nk

i=1 are prescribed basis functions and {rk}dk=1 are called TT
ranks.

Given certain sample points {xi}Ni=1 and the dataset {V (xi), ∇V (xi)}Ni=1 com-
puted by SDRE, we are interested in determining the coefficient tensors

{H(1), . . . , H(d)} which characterize the FTT representation Ṽ (x) introduced
in (6), solving the regression problem

min
H(1) ,...,H(d)

N∑

i=1

|Ṽ (xi)− V (xi)|2 + λ‖∇Ṽ (xi)−∇V (xi)‖2,

which is approximated by an alternating direction strategy and a TT cross inter-

polation technique [2, 5]. The TT Cross enables to adapt the sampling sets to
minimize the conditioning of the interpolation problem, avoiding the evaluation of
the function on the whole tensorial grid. The methodology has been successfully
applied to the optimal control of a multi-agent system, where the TT ranks of the
approximation of the value function presented a constant behaviour varying the
dimension of the system, yielding an effective mitigation of the curse of dimen-
sionality. However, the dimension of the value function is still that of the state
space, leading to a very large number of unknowns in the approximation ansatz
and training data. A possible way to tackle this problem is given by the applica-
tion of Model Order Reduction (MOR) techniques. One of the most famous MOR
method is the Proper Orthogonal Decomposition (POD), which synthesizes a set
of snapshots capturing the behaviour of the system and looks for basis functions
that capture the major variations in the data. In contrast to existing techniques,
we propose a Statistical Proper Orthogonal Decomposition (SPOD) which takes
into account controlled trajectories treating boundary conditions and initial condi-
tion as random variables. The corresponding reduced basis is chosen to minimize
the empirical risk for the controlled solution, avoiding any linearisation of the dy-
namical system. Once computed the basis and projected the system, the reduced
dynamics can be employed for either a fast online computation of the optimal
control or an efficient synthesis of a dataset for the construction of a TT surro-
gate model. The methodology has been tested on the vorticity stabilization of
the 2D Navier-Stokes equations, whose discretization employs several thousands
of degrees of freedom.
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A Mean-Field Optimal Control Approach to the Training of

NeurODEs & AutoencODEs

Cristina Cipriani

(joint work with Benôıt Bonnet, Massimo Fornasier, Hui Huang,
Alessandro Scagliotti and Tobias Wöhrer)

In recent years, neural networks have emerged as a significant tool in artificial in-
telligence. However, there exists a pressing need for a robust mathematical frame-
work to systematically analyze their intricate characteristics. A key theoretical
advancement involves interpreting deep neural networks with residual connections
(or shortcut connections) as dynamical systems, as outlined in the works [1] and
[2]. The information flow from input to output in a network with an infinite
number of layers can be expressed in the continuum limit as:

Ẋ(t) = F(X(t), θ(t)),

This leads to nonlinear neural ODEs (NeurODEs), where time takes the role of
the continuous-depth variable. This perspective allows the interpretation of neu-
ral network learning problems as continuous-time control problems, which provides
access to the extensive literature of mathematical control theory, potentially en-
hancing the overall explainability of learning algorithms. Relevant works in this
direction include [3] and [4].
Our work in [5] focuses on the mean-field formulation of the control problem,
specifically addressing the scenario of an infinitely large dataset. We examine the
evolution of the distribution µ0 of initial data through the network as a partial
differential equation, subsequently considering the corresponding mean-field opti-
mal control problem. In [5], we establish first-order optimality conditions through
a mean-field Pontryagin Maximum Principle, derived as a consequence of an ab-
stract Lagrange multiplier rule in the Banach space of Radon measures.
However, it is crucial to note that NeurODEs encounter limitations when mod-
eling neural networks with discrepancies in dimensionality between consecutive
layers. Skip connections with identity mappings necessitate a ”rectangular” net-
work shape, where the width of layers is uniform. To address this limitation
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and enhance the network’s capacity, we introduce a novel design of the vector
field driving the dynamics in [6]. This continuous-time model accommodates var-
ious width-varying neural networks and builds upon insights from our previous
work [5]. Furthermore, in [6] we extend our framework to encompass the low-
Tikhonov regularization regime. For the continuous-time version of Autoencoders
(AutoencODEs), we propose a novel discrete architecture and an alternative train-
ing method based on the Pontryagin Maximum Principle. To demonstrate the
effectiveness of our approach, we present informative numerical examples offering
valuable insights into the resulting algorithm.
Finally, we leverage the well-established theory of optimal control to address the
lack of robustness in neural networks against data manipulation, commonly known
as adversarial attacks. These attacks involve small changes of the inputs, which
lead to significant modifications in the model outputs. In [7], we interpret the
adversarially robust learning problem arising in machine learning as a minimax
control problem

min
u

E(x0,y)∼µ

[
max
‖α‖≤ǫ

Loss(θ, x0 + α, y)

]
,

where the initial data and labels (x0, y) are drawn from an underlying data
distribution µ, and Loss(u, x0, y) quantifies the prediction accuracy. We derive the
Pontryagin Maximum Principle for this problem using separation of Boltyanski
approximating cones, as presented in [8], and develop a numerical method to
address the robust learning problem, which is used for low-dimensional examples.
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Spectral approximation of Lyapunov operator equations with

applications in non-linear feedback control

Bernhard Höveler

(joint work with Tobias Breiten)

Let a (non-linear) dynamical system be given as
{

d
dtx(t) = f(x(t)), for t ∈ (0,∞)
x(0) = z

for some f : Rn → Rn and let us define the Lyapunov function v to a given cost
g : Ω ⊆ R

n → R+ as follows

v(z) :=

∫ ∞

0

g(Φt(z)) dt for z ∈ Ω

where the flow Φt(z) is defined as the mapping from the initial value z to the state
x(t) with x(0) = z at time t, i.e Φt(z) := x(t). Computing such a function is a
challenging task both from the numerical as from the analytical side. One of the
main numerical challenges arises, when n is large and therefore the system is high
dimensional.
One of the main results of this talk is that we can define a weak-* continuous
semigroup

S∗(t) : X∗ → X∗

φ 7→ φ ◦ Φt

and that there exists a preadjoint S(t). Here X and X∗ are some specially
weighted Lp (Ω) spaces. The weighting assures the exponential decay under some
assumptions. It is shown that – if the cost function g admits the decomposition
g(x) =

∑∞
i=1 ci(x)

2 – the Lyapunov function v can be written as

v(x) =

∞∑

i=1

pi(x)
2

where pi are the eigenfunctions of the symmetric bilinear form

〈φ, ψ〉P =

∫ ∞

0

〈Cφ,Cψ〉ℓ2 dt with Cφ :=
(
〈φ, ci〉X,X∗

)
i∈N

.

Furthermore, it can be shown that the error to a finite rank approximation decays
with a rate that is depending on the regularity of the ci and f . Lastly, the generator
A of the semigroup S can be used to show that P is the solution to an operator
Lyapunov equation of the form

〈Aφ,ψ〉P + 〈φ,Aψ〉P + 〈Cφ,Cψ〉ℓ2 = 0 for all φ, ψ ∈ D(A) ⊆ X

which can be exploited for a numerical method. The proposed scheme relies on a
low rank approximation and a splitting integrator to solve a corresponding time



Nonlinear Approximation of High-dimensional Functions 2789

Figure 1. First six eigenfunctions (left) and the Lyapunov func-
tion ( right ) of a modified van der pool oscillator.
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Figure 2. Maximum error of the proposed scheme applied to the
discretized Allen Cahn model.

dependent problem. To overcome the curse of dimensionality tensor trains (TT)
are used. This leads to an approximation of the Lyapunov function of the form

vh(x1, . . . , xn) := Re

k∑

j,j′

n∏

i=1

G
(j)
i (xi)M̃j,j′

n∏

i=1

G
(j′)
i (xi)

where G
(j)
i : [−1, 1] → R

r
(j)
i ×r

(j)
i+1 are matrix valued functions for j = 1, . . . , k and

i = 1, . . . , n while M̃ ∈ Ck×k.

However, in contrast to a neural network the TT-approximation depends on the
chosen basis and from an analytical standpoint it is not immediately clear what a
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good choice of basis might be. A possible mitigation might be to optimize over the
choice of basis as well, which leads to an optimization over the Stiefel manifold.

Another area of interest is the inclusion of control. Ongoing research suggests
that a non-linear operator equation similar to the Riccati equation is suitable.

〈Aφ,ψ〉P + 〈φ,Aψ〉P − 1

2

∞∑

k=1

(〈Mkφ,Bkψ〉P + 〈Bkφ,Mkψ〉P ) + 〈Cφ,Cψ〉ℓ2 = 0

Where:

B∗
kφ := pkb

⊤∇φ and Mkφ := b⊤∇pkφ
However, the non-linear nature makes the analysis of this equation much more
difficult.
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Functional SDE approximation inspired by a deep operator

network architecture

Martin Eigel

(joint work with Charles Miranda)

We are concerned with the efficient generation of solution trajectories of SDEs by
training a specific neural network (NN) architecture called SDEONet. This archi-
tecture is inspired by recent development in the area of operator learning, where
operators in infinite dimensional spaces are represented with NNs. In particular,
we refer to the analysis on deep operator networks (DeepONets) in [1]. These are
composed of two NNs, a branch and a trunk network, representing learned basis
coefficients (branch) of a linear combination of a learned reduced basis (trunk),
respectively. To transfer this functional framework to the task of solving SDEs,
we make use of the representability of any process Xt ∈ L2(Ω,F ,P) in terms of a
Wiener chaos expansion

(1) Xt =
∑

k≥0

∑

|α|=k

xα(t)

∞∏

i=1

Hαi

(∫ T

0

ei(s) dWs

)

︸ ︷︷ ︸
Ψα

,

with univariate Hermite polynomials Hn of degree n and a basis (ei)i≥1 of
L2([0, T ]), which we choose to be the Haar basis. The coefficients x can be ob-
tained by projection onto the Wiener chaos but also follow the dynamics of an
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ODE [2]

dxα
dt

(t) = µ(t,Xt)α +

∞∑

j=1

√
αjej(t)σ(t,Xt)α−(j),(2)

xα(0) = 1α=0x0.(3)

Our SDEONet architecture is a mapping from Brownian increments to the re-
alization of the respective SDE trajectory as depicted in Figure 1 with input G
consisting of integrals of ei as in (1). It can hence be seen as an alternative
approach to the standard Euler-Maruyama simulation scheme.

Figure 1. Sketch of SDE trajectory generation by the SDEONet architecture.

We consider the continuous stochastic process (Xt)t∈[0,T ] that satisfies the sto-
chastic differential equation (SDE)

(4) dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, with X0 = x0,

and (Wt)t∈[0,T ] a Brownian motion on a filtered probability space (Ω,F , (Ft)t∈[0,T ],
P).

Figure 2 illustrates the representation of the functional mapping (of the stochas-
tic process operator G) by the SDEONet architecture. First, the encoder maps

the Brownian increments W to (Gi)
m−1
i=0 with Gi :=

∫ T
0
ei(t) dWt. Second, the

approximator maps (Gi)
m−1
i=0 to approximate polynomial chaos Ψk∗

j
. These two

operations constitute the branch net. The trunk net approximates the coefficient
functions xk∗

j
(t). The reconstructor uses branch and trunk to approximate the

trajectory (Xm,p∗

t )t∈[0,T ].
For the convergence and complexity analysis, we consider a decomposition of

the error E into (Wiener chaos) truncation [2], NN (Hermite) polynomial approx-
imation [4] and reconstruction (with approximate ODE coefficients) [3],

E :=

(∫ T

0

E[|Xt − X̃m,p
t |2] dt

)1/2

≤ ETrunc + EApprox + ERecon.

For all three terms, convergence rates and NN complexity bounds can be derived.
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L2([0, T ]× Ω) L2([0, T ]× Ω)

L2(Ω,R)m L2(Ω,R)p

Encoder
W 7→ G := (G1, . . . , Gm)

G

Approximator

G 7→ (Ψ̃1, . . . , Ψ̃p)

Reconstructor
Ψ̃ 7→∑p

i=1 x̃iΨ̃i

Figure 2. Diagram of the SDEONet operator mapping.

References

[1] S. Lanthaler, S. Mishra, Siddhartha, G. Karniadakis, Error Estimates for DeepONets: A
Deep Learning Framework in Infinite Dimensions, Transactions of Mathematics and Its
Applications 6 (2022).

[2] T. Huschto, M. Podolskij, S. Sager, The Asymptotic Error of Chaos Expansion Approxima-
tions for Stochastic Differential Equations, Modern Stochastics: Theory and Applications
32 (2019), 145–165.

[3] P. Petersen, F. Voigtlaender, Optimal approximation of piecewise smooth functions using
deep ReLU neural networks, Neural Networks 108 (2018), 296–330.

[4] C. Schwab, J. Zech, Deep Learning in High Dimension: Neural Network Expression Rates
for Analytic Functions, SIAM Journal on Uncertainty Quantification 11 (2023), 199–234.

Approximating Langevin Monte Carlo with ResNet-like Neural

Network architectures

Charles Miranda

(joint work with Martin Eigel, Janina Schütte, David Sommer)

Deep Neural Networks (DNNs) have demonstrated their success in solving com-
plex numerical problems, such as image classification, regression, kernel learning
and solving partial differential equations (PDEs). Therefore, significant attention
is given to establishing theoretical guarantees on the expressive abilities of DNNs.
Deep neural networks (DNNs) have overcome the curse of dimensionality, espe-
cially when it comes to approximating Kolmogorov partial differential equations
(PDEs) [1]. The latter demands a polynomial growth of parameters with the in-
crease in dimension and expected precision, yet DNNs offer a potent workaround,
thus presenting a remarkable achievement. Our study aims to sample from smooth
log-concave probability distributions dµ∞(x) ∝ exp(−V (x))dx. The primary ob-
jective is to create a deep neural network (DNN) with the ability to generate
samples from the target distribution. The DNN’s performance is evaluated based
on the 2-Wasserstein distance, using input samples from a simple reference distri-
bution such as the standard normal distribution. Our investigation is focused on
the approximation of the Langevin Monte Carlo (LMC) algorithm, which is the
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Euler-Maruyama discretisation of the stochastic differential equation

dXt = −∇V (Xt)dt+
√
2dWt

through ResNet-like neural network structures

x0 := X0

xk := xk−1 + φk(xk−1) + ξk, x ∈ 1, . . . ,K

where φk are fully connected neural networks and ξk are i.i.d. standard normal
random variable. Notably, we pay special attention to error analysis in the con-
text of the 2-Wasserstein distance. The suggested approach emulates LMC by
connecting feed-forward neural networks as above. The approximation of the drift
term with epsilon accuracy occurs in an appropriate L2 space established by the
current law of the process. Namely, our analysis is done on the quantity

‖ − ∇V − φk+1‖L2
νk

(Rd;Rd)

where νk is the law of xk.
We demonstrate that if the above quantity is smaller than ε

W2(µ∞, νK) ≤ (1−mh)KW2(µ∞, µ0) +
7
√
2

6

M

m

√
hd+

1− (1−mh)K

m
ε

where m is the strong-convexity parameter of V , M the Lipschitz constant of
∇V and h ≤ 2/(m+M) the step size in the LMC algorithm. By exploiting the
properties of the initial distribution, which is the standard Normal distribution,
and of the ResNet-like architecture, we are able to show that the measures νk
are sub-Gaussian. We show that the ε-accuracy can be achieved for all φk such
that the number of parameters for the ResNet-like architecture is bounded by
K(N(d, r, ε/

√
d,m,M) + 2d2 + 2), where N(d, r, ε/

√
d,m,M) is the number of

parameters for a single fully connected neural network φ to satisfy

‖ − ∇V − φ‖L∞(Br(0);Rd) ≤
ε√
2d

where

r ∈ O
(
d7/4ε−1(d9/4ε−1)3(1.5

K−1)
)

Unfortunately, the aforementioned result indicates that the radius of the ball
must increase exponentially in the number of steps. We conjecture that due to
the strong convexity of V and the Lipschitz continuity of ∇V , there exists a
neural network capable of approximating −∇V with a linear error growth. The
experiments also indicate that the proposed architecture can sample from µ∞ with
the same convergence rate even if the potential V is no longer strongly convex,
such as in a Gaussian mixture.
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The implicit bias phenomenon in deep learning

Holger Rauhut

It is common in deep learning to use many more parameters than training ex-
amples. Despite traditional statistical wisdom, which would predict overfitting,
the learned neural networks usually generalize well to new unseen data [17]. In
this overparameterized setting many networks exist that interpolate the data ex-
actly. They all lead to global minimizers of the empirical loss function, which
sums up the losses of a neural network over the training data. In this situation,
the employed optimization algorithm (usually variants of gradient descent or sto-
chastic gradient descent), including hyperparameters such as initialization, step
sizes etc., significantly influences the computed minimizer. This phenomenon is
called implicit bias of the learning algorithm. It is puzzling that the implicit
bias of (stochastic) gradient descent and variations is often towards solutions that
generalize well. Although there is a growing research literature available, see e.g.
[1, 2, 4, 3, 5, 9, 10, 11, 13, 15, 16, 17], many aspects of this phenomenon are not
well understood yet.

One working hypothesis is that (stochastic) gradient descent with suitable ini-
tialization favors networks of low complexity, i.e., networks that can be represented
with much fewer parameters than the number of trainable network weights. Low
complexity may be understood in a broad sense here and it may be a challenge
to determine suitable low complexity models for concrete types of data and net-
work models. Examples may be sparse representations [3, 5, 7] as well as low rank
matrix [1, 4] and tensor representations [14].

In order to gain theoretical understanding of the implicit bias phenomenon, it is
useful to study simpler optimization problems that share two characteristics with
the overparameterized deep learning scenario:

• many (infinite number of) global minimizers;
• a factorization/compositional structure.

In [3, 7] the problem of minimizing the function

L(x) =
1

2
‖Ax− y‖22

is considered where A ∈ Rm×n and y ∈ Rm with m < n. In this case, L has
infinitely many global minimizer. In fact, if A has full rank, they form the affine
subspace of solutions x to Ax = y. In order to induce a factorization structure we
set

x = w(1) ⊙ w(2) ⊙ · · · ⊙ w(N),

where (w(1) ⊙ w(2))j = w
(1)
j w

(2)
j is the Hadamard product. This structure can be

interpreted as a linear diagonal neural network. Plugging into the function L, we
define

LN (w(1), . . . , w(N)) = L(w(1) ⊙ w(2) ⊙ · · · ⊙ w(N))(1)

=
1

2
‖A(w(1) ⊙ w(2) ⊙ · · · ⊙ w(N))− y‖22.(2)
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Initializing identically with w(ℓ)(0) = α1, ℓ = 1, . . . , N , where 1 = (1, 1, . . . , 1)T ,
we consider the gradient flow

d

dt
w(ℓ)(t) = −∇w(ℓ)LN(w(1)(t), . . . , w(N)(t)), ℓ = 1, . . . , L.

We are interested in the convergence behavior and implicit bias of the product
flow

v(t) =

N∏

ℓ=1

w(ℓ)(t).

For identical initialization (as assumed) the vectors w(ℓ)(t) remain identical,
w(1)(t) = · · · = w(N)(t) = w(t), so that v(t) = w⊙N (t), where w(t) is the gradient
flow for

L̃N (w) =
1

2
‖Aw⊙N − y‖22.

Theorem. Assume that S+ = {z ≥ 0 : Az = y} is nonempty, and let N ≥ 3.
Then v∞ = limt→∞ v(t) = w⊙N (t) exists and v∞ ∈ S. Let Q = minz∈S+ ‖z‖1 and
β = ‖v(0)‖1 = α

√
n. If β < Q then

‖v∞‖1 −Q ≤ N

(
β

Q

)1− 2
N

Q.

Since ℓ1-minimization promotes sparse solutions, see e.g. [8], this result basically
states that the implicit bias of gradient flow is towards sparse solutions if the
initialization scale α is small enough compared to the ℓ1-norm of the ℓ1-minimizer.

This result can be extended to the recovery of vectors with not necessarily non-
negative coefficients by using a difference of two factorizations, i.e., v = w⊙N

1 −
w⊙N

2 , see [3] for details. Furthermore, by splitting w = ru, where r is a scalar
und u is a vector on the unit sphere, and considering the gradient flow for both
r and w with different learning rates – also referred to as weight normalization
– gives similar results [5] as stated in the theorem above, however, allowing for
larger initialization scale α, which leads to faster convergence.

In order to make a step closer to realistic neural networks, deep linear fully
connected networks of the form V =W (N) · · ·W (1) are considered in several works
[1, 4, 6, 11, 15]. The current results suggest implicit towards low rank solutions,
but a theorem similar to the one stated above is not yet available.

Of course, the next step will be to extend to nonlinear networks. Preliminary
results for two-layer networks are available, see e.g. [12], but in general the under-
standing of the implicit bias phenomenon in deep learning is widely open.
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The Role of Statistical Theory in Understanding Deep Learning

Sophie Langer

(joint work with Alina Braun, Gabriel Clara, Michael Kohler,
Johannes+Schmidt-Hieber, Harro Walk)

In recent years, there has been a surge of interest across different research ar-
eas to improve the theoretical understanding of deep learning (see, e.g., [1] and
[8]). A particulary promising approach is the statistical one, which interprets
deep learning as a nonlinear or nonparametric generalization of existing statisti-
cal models. For instance, a simple fully connected neural network is equivalent
to a recursive generalized linear model with a hierarchical structure. Given this
connection, many papers in recent years derived convergence rates of neural net-
works in a nonparametric regression or classification setting (see, e.g., [12], [3],
[10]) . Nevertheless, phenomena like overparameterization seem to challenge the



Nonlinear Approximation of High-dimensional Functions 2797

statistical principle of bias-variance trade-off (see [15]). Therefore, deep learning
cannot only be explained by existing techniques of mathematical statistics but also
requires a radical overthinking. In this talk, we will delve into the dual aspects
of the role statistics plays in comprehending deep learning: its significance and
its limitations, emphasizing the need to bridge with other research domains. Our
discussion centeres around three distinct topics:

Empirical risk minimizers vs. estimators learned by gradient descent.

The statistical performance of deep neural networks is often analyzed within a non-
parametric regression framework. The objective here is to construct an estimator
mn for the true regression function m such that

E

∫
|mn(x) −m(x)|2PX(dx)(1)

is small with a particular interest in the behavior of the bound as the number of
data points n increases - the rate of convergence. Previous studies (see, e.g., [12],
[3], [10]) adopted the empirical risk minimizer

mn ∈ argmin
f∈F

1

n

n∑

i=1

|f(Xi)− Yi|2,

based on a specific class of neural networks. For this kind of estimators rate of
convergence results were derived under different assumptions on m, which all have
in common that the rate, i.e., the bound on (1), no longer depends on the input
dimension d of the problem but on a lower dimension d∗ and thus promises fast
convergence even in high-dimensional spaces. While these results show interesting
approximation and generalisation results for neural networks, they are subject to
a fundamental problem: they sidestep the optimization process of neural networks
by assuming an empirical risk minimizer, limiting the holistic understanding of
the procedure. To adress this gap, we showed in a simplified setting (see [4]), i.e.,
for regression functions with suitable decaying Fourier transform (similar to the
so-called Barron class in [2]) and for shallow neural networks with sigmoidal acti-
vation function a rate of convergence of n−1/2. While these results offer hope for
a statistical analysis that considers training, they also underscore the indispens-
ability of integrating optimization considerations, especially for deeper network
structures and less restrictive assumptions on the regression function.

Understanding dropout in a linear model. Overparameterized neural net-
works have gained significant attention in recent years due to their remarkable
ability to achieve high accuracy on complex tasks. However, these networks are
prone to overfitting, where they memorize the training data rather than learning
the underlying patterns. To address this issue, researchers have developed various
regularization schemes. In addition to explicit regularization techniques such as
ℓ2- or ℓ2-penalization, algorithmic regularization approaches have been employed.
Among them, dropout has emerged as a technique that randomly drops neurons
during training, and it has demonstrated its effectiveness in various applications
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(see [13]). However, despite its empirical success, a comprehensive theoretical
understanding of how dropout achieves regularization is still somewhat limited.

In the case of a linear model, it was shown that under an averaged form of
dropout the least squares minimizer performs a weighted variant of ℓ2-penalization.
In turn, the heuristic “dropout performs ℓ2-penalization” has even made it in
popular textbooks (see [6] and [7]). We challenge this relation by investigating
the statistical behavior of iterates generated by gradient descent with dropout
(see [5]). In particular, non-asymptotic convergence rates for the expectation and
covariance matrices of the iterates are derived. While in expectation the connection
between dropout and ℓ2-penalization can be verified, we show sub-optimality of the
asymptotic variance compared to the estimator resulting from direct minimization
of averaged dropout. To us, this result highlights once again, that simplification
in analyzing deep learning can also lead to wrong conclusions.

Statistical analysis of image classification. The availability of massive im-
age databases resulted in the development of scalable machine learning methods
such as convolutional neural network (CNNs) filtering and processing these data.
While the very recent theoretical work on CNNs focuses on standard nonpara-
metric denoising problems, the variability in image classification datasets does,
however, not originate from additive noise but from variation of the shape and
other characteristics of the same object across different images. To address this
problem, we consider a simple supervised classification problem for object detec-
tion on grayscale images (see [11]). While from the function estimation point of
view, every pixel is a variable and large images lead to high-dimensional function
recovery tasks suffering from the curse of dimensionality, increasing the number of
pixels in our image deformation model enhances the image resolution and makes
the object classification problem easier. We propose and theoretically analyze two
different procedures. The first method estimates the image deformation by sup-
port alignment. Under a minimal separation condition, it is shown that perfect
classification is possible. The second method fits a CNN to the data. We derive a
rate for the misclassification error depending on the sample size and the number
of pixels. Both classifiers are empirically compared on images generated from the
MNIST handwritten digit database. The obtained results corroborate the the-
oretical findings. To us, the introduced image deformation model offers a new
way of analyzing image classification theoretically with rates of convergence that
are in line with practical observations. Furthermore, it highlights the necessity of
critically questioning and revising existing statistical models.

References

[1] P. Bartlett, A. Montanari and A. Rakhlin, Deep learning: A statistical viewpoint, Actia
Numerica 30 (2021), 87–201.

[2] A. Barron, Approximation and estimation bounds for artificial neural networks, Machine
Learning 14 (1994), 115–133

[3] B. Bauer and M. Kohler, On deep learning as a remedy for the curse of dimensionality in
nonparametric regression, Annals of Statistics 47 (2019), 2261–2285.



Nonlinear Approximation of High-dimensional Functions 2799

[4] A. Braun, M. Kohler, S. Langer and H. Walk, Convergence rates for shallow neural networks
learned by gradient descent, Bernoulli 30 (2024), 475–502.

[5] G. Clara, S. Langer and J. Schmidt-Hieber, Dropout Regularization Versus ℓ2-Penalization

in the Linear Model, Arxiv preprint, arXiv:2306.10529
[6] B. Efron and T. Hastie, Computer Age of Statistical Inference (2021), Cambridge University

Press
[7] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning (2016), MIT press
[8] P. Grohs and G. Kutyniok, (Eds.), Mathematical Aspects of Deep Learning. (2022), Cam-

bridge University Press
[9] L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A Distribution-Free Theory of Nonpara-

metric Regression(2002), Springer
[10] M. Kohler and S. Langer, On the rate of convergence of fully connected deep neural network

regression estimates, Annals of Statistics 49 (2021), 2231-2249.
[11] S. Langer and J. Schmidt-Hieber, A statistical analysis of an image classification problem,

Arxiv Preprint (2022), arXiv:2206.02151
[12] J. Schmidt-Hieber, Nonparametric regression using deep neural networks with ReLU acti-

vation function, Annals of Statistics 48 (2020), 1875–1897
[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A

Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning
Research 15 (2014), 1929 – 1958

[14] C. J. Stone, Optimal Global Rates of Convergence for Nonparametric Regression, Annals of
Statistics 10(4)(1982), 1040–1053

[15] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, Understanding deep learning
requires rethinking generalization, in ICLR (2017).

Optimal sampling and tensor learning

Anthony Nouy

(joint work with Robert Gruhlke, Bertrand Michel, Charles Miranda,
Philipp Trunschke)

We consider the approximation of functions in L2 from point evaluations, using
linear or nonlinear approximation tools. For linear approximation, recent results
show that weighted least-squares projections allow to obtain quasi-optimal ap-
proximations with near to optimal sampling budget [1, 2]. This can be achieved
by drawing i.i.d. samples from suitable distributions (depending on the linear ap-
proximation tool) and subsampling methods. In a first part of this talk, we review
different strategies based on i.i.d. sampling and present alternative strategies based
on repulsive point processes that allow to achieve the same task with a reduced
sampling complexity. In a second part, we show how these methods can be used to
approximate functions with nonlinear approximation tools, in an active learning
setting, by coupling iterative algorithms and optimal sampling methods for the
projection onto successive linear spaces. We particularly focus on the approxima-
tion using tree tensor networks, an approximation tool with high expressive power
[3, 4] and with an architecture allowing for an efficient implementation of optimal
sampling procedures within coordinate descent algorithms.



2800 Oberwolfach Report 48/2023

References

[1] M. Dolbeault, D. Krieg, and M. Ullrich. A sharp upper bound for sampling numbers in L2,
Applied and Computational Harmonic Analysis, 63 (2023), 113–134.

[2] C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares, Mathematics
of Computation, 91(335) (2022), 1281–1315.

[3] M. Ali and A. Nouy. Approximation theory of tree tensor networks: Tensorized univariate
functions, Constructive Approximation, (2023), pages 1–82.

[4] B. Michel and A. Nouy. Learning with tree tensor networks: Complexity estimates and
model selection. Bernoulli, 28(2) (2022), 910–936.

Low-rank tensor solvers for high-dimensional parabolic PDEs

Markus Bachmayr

(joint work with Henrik Eisenmann, Manfred Faldum, Emil Kieri,
André Uschmajew)

In this talk, we consider two different approaches for numerically solving second-
order parabolic initial value problems on high-dimensional product domains using
low-rank tensor approximations. A typical model problem takes the form

(1) ∂tu−∇ ·M∇u = f in (0, T )× Ω = Ω1 × · · · × Ωd,

subject to the initial condition u(0, ·) = u0 in Ω and the boundary condition u = 0
on (0, T )× ∂Ω. As the following results show, using methods based on low-rank
approximations of solutions this problem can be treated also for large d.

The two types of low-rank approximations that we consider are conceptually
quite different, one based on dynamical low-rank approximation, the other on
an adaptive solver for a space-time variational formulation. In both cases, we
assume a Gelfand triplet V ⊂ H ⊂ V ′, where in the case of (1), V = H1

0 (Ω) and
H = L2(Ω). In the first approach based on dynamical low-rank approximation,
one obtains approximate dynamics under the additional constraint that for all
times t ∈ [0, T ), one has u(t) ∈ M, where M is a manifold of low-rank tensors
such as M =

{∑r
i=1 φ

1
k ⊗ φ2k : φ1k ∈ L2(Ω1), φ

2
k ∈ L2(Ω2)

}
⊂ H in the case d = 2.

The Dirac-Frenkel variational principle then yields an accordingly projected
problem, which as shown in [3] can also be formulated in a weak formulation of
(1): Given f ∈ L2(0, T ;V

′) and u0 ∈ M ∩ H , find u ∈ W (0, T ;V, V ′) = {u ∈
L2(0, T ;V ) : u′ ∈ L2(0, T ;V

′)} such that for almost all t ∈ [0, T ],

(2)

u(t) ∈ M,

〈u′(t) +A(t)u(t), v〉 = 〈f(t), v〉 for all v ∈ Tu(t)M∩ V ,
u(0) = u0,

where Tu(t)M denotes the tangent space at u(t) and where A(t) : V → V is the
elliptic part of the operator, assumed to be Lipschitz continuous with respect to
t. Under natural conditions on M and the additional regularity requirements
f ∈ L2(0, T ;H) and u0 ∈ M∩V , in addition to a splitting of A(t) = A1(t)+A2(t)
where A1(t) maps M to the respective tangent space and A2(t) satisfies a suitable
boundedness condition as a mapping from M∩V to H , in [3] we obtain existence
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and uniqueness of solutions u ∈ W (0, T ∗;V,H) ∩ L∞(0, T ∗;V ) whenever u0 has
positive distance from the boundary of M. Here either T = T ∗ or u(t) approaches
the boundary of M as t → T ∗. In [4], this result is shown to be applicable to
manifolds M of tensor trains and hierarchical tensors in H , and thus to problems
with large d. We also show the resulting approximation to be stable with respect
to perturbations of the problem data and that spatial semidiscretizations converge
under natural assumptions.

Numerical solvers with favorable properties are available for the reduced prob-
lems on M defined by (2). However, with this approach in general one cannot
ensure that the solutions of (2) are close to the unconstrained evolution given by
u′(t) +A(t)u(t) = f(t); as a simple example, one obtains a systematic error when
u0 ⊥H f(0). Ensuring that such effects are avoided is difficult in practice. Such
issues do not arise in the second approach that we consider.

This alternative construction of a low-rank solver for parabolic problems such
as (1) is based on a space-time variational formulation. In the basic case of the
heat equation, it reads: with X = W (0, T ;V, V ′) and Y = L2(0, T ;V ) ×H , find
u ∈ X such that for all (v, w) ∈ Y,

(3)

∫ T

0

〈∂tu, v〉V ′,V +

∫

Ω

∇u · ∇v dxdt+
∫

Ω

γ0uw dx

=

∫ T

0

∫

Ω

f v dxdt+

∫

Ω

u0w dx,

where γ0u ∈ H denotes the inital trace of u. Here we restrict ourselves to the
model case Ω = (0, 1)d for simplicity. Similarly to [6], our approximations of u
are based on basis functions {θµ}µ∈I on (0, T ) with the Riesz basis properties

‖v‖ h
∥∥∑

µ∈I vµ
θµ

‖θµ‖S

∥∥
S

for all v ∈ ℓ2(I) and S ∈ {L2(0, T ), H
1(0, T )} and

{ψν}ν∈J on (0, 1) such that ‖v‖ℓ2(J ) h
∥∥∑

ν̂∈J vν̂
ψν̂

‖ψν̂‖S

∥∥
S

for all v ∈ ℓ2(J )

and S ∈ {H1
0 (0,1), L2(0,1), H

−1(0,1)}. A concrete example of suitable such basis
functions is provided by spline (multi-)wavelets.

A novel aspect in the method that we obtain in [5] is that we combine a sparse
expansion in time with adaptive low-rank approximations in the spatial variables.
Specifically, we compute approximations of u in the form

(4) u(t, x1, . . . , xd) ≈
∑

µ∈Λt⊂I

θµ(t)
∑

(ν1,...,νd)∈Λµ

uµ,ν1,...,νd d
X
µ,νψν1(x1) · · ·ψνd(xd)

with finite Λt ⊂ I and Λµ = Λ1
µ×· · ·×Λdµ ⊂ J ×· · ·×J that are potentially differ-

ent for each µ. Here the coefficient tensors uµ = (uµ,ν1,...,νd)ν∈Λµ
are represented

in hierarchical tensor format separately for each µ.
Based on a generalization of the strategy with a single hierarchical tensor rep-

resentation of the approximate solution developed in [2] (see also [1]) for elliptic
problems, an adaptive solver operating on the Riesz basis representation of the
problem is obtained in [5] that refines the index sets Λt and Λµ, µ ∈ Λt, while
at the same time computing approximate coefficient tensors uµ with adaptively
adjusted ranks. A central role is played by suitable low-rank approximations of
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the scaling factors dXµ,ν in (4) that yield the appropriate normalization to a Riesz
basis of X . These can be chosen as

dXµ,ν =
‖ψν1 ⊗ · · · ⊗ ψνd‖H1

‖ψν1 ⊗ · · · ⊗ ψνd‖2H1 + ‖θµ‖H1

.

For each fixed µ and aµ = ‖θµ‖H1 , low-rank approximations by exponential sums
of these expressions are obtained by applying quadrature to the integral represen-
tations

√
s

s+ aµ
=

∫ ∞

0

1√
πy

(
1− 2

√
aµyF (

√
aµy)

)
exp

(
− ys

)
dy, s > 0,

where F is the Dawson function, and by setting s = ‖ψν1 ⊗ · · · ⊗ ψνd‖2H1 =∑d
i=1 ‖ψνi‖2H1 . This yields approximate low-rank diagonal preconditioning for

(3).
The resulting method can always be guaranteed to converge in X -norm to the

exact solution u of (3). Under benchmark approximability assumptions on the
problem data and on u, it is also shown to yield approximations with optimality
properties analogous to those obtained for the elliptic case in [2], especially on
the arising tensor ranks. In particular, the curse of dimension can be avoided
both concerning the complexity of approximations and the required number of
operations in their computation. This is confirmed by the numerical tests in [5],
where the total computational costs are observed to grow polynomially in d in the
case of the heat equation as in (3).
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Parametric PDE-induced Neural Networks and Network Training by

Hierarchical Tensors

Thong Le

(joint work with Martin Eigel, Lars Grasedyck, Janina Enrica Schütte)

In our research, we investigate the potential of integrating low-rank tensor decom-
positions in neural network training. Our approach involves discretizing the loss
function

LΦ : Rd 7→ R, W 7→ LΦ(W ).

with a grid of size nd and afterwards finding the position of the minimum absolute
entry which corresponds to the weights of the neural network. Calculating all
entries is not possible because of the curse of dimensionality so we make use of
the Hierarchical Tucker format to circumvent the curse of dimensionality. This
not only enhances the networks’ ability to optimize but could also facilitate more
effective weight initialization, potentially leading to better network training. There
are two different approaches one could choose:

• First idea is to create a fine grid in order to better approximate the mini-
mum loss value but this would lead to higher n,

• Second idea is to use a grid refinement strategy to adaptively approach
the minimum loss value which could be done with small n.

In this workshop we focused on the latter idea.
Furthermore we propose an idea to construct Feedforward Neural Networks

using hierarchical domain decompositions of the parameter field of the parametric
PDE which in our case is a cookie-shaped domain.
Our focus throughout the workshop is the Darcy partial differential equation as
the model problem within a cookie-shaped parameter domain. Using this model
problem we provide numerical results.
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Convolutional neural networks for parametric PDEs

Janina Schütte

(joint work with Martin Eigel)

Deep learning has emerged as a flexible tool, extending its reach beyond famous
applications, such as in natural language processing and image recognition, into
the realm of solving parametric partial differential equations (pPDEs).
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The significance of solving pPDEs lies in their crucial role across diverse fields
such as physics, engineering, finance, and environmental science. Understanding
the impact of varying parameters on a system is essential for predicting outcomes
and making informed decisions.

Deep learning offers a novel approach to tackle the complexity of pPDEs. By
training neural networks on appropriate data sets, the models learn intricate re-
lationships between parameters and the corresponding system behavior. This ex-
pedites the solution process and therefore provides a chance to observe different
states of the system under the influence of many different parameters.

There exist well developed mathematical concepts to solve PDEs specifically
finite element (FE) and finite volume methods. There are works incorporating
these methods into the setting of parametric PDEs, such as the Adaptive Stochas-
tic Galerkin FEM [2] or the Variational Monte Carlo method [3], which are based
on a polynomial chaos expansion and tensor approximation. A method based on
convolutional neural networks (CNNs) was proposed in [1].

Parametric Darcy problem. The introduced methods are sample based and can
be applied to data generated with a large class of linear and nonlinear pPDEs. In
the analysis, the focus lies on the parametric Darcy problem, or stationary diffusion
equation, which we also use as a benchmark problem in the numerical experiments.
We formulate it in the following way. Let D ⊂ Rd be a spatial domain and Γ ⊂ RN

a possibly countable infinite parameter space. Let f : D → R. We approximate
the map u : Γ×D → R, which satisfies

{
∇x · (κ(y, x)∇xu(y, x)) = f(x) for x ∈ D and

u(x) = 0 for x ∈ ∂D
(1)

for the parameter field κ : Γ × D → R and where the derivatives are applied to
the variable x.
The dependence of the parameter field κ on the parameter vector y can be char-
acterized in different ways. For instance, for the cookie problem, the parameter
field is defined for D = [0, 1]2 and Γ = [0, 1]p. Let y ∈ Γ with yk ∼ U [0, 1] for
k = 1, . . . , p and define

κ(x, y) = a0 +

p∑

k=1

ykχDk
(x),

where Dk are disks with fixed centers and radii and a0 > 0 is constant. A visu-
alization of the cookie parameters and the corresponding solutions can be seen in
figure 1 in the top and bottom row, respectively.

CNN approximating an adaptive finite element method. To solve this
problem a CNN architecture is proposed, which maps the coefficients of a FE
discretization of κ(y, · · · ) to those of u(y, ·). For a FE space Vh we denote the
interpolation of κ(y, ·) into Vh by κh and the Galerkin projection of the solution
of problem (1) u(y, ·) onto Vh by hh(y, ·). Well suited P1 finite element spaces Vh
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Figure 1. Realizations of parameter fields for the cookie problem
and the corresponding solutions to the parametric Darcy problem

are build to control the discretization error

E = ‖u(y, ·)− uh(y, ·)‖H1
0 (D)

for any y ∈ Γ. The space is build in an adaptive manner by starting with a coarse
FE space and repeating:

Solve on current space

→Estimate E locally

→Mark large error regions

→Refine marked regions

A CNN architecture is derived, which can approximate every step of the above
iteration. There exists a constant C > 0 such that for any ε > 0 and Vh the
final space of the described algorithm after K ∈ N steps with maximally L ∈ N

refinement steps in every region, there exists a CNN Ψ : R2×dimVL → R
∑L

ℓ=1 dimVℓ

such that the number of parameters is bounded by CLK log(ε−1) and

‖u(y, ·)−F(Ψ(κL(y), fL))‖H1(D) ≤ ‖u(y, ·)− uh(y, ·)‖H1(D) + ε,

where F maps the coefficients of the CNN output to the corresponding FE func-
tion.

Approximation of corrections. As the derived CNN can approximate steps of
an adaptive finite element method, individual parts of the network can be trained
separately. A first part of the network can approximate the solution on a coarse
grid, while the following parts of the network approximate correcitons of the so-
lution on finer grids, as depicted in figure 2. The training of only few parameters
at a time yields an advantage, when optimizing the network. Furthermore, the
influence of later corrections quickly decreases, which gives a need for good ap-
proximations in the first steps and requires less accuracy in later corrections. This
can be translated into smaller networks for later corrections or only few fine grid
training samples.



2806 Oberwolfach Report 48/2023

Figure 2. Visualization of the multilevel decomposition

Coclusions and outlook. Convolutional neural networks are an efficient tool to
solve parametric partial differential equations. Theoretically small approximation
errors can be achieved with network sizes growing only logarithmically with the
the inverse of the required error bound. Numerically, the multilevel decomposition
of the data allows for efficient training of small networks and with few expensive
and many cheap data points. Solving a parametric PDE for a given parameter
with the trained neural network only takes one forward pass through network,
which can be evaluated quickly.
Applying this network to different applications, such as the inverse problem map-
ping the solution to the parameter, is of great interest.
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Fachbereich Mathematik

Technische Universität Berlin

Straße des 17. Juni 136

10623 Berlin

GERMANY

Prof. Dr. Sophie Langer

Department of Applied Mathematics

University of Twente

P.O. Box 217

7500 AE Enschede

NETHERLANDS

Thong Le

Institut für Geometrie und Praktische

Mathematik

RWTH Aachen

Templergraben 55

52062 Aachen

GERMANY

Charles Miranda

Weierstraß-Institut für

Angewandte Analysis und Stochastik

Mohrenstraße 39

10117 Berlin

GERMANY

Prof. Dr. Anthony Nouy

Centrale Nantes, Nantes Université
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