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Abstract. The aim of this workshop was to convene experts for fostering
the discussion and the development of innovative approaches in insurance and
financial mathematics. New challenges like price instability, huge insurance
claims and climate change are affecting the markets, while at the same time
the possibility of using large volumes of data and continuously increasing
computer power as well as recently developed mathematical methods offer
new opportunities for modelling and risk assessment. Here we present an
overview of these recent developments by providing the abstracts of the talks
that were given during the week, together with a brief summary of the covered
topics.
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Introduction by the Organizers

The last years have been a challenging period for financial and insurance mar-
kets. While stock markets experienced unexpected large price jumps, insurance
and reinsurance companies suffered huge claims, but at the same time had the
opportunity to use large volumes of data for their modelling, and the continu-
ously increasing level of computer power gives rise to new approaches to make use
of them. The impact of climate change poses a further challenge to both fields,
and the consideration of sustainable investment policies and strategies becomes
increasingly important.

This workshop brought together leading experts in all these fields to foster
the discussion and the development of new and innovative approaches. In the
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following, we will provide the abstracts of the talks that were given during the
week, and start with a brief summary of the covered topics.

Ralf Korn started with formulating stochastic control problems in the context
of sustainable finance, and Peter Tankov gave an account of mean-field approaches
for the decarbonization of financial markets. Emanuela Rosazza Gianin and Sil-
vana Pesenti presented new results on consistency and robustness of dynamic risk
measures, and on the application side for insurers. Filip Lindskog presented multi-
period approaches for the valuation of liabilities, and Michael Schmutz gave an
update of the current view on risk measures from the regulatory perspective of
Switzerland. Concerning challenges in life insurance, Peter Hieber talked about an
approach to give policyholders more control in participating life contracts, Griselda
Deelstra showed some new insights when combining financial and mortality risks,
and Damir Filipovic presented a new flexible non-parametric data-driven approach
to model long-term interest rates, which is an important challenge for life insurers
facing long-tailed risks. Stéphane Loisel gave an account on how classical actuarial
techniques may be used for the analysis of insurance risks prone to climate change,
which was nicely complemented with a presentation of Valérie Chavez-Demoulin
on techniques in the statistics of extremes when dealing with non-stationary situa-
tions like the one due to climate change. Johanna Ziegel and Pierre-Olivier Goffard
then presented some recent advances on certain aspects of statistical methodology.
There were several interesting contributions on model uncertainty in the context
of optimal investment, with talks by Frank Riedel, Nicole Bäuerle, Mogens Stef-
fensen and Katharina Oberpriller. Multivariate portfolio choice via quantiles was
discussed by Carole Bernard. Christa Cuchiero showed how to use polynomial
processes to model the capital distribution curves of financial markets, and, also
along the lines of stochastic portfolio theory in the spirit of R. Fernholz, Josef
Teichmann talked about ergodic robust maximization of asymptotic growth with
stochastic factor processes. Extending classical mathematical finance concepts in
other directions, Thilo Meyer-Brandis introduced cooperation in arbitrage the-
ory, Irene Klein dealt with large financial markets and Cosimo Munari considered
the case of frictions. Finally, Eckhard Platen gave an update of his alternative
benchmark approach to financial modelling. On a conceptual side, Berenice Anne
Neumann talked about Markovian randomized equilibria in general Dynkin games,
Gudmund Pammer presented new results on stretched Brownian motion, Brandon
Garcia Flores presented a new approach to use techniques from optimal transport
for the identification of optimal reinsurance treaties, and Sigrid Källblad showed
how to use optimal transport for adapted distance between the laws of SDEs.
Furthermore, Monique Jeanblanc shaded new light on shrinked semimartingales,
Anna Aksamit studied multi-action options under information delay, while Clau-
dia Ceci and Alessandra Cretarola presented results on reinsurance using backward
SDEs an dynamic contagion models. David Criens presented results on controlled
mean field SPDEs, and Caroline Hillairet gave an account of recent advances in
the study of Hawkes processes, which are relevant for instance in the insurance of
cyber risk.
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The week was very stimulating, with many scientific and social interactions of
participants and seeds of new ideas and approaches, many of which will be pursued
in the time to come.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting Eckhard Platen in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Optimal Portfolios with Sustainable Assets – Aspects for Life Insurers

Ralf Korn

(joint work with A. Nurkanovic)

The talk has been based on [4]. With the task to transform our society to a
more environmental-friendly and fair one, the interest in investing in sustainable
assets has increased. Even more, potential customers have to be asked about their
interest in sustainable investment before they enter a pension contract. Hence,
the provider has to be prepared to offer suitable investment opportunities.

For various reasons, life insurers have already decided to invest in sustainable
assets as part of their actuarial reserve fund. We therefore provide a new frame-
work for optimal portfolio decisions of a life insurer and suggest new modeling
approaches for the evolution of the demand for sustainable assets, for the hedging
of the risk of sustainability rating changes and for the evolution of asset prices
depending on their sustainability rating. While solving various portfolio problems
under sustainability constraints explicitly and suggesting further research topics,
we take a particular look at the role of the actuarial reserve fund and the annual
declaration of its return.

We thus consider a portfolio optimization problem with asset price dynamics
B(t), Si(t), i = 1, ..., d, t ∈ [0, T ] (where B(t) denotes the evolution of the money
market account, S(t) is the vector of stock price processes) and square integrable,
progressively measurable portfolio processes π(t), t ∈ [0, T ]. As new ingredients,
our framework for sustainable investment contains

• the dynamics D(t) of the cumulative demand of the customers for sustain-
able investments expressed in percent of their invested sum,

• the dynamics of sustainability ratings Ri(t) of the different assets,
• and their possible influence on the dynamics of the asset prices.

The portfolio problem with a sustainability constraint has the form

maxπ(.)∈A(x)E (U (Xπ(T )))(1)

such that R(t) ≥ D(t) ∀t ∈ [0, T ](2)

For the special choice of U(x) = ln(x) we can solve this problem in an explicit
way and demonstrate various affects of the presence of the sustainability constraint.
In particular, we highlight the special situation of a life insurer that is able to use
its actuarial reserve fund as an asset

• with a sustainability rating and a constant rate of return for a full year,
• that can be rebuilt with respect to its sustainability rating over a one-year
time span,

• and that can possibly be used as the basis for an insurance product against
the threat of a sustainability rating downgrade.
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As in current models the sustainability constraint leads to an optimal solution
that is worse than an unconstrained optimal solution, a natural task is to provide
a framework such that it will also be optimal to (mainly) include sustainable assets
in the portfolio. Political decisions such as a special taxation on fossile resources
based products or the promotion of sustainable production methods can lead to
a different potential of future dividends of the corresponding companies and thus
motivates the suggestion of new stock price models with a rating- or a demand-
dependent drift that itself can depend on the sustainability rating. A possible
form can be

dS(t) = S(t)
[
(b+ λ(D̂ −D(t)))dt + σdW (t)

]
,(3)

dD(t) = δ
(
D̂ −D(t)

)
dt+ σ

√
D(t)(1 −D(t))dWD(t)(4)

with the two Brownian motions W (t) and WD(t) possibly being correlated. I.e.
we are using a Jacobi process (see [2] or [1] for its properties) for modeling the
demand fluctuations over time. Considering a simple portfolio problem with a
money market account and just this one stock, the optimal portfolio process can
be shown to be given as

(5) π(t) =
1

1− γ

b+ λ(D̂ −D(t)) − r

σ2

for the case of U(x) = xγ/γ for γ < 1, γ 6= 0 if the two Brownian motions are
independent. In the dependent case, we will obtain a further term that depends
on D(t). A proof for this and the explicit form of the optimal portfolio in this case
is current work and will be presented soon.

Further model and conceptual challenges in the area of optimal investment with
sustainable assets for life insurers can be found in [4].

References
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Decarbonization of financial markets: a mean-field game approach

Peter Tankov

(joint work with P. Lavigne)

Decarbonization of industry is an essential ingredient for a successful environ-
mental transition, and the financial sector has a key role to play in meeting the
financing needs of green companies and directing the funds away from brown,
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carbon intensive projects. The amount of assets invested in climate-aware funds
increased more than two-fold in each year between 2018 and 2021, reaching USD
408 billion at the end of 2021, and several authors aimed to quantify the impact
of these additional funding flows on the emission reductions in the real economy.
Such impact can be achieved only if green-minded investors target a sufficiently
large proportion of companies [1], and the environmental performance of each com-
pany depends on factors which are not directly controlled by investors, such as the
general economic situation, financial health of the company, and future climate
policies. The decarbonization of a financial market is therefore the result of inter-
action of a large number of companies, operating in an uncertain environment, and
should be modeled as a dynamic stochastic game with a large number of players.

Here we develop a dynamic model for the decarbonization of a large financial
market, arising from an equilibrium dynamics involving companies and investors,
and built using the analytical framework of mean-field games. Mean-field games,
introduced in [3] and [4] provide a rigorous way to pass to the limit of a continuum
of agents in stochastic dynamic games with a large number of identical agents
and symmetric interactions. In the limit, the representative agent interacts with
the average density of the other agents (the mean field) rather than with each
individual agent. This limiting argument simplifies the problem, leading to explicit
solutions or efficient numerical methods for computing the equilibrium dynamics.

The key ingredient of our framework is the notion of mean-field financial market,
which describes a large financial market with a continuum of small firms, where
the performance of each firm is driven by idiosyncratic noise and a finite number
of market-wide risk factors (common noise). We assume that the investors in this
market are ’large’ meaning that in every investor’s portfolio the idiosyncratic risk
of small firms is completely diversified, and the portfolio value depends only on
market-wide risk factors. Consequently, and consistently with the classical finance
theories, only market-wide risk factors are priced, and the stochastic discount
factor depends only on the common noise and the ’mean-field’.

We then consider a mean-field market where shares of a continuum of carbon-
emitting firms are traded. Each firm determines its dynamic stochastic emission
schedule based on its own information and on the market-wide risk factors and
market-wide decarbonization dynamics, rather than on the individual decisions of
each other small firm, which it cannot observe. To fix its emission level, each firm
optimizes a criterion depending on its financial and environmental performance.
The financial performance is measured by the market value of the firm’s shares and
therefore depends on the stochastic discount factor, introducing an interaction be-
tween the firms. The environmental performance is measured by carbon emissions,
which are penalized in the optimization functional of the firm. The strength of
this emission penalty is stochastic, reflecting the uncertainty of climate transition
risk. This “stochastic carbon penalty” is a key feature of our model, allowing us to
analyze the impact of climate policy uncertainty on market decarbonization and
asset prices in a diffusion setting. We show that higher uncertainty about future
climate policies and transition risks creates incentive for all companies to emit
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more carbon and leads to higher share prices and higher spreads between share
prices of carbon efficient and carbon intensive companies, confirming the findings
of [2] in a more realistic setting with stochastic emission schedules.

The second key ingredient of our model is the interaction between two large
investors (or two classes of investors), with different views about the future: while
the regular investor uses the real-world measure, the green-minded investor uses
an alternative measure, which may, for example, overweight the probability of
some environmental policies, making the costs of climate transition more mate-
rial. In the presence of such green-minded investors, all companies will reduce
their emissions and pay lower dividends, leading to lower share prices. However,
carbon intensive companies are affected much stronger than climate-friendly car-
bon efficient companies. This pressure on share prices, in turn, spurs the polluting
companies to decrease their emissions.

We summarize the interaction channels and the structure of the game of the
present article in figure 1 below. The interaction goes as follows:

• On the one hand, given a stochastic discount factor ξ, the firms choose
optimal emissions ψ, driving their economic values V ;

• On the other hand, the investors i ∈ {r, g} optimize their wealth W i
T

depending on their greenness;
• All the players (the firms and the investors) are coupled through the ter-
minal market clearing condition: the wealth of the investors equals the
economic value of the firms.

Firm’s problem

sup
ψ
J [ξ](ψ)

Investor’s problem

sup
WT

U i[ξ](WT ), i ∈ {r, g}
Market Clearing

E[VT |F0
T ] =W r

T +W g
T

Emissions ψ and firm value V Wealth WT

Stochastic discount factor ξ Stochastic discount factor ξ

Figure 1. Structure of the game.

We rigorously prove the existence and uniqueness of the mean-field game Nash
equilibrium for the contunuum of firms interacting through market prices of their
shares, providing a robust solution to the stochastic “decarbonization game” in
a competitive environment. The equilibrium is materialized by the equilibrium
stochastic discount factor, which can be used to compute share prices and emission
strategies for each firm. We then develop a convergent numerical algorithm to
compute the equilibrium and use it to study the impact of climate transition risk
and green investors on the market decarbonization dynamics and share prices.
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Fully-dynamic risk measures: horizon risk, time-consistency, and
relations with BSDEs and BSVIEs

Emanuela Rosazza Gianin

(joint work with Giulia Di Nunno)

In a dynamic framework, we identify a new concept associated with the risk of as-
sessing the financial exposure by a measure that is not adequate to the actual time
horizon of the position. This will be called horizon risk. We clarify that dynamic
risk measures are subject to horizon risk, so we propose to use the fully-dynamic
version. To quantify horizon risk, we introduce h-longevity as an indicator. We
investigate these notions together with other properties of risk measures as nor-
malization, restriction property, and different formulations of time-consistency.
We also consider these concepts for fully-dynamic risk measures generated by
backward stochastic differential equations (BSDEs), backward stochastic Volterra
integral equations (BSVIEs), and families of these. In particular, both for BSDEs
and for BSVIEs, we show that h-longevity, restriction and the different formula-
tions of time-consistency can be obtained under suitable conditions on the driver
of the BSDE/BSVIE. Within this study, we provide new results for BSVIEs such
as a converse comparison theorem and the dual representation of the associated
risk measures.

Finally, inspired by the recent literature on cash-subadditive risk measures, we
analyze - in full generality and in the framework of (families of) BSDEs - the
case where cash-additivity of fully-dynamic risk measures is dropped. An example
based on the generalized entropic risk measure (and the corresponding BSDE) will
be also provided.
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Uncertainty Propagation and Dynamic Robust Risk Measures

Silvana M. Pesenti

(joint work with Marlon R. Moresco, Mélina Mailhot)

As uncertainty prevents perfect information from being attained, decision makers
are confronted with the consequences of their risk assessments made under par-
tial information. Incorporating model misspecification and Knightian uncertainty
into dynamic decision making, thus robustifying one’s decisions, has been studied
in various fields, including economics [10, 15], mathematical finance [4, 12], and
risk management [1]. Many circumstances require sequential decisions, where risk
assessments are made over a finite time horizon and are based on the flow of in-
formation. Importantly, these decisions need to be time-consistent and account
for the propagation of uncertainty. As uncertainty may change over time, we con-
sider the dynamic risk of the entire processes rather than the total losses amount
at terminal time. While the theory of time-consistent dynamic risk measures is
growing [13, 6, 2, 9, 7, 3, 8], the time evolution of uncertainty is little explored.

In this work, we propose an axiomatic framework for quantifying uncertainty of
discrete-time stochastic processes. Specifically, we introduce dynamic uncertainty
sets consisting of a family of time-t uncertainty sets. Each time-t uncertainty set is
a set of Ft-measurable random variables summarising the uncertainty of the entire
stochastic process at time t. The dynamic uncertainty sets may vary with each
stochastic process, as the uncertainty of two processes may differ, even if they share
the same law. That is, a time-t uncertainty set is a map Xt:T 7→ ut(Xt:T ) ⊂ L∞

t

for any bounded discrete process X . This general framework includes, to the
authors knowledge, all uncertainty sets encountered in the literature, from moment
constraints, f -divergences, semi-norms, and the popular (adapted) Wasserstein
distance.

Equipped with a dynamic risk measure represented by a family of one-step
risk measures {ρt}t∈T and a dynamic uncertainty set {ut}t∈T , we define dynamic
robust risk measures as sequences of conditional robust risk measures by taking
the supremum of all risks in the uncertainty set. Mathematically, a time-t robust
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risk measure takes the form

Rt:T (Xt+1:T ) = ess sup{ρt(Y ) : Y ∈ ut+1(Xt+1:T )},

for all discrete bounded process Xt+1:T from time t+1 to T . In this procedure, the
first step is to summarise the uncertainty and information of the process Xt+1:T

into a set of (t+1)-measurable random variables, the uncertainty set. The second
step is to evaluate the risk of each of the candidate random variables and choose
the largest.

This work proceeds by studying conditions on the dynamic uncertainty set that
lead to well-known properties of dynamic robust risk measures such as convexity
and coherence. To guarantee that the conditions are not overly strong, we seek
not only sufficient conditions but also necessary ones. However, two different
uncertainty sets can induce the same dynamic robust risk measure, and in fact,
for each uncertainty set that satisfies a sufficient condition for a property of interest
on the robust risk measure, one can find another uncertainty set that also satisfy
it. Therefore, we introduce the dynamic consolidated uncertainty set {Ut}t∈T ,
which is the union of all uncertainty sets that agree on the dynamic robust risk
measurement. We show that this consolidated uncertainty set also induces the
same robust risk measure and can be written as

Ut+1(Xt+1:T ) =
{
Y ∈ L∞

t+1 : ρt(Y ) ≤ Ru
t:T (Xt+1:T )

}
.

Theorem 1 in the pre-print [11] connects the properties in the consolidated uncer-
tainty set with the axioms of the dynamic robust risk measure.

Crucial to the dynamical framework are notions of time-consistencies, of which
many have been introduced and studied in the literature. The most common is
strong time-consistency, leading to a dynamic programming principle [6, 14, 5].
While the majority of works assume normalisation of the dynamic risk measures,
in a robust setting, uncertainty does generally not lead to normalisation. Indeed,
an important subject of debate is whether the value of zero – or more generally
an Ft−1-measurable random variable – contains uncertainty – at time t. We find
that uncertainty sets induced by the f -divergence are normalised, while those gen-
erated by the Wasserstein distance or norms are not. Consequently, we introduce
the new concept of non-normalised time-consistency to account for non-normalised
uncertainty sets. We also work with weaker notions of time-consistency, such as
rejection and weak time-consistency. We discuss time-consistency of the uncer-
tainty sets, and show, in Theorem 2, that they are equivalent to the notions of
time consistency in the robust risk measure. Figure 1 and Proposition 5 in the
pre-print [11] summarise the relationship between the most common notions of
time-consistencies.

One of the manuscript’s key theorem generalises results from the seminal works
of [6, 14]. Specifically, we show that a dynamic robust risk measure is strong or
non-normalised time-consistent if and only if it admits a recursive representation
of one-step robust risk measures. Furthermore, these one-step robust risk mea-
sures are characterised by dynamic uncertainty sets which possess the property of
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static. Static uncertainty sets arise in one-period settings and do not contain fu-
ture information. Thus, we show that it is enough to consider the simpler subclass
of static uncertainty sets when working with time-consistent dynamic robust risk
measures. That is:

Theorem 4 (Recursive Relation). A (normalised) dynamic robust risk measure
R is non-normalised (strong) time-consistent if and only if there exists a static
(and normalised) uncertainty set uς := {uςt}t∈T such that

Rt,T (Xt+1:T ) = Ru
ς

t

(
Yt+1 +Ru

ς

t+1

(
Yt+2 +Ru

ς

t+2

(
Yt+3 + . . .+Ru

ς

T−1(YT ) . . .
)))

,

where Yt := Xt −Ru
ς

t (0) for all t ∈ T .

References
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[14] Andrzej Ruszczyński. Risk-averse dynamic programming for Markov decision processes.

Mathematical Programming, 125(2):235–261, 2010.
[15] Marciano Siniscalchi. Dynamic choice under ambiguity. Theoretical Economics, 6(3):379–

421, 2011.



New Challenges in the Interplay between Finance and Insurance 2563

Valuation of liability cash flows subject to capital requirements

Filip Lindskog

(joint work with N. Engler, H. Engsner, K. Lindensjö and J. Thøgersen)

I present two closely related approaches to valuation of liability cash flows moti-
vated by current regulatory frameworks for the insurance industry.

In the first part I study market-consistent valuation of liability cash flows mo-
tivated by current regulatory frameworks for the insurance industry. The value
assigned to an insurance liability is the consequence of (1) considering a hypothet-
ical transfer of an insurance company’s liabilities, and financial assets intended
to hedge these liabilities, to an empty corporate entity, and (2) considering the
circumstances under which a capital provider would want to achieve and maintain
ownership of this corporate entity given limited liability for the owner and that
capital requirements have to be met at any time for continued ownership. I focus
on the consequences of the capital provider assessing the value of continued own-
ership in terms of a least favorable expectation of future dividends, meaning that
I consider expectations with respect to probability measures in a set of equiva-
lent martingale measures. I present natural conditions on the set of probability
measures that imply that the value of a liability cash flow is given in terms of a
solution to a backward recursion. This part of my talk is based on joint work with
H. Engsner, K. Lindensjö and J. Thøgersen in [2] and [3].

The approach presented in the first part is attractive because it provides a
general framework for market-consistent valuation of liability cash flows, taking
repeated capital requirements and limit liability into account. However, it typi-
cally gives rise to computational challenges when accurate numerical estimates are
required. The second part considers a specialized setting, yet sufficiently general
for a wide range of applications, aiming for computational tractability.

This approach is motivated by computational challenges arising in multi-period
valuation in insurance. Aggregate insurance liability cashflows typically corre-
spond to stochastic payments several years into the future. However, insurance
regulation requires that capital requirements are computed for a one-year horizon,
by considering cashflows during the year and end-of-year liability values. This
implies that liability values must be computed recursively, backwards in time,
starting from the year of the most distant liability payments. Solving such back-
ward recursions with paper and pen is rarely possible, and numerical solutions
give rise to major computational challenges. The aim of the presented approach is
to provide explicit and easily computable expressions for multi-period valuations
that appear as limit objects for a sequence of multi-period models that converge in
terms of conditional weak convergence. Such convergence appears naturally if one
considers large insurance portfolios such that the liability cashflows, appropriately
centered and scaled, converge weakly as the size of the portfolio tends to infinity.
This part of my talk is based on joint work with N. Engler in [1].
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The risk margin and market risks

Michael Schmutz

(joint work with Christoph Möhr, Laurent Dudok de Wit)

The risk-based solvency frameworks Solvency II in Europe and the Swiss Sol-
vency Test (SST) assess the capitalisation of insurance companies based on a risk
evaluation over a one-year interval. The one-year horizon signifies that insurance
companies, even in the case of long-term multi-year insurance contracts, basically
only have to maintain capital at the regulatory required level of protection for one
year. For the further settlement of the contracts, the risk margin (market value
margin in the SST) should allow in later years to finance the capital necessary for
the regulatory required level of protection or to raise this capital if required.

The risk margin thus plays a fundamental role in these frameworks. In practi-
cal implementations, it is often calculated via the sum of the multiplication of a
cost of capital rate with the suitably discounted future expected capital require-
ments. The cost of capital rate represents the premium above the risk-free interest
that an investor would demand from the insurance company for covering the cor-
responding risks. In a recent article [1], the risk margin and, in particular, the
cost of capital rate are discussed in the context of an economic triangle of poli-
cyholders, shareholders, and regulator. The article uses well-established valuation
procedures for illiquid balance sheet items and assumes that the insurance claims
are nonhedgeable and independent of the financial market. In view of the in real-
ity often present and sometimes substantial dependencies of insurance claims on
financial market risks, we examine here somehow “the opposite”. Namely, the
dependency of the cost of capital rate on risks in traded financial assets. We focus
here only on these risks and ignore further components, such as a potentially con-
siderable illiquidity premium. Using substantial simplifications, we subsequently
analytically discuss the fundamental influence of market risks on the cost of cap-
ital rate. Our aproach combines the practitioner’s perspective with insights from
Platen’s benchmark approach to quantitative finance, cf. e.g. [5].

More concretely, we analyse the cost of capital from an investor’s perspective.
Let T denote the time at which all contracts have been settled and assume for
simplicity that this date just falls at the end of a year. The capital realized at
T is denoted by C̃T (i.e. value of assets − value of liabilities). The investor can

exercise its limited liability put option if C̃T < 0. Thus, the investor may price
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C̃+
T at time t = T − 1 using “risk-neutral valuation”, i.e.

Ct = EQ

(
BtC̃

+
T

BT

∣∣∣Ft
)
,

where Q is a suitable “risk-neutral” valuation measure, (Bt)t≥0 represents the
risk-free cash account, and a+ = max(0, a) for a ∈ R. Clearly, to prevent solvency
problems, Ct ≥ SCRt should hold for the regulatory required solvency capital
SCRt.

For simplicity, we consider from now on a Continuous Financial Market (CFM),

cf. [5], with additional assumptions. The risky tradeables ((Sjt )t≥0)
d
j=1 therefore

satisfy

dSjt = Sjt a
j
tdt+ Sjt

d∑

k=1

bj,kt dW k
t ,

with ((W 1
t , . . . ,W

d
t )t) a d-dimensional standard Brownian Motion, ((ajt )t) a suit-

able “drift”, and ((bj,kt )t) a suitable volatility with respect to the k-th source of

market risk. For simplicity, let ((bj,kt )t)
d
j,k=1 be invertible for each t, with inverse

matrix ((b̄j,kt )t). For more detail, see e.g. [5, Chapter 10].
The numéraire-, or growth-optimal, portfolio ((S∗

t )t), whose existence is as-
sumed here, results from an “admissible trading strategy” in the chosen CFM
and satisfies a number of interesting properties through which it can be defined
differently but, under appropriate assumptions, equivalently. In particular, for
any value process ((Sδt )t) of an “admissible trading strategy” with the same ini-

tial value as ((S∗
t )t), the process ((Ŝδt )t) = ((Sδt /S

∗
t )t) is a supermartingale, i.e.

Ŝδs ≥ EP(Ŝ
δ
t |Fs) for all s ≤ t. For general background, see e.g. [5] or [4] for a kind

of fundamental theorem that links the existence of this portfolio with an Absence
of Arbitrage concept in an equivalent way. However, note that, according to the
assumptions made on the existence of Q, we are working within classical option
pricing theory as it is e.g. also often used (in an extended form) for life insurance
contracts. It turns out, see e.g. [5], that the numéraire portfolio S∗ in our CFM
can be represented by the following SDE:

dS∗
t = S∗

t (rt + |θt|2)dt+ S∗
t |θt|dWt ,

i.e. S∗
t = exp(

∫ t
0 (rs + |θs|2)ds +

∫ t
0 |θs|dWs − 1

2

∫ t
0 |θs|2ds) , for S∗

0 = 1, where
(rt) stands for the short-rate of the risk-free cash account, and (Wt), given by

dWt =
1

|θt|

∑d
k=1 θ

k
t dW

k
t , is itself a (real-world, one-dimensional) standard Brow-

nian motion by Lévy’s characterization theorem. Here, |θt| stands for the “Total

Market Price of Risk” given by |θt| =
√∑d

k=1(θ
k
t )

2 and θkt =
∑d
j=1(a

j
t − rt)b̄

k,j
t .

We assume in the above CFM that the density process (Zt) is given by

Zt =
dQ

dP |Ft

=
Bt
S∗
t

,
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and that it is a true P-martingale. The investor’s view of the value Ct can then
be reformulated via the generalized Bayes rule to give

EP

(
S∗
t C̃

+
T

S∗
T

∣∣∣Ft
)
= EP


 C̃+

T

exp
(∫ T

t
(rs + |θs|2)ds+

∫ T
t
|θs|dWs − 1

2

∫ T
t
|θs|2ds

)
∣∣∣Ft


.

Thus, |θt| should have a link to the cost of capital rate. The cost of capital
rate is typically taken as a constant rate of return above risk-free interest. For a
Risk Return analysis on Multiple-Factor Beta Models, we refer e.g. to [3]. For a
representation of the cost of capital rate based on the quotient of a conditional real-
world and a risk-neutral expectation, we refer to [2]. The advantage of the following
approach is that it leads to very explicit expressions with clear dependencies on
parameters of the underlying financial market.

Unfortunately, C̃+
T is often too complicated for an analytical approach to the

cost of capital rate. To gain insights into basic mechanisms, we assume, again very
simplistically, that C̃+

T can be approximated by an Itô-process of the following form

dC̃+
t = µtC̃

+
t dt+ σtC̃

+
t dW̃t ,

for suitable drift and volatility processes µ and σ, where (W̃t) also stands for a real-

world standard Brownian motion and where for the covariation [W, W̃ ]t =
∫ t
0 ρsds

shall hold for a suitable process ρ. Itô -Calculus yields

d

(
C̃+
t

S∗
t

)
=
C̃+
t

S∗
t

(µt − rt − σt|θt|ρt)dt+
C̃+
t

S∗
t

σtdW̃t −
C̃+
t

S∗
t

|θt|dWt .

We use this to approximate
C̃+

T

S∗
T

very roughly from t = T − 1 to T :

C̃+
T

S∗
T

≈ C̃+
t

S∗
t

(1 + (µt − (rt + σt|θt|ρt))∆t) +
C̃+
t

S∗
t

σt
√
∆tZ̃ − C̃+

t

S∗
t

|θt|
√
∆tZ ,

where ∆t = 1, Z̃ and Z are standard normally distributed random variables
independent of Ft, and all other terms are Ft-measurable. With 1 + x ≈ exp(x)
one approximatively obtains

Ct = EP

(
S∗
t C̃

+
T

S∗
T

∣∣∣Ft
)

≈
EP

(
C̃+
T |Ft

)

1 + rt + σt|θt|ρt
.

This provides a concrete link to classical Discounted Cash-Flow valuation methods
from corporate finance, making σt|θt|ρt a concrete candidate for the cost of capital
rate under the imposed assumptions. (This would then have to be supplemented by
additional components such as an illiquidity premium.) The observation suggests,
among other things, that market risks on a specific balance sheet can have a
substantial impact on the cost of capital rate, with the covariation playing a major
role, along with the volatility σt of the capital and, of course, the total market price
of risk |θt|. The concrete form of this representation paves the way for relating the
cost of capital rate to concrete models for financial markets.
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Insurer’s management discretion: Self-hedging participating
life insurance

Peter Hieber

(joint work with Karim Barigou)

The performance of participating life insurance contracts depends on an underly-
ing investment portfolio. For the policyholder, risks are limited as the insurance
provider assures a minimum return. If the underlying portfolio performs well, the
policyholder participates in its return.

The majority of scientific articles on participating life insurance assumes an
exogenously given investment strategy for the underlying asset portfolio. This,
however, strongly simplifies reality as the insurance provider has full control over
the investment strategy of the underlying investment portfolio. He may adapt the
portfolio’s risk over time, for example contingent on the value of liabilities or asset-
liability ratios. In this talk, we depart from the assumption of exogenously given
investment strategies and consider more general endogenous investment strategies
that adapt dynamically to market developments. The talk has three parts:

(1) Existing literature: We review approaches in the literature on endogenous
strategies that are mostly based on the assumption of a complete financial
market where all financial risks can be fully hedged. Examples include
[2], [4], [3]. [3] transform the non-standard valuation problem into a fixed-
point problem using the martingale method, which requires the evaluation
of conditional expectations of highly path-dependent payoffs. They then
use the Least-square Monte-Carlo (LSMC) approach to approximate such
conditional expectations. [2] considers perfect hedging of a participating
contract and derived a numerical method for the valuation. However,
in both cases ([2], [3]), the focus is on the valuation problem and the
determination of the optimal underlying hedging strategy remains an open
research question.

(2) Solution in an incomplete market setting: As participating contracts in-
vest for long time horizons, a more realistic assumption is that financial
risks cannot be fully hedged. We discuss an objective function that min-
imizes the hedging risk and determine the corresponding optimal invest-
ment strategy. The financial model we consider is a Vasicek-Black-Scholes
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model where interest rates are modelled stochastically by a Vasicek model.
We consider a multi-period participating contract with an annual guaran-
tee, a product that is very common in central Europe (Belgium, Germany,
Switzerland). The implementation follows the neural network approach
introduced in [1]. For special cases, we obtain closed form solutions for
the optimal investment strategies that serve as a benachmark for our nu-
merical results (see also [5]).

(3) Comparison to the complete market case: As a last step, we link our re-
sults to the complete market case and the results existing in the literature
([2], [4]). We specifically point at the resulting optimal hedging strategies.
We stress the importance of endogenous investment strategies and their
effect on the risk management of participating life insurance contracts.
More specifically, we compare the solvency risks and contract values of
participating life insurance contracts if investment strategies are (A) ex-
ogenously given and (B) chosen endogenously.
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Hybrid life insurance valuation based on a new standard deviation
premium principle in a stochastic interest rate framework

Griselda Deelstra

(joint work with Oussama Belhouari, Pierre Devolder)

In this talk, we focus on the pricing of a class of hybrid life insurance products,
which are dependent on both mortality and financial risks, and this in a stochastic
interest rate framework.

Assuming a complete, arbitrage-free financial market, the valuation of future
(purely) financial cash-flows can be based upon risk-neutral expectations and is
related to the existence of hedging strategies. In insurance, the calculation of
premiums is based on best estimate values and safety loadings, assuming that
the law of large numbers can be applied by pooling independent contracts. Of
course, in finance, markets appear in practice very often to be incomplete, whereas
insurance risks are not always perfectly diversifiable (for instance by the presence
of longevity risks or catastrophic risks).
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Moreover, as hybrid life insurance contracts depend on both financial and insur-
ance risks, defining a fair valuation of hybrid contracts requires a hybrid valuation
principle combining the notions of financial and actuarial valuation. Different prin-
ciples have been proposed in the literature in order to price these hybrid products
(see, e.g., [5], [6], [1], [3], [2] and many others). In order to be consistent with the
financial market, the concept of market-consistency is used in the literature, see
e.g. [4] or [6]; whilst to be consistent with the actuarial market, the concept of
actuarial-consistency has been introduced, see e.g. [2].

Focusing on the pricing of hybrid products in the presence of stochastic interest
rates, we first conduct a profound study of the axioms that a valuation operator
should verify in the presence of stochastic interest rates (see e.g. [1]) and we study
both the market-consistency and actuarial-consistency properties. In particular,
we present a generalized standard deviation premium principle in a stochastic
interest rate framework, and discuss its integration in different valuation operators
suggested in the literature, namely by [5], [6] and [3]. We illustrate our methods
with a classical application in life insurance, namely a pure endowment with profit.
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Shrinking the term structure

Damir Filipović

(joint work with Markus Pelger and Ye Ye)

We develop a conditional factor model for the term structure of Treasury bonds,
which unifies non-parametric curve estimation with cross-sectional asset pricing.
Our factors are investable portfolios and estimated with cross-sectional ridge re-
gressions. They correspond to the optimal non-parametric basis functions that
span the discount curve and are based on economic first principles. Cash flows
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are covariances, which fully explain the factor exposure of coupon bonds. Empiri-
cally, we show that four factors explain the discount bond excess return curve and
term structure premium, which depends on the market complexity measured by
the time-varying importance of higher order factors. The fourth term structure
factor capturing complex shapes of the term structure premium is a hedge for bad
economic times and pays off during recessions.

Concretely, we denote by dt(x) the price at date t of a discount bond with time
to maturity x [years]. The excess return over t − 1 to t of this discount bond is
then given by

rt(x) =
dt(x)

dt−1(x+∆t)
− 1

dt−1(∆t)
,

where ∆t denotes the time [in years] between business days t− 1 and t. The goal
of this project is to estimate and study the empirical properties of the unobserved
discount bond excess return curve rt : [0,∞) → R. What is observed at any t
are Mt coupon bond securities with prices Pt,i, cash flows Ct,ij at cash flow dates

0 < x1 < · · · < xN , and their excess returns Rbond
t,i =

Pt,i+Ct−1,ii+1

Pt−1,i
− 1

dt−1(∆t)
. By

the absence of arbitrage, we know that a coupon bond is a portfolio of discount
bonds. Formally, we obtain

Rbond
t = Zt−1rt(x)︸ ︷︷ ︸

fundamental returns

+ ǫt︸︷︷︸
return errors

where we define the normalized discounted cash flows Zt−1,ij :=
Ct−1,ij+1dt−1(xj+∆t)

Pt−1,i
,

and we denote by f(x) := (f(x1), . . . , f(xn))
⊤ the array of function values queried

at x = (x1, . . . , xN )⊤, for any function f .
We estimate rt by solving the following regularized optimization problem

(1) min
rt∈Hα

{
1

Mt

∥∥Rbond
t − Zt−1rt(x)

∥∥2
2

︸ ︷︷ ︸
return error

+ λ ‖rt‖2Hα︸ ︷︷ ︸
smoothness

,

}
.

We choose the regularization penalty by awarding smoothness of rt. Smoothness
of the return curve is motivated by economic principles, it puts limits to excessive
returns of investments such as the butterfly trade rt(x−∆)−2rt(x)+ rt(x+∆) ≈
r′′t (x)∆

2. Our hypothesis spaceHα therefore consists of twice weakly differentiable
functions satisfying the natural boundary conditions rt(0) = 0 and limx→∞ r′t(x) =
0, and finite weighted Sobolev type norm

‖rt‖2Hα
:=

∫ ∞

0

r′′t (x)
2eαx dx.

We prove that Hα is a reproducing kernel Hilbert space with kernel k given
in closed form. Problem (1) is a kernel ridge regression with unique solution r̂t
in Hα, which is spanned by the N kernel basis functions k(x1, ·), . . . , k(xN , ·).
We orthonormalize the basis functions as follows. We show that the kernel matrix
Kij := k(xi, xj) is invertible, and thus admits spectral decompositionK = V SV ⊤,
with eigenvectors V = [v1| · · · |vN ], and strictly positive eigenvalues s1 ≥ · · · ≥
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sN > 0. We obtain the orthonormal system of functions in Hα given by u =
(u1, . . . , uN )⊤ := S−1/2V ⊤k(·,x).

After this transformation we obtain the following result.

Theorem 1 (Conditional Factor Model Representation). The unique solution r̂t
to (1) can be represented as factor model

(2) r̂t(·) = u(·)⊤F̂t,
where the factors F̂t are unique solution to the cross-sectional ridge regression

min
Ft∈RN

{
1

Mt

∥∥Rbond
t − βbond

t−1 Ft
∥∥2
2
+ λ ‖Ft‖22

}
,

where the conditional loadings βbond
t−1 are given in terms of the normalized dis-

counted cash flows (bond characteristics) Zt−1 by

βbond
t−1 := Zt−1V S

1/2.

The factors F̂t are given in closed form by

F̂t = ωt−1R
bond
t ,

which are the excess returns of traded bond portfolios with portfolio weights

ωt−1 :=
(
βbond
t−1

⊤
βbond
t−1 + λMtIN

)−1

βbond
t−1

⊤
.

In summary, this is a flexible non-parametric data-driven approach, the smooth-
ness penalty λ > 0 and maturity weight α > 0 are selected empirically by
cross-validation. We perform an extensive empirical analysis on a large sample
of daily U.S. Treasury bond returns ranging from June 1961 to December 2020.
In particular, we shrink the term structure and study low-dimensional approxi-
mations of the N -factor model (2), and empirically show that the first n factors
describe the data accurately well, for n = 4. The paper is available at SSRN:
https://ssrn.com/abstract=4182649, which contains an extensive list of refer-
ences.

Climate change, insurance mathematics and optimal prevention

Stèphane Loisel

(joint work with H. Albrecher, C. Constantinescu, R. Gauchon, D. Kortschak,
P. Ribereau, J.L. Rullière, J. Trufin)

In this blackboard talk, we start by describing the various impacts of climate
change on the insurance industry. We present some theoretical results that demon-
strate that quantitative risk management of uncertain and potentially worsening
risks is completely different in presence of climate change. We also show the im-
pact of the level of access to information of insurance risk managers on their ability
to keep the insurance business safe enough. In presence of full uncertainty, with-
out any possibility to adjust premium, we use our previous results obtained by
Albrecher and Constantinescu to show that increasing capital requirements is not
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enough to make the ruin probability decrease to zero, and that there is a positive
probability to be ruined anyway. Besides, the asymptotic rate of decay towards
this positive probability level with respect to the initial capital is much slower
than usually as well. In the opposite case, assuming that one is “magically” able
to adjust instantaneously income premium rate to the worsened risk level, in the
regular variation case, we use results obtained with Kortschak and Ribereau to
study the effect of claim size distribution worsening. We consider two approaches:
either the shape or the scale parameter changes over time. Comparing the two
approaches, we note that when risks initially have infinite variance, a change in
the scale parameter may have more impact than a change in the shape parame-
ter. We also note that the company may cease its business due to climate change
for several reasonns, including ruin, insolvency or mass lapse due to the rise of
insurance premium to an unacceptable level. We then present recent works and
works in progress to propose a risk management partial solution to this problem.
We believe that one key ingredient is risk prevention. We briefly present some
results of our recent works with Gauchon, Rullière and Trufin and explain the dif-
ferences between our optimal prevention problem and classical optimal reinsurance
problems. We highlight some results and explain in particular that the optimal
prevention level does not depend on the initial surplus level in presence of one sin-
gle kind of claims, while it depends on the initial surplus when there are two kinds
of claims and when prevention only has some effect on one of them. We mention
some work in process with Minier and Mamode Khan about prevention with INAR
and BINAR processes. Following discussions during this Oberwolfach workshop,
some concrete future collaborations have been started with Hansjoerg Albrecher
on risk models in presence of climate change, as well as with Michael Schmutz
on insurance regulation of long-term risk and short-term bias. In Oberwolfach
discussions, we also planted the seed for other future collaborations, notably with
Valérie Chavez-Demoulin on climate change risk for hailstorm risk management
and with Caroline Hillairet on prevention and thinning.
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Extreme value theory in a changing world

Valérie Chavez-Demoulin

(joint work with Linda Mhalla)

The past few decades have seen extreme climate events affecting all regions of the
world with catastrophic impacts on human society. Extreme value theory is the
field of statistics dedicated to the study of events with low occurrence frequencies
and large amplitudes. Such events are necessarily rare in relation to the bulk of
a population, which makes them hard to model and difficult to predict. Classical
methods of extreme value theory are based on the assumption that the data are in-
dependent and identically distributed (iid) or at least stationary and, in this case,
the classical approaches rely on theoretical foundations that are well established
and understood. In practice the iid or stationarity assumptions are generally vio-
lated, the nature of the series being non-stationary or depending on covariates. In
this talk I have reviewed extreme value theory in the univariate and multivariate
settings and under non-stationarity, attempting, in this case, to capture different
sorts of dependence when estimating risk measures. Part of the work I presented
contributes to the development of flexible frameworks for taking into account the
effect of covariates on the (tail) dependence structure between two variables. In
the context of multivariate extremes, we develop in [1] flexible, semi-parametric
method for the estimation of non-stationary multivariate Pickands dependence
functions. Related works in multivariate extremes, allowing extremal dependence
structures that may vary with covariates are [2] and [3]. A new field of interest
and very much linked to the understanding of effect of covariates is causality. The
study of causality for extremes is in its infancy. Examples of related work are [4],
who defined recursive max-linear models on directed acyclic graphs, [5], who define
a causal tail coefficient capturing asymmetries in the extremal dependence between
two random variables, [6], who use multivariate generalized Pareto distributions to
study probabilities of necessary and sufficient causation as defined in the counter-
factual theory of Pearl, and [7], who construct a causal inference method for tail
quantities relying on Kolmogorov complexity of extreme conditional quantiles. [8]
review the related basic probability schemes, inference techniques, and statistical
hypotheses for extreme event attribution. In preparation, we are currently writing
a Chapter about causality of extremes in a book entitled “Handbook on Statistics
of Extremes”.

Part of my presentation was related to a book entitled “Risk Revealed: Caution-
ary Tales, Understanding and Communication” I co-authored with Paul Embrechts
and Marius Hofert, which will appear in 2024 in Cambridge University Press.
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Isotonic distributional regression

Johanna Ziegel

(joint work with Sebastian Arnold, Tilmann Gneiting, Alexander Henzi,
Gian-Reto Kleger, Eva-Maria Walz)

Isotonic distributional regression (IDR) is a nonparametric distributional regres-
sion approach under a monotonicity constraint [9]. It has found application as a
generic method for uncertainty quantification [12], in statistical postprocessing of
weather forecasts [9, 11], and it is an integral part of distributional single index
models [7, 2]. In this abstract, the construction and main properties of IDR are re-
viewed and it is explained how IDR can be generalized from empirical distributions
to arbitrary distributions yielding isotonic conditional laws.

Assume that the covariate X takes values in a partially ordered space (X ,≤),
and the outcome Y is real-valued. The main assumption of IDR is that when the
covariate X increases, we expect an increase of the outcome Y . Mathematically,
we assume that x ≤ x′ for x, x′ ∈ X implies L(Y | X = x) �st L(Y | X = x′),
where L(Y | X = x) denotes the conditional distribution of Y given X = x and
�st denotes the usual stochastic order.

For given data pairs (xi, yi)
n
i=1 with (xi, yi) ∈ X × R, the IDR estimator is

defined as the vector F̂ = (F̂i)
n
i=1 = (F̂Y |X=xi

)ni=1 of cumulative distribution
functions (cdfs) that satisfies

(1) F̂ = arg min
(F1,...,Fn)

n∑

ℓ=1

CRPS(Fℓ, yℓ),

where the minimum is taken over all vectors of cdfs (F1, . . . , Fn) that satisfy Fi �st

Fj whenever xi ≤ xj . Here, the continuous ranked probability score (CRPS) is
defined as

CRPS(F, y) =

∫

R

(F (z)− 1{y ≤ z})2 dz

for a cdf F and y ∈ R.
The optimization problem at (1) has a unique solution that can be stated explic-

itly as a min-max formula. It turns out that for each y ∈ R, F̂1(y), . . . , F̂n(y) is the
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antitonic least-squares regression of the binary outcomes 1{y1 ≤ y}, . . . ,1{yn ≤ y}
[3]. Furthermore, the IDR solution is universal in the sense that the same solu-
tion arises when replacing the CRPS in (1) by any quantile- or threshold-weighted
CRPS [6]. IDR can be efficiently computed using the pool adjacent violators
(PAV) algorithm for each threshold y ∈ {y1, . . . , yn} if there is a total order on the
covariate space X . For partial orders, the solution can be obtained as a quadratic
programming problem for each y ∈ {y1, . . . , yn}. There is an R package and a
Python implementation available [8]. The IDR solution is defined at observed co-
variate values only but predictions at new covariate values can be readily obtained
by suitable interpolation techniques.

Statistical consistency results for IDR can be found in [5] for ordinal covariates,
in [10] for real-valued covariates, and in [9] for vector-valued covariates. Further-
more, in [7, 2], the authors show that even if the partial is estimated from the
data, consistency still holds.

Suppose that a vector (X,Y ) ∈ X × R has distribution (1/n)
∑n
i=1 δ(xi,yi).

Then, IDR provides an approximation to the joint distribution of (X,Y ) such
that all conditional distributions of Y given X are ordered with respect to the
stochastic order. It is a natural question to ask if such an isotonic approximation
can be constructed starting with any distribution for (X,Y ), where we assume
that (X,Y ) are defined on the probability space (Ω,F ,P). The answer is positiv
as shown in [1], where the solution is termed the isotonic conditional law of Y given
X . The isotonic conditional law of Y given X is constructed as the conditional
law of Y given the σ-lattice generated by X .

More precisely, a σ-lattice C ⊆ F is a system of sets that contains ∅,Ω and is
closed under countable unions and countable intersections. A random variable Z
is C-measurable if {Z > a} ∈ C for all a ∈ R. The conditional expectation E(Z | C)
with respect to the σ-lattice C can be defined as the L2-projection of Z onto the
closed convex cone of C-measurable random variables [4]. The conditional law
L(Y | C) of Z with respect to C is then a Markov kernel from (Ω,F) to (R,B(R))
such that ω 7→ L(Z | C)(ω, (a,∞)) is a version of E(1{Z > a} | C) for any a ∈ R.
Furthermore, let U be the collection of all upper sets in (X ,≤). It is a σ-lattice,
and a function f : X → R is increasing if and only f is U-measurable, that is,
{f > a} ∈ U for all a ∈ R. Finally, for an ordered metric space (X , d,≤), the
σ-lattice generated by X is defined as

A(X) = {X−1(B) | B ∈ B(X ) ∩ U}.

IDR is the isotonic conditional law of Y given X if the joint distribution of (X,Y )
has finite support. Isotonic conditional laws can also be identified as CRPS mini-
mizers in a suitable sense [1].
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Approximate Bayesian Computation for Insurance and Finance

Pierre-Olivier Goffard

(joint work with Patrick Laub)

Approximate Bayesian Computation (ABC) is a statistical learning technique to
calibrate and select models by comparing observed data to simulated data. This
technique bypasses the use of the likelihood and requires only the ability to gener-
ate synthetic data from the models of interest. We apply ABC to fit and compare
insurance loss models using aggregated data. The talk is based on the work Goffard
and Laub [3].

Over a fixed time period, an insurance company experiences a random number
of claims called the claim frequency, and each claim requires the payment of a
randomly sized compensation called the claim severity. The two could be associ-
ated in an equivalent way with a policyholder, a group of policyholders or even
an entire nonlife insurance portfolio. The claim frequency is a counting random
variable while the claim sizes are non-negative continuous random variables. Let
us say that the claim frequency and the claim severity distributions are specified
by the parameters θfreq and θsev respectively, with θ = (θfreq; θsev). For each time
s = 1, . . . , t the number of claims ns and the claim sizes us := (us,1, us,2, . . . , us,ns

)
are distributed as

ns ∼ pN (n|θfreq) and (us|ns) ∼ fU (u|n, θsev).
Fitting these distributions is key for claim management purposes. For instance,
it allows one to estimate the expected cost of claims and set the premium rate
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accordingly. The mixed nature of claim data, with a discrete and a continuous
component, has lead to two different claim modelling strategies. The first strategy
is to handle the claim frequency and the claim severity separately, see for instance
[1]. The second approach gathers the two constituents in a compound model
for which data in aggregated form suffices. We take the later approach as we
assume that the claim count and amounts {(n1, u1), . . . , (nt, ut)} are unobservable.
Instead, we only have access to some real-valued summaries of the claim data at
each time, denoted by

(1) xs = Ψ(ns, us), s = 1, . . . , t.

Standard actuarial practice uses the aggregated claim sizes, defined as Ψ(n, u) =∑n
i=1 ui, and assumes that the claim frequency is Poisson distributed while the

severities are governed by a gamma distribution, we refer to the works of [4].

A Bayesian approach to estimating θ would be to treat θ as a random variable
and find (or approximate) the posterior distribution π(θ|x). Bayes’ theorem tells
us that

(2) π(θ|x) ∝ p(x|θ)π(θ),
where p(x|θ) is the likelihood and π(θ) is the prior distribution. The prior repre-
sents our beliefs about θ before seeing any of the observations and is informed by
our domain-specific expertise. The posterior distribution is a very valuable piece
of information that gathers our knowledge over the parameters. A point estimate

θ̂ may be derived by taking the mean or mode of the posterior. For an overview
on Bayesian statistics, we refer to the book of [2].

The posterior distribution (2) rarely admits a closed-form expression, so it is ap-
proximated by an empirical distribution of samples from π(θ|x). Posterior samples
are typically obtained using Markov Chain Monte Carlo (MCMC), yet a require-
ment for MCMC sampling is the ability to evaluate (at least up to a constant) the
likelihood function p(x|θ). When considering the definition of x in (1), we can see
that there is little hope of finding an expression for the likelihood function even
in simple cases (e.g. when the claim sizes are i.i.d.). If the claim sizes are not
i.i.d. or if the number of claims influences their amount, then the chance that a
tractable likelihood for x exists is extremely low. Even when a simple expression
for the likelihood exists, it can be prohibitively difficult to compute (such as in a
big data regime), and so a likelihood-free approach can be beneficial.

We advertise here a likelihood-free estimation method known as approximate
Bayesian computation (ABC). This technique has attracted a lot of attention
recently due to its wide range of applicability and its intuitive underlying princi-
ple. One resorts to ABC when the model at hand is too complicated to write the
likelihood function but still simple enough to generate artificial data. Given some
observations x, the basic principle consists in iterating the following steps:

(1) generate a potential parameter from the prior distribution θ̃ ∼ π(θ);

(2) simulate ‘fake data’ x̃ from the likelihood (x̃|θ̃) ∼ p(x|θ);
(3) if D(x, x̃) ≤ ǫ, where ǫ > 0 is small, then store θ̃,
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where D(·, ·) denotes a distance measure and ǫ is an acceptance threshold. The al-
gorithm provides us with a sample of θ’s whose distribution is close to the posterior
distribution π(θ|x).
The basic ABC algorithm outlined above is, arguably, the simplest method of
all types of statistical inference in terms of conceptual difficulty. At the same
time, this simple method is perhaps the most difficult form of inference in terms
of computational cost. We must use a modified form of this basic regime to
minimize (though not eliminate) the gigantic computational costs of ABC. ABC is
a somewhat young field (like machine learning), and the methodology of ABC and
the other likelihood-free algorithms are currently the subject of intense research.
As such, there are many variations of ABC which are under investigation, and
there is no ironclad consensus on which variation of the ABC algorithm is the
best. For a comprehensive overview on ABC, we refer to the monograph of [7]; in
finance and insurance, ABC has been considered in the context of operational risk
management by [5] and for reserving purposes by [6].
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Sharing Model Uncertainty

Frank Riedel

(joint work with Chiaki Hara, Sujoy Mukerji, Jean-Marc Tallon)

Uncertainty, as opposed to risk, is a major concern in today’s societies. Be it
financial markets during the 2007-2009 crisis, policy makers when a new virus
emerged, or farmers hit by climate change - in all situations, decision makers
faced and face uncertainties that cannot be easily quantified probabilistically. It is
therefore of crucial importance to understand whether and how economic institu-
tions can deal with and possibly hedge against this uncertainty. In this paper, we
study this question in the framework of identifiable environments in which (Knigh-
tian) uncertainty is resolved ex post, at least partially, when sufficient amounts of
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data have been collected, and agents exhibit smooth ambiguity-averse preferences
([17]), a setting that that has recently been axiomatized by [11]. Identifiability is
a necessary condition for statistical learning to occur. We thus put ourselves in a
framework where such perfect learning is possible, in principle. In experiments, we
could think of an Ellsberg experiment in which the composition of urns is revealed
after the experiment. In statistics, ergodic environments suffice for identifiability.
In real life, perfect identification is not always achievable, of course. However, in
the case of financial markets, e.g., the past volatility of a stock price is very well
known ex post. A virus, to take another example, is understood much better aa
couple of years after its first appearance. Even in climate change, it might be
possible to state after a sufficiently long time that average temperature, e.g., has
risen by at least one or two degrees. Our study thus sheds also light on the issue
of learning under ambiguity, a notoriously difficult task so far.

In identifiable environments, agents can make their consumption plans contin-
gent on models, thus allowing to make ex post insurance payments that depend
on a certain probabilistic model being true. The farmer, to take up an example
from above, can thus write an insurance contract on a temperature change of a
certain amount being true after thirty years or so. This possibility allows to study
uncertainty sharing in much more detail and to obtain more results than in general
models in which uncertainty is not identifiable.

We are thus able to study models with aggregate uncertainty, in contrast to
much of the literature on risk and uncertainty sharing that has focused on the
simpler case of no aggregate uncertainty so far. We are able to identify the en-
vironments in which a representative agent of smooth ambiguity type exists. In
such settings, we can compute quite explicitly the efficient uncertainty sharing
rules and study how consumption shares vary with different uncertainty scenarios,
depending on the respective individuals’ risk and ambiguity aversion relative to
society’s risk and ambiguity aversion.

We investigate consequences of ambiguous model uncertainty on efficient al-
locations in an exchange economy, and departing from the literature, allow for
ambiguous aggregate risk and heterogeneously ambiguity averse consumers. A
model – a statistical view of the world, comprising of parameters and distinc-
tive mechanisms– implies a specific probabilistic forecast about the states of the
world. Furthermore, the parameters and mechanisms driving a model may be
estimated and identified on the basis of objective data. However, at the point of
decision-making, the data relevant to identifying the model is still missing. Hence,
consumers are unsure what would be the appropriate probability measure to apply
to evaluate consumption contingent on a state space Ω and keep in consideration a
set P of alternative probabilistic laws. Importantly, because models are identified,
the usual assumption that consumption plans are contingent on events in the state
space now means that they can be made effectively contingent on models too.

We study the case where consumers in the economy are heterogeneously am-
biguity averse with smooth ambiguity preferences [17]. Our primary focus lies in
those economies that admit a representative consumer who is also of the smooth
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ambiguity type. This setting offers valuable and precise insights into efficient
sharing rules and the characteristics of the representative consumer. Another ad-
vantage of the setting is that the insights obtained, initially assuming that P is
point-identified, robustly extend to the case where models are only set-identified.
When aggregate risk is unambiguous we show, quite generally, that ambiguity
aversion makes no difference to the qualitative nature of efficient allocations: they
are comonotone just as under expected utility. An economy with a smooth am-
biguity averse representative consumer is characterized by consumers who exhibit
linear risk tolerance with the same marginal risk tolerance. When aggregate risk
is ambiguous, efficient sharing rules systematically deviate from the linearity that
would arise under expected utility. The deviations –which make the slope and
intercept of the linear rule model-contingent– arise to allow the more ambiguity
averse consumers to have smoother expected utility across models.

Macro-finance models that study effects of ambiguity aversion consider single
consumer economies with ambiguous aggregate risk. We show if we introduce het-
erogeneous ambiguity aversion the nature of the representative consumer can be
very different from what is widely assumed in the literature. For instance, even
if individual consumers have constant relative ambiguity aversion, the represen-
tative consumer is shown to have decreasing relative ambiguity aversion. Such a
representative consumer makes for more compelling asset-pricing predictions than
one based on homogeneous ambiguity aversion.

Related literature. Efficient risk-sharing in expected-utility economies was first
studied by [4], further refined for the HARA class of utility functions by [25], [5]
and [14] among others. Under ambiguity, [8] extended the comonotonicity result
obtained under expected utility to Choquet expected utility with common capacity.
[3], [22] and [12] further studied the case in which aggregate endowment is non-
risky and preferences are more general than Choquet-expected-utility preferences
(including, for the two latter references, the smooth ambiguity model). [23] and
[9] characterized properties of efficient risk-sharing when the aggregate endowment
is risky but not ambiguous. [2] extends some of these results to cases where
agents have possibly heterogeneous, non-convex ambiguity sensitive preferences.
[24] proves that, under HARA with common risk tolerance, a two-fund theorem
holds for maxmin-expected-utility economies (and hence efficient allocations are
comonotonic). To the best of our knowledge, no paper has studied risk-sharing
with ambiguous aggregate endowments and heterogeneous ambiguity aversion.
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Optimal investment in ambiguous financial markets with learning

Nicole Bäuerle

(joint work with Antje Mahayni)

We investigate the effects of model ambiguity preferences on optimal investment
decisions in a multi asset Black Scholes market. Since the seminal paper by [5],
we know that decision makers may have a non-neutral attitude towards model
ambiguity. As a result, preferences are decomposed into risk preferences (based on
known probabilities) and preferences concerning the degree of uncertainty about
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the (unknown) model parameters and are evaluated separately. This is in particu-
lar relevant for portfolio optimization problems. [4] suggests that model ambiguity
is at least as prominent as risk in making investment decisions.

There are different ways to incorporate model ambiguity in decision making. In
our setting, model ambiguity refers to the drift uncertainty in the dynamics of asset
prices and we apply the smooth ambiguity approach of [7] to deal with it. The
risk in asset prices itself is evaluated by a utility function applied to the terminal
wealth. Thus, the expected utility is itself a random variable (determined by the
prior distribution of the drift parameters) which is evaluated by a second utility
function (ambiguity function) capturing the model ambiguity. As in [1] we assume
that both the risk aversion and ambiguity aversion of the investor are described by
(CRRA) power functions. While [1] consider pre-commitment strategies, we take
into account for the possibility that the investor is able to gradually learn about
the drift by observing the asset price movements. Using duality results we are able
to solve the problem analytically. To the best of our knowledge this has not yet
been achieved before in our setting. Further, based on our theoretical results, we
are able to shed light on the impact and consequences of ambiguity preferences.

The underlying financial market consists of d stocks and one riskless bond
(for simplicity assumed to be identical to 1), defined on a filtered probability
space (Ω,F , (Ft),P) with finite time horizon T > 0. The price process S =
(S1(t), . . . , Sd(t))t∈[0,T ] of the d stocks will for i = 1, . . . , d be given by

(1) dSi(t) = Si(t)
[
µidt+

d∑

j=1

σijdWj(t)
]
= Si(t)

[ d∑

j=1

σijdYj(t)
]
,

where W = (W1(t), . . . ,Wd(t))
⊤
t∈[0,T ] is a d-dimensional Brownian motion, µi ∈

R, σij ∈ R+, i, j = 1, . . . , d and σ = (σij) is regular. We further set

Y (t) :=W (t) + Θt, Θ⊤ := σ−1µ, µ := (µ1, . . . , µd),

where Θ denotes the market price per unit of risk. We further assume that µ is
not known and thus a random variable. This implies that the market price of risk
Θ is also not known to the investor. However, she has a prior knowledge about Θ
in form of a prior distribution P on Rd.

Due to the self-financing condition, trading strategies π = (π1, . . . , πd) are d-
dimensional stochastic processes, where πk(t) describes the amount invested in the
k-th stock at time t ∈ [0, T ]. Strategies π should be FY -progressively measurable
(which is the filtration generated by Y or equivalently S). This means that the
agent is able to learn the right market price of risk. The associated wealth process
denoted by (Xπ

t )t∈[0,T ] is given by

(2) dXπ
t =

d∑

k=1

πk(t)
dSk(t)

Sk(t)
= π(t)σdY (t)

with initial capital x0 ∈ R. In what follows let u(x) = 1
αx

α, α < 1, α 6= 0.
The investor aims to maximize her expected utility of terminal wealth. First

we assume that the investor is ambiguity-neutral w.r.t. the unknown parameter
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and consider

(3) V (x0) = sup
π

∫
Eϑ[u(X

π
T )]P(dϑ)

where the supremum is taken over all FY -adapted strategies π for which the
stochastic integral and the expectations are defined and Xπ

T ≥ 0. We denote this
set by A. Eϑ is the conditional expectation, given Θ = ϑ. This problem is the
well-known Bayesian adaptive portfolio problem. We summarize its solution in
the following theorem ([6, 8]) (where ‖ · ‖ is the usual Euclidean norm):

Theorem 1. The maximal expected utility attained in (3) is given by

(4) V (x0) =
xα0
α

(∫

Rd

( ∫
exp

(
z · ϑ− 1

2
‖ϑ‖2T

)
P(dϑ)

)γ
ϕT (z)dz

)1/γ

, x0 > 0

where γ = 1/(1− α), ϕT is the density of the d-dimensional normal distribution
N (0, T I) (I being the identity matrix). The optimal fractions invested in the stocks
are also given by an explicit formula.

Now we are interested in an investor who takes model ambiguity into account,
i.e. instead of (3) we consider for v(x) = 1

λ x
λ, λ < 1, λ 6= 0 the problem ([1])

sup
π∈A

v−1

∫
v ◦ u−1Eϑ[u(X

π
T )]P(dϑ) = sup

π∈A

(∫
(Eϑ[(X

π
T )
α])λ/α P(dϑ)

)1/λ

(5)

This means that model ambiguity, represented by an uncertain market price of
risk, is evaluated with a second utility function v which is here of the same form
but with possibly different parameter. In case α > 0 problem (5) is equivalent to

(6) sup
π∈A

(
E

[(
EΘ[(X

π
T )
α]
)λ/α])α/λ

,

Here we restrict to the case that λ > α > 0 and define p := λ/α > 1. The
economic interpretation is that the agent is ambiguity-loving (the ambiguity-averse
case is similar). By using the Lp norm ‖ · ‖p we can write problem (6) as

(7) sup
π∈A

‖EΘ[(X
π
T )
α]‖p

where the norm is w.r.t. Θ. It is well-known that the Lp norm has the following
dual representation for a r.v. X ≥ 0, where 1/p+ 1/q = 1 (see e.g. [9]):

Lemma 1. If p := λ/α > 1 we obtain for non-negative X ∈ Lp

(8) ‖X‖p = sup
{∫

XdQ :
∥∥∥dQ
dP

∥∥∥
q
≤ 1
}
.

where on the right-hand side of (8) the supremum is taken over all measures Q

(not necessarily probability measures) which are absolutely continuous w.r.t. P and
satisfy the constraint. Moreover, an optimal measure Q∗ exists.

In what follows define the set of measures Q as the set of measures which
satisfy the constraints in (8). This gives immediately rise to the following solution
algorithm for our problem:
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Theorem 2. In the model of this subsection we have

sup
π∈A

sup
Q∈Q

∫
Eϑ[(X

π
T )
α]Q(dϑ) = sup

Q∈Q

sup
π∈A

∫
Eϑ[(X

π
T )
α]Q(dϑ) =

∫
Eϑ[(X

π∗

T )α]Q∗(dϑ).

After normalizing Q, the inner optimization problem is exactly the Bayesian port-
folio problem with distribution Q̃ := Q/Q(R) for the unknown parameter. So
solving (6) boils down to solving the classical Bayesian portfolio problem first with
value given in Theorem 1 and then in a second step finding the optimal prior dis-
tribution implied by Q∗ which is obtained from the outer optimization problem.
The optimal strategy π∗ is then the one in Theorem 1 with P replaced by Q∗.

An approach like this may be generalized to situations where uncertainty and
ambiguity are measured by other means (see e.g. [3]). The extended abstract is
based on [2].
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Investment under Uncertain Preferences

Mogens Steffensen

(joint work with S. Desmettre and J. Søe)

We consider classes of dynamic decision problems where an investor maximizes
utility but faces random preferences. We consider three versions of the problem.

In one version, the investor optimizes expected utility where the expectation
is taken with respect to both financial and preference uncertainty. That is based
on Steffensen and Søe (2023). We formalize a consumption–investment–insurance
problem with the distinction of a state-dependent relative risk aversion. The state
dependence refers to the state of the finite state Markov chain that also formalizes
insurable risks such as health and lifetime uncertainty. We derive and analyze the
implicit solution to the problem and compare it with special cases in the literature.
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Two other versions are based on certainty equivalents. We tackle the time-
consistency issues arising from that formulation by applying the equilibrium theory
approach.

In one version, the investor learns nothing about his preferences as time passes.
That is based on Desmettre and Steffensen (2023). We provide the proper defi-
nitions and prove a rigorous verification theorem. We complete the calculations
for the cases of power and exponential utility. For power utility, we illustrate
in a numerical example, that the equilibrium stock proportion is independent of
wealth, but decreasing in time, which we also supplement by a theoretical discus-
sion. For exponential utility, the usual constant absolute risk aversion is replaced
by its expectation.

The main results of Desmettre and Steffensen (2023) are gathered in the fol-
lowing verification theorem and corollary. Definitions and proofs can be found in
Desmettre and Steffensen (2023). We model the parameter of a utility function
γ as a real-valued random variable. Examples are the constant (known) relative
and absolute risk aversions that are replaced by random variables. We form an
optimization problem based on the idea to maximize the certainty equivalent of
terminal wealth w.r.t. a random risk aversion in an equilibrium sense, i.e. we want
to maximize the reward functional

(1) Jπ(t, x) :=

∫
(uγ)−1 (Et,x[u

γ(Xπ(T ))]) dΓ(γ) ,

where Γ is the Cumulative Distribution Function (CDF) of γ, and we integrate over
the support of the corresponding CDF. Moreover, we assume that the dependence
of the utility function u. on γ ∼ Γ is such that the integral in (1) is always well-
defined. Note that now we decorate the utility function by subscript γ to highlight
its dependence on risk aversion.

We now first formalize the equilibrium problem and then characterize its solu-
tion in a verification theorem. We introduce

yπ,γ (t, x) := Et,x [u
γ (Xπ (T ))] ,(2)

such that the objective of the investor is to maximize the reward functional

Jπ (t, x) :=

∫
(uγ)−1 (yπ,γ (t, x)) dΓ (γ)(3)

in a given sense.

Theorem 1 (Verification Theorem). Assume that there exist functions U ∈ C1,2,
Y γ ∈ C1,2 for all γ, such that

Ut(t, x) = inf
π

{
− (r + π (α− r))xUx(t, x)− 0.5π2x2σ2Uxx(t, x) +Ht(t, x)

+ (r + π(α− r))xHx(t, x) + 0.5π2x2σ2Hxx(t, x)

−
∫
ιγ(Y γ(t, x))(Y γt (t, x)

+ (r + π(α− r)x)Y γ
x (t, x) + 0.5σ2π2x2Y γxx(t, x)) dΓ(γ)

}
,

(4)
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and

Y γt (t, x) = −(r + π̂(α− r))xY γ
x (t, x)− 0.5σ2π̂2x2Y γxx(t, x) ,(5)

where H(t, x) =
∫
(uγ)−1(Y γ(t, x))dΓ(γ) ∈ C1,2 and

π̂ = arg inf
π

{
− (r + π (α− r))xUx(t, x)− 0.5π2x2σ2Uxx(t, x) +Ht(t, x)

+ (r + π(α − r))xHx(t, x) + 0.5π2x2σ2Hxx(t, x)

−
∫
ιγ(Y γ(t, x))(Y γt (t, x)

+ (r + π(α − r)x)Y γx (t, x) + 0.5σ2π2x2Y γxx(t, x)) dΓ(γ)
}
,

(6)

with boundary conditions

U(T, x) = x, and Y γ(T, x) = uγ(x) for all γ .(7)

Furthermore assume that U, H, and Y γ for all γ, belong to the space L2(X π̂).
Then π̂ is an equilibrium control, and we have that

V (t, x) = U(t, x) ,(8)

yπ̂,γ(t, x) = Y γ(t, x) for all γ .(9)

For the special form of H given by

H(t, x) =

∫
(uγ)−1(Y γ(t, x)) dΓ(γ)

we obtain as an immediate consequence:

Corollary 1. From the pseudo HJB (4) we obtain by using

H(t, x) =

∫
(uγ)−1(Y γ(t, x)) dΓ(γ) ,

Ht(t, x) =

∫
ιγ(Y γ(t, x))Y γt (t, x) dΓ(γ) ,

Hx(t, x) =

∫
ιγ(Y γ(t, x))Y γx (t, x) dΓ(γ) ,

Hxx(t, x) =

∫
ιγ(Y γ(t, x))Y γxx(t, x) dΓ(γ) +

∫
(ιγ)′(Y γ(t, x))(Y γx (t, x))

2 dΓ(γ) ,

the following form:

Ut(t, x) = inf
π

{
− (r + π(α− r))xUx(t, x) − 0.5σ2π2x2Uxx(t, x)

+ 0.5σ2π2x2
∫
(ιγ)′(Y γ(t, x))(Y γx (t, x))2 dΓ(γ)

}
.

(10)

In this formulation, the non-linearity arising within the time-inconsistent control
problem is clearly visible, cf. [1, Section 16.2].



New Challenges in the Interplay between Finance and Insurance 2587

Risk aversion is an observed stochastic process in another version (work in
progress, new results). That version can, e.g., be motivated by preferences that
directly depend on the state of health. We introduce the notion of preferences
concerning preference risk and find a case where the investor invests as if the
(conditional) expected risk aversion were realized.
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Reduced-form framework under model uncertainty

Katharina Oberpriller

(joint work with Francesca Biagini, Andrea Mazzon)

The talk is based on [3],[4] and [5]. In this talk we introduce a reduced-form
framework for multiple ordered default times under model uncertainty and study
some applications in insurance and finance. To this purpose we define a sublinear
conditional operator with respect to a family of probability measures possibly
mutually singular to each other in presence of multiple ordered default times. In
this way we extend the classical literature on credit risk in presence of multiple
defaults, see for example [11], [12], [13] and [17] to the case of a setting where
many different probability models can be taken into account.
Over the last years, several different approaches have been developed in order to
establish such robust settings which are independent of the underlying probability
distribution, see among others [1], [7], [8], [9], [10], [15], [16], [19], [20], [22], [23],
[24] and [25]. However, the above results hold only on the canonical space endowed
with the natural filtration. In credit risk and insurance modeling it is fundamental
to model multiple random events occurring as a surprise, such as defaults in a
network of financial institutions or the loss occurrences of a portfolio of policy
holders. This requires to consider filtrations with a dependence structure. Such
a problem is mentioned in [2] and solved for an initial enlarged filtration. In [6]
they define a sublinear conditional operator with respect to a filtration which is
progressively enlarged by one random time.

In this paper we extend the approach in [6] and define a sublinear conditional
operator with respect to a filtration progressively enlarged by multiple ordered
stopping times. Such an extension is connected to several additional technical
challenges with respect to the construction in [6].

First, we cannot consider default times in all generality, but we need to focus
on a family of ordered stopping times. In particular, we work in the setting of
the top-down model for increasing default times introduced in [11], in order to
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model the loss of CDOs, as a generalization to the well known Cox model in
[18]. More specifically, we start with a reference filtration F and define a family
of ordered stopping times τ1, ..., τN , in a similar way as done in [11]. We then
progressively enlarge F with the filtrations Hn generated by (1{τn≤t})t≥0, n =

1, ..., N , and define G(n) := F ∨ H1 ∨ ... ∨ Hn, n = 1, ..., N . In our case, we
construct τ1 < ... < τN in such a way that τ̃n := τn − τn−1 is independent of
Hn−1
t for any n = 2, ..., N, t ≥ 0 conditionally on F∞. In particular, the intensities

of the stopping times are driven by F-adapted stochastic processes which may
be used to model dependence structures driven by common risk factors and also
contagion effects. We first address the problem of computing G(N)-conditional
expectations of a given random variable under one given prior in terms of a sum of
F-conditional expectations depending on how many defaults have happened before
time t. This is also a new contribution to the literature on ordered multiple default
times in the classical case, i.e., in presence of only one probability measure. For
an analogous result following the density approach for modeling successive default
times, we refer to [12]. The main technical issue in our setting is to compute
conditional expectations when a strictly positive number of defaults, but not all
the N defaults, have happened. Already under a fixed prior the results for multiple
ordered default times are not a trivial extension of the ones in a single default
setting.

We then use this representation to define the sublinear conditional operator
ẼN under model uncertainty with respect to the progressively enlarged filtration
G(N). As in [6], our definition makes use of the sublinear conditional operator
introduced by Nutz and van Handel in [21] with respect to F. To this purpose we
assume that F is given by the canonical filtration. In particular, we show that our
construction is consistent with the ones in [21] in presence of no default and in [6]
for N = 1, respectively. The main technical challenge is to prove a weak dynamic
programming principle for the operator as done in [6] for the single default set-
ting, as it requires to exchange the order of integration between the operator and
expectations under a given prior. We then use the conditional sublinear operator
to evaluate credit portfolio derivatives under model uncertainty. In particular, we
focus on the valuation of the so called i-th to default contingent claims CCT(i), for
i = 1, ..., N . Moreover, we discuss if the valuation of such financial or insurance
products with the sublinear conditional operator corresponds to a sensitive pricing
rule. As done in [6] for the single default case, we can establish a relation between
the sublinear conditional operator and the superhedging problem in a multiple de-
fault setting for a generic payment streams under given conditions. Furthermore,
we show that the sublinear conditional operator can be used to price a contingent
claim such that the extended market allows no arbitrage of the first kind under
model uncertainty as in [7]. This result requires assumptions about the trading
strategies which are, however, not restrictive in an insurance setting. By modeling
the intensity processes as an affine process under uncertainty, introduced for ex-
ample in [14] and [3], the valuation of several relevant payoffs can be numerically
computed by solving non-linear PDEs.
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Multivariate Portfolio Choice via Quantiles

Carole Bernard

(joint work with Andrea Perchiazzo, Steven Vanduffel)

The talk was organized as follows. First, I recalled the quantile approach of [8]
for an agent maximizing a one-dimensional objective function that is law-invariant
and non-decreasing. The quantile approach builds on the concept of cost-efficiency
originally proposed by [5, 6] and further discussed in [1]. Then I related the
multivariate portfolio choice (see (1) below) to a risk sharing problem (see (3)
hereafter) as studied e.g., by [3] in the context of a multivariate expected utility
setting. We then show how the quantile approach used for univariate optimal
portfolio choice can be also useful to solve the multivariate portfolio choice as
in (1) below. To do so, we use the concept of multivariate cost-efficiency ([2]).
Finally, two examples are fully solved: the optimization of a sum of expected
CRRA utility functions and the infconvolution of the Range Value-at-Risk (RVaR).
For this latter example, we make use of the explicit results of [7] and show that
the portfolio problem that minimizes the sum of d RVaRs can be rewritten as
a portfolio that maximizes a one-dimensional objective function, i.e., a distorted
expectation. Furthermore, this problem has been explicitly solved in [4] and [9].

Specifically, we assume a frictionless and arbitrage-free financial market living
on a probability space (Ω,F ,P) where Ω is a non-empty sample space, F is the σ-
algebra generated by Ω and P denotes the probability measure on Ω. We consider
a fixed investment horizon T > 0 without intermediate consumption in which a
final payoff XT received at time T has an initial price given as E [ξTXT ] where ξT
is the pricing kernel, agreed by all agents, with positive density on R+ \ {0}. Let
V (·) be a multivariate law-invariant objective function. We consider the problem

(1) sup
(X1,X2,...,Xd)∈A

V (X1, X2, . . . , Xd) ,

where A =
{
(X1, X2, . . . , Xd) ∈ K s.t. E

[
ξT
∑d

i=1Xi

]
= w0

}
, K is the set of ran-

dom d-vector and w0 > 0 denotes the total budget that must be allocated in d
dimensions. The goal is to optimize a multivariate law-invariant objective function
V (·) over a set of admissible (X1, . . . , Xd) ∈ A such that the total budget w0 is
allocated.
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We assume that the objective function V (·) is law-invariant (that is, if two vec-
tors (X1, . . . , Xd) and (Y1, . . . , Yd) are equal in distribution, then V (X1, . . . , Xd) =
V (Y1, . . . , Yd)). Furthermore, we assume that V (·) is strictly increasing in at least
one of the dimensions. Without loss of generality, we can thus assume that for
any constant a ∈ R+ \ {0}, V (X1 + a,X2, . . . , Xd) > V (X1, X2, . . . , Xd). Finally,
we assume that the general portfolio problem (see (1)) is well-posed in that there
exists an optimal multivariate portfolio (X⋆

1 , . . . , X
⋆
d ) leading to a maximum finite

value for V (X1, . . . , Xd).
To solve the general multivariate portfolio problem in (1), we first solve a mul-

tivariate risk sharing problem in the absence of a financial market that we then
use to provide the solution to (1).

Let S be a random variable. Define the risk sharing of S as the following set of
random vectors associated to S

(2) Ad(S) :=

{
(X1, X2, . . . , Xd) ∈ K :

d∑

i=1

Xi = S

}
.

The optimal multivariate risk sharing associated to the total risk S solves

(3) sup
(X1,X2,...,Xd)∈Ad(S)

V (X1, . . . , Xd).

Denote by

(Y1(S), . . . , Yd(S))

a solution to (3). In the context of the additive multivariate utility function, i.e.,

where V (X1, . . . , Xd) is of the form V (X1, . . . , Xd) =
∑d

i=1 Ui (Xi) in which Ui
for i = 1, . . . , d are univariate exponential utility functions or univariate CRRA
(Constant Relative Risk Aversion) utility functions, the multivariate risk sharing
problem (3) can easily be solved explicitly. In the case of an objective function
based on quantile risk measures (e.g., RVaR), a solution for the multivariate risk
sharing problem is found in [7].
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Polynomial interacting particle systems and non-linear SPDEs for
capital distribution curves

Christa Cuchiero

(joint work with Florian Huber)

The stability of the capital distribution curves over time, as shown in Figure 1,
can be seen as a universal phenomenon in finance. By this we here mean a robust

Figure 1. Capital distribution curves: 1926 - 2016, source [4]

empirical feature that holds universally across different markets, asset classes and
in particular over time. Each of the above curves depicts the relative market
capitalization in ranked order of the major US markets’ stocks on a log-log scale
from 1926 to 2016. The relative market capitalization or market weight is defined
as the percentage of the market capitalization of a fixed company, i.e., the number
of outstanding shares times the current price of one share, with respect to the
capitalization of the whole market. The striking feature of these curves is their
remarkably stable shape over the last century. Although the market weights of
each company fluctuate stochastically the shape of the capital distribution curves
differs (in first order) over the years only by the number of stocks present in
the considered market. This fundamental observation was the starting point for
R. Fernholz to develop stochastic portfolio theory about 20 years ago, see [1].

On the mathematical side of financial modeling we also encounter universal
structures, such as the interplay of potentially infinitely many factors as well as
mean field interactions and limits. Universal model classes that are able to capture
these phenomena and appear throughout in mathematical finance, but also in
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other fields like population genetics and physics, are (infinite dimensional) affine
and polynomial processes.

One goal of this work is to combine mathematical with financial universality
and to model the capital distribution curves via polynomial processes, which have
empirically proved to provide a very good fit to these curves.

More precisely, we extend volatility stabilized market models, a particular class
of polynomial models introduced by Fernholz et al [2], by allowing for a common
noise term such that the models remains polynomial. Indeed, we consider the
following model for the N individual market capitalizations

dSi(t) = β

N∑

j=1

Sj(t)dt+
√
α

√√√√Si(t)

N∑

j=1

Sj(t)dW
i
t +

√
(N − α)Si(t)dW

0
t ,

where α ≥ 0, β ≥ α
2 and W i for i ∈ {1, . . . , N} are the idiosyncratic Brownian

motions and W 0 the common one. The introduction of this common noise term
permits to overcome the absence of correlation between the individual stocks in
the original model of [2].

Inspired by M. Shkolnikov [5] who studied large volatility stabilized markets,
we then analyze the limit as N → ∞. To do so we rescale time, i.e. let time go
slower as we add particles, and consider X(t) := S(t/N)

dXi(t) =
β

N

N∑

j=1

Xj(t)dt+

√
α

N

√
Xi(t)

√√√√
N∑

j=1

Xj(t)dW
i
t +

√
1− α

N
Xi(t)dW

0
t .

Taking formal limits and denoting the typical particle in the limit by Y then yields

dY (t) = βE[Y (t)|σ(W 0)]dt+
√
αY (t)E[Y (t)|σ(W 0)]dWt + Y (t)dW 0

t .(1)

for some Brownian motion W independent of W 0, and where σ(W 0) denotes the
sigma-algebra generated by W 0. To make this rigorous we consider, as usual for
McKean-Vlasov equations, the particles’ empirical probability measure on path
space, i.e.

ρN :=
1

N

N∑

i=1

δXi

and its “mean-field limit” (ρNt )t∈[0,T ] → (ρt)t∈[0,T ] in C([0, T ];M1(R+)), where
T > 0 denotes some finite time and M1(R+) probability measures over R+ with
finite first moment, i.e.

M1(R+) = {µ ∈M(R+)|
∫

R+

xµ(dx) =: 〈x, µ〉 <∞},

equipped with the Wasserstein-1 distance. Then, we show that the limit ρ, which
is the unique solution of a degenerate, non-linear SPDE, corresponds to the con-
ditional law of the typical particle Y , i.e. ρ = L(Y (·)|σ(W 0)). and 〈ρt, idx〉 =
E[Y (t)|σ(W 0)]. Indeed, our two main results read as follows:



2594 Oberwolfach Report 44/2023

Theorem 1. Under minor conditions on the initial values of the particle system,
each convergent subsequence of (ρN· )N∈N converges a.s. in C([0, T ],M1(R+)) to
the unique probabilistically strong, analytically weak, M1(R+)-valued solution ρ of
the non-linear SPDE

dρt = (
α

2
〈ρt, idx〉∂2x(xρt) +

1

2
∂2x(x

2ρt)− β〈ρt, idx〉∂xρt)dt− ∂x(xρt)dW
0
t .(2)

Theorem 2. Consider (1) with 0 < Y (0) ∈ L2(Ω), independent of W 0, and let ρ
be the unique solution of (2) with ρ0 = L(Y (0)).

• Then, any solution to (1) satisfies ρ = L(Y (·)|σ(W 0)) as well as

E[Y (t)|σ(W 0)] = 〈ρt, idx〉 = 〈ρ0, idx〉 exp((β − 1

2
)t+W 0

t ) =: S(t).

• The two-dimensional process (Y,E[Y (t)|σ(W 0)]) =: (Y, S) is a polynomial
diffusion on R2

++ which is unique in law. Its dynamics are given by

dY (t) = βS(t)dt+
√
α
√
Y (t)S(t)dWt + Y (t)dW 0

t

dS(t) = βS(t)dt+ S(t)dW 0
t , S0 = 〈ρ0, idx〉.

One of the mathematical subtleties of these results lies in the uniqueness proof
which involves fine estimates with respect to weighted Sobolev norms. This unique-
ness result then also allows us to conclude uniqueness in law of the polynomial
process (Y,E

[
Y |σ(W 0)

]
) which was open so far.

Let us remark that behind the intriguing polynomial property of (Y,E[Y (t)|
σ(W 0)]) is a generic structure. Indeed, consider (for simplicity) a one-dimensional
conditional McKean-Vlasov SDE of the form

dZt = b(Zt,E[Z
1
t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dt

+
√
c(Zt,E[Z1

t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dWt

+ c0(Zt,E[Z
1
t |σ(W 0)], . . . ,E[Zkt |σ(W 0)])dW 0

t , 0 ≤ t ≤ T.

Then, if c is quadratic in the first variable and b and c0 are affine in the first
variable, the conditional moments become a k-dimensional autonomous standard
Itô-SDE driven by W 0. Provided that a (pathwise) unique solution exists for this
SDE, its components then correspond to the conditional moments E[Zi|σ(W 0)] for
i = 1, . . . , k. From the theory of time-inhomogeneous polynomial processes (see
[3]), one should then be able to deduce existence and uniqueness for a large class
of conditional McKean-Vlasov SDEs beyond the standard conditions of Lipschitz
continuity and uniform ellipticity. Proving this conjecture rigorously is subject of
ongoing work.
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Ergodic robust maximization of asymptotic growth with stochastic
factor processes

Josef Teichmann

(joint work with David Itkin, Martin Larsson, Benedikt Koch)

We consider a robust asymptotic growth problem under model uncertainty in the
presence of stochastic factors. We fix two inputs representing the instantaneous
covariance for the asset price processX , which depends on an additional stochastic
factor process Y , as well as the invariant density of X together with Y . The
stochastic factor process Y has continuous trajectories, but is not even required
to be a semimartingale. Our setup allows for drift uncertainty in X and model
uncertainty for the local dynamics of Y . There are several interpretation of Y : it
could model stochastic covariance as it often happens in Finance, but it could also
be a numerical model for uncertainty of the instantanous covariance function for
X .

This work builds upon a recent paper of Kardaras & Robertson (AAP 2022),
where the authors consider an analogous problem, however, without the additional
stochastic factor process. Under suitable, quite weak assumptions we are able to
characterize the robust optimal trading strategy and the robust optimal growth
rate. The optimal strategy is shown to be functionally generated and, remarkably,
does not depend on the factor process Y . We also construct a worst case model for
the functionally generated strategy thereby fully solving the min-max problem.

Our result provides a comprehensive answer to a question proposed by Fernholz
in 2002. We also show that the optimal strategy remains optimal even in the more
restricted case where Y is a semimartingale and the joint covariation structure of
X and Y is prescribed.

Our results are obtained using a combination of techniques from partial differ-
ential equations, calculus of variations, and generalized Dirichlet forms.

Collective Arbitrage and the Value of Cooperation

Thilo Meyer-Brandis

(joint work with Francesca Biagini, Alessandro Doldi, Jean-Pierre Fouque,
Marco Frittelli)

The theory developed in this paper aims at expanding the classical Arbitrage
Pricing Theory to a setting where N agents are investing in stochastic security
markets and are allowed to cooperate through suitable exchanges. More precisely,
we suppose that each agent is allowed to invest in a subset of the available assets
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(X1, . . . , XJ), for a given J ∈ N, and in a common riskless asset. Note that we
do not exclude that such subset coincides with the full set (X1, . . . , XJ). The
novel notions of Collective Arbitrage and Collective Super-replication, are based
on the possibility that the N agents may additionally enter in a zero-sum risk
exchange mechanism, where no money is injected or taken out of the overall system.
Cooperation and the multi-dimensional aspect are the key features of Collective
Arbitrage and Collective Super-replication. In this setting agents not only may
invest in their respective market but may additionally cooperate to improve their
positions by taking advantage of the risk exchanges. In the case of one single
agent, the theory reduces to the classical one. There is an extensive literature
in recent years on variations around the concept of one-agent No Arbitrage or
No Free Lunch and we refer to the books Delbaen Schaermayer (2006) [5] and
Föllmer and Schied (2014) [6], and references therein, for a detailed overview of
the topic. Departing from this stream of literature, the main aim of this paper
is to understand the consequences of the cooperation between several agents in
relation to Arbitrage and Super-replication.

Before moving into the details of our new setup, we briefly summarize the
classical one-agent situation. Let a filtered probability space (Ω,F ,F, P ), with
F = {Ft}t∈T , T = {1, . . . , T } be given, and denote by X = (X1, . . . , XJ) the
J adapted stochastic processes representing the prices of J securities. The set
of admissible trading strategies is denoted by H and let K be the set of time-T
stochastic integral of H ∈ H with respect to X . The set K represents all the
possible terminal time-T payoffs available in the market from admissible trading
strategies and having zero initial cost.

An arbitrage opportunity is an admissible trading strategy H ∈ H, having
zero initial cost and producing a non negative final payoff k ∈ K, being strictly
positive with positive probability. Equivalently, we have no arbitrage in this setting
if the only non negative element in K is P -a.s. equal to 0, or more formally
K ∩ L0

+(Ω,F , P ) = {0}.
In this paper, we generalize the setting to multiple agents that might cooperate

with each other. This leads to the new concepts of Collective Arbitrage and
Collective Super-replication which we shortly describe in the following.

Collective Arbitrage. Since each agent i = 1, . . . , N is allowed to invest only in
a subset of the available assets (X1, . . . , XJ), we define, similarly to the notion of
the set K, the market Ki of agent i, that is the space of all the possible time-T
payoffs that agent i can obtain by using admissible trading strategies in his/her
allowed investments and having zero initial cost.

Inspired by [4] we consider the set of all zero-sum risk exchanges

Y0 =

{
Y ∈ (L0(Ω,F , P ))N |

N∑

i=1

Y i = 0 P -a.s.

}
,

and the set Y of possible/allowed exchanges

Y ⊆ Y0 such that 0 ∈ Y.
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We stress that even if the overall sum is P -a.s. equal to 0, each components Y i

of Y ∈ Y is in general a random variable. If Y i is positive on some event, agent i
is receiving, on that event, from the collection of the other agents some (positive)
amount of cash. So Y ∈ Y represents the amount that the agents may exchange
among themselves with the requirement that the overall amount distributed is
equal to zero.
A Collective Arbitrage is a vector (k1, . . . , kN ), where ki ∈ Ki for each i, and a
vector Y = (Y 1, . . . , Y N ) ∈ Y such that

ki + Y i ≥ 0, P -a.s. for all i ∈ {1, . . . , N},
and

P (kj + Y j > 0) > 0 for at least one j ∈ {1, . . . , N}.
One may immediately notice that if N = 1, then Y ∈ Y must be equal to 0 and

thus a Collective Arbitrage reduces to a Classical Arbitrage.
However, for N ≥ 2, in a Collective Arbitrage, agents are entangled by the vector
of exchanges Y ∈ Y: this additional possible cooperation may create a Collective
Arbitrage even if there is No Arbitrage for each single agent.

We study the implications of the assumption of No Collective Arbitrage with
respect to the set Y, which we denote in short by NCA(Y). We also write NAi

for the No Arbitrage condition (in the classical sense) for agent i in marketKi and
NA for the No Arbitrage condition (in the classical sense) in the global market
K.

It is easy to verify that under very reasonable conditions the following implica-
tions hold

NA ⇒ NCA(Y) ⇒ NAi ∀i ∈ {1, . . . , N},
but none of the reverse implication holds true in general. We show that the
strongest condition NA is equivalent to NCA(Y) for the “largest”choice Y = Y0,
while the weakest condition, NAi ∀i, is equivalent to NCA(Y) for the “small-
est”choice Y = Y0 ∩ (L0(Ω,F0, P ))

N . The latter space actually consists of zero-
sum deterministic vectors, when F0 is the trivial sigma algebra. However, for
general sets Y the notions of NCA(Y) give rise to new concepts.

We analyse the conditions under which a new type of Fundamental Theorem
of Asset Pricing holds, that we label Collective FTAP (CFTAP). Differently from
the classical version, the CFTAP depends of course on the properties of the set
of exchanges Y, and so we provide several versions of such a theorem. On the
technical side, in the classical case the NA condition implies that the set (K −
L0
+(Ω,F , P )) is closed in probability. This property is paramount to prove the

FTAP and the dual representation of the super-replication price. Analogously, in
our collective setting we need to show the closedness in probability of the analogue
set denoted by KY . We show such closure under some specific assumptions on
the set Y and under the assumption of NCA(Y).

The key novel feature in the CFTAP is that equivalent martingale measures have
to be replaced by vectors (Q1, . . . , QN) of equivalent martingale measures, one for
each agent and theirs corresponding market, fulfilling in addition the polarity
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property

(1)

N∑

i=1

EQi [Y i] ≤ 0 , ∀Y ∈ Y.

We stress that the findings of this paper take particularly tractable, yet informative
and meaningful forms in a finite probability space setup. Indeed, the fact that
the agents are allowed to cooperate and the assumption of NCA(Y) has several
consequences also in the pricing of contingent claims. This is particularly evident
in the super-replication of N contingent claims.

Collective Super-replication. We consider the problem ofN agents each super-
replicating a contingent claim gi, i = 1, . . . , N , which is a F -measurable random
variable. We set g = (g1, . . . , gN ). As an immediate extension of the classical
super-replication price, we first introduce the overall super-replication price

ρN+ (g) := inf

{
N∑

i=1

mi | ∃ki ∈ Ki,m ∈ RN s.t. mi + ki ≥ gi ∀i
}
.

If we use ρi,+(g
i) for the classical super-replication of the single claim gi, we may

easily recognize that

(2) ρN+ (g) =

N∑

i=1

ρi,+(g
i).

In the spirit of Systemic Risk Measures with random allocations in [2], we introduce
the Collective super-replication of the N claims g = (g1, . . . , gN ) as

ρY+(g) := inf

{
N∑

i=1

mi | ∃ki ∈ Ki,m ∈ RN , Y ∈ Y s.t. mi + ki + Y i ≥ gi ∀i
}
,

and show that under NCA(Y) the definition is well posed. The functional ρY+(g)

and ρN+ (g) both represent the minimal total amount needed to super-replicate

simultaneously all claims (g1, ..., gN). For the Collective super-replication price
ρY+(g) we allow an additional exchange among the agents, as described by Y.
As 0 ∈ Y, we clearly have ρY+ ≤ ρN+ . Thus Collective super-replication is less
expensive than classical super-replication: cooperation helps to reduce the cost of
super-replication and (ρN+ (g)− ρY+(g)) ≥ 0 is the value of cooperation with respect
to g.

Under the NCA(Y) assumption and using the closure of the set KY , we prove
the following version of the pricing-hedging duality

(3) ρY+(g) = sup
Q∈MY

N∑

i=1

EQi [gi],

where MY is the set of vectors of martingale measures satisfying the polarity

condition (1). When problem (3) admits an optimum Q̂ = (Q̂1, . . . , Q̂N ), which
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clearly will depend on Y, we derive the following formula
(4)

ρY+(g) =

N∑

i=1

inf
{
m ∈ R | ∃ki ∈ Ki, Y

i with EQ̂i [Y
i] = 0 s.t. m+ ki + Y i ≥ gi

}
.

Note that in (4), (Y 1, . . . , Y N ) is not required to belong to Y, but every Y i must
have zero cost under each component of the endogenously determined pricing

vector Q̂. This is a strong fairness property associated to the value ρY+(g). Indeed,
each term in the summation on the RHS of (4) is the individual super-replication
price of the claim gi under the assumption that the agent i is “pricing”using the

pricing functional assigned by Q̂i, so that both ki and Y i have zero value under

Q̂i. Thus the interpretation of ρY+(g) is twofold:

(i) ρY+(g) is the super-replication of the N claims (g1, . . . , gN) when agents
are allowed to exchange scenario dependent amounts under the condition

that the overall exchanges
∑N
i=1 Y

i is equal to 0;

(ii) ρY+(g) is the sum of the individual super-replication price of each claim gi

under the assumption that each agent is using the pricing measure Q̂i.

This fairness aspect is discussed in the spirit of [3] and [1].
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Some thoughts on large financial markets under model uncertainty
(discrete time)

Irene Klein

(joint work with Christa Cuchiero, Thorsten Schmidt)

All the ideas in the talk are based on joint work in progress with Christa Cuchiero
and Thorsten Schmidt. Theorems 2 and 3 below currently are in the state of
well-founded conjectures. The proofs still have to be made precise with all details.

We present some ideas for large financial markets in discrete time under model
uncertainty. We consider a classical model of a large financial market (LFM) on
a sequence of probability spaces as in Kabanov and Kramkov (1994) [3]. For
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each n ≥ 1, the ”small” market n in the sequence is defined as follows. Let
(Ωn,Fn, (Fn

t )t=0,1,...,Tn
) be a filtered measure space defined as in Bouchard and

Nutz (2015) [1]. As there, let Pn be a convex set of probability measures on

(Ωn,Fn). The risky assets are d(n) Borel-measurable stocks Snt = (Sn,1t , ..., S
n,d(n)
t ) :

Ωnt → Rd(n), where, for each t = 0, 1, . . . , Tn the set Ωnt is defined as in [1], i.e., the
t-fold Cartesian product of a Polish space Ωn1 and Ωn0 is a singleton. Let Hn be the
set of all predictable Rd(n)-valued processes on (Ωn,Fn, (Fn

t )t=0,1,...,Tn
). Then, a

portfolio in market n with strategy Hn ∈ Hn is given by

Xn
t := (Hn · Sn)t =

d(n)∑

k=1

t∑

u=1

Hn,k
u (Sn,ku − Sn,ku−1), t = 1, . . . Tn,

where Xn
0 = 0. Now we give the definition of a LFM under model uncertainty.

Definition 1. A large financial market under model uncertainty is a sequence of
small markets n as given above with d(n) risky stocks in discrete time and time
horizons Tn <∞.

As usual in the theory of large financial markets, we will assume that each small
market n satisfies no arbitrage (NA) where we use the robust NA condition of [1]:

Definition 2. The market n satisfies the condition NA(Pn) if for all Hn ∈ Hn

(Hn · Sn)Tn
≥ 0 Pn-q.s. implies (Hn · Sn)Tn

= 0 Pn-q.s.
In the above definition q.s. stands for quasi surely. A property is said to hold

Pn-q.s. if it holds outside a polar set A′ for Pn, that is, a set A′ such that A′ ⊂ A
for some A ∈ Fn with Pn(A) = 0 for all Pn ∈ Pn.

Let us recall the connection to martingale measures from [1]. On market n we
define the following set Qn of probability measures. (Note that, as Pn is a convex
set by assumption, also Qn is convex).

Definition 3.

Qn = {Qn ≪ Pn : Qn is a martingale measure for Sn,k, k = 1, . . . , d(n)},
where Qn ≪ Pn means that for Qn ∈ Qn there exists Pn ∈ Pn such that Qn ≪
Pn.

As a consequence of the NA assumption on each small market n the following
existence of martingale measures hold:

Theorem 1 (FTAP (Bouchard, Nutz 2015)). The following are equivalent:

(1) NA(Pn) holds.
(2) For all Pn ∈ Pn there exists Qn ∈ Qn such that Pn ≪ Qn.
(3) Pn and Qn have the same polar sets.

We suggest now to define a notion of asymptotic arbitrage with model uncer-
tainty on the large financial market. We will adapt here the concept of asymptotic
arbitrage of first kind (AA1) as of [3]. Observe that this kind of asymptotic ar-
bitrage is, if all Ωn coincide, equivalent to the concept unbounded profit with
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bounded risk defined in Karatzas and Kardaras (2007) [5]. Note that this is a par-
ticularly important arbitrage property due to its connection to the growth optimal
portfolio of Eckhard Platen.

Definition 4. We say that the robust large financial market has an asymptotic
arbitrage of first kind (AA1(Pn)) if the following holds: there exists a subsequence
of markets nk and a sequence of portfolios Xk = (Hnk · Snk) and a sequence of
positive real numbers εk → 0 such that

(1) for all k ≥ 1 and all t = 0, 1, . . . , T (nk), X
k
t ≥ −εk Pnk-q.s.

(2) there exists a sequence (P k)k≥1 with P k ∈ Pnk such that

P k(Xk
T (nk)

≥ α) ≥ α,

for some α > 0 and all k ≥ 1.

We say that no asymptotic arbitrage of first kind (NAA1(Pn)) is satisfied if the
above does not exists.

We can now suggest the following fundamental theorem of asset pricing under
model uncertainty for large financial markets in discrete time. Observe that it
looks very similar to Theorem 1 but now on the large financial market.

Theorem 2 (A (conjectured) FTAP under model uncertainty). NAA1(Pn) ⇔ for
each sequence (Pn)n≥1 with Pn ∈ Pn, for all n, there exists a sequence (Qn)n≥1

with Qn ∈ Qn, for all n, such that (Pn) ⊳ (Qn).

Note that (Pn) ⊳ (Qn) basically is the generalization of absolute continuity of
measures to a sequences of measures and means that for each sequence An ∈ Fn

with Qn(An) → 0 for n→ ∞ we have that Pn(An) → 0 for n→ ∞.

Some ideas for the proof of Theorem 2: work in progress

Similarly as in [4] the idea is to find a generalized quantitative version of the
Halmos-Savage Theorem. Here we suggest a version for convex sets of probability
measures, see Theorem 3 below. With the help of this result it is quite standard
to get Theorem 2 by using the superreplication of [1] which fits perfectly to the
current setting. On the way we use the following characterization of NAA1 under
model uncertainty which we can prove with all details.

Lemma 1. NAA1(Pn) ⇔ ∀ε > 0 ∃δ > 0 such that ∀n ≥ 1 and ∀An ∈ Fn such
that ∃Pn ∈ Pn with Pn(An) ≥ ε there ∃Qn ∈ Qn with Qn(An) ≥ δ.

So, if our conjectured Theorem 3 below can be proved in the given form, the
proof of Theorem 2 is done. Let us now formulate the conjectured Theorem 3,
i.e., the quantitative Halmos–Savage–type result for convex sets of probability
measures we are aiming at.

Theorem 3 (Conjecture: Quantitative Halmos-Savage Theorem for convex sets
of probability measures). Let P and Q be a convex sets of probability measures on
(Ω,F) such that Q ≪ P. For fixed ε > 0 and δ > 0 the following statement is
true: Assume that for each A ∈ F such that there exists P ∈ P with P (A) ≥ ε
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there exists Q ∈ Q such that Q(A) ≥ δ. Then for each P ∈ P there exists Q ∈ Q
such that for each A ∈ F with P (A) ≥ 2ε we have that Q(A) ≥ εδ

2 .

Note that Q ≪ P in the statement of the theorem means that for every Q ∈ Q
there exists P ∈ P such that Q≪ P .

Ideas for the Proof of Theorem 3. As a technical tool for the proof we will define
a convex set Dε,P : fix P ∈ P and ε > 0. Define

Dε,P = {h ∈
⋂

P ′∈P

L∞(P ′) : 0 ≤ h ≤ 1 P − q.s. and EP [h] ≥ 2ε}.

The assumption of Theorem 3 will lead to the following inequality:

inf
h∈Dε,P

sup
Q∈Q

EQ[h] ≥ εδ.

Now by finding appropriate dual locally convex topological vector spaces (E,E′)
and using a general Banach-Alaoglu-Bourbaki Theorem we think to be able to show
that the convex set Dε,P ⊂ E′ is σ(E′, E)-compact. Then we aim at applying a
Minmax Theorem as in Sion (1958) [6] to the given bilinear functional with a
continuity property with respect to the chosen topology to get that:

sup
Q∈Q

inf
h∈Dε,P

EQ[h] ≥ εδ.

With this the statement of Theorem 3 follows. �
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Fundamental theorem of asset pricing with acceptable risk in markets
with frictions

Cosimo Munari

We revisited the problem of market-consistent valuation of insurance liabilities
from a financial economics perspective. The challenge is to define a range of
prices at which an insurance company that has access to an outstanding financial
market and is subject to a regulatory capital adequacy regime should be prepared
to buy/sell a contract outside of the financial market. Our proposal was to call
a price market consistent with acceptable risk (MCP) if there exists no portfolio
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of traded assets that can be bought/sold at a lower/higher price in the market
and that super/sub-replicates the contract’s payoff at an acceptable level of risk
as prescribed by the regulatory solvency test. In the spirit of classical arbitrage
pricing theory, the main goal was to provide a characterization of MCPs by way of
special stochastic discount factors, called (strictly) consistent price deflators, that
have to be chosen to respect market frictions as well as to be consistent with the
regulator’s solvency test. The presentation unfolded as follows:

• Formalization of the financial market and the capital adequacy test.
• Definition of MCPs.
• Primal characterization of MCPs based on super/sub-replication prices.
• Definition of (scalable) good deals as generalizations of arbitrage oppor-
tunities.

• Definition of (strictly) consistent price deflators as generalizations of sto-
chastic discount factors.

• Extension of the fundamental theorem of asset pricing: The market is free
of scalable good deals if and only if there exists a strictly consistent price
deflator.

• Dual characterization of MCPs based on strictly consistent price deflators.
• Examples of price deflators that are strictly consistent with respect to
Expected Shortfall and expectiles.

A number of future challenges was mentioned at the end, including at least:

• Extension to multi-period models.
• Extension to settings without a dominating probability.
• Characterization of optimal hedging portfolios/strategies with acceptable
risk.

• Comparison with market-consistent valuation rules used in practice (best
estimate of insurance liabilities plus risk margin).

We believe that the last point is especially pressing to bridge the gap between
theory and practice and should ideally contribute to the ongoing discussion on the
broad topic “valuation” in insurance regulation.

This work is related to the literature on good deal pricing. The goal there is to
restrict the interval of arbitrage-free prices by discarding some “extreme” stochas-
tic discount factors and the main problem is that of identifying, by way of an
inverted fundamental theorem of asset pricing, the corresponding pricing bounds,
the so-called good deal bounds. We refer, e.g., to:

• Arai, T., & Fukasawa, M. (2014). Convex risk measures for good deal
bounds. Math Financ, 24(3), 464-484.

• Bernardo, A.E., & Ledoit, O. (2000). Gain, loss, and asset pricing. J Polit
Econ, 108(1), 144-172.

• Carr, P., Geman, H., & Madan, D. (2001). Pricing and hedging in incom-
plete markets. J Financ Econ, 62(1), 131-167.

• Černý, A. (2003). Generalised Sharpe ratios and asset pricing in incom-
plete markets. Rev Financ, 7(2), 191-233.
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• Černý, A., & Hodges, S. (2002). The theory of good-deal pricing in fi-
nancial markets. In Mathematical Finance – Bachelier Congress 2000 (pp.
175-202). Springer, Berlin, Heidelberg.

• Cherny, A. (2008). Pricing with coherent risk. Theor Probab Appl, 52(3),
389-415.

• Cochrane, J.H., & Saa-Requejo, J. (2000). Beyond arbitrage: Good-deal
asset price bounds in incomplete markets. J Polit Econ, 108(1), 79-119.

• Jaschke, S., & Küchler, U. (2001). Coherent risk measures and good-deal
bounds. Financ Stoch, 5(2), 181-200.

• Staum, J. (2004). Fundamental theorems of asset pricing for good deal
bounds. Math Financ, 14(2), 141-161.

Apart from the general motivation, the key difference with our results is that the
bulk of this literature focuses on frictionless markets and the only versions of the
fundamental theorem of asset pricing involve, in our language, only consistent,
instead of strictly consistent, price deflators. In particular, these versions cannot
be used to characterize MCPs in dual terms.

Benchmark-Neutral Pricing for Entropy-Maximizing Dynamics

Eckhard Platen

The paper applies the benchmark approach to the modeling, pricing, and hedging
of long-term contingent claims involving the growth optimal portfolio (GOP) of a
large stock market. It employs the entropy-maximizing dynamics of the GOP of
the stocks for modeling. Instead of risk-neutral or real-world pricing, the paper
proposes the method of benchmark-neutral pricing, where it uses the GOP of the
stocks as numéraire and the respective new benchmark-neutral pricing measure
for taking conditional expectations. Under the entropy-maximizing dynamics of
the GOP for stocks, the benchmark-neutral pricing measure turns out to be an
equivalent probability measure. The risk-neutral pricing measure does not rep-
resent a probability measure. Consequently, benchmark-neutral pricing provides
the minimal possible prices and hedges, whereas risk-neutral pricing becomes more
expensive than necessary. The implementation of benchmark-neutral pricing and
hedging is demonstrated. It is shown that the minimal possible prices, which
benchmark-neutral pricing provides, can be significantly lower for long-term con-
tingent claims than the respective risk-neutral ones.

The paper makes the following three key assumptions:
A1: The GOP exists.
A2: The normalized GOP forms a stationary scalar diffusion and its volatility is
a function of its value.
A3: The market maximizes the relative entropy of the stationary density of the
normalized GOP.

The first assumption is about the existence of the GOP and represents an
intuitive and easily verifiable no-arbitrage condition because [4] have shown that
the existence of the GOP is equivalent to their No Unbounded Profit with Bounded
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Risk (NUPBR) condition. This no-arbitrage condition is weaker than the NFLVR
condition of [1].

The maximization of the relative entropy is known to be equivalent to the
minimization of the information rate; see [5]. Consequently, the resulting entropy-
maximizing market dynamics does not leave any room for exploitable information
and charaterizes the undisturbed market dynamics.

Conservation laws simplify in many areas the undisturbed dynamics of complex
dynamical systems. According to [6], the maximization of a Lagrangian in the
presence of Lie-group symmetries leads to the identification of conservation laws
for the resulting model dynamics. The entropy-maximizing stationary dynamics
of the normalized GOP turn out to have Lie-group symmetries and emerge as
those of a time-transformed square root process, with conserved dimension four,
and conserved logarithmic mean zero.

The modeling is performed on a filtered probability space (Ω,F ,F , P ), satisfy-
ing the usual conditions. We consider d + 1, d ∈ {1, 2, ...} adapted, nonnegative
assets, denoted by S0

t , S
1
t , ..., S

d
t , which we call the d primary security accounts,

where all dividends or interests are reinvested. We interpret the d primary security
accounts S1

t , ..., S
d
t as stocks, which are here denominated in units of the savings

account S0
t = 1. Furthermore, we assume for the investment universe given by

the d stocks that a continuous growth optimal portfolio (GOP) S∗
t , the stock GOP,

exists. Every primary security account S̃jt =
Sj
t

S∗
t
, j ∈ {1, ..., d}, when denominated

in the stock GOP, forms a right-continuous, integrable (P,F)-local martingale.
The stochastic differential equation (SDE) for the continuous stock GOP S∗

t is
assumed to be of the form

dS∗
t

S∗
t

= λ∗t dt+ θt(θtdt+ dWt)

for t ∈ [0,∞) with S∗
0 > 0. We extend the above market formed by the d stocks

by adding the savings account S0
t as an additional primary security account. In

line with Theorem 7.1 in [3], the GOP S∗∗
t of the extended market satisfies the

SDE

dS∗∗
t

S∗∗
t

=
λ∗t + (θt)

2

θt
(
λ∗t + (θt)

2

θt
dt+ dWt)

for t ∈ [0,∞) and S∗∗
0 = 1. For a replicable contingent claimHT ≥ 0 with maturity

T the real world pricing formula

Ht = S∗∗
t EP (

HT

S∗∗
T

|Ft)

describes its unique fair price Ht at time t ∈ [0, T ], see [2]. Other pricing rules are
possible but do never provide lower prices. The numéraire for real-world pricing
is the GOP S∗∗

t of the extended market, which is, in reality, a highly leveraged
portfolio and difficult to construct. Therefore, a change of numéraire is suggested
that uses the strictly positive stock GOP S∗

t as numéraire. The Radon-Nikodym
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derivative

ΛS∗(t) =
dQS∗

dP
|Ft

=

S∗
t

S∗∗
t

S∗
0

S∗∗
0

characterizes the respective benchmark-neutral pricing measure QS∗ . For the
entropy-maximizing dynamics, the Radon-Nikodym derivative ΛS∗(t) is shown
to be a true (P,F)-martingale and QS∗ to be an equivalent probability measure.
We call the new pricing method benchmark-neutral pricing, which uses the stock
GOP S∗

t as numéraire and the benchmark-neutral pricing measure QS∗ as pricing
measure. One obtains directly the benchmark-neutral pricing formula

Ht = S∗
tE

QS∗ (
HT

S∗
T

|Ft)

for t ∈ [0, T ]. The process W 0 = {W 0
t , t ∈ [0,∞)}, satisfying the SDE

dW 0
t = σS∗(t)dt + dWt

for t ∈ [0,∞) with W 0
0 = 0, is under QS∗ a Brownian motion. This result is of

practical importance because it allows one to use the stock GOP as numéraire for
pricing and hedging. Under benchmark-neutral pricing there is no need to estimate
λ∗t because this drift parameter becomes absorbed in the measure transformation.

Hedging under the benchmark-neutral pricing measure can be performed anal-
ogously as shown in [2] under the real world probability measure P , and can also
be extended for non-replicable contingent claims.

When using a total return stock index as proxy for the stock GOP, it has been
shown for zero-coupon bonds that long-term hedging over many decades can be
accurately performed with very small hedge errors. These findings give access to
new production methods for life insurance, pension, climate, and other long-term
contracts that use the stock index as numéraire.

Since the risk-neutral pricing measure turns out to be not an equivalent prob-
ability measure under the entropy-maximizing dynamics, formally applied risk-
neutral prices and hedges can become considerably more expensive than the mini-
mal possible ones, which can be obtained via benchmark-neutral pricing and hedg-
ing.
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Markovian randomized equilibria for general Markovian Dynkin
games in discrete time

Berenice Anne Neumann

(joint work with Sören Christensen, Kristoffer Lindensjö)

In discrete time Dynkin games each player i ∈ {1, 2} chooses a stopping time τi
in order to maximize her expected reward

E

[
F iτiI{τi<τj} +Giτj I{τj<τi} +Hi

τiI{τi=τj}

]
,

where j = 3−i and F i, Gi, Hi are integrable discrete time processes (with a suitable
interpretation of Hi

n for n = ∞). In the case that F 1 ≤ H1 ≤ G1 and F 2 ≤ H2 ≤
G2 these games are well-understood. Under suitable integrability assumptions
existence and characterization of Nash equilibria have been established [2, 3, 4].
However, the situation becomes more involved if we drop the assumption F 1 ≤
H1 ≤ G1 and F 2 ≤ H2 ≤ G2. First of all it is now necessary to consider mixed
strategies [5]. Moreover, also using this class of strategies there are simple examples
without a Nash equilibrium [6]. In general, only the existence of ǫ-equilibria can
be established [7, 8].

In this talk we restricted our attention to discrete time Markovian Dynkin games.
In this setting (Xn)n∈N is a homogeneous Markov process with state space E and
the reward of player i reads

Ex
[
ατifi(Xτi)I{τi<τj} + ατjgi(Xτj )I{τj<τi} + ατihi(Xτi)I{τi=τj<∞}

]
,

where j = 3− i, α is the discount factor satisfying 0 < α < 1 and fi, gi, hi : E →
R, i = 1, 2, are measurable functions satisfying an integrability assumption. In
the talk we motivated that Markovian randomized stopping times are a natural
class of randomized stopping times for these games. These Markovian randomized
stopping times are stopping times, where at each time step n the player stops with
a certain probability that only depends on the current state Xn of the underlying
Markov process. Relying on this type of strategies we provide an explicit charac-
terization and verification result of Wald-Bellman type. This result then allows us
to construct equilibria in certain classes of zero-sum and symmetric games and to
obtain necessary and sufficient conditions for the non-existence of pure strategy
equilibria in zero-sum games. Moreover, we establish the existence of an equi-
librium in Markovian randomized stopping times for general games whenever the
state space of the underlying Markov chain is countable.
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Stretched Brownian motion: Analysis of a fixed-point scheme

Gudmund Pammer

(joint work with Beatrice Acciaio, Antonio Marini)

A central challenge in the theory of mathematical finance is the pricing of financial
derivatives. In the classical theory this question is closely tied to the notion of
martingale measures: Let (Ω,F , (Ft)t≥0,P) be a stochastic basis and S = (St)t≥0

be the (Ft)t≥0-adapted asset-price process. Under the no-arbitrage assumption,
that is, we exclude the possibility of making profit without risk, the task of pricing
a financial derivative Φ boils down to finding an equivalent martingale measure
Q. An equivalent martingale measure is simply a measure equivalent to P under
which S is a martingale.

However, the true dynamics of the market, including the stochastic basis and the
asset-price process, are unknown. Rather than directly specifying a model, we can
extract information on the pricing measure Q from market data. The cornerstone
of this approach is the famous observation by Breeden–Litzenberger [3], which
culminates in the fitting problem (FP) in mathematical finance: The task is to find
a stochastic basis supporting a martingale S = (St)t≥0 that adheres to prescribed
marginal constraints St ∼ µt for t ∈ I derived from market observations. Here
(µt)t∈I are one-dimensional marginals that are derived from market observations
at a given time index set I ⊆ R+. Building on the Bass solution to the Skorokhod
embedding problem and optimal transport, Backhoff, Beiglbock, Huesmann, and
Kallblad [1] propose a solution to (FP) for the two-marginal problem, i.e., with
constraints on two specific time-points I = {0, 1}. The stretched Brownian motion
M∗ is the unique-in-law optimizer of

sup {E[M1 ·B1] : M solves (FP)} ,
where B is some Brownian motion. Notably rich in structure, this process is an Ito
diffusion and a continuous, strong Markov martingale that emulates the behaviour
of Brownian motion locally.

Following a similar approach, Conze and Henry-Labordere [2] recently intro-
duced a novel alternative to the local volatility model. This model, rooted in an
extension of the Bass construction, is efficiently computable through a fixed-point
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scheme. The goal is to find a fixed point of the map

A : CDF → CDF: F 7→ Fµ0 ◦
(
γ1 ∗ F−1

µ1
(γ1 ∗ F )

)
,

where F is a cumulative distribution function (CDF), Fµ denotes the CDF of µ
and γ1 a normal distribution with variance 1. When α is a distribution whose
CDF F̂ is a fixed-point, then the process M̂ = (M̂)t≥0, determined by

M̂t := E[T (B1)|Bt] = (γ1−t ∗ F−1
µ1

(γ1 ∗ F̂ ))(Bt),
solves (FP).

In this work, we explore the intricate relationship between the fixed-point
scheme and the stretched Brownian motion, revealing that in law M̂ = M∗. Fur-
thermore, we give a precise criterion for the existence of a fixed-point and demon-
strate its convergence. This study unveils that solving the fixed-point equation
provides a highly efficient alternative to computing stretched Brownian motion.
In particular, when µ0 is concentrated on finitely many points, the fixed-point
scheme exhibits linear convergence.
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On random reinsurance contracts and optimal transport

Brandon Garcia Flores

(joint work with Beatrice Acciaio, Hansjörg Albrecher)

Building upon the concept of random reinsurance treaties from [3] and [4], we
establish a general framework for the study of optimal reinsurance problems. Tra-
ditionally, an optimal reinsurance problem consists in minimizing a risk measure
P defined on a set of functions. The minimization is subject to the solution be-
ing in a set of constraints S, which usually relates to demands set by either the
cedent or the reinsurer. In this generality, one can hardly show the existence of
any contract and is therefore restricted to deal with specific instances of the prob-
lem. The introduction of random reinsurance treaties is then reminiscent to the
Monge-Kantorovich formulation of optimal transport (OT) which is used as a way
of convexifying the problem, thus ensuring the existence of optimal solutions.

A random reinsurance treaty η is a probability measure in Rn × Rn supported
in the set {(x, y) ∈ Rn × Rn | 0 ≤ yi ≤ xi, i = 1, . . . , n} and such that π1#η = µ,
where µ is the distribution of the original claims. Here, π1 : Rn × R → Rn is the
projection in the first coordinate and π1# denotes the push-forward map induced
by π1. Denoting by X the original portfolio of claims, contracts of this kind can
be simply seen as the joint distribution of X and the final risk exposure of the
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reinsurer, which now is not necessarily determined by X in a functional way. By
means of standard OT methods, one can easily prove the following:

Theorem 1. Let M denote the space of random reinsurance treaties endowed
with the weak topology induced by bounded continuous functions. If P : M → R

is lower semi-continuous and S is closed, then an optimal reinsurance contract η∗

exists.

While existence is guaranteed under relatively mild assumptions, one is then
faced with the identification of optimal contracts. The rest of our work addresses
this matter by using the idea of (local) linearization, a concept widely used in the
are of optimization.

Assuming that the set of constraints is given as

S = {η ∈ M | G(η) ≤ 0}
for a lower semi-continuous function G = (g1, . . . , gm) : M → Rm, one of the main
results of our work is the following:

Theorem 2. Let η∗ be an optimal reinsurance contract and assume there exist
continuous functions pη∗ : Rn+ × Rn+ → R and gη∗ : Rn+ × Rn+ → Rm such that

lim
t→0+

P((1− t)η∗ + tϑ)− P(η∗)

t
=

∫

Rn
+×Rn

+

pη∗(x, y)(ϑ − η∗)(dx, dy)

and

lim
t→0+

G((1 − t)η∗ + tϑ)− G(η∗)
t

=

∫

Rn
+×Rn

+

gη∗(x, y)(ϑ − η∗)(dx, dy)

for every ϑ ∈ M. Moreover, assume that the partial minimization function,

m(x) = inf
y∈[0,x]

rpη∗(x, y) + λ · gη∗(x, y)

is measurable for every r ∈ R+ and λ ∈ Rm+ . Then, there exist r∗ ∈ R+ and
λ∗ ∈ Rm+ such that λ∗ · G(η∗) = 0 and

η∗
(
{(x, y) ∈ AR | y ∈ argmint∈[0,x]r

∗pη∗(x, t) + λ∗ · gη∗(x, t)}
)
= 1.

If G is constant or there exists ϑ ∈ M such that

G(η∗) +
∫

Rn
+×Rn

+

gη∗(x, y)(ϑ− η∗)(dx, dy) < 0,

then r∗ can be taken to be equal to 1.

This theorem thus identifies the support of optimal reinsurance contracts rela-
tive to the functions pη∗ and gη∗ , and λ

∗, all of which depend on η∗. However, in
several common applications, pη∗ and gη∗ depend on the optimal contract through
a (finite) set of parameters. Together with λ∗, one can then treat this set of
parameters as variables and optimize over them, thus reducing the problem to a
finite dimensional optimization problem, for which several techniques can be used.
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One example that prominently falls into this category is when the risk measure is
given by

P(η) = f

(∫

Rn
+

p1(x, y) η(dx, dy), . . . ,

∫

Rn
+

pℓ(x, y) η(dx, dy)

)

subject to the constraints G = (g1, . . . , gm) given by

gi(η) = hi

(∫

Rn
+

qi,1(x, y) η(dx, dy), . . . ,

∫

Rn
+

qi,ℓi(x, y) η(dx, dy)

)

where all the pi’s and qi,j ’s are continuous functions and f and the hi’s are dif-
ferentiable. This type of risk measure includes, but is not limited to the cases
where one would like to minimize the expectation, variance, skewness, coefficient
of variation, etc. of the total retained amount subject on constraints depending
on similar measures. Several of the optimal reinsurance problems that fall un-
der this umbrella are treated in [1] and [5]. Adapting for non-continuities and
differentiability, the techniques can be slightly generalized to deal with distortion
risk measures, such as those dealt with in [2], which shows the generality of our
approach.

Throughout the previous discussion, it was imperative that the set S was de-
scribed by a finite set of inequalities. The final portion of our study then relaxes
the requirement for S to be finitely representable by inequalities. Still inspired by
the idea of local linearization, we make the following assumptions:

(1) If η∗ ∈ S is an optimal reinsurance contract, then for every η ∈ S and
0 ≤ t ≤ 1, we have

P(η∗) ≤ P((1− t)η∗ + tη).

(2) For every η ∈ S, dP(η; ·) exists for every direction in S−η and is given as an
integral operator, i.e., there exists a measurable function pη : Rn×Rn → R

such that for every ϑ ∈ S,

dP(η;ϑ− η) =

∫
pη(x, y)(ϑ − η)(dx, dy)

These two assumptions jointly imply that
∫
pη∗(x, y) η

∗(dx, dy) = min
η∈S

∫
pη∗(x, y) η(dx, dy).

Letting qη∗ denote the function on Rn × Rn such that qη∗(x, y) = ∞ on the
complement AR and otherwise being equal to pη∗ , the previous equation can be
stated as

(1)

∫
qη∗(x, y) η

∗(dx, dy) = min
ν∈π2(S)

C(µ, ν),

where

(2) C(µ, ν) = min
η∈Π(µ,ν)∩S

∫
qη∗(x, y) η(dx, dy),
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and Π(µ, ν) is the set of couplings between µ and ν. Equations (1) and (2) mean
that the optimal contract satisfies a double minimization property, where the inner
minimum is a constrained optimal transport problem. We conclude our work by
showing how, by taking a point of view inspired by this OT approach, we are
enabled to use tools from the area to provide novel solutions to old and new
optimal reinsurance problems.
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Adapted Wasserstein distance between the laws of SDEs

Sigrid Källblad

(joint work with Julio Backhoff-Veraguas, Ben Robinson)

In applications where filtrations and the flow of information play a key role, the
concepts of weak convergence and Wasserstein distances have proven to be insuf-
ficient for specifying convergence and distances between stochastic processes. For
instance, neither usual stochastic optimisation problems (such as optimal stop-
ping or utility maximisation) nor Doob–Meyer decompositions behave continu-
ously with respect to these topologies. Over the last decades, several approaches
have been proposed to overcome these shortcomings; we focus here on one such
notion, namely the so-called adapted Wasserstein distance.

We refer to [1, 2, 3, 6] for more on the motivation and history of adapted
distances and the closely related concepts of causal and bi-causal couplings.

Specifically, in this talk we study the adapted Wasserstein distance between the
laws of solutions of one-dimensional Markovian SDEs when the space of continuous
functions is equipped with the Lp-metric. We address this problem by embedding
it into a class of bi-causal optimal transport problems featuring a specific type of
cost function. Imposing fairly general conditions on the (Markovian) coefficients
of the SDEs, we will discuss methods and results which can be summarised as
follows:

(i) characterisation of the coupling attaining the infimum for a class of bi-
causal optimal transport problems including the adapted Wasserstein dis-
tance;

(ii) a time-discretisation method allowing derivation of most continuous-time
statements from their more elementary discrete-time counterparts;
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(iii) a stability result for optimisers to some bi-causal optimal transport prob-
lems;

(iv) a result stating that the topology induced by the adapted Wasserstein
distance coincides with several topologies (including the weak topology)
when restricting to SDEs whose coefficients belong to an equicontinuous
family;

(v) examples illustrating what to expect for path-dependent SDEs and in
higher dimensions.

At a conceptual level, we connect two hitherto unrelated objects: the synchro-
nous coupling of SDEs, which is the coupling arising when letting a single Wiener
process drive two SDEs; and the Knothe–Rosenblatt rearrangement, which is a
celebrated discrete-time adapted coupling that preserves the lexicographical or-
der. In particular, we provide an optimality property for the Knothe–Rosenblatt
rearrangement which extends earlier results of [4, 7]. We then make use of this
result to argue that in a certain sense, the synchronous coupling is the continuous-
time counterpart of the Knothe–Rosenblatt rearrangement.

Concerning the contributions (i) and (iv) above, similar statements have been
made in the pioneering work of Bion-Nadal and Talay [5] for the problem of op-
timally controlling the correlation between SDEs with smooth coefficients. We
here show that the bi-causal optimal transport problem, for general cost functions
and between laws of possibly path-dependent SDEs, admits such a control refor-
mulation. A posteriori, it is thus clear that (i) and (iv) were established for the
adapted Wasserstein distance and smooth coefficients already in [5]. Our results
in this direction can be understood as using probabilistic methods to generalise
their findings to more general cost functions and SDEs.
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Shrinkage of semimartingales

Monique Jeanblanc

(joint work with Tomasz R. Bielecki, Jacek Jakubowski, Pavel V. Gapeev and
Mariusz Niewkeglowski)

In this talk we study projections of semi-martingales on various filtrations, under
specific assumptions. More precisely, F and G being two filtrations with F ⊂ G,
and Y G being a G-semimartingale, we define the optional projection of Y G as
Yt = E[Y G

t |Ft], ∀t ≥ 0 which is an F-semimartingale under some conditions (see
[7]) and we find some relationships between the decomposition of Y G and Y .

1. A simple case

Let ϑG be a G-adapted bounded process. It is well known that

E[

∫ t

0

ϑGs ds|Ft] =Mt +

∫ t

0

ϑsds

where M is an F-martingale and ϑs = E[ϑGs |Fs]. (See, e.g., [5, lemma 8.3])
The goal is to identify M in terms of the ϑG and one specific martingale which

satisfy predictable representation property (PRP) on F.
Assume for example that F is a Brownian filtration generated by W . In that

case PRP holds, i.e., for any F-martingaleM there exists an F-predictable process

ψ such that Mt =M0 +
∫ t
0
ψsdWs.

For any F-adapted bounded process ϕ one has, using tower property in the first
equality

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[E[

∫ t

0

ϑGs ds |Ft]
∫ t

0

ϕsdWs]

= E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs] + E[Mt

∫ t

0

ϕsdWs]

hence

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs]− E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs]

= E[Mt

∫ t

0

ϕsdWs] = E[

∫ t

0

ψsϕsds]

To proceed, we need to apply integration by parts to the product of G-semimartin-
gales

∫ ·

0
ϑGs ds and

∫ ·

0
ϕsdWs (if

∫ ·

0
ϕsdWs is a G-semimartingale!) which leads to

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑGs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
dWs]
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We now assume that there exists a G-adapted process αG such that W is a G-
semimartingale with decomposition

Wt =WG
t +

∫ t

0

αG
s ds

where WG is a G-Brownian motion, then

E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
dWs] = E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

(See some conditions in [1, Ch 4 and 5]).
Using tower property in the second equality

E[

∫ t

0

ϑGs ds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑGs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

= E[

∫ t

0

ϑs

(∫ s

0

ϕudWu

)
ds] + E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

we get (one has to check carefully that all local martingales that appear are true
martingales) noting that

E[

∫ t

0

ϑsds

∫ t

0

ϕsdWs] = E[

∫ t

0

ϑs

(∫ s

0

ϕudWu

)
ds]

E[

∫ t

0

ψsϕsds] = E[

∫ t

0

ϕs

(∫ s

0

ϑGudu

)
αG
s ds]

and this being true for any ϕ, this yields

ψs = E[αs

∫ s

0

ϑGudu|Fs] .

Remarks: If ϑG is F- adapted M = 0 and ϑG = ϑ. This can be recover from

ψs = E[αG
s

∫ s

0

ϑGudu|Fs] =
∫ s

0

ϑudu E[αG
s |Fs] = 0

since E[αG
s |Fs] = 0.

This can be easily extended to the case where F has a process (may be multi-
dimensional or having jumps) which enjoy PRP for example if F is generated by a
pair (W, µ̃) where W is a Brownian motion independent of a compensated marked
point process µ̃.
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2. Martingales

Let F be a filtration, M an F-martingale (possibly multidimensional, or with
jumps) enjoying PRP.

Let G be a filtration larger than F which enjoy PRP with respect to MG where
MG is a (possibly multidimensional or with jumps) G-martingale such that any
G-martingale Y G has a decomposition as

Y G
t =

∫ t

0

ψG
s dM

G
s

We note with a superscript G processes that are G-adapted as Y G.
Our goal is to find the decomposition of the F-martingale Yt = E[Y G

t |Ft] =∫ t
0
ψsdMs.
The r.v. Yt is characterized by

E[Y G
t

∫ t

0

ϕsdMs] = E[Yt

∫ t

0

ϕsdMs]

for any ϕ ∈ F.
In the one hand, using tower property

E[Y G
t

∫ t

0

ϕsdMs] = E[Yt

∫ t

0

ϕsdMs] = E[

∫ t

0

ψsϕsd〈M〉s] .

To compute using integration by parts E[Y G
t

∫ t
0 ϕsdMs], we need to assume that

M is a G-semimartingale with decomposition

Mt =

∫ t

0

βG
s dM

G
s +

∫ t

0

αG
s d〈MG〉s .

This yields

E[Y G
t

∫ t

0

ϕsdMs] = E[

∫ t

0

Y G
s ϕsdMs]+E[

∫ t

0

(∫ s

0

ϕudMu

)
dY G

s ]+E[〈Y G,

∫ ·

0

ϕsdMs〉t]

where in the first integral in the righthand sideM is a G-semimartingale as well as
in the bracket and the second term is null. We compute the two remaining parts
using that the local martingales are true martingales, this can proved by means of
Burkolder Davis Gundy.

E[

∫ t

0

Y G
s ϕsdMs] = E[

∫ t

0

Y G
s ϕsα

G
s d〈MG〉s]

and

E[〈Y G ,

∫ ·

0

ϕsdMs〉t] = E[

∫ t

0

ϕsψ
G
s β

G
s d〈MG〉s]

E[

∫ t

0

ψsϕsd〈M〉s] = E[

∫ t

0

ϕs
(
Y G
s α

G
s + ψG

s β
G
s

)
d〈MG〉s]

hence

ψs =
E[
(
Y G
s α

G
s + ψG

s β
G
s

)
d〈MG〉s|Fs]

d〈M〉s
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and, since d〈M〉 = (βG)2d〈MG〉

ψs = E[
Y G
s α

G
s + ψG

s β
G
s

(βG)2s
|Fs]

See [3, 4] for details.

3. Semimartingales

It is well known, from [7], that if X is a G-semimartingale and is F-adapted where
F ⊂ G, then X is an F-semimartingale.

Note that if the G-special semimartingale decomposes as X =M +A and is F-
adapted, it may happen thatM and A are not F-adapted (see [7] or [2]). However,
in our case X can be decomposed in both filtrations as (ℓ being a truncation
function)

Xt = X0 +Xc,G
t +

∫ t

0

∫

E

ℓ(x)(µ(dt, dx) − νG(dt, dx)) +BG
t (ℓ) =MG

t +BG
t (ℓ)

Xt = X0 +Xc,F
t +

∫ t

0

∫

E

ℓ(x)(µ(dt, dx) − νF(dt, dx)) +BF
t (ℓ) =MF

t +BF
t (ℓ)

where B is a predictable process with finite variation. The process B is the first
characteristic, the second characteristic is 〈X〉, the third characteristic is ν.

There exists a G-predictable, locally integrable increasing process, say AG, pre-
dictable processes bG, cG and a transition kernel K such that

BG = bG ·AG, CG = cG ·AG, νG(dt, dx) = KG
t (dx)dA

G
t .

We assume that

AG
t =

∫ t

0

aGudu,

where aG is a G progressively measurable process. Then it can be shown (see [6])
that the F- characteristic triple of X is given as

dBF =

∫ ·

0

o,F(bGs a
G)sds, CF = CG, νF(dt, dx) =

(
KG
t (dx)a

G
t dt
)p,F

where o,FZ is the F-projection of Z and Up,F is the dual predictable projection of
U (see, e,g, [1]).

References

[1] Aksamit A. and Jeanblanc M. Enlargement of filtration with finance in view, Springer,
2017.
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Robust duality for multi-action options with information delay

Anna Aksamit

(joint work with Ivan Guo, Shidan Liu, Zhou Zhou)

We establish pricing–hedging duality under model uncertainty for multi-action op-
tions. Multi-action options form a class of contracts whose pay-off depends on the
actions taken by a buyer of such contract. As an example we may consider Amer-
ican options, baskets of American options with constraints on execution times, or
swing options.

We thus generalize the duality obtained in [2] to the case of exotic options
that allow the buyer to choose some action from an action space, countable or
uncountable, at each time step in the setup of [3]. Our ideas, however, go beyond
that model and can be applied in various frameworks – including dominated setup.

We solve above problem by introducing an enlarged canonical space in order
to reformulate the superhedging problem for such exotic options as a problem for
European options. Then in a discrete time market with the presence of finitely
many statically traded liquid options, we prove the pricing-hedging duality for
such exotic options as well as the European pricing-hedging duality in the enlarged
space. For the sake of simplicity we focus on the case without statically traded
options in what follows.

Consider the discrete-time model introduced in [3]. Fix a time horizon N ∈ N,
and let T := {0, 1, . . . , N} be the time periods in this model. Let Ω0 = {ω0} be a
singleton and Ω1 be a Polish space. For each k ∈ {1, . . . , N}, define Ωk := Ω0×Ωk1
as the k-fold Cartesian product. For each k, define Gk := B(Ωk) and let Fk be its
universal completion. In particular, we see that G0 is trivial and denote Ω := ΩN ,
F := FN and F = (Fk)k.

Consider a market with d ∈ N financial assets that can be traded dynamically
without transaction costs. We model the dynamically traded assets by an Rd-
valued process S = (St)t∈T such that St is Gt-measurable for t ∈ T. For an

F-predictable, Rd-valued process H , the terminal wealth of the hedging portfolio
is given by (H ◦ S)N =

∑
j,kH

j
k(S

j
k − Sjk−1).

Model uncertainty is expressed via the family of possible models P which is
constructed in the following manner. For a given k ∈ {0, . . . , N − 1} and ω ∈ Ωk,
we have a non-empty convex set Pk,k+1(ω) ⊆ P(Ω1) of probability measures,
representing the set of all possible models for the (k + 1)-th period, given the state
ω at time k. We assume that for each k ∈ {0, . . . , N}, graph(Pk,k+1) ⊆ Ωk×P(Ω1)
is analytic. We can then introduce the set P ⊆ P(Ω) of possible models for the
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multi-period market up to time N by

P := {P0,1 ⊗ P1,2 ⊗ · · · ⊗ PN−1,N : Pk,k+1(·) ∈ Pk,k+1(·)} .
Let A be the space of actions at each time and introduce C := AN+1 to be

the collection of all possible plans, equipped with the Borel σ-algebra B(C) and
a canonical filtration (Fc

k)0≤k≤N . In such set-up we are interested in the action

dependent pay-off function Φ : Ω× C → R, and its superhedging price given by

π(Φ) := inf {x : ∃H ∈ H, s.t., x+ (H(·, c) ◦ S)N ≥ Φ(·, c) P-q.s.,∀c ∈ C}
and define the set of dynamic trading strategies

H :=
{
H : Ω× C × T → Rd | H(·, ·, k + 1) =: Hk+1(·, ·) is Fk ⊗Fc

k-measurable
}
.

Our main theorem states the duality result where dual representation of this
superhedging price is established:

Theorem 1. Suppose that the no arbitrage condition NA(P) holds, and let Φ :
Ω× C → R be upper semianalytic. Then, one has

π(Φ) = sup
Q∈M

sup
χ∈D

EQ [Φχ] .

In the above theorem set D consists of all feasible action plans χ : Ω× T → A
such that χ(·, k) is Fk-measurable for each k. Set D generalizes the set of stopping
times to a multi-action set-up. Set M denotes the set of martingale measures for
a process S on Ω, and is given by

M =
{
Q ∈ P(Ω) : Q <<< P and EQ[∆Sk | Fk−1] = 0, ∀k = 1, . . . , N

}
.

To prove Theorem 1, we apply the idea of space enlargement motivated by [2],
which enables to view multi-action option as an European option on the space
Ω× C. Crucial argument is re-establishing dynamic programming principle based
on Jankov-von Neumann analytic selection theorem. Since our framework allows
for uncountable action space this argument becomes significantly more involved.

We complement our duality result with the study of the superhedging price of
a multi-action option in the case of information delay. More precisely we cover
the case where the seller of the option does not possess perfect information about
the actions taken by the buyer, and is able to observe them with a delay. This
framework takes into account this different type of uncertainty. The resulting du-
ality for the superhedging price with information delay πdel(Φ) takes the following
form:

πdel(Φ) = sup
Q∈M

sup
χ∈Dant

EQ [Φχ] ,

where, instead of previously appearing set of adapted feasible action plans D, we
have the set of the anticipating feasible action plans Dant. The dual side can be
interpreted as the price which may be achieved by the buyer able to look into the
future. Looking into the future feature is present here as information delay puts
more constraints on the superhedging side.
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Optimal reinsurance via BSDEs in a partially observable model with
jump clusters

Claudia Ceci

(joint work with Matteo Brachetta, Giorgia Callegaro, Carlo Sgarra)

Optimal reinsurance problems have attracted special attention during the past few
years and they have been investigated in many different model settings. Insurance
companies can hardly deal with all the different sources of risk in the real world,
so they hedge against at least part of them, by re-insuring with other institutions.
A reinsurance agreement allows the primary insurer to transfer part of the risk to
another company and it is well known that this is an effective tool in risk manage-
ment. Moreover, the subscription of such contracts is required by some financial
regulators, see e.g. the Directive Solvency II in the European Union. Large part
of the existing literature focuses mainly on classical reinsurance contracts such as
the proportional and the excess-of-loss, which were extensively investigated under
a variety of optimization criteria, e.g. ruin probability minimization, dividend op-
timization and expected utility maximization. Here we are interested in the latter
approach (see Irgens and Paulsen [12], Mania and Santacroce [15], Brachetta and
Ceci [3] and references therein). Some of the classical papers devoted to the sub-
ject assume a diffusive dynamics for the surplus process, while the more recent
literature considers surplus processes including jumps.

The pioneering risk model with jumps in non-life insurance is the classical
Cramér-Lundberg model, where the claims arrival process is a Poisson process
with constant intensity. This assumption implies that the instantaneous probabil-
ity that an accident occurs is always constant, which is in a way too restrictive
in the real world, as already motivated by Grandell [10]. In recent years, many
authors made a great effort to go beyond the classical model formulation. For
example, Cox processes were employed to introduce a stochastic intensity for the
claims arrival process, see e.g. Albrecher and Asmussen [1], Bjork and Grandell [2],
Embrechts et al. [9]. Moreover, other authors introduced Hawkes processes in or-
der to capture the self-exciting property of the insurance risk model in presence of
catastrophic events. Hawkes processes were introduced by Hawkes [11] to describe
geological phenomena with clustering features like earthquakes. Hawkes processes
with general kernels are not Markov processes: they can eventually include long-
range dependence, while Hawkes processes with exponential kernel exhibit the
appealing property that the couple process-intensity is Markovian.
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Dassios and Zhao [7] proposed a model which combines the two approaches
by introducing a Cox process with shot noise intensity and a Hawkes process
with exponential kernel for describing the claim arrival dynamics. Recently Cao,
Landriault and Li [5] investigated the optimal reinsurance-investment problem in
the model setting proposed by Dassios and Zhao [7] with a reward function of
mean-variance type.

A different line of research related to the optimal-reinsurance investment prob-
lem focuses on the possibility that the insurer does not have access to all the
information when choosing the reinsurance strategy. As a matter of fact, only the
claims arrival and the corresponding disbursements are observable. In this case we
need to solve a stochastic optimization problem under partial information. Liang
and Bayraktar [14] were the first to introduce a partial information framework
in optimal reinsurance problems. They consider the optimal reinsurance and in-
vestment problem in an unobservable Markov-modulated compound Poisson risk
model, where the intensity and jump size distribution are not known, but have to
be inferred from the observations of claim arrivals. Ceci, Colaneri and Cretarola
[6] derive risk-minimizing investment strategies when information available to in-
vestors is restricted and they provide optimal hedging strategies for unit-linked
life insurance contracts. Jang, Kim and Lee [13] present a systematic compari-
son between optimal reinsurance strategies in complete and partial information
framework and quantify the information value in a diffusion setting.

More recently, Brachetta and Ceci [4] investigate the optimal reinsurance prob-
lem under the criterion of maximizing the expected exponential utility of terminal
wealth when the insurance company has restricted information on the loss process
in a model with claim arrival intensity and claim sizes distribution affected by an
unobservable environmental stochastic factor.

In the present paper we investigate the optimal reinsurance strategy for a risk
model with jump clustering properties in a partial information setting. The risk
model is similar to that proposed by Dassios and Zhao [7] and it includes two differ-
ent jump processes driving the claims arrivals: one process with constant intensity
describing the exogenous jumps and another with stochastic intensity representing
the endogenous jumps, that exhibits self-exciting features. The externally-excited
component represents catastrophic events, which generate claims clustering in-
creasing the claim arrival intensity. The endogenous part allows us to capture the
clustering effect due to self-exciting features. That is, when an accident occurs, it
increases the likelihood of such events. The insurance company has only partial
information at disposal, more precisely the insurer can only observe the cumu-
lative claims process. The externally-excited component of the intensity is not
observable and the insurer needs to estimate the stochastic intensity by solving a
filtering problem. Our approach is substantially different from that of Cao et Al.
[5] in several respects: firstly, we work in a partial information setting; secondly,
the intensity of the self-excited claims arrival exhibits a slight more general depen-
dence on the claims severity; finally, we maximize an exponential utility function
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instead of following a mean-variance criterion. In a partially observable frame-
work, our goal is to characterize the value process and the optimal strategy. The
optimal stochastic control problem in our case turns out to be infinite dimensional
and the characterization of the optimal strategy cannot be performed by solving
a Hamilton-Jacobi-Bellman equation, but via a BSDE approach.

A difficulty naturally arises when dealing with Hawkes processes: the intensity
of the jumps is not bounded a priori, although a non-explosive condition holds.
Hence we are not able to exploit some relevant bounds, which are usually required
to prove a verification theorem and results on existence and uniqueness of the
solution for the related BSDE. Nevertheless, we are going to show that the optimal
stochastic control problem has a solution, which admits a characterization in terms
of a unique solution to a suitable BSDE.

Our paper aims to contribute in different directions to the literature on opti-
mal reinsurance problems: first, we provide a rigorous and formal construction of
the dynamic contagion model. Second, we study the filtering problem associated
to our model, providing a characterization of the filter process in terms of the
Kushner-Stratonovich equation and the Zakai equation as well. To the best of our
knowledge, this problem has not been addressed insofar in the existing literature.
We refer to Dassios and Jang [8] for a similar problem without the self-exciting
component. Third, we solve the optimal reinsurance problem under the expected
utility criterion.

We remark that our study differs from Brachetta and Ceci [4] in many key
aspects. The risk model is substantially different, requires a strong effort to be
rigorously constructed and the study of a new filtering problem. What is more,
a crucial assumption in Brachetta and Ceci [4] is the boundedness of the claims
arrival intensity, which is not satisfied in our case, thus leading to additional tech-
nicalities in most of the proofs. This is what happens, for example, when one
needs to prove existence and uniqueness of the solution of the BSDE. Moreover,
we perform the optimization over a class of admissible contracts, instead of max-
imizing over the retention level. This feature allows us to cover a larger class of
problems. Finally, we do not require the existence of an optimal control for the
derivation of the BSDE, hence the general presentation turns out to be different.

The paper is organized as follows. In Section 1 we are going to introduce the
risk model and to specify what information is available to the insurer. A rigorous
mathematical construction is provided, based on a measure change approach, nec-
essary to develop the following analysis in full details. In Section 2 the filtering
problem is investigated in order to reduce the optimal stochastic control problem
to a complete information setting. The stochastic differential equation satisfied
by the filter is obtained, by exploiting both the Kushner-Stratonovich and the
Zakai approaches. In Section 3 the optimal stochastic control problem is formu-
lated, while in Section 4 a characterization of the value process associated with
the optimal stochastic control problem is illustrated. Due to the infinite dimen-
sion of the filter, the approach based on the Hamilton-Jacobi-Bellman equation
cannot be exploited, so the value process is characterized as the unique solution
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of a BSDE. In Section 5 the optimal reinsurance strategy is investigated under
general assumptions and some relevant cases are discussed.
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Utility maximization for reinsurance policies in a dynamic contagion
claim model

Alessandra Cretarola

(joint work with Claudia Ceci)

Optimal reinsurance and optimal investment problems for various risk models
have gained a lot of interest in the actuarial literature in recent years. Thanks
to the development of effective strategies, insurers can reduce potential claim risk
(insurance risk) and optimize capital investments. Indeed, acquiring reinsurance
serves as a safeguard for insurers against unfavorable claim experiences, while
investing also enables insurers to diversify risks and potentially achieve higher
returns on the cash flows within their insurance portfolio. Within the extensive
body of literature devoted to risk theory, a classical task is to deal with optimal
risk control and optimal asset allocation for an insurance company. Mainly in the



2624 Oberwolfach Report 44/2023

case of classical reinsurance contracts such as the proportional and the excess-of-
loss, different decision criteria have been adopted in the study of these problems
e.g. ruin probability minimization, dividend optimization and expected utility
maximization. Here, we focus on the latter approach (see Irgens and Paulsen [9],
Mania and Santacroce [10], Brachetta and Ceci [4] and references therein). Earlier
seminal papers on the topic adopt a diffusive dynamics for the surplus process,
whereas more recent literature explores surplus processes that incorporate jumps.

The first risk model specification incorporating jumps in non-life insurance is
represented by the classical Cramér-Lundberg model, in which the claims arrival
process follows a Poisson process with a constant intensity. Since it is an as-
sumption which is seriously violated in a large number of insurance contexts (e.g.,
climate risks), many researchers have suggested to employ a stochastic intensity
for the claim arrival dynamics. For instance, clustering features due to exogenous
(externally-excited) factors, such as earthquakes, flood, and hurricanes, might be
captured using a Cox process, see e.g. Albrecher and Asmussen [1], Bjork and
Grandell [2], Embrechts et al. [7]. Moreover, clustering effects due to endogenous
(self-excited) factors, such as aggressive driving habits and poor health conditions,
can be effectively described by a Hawkes process, see e.g. Hawkes [8]. Dassios and
Zhao [6] introduced a dynamic contagion model by generalizing both the Cox
process with shot noise intensity and the Hawkes process.

In recent years, Cao, Landriault and Li [5] analyzed the optimal reinsurance-
investment problem for the compound dynamic contagion process introduced by
Dassios and Zhao [6] via the time-consistent mean–variance criterion. Brachetta
et al. [3] very recently investigated the optimal reinsurance strategy for a risk
model with jump clustering features similar to that proposed by Dassios and Zhao
[6] under partial information.

In this work, we study the optimal reinsurance problem via expected utility
maximization in the risk model with jump clustering properties introduced in
Brachetta et al. [3] under full information for general reinsurance contracts. Note
that, the problem considered in Brachetta et al. [3] is the same but analyzed in
a partial information setting. The study of the problem in the case of complete
information is not addressed in the literature, and furthermore, it could allow for
comparative analyses in a more tractable context than that of partial information.
We discuss two different methodologies: the classical stochastic control approach
based on the Hamilton-Jacobi-Bellman equation and a backward stochastic dif-
ferential equation approach. It is important to stress that proving the existence
of a classical solution to the Hamilton-Jacobi-Bellman equation corresponding to
the optimal stochastic control problem under investigation is challenging due to
its inherent complexity. This difficulty stems from the equation’s nature as a
partial integro-differential equation, compounded by an optimization component
embedded within the associated integro-differential operator. This motivated the
application of an alternative approach based on backward stochastic differential
equations. It is worth noting that the resulting backward stochastic differential
equation, whose unique solution characterizes the value process, differs from that
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studied in Brachetta et al. [3], due to the presence of an additional jump compo-
nent.

The paper, still in progress, is organized as follows. Firstly, we introduce the
mathematical framework including the dynamic contagion process. Then, we for-
mally introduce the problem under investigation, which involves the controlled
surplus process and the objective function. Afterwards, we discuss the Hamilton-
Jacobi-Bellman approach in order to solve the resulting optimal stochastic control
problem and represent the value process as the unique solution of a suitable back-
ward stochastic differential equation. We also characterize the optimal strategy for
a general reinsurance premium and provide more explicit results in some relevant
cases. Currently, we are performing a comparison analysis, which should underline
the risk due to the self-exciting component.
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Set-Valued Propagation of Chaos for Controlled Mean Field SPDEs

David Criens

The area of controlled McKean–Vlasov dynamics, also known as mean field control,
has rapidly developed in the past years More recently, there is also increasing
interest in infinite dimensional systems, see, e.g., [1, 6] for equations appearing in
financial mathematics. We also refer to the recent paper [2], where the authors
investigate controlled mean field stochastic PDEs (SPDEs) for which they establish
well-posedness of the state equation, the dynamic programming principle and a
Bellman equation.

Mean field dynamics are typically motivated by particle approximations (related
to propagation of chaos). It is an important task to make the heuristic motivation
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rigorous. For finite dimensional frameworks, a suitable limit theory was developed
in the seminal paper [8].

In this talk, we discuss recent results established in the paper [3] for an infinite
dimensional variational SPDE framework as initiated by Pardoux [9] and Krylov–
Rozovskii [7]. To reduce the technical level of the talk, we consider a specific
interacting systems of controlled porous media equations of the form

dY kt =
[
∆(|Y kt |q−2Y kt ) +

1

n

n∑

i=1

(Y kt − Y it ) +

∫
c(f)mk(t, df)

]
dt+ σdW k

t ,

Y k0 = x,

with q ≥ 2 and k = 1, . . . , n. Here, m1,m2, . . . ,mn denote kernel that model the
control variables, and W 1, . . . ,Wn are independent cylindrical Brownian motions.
This corresponds to a relaxed control framework in the spirit of [4, 5].

Let Rn(x) be the set of joint empirical distributions of such particles together
with their controls (latter are captured via mk(t, df)dt in a suitable space of Radon
measures). The associated set of mean field limits is denoted by R0(x). It consists
of probability measures supported on the set of laws of (Y,m(t, df)dt), where Y
solves a controlled McKean–Vlasov equation of the form

dYt =
[
∆(|Yt|q−2Yt) + (Yt − E[Yt]) +

∫
c(f)m(t, df)

]
dt+ σdWt Y0 = x.

For this setting, we discuss two types of results. Conceptually, the first one is
probabilistic and deals with the convergence of the controlled particle systems,
while the second one sheds light on the mean field limits from a stochastic optimal
control perspective.

The probabilistic result states that the sets Rn(x) and R0(x) are nonempty
and compact (in a suitable Wasserstein space) and that

Rn(x) → R0(x)

in the Hausdorff metric topology. This result is considered as set-valued propaga-
tion of chaos. Indeed, when the sets Rn(xn) and R0(x0) are singletons, we recover
a classical formulation of the propagation of chaos property. To the best of our
knowledge, the concept and formulation of set-valued propagation of chaos has not
appeared in the literature before.

The optimal control result states that the value functions associated with Rn(x)
and R0(x) converge to each other (uniformly on compacts in their initial values x),
i.e., (

x 7→ sup
P∈Rn(x)

EP
[
ψ
])

→
(
x 7→ sup

P∈R0(x)

EP
[
ψ
])

compactly, for any continuous input function ψ on the suitable Wasserstein space
that is of certain growth. As a consequence, one also obtains limit theorems
in the spirit of the seminal work [8]. Namely, it follows that all accumulation
points of sequences of n-state nearly optimal controls maximize the mean field
value function, and that any optimal mean field control can be approximated by
a sequence of n-state nearly optimal controls.
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The talk is concluded with the open problem to relax some weak monotonicity
conditions from [3]. This problem appears to be challenging due to the non-local
structure of McKean–Vlasov equations.
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Hawkes processes, Malliavin calculus and application to financial and
actuarial derivatives

Caroline Hillairet

(joint work with Anthony Réveillac, Mathieu Rosenbaum)

In this talk, we are interested in the evaluation of financial or actuarial derivatives
whose payoff depends on a cumulative loss (Lt)

Lt :=

Nt∑

i=1

Xi, t ∈ [0, T ]

where N := (Nt)t∈[0,T ] is a counting process (jumping at time (τi)i∈N∗) that
represents the claims arrival (frequency component) and the (Xi)i∈N∗ (iid random
variables) are the claims sizes (severity component).

In the classical Cramer-Lundberg model, N is assumed to be a Poisson process,
meaning that inter-arrivals (τi− τi−1) are assumed to be iid (with exponential dis-
tribution). Nevertheless, self-exciting and contagion effects have been highlighted
such as for example in credit risk and in cyber risk, in favor of modeling the claims
arrivals by a Hawkes process, that is adapted to model aftershocks of claims. A
(linear) Hawkes process H is characterized by its stochastic intensity λ(t) fully
specified by the process H itself, namely

λ(t) := λ0(t) +

∫

(0,t)

Φ(t− s)dHs = λ0(t) +
∑

τn<t

Φ(t− τn) t ∈ [0, T ],
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where Φ is the (deterministic) excitation kernel and λ0 is the (deterministic) base-
line intensity (hereafter taken as a constant µ). The main contribution is to derive
an explicit closed form pricing formula for contracts with underlying a cumulative
loss indexed by a Hawkes process.

From the probabilistic point of view, we consider a payoff of the form KTh(LT )
where (Kt) and (Lt) are two loss processes indexed by the same Hawkes. This
quantity is at the core for determining the premium of a large class of insur-
ance derivatives or risk management instruments : reinsurance contracts (such as
Stop-Loss contracts), or credit derivatives (such as tranches of Collaterized Debt
Obligations), or computation of the expected shortfall of contingent claims. It can
be expressed as

∫
(0,T ] ZtdHtF where Z is a predictable process and F := h(LT )

is a functional of the Hawkes process. In the case where the counting process is
a Poisson process (or a Cox process), Malliavin calculus enables one to transform
this quantity. More precisely, if H = N is an homogeneous Poisson process with
intensity µ > 0 (in other words the self-exciting kernel Φ is put to 0), the Malliavin
integration by parts formula (Mecke formula, see [7]) allows us to derive that

(1) E

[∫

(0,T ]

ZtdNtF

]
= µ

∫ T

0

E
[
ZtF ◦ ǫ+t

]
dt,

where the notation F ◦ ǫ+t denotes the functional on the Poisson space where a
deterministic jump is added to the paths of N at time t. This expression turns
out to be particularly interesting from an actuarial point of view since adding a
jump at some time t corresponds to realising a stress test by adding artificially a
claim at time t. Naturally, in case of a Poisson process, the additional jump at
some time t only impacts the payoff of the contract by adding a new claim in the
contract but it does not impact the dynamic of the counting process N .

We provide a generalization of Equation (1) in case the counting process is
a Hawkes process H . The main ingredient consists in using a representation of
a Hawkes process known as the “Poisson imbedding” (related to the “Thinning
Algorithm”, see [5]) in terms of a Poisson measure N on [0, T ]×R+ to which the
Malliavin integration by parts formula can be applied.

(2)

{
Ht =

∫
(0,t]

∫
R+

1{θ≤λs}N(ds, dθ),

λt = µ+
∫
(0,t) Φ(t− u)dHu.

As the adjunction of a jump at a given time impacts the dynamic of the Hawkes
process, we refer to the obtained expression more to an ”expansion” rather than
an ”integration by parts formula” for the Hawkes process, as it involves what
we name ”shifted Hawkes processes” Hvn,...,v1 for which jumps at deterministic
times 0 < vn < · · · < v1 are added to the process accordingly to the self-exciting
kernel Φ. To illustrate this, a one shift Hawkes process at time v in (0, T ) can be
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expressed as follows




Hv
t = 1[0,v)(t)Ht + 1[v,T ](t)

(
Hv
v− + 1 +

∫

(v,t]

∫

R+

1{θ≤λv
s}
N(ds, dθ)

)

λvt = 1(0,v](t)λt + 1(v,T ](t)

(
µv,1(t) +

∫

(v,t)

Φ(t− u)dHv
u

)
,

µv,1(t) := µ+
∫
(0,v]

Φ(t− u)dHv
u = µ+

∫
(0,v)

Φ(t− u)dHu +Φ(t− v).

The main result is the following expansion formula (see [2]): Assuming Z a
bounded F-predictable process, F a bounded FT -measurable random variable and
‖Φ‖1 < 1. Then

E

[
F

∫

[0,T ]

ZtdHt

]
= µ

∫ T

0

E [ZvF
v] dv

+µ

+∞∑

n=2

∫ T

0

∫ v1

0

· · ·
∫ vn−1

0

n∏

i=2

Φ(vi−1 − vi)E
[
Zvn,...,v2v1 F vn,...,v1

]
dvn · · · dv1.

The first term µ
∫ T
0
E [ZvF

v] dv corresponds to the formula for a Poisson process
(setting the self-exciting kernel Φ at zero). The sum in the second term can be
interpreted as a correcting term due to the self-exciting property of the counting
process H . The shifted processes Hvn,...,v1 appearing in the form of the premium
are of the same complexity than the original Hawkes process H . However, they
exhibit deterministic jumps at some times v1, . . . , vn which are weighted by corre-
lation factors of the form Φ(vi− vi−1). We benefit from this formulation to derive
a lower and an upper bound respectively for the quantity E[KTh(LT )]: by control-
ling the different types of jumps of the shifted Hawkes process, one can perform
bounds that are more accurate than those available so far.

As an extension (still assuming ‖Φ‖1 < 1), we indicate how this methodology
combining Poisson imbedding and Malliavin calculus, can be used to provide new
results on Hawkes processes such as

• Explicit “Pseudo-Chaotic” expansion (see [3])

HT =
+∞∑

k=1

∫

Xk

1

k!
ck(x1, . . . , xk)N(dx1) · · ·N(dxk),

{
c1(x1) = 1{θ1≤µ},

ck(x1, . . . , xk) = Dk−1
(x1,x2,...,xk−1)

1{θk≤λtk
}

where X := [0, T ]× R+; x := (t, θ); dx = dθdt and D is the Malliavin
derivative (DxF ) := F ◦ ǫ+x − F .

• Explicit correlation of a general Hawkes process (see [4]). For s ≤ t

Cov(Hs, Ht) = µ

∫
s

0

(
1 +

∫
v

0

Ψ(w)dw

)(
1 +

∫
s

v

Ψ(y − v)dy

)(
1 +

∫
t

v

Ψ(y − v)dy

)
dv,
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where Ψ :=
∑+∞
n=1 Φn and Φn are the iterated convolution of the excitation

kernel Φ1 := Φ, Φn(t) :=
∫ t
0 Φ(t− s)Φn−1(s)ds, t ∈ R+, n ∈ N∗.

• Quantitative TCL (see [1]). “Berry Esseen” bounds Central Limit The-

orems for the compound Hawkes process LT :=
∑HT

i=1Xi (with Xi iid and
independent of H) using Malliavin-Stein method (as in Nourdin Pecatti
[6])

dW

(
LT −m

∫ T
0
λsds√

T
,G

)
≤ CΦ,ν√

T
, ∀T > 0, G ∼ N (0, σ2),

with m = E(X) and σ2 = µE(X2)
1−||Φ||1

.
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Université de Lausanne
Quartier UNIL-Chamberonne
Bâtiment Extranef
1015 Lausanne
SWITZERLAND

Sascha Gaudlitz

Institut für Mathematik
Humboldt-Universität Berlin
Lückstr. 55
10317 Berlin
GERMANY

Dr. Pierre-Olivier Goffard

Institut de Recherche Mathématiques
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Université de Strasbourg
7, rue René Descartes
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