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Abstract. The Workshop ‘Mathematical Logic: Proof Theory, Construc-
tive Mathematics’ focused on proof-theoretic research on the foundations of
mathematics, on the extraction of explicit computational content from given
proofs in core areas of ordinary mathematics using proof-theoretic methods
as well as on topics in proof complexity. The workshop contributed to the
following research strands:

• Interactions between foundations and applications.
• Proof mining.
• Constructive and semi-constructive reasoning.
• Proof theory and theoretical computer science.
• Structural proof theory.
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Introduction by the Organizers

The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was
held November 12-17, 2023 in a hybrid format due to the Corona pandemic. It
had 46 participants at the Oberwolfach Institute and 4 virtual participants who
were connected via ZOOM. The program consisted of 23 talks of 40 minutes (2 of
which were given via ZOOM).

The purpose of the workshop was

To promote the interaction between the foundations of mathematics and applica-
tions to mathematics as done for example in the field of ‘proof mining’. M. Neri,
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P. Oliva and T. Powell talked on the very recent novel development of apply-
ing proof-theoretic proof mining techniques in the context of probability theory.
N. Pischke extended the framework of previously existing logical metatheorems
for proof mining to include concepts such as dual and bidual spaces of a Banach
space, gradients of uniformly Fréchet differentiable convex functions and their
Fenchel conjugates and, finally, Bregman distances which allows one to treat for
the first time important algorithms in optimization which compute zeros of maxi-
mally monotone operators in Banach spaces. P. Pinto used a concrete proof mining
(of a celebrated theorem of S. Reich) due to Kohlenbach and Sipoş to generalize
Reich’s result (together with a quantitative analysis) to a newly defined class of
uniformly smooth and convex hyperbolic spaces (which covers CAT(0)-spaces as a
special case). L. Leuştean gave a survey on recently extracted effective rates of as-
ymptotic regularity in optimization with a special focus on case where linear rates
can be obtained using proof-mining methods. This topic was further extended in
the talk by H. Cheval who, moreover, discussed the potential use of proof assistants
such as LEAN in partially automatizing parts of the mining process.

A. Sipoş gave a quantitative treatment of the class of super strongly nonexpan-
sive mappings which was recently introduced by Liu et al. as a counterpart to
maximally monotone and uniformly monotone operators. This leads to a quan-
titative inconsistent feasibility result which was even qualitatively new. Talks on
the interplay between foundational research in the context of reverse mathemat-
ics (RM) and core mathematics where given by J. Aguilera, who spoke about
recent results on the reverse mathematics of systems of determinacy provable in
second-order arithmetic and on some which go beyond it, and by S. Sanders, who
studied, in particular, the status of various weak forms of continuity in the context
of higher order reverse mathematics. V. Brattka’s talk discussed a number of uni-
form dichotomies for problems in the Weihrauch lattice. M. Baaz showed that a
Skolemization method due to P. Andrews - and used prominently in the context of
resolution - can have a non-elementary speed up over the standard Skolemization
method. R. Kahle and I. Oitavem talked about a problem in the proof complexity
of a Hilbert-type system for propositional logic and for combinatorial logic. S. Ne-
gri developed a natural deduction calculus for Gurevich logic and related it to a
previously proposed cut-free sequent calculus to prove a normalization result.

To explore connections between proof theory, constructive formal systems and com-
puter science. M. Fujiwara’s talk investigated the formula classes Uk, Ek, intro-
duced in 2004 by Akama et al., from the point of view of the standard transforma-
tion procedure for prenex normalization showing that they are exactly the classes
of formulas induced by Σk and Πk resp. via these transformations. M.E. Maietti
proved that the formal system for the ‘Minimalist Foundation for Constructive
Mathematics’, introduced in 2005 by herself and G. Sambin, is equiconsistent
with its extension by the law of the excluded middle. I. van der Giessen presented
an intuitionistic version of Gödel-Löb logic that includes both modalities Box and
Diamond, and allows for a Gentzen-Gödel negative translation of its classical coun-
terpart. P. Schuster (jww G. Fellin) talked about a generalization of Glivenko’s
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theorem to an arbitrary nucleus and to an inductively generated abstract conse-
quence relation. M. Zorzi presented extensional proof systems for modal logics,
focussing on a “geometric” approach that entails a notion of position.

To investigate further the connections between logic and computational complex-
ity. E. Jeřábek’s talk addressed the question of characterizing and axiomatizing
ordered rings that are existential integer parts of real-closed exponential fields,
and especially the first-order theory of such rings. P. Pudlák discussed implicit
proof systems for propositional logic, and the use of iterated implicit proof systems
to capture self-consistency statements. N. Thapen presented first-order theories
of bounded arithmetic for semi-algebraic reasoning about polynomial inequalities,
such as used by the Sum-of-Squares (SoS) proof system. M. Müller presented a
proof of the independence of circuit-lower bounds for nondeterministic exponential
time from theories of bounded arithmetic.

Acknowledgement: The workshop organizers would like to thank the MFO for
supporting the participation of graduate students and recent post docs in the
workshop via the Oberwolfach Leibniz Graduate Student program.
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Abstracts

On a shortest proof of ϕ→ ϕ

Reinhard Kahle, Isabel Oitavem

(joint work with Paulo Guilherme Santos)

1. The standard proof of ϕ→ ϕ in a Hilbert-style calculus

Let us consider the Pure Positive Implication Propositional Calculus in a Hilbert-
style calculus, based on Frege’s axioms for implication [2]:

⊢ ϕ→ (ψ → ϕ) (F1)

⊢ (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ)) (F2)

The only rule is Modus ponens (MP).
Although not an axiom, ϕ→ ϕ is a derivable formula:

Theorem. ϕ→ ϕ is derivable, for every formula ϕ.

Proof. Consider the derivation D1:

1 ⊢ (ϕ → ((ϕ → ϕ) → ϕ)) → ((ϕ → (ϕ → ϕ)) → (ϕ → ϕ)) (F2)

2 ⊢ ϕ → ((ϕ → ϕ) → ϕ) (F1)

3 ⊢ (ϕ → (ϕ → ϕ)) → (ϕ → ϕ) MP[1,2]

4 ⊢ ϕ → (ϕ → ϕ) (F1)

5 ⊢ ϕ → ϕ MP[3,4]
�

We call D1 the standard proof of ϕ→ ϕ (for the given axiomatization).
Some historical notes concerning the discovery of this proof can be found in [5].
Is D1 the shortest proof of ϕ→ ϕ?
Of course, this question makes sense only, when the formal system is fixed, and

when an appropriate measure of length is defined.
We consider the formal system described above, and we focus on the measure

M1 which counts the lines of the proof. For instance M1(D1) = 5.
It is an easy combinatorial exercise to see that there is no shorter proof of

ϕ→ ϕ, for an arbitrary formula ϕ, in this formal system.
However, could there exist shorter proofs than D1 for special instances of ϕ?

2. The special case (ϕ→ ϕ) → (ϕ→ ϕ)

Consider D2:

1 ⊢ (ϕ → (ϕ → ϕ)) → ((ϕ → ϕ) → (ϕ → ϕ)) (F2)

2 ⊢ ϕ → (ϕ → ϕ) (F1)

3 ⊢ (ϕ → ϕ) → (ϕ → ϕ) MP[1,2]
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For the length we have, M1(D2) = 3 < M1(D1).
Is this the only “special case”? We answer this question via Combinatory Logic.

3. Combinatory Logic and the Curry-Howard Correspondence

Schönfinkel [6] and Curry [1] developed the framework of Combinatory Logic which
turned out to be a “computational counterpart” of the Hilbert-style calculus with
Frege’s axioms (F1) and (F2) for implication.

Combinatory terms are build inductively from the two constants, K and S,
variables (X,Y, · · · ), and closure under application: If X and Y are combinatory
terms, then the application (X · Y ) is also a combinatory term. As usual, the
dot for application is often suppressed; and one uses left associativity to reduce
parentheses.

Combinatory terms serve as a kind of programming language, when one con-
siders the following equalities:

• KX Y = X ;
• SX Y Z = X Z (Y Z).

The combinators can be typed by formulas, such that the combinatory terms
represent proofs of these formulas:

• Kϕ→(ψ→ϕ) for the axiom (F1);
• S(ϕ→(ψ→χ))→((ϕ→ψ)→(ϕ→χ)) for the axiom (F2);
• Application relates to (an application of) modus ponens : Xϕ→ψY ϕ has
type ψ.

In this way, the derivation D1 can be written by the following (typed) combina-
tory term: S(ϕ→((ϕ→ϕ)→ϕ))→((ϕ→(ϕ→ϕ))→(ϕ→ϕ))Kϕ→((ϕ→ϕ)→ϕ)Kϕ→(ϕ→ϕ). This
term has, indeed, type ϕ→ ϕ.

When taking the application dot into account, we have also a one-to-one corre-
spondence between the number of lines of the proof and the length of the combi-
natorial term: M1(D1) = 5 = lh(S ·K ·K).

4. Identity Combinators and Fixed Points

The identity combinator I with IX = X can be defined by I = SKK.
According to the Curry-Howard Correspondence, any identity combinator, i.e.,

a combinatorM with M X = X , for all X , will give rise to a proof of (an instance
of) ϕ→ ϕ. But it does not need to be an identity combinator.

Definition. Let M be a closed combinatory term of type ϕ0 → (· · · → (ϕn →
ψ) · · · ), n ≥ 0. X is a fixed point, if for all terms Y1, . . .Yn:

M X Y1 · · · Yn = X Y1 · · · Yn.

Theorem. Let M be a closed combinatory term.

• If M has a fixed point, then M corresponds to a proof of an instance of
ϕ→ ϕ.

• Moreover, the number of lines of that proof is lh(M).
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Considering only combinatory terms of length less than or equal to 5, we obtain
the following special cases. For terms starting with K:

Comb. M F.P. Proof of ϕ→ ϕ for ϕ being

KK K ϕ→ (ψ → ϕ)
KS S (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))

K (KK) KK ϕ→ (ψ → (χ→ ψ))
K (KS) KS ϕ→ ((ψ → (χ→ τ)) → ((ψ → χ) → (ψ → τ)))
K (SK) SK (ϕ→ ψ) → (ϕ→ ϕ)
K (S S) S S ((ϕ→ (ψ → χ)) → (ϕ→ ψ)) →

((ϕ→ (ψ → χ)) → (ϕ→ χ))

For terms starting with S:

Combinator M Fixed point Proof of ϕ→ ϕ for ϕ being

SK I ϕ→ ϕ
S S * (ϕ→ (ψ → ψ)) → (ϕ→ ψ)

SKK X ϕ
SKS X ϕ→ (ψ → χ)
S (SK) X (ϕ→ ψ) → ϕ

5. Further considerations

• S S does not has a fixed point in the sense defined above; the analysis of
this case gives, indeed, reason for further considerations.

• Hindley [3] provided a typing algorithm for combinators. From this algo-
rithm one obtains a more general type of SKK which is of interest when
considering other measures (which, for instance, take the length of formu-
las in a proof into account).

• The present study is some ground work for more detailed investigations
on Hilbert’s 24th problem [4]. This problem, preserved in Hilbert’s math-
ematical notebook, asks for criteria of simplicity of proofs, proposing, in
particular, to take the length of proofs into account.

Acknowledgment. Research supported by national funds through the FCT –
Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects
UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applica-
tions) and by the Udo Keller Foundation.
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Consistency, implicit proofs, and cut-elimination

Pavel Pudlák

Two computable operators have been conjectured to be jumps.

Definition 1 (consistency jump). For a proof system P , define con(P ), the consis-
tency jump, to be the strongest proof systems Q such that S1

2 +Con(S
1
2 +Rfn(P ))

proves the reflection principle for Q.

The second operator is based on implicit proofs.

Definition 2 (Kraj́ıček [4], implicit proofs). Let P,Q be proof systems; we define
a proof system [P,Q] as follows. A [P,Q]-proof of φ is a pair (π, c), where

• c is a circuit that defines bits of a (possibly exponential size) Q-proof of
φ,1 and

• π is a P -proof of the fact above.

We conjecture that imp(P ) := [P, P ] is a jump.

We want to find connection between the two operators and believe that it could be
proved by showing that cut-elimination produces implicit proofs in the sense of the
above definition. The fact that elimination of one level of cuts produces exponential
size proofs that have succinct representations has already been observed before,
[1, 2]. The problem is, however, that we still do not fully understand the concept
of an implicit proof. Part of the reason is that it is not a robust concept. For
instance Khaniki proved under plausible complexity-theoretical assumption that
there are two proof systems P and Q such that P ≡p Q, but imp(P ) 6≡ imp(Q),
(cf. [3]). Therefore we decided to first study a restricted version of implicit proofs.

A restricted kind of implicit proofs is defined by requiring that the circuit com-
putes formulas, not single bits, see [4]. Thus the formulas must be of polynomial
size (in the size of the implicit proof). Such proof systems are denoted by [P,Q]m.
(This operation is only defined when Q is a proof system based on formulas.) In
our modification circuits compute sequents, because we want to use the sequent
calculus. We will consider the following proof systems (cf. [5]):

• SF denotes the sequent calculus for propositional logic augmented with
the substitution rule:

Γ −→ ∆

Γ[x/α] −→ ∆[x/α]
,

where α is a Boolean formula.

1If c has n input bits, then it can define bits of a string of length 2n.
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• G denotes the the quantified propositional sequent calculus. E.g., the ∃-
right rule is

Γ −→ ∆, φ(α)

Γ −→ ∆, ∃x.φ(x)
,

where α is a Boolean formula.
• For i ≥ 1, Gi denotes the Σqi fragment of G.

Theorem 1.

(1) [SF, SF ]m ≡p G1,

(2) [SF,Gi]
m ≡p Gi+1 for i ≥ 1.

The more technical part of the proofs are polynomial simulations [SF, SF ]m ≥p
G1 and [SF,Gi]

m ≥p Gi+1. They are based on eliminating cuts with the highest
quantifier complexity and showing that this produces implicit proofs.

References
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New applications of proof theory: Greedy algorithms, probability,

and proof assistants

Thomas Powell

I will give a brief and high-level overview of some new research projects that I
believe have the potential to yield exciting results over the next few years.

The first revolves around greedy approximation schemes in Hilbert and Banach
spaces. This is an area replete with convergence results, proofs of which are often
nonconstructive and hinge on geometric properties of the underlying space, such
as uniform smoothness. I will present an initial case study and argue that the
area in general may form a fertile ground for applied proof theory, with particular
relevance at the moment given its connections to learning algorithms.

I will also present an overview of some ongoing work in probability theory (joint
with Morenikeji Neri). My focus will be on our efforts to understand some of the
basic notions of probabilistic convergence and the relationships between them from
a computational perspective. Here things seem to get particularly interesting
where uniform integrability plays a role, and implications between convergence
statements seem computationally subtle. A much broader open question is how
to formalise the underlying proofs in a suitable abstract system.
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Finally, I will outline some broad goals in formalised mathematics and auto-
mated reasoning, which are relevant to both of the above themes and applied proof
theory in general.

First-Order Reasoning and Efficient Semi-Algebraic Proofs

Neil Thapen

(joint work with Fedor Part, Iddo Tzameret)

Semi-algebraic proof systems such as sum-of-squares (SoS) [5] have attracted a lot
of attention due to their relation to approximation algorithms: constant degree
semi-algebraic proofs lead to conjecturally optimal polynomial-time approximation
algorithms for important NP-hard optimization problems [1]. Motivated by the
need to allow a more streamlined and uniform framework for working with SoS
proofs than the restrictive propositional level, we initiate a systematic first-order
logical investigation into the kinds of reasoning possible in algebraic and semi-
algebraic proof systems. Specifically, we develop first-order theories that capture
in a precise manner constant degree algebraic and semi-algebraic proof systems:
every statement of a certain form that is provable in our theories translates into
a family of constant degree polynomial calculus or SoS refutations, respectively;
and using a reflection principle, the converse also holds.

This places algebraic and semi-algebraic proof systems in the established frame-
work of bounded arithmetic, while providing theories corresponding to systems
that vary quite substantially from the usual propositional-logic ones [2, 4, 6].

We give examples of how our semi-algebraic theory proves statements such as
the pigeonhole principle, we provide a separation between algebraic and semi-
algebraic theories, and we describe initial attempts to go beyond these theories
by introducing extensions that use the inequality symbol, identifying along the
way which extensions lead outside the scope of constant degree SoS. Moreover, we
prove new results for propositional proofs, and specifically extend Berkholz’s [3]
dynamic-by-static simulation of polynomial calculus (PC) by SoS to PC with the
radical rule.

An earlier version of this work appeared as [7].
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Quantitative Probability from a Logician’s Perspective

Morenikeji Neri

Over the last few decades, proof mining has enjoyed many successes in numerous
areas of mathematics, mostly within analysis. To date, there have only been a
handful of papers that extend proof mining to probability and measure theory. On
the other hand, probability theorists have been informally extracting quantitative
bounds for many years, in particular, obtaining rates for probabilistic convergence
theorems.

In this talk, I shall first discuss some results from quantitative probability theory
obtained by logicians and probability theorists, giving an overview of the relevant
notions from probability theory. I shall then present my own ongoing work in
obtaining quantitative bounds from strong law of large numbers type results, that
not only build on the existing body of work in the proof mining of probability
theory literature but also extend work done by probability theorists obtaining
quantitative results. Lastly, I shall look towards the future and introduce some
questions in quantitative probability theory that one could potentially answer
using ideas from the proof mining program.

On the consistency of circuit lower bounds for non-deterministic time

Moritz Müller

(joint work with Albert Atserias, Sam Buss)

We prove the first unconditional consistency result for superpolynomial circuit
lower bounds with a relatively strong theory of bounded arithmetic. Namely, we
show that the theory V 0

2 is consistent with the conjecture that NEXP 6⊆ P/poly,
i.e., some problem that is solvable in non-deterministic exponential time does
not have polynomial size circuits. We suggest this is the best currently available
evidence for the truth of the conjecture. The same techniques establish the same
results with NEXP replaced by the class of problems decidable in non-deterministic
barely superpolynomial time such as NTIME(nO(log log log n)). Additionally, we
establish a magnification result on the hardness of proving circuit lower bounds.

References
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Structural proof theory for logics of strong negation

Sara Negri

(joint work with Norihiro Kamide)

Gurevich logic is an extended constructive three-valued logic obtained from in-
tuitionistic logic by adding a connective ∼ of strong negation, with the following
axiom schemata, where ¬ is intuitionistic negation:1

(1) ∼∼A ⊃⊂ A,
(2) ∼¬A ⊃⊂ A,
(3) ∼A ⊃ ¬A,
(4) ∼(A ∧B) ⊃⊂∼A∨ ∼B,
(5) ∼(A ∨B) ⊃⊂∼A∧ ∼B,
(6) ∼(A ⊃ B) ⊃⊂ A∧ ∼B.

Nelson logic [11], also known as Nelson’s constructive three-valued logic N3, is
the intuitionistic negation-less fragment of Gurevich logic.

The primary formal difficulty in developing a natural deduction system for
Gurevich logic, and more generally for logics that employ strong negation, lies in
the requirement of having rules for ¬ and ∼ without ⊥. This is solved using the
rules of explosion, of ¬-introduction, and of excluded middle:2

¬A A
C

Exp

[A]
....
C

[A]
....

¬C
¬A

¬I

[¬A]
....
C

[A]
....
C

C
Em

The natural deduction system for intuitionistic logic NI⋆ is obtained replacing
the rule of ex falso quodlibet of NI with the rule of explosion and adding rule ¬I,
and the natural deduction system for classical logic NK⋆ is obtained from NI⋆

by adding the rule of excluded middle. Next, the natural deduction system for
Gurevich logic NG is obtained from NI⋆ by adding the following rules for strong
negation:

∼ A A
C

∼Exp

A
∼∼ A

∼∼I
∼∼ A
A

∼∼E
A

∼ ¬A
∼¬I

∼ ¬A
A

∼¬E

A ∼ B
∼ (A ⊃ B)

∼⊃ I
∼ (A ⊃ B)

A
∼⊃E1

∼ (A ⊃ B)

∼ B
∼⊃E2

1Gurevich logic can also be obtained by adding intuitionistic negation to Nelson logic (N3)
[1,11], which, in turn, is obtained by adding the principle of explosion to Nelson’s paraconsistent
four-valued logic, N4 [1, 11]. In the original study by Gurevich [4], completeness with respect to
three-valued Kripke semantics, embedding into intuitionistic logic, functional completeness, and
duality theorems for Gurevich logic were proven using a Hilbert-style axiomatic system. Cut-free
Gentzen-style sequent calculi for Gurevich logic have been introduced in [4, 6].

2Systems with primitive negation for intuitionistic logic have a long history, dating back to
the the 1930s with the work of Heyting and Gentzen [5, 12].
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∼ A
∼ (A ∧B)

∼∧I1
∼ B

∼ (A ∧B)
∼∧I2

∼ (A ∧B)

[∼ A]
....
C

[∼ B]
....
C

C
∼∧E

∼ A ∼ B
∼ (A ∨B)

∼∨I
∼ (A ∨B)

∼ A
∼∨E1

∼ (A ∨B)

∼ B
∼∨E2

The natural deduction system NN for Nelson logic N3 is obtained from NG by
deleting Exp, ¬I, ∼¬I, and ∼¬E (i.e., NN is the ¬-less fragment of NG).

Equivalence between these natural deduction systems and correspondence with
previously proposed cut-free Gentzen-style sequent calculi are proven and used to
obtain normalization of the corresponding natural deduction systems. The nor-
malization theorem for NK⋆ cannot be obtained using the equivalence with LK,
and therefore the single-succedent sequent calculus for classical logic LC originally
introduced by von Plato in [13] (see also [9]) is used. In particular, an equivalence
is established between NG and the previously proposed cut-free Gentzen-style se-
quent calculus LG for Gurevich logic, and this result is used to prove normalization
for NG, and, as a bonus, also normalization for NN and NI⋆.

Next, G3-style sequent calculi are introduced for these logics and Avron and De-
Omori logic. G3-style sequent calculi are sequent calculi with all structural rules
admissible, not only cut but also weakening and contraction, and with all or most
of the rules invertible. They are especially suited for root-first proof search and
therefore useful for automated deduction, but also for meta-theoretical purposes
because of their analyticity [9, 10]

First, the G3-style intuitionistic calculus with primitive negation G3ip¬ is ob-
tained from G3ip by admitting an empty succedent and replacing the initial se-
quents ⊥,Γ ⇒ C for the falsity constant ⊥ with the following rules for ¬:

¬A,Γ ⇒ A

¬A,Γ ⇒
¬L

A,Γ ⇒

Γ ⇒ ¬A
¬R

Then, the G3-style sequent calculus for Gurevich logic G3gv is obtained from
G3ip¬ by adding the following initial sequents and rules for ∼, where γ represents
a formula or the empty multiset:

∼P,Γ ⇒ ∼P init2 ∼P, P,Γ ⇒ init3

A,Γ ⇒ γ

∼∼A,Γ ⇒ γ
∼∼L

Γ ⇒ A
Γ ⇒ ∼∼A

∼∼R

A,∼B,Γ ⇒ γ

∼(A⊃B),Γ ⇒ γ
∼⊃L

Γ ⇒ A Γ ⇒ ∼B
Γ ⇒ ∼(A⊃B)

∼⊃R

∼A,Γ ⇒ γ ∼B,Γ ⇒ γ

∼(A∧B),Γ ⇒ γ
∼∧L

Γ ⇒ ∼A
Γ ⇒ ∼(A∧B)

∼∧R1

Γ ⇒ ∼B
Γ ⇒ ∼(A∧B)

∼∧R2

∼A,∼B,Γ ⇒ γ

∼(A∨B),Γ ⇒ γ
∼∨L

Γ ⇒ ∼A Γ ⇒ ∼B
Γ ⇒ ∼(A∨B)

∼∨R
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A,Γ ⇒ γ

∼¬A,Γ ⇒ γ
∼¬L

Γ ⇒ A
Γ ⇒ ∼¬A

∼¬R

The G3-style sequent calculus for Nelson N3, G3n3, is obtained from G3gv by
deleting the rules ¬L, ¬R, ∼¬L, and ∼¬R (i.e., as the ¬-less part of G3gv, and
the calculus for Nelson N4, G3n4, is obtained from G3n3 by deleting init3.

Structural properties including cut elimination are established for these calculi
and a Glivenko theorem for embedding G3gv into G3ip¬ is shown, providing at the
same time an indirect alternative proof of the cut-elimination theorem for G3gv.

The G3-style sequent calculus G3cp¬∼ is obtained from the intuitionistic calculus
turning it to a multisuccedent system. In G3cp¬∼, ¬ is equivalent to ∼. Thus,
G3cp¬∼ is a redundant G3-style sequent calculus for classical propositional logic,
however, the interest in this calculus lies in the fact that it provides a platform to
obtain G3 calculi for a wealth of logical systems, already studied in the literature,
that lacked a G3-style proof system: it is used to define G3-style sequent calculi
for classical versions of N3 and N4, for Avron logic [2], and for De–Omori logic
(the extension of Belnap–Dunn logic with classical negation) [3].

Finally, the explicit use of ∼ in G3cp¬∼ as an auxiliary connective makes it
possible to prove a Glivenko theorem for embedding G3cp¬∼ into G3gv.

For the details, cf. [7, 8].
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Determinacy and Π1

n
−CA0

Juan P. Aguilera

There is an extremely large body of work on the metamathematics of determi-
nacy principles in the context of set theory and reverse mathematics. From the
perspective of the former, it was known from work of Steel, Tanaka, Heinatsch-
Möllerfeld, Montalbán-Shore, and Nemoto that most of the usual subsystems of
second-order arithmetic, such as WKL0, ACA0, ACA

+
0 , ATR0, Π

1
1−CA0, Π

1
2−CA0,

and Z2 = Π1
∞−CA0, are equiconsistent with schemata of axioms asserting the

determinacy of games with complexity at various levels of the hierarchy of contin-
uous or Lipschitz reducibility. It was open whether the same result is true for the
missing subsystems Π1

n−CA0, where 2 < n <∞.
In this talk, we mentioned the main ingredients of the proof behind the theo-

rem asserting that the systems Π1
n−CA0 are not equiconsistent with any schema of

determinacy assertions when n 6= 1, 2,∞. The main tool was the representation of
the Wadge classes between the levels of the difference hierarchy over the Gδ,σ sets
in terms of separated Boolean connectives in the style of Louveau, together with
an argument by transfinite induction employing an abstract determinacy transfer
theorem which is provable from hypotheses asserting the existence of certain non-
standard models of Kripke-Platek set theory admitting infinitely nested sequences
of elementarity gaps of various kinds. This type of determinacy transfer theorem,
although provable in the weak theory RCA0, also has applications in the context
of ZFC and its extensions. The specific theorem mentioned in the talk was:

Theorem. Suppose that every x ∈ R belongs to a nonstandard βm-model M of
Kripke-Platek set theory satisfying V = L and Γ-determinacy, where Γ is a Borel
Wadge class, and such that there exists a sequence {(ζi, si) : i ∈ N} of M -ordinals
for which the following hold for all i:

(1) ζi < ζi+1 ∈ wfp(M),
(2) si+1 < si,
(3) M |= Lζi ≺Σm+1

Lsi ,
(4) M |= Lsi+1

≺Σm−1
Lsi .

Then, all games in the class LU(Σ0
2,Γ,m−Σ0

3) are determined. This is the class
of all sets of the form

W =
⋃

i∈N

(

Ai ∩ Ci
)

∪B \
⋃

i∈N

Ci,

where Ai ∈ Γ, Ci ∈ Σ0
2, B ∈ m−Σ0

3, and W ∩ Ci = Ai ∩ Ci for all i ∈ N.

Although quite technical, the theorem is very powerful. Relating the sets pro-
vided by the theorem to those considered in Louveau’s analysis of the Wadge ranks
of Borel sets and using an analog of his of the Hausdorff-Kuratowski theorem, one
can then transfinitely iterate the theorem inside Π1

n−CA0, leading to the following
dichotomy:
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Theorem. Suppose that Γ =
⋃

i∈N
Γi is a Borel Wadge class, provably so in

Π1
n+3−CA0. Write Γ-Determinacy for the schema {Γi-Determinacy: i ∈ N}.

Then, one of the following holds:

(1) Π1
n+3−CA0 ⊢ Γ-Determinacy & con(Γ-Determinacy); or

(2) RCA0 + Γ-Determinacy ⊢ con(Π1
n+3−CA0).
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Proof Mining and duality in Banach spaces

Nicholas Pischke

We present a proof-theoretically tame approach for treating the dual space of
an abstract Banach space in systems amenable to proof mining metatheorems
on bound extractions, unlocking a major branch of functional analysis to these
methods. The approach relies on using intensional methods to deal with the high
quantifier complexity of the predicate defining the dual space as well as on a novel
treatment of suprema over certain bounded sets in normed spaces to deal with the
norm induced on the functionals of the dual. Beyond this, we provide an overview
of the many possible extensions and concrete applications to core mathematics
obtainable from this (which in particular includes a theory of convex functions
and corresponding Fréchet derivatives and their duality theory through Fenchel
conjugates, together with the associated Bregman distances).
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Proof mining and asymptotic regularity

Laurenţiu Leuştean

(joint work with Horaţiu Cheval, Paulo Firmino, Ulrich Kohlenbach,
Pedro Pinto)

Proof mining is a research program that consists in the extraction of new infor-
mation from mathematical proofs by applying proof-theoretic techniques. This
program was systematically developed beginning with the 1990s by Kohlenbach
and collaborators, in connection with applications to approximation theory, non-
linear analysis, ergodic theory, topological dynamics, Ramsey theory, (partial)
differential equations, and convex optimization. Kohlenbach’s monograph [11] is
the standard reference for proof mining.
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Asymptotic regularity is a very useful property in the study of the asymp-
totic behaviour of nonlinear iterations, introduced in the 1960s by Browder and
Petryshyn [3] for the Picard iteration and extended to general iterations by Bor-
wein, Reich, and Shafrir [1]. If (xn) is a sequence in a metric space (X, d),
∅ 6= C ⊆ X , and T : C → C, then (xn) is said to be asymptotically regular
if lim
n→∞

d(xn, xn+1) = 0 and T -asymptotically regular if lim
n→∞

d(xn, T xn) = 0. It

turns out that in numerous results on the weak or strong convergence of a nonlin-
ear iteration (xn), the first step is to prove the (T -)asymptotic regularity of (xn).
Usually one proves first that (xn) is asymptotically regular and afterwards that
(xn) is T -asymptotically regular.

A mapping ϕ : N → N is said to be a rate of asymptotic regularity of (xn) if ϕ
is a rate of convergence of (d(xn, xn+1)) towards 0, that is

∀k ∈ N ∀n ≥ ϕ(k)

(

d(xn, xn+1) ≤
1

k + 1

)

.

One defines similarly the notion of a rate of T -asymptotic regularity of (xn). As
pointed out in [14], the notion of T -asymptotic regularity can be extended to
countable families of mappings. Thus, if (Tn : C → C) is such a family, then we
say that (xn) is (Tn)-asymptotically regular with rate ϕ if lim

n→∞
d(xn, Tnxn) = 0

with rate of convergence ϕ.

In this talk I present recent applications of proof mining consisting in quantitative
asymptotic regularity results for different nonlinear iterations.

In [5] we define the Tikhonov-Mann iteration as a generalization toW-hyperbolic
spaces [11] of a modified Mann iteration studied by Yao, Zho, and Liou [18] and
rediscovered by Boţ, Csetnek, and Meier [2]. Applying proof mining, we com-
pute uniform rates of (T -)asymptotic regularity for the Tikhonov-Mann iteration.
Furthermore, we prove in [4] that there is a strong relation between the Tikhonov-
Mann iteration and the modified Halpern iteration introduced by Kim and Xu [10].
Thus, asymptotic regularity and strong convergence results can be translated from
one iteration to the other and the translation holds also for quantitative versions
of these results, providing rates of (T -)asymptotic regularity and rates of metasta-
bility. As an application of a lemma on real sequences due to Sabach and Shtern
[16] we also obtain in [4] linear rates of (T -)asymptotic regularity for both the
Tikhonov-Mann and the modified Halpern iterations for a special choice of the
parameter sequences.

Dinis and Pinto introduced recently [7] the alternating Halpern-Mann iteration
as an iterative scheme associated with two mappings T , U that alternates between
the well-known Halpern and Mann iterations. They proved, in the setting of
CAT(0) spaces, quantitative results that provide rates of (T, U -)asymptotic regu-
larity and rates of metastability for this iteration by using proof mining techniques
developed in [8]. In [15], we show that the quantitative (T, U -)asymptotic regu-
larity results obtained in [7] can be extended to UCW -hyperbolic spaces [12, 13],
a class of W -hyperbolic spaces that generalize both CAT(0) spaces and uniformly
convex normed spaces. Moreover, we apply again Sabach and Shtern’s lemma to



20 Oberwolfach Report 53/2023

compute for the alternating Halpern-Mann iteration linear rates of asymptotic reg-
ularity in W -hyperbolic spaces and quadratic rates of T, U -asymptotic regularity
in CAT(0) spaces, for a special case of the scalars.

In [6] we show that Sabach and Shtern’s lemma can be applied to compute
linear rates of (T -)asymptotic regularity or ((Tn)-)asymptotic regularity for other
Halpern-type iterations studied in optimization and nonlinear analysis.

The viscosity approximation method (VAM), associated to resolvents JAλn
(λn ⊆

(0,∞)) of an accretive operator A in a Banach space X , was studied by Xu et al.
in a recent paper [17], where they prove results on the convergence of VAM to a
zero of the operator A. We obtain in [9] quantitative versions of the asymptotic
regularity results from [17] and, as a consequence, we compute uniform rates of
((JAλn

)-)asymptotic regularity for VAM. Sabach and Shtern’s lemma gives us again
linear rates when we consider a particular case of the parameters.
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A New Intuitionistic Version of Gödel-Löb Logic: Box and Diamond

Iris van der Giessen

(joint work with Anupam Das, Sonia Marin)

We introduce an intuitionistic version of Gödel-Löb modal logic GL (the provabil-
ity logic of Peano Arithmetic) in the style of Simpson [7]. We develop a non-
wellfounded labelled proof theory and coinciding birelational semantics, and we
call the resulting logic IGL. While existing intuitionistic versions of GL are typically
defined over only the box (and not the diamond), IGL includes both modalities.
One of its interests is that it allows for the Gödel-Gentzen negative translation
into GL which is promising to recover a computational interpretation of classi-
cal GL.

Semantics for IGL
Well-known intuitionistic modal logic iGL is sound and complete with respect to
birelational models (W,≤, R, V ) such that (≤;R) ⊆ R and R is transitive and
conversely wellfounded [8]. The valuation V is persistent, i.e., monotone in ≤. To
interpret the ✸, the models for iGL are too restrictive. In this work we adopt the
same frame conditions as [7], i.e., (R−1;≤) ⊆ (≤;R−1) and (R;≤) ⊆ (≤;R), and
further require R to be transitive and (R;≤) to be conversely wellfounded. We
call this class of models BIGL.

One can view (this form of intuitionistic) modal logic as a fragment of (intu-
itionistic) predicate logic under the standard translation, cf. [7]. In this sense,
we obtain another intuitionistic reading of GL, by interpreting the converse well-
foundedness of (R;≤) within a predicate Kripke models. We denote this class by
PIGL.

Proof theory for IGL
To obtain intuitionistic versions of classical modal logics, it typically suffices to
restrict a ‘standard’ calculus, to having one formula on the right of a sequent.
For GL, restricting the sequent calculus in [1] and cyclic sequent system in [6], yields
calculi for logic iGL [3,4]. For our setting, labelled systems admitting independent
treatments of ✷ and ✸ have been fruitful to define intuitionistic calculi [7]. We
develop a labelled calculus for GL taking inspiration from non-wellfounded proof
theory, where (co)induction principles are devolved to the proof structure rather
than explicit rules or axioms. Note that, in contrast to the labelled system for GL
in [5], we do not modify the usual labelled rules for ✷ and ✸. From this we define
a single-succedent and a multi-succedent non-wellfounded labelled system for IGL,
denoted ℓIGL and mℓIGL, respectively.
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ℓIGL

mℓIGL
predicate

models PIGL

birelational
models BIGL

simulation
+

(partial)

cut-elim

soundness

countermodel via
proof search

Figure 1. Summary of main results. All arrows denote inclu-
sions of modal logics, so the four characterisations coincide.

Results

Our main result is that these notions coincide as depicted in Figure 1. Soundness
for both aforementioned classes of models is readily established via an infinite
descent argument by contradiction that is now standard in non-wellfounded proof
theory. For completeness, we provide a predicate countermodel construction from
a failed proof search in the multi-succedent calculus mℓIGL by appealing to the
(lightface) analytic determinacy result for the corresponding ‘proof search game’.
Simulations using cuts show the equivalence between ℓIGL and mℓIGL concluding
our result. All results can be found in [2].

In future work we would like to establish an explicit axiomatisation for the
logic introduced. At the same time it would also be pertinent to investigate the
complexity of our logic, given our hitherto non-finitary-presentations. Finally, we
would like to examine the role of our logic as a logic of provability in appropriate
models of Heyting Arithmetic.
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The Biggest Five of Reverse Mathematics

Sam Sanders

(joint work with Dag Normann)

1. The Biggest Five phenomenon and its limits

The aim of the programReverse Mathematics (RM for short) is to find the minimal
axioms needed to prove a given theorem of ordinary mathematics. The Big Five
phenomenon of RM is the observation that many (perhaps even ‘most’) theorems
are equivalent to one of four logical systems, assuming a weak logical system called
the base theory. These five systems are called the Big Five.

In [7,12], the Big Five phenomenon is greatly extended by establishing numerous
equivalences involving the second-order Big Five on one hand, and well-known
third-order theorems from analysis about discontinuous functions on the other
hand, working in Kohlenbach’s base theory RCAω0 from [3, §2]. By [7, §2.8], slight
variations/generalisations of these third-order theorems cannot be proved from the
Big Five and much stronger systems. A basic example is as follows.

• Over RCAω0 , WKL0 is equivalent to the supremum principle for any of the
following: Baire 1, cadlag, quasi-continuity, normal bounded variation.

• Over RCAω0 , the Big Five (and much stronger1 systems like Zω2 ) cannot
prove the supremum principle for any of the following: bounded variation,
regulated, cliquish, semi-continuity, Baire 2.

The supremum principles and associated function classes in the first item are
called second-order ish: although they are third-order in nature, they can be
proved from second-order comprehension principles (only). While second-order
RM generally deals with countable and separable constructs, quasi-continuity is
much wilder2, yet part of the RM of WKL0, which is perhaps unexpected.

Many similar examples exist, including for the other Big Five, e.g. the supremum
principle for effectively Baire 2 functions, the Jordan decomposition, and basic
properties of the Riemann integral. A full(er) list may be found in [7, 12].

Finally, Rathjen states in [8] that Π1
2-CA0 dwarfs Π1

1-CA0 and Martin-Löf talks of a
chasm and abyss between these two in [4]. The previous examples show that small
variations of second-order-ish theorems go far beyond the Big Five and Π1

2-CA0,
far beyond the aforementioned abyss.

1The system Z
ω

2
proves the same second-order sentences as Z2 ([2]). Here, Z

ω

2
is RCA

ω

0

extended with, for each k ≥ 1, the functional S2

k
which decides Π1

k
-formulas.

2If c is the cardinality of R, there are 2c non-measurable quasi-continuous [0, 1] → R-functions
and 2c measurable quasi-continuous [0, 1] → [0, 1]-functions (see [1]).
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2. Exploring the Abyss: Kleene’s quantifiers

The results in Section 1 are based on the RM of Kleene’s quantifiers (∃2) and (∃3),
which is interesting in its own right, and discussed in this section.

First of all, Kohlenbach proves the equivalence between the following in [3, §2].

• Kleene’s (∃2) : (∃E : NN → N)(∀f ∈ NN)(E(f) = 0 ↔ (∃n ∈ N)(f(n) = 0).
• There exists a discontinuous function f : R → R.

Moreover, (∃2) is also equivalent to the following (see [7, §2] for a complete list).

• There exists a function f : [0, 1] → R that is not Baire 1.

There are many similar equivalences, but following surprise also lies in wait: the
system Zω2 , a conservative extension of Z2, cannot prove that

There exists a function f : [0, 1] → R that is not Baire 2.

We invite the reader to contemplate the meaning of ‘a code for a Baire 3 function’
in light of the previous result. Since it is consistent with Zω2 that all functions are
Baire 2, we find there to be very little meaning in this coding construct.

Secondly, while at the far edges of the subject, the RM of (∃3) can be surprisingly
basic, as follows. Now, there are dozens (hundreds?) of decompositions of

continuity, where continuity is shown to be equivalent to the combination of two
or more weak continuity3 notions, going back to Baire, as follows:

continuity ↔ weak continuity notion A plus weak continuity notion B. (D)

It is then a natural question whether these weak continuity notions are as tame as
continuity, e.g. how hard is it to find the supremum of weakly continuous functions?
We note that Kohlenbach in [3, §3] singles out this supremum functional as an
interesting object of study.

Now, most of these weak continuity notions are rather tame: working in RCAω0 +
(∃2), one can define the supremum functional λp, q, f. supy∈[p,q] f(y) restricted to
f satisfying the weak continuity notion at hand.

By contrast, there are seven weak continuity notions that are rather exceptional.
In particular, over RCAω0 , the following are equivalent.

• Kleene’s (∃3): (∃E)(∀Y : NN → N)(E(Y ) = 0 ↔ (∃f ∈ NN)(Y (f) = 0),
• Kleene’s quantifier (∃2) plus the existence of a supremum functional for
any of these classes: the Young condition, almost continuity (Husain),
graph continuity, not of Cesàro type, peripheral, pre-, or C-continuity.

These weak continuity notions exist in the literature, side-by-side with the tame
ones, and two go back over a hundred years.

3We note that weak and generalised continuity come with its own AMS code, namely 54C08,
i.e. weak continuity is not a fringe topic in mathematics.
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3. New Big systems

We list four third-order theorems that boast many equivalences, similar to the
original Big Five, with some hints on the kind of principles involved.

• The uncountability of R ([6, 10, 12]) is equivalent to basic properties of
regulated and bounded variation functions.

• The Jordan decomposition theorem ([5, 12]) is equivalent to the fact that
countable sets can be enumerated.

• The Baire category theorem ([11, 12]) is equivalent to basic properties of
semi-continuous functions.

• The pigeon-hole principle for the Lebesgue measure ([11,12]) is equivalent
to one direction of the Vitali-Lebesgue theorem.

For the first two items, the following definition of ‘countable set’ is used. No
elegant equivalences are known for the usual definition based on injections to N.

Definition 1. A set A ⊂ R is height-countable if there is a height function
H : R → N for A, i.e. for all n ∈ N, An := {x ∈ A : H(x) < n} is finite.

Definition 2 (Finite set). Any X ⊂ R is finite if there is N ∈ N such that for
any finite sequence (x0, . . . , xN ) of distinct reals, there is i ≤ N such that xi 6∈ X.

We thank Anil Nerode for his valuable advice. We thank Ulrich Kohlenbach
for (strongly) nudging us towards the initial results in [7] as part of the second
author’s Habilitation thesis ([9]) at TU Darmstadt. Our research was supported
by the Deutsche Forschungsgemeinschaft via the DFG grant SA3418/1-1 and the
Klaus Tschira Boost Fund via the grant Projekt KT43 .
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On the theory of exponential integer parts

Emil Jeřábek

An integer part (IP) of an ordered ring R is a discretely ordered subring I ⊆ R
such that every x ∈ R is within distance 1 from I. (By abuse of language, we will
conflate a discretely ordered ring I with the ordered semiring I≥0.) A classical
result of Shepherdson [5] characterizes models of IOpen (= Robinson’s arithmetic
+ induction for open formulas in the language LOR = 〈0, 1,+, ·, <〉):

Theorem 1. Integer parts of real-closed fields are exactly the models of IOpen.

Let an exponential field be an ordered field R endowed with an isomorphism
exp: 〈R, 0, 1,+, <〉 → 〈R>0, 1, 2, ·, <〉, optionally satisfying the growth axiom (GA)
exp(x) > x. Introduced by Ressayre [4], an exponential integer part (EIP) of an
exponential ordered field 〈R, exp〉 is an IP I ⊆ R such that I≥0 is closed under exp.
We are interested in the question of characterizing (non-negative parts of) ordered
rings that are EIP of real-closed exponential fields (RCEF), and in particular,
what is the first-order theory of such rings. This problem (and in particular, the
question whether this theory properly extends IOpen) was raised by Jeřábek [2],
who provided an upper bound: all countable models of the bounded arithmetical
theory VTC0 in LOR are EIP of RCEF.

Extensions of Theorem 1 to exponential ordered fields were previously studied
by Boughattas and Ressayre [1] and Kovalyov [3], but they focussed on generaliz-
ing the other direction of the theorem (e.g., what additional properties of RCEF
ensure that their EIP are models of open induction in a language with exponen-
tiation?). Moreover, they were mostly concerned with EIP in a language with
the binary powering operation xy = exp(y log x). Since 〈I,+, ·, <, xy〉 can define
approximations of exp on its fraction field F , we can canonically extend exp to the
completion of F ; but no such direct construction seems possible for EIP in LOR

or LOR ∪ {2x}, hence our arguments will be of different nature.
The main goal of this talk is to present complete axiomatizations of the first-

order theories of EIP of RCEF in LOR∪{2x}, LOR∪{P2} (where P2 is a predicate
for the image of 2x), and LOR, and determine some properties of these theories.

Our first result can be proved by an easy application of Robinson’s joint con-
sistency theorem:
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Theorem 2. The theory TEIP2x of EIP of RCEF in LOR ∪ {2x} is axiomatized
over IOpen by

x > 0 → ∃y x < 2y ≤ 2x,

2x+y = 2x2y,

2x 6= 0.

The theory of EIP of RCEF satisfying GA is TEIP2x + GA.

Next, we treat the language with a predicate for powers of 2:

Theorem 3. The theory TEIPP2
of EIP of RCEF, with or without GA, in LOR ∪

{P2} is axiomatized over IOpen by

x > 0 → ∃u (P2(u) ∧ u ≤ x < 2u),

P2(u) ∧ P2(v) ∧ u ≤ v → ∃w (P2(w) ∧ uw = v).

The conservativity of TEIP2x over TEIPP2
is, again, proved by a simple ap-

plication of joint consistency; for TEIP2x + GA, we need a rather more complex
back-and-forth argument on a countable recursively saturated model of TEIPP2

.
We mention here that Shepherdson’s [5] model of IOpen expands to a model of

TEIPP2
, but not to a model of TEIP2x .

For any M � IOpen and n ∈ N, the power-of-two game PowGn(M) is played
between two players, Challenger (C) and Powerator (P), in n rounds: in each
round 0 ≤ i < n, C picks xi ∈ M>0, and P responds with ui ∈ M>0 such that
ui ≤ xi < 2ui. C wins if uiuj < uk < 2uiuj for some i, j, k < n, otherwise P wins.
(While not part of the official rules, we may note that if ui < uj but ui ∤ uj for
some i, j, C can force a win in the next round by playing ⌊uj/ui⌋.)

The motivation for the game is that if 〈M, P2〉 � TEIPP2
, then “play ui ∈ P2”

is a winning strategy for P. The theory of EIP in the basic language LOR is now
axiomatized by a schema asserting that Powerator has a winning strategy in PowG
for an arbitrary number of rounds:

Theorem 4. The theory TEIP of EIP of RCEF (with or without GA) in LOR is
axiomatized over IOpen by the sentences

∀x0 ∃u0 . . . ∀xn−1 ∃un−1

(

∧

i<n

(xi > 0 → ui ≤ xi < 2ui)∧
∧

i,j,k<n

¬(uiuj < uk < 2uiuj)
)

for all n ∈ N.

The idea of the proof is that if M � TEIP is countable and recursively saturated,
then P has a winning strategy in “PowGω(M)”, and if we let C enumerate all
elements of M , the responses of P form a set P2 such that 〈M, P2〉 � TEIPP2

.
We mention that Svenonius [7] gave a general construction of an axiomatization

of a reduct of a given theory by means of sentences expressing the existence of
winning strategies in a certain game, mimicking a Henkin completion procedure.
However, this axiomatization is rather opaque; in contrast, our game is explicit
enough that we are able to derive useful properties of TEIP from it.
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First, using the existence of a nonstandard model of IOpen that is a UFD
(Smith [6]), we can show that TEIP properly extends IOpen:

Theorem 5. The following consequence of TEIP is not provable in IOpen:

∀x ∃u > x ∀y
(

0 < y < x→ ∃v (v ≤ y < 2v ∧ v | u)
)

.

We also make partial progress on the main remaining problem about TEIP:

Question 6. Is TEIP finitely axiomatizable over IOpen?

Let us write TEIP = IOpen + {∀x0 > 0 ∃u0
(

u0 ≤ x0 < 2u0 ∧ θ1n(u0)
)

: n ∈ N},
where θ1n(u0) denotes

∀x1 ∃u1 . . .∀xn−1 ∃un−1

(

∧

1≤i<n

(xi > 0 → ui ≤ xi < 2ui)∧
∧

i,j,k<n

¬(uiuj < uk < 2uiuj)
)

.

If {θ1n : n ∈ N} contained only finitely many inequivalent formulas, then TEIP
would be finitely axiomatizable over IOpen, but this is not the case:

Theorem 7. The formulas θ1n form an infinite hierarchy over Th(N).

We show this by analysis of the power-of-two game. Let PowG1
n(u) denote the

game PowGn(N) where the first round is fixed such that P plays u0 = u (x0 does
not matter). If u is not a power of 2, then C has a winning strategy in PowG1

n+1(u)
for sufficiently large n; let the smallest such n be denoted c(u). Then Theorem 7
amounts to sup{c(u) : u not a power of 2} = +∞, which follows from:

Theorem 8. Let u = 2ν2(u)vr, where v > 1 is not a perfect power. Then

c(u) ≤ log log logmin{ν2(u), r}+O(1) ≤ log log log log u+O(1);

more precisely, c(u) ≤ log log d+O(1) for any d ∤ r. On the other hand,

c(u) ≥ min

{

log log log
ν2(u)

log v
, log log d : d ∤ r

}

+O(1).

For example, this shows that c
(

62
2k !) = k +O(1).

Another consequence of Theorem 8 is that there are models 〈M, P2〉 � Th(N)+
TEIPP2

such that P2 is distinct from the set of “oddless numbers” (i.e., whose all
nontrivial divisors are even); indeed, u ∈ P2 may even be divisible by 3.

This work was supported by the Czech Academy of Sciences (RVO 67985840)
and GA ČR project 23-04825S.
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Quantitative Analysis of Stochastic Approximation Methods

Paulo Oliva

(joint work with Rob Arthan)

In an ongoing case study in Stochastic Approximation Theory, Rob Arthan and I
have been working on a quantitative version of Derman-Sachs’ proof [3] of Dvoret-
zky’s theorem [4], a vast generalisation of the well-known Robins-Monro seminal
stochastic approximation method [5]. Our current proof mining builds on our
recent quantitative analysis of the Borel-Cantelli lemmas [1] – one of the ingre-
dients in Derman-Sachs proof. This case study has been proven to be extremely
interesting for several reasons.

Firstly, arguments in Probability Theory (and also Measure Theory) look a
priori extremely ineffective and non-computational. Most arguments rely on uses
of set comprehension to form increasing or decreasing sequences of events, or the
axiom of countable additivity, which does not seem to have a clear constructive
interpretation. Examples of these are the Continuity from Above/Below Lemma
and Egorov’s Theorem. We rely on recent work of Avigad et. al. [2] and interpret
almost sure convergence statements about sequences of random variables

P[{ω | ∀ε > 0∃N∀i, j ≥ N(|Xi(ω)−Xj(ω)| ≤ ε)}] = 1

via a λ-uniform ε-convergent modulus Φ, i.e.

∀ε, δ > 0 (P[{ω | ∀i, j ≥ Φ(ε, δ)(|Xi(ω)−Xj(ω)| ≤ ε)}] ≥ 1− λ) .

Egorov’s Theorem states that a certain sequence of random variables converges,
and our proof mining extracts an explicit λ-uniform ε-convergent modulus Φ for
the sequence.

Secondly, Derman-Sachs’ proof is also extremely interesting in that it uses sev-
eral subtle lemmas about sequences of real numbers, which as far as we know have
not been proof mined yet. The main ones are:

(1) If
∑

an is a convergent series and {bn} is monotone and bounded then
∑

anbn is also a convergent series (Abel’s test),
(2) If {bn} is a sequence of non-negative reals such that the series

∑

bn con-
verges then the sequence {1/Bn} also converges, where Bn =

∏

i≤n(1+bi),
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(3) If {bn} is a sequence of non-negative reals such that the series
∑

bn con-
verges then there exists a sequence an which converges to 0 such that
∑

bn/a
2
n still converges.

It seems to us that a shared repository of results about converging or diverging
sequences and series of real numbers which have already been “mined” would be
a very useful resource.

Finally, Derman-Sachs relies on a form a “Transfer Principle”, whereby the
almost sure convergence of a sequence of random variables {Xn} is proven by
finding a suitable event E where for ω ∈ E the convergence of the sequence of real
numbers xn = Xn(ω) can be derived. Ensuring that the rates on the convergence
of the sequences of reals are uniform enough for this transfer to be possible is part
of the the challenge in this proof mining case study.
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Double negation and conservation

Peter Schuster

(joint work with Giulio Fellin)

1. Heuristics

Recall that from derivability in minimal logic ⊢m one obtains derivability first
in intuitionistic logic ⊢i and then in classical logic ⊢c by allowing as additional
axioms finitely many instances of (in first-order logic: the universal closures of) ex
falso quodlibet ⊥ → B and tertium non datur B ∨ ¬B, respectively: that is,

Γ ⊢i A ≡ Γ,EFQ ⊢m A , Γ ⊢c A ≡ Γ,TND ⊢i A .

With double negation, Glivenko’s theorem [4] for propositional logic can be put as

Γ ⊢c A =⇒ Γ ⊢i ¬¬A .

In view of ⊢m ¬¬(B ∨ ¬B), Glivenko’s theorem follows from Brouwer’s lemma:

∆, D ⊢∗ ¬C =⇒ ∆,¬¬D ⊢∗ ¬C (∗ ∈ {m, i}) .
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This and Odintsov’s [6] have brought us to analyse the conclusion of Glivenko’s
theorem in terms of ⊢m:

Γ ⊢i ¬¬A ⇐⇒ Γ,EFQ ⊢m ¬¬A ⇐⇒ Γ,¬¬EFQ ⊢m ¬¬A .

Since 6⊢m ¬¬(⊥ → B) in general, if ⊢i were replaced by ⊢m, then Glivenko’s
theorem would fail already for A ≡ ⊥ → B.

Lemma 1. ¬¬EFQ is equivalent, over ⊢m, to the double negation shift for →:

DNS→ : (B → ¬¬C) → ¬¬(B → C).

So Glivenko’s theorem can alternatively be put with ⊢m as follows:

Γ ⊢c A =⇒ Γ,DNS→ ⊢m ¬¬A.

While DNS→ is provable with ⊢i and thus has hitherto remained invisible in
Glivenko’s theorem, it is in analogy to

(1) the double negation shift for ∀, viz.

DNS∀ : ∀x¬¬Cx → ¬¬∀xCx ,

in Kuroda’s [5] generalisation of Glivenko’s theorem to first-order logic:

Γ ⊢c A =⇒ Γ,DNS∀ ⊢i ¬¬A ;

(2) the double negation shift for
∧

N
, viz.

DNS∧
N
:

∧

n∈N

¬¬Cn → ¬¬
∧

n∈N

Cn ,

in Tesi’s [7] counterpart of Kuroda’s theorem for infinitary logic:

Γ ⊢c A =⇒ Γ,DNS∧
N
⊢i ¬¬A .

2. Conservation for nuclei

Let S be a set and ✄ an inductively generated single-succedent entailment relation:
that is, ✄ ⊆ P<ω(S)×S is the least such relation which satisfies certain generating
axioms and rules on top of the following three structural rules :1

reflexivity:
U, a✄ a

monotonicity:
U ✄ a

U, V ✄ a
transitivity:

U ✄ a V, a✄ b

U, V ✄ b

By a nucleus over ✄ we understand a map j : S → S satisfying

U, a✄ jb ⇐⇒ U, ja✄ jb.

We consider two entailment relations which contain ✄:

— the weak or Kleisli extension is defined by U ✄j a ≡ U ✄ ja;
— the strong or stable extension ✄

j is inductively generated by the same
axioms and rules as ✄ plus the axiom of stability ja✄ a.

1By an axiom we understand a premissless rule; for instance, reflexivity is an axiom. Unless
one needs to distinguish axioms from rules, one may subsume the former under the latter.
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Note that always ✄j ⊆ ✄
j. If ✄ ≡ ⊢i and j ≡ ¬¬, then ✄

j ≡ ⊢c, and Glivenko’s
theorem means conservation: that is, ✄j ⊇ ✄

j.
While the stable extension ✄

j by its very inductive definition satisfies all axioms
and rules of ✄, the Kleisli extension ✄j a priori satisfies—in addition to the
structural rules—only all axioms of ✄.

Theorem 1. ✄j ⊇ ✄
j if and only if ✄j satisfies all (non-axiom) rules of ✄.

In fact, stability is automatic for ✄j , because ja✄j a ≡ ja✄ ja.

Corollary 1. ✄j = ✄
j whenever ✄ is inductively generated by axioms only.

We hasten to add that for applying Theorem 1 and Corollary 1 it is irrelevant
which axioms and rules we take for the inductive generation of ✄. In fact, col-
lections R and R′ of axioms and rules generate the same ✄ precisely when every
member of R is the composition of members of R′ and vice versa; and “to hold
for the Kleisli extension ✄j” is closed under composition of rules.

3. Applications to logic

Let ✄ be ⊢m. For propositional logic this is generated by the axioms and rules

A ∧B ✄A
L∧1

A ∧B ✄B
L∧2

A,B ✄ A ∧B
R∧

A ∨B,A→ C,B → C ✄ C
L∨

A✄A ∨B
R∨1

B ✄ A ∨B
R∨2

A→ B,A✄B
L →

Γ, A✄B

Γ✄A→ B
R →

✄⊤
R⊤

From this variant of minimal propositional logic one obtains

(1) minimal first-order logic by adding the axioms and rules

∀xA✄A[t/x]
L∀

Γ✄A[y/x]

Γ✄ ∀xA
R∀ (y fresh)

∃xA, ∀x(A → B)✄B
L∃ (x /∈ FV(B))

A[t/x]✄ ∃xA
R∃

(2) minimal infinitary logic by adding the axioms and rules

∧

i∈N
Ai ✄An

L
∧

n
(n ∈ N)

{Γ✄An : n ∈ N}

Γ✄
∧

i∈N
Ai

R
∧

∨

i∈N
Ai,

∧

i∈N
(Ai → B)✄B

L
∨

An ✄
∨

i∈N
Ai

R
∨

n
(n ∈ N)

The only non-axiom rules of the calculi above are R→, R∀ and R
∧

.
Now let j be a nucleus—compatible with substitution for first-order logic [8]:

j(A[t/x]) = (jA)[t/x] .

Lemma 2. Each of R→, R∀ and R
∧

holds for ✄j if any only if the variant of
DNS→, DNS∀ and DNS∧, respectively, obtains in which ¬¬ is replaced by j.
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logic non-axiom rule R holds for ✄j iff case j ≡ ¬¬

propositional R→ B → jC ✄ j(B → C) DNS→

first-order R∀ ∀x jB ✄ j∀xB DNS∀

infinitary R
∧ ∧

n∈N

jBn ✄ j
∧

n∈N

Bn DNS∧

As for the true DNS, the converse ✁ is automatic in the third column. E.g. R→
holds for ✄j if and only if j commutes with every open nucleus [1, 8].

Generalisations include Glivenko-style conservation theorems for the transla-
tions ascribed to Kolmogorov, Gentzen and Kuroda in place of double negation.
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Prenex normalization and the hierarchical classification of formulas

Makoto Fujiwara

(joint work with Taishi Kurahashi)

In this workshop, I gave a talk about my recent work [3] on the prenex normal-
ization of first-order formulas by the standard reduction procedure without any
reference to the notion of derivability, as well as some ongoing attempt after the
work.

The prenex normal form theorem states that for any first-order theory based
on classical logic, every formula is equivalent (over the theory in question) to some
formula in prenex normal form. This theorem is verified by using the fact that
several transformations of formulas moving quantifiers in the formula from inside to
outside in a suitable way are admissible in first-order classical logic. For example,
if x is not contained in δ, then ∀xξ(x) → δ is transformed into ∃x(ξ(x) → δ)
with preserving classical validity because they are classically equivalent. For each
first-order formula, one can obtain an equivalent formula in prenex normal form
by the following procedure:
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(1) Apply the above mentioned transformations finitely many times to the
subformulas of the form A◦B with A and B in prenex normal form where
◦ ∈ {∧,∨,→}, and transform the subformulas into equivalent formulas in
prenex normal form;

(2) Repeating this procedure until when all subformulas become to be in
prenex normal form.

Akama, Berardi, Hayashi and Kohlenbach [1] introduced the classes Ek and Uk
of formulas defined by counting the number of the alternations of quantifiers in
a given formula (the formal definitions are given in [2]). The class Ek (resp. Uk)
is intended to form the class of formulas which are classically equivalent to some
Σk-formula (resp. Πk-formula). In addition, as mentioned in [1], the class Pk is in-
tended to represent the set of ∆k+1-formulas, namely, formulas which is equivalent
to some Σk+1-formula and also to some Πk+1-formulas. Note that every formula
with quantifier occurrences is classified into exactly one of Ek+1, Uk+1 and Pk+1.

In [3], Kurahashi and the author gave a proper justification for the hierarchical
classes. They formalized the above mentioned procedure for prenex normaliza-
tion and investigated the relation between the classes of prenex formulas and the
hierarchical classes in [1,2] modulo the transformation procedure in a general lan-
guage of a first-order theory. In particular, they showed that a formula is in E+

k

(resp. U+
k ) if and only if it can be transformed into a formula in Σ+

k (resp. Π+
k ) by

the transformation procedure, where E+
k ,U

+
k ,Σ

+
k and Π+

k are cumulative variants
of Ek,Uk,Σk and Πk, respectively. By the results for the cumulative classes, it
also follows that non-cumulative classes Ek, Uk and Pk (except P0) are the cumu-
lative counterparts of Σk, Πk and ∆k+1 respectively modulo the transformation
procedure.

In addition, I have presented an ongoing attempt about a classification of first-
order formulas based on hierarchical prenex normalization procedures restricted
to those which are admissible in intuitionistic and semi-classical theories. For that
purpose, we introduce new hierarchical classes of first-order formulas and charac-
terize the classes by the hierarchical prenex normalization procedures restricted to
some of those classes.
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Proof mining, applications to optimization, and interactive

theorem proving

Horaţiu Cheval

LetH be a Hilbert space, (Tn : H → H) be a family of nonexpansive mappings and
consider the problem of finding a common fixed point x ∈

⋂

n∈N

Fix(Tn). Boţ, and

Meier [1] introduced an iterative method for finding such a point, which proceeds
by constructing the sequence (xn) via

xn+1 = (1− λn)βnxn + λnTn(βnxn),(1)

where (λn), (βn) are sequences in [0, 1], and x0 ∈ H is arbitrary. The main results
of [1] show that, under certain conditions on (λn), (βn) and (Tn), it holds that

• lim
n→∞

‖xn − xn+1‖ = 0;

• lim
n→∞

‖xn − Tnxn‖ = 0;

• lim
n→∞

xn = x, for some x ∈
⋂

n∈N

Fix(Tn).

The first two results are also known as the asymptotic (resp. (Tn)-asymptotic) of
(xn).

We present [3] an extension of this iteration from the setting of Hilbert spaces
to the nonlinear case of W -hyperbolic spaces, in the sense of [7]. For X a W -
hyperbolic space and (Tn : X → X) a family of nonexpansive self-mappings
thereof, we define its associated Tikhonov-Mann iteration (xn) by

xn+1 = (1− λn)un + λnTnun, where(2)

un = (1− βn)u+ βnxn,(3)

with (λn), (βn). This simultaneously generalizes (1), as well as the single map-
ping case studied in W -hyperbolic spaces in [2]. As the main results of [3], we
show that the asymptotic regularity of (xn) still holds in this setting, i.e. that,
under certain conditions on (λn), (βn), (Tn) we have that lim

n→∞
d(xn, xn+1) = 0,

lim
n→∞

d(xn, Tnxn) = 0 and that for any m ∈ N, lim
n→∞

d(xn, Tmxn) = 0.

Furthermore, the convergence theorems obtained are enriched with quantita-
tive information, in the form of rates of ((Tn)-, Tm-)asymptotic regularity, which
display a high degree of uniformity with respect to the space X and the mappings
(Tn). We also present work in progress regarding the generalization of the strong
convergence of (xn) from Hilbert to CAT(0) spaces. This can be carried out effec-
tively, adapting arguments from [4–6,9]. These results are part of the program of
proof mining [8].

Finally, in the second part, we discuss work in progress and research ideas for
using the Lean interactive theorem prover in proof mining, which can be found at
https://github.com/hcheval/. This includes the formalization of mathematical
results used and obtained in the context proof mining (for example quantitative
versions of lemmas widely used in optimization about sequences of real numbers),
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ideally in the form of a unified library. See also https://github.com/Kejineri

for such formalizations.
A different direction is the implementation of the general logical metatheorems

from proof mining which guarantee the possibility of extracting quantitative con-
tent from certain classes of formal proofs. Given the constructive character of
these metatheorems, they could be built into automatic program extraction tools,
which could then be applied to proofs already formalized in Lean, in order to
obtain strengthened variants thereof.
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Equiconsistency of the Minimalist Foundation with its classical version

Maria Emilia Maietti

In our Oberwolfach talk we showed that the Minimalist Foundation, which is a
foundation for constructive mathematics, is equiconsistent with its classical ver-
sion, obtained by extending the underlying logic with the law of excluded middle.

The Minimalist Foundation, for short MF, was initially conceived in 2005 in
collaboration with Giovanni Sambin in [MS05] and further developed into a com-
prehensive two-level system in 2009 in [Mai09].

This two-level structure comprises an intensional level, referred to asmtt, which
is envisioned as a theory possessing sufficiently decidable properties to serve as a
foundation for a proof assistant which at the same time might be enriched with a
mechanism of program extraction from its proofs. Additionally, there is an exten-
sional level, named emtt, which is formulated in a language closely aligned with
that of traditional mathematics. Then, emtt is interpreted within the intensional
level, mtt, through the utilization of a quotient model.
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One of the main novelties of MF is that of serving as a shared core among
significant foundations for mathematics. Notably, its estensional level emtt is
compatible with several prominent mathematical foundations, including the stan-
dard axiomatic set theory ZFC, Aczel’s Constructive Zermelo-Fraenkel set theory,
the general theory of elementary toposes, as shown in [Mai09] (see also [MS22]),
and more recently, Homotopy Type Theory and Voedvosky’s Univalent Founda-
tions as shown in [CM23]. Instead, its intensional level mtt is compatible with
Martin-Löf’s intensional type theory, Coquand-Huet-Paulin’s Calculus of Induc-
tive Constructions, as shown in [Mai09], and again Homotopy Type Theory as
shown in [CM23].

When we say that a theory is “compatible” with another theory, we mean
that there exists a translation preserving the meaning of logical and set-theoretic
operators from the first theory to the latter (and, for example, this implies that
the translation commutes with the embedding of Heyting arithmetics with finite
types in each of the mentioned theories if the first theory includes it).

As a byproduct MF is both constructive and predicative. In particular, the
computational contents of proofs developed within MF and further extensions
with inductive and coinductive topological definitions has been made explicit
through realizability models described in [IMMS18,MMR21,MMR22].

In our Oberwolfach talk we showed the remarkable property that both levels
of MF are still predicative and equiconsistent with the addition of the law of the
excluded middle and are all mutually equiconsistent.

It is worth mentioning two key steps to prove our claim.
The first key step of our proof is that we can smoothly extends Goedel-Gentzen’s

double negation translation of classical Peano arithmetics into the intuitionistic
one (for example in [Tv88]), to show that the intensional level mtt with the
addition of proof-irrelevance for propositions is equiconsistent with its classical
version obtained with the further addition of the law of excluded middle. This
works because the elimination rule of the propositional identity ofmtt is equivalent
to the usual replacement rules of first-order equality. Proof-irrelevance is then
needed to interpret the universe of small classical propositions as the subtype of
the mtt-universe of small propositions that are ¬¬-stable.

The second key step to show our claim is thatmtt (with or without the addition
of proof-irrelevance for propositions) is equiconsistent with the extensional level
emtt of MF through the use of the quotient model and of canonical isomorphisms
in [Mai09]. The proof of this fact extends smoothly to show the equiconsistency
of mtt (with or without proof-irrelevance) with emtt when the law of excluded
middle is added to each of them.

We also mention that Pietro Sabelli in his forthcoming PhD’s thesis shows that
Goedel-Gentzen’s double negation translation can be extended to provide a direct
interpretation of the classical version of emtt into emtt (whilst the propositional
equality of emtt has stronger rules that the usual first-order equality) thanks to
the fact that the propositional equality of emtt ground types is ¬¬-stable and that
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emtt-type-theoretic constructors preserve the ¬¬-stability of their propositional
equality.

We conclude by underlying that the predicativity and equiconsistency of the
classical version of MF with MF itself is a peculiarity of MF since the other well
known constructive and predicative foundations mentioned above, namely Martin-
Löf’s intensional type theory, Aczel’s Constructive Zermelo-Fraenkel set theory
and Homotopy Type Theory, do not satisfy this property because they become
impredicative when the law of excluded middle is added to their underlying logic.

We leave to future research to investigate whether the extensions of MF with
inductive and coinductive topological definitions in [MMR21] and [MMR22] are
still equiconsistent with their classical version or, at least, are still predicative.
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The computational content of super strongly nonexpansive mappings

Andrei Sipoş

Strongly nonexpansive mappings are a core concept in convex optimization. Re-
cently, they have begun to be studied from a quantitative viewpoint: U. Kohlen-
bach has identified in [2] the notion of a ‘modulus’ of strong nonexpansiveness,
which leads to computational interpretations of the main results involving this
class of mappings (e.g. rates of convergence, rates of metastability). This forms
part of the greater research program of ‘proof mining’, initiated by G. Kreisel
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and highly developed by U. Kohlenbach and his collaborators, which aims to ap-
ply proof-theoretic tools to extract computational content from ordinary proofs in
mainstream mathematics (for more information on the current state of proof min-
ing, see the book [1] and the recent survey [3]). The quantitative study of strongly
nonexpansive mappings has later led to finding rates of asymptotic regularity for
the problem of ‘inconsistent feasibility’ [4, 7], where one essential ingredient has
been a computational counterpart of the concept of rectangularity, recently iden-
tified in [5] as a ‘modulus of uniform rectangularity’.

Last year, Liu, Moursi and Vanderwerff [6] have introduced the class of ‘super
strongly nonexpansive mappings’, and have shown that this class is tightly linked
to that of uniformly monotone operators. What we do is to provide a modulus
of super strong nonexpansiveness, give examples of it in the cases e.g. averaged
mappings and contractions for large distances and connect it to the modulus of
uniform monotonicity. In the case where the modulus is supercoercive, we give a
refined analysis, identifying a second modulus for supercoercivity, specifying the
necessary computational connections and generalizing quantitative inconsistent
feasibility.

The results in this talk may be found in the paper [8].
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Sunny nonexpansive retractions in nonlinear spaces

Pedro Pinto

Undoubtedly, one of the most complicated instances of proof mining to date is the
proof-theoretical analysis of Reich’s theorem, one of the most pivotal results in
functional analysis, carried out in [2].
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In this talk, we introduce the notion of a nonlinear smooth space generalizing
both CAT(0) spaces as well as smooth Banach spaces [3]. Concretely, we say that
a hyperbolic space (X, d,W ) (in the sense of [1]) is a smooth hyperbolic space if
there exists a function π : X2 ×X2 → R satisfying for all x, y, z, u, v ∈ X

(P1) π(−→xy,−→xy) = d2(x, y)
(P2) π(−→xy,−→uv) = −π(−→yx,−→uv) = −π(−→xy,−→vu)
(P3) π(−→xy,−→uv) + π(−→yz,−→uv) = π(−→xz,−→uv)
(P4) π(−→xy,−→uv) ≤ d(x, y)d(u, v)

and for any λ ∈ [0, 1]

(P5) d2(W (x, y, λ), z) ≤ (1− λ)2d2(x, z) + 2λπ
(

−→yz,
−−−−−−−−→
W (x, y, λ)z

)

.

Moreover, we say that (X, d,W, π) is a uniformly smooth hyperbolic space if it
satisfies additionally

(P6)

{

∀ε > 0 ∀r > 0 ∃δ > 0 ∀a ∈ X ∀u, v ∈ Br(a)

d(u, v) ≤ δ → ∀x, y ∈ X (|π(−→xy,−→ua)− π(−→xy,−→va)| ≤ ε · d(x, y)) .

Formally we can consider these spaces in a extension of the system Aω[X, d,W ]
from [1] where we have a further constant π of type 1(X)(X)(X)(X) governed by
the axioms (P1)–(P6). Clearly by (P4) π is majorizable, and using (P6) the system
proves the extensionality of π. Thus, if we include a modulus of uniform continuity
ωX in the sense of providing a witness for δ in (P6), we have a metatheorem for
the extraction of bounds from (formalizable) proofs in this new class of nonlinear
spaces.

We discuss that this notion allows for a unified treatment of several mathemat-
ical proofs in functional analysis. In particular, we show that Kohlenbach’s and
Sipoş’s treatment of Reich’s result can be appropriately discussed in this nonlinear
setting.
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Extensional Proof-Systems for Modal Logics

Margherita Zorzi

(joint work with S. Guerrini, S. Martini, A. Masini)

1. Introduction

Designing a robust proof theory for modal logics is a subtle task. The difficulty
lies not merely in establishing deductive systems; rather, the real challenge is
in formulating a concrete structural proof theory, in which the objects of study
are (not only) modal formulas, but also modal proofs. A well defined systems
satisfies some desirable properties, such as the the syntactical study of cut elimi-
nation/normalization theorem and its consequences (the sub-formula property and
the consistency theorem, see [1])). Furthermore, if feasible, one could attempt to
define an extensible system – a system capable of capturing not only a single logic
but an entire family.

In the literature, several deductive styles and approaches to modal proof theory
have been introduced. We recall multidimensional systems, where the primary
concept involves equipping formulas with an index or position, (offering a kind
of “spatial coordinate”) and Labeled Deductive Systems, where the rules that
model the accessibility relationship are explicitly integrated into the syntactical
deductive instruments. In this abstract we will focus on natural deduction and on
a family of multidimentional systems based on the notion of position. The main
ideas of our frameworks are the following: formulas are marked with a spatial
coordinate; only one introduction rule and one elimination rule per connective; no
additional structural rules; no explicit reference to the accessibility relation; only
modal operators can “change” the spatial position of the formulas and are treated
in analogy of first-order quantifiers. Refer to [2–4] for complete technical details,
comprehensive references to related work, and a thorough comparison with the
state of the art.

2. From K to S4: the system Npos

A position-formula is an expression of the form Aα, where A is a modal formula
and α is a position. Positions are constructed based on tokens, which are essen-
tially uninterpreted symbols. According to the definition of position we adopt
(a sequence, a set, a singleton set) we are able to characterize different modal
systems.

The classical natural deduction system Npos captures the normal extension of
the logic K by incorporating the basic axiom K ≡ ✷(A → B) → (✷A → ✷B)
and one or more of the following axioms: D ≡ ✷A → ✸A, T ≡ ✷A → A,
4 ≡ ✷A → ✷✷A. This results in K (containing only the basic axiom K) D
(K+D), T (K+T), K4 (K+4), D4 (K+D+4), and S4 (K+T+4).

In Npos positions are interpreted as sequences of tokens (with related operations
such as concatenation).
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Rules for modal operator are designed as much as possible in analogy with
fist-order logic quantifiers:

·
·
·

A
αx

(✷I)
✷A

α

·
·
·

✷A
α

(✷E)
A

αβ

·
·
·

A
αβ

(✸I)
✸A

α

·
·
·

✸A
α

[Aαx]
·
·
·

C
β

(✸E)
C

β

In the rule ✷I, one has αx 6∈ Init[Γ], where Γ is the set of (open) assumptions
on which Aαx depends and Init[Γ] = {β : ∃Aα ∈ Γ. β ⊑ α}. In the rule ✸E, one
has αx 6∈ Init[β] and αx 6∈ Init[Γ], where Γ is the set of (open) assumptions on
which Cβ depends, with the exception of the discharged assumptions Aαx. The
system K and K4 are partial logics we use existence predicates (à la Scott) for
formulating sound deduction rules to deal with partial systems.

All the logical systems share the rules above. To obtain a specific logic, one can
“tune” some syntactic constraints, described in the following tables:

name of the calculus constraints on the rules ✷E and ✸I

NS4 no constraints
NT β = 〈 〉
ND β is a singleton sequence 〈z〉
ND4 β is non empty

name of the calculus constraints on the rules ✷E and ✸I

NK4 β is a non empty sequence
NK β is a singleton sequence 〈z〉

Following Prawitz’s original proof for first-order logic, one proves a Normaliza-

tion Theorem: for each derivation Π there exists a derivation Π′ s.t. Π
∗
≻ Π′ and

Π′ is in normal form. As a Corollary, one obtains the Consistency of the system(s)
(by syntactical arguments): for each position α, 6⊢NPos

⊥α.
The formal definition of semantics of NPos is very technical but intuitive. Posi-

tions are mapped into nodes of a tree-like Kripke structure (and hence sublists of
a position will range on paths of nodes). Each system captured by NPos is sound
and complete w.r.t. its standard Hilbert-style axiomatization.

3. Beyond S4: the logics S4.2 and S5

What’s happen to if we relax the “structure” of the positions?
If we release the ordering and the multiplicity of tokens, then we move from

sequences to sets, we obtain a (classical) natural deduction system for the logic
S4.2. The logic S4.2 is employed in different settings, ranging from epistemology
to the metamathematics of set theory and algebraic structures. It can be derived
by adding to S4 the axiom 2 ≡ ✸✷A→ ✷✸A. We do not add any additional con-
straints to the rules except for the usual ones on ✷I and ✸E. The resulting system
NS4.2 is sound and complete w.r.t. the standard Hilbert-style axiomatization of
S4.2. Moreover, we can prove a Normalization theorem and, as a consequence, a
Consistency theorem (again, by means of purely syntactical arguments).
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Regarding semantics, the interpretation of position formulas requires an in-
teresting observation. It is well-know that S4.2 is characterized (at the level of
the accessibility relation) by direct partial preorders. If we were to consider this
characterization, in attempting to assign semantics to the positions, we would en-
counter a non-trivial problem. We have to decide which point in the Kripke model
could be uniquely associated with a set of tokens {x1, . . . , xn}. The standard,
naive choice would be to take one of the upper bounds of the worlds associated
with each token, but this choice would not be unique, and in a direct pre-order the
supremum of a finite set of elements might not exist. However, we can use some
results of Goldblatt and Shetmann, which imply that S4.2 is also characterized by
a class of ordered structures different than direct pre-orders, that of semilattices
with a minimum element, where the problem disappears. We can now interpret
a position (i.e. a set) {x1, . . . , xk} as the least upper bound of the points (in a
space) x1, . . . , xk.

We have interpreted positions as general sets. Now, let’s restrict the definition of
positions to singleton sets. What we obtain is NS5 a indexed natural deduction
for S5 logic. The logic S5 is obtained by adding the axiom B ≡ φ → ✷✸φ to
S4 and is characterized by a universal semantics (this means that the accessibility
relation is an equivalence relation). We do not add any additional constraints to
the rules except for an adaptation of the usual ones on ✷I and ✸E. Both the clas-
sical and intuitionistic version NS5 enjoys expected good properties such as the
soundness and completeness w.r.t. their Hilbert-style axiomatization, the Normal-
ization Theorem and its consequences. In the case of intuitionistic logic, instead
of the universal semantics, it is more interesting to explore a BHK interpretation,
that interpret modal operators as follows: a proof of ✷Ax is a construction that
for each y gives a proof f(y) of Ay and a proof of ✸Ax is a pair (y, a) such that
a is a proof of Ay. The BHK interpretation, via the natural deduction system,
induces a Curry–Howard Isomorphism in the usual sense. The resulting calculus
is similar to λ-P, i.e. the typed lambda-calculus for the negative fragment of first
order intuitionistic logic in the so called Barendregt-cube.

The described research is open to various investigations, including the study of
the intuitionistic version of the NPos system from a Curry-Howard perspective
and the extension of techniques to infinitary logics.
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Dichotomies in Weihrauch Complexity

Vasco Brattka

We discuss a number of uniform dichotomies for problems in the Weihrauch lattice.
Such dichotomies have the common form that a problem is either quite well-
behaved (continuous, measurable of some form, etc.) or already relatively badly
behaved. We show that often such dichotomies also have non-uniform versions in
terms of computable reducibility and we indicate how computability concepts such
as Turing jumps, Weak Kőnig’s Lemma, diagonal non-computability, etc., occur
naturally in these non-uniform versions. This leads, for instance, to first-order
characterizations of continuity in terms of Turing degrees. We also discuss how
some known dichotomies from descriptive set theory, such as Solecki’s dichotomy,
can be seen in this context. The talk is based on ongoing research, but some of
the discussed results are published in [1].
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