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Cutoff phenomenon:
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shuff l ing and other Markov chains
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This snapshot compares two techniques of shuffling a
deck of cards, asking how long it will take to shuffle
the cards until a “well-mixed deck” is obtained. Sur-
prisingly, the number of shuffles can be very different
for very similar looking shuffling techniques.

1 Shuff l ing a deck of cards

When playing a card game, it is important to shuffle the card deck well in the
beginning. But how long do you have to shuffle the deck until the cards are
well-mixed? If you shuffle too few times, it will be easy to guess which card is
the next one. But you also do not want to spend too much time shuffling the
deck. Formulated more precisely, the question is:

What is the minimal number of times one has to repeat the shuffle
to obtain a nearly random card order?

To be able to answer this question, we need to specify the size of the deck,
choose a shuffling technique and explain what it means to be close to random.
Let us take a standard deck with 52 cards and shuffle them with the common
overhand shuffling technique, which is the technique of letting small bunches
of cards dropping from one hand to the other. A deck is said to be close to
random if all the possible orders are almost equally likely.
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Probability theory, a branch of mathematics which measures the likelihood of
repeated random events like our overhand shuffle, tells us that not all shuffling
techniques are efficient enough to be of practical use: For instance, shuffling
with the overhand shuffle technique would take thousands of shuffles to be
effective on a standard deck with 52 cards!

Now consider another common technique for card shuffling: first break the
deck into two smaller decks, of approximately equal size, by taking the top
block in one hand and the bottom block in the other one. Don’t be too strict on
splitting exactly in the middle, as we wish to create some randomness here. 1

Take one block in each hand, and interlace them neatly so they become only
one deck. This technique, called the riffle shuffle, is known to be very efficient,
meaning we would have to shuffle less than ten times [2], and is used by casual
card players and casino dealers alike.

To try to quantify the number of times we must repeat the shuffle to get
a truly random sequence of cards in our deck, we look at certain pieces of
information that may indicate randomness. In the case of the riffle shuffle, the
number of rising sequences is quite informative. Rising sequences are sequences
of cards that were adjacent and in a certain order, and which are still in that
order once the deck is mixed (see Figure 1).

Typically, a random deck of n cards has around n
2 rising sequences, and can

have up to n such sequences. However, shuffling the deck one time creates only
two rising sequences. At each step, the number of rising sequences is at most
multiplied by two. Hence, if we want all arrangements of the deck to be possible,
we need, at the very least, to shuffle enough times to get (hypothetically) n
rising sequences. This is achieved in log2pnq times (which is the number of
times we must multiply by two to get n). That shows that we need at least
log2pnq times to get a well-mixed deck of cards. In the next paragraph, we will
find out how many times we need to shuffle the card deck such that it will very
likely be well-mixed.

The r ight number of shuff les

Determining the number of shuffles which are sufficient to get a well-mixed deck
is closely related to determining how close a deck is from being perfectly mixed.
As the distribution of the cards in the deck becomes more and more random
each time we iterate the shuffling procedure, we can express the randomness as
a function of the number of iterations. To compute this function, we compare

1 Mathematically speaking, we cut the deck according to a binomial distribution, which
means that the probability of the top deck having k cards is the same as the probability of
getting k times “tail” after tossing a fair coin as many times as there are cards.
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Figure 1: In this 11-card deck, the rising sequences are pictured in two differ-
ent columns, each column corresponding to one hand in the riffle
shuffle. After one riffle shuffle, the order of the cards in the deck is
p1, 2, 6, 7, 3, 8, 9, 10, 4, 5, 11q, and the rising sequences are p1, 2, 3, 4, 5q,
visualized in black, and p6, 7, 8, 9, 10, 11q, visualized in red. Each time
we shuffle, the number of rising sequences is at most multiplied by 2.

the probability that each ordering of the deck occurs after our shuffling to the
probability that it occurs after perfect mixing. Formally, for a given ordering σ,
we denote by τ tpσq the probability that the deck is in that order after t shuffles.
Moreover, we let πpσq be the probability that the deck follows the order σ if it
was perfectly mixed (so this probability is the same for any ordering). Then, the
randomness of the shuffle is computed using the following sum over all possible
orderings:

dptq “
1
2

ÿ

σ an ordering
|τ tpσq ´ πpσq|.

This formula represents the total variation distance: this is a number between
0 and 1, where 0 means that a deck is perfectly well shuffled, and 1 is very
close to what we get before we start shuffling. As we expect, this function is
decreasing at each step, meaning that the deck is getting better shuffled. The
deck is shuffled enough when the total variation distance falls below some fixed
(but somewhat arbitrary) number, for example 1{4.

We chose 1{4, but would we get a radically different answer had we chosen 1{3?
For many shuffling techniques, the number of repetitions of the shuffling proce-
dure needed to obtain a total variation distance of 1{2, 1{3, or 1{4 are all very
close. So, the exact fraction we choose is not important, as long as we choose
a number below 1{2. This is due to the occurrence of the cutoff phenomenon,
which is a sharp decrease in the total variation distance, as exhibited on Figure 2.
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Figure 2: The profile of the total variation distance for the riffle shuffle of a deck
of 52 cards exhibits cutoff. After seven shuffles, the total variation
distance drops below 1{2, suggesting that seven iterations of the riffle
shuffle should suffice to get a well-shuffled deck of cards.

We can therefore focus our attention to the moment at which this sharp drop
occurs: the short time frame in which the distance goes from 1 to 0 is where
the deck gets well-mixed, regardless of the arbitrary threshold we chose.

To investigate the cutoff phenomenon in more detail, we express the card
shuffling as a mathematical concept, the Markov chain, named after the Russian
mathematician Andrey Markov (1856–1922).

2 Markov chains and stat ionar i ty

A Markov chain is a stochastic model describing a sequence of possible events
happening at fixed times where the update of an event depends only on the
current event but not on the history of previous events. So, the subsequent
shuffling of a card deck is a Markov chain, as it is sufficient to know the
current ordering to predict the evolution of the card shuffling from now on.
The orderings that happened before our last shuffle do not influence the next
orderings.

To illustrate the inner workings of a Markov chain, and to formulate our
intuitive idea of a well-shuffled card deck in precise mathematical terms, we
first give a name to the set of all orderings of 52 cards: We call this set the
state space S and each element in this set a state. The states, so the elements
of the set of all card orderings, each represent a particular order of our 52 cards.
In total, there are |S| “ 52 ¨ 51 ¨ ¨ ¨ 2 ¨ 1 possible states of a card deck. 2

To formalize the process of a shuffle, we first give an example of a simpler
Markov chain with only three states, which we illustrate graphically in Figure 3.
Consider a state space S with three states a, b, c and the following set of
rules: If at the present time our system is at state a, then it stays in state

2 The product 52 ¨ 51 ¨ ¨ ¨ 2 ¨ 1 is called "52 factorial", and can be abbreviated by 52!.
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Figure 3: Toy example: Transition probabilities in a system with 3 states.

a with probability πpa, aq “ 0.5 and it moves to state b or c with probability
πpa, bq “ 0.3 and πpa, cq “ 0.2, respectively. We call πpi, jq the transition
probability from state i to state j.

The transition probabilities starting in b and c are given analogously as
drawn in Figure 3. This determines the transition matrix

π “

¨

˝

πpa, aq πpa, bq πpa, cq
πpb, aq πpb, bq πpb, cq
πpc, aq πpc, bq πpc, cq

˛

‚“

¨

˝

0.5 0.3 0.2
0.1 0.5 0.4
0.4 0.2 0.4

˛

‚

satisfying that all entries are between 0 and 1 and that the sum of each row is 1.
We note that the next state depends only on the current state but not on the
previous ones. This property is called memorylessness and is the characterizing
property of a Markov chain.

We can then calculate the probability that a chain X0, X1, X2, X3, which
starts in the state a at time zero (in formula, X0 “ a), attains the value b at
time one (X1 “ b), followed by X2 “ a and X3 “ c, as

PrX0 “ a,X1 “ b,X2 “ a,X3 “ cs “ πpa, bqπpb, aqπpa, cq.

Coming back to our more involved Markov chain, describing the shuffling
process of a card deck, we may determine the transition probabilities analogously,
by the shuffling mechanism, but the transition matrix is now 52!ˆ 52! entries
large, since there are 52! combination of cards. We won’t write it out here.

Next, let us make precise what we mean by a “well-shuffled card deck”:
in the probabilistic language, this translates to a Markov chain staying in its
stationary distribution, or being at least close to it in an appropriate sense.
Therefore, to say that a deck cards is “sufficiently randomized” after m repeated
shuffles corresponds to measuring the distance between the distributions of the
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cards after m steps of the Markov chain and their stationary distribution, see
Section 1.

In the example of the Markov chain with three states, recall Figure 3, the
stationary distribution is the uniform distribution, that is, all states occur with
the same probability after a long time. Put in formulae, this means that the
probability of reaching each state will be µpaq “ µpbq “ µpcq “ 1{3 after a
long time. We verify this with the equation µpaq “ µpaqπpa, aq ` µpbqπpb, aq `
µpcqπpc, aq, and analogously for the states b and c.

Consequently, the stationary distribution for the riffle shuffle is one over the
probability for each distribution of cards to happen, and, as we said above, we
have 52! possibilities for that. We write this in formulae as µpxq “ 1

|S| “
1

52! for
all states x P S. It is known that, under mild conditions on the transition matrix,
a Markov chain on a finite state space has a unique stationary distribution,
see [5] for details. Evaluating the mixing quality of the m-th step of the shuffle,
or of another Markov chain, corresponds to measuring the distance between the
distribution after m steps of the Markov chain and its stationary distribution.

3 Two examples of cutof fs

To summarize our discussion above, a cutoff occurs when the distance to
stationarity (also called the total variation distance) stays close to 1 for a
number of steps and then it suddenly drops and converges very quickly to 0.
But this is a fragile process: changing the rules, namely the initial state or the
transition matrix of the Markov chain, can break the cutoff. In the following, we
look at two Markov chains taking values in t0, 1, 2, ..., nu, with different cutoff
phenomena, namely the classical Ehrenfest model, visualized in Figure 4, and
the modified Ehrenfest model, visualized in Figure 5.

3.1 The classical model

0 1 2 3 4

1 3{4 1{2 1{4

1{4 1{2 3{4 1

Figure 4: Graph representing the Markov chain associated to the Ehrenfest
urns, for n “ 4 balls.

The model was introduced by Paul Ehrenfest (1880–1933) and Tatyana
Ehrenfest-Afanaseva (1876–1964) to study diffusion of gases. Consider two urns
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and n balls. Assume that we know where the balls are at the beginning. Then,
at each step, a ball is chosen at random, among all the balls, and moved to the
other urn. For instance, if the chosen ball is in urn 1, then it is moved to urn 2.
The state of the associated Markov chain corresponds to the number of balls in
urn 1. It goes from i either to i´ 1 if the chosen ball is in urn 1 (this happens
with probability #tballs in urn 1u

#tballsu “ i
n ), or to i` 1 if the chosen ball is in urn 2 –

which happens with probability #tballs in urn 2u
#tballsu “ n´i

n .

3.2 The modif ied model

0 1 2 3 4

4{5 3{5 2{5 1{5
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Figure 5: Graph representing the Markov chain associated to the modified
Ehrenfest urn, for n “ 4.

Let us assume that the experimenter is lazy, and sometimes leaves the ball
in the same urn, with probability 1

n`1 . To be more precise, it means that the
transition probabilities are now:

πpi, i´ 1q “ i

n` 1 πpi, iq “
1

n` 1 πpi, i` 1q “ n´ i

n` 1 . (πmod)

In 1983, David Aldous proved in [1] that this Markov chain has the same
stationary distribution as the classical Ehrenfest urn, and converges to the
stationary distribution. Moreover, if we assume that all the balls are in urn 2 at
the beginning, he proved that it presents a cutoff 3 . It means that he studied
the Markov chain pXtqt where X0 “ 0 and the transition probabilities are given
by Formula (πmod), and observed a sudden convergence to the stationarity, as
in Figure 2.

Surprisingly, using the same techniques, Persi Diaconis also proved that if
the Markov chain starts at n

2 , then it does not have a cutoff, as explained in [3].
He was considering an even number n of balls and assumed that there are n

2
balls in each urn at the beginning. In that setting, the Markov chain pYtqt, given

3 The cutoff occurs at time 1
4 n logpnq.
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by Y0 “
n
2 and the transition probabilities in Formula (πmod) above, converges

smoothly to the stationary distribution, as we can see in Figure 6.

t, number of steps

dptq

Figure 6: Distance between the distribution of Xt (in blue), or Yt (in green),
and the stationary distribution, for n “ 100. The random walk Xt

exhibits the cutoff phenomenon, while Yt does not.

4 Outlook: a cutof f cr i ter ion

Since Aldous and Diaconis introduced the idea of the cutoff phenomenon,
mathematicians have been interested in understanding the Markov chains for
which a cutoff phenomenon occurs. Using a distinct approach for each Markov
chain, this question is answered for a variety of models, like the riffle shuffle or
the Ehrenfest urns.

However, as we have seen for the Ehrenfest model, a slight modification of the
setting may result in a drastic change of behaviour. Therefore, understanding
the general mechanisms for a cutoff to occur is an important question which
would allow also to predict the behaviour for novel models without analysing
each model individually from scratch.

Using analytical and probabilistic techniques, several attempts have been
made at giving a criterion for cutoff for classes of Markov chains. However, these
approaches still do not give a complete picture. For example, in [6], cutoff is
established for Markov chains satisfying certain geometric properties, including
random walks on certain “nice” graphs. Similarly in [4], techniques are evolved
to provide a condition for the cutoff of the class of “weakly asymptotically
simple exclusion processes”, which are particle processes on a line that jump
to the left and the right with slightly different probability. These processes
display a cutoff phenomenon if the segments of the line gets finer and finer. In
that case, upper and lower bounds for the time at which the model comes close
to equilibrium are analysed separately. However, the results cover only some
classes of Markov chains. In many cases, one can only conjecture the existence
of a cutoff.
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Therefore, a general criterion for cutoff applicable to all Markov chains is
still missing, and the problem remains widely open for the future.
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