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Abstract. Recent years have seen an explosion of algebraic methods to
study singular stochastic and rough dynamics. These include developments in
geometric rough path theory based on the algebra of words, the introduction
of decorated trees in regularity structures, and the recent approach to sin-
gular stochastic partial differential equations based on multi-indices. These
developments have furthermore led to important links with numerical anal-
ysis, machine learning, stochastic quantisation, and the study of symmetries
of physical systems. The aim of this mini-workshop was to bring together ex-
perts working on these fields using algebraic structures that appear in rough
dynamics. The goal was to facilitate the exchange of ideas and encourage
further connections to be established.
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Introduction by the Organizers

Organizational details

The mini-workshop Combinatorial and Algebraic Structures in Rough Analysis
and Related Fields, organised by Yvain Bruned (Université de Lorraine), Carlo
Bellingeri (TU Berlin), Ilya Chevyrev (University of Edinburgh) and Rosa Preiß
(University of Postdam) was attended by 16 participants currently based in France,
Germany, Norway, Poland and the UK. The program consisted of 16 talks (45
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minutes each), each being followed by a discussant’s presentation (15 minutes
each), leaving sufficient time for additional questions from the audience.

Due to some participants becoming ill at short notice in connection with the
Covid-19 pandemic, this event took place in a hybrid format having 4 participants
attending online. In accordance with Oberwolfach’s tradition, the schedule was
not known in advance by the participants. The days’ schedules were sent each
evening to the group. Further informal discussions took place in between and
after the talks. The Zoom session was managed with the precious help of Carlo
Bellingeri, and Usama Nadeem took care of the the report.

Motivation

The main purpose of the mini-workshop was to gather together early career re-
searchers working in the development of new algebraic structures to study non-
linear singular random dynamics arising from rough analysis and connected areas.
In particular, we wanted to encourage collaborative work and the sharing of recent
contributions among different research groups, including groups working on SPDEs
with regularity structures and multi-indices, signatures, numerical analysis, data
science, and operad theory. Combinatorial and algebraic structures arise naturally
in non-linear dynamics when we want to describe in a compact way higher order
expansions of differential equations.

Consider for instance a autonomous system

x′(t) = f(x(t)), x(0) = x0 .

Then, applying iteratively the Taylor formula, we can write x as the asymptotic
series indexed by trees. The same trees can be used also to describe higher order
Runge–Kutta methods to solve the system numerically [3]. More generally, by
introducing appropriate algebraic structures, an important example of which is
the Butcher–Connes–Kreimer Hopf algebra [5], it is possible to derive a consis-
tent theory of numeric integration for ordinary differential equations [10] and to
renormalise Feynman diagrams in quantum field theory. Moving beyond numerical
analysis, formal expansions can be used analytically to establish well-posedness of
singular stochastic dynamics. We refer principally to rough differential equations
(RDEs)

dYt = g(Yt)dWt, Y (0) = Y0

and singular stochastic partial differential equations (SPDEs) of the form

(∂t − L)u = F (u,∇u)ξ, , u(0) = v .

Both systems are characterised by the presence of noise terms, which are associ-
ated respectively to a highly oscillating driving noise W and random distribution
ξ, making the equation singular. The resolution of these systems is performed
in a series of papers [8, 2, 4, 1], taking their roots in Lyons theory of rough
paths [11, 6, 7], and that have culminated in the formation of the recent field of
rough analysis, see [9]. In this context, combinatorial and algebraic structures
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are adopted to construct truncated Taylor-type expansions of the solutions of the
previous equations.

We should indeed mention the following offshoots which have been widely dis-
cussed by the participants:

• Multi-indices, which are a different way to encode the expansions for solu-
tions of singular SPDEs. The idea is to index the expansion according to
the elementary differentials (coefficients arising from the nonlinearities) in-
stead of the iterated integrals. Talks on the subject were given by Bruned,
Linares and Tempelmayr.

• Regularity Structures via decorated trees where the characterisation of
symmetries in a general combinatorial context remains a challenge. For
example, there is no unification between the chain rule in the geometric
and quasilinear KPZ equations and gauge-covariance in Yang-Mills. Talks
were given on this topic by Chevyrev and Nadeem.

• Numerical Analysis for dispersive PDEs where a resonance analysis allows
us to get low regularity schemes for a large class of equations. The com-
binatorial structure used is very similar to decorated trees developed for
singular SPDEs. Talks were given by Alama Bronsard and Schratz.

• Rough paths where its geometry is much better understood via the iso-
morphisms between words and trees. Talks were given on this topic by
Bellingeri, Ferrucci, Rahm and Tapia.

• The potential of these combinatorial structures could be seen via other
fields of application brought by the participants such as Algebraic geom-
etry for rough paths (Preiß), Algebraic operads (Tamaroff), Perturbative
Quantum Field Theory (Klose), Stochastic analysis in Frobenius manifold
(Combe) and 2D signature via multiparemeter iterated integrals (Diehl).

Acknowledgement: The workshop organizers would like to thank MFO for the nice
environment provided for this event.
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Timetable of the Mini-workshop

Monday Tuesday Wednesday Thursday Friday

9h30 Bellingeri Combe Schratz Tamaroff Nadeem
11h00 Klose Chevyrev Diehl Preiß Bruned
15h30 Tempelmayr Rahm Tapia
17h00 Linares Alama Bonsard Ferrucci

Speakers and discussants

Speaker Title Discussant

Bellingeri Algebraic structures in the rough
change of variable formula

Alama Bronsard

Klose Perturbation theory for the Φ4

3 measure,
revisited with Hopf algebras

Tempelmayr

Tempelmayr Recentering for rough paths and
regularity structures via multi-indices

Tamaroff

Linares Algebraic renormalization of rough
paths and regularity structures
based on multi-indices

Bellingeri

Combe Semimartingales with values in a
(pre-)Frobenius manifolds

Ferrucci

Chevyrev Symmetries in stochastic Yang–
Mills equations

Linares

Rahm Planarly Branched Rough
Paths Are Geometric

Combe

Alama Bronsard Numerical approximations to rough
solutions of dispersive equations

Diehl

Schratz Resonances as a computational tool Tapia

Diehl Multiparameter iterated integrals Schratz

Tamaroff From bialgebras to algebraic operads Nadeem

Preiß An algebraic geometry of (rough) paths Rahm

Tapia Branched Itô formula Klose

Ferrucci Natural Itô-Stratonovich isomorphism Bruned

Nadeem Solution theory for quasilinear gen-
eralised KPZ Equation

Chevyrev

Bruned Novikov algebras and multi-indices
in regularity structures

Preiß
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Abstracts

Algebraic structures in the rough change of variable formula

Carlo Bellingeri

Given a smooth function ϕ : Rd → R and a continuous bounded variation path
x : [0, T ] → Rd, x = (x1, . . . , xd) the fundamental theorem of calculus tells us the
well-known identity

ϕ(xt)− ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi

dxi
r .

This formula is a cornerstone of standard calculus. In particular, when x does
not satisfy this property, the integral in might not be well defined because x is
not a.e. differentiable and Lebesgue integration theory is not useful any more.
Surprisingly, thanks to the theory of rough paths [5] it is still possible to write
a similar change of variable formula. However, in this case, the formula is not
unique, depending on the underlying algebraic theory defining the integrals. The
goal of this talk is to fully explore the possible identities known in the theory and
prepare the discussion for the talks of Emilio Ferrucci and Nikolas Tapia on [2].

A first possibility is represented by introducing the Young integral, see [11],
defined as the limit of the Riemann-type sum

∫ t

s

f(xr)dx̂
i
r : lim

|P|→0

∑

[u,v]∈P

f(xu)(x
i
v − xi

u) ,

where π is a generic partition of [s, t] with size |P|. This sum converges if and only
if x is γ-Hölder with γ ∈ (1/2, 1) and one has the formula

ϕ(xt)− ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi

dx̂i
r .

More generally, using the standard theory of geometric rough paths, see [10],
the starting point is not anymore a path but an extended path X : [0, T ]2 → G(Rd)
with values in the character group of the shuffle Hopf algebra (T (Rd),�,∆c).
Using the additional components of X we can indeed define for any γ ∈ (0, 1) the
geometric rough integral

∫ t

s

f(Xr)dX
i
r := lim

|P|→0

∑

[u,v]∈P

∑

|w|<N−1

∂f(Xu)

∂xi1 . . . ∂xiw

〈wi,Xu,v〉 ,

where we sum over a set of words with a length smaller than a finite N depending
on γ. It follows from elementary considerations of Taylor’s formula and the shuffle
product that in this case one has the identity

ϕ(xt)− ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi

dX i
r .
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Similar computations were also provided in [1] where the shuffle product is de-
formed into a quasi-shuffle product [8]. The main feature of this approach starts
with some apriori relations among the components of X and then one derives the
formula using standard combinatorial relations.

In case we not want to assume any apriori relations we need to start from a
branched rough paths [6, 7] i.e. our starting path will take value in the character
group of the Butcher–Connes–Kreimer Hopf algebra (H(Rd), .,∆ck) [3] where the
product is free. A first general theory to express these identities was given in the
last chapter of David Kelly’s PhD Thesis [9, Chap. 5]. This condition allows us to
obtain an extremely general formula but at the same time, this notion requires to
satisfy some additional properties and it is not unique, which makes this definition
more arduous for applications. Some parts of [2] are dedicated to providing a new
formula in this context. Interestingly we will have a final identity of the form

ϕ(xt)− ϕ(xs) =

d∑

i=1

∫ t

s

∂ϕ(xr)

∂xi

dX i
r + “higher order integrals” .

where in the remaining integral we will integrate not just with respect to the
component of X but the value of X on its primitive elements, whose properties
were deeply analysed in [4].
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Perturbation theory for the Φ4

3
measure, revisited with Hopf algebras

Tom Klose

(joint work with Nils Berglund)

The Φ4
3 model, defined on the 3-dimensional torus T3, is probably one of the

simplest non-trivial models in Euclidean quantum field theory. At cut-off scaleN ∈
N, it can be written as

µN
Φ4

3
(dφ) =

1

ZN (ε)
exp

(

−
∫

Λ

(‖∇φ(x)‖2
2

+
1− ε2C

(2)
N

2
:φ(x)2: +

ε

4
:φ(x)4:

+ε2C
(3)
N − ε3C

(4)
N

)

dx
)

dφ

where C
(k)
N , k = 1, . . . , 4 are suitable explicit renormalisation constants and : · : is

the Wick product w.r.t. the covariance C
(1)
N . The purpose of this talk is to revisit

perturbation theory for the renormalised log partition function

− log
ZN (ε)

ZN(0)
= γ − logEµN

[
e−αX−βY

]
= γ −

∞∑

n=2

κn

n!
,

κn = E
µN

c

[(

α + β
)n]

(1)

associated with this measure, where µN is the Gaussian measure with covari-
ance (−∆+ 1)−1, regularised at scale N ,

(2) X ≡ ≡
∫

T3

:φ(x)4:dx, Y ≡ ≡
∫

T3

:φ(x)2:dx,

and the parameters α, β, and γ are defined as α := ε/4, β := ε2

2 C
(2)
N , and γ :=

ε2C
(3)
N − ε3C

(4)
N . The last equality in (1) is an expansion in terms of cumulants κn

and it is well-known (see, e.g. [10]) that they can be expressed in terms of connected

Feynman diagrams Γ
(k)
nm with m vertices of valency 4, n−m vertices of valency 2,

and n+m edges. These diagrams come with a degree deg(Γ
(k)
nm) = 2n−m−3 for all

k and are associated with a real number via a canonical valuation map ΠN . Even
though all diagrams Γ with valuation ΠN (Γ) ≤ 0 are divergent as N → ∞, it is
unfortunately not the case that all the diagrams with positive valuation converge;
this is known as the problem of (nested) subdivergences. It has been overcome in
the celebrated work by Bogoliubov, Parasiuk, Hepp, and Zimmermann [3, 9, 11],
who constructed a renormalised BPHZ valuation map ΠBPHZ

N for which deg(Γ) >
0 implies that ΠBPHZ

N (Γ) is uniformly bounded in N ; see also the recent work
by Hairer [8] for a self-contained formulation. The main result of our work [2,
Thm. 3.5] is the following theorem:

Theorem 1. The following equality holds in the sense of formal power series:

(3) γ −
∞∑

n=2

κn

n!
=

∞∑

p=4

1

p!
(−α)p

∑

k

b(k)pp Π
BPHZ
N

(

Γ(k)
pp

)
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where the b
(k)
pp ’s denote combinatorial factors. Since deg(Γ

(k)
pp ) = p − 3 ≥ 1

for p ≥ 4, this implies that all terms in the perturbative cumulant expansion (1)
are bounded uniformly in the cut-off parameter N .

This result is already known but our proof is new. The theorem follows from
the commutativity of the diagram below which we establish in [2, Sec. 3.6].

In this diagram, the RHS is well-known. Since we work with connected di-
agrams, note that the only possible divergent sub-diagram in our setting is the
“bubble” .

Furthermore, the co-product ∆ describes the extraction-contraction procedure
due to Connes and Kreimer [5, 6], Ã is the twisted antipode w.r.t. the BPHZ
valuation, and CSΓ is the graph Γ with all bubbles with labels in S contracted to
a vertex, see [2, Sec. 3.3 and 3.4] and the references therein for details.

Inspired by the work of Ebrahimi-Fard et al. [7], the main novelty of our approach
is represented on the LHS of the diagram: We consider the polynomial Hopf al-
gebra H spanned by the monomials X and Y given in (2), equipped with the

classical co-product ∆̂; on top of that, we build a map Âη that resembles the

twisted antipode Ã such that the map χη then resembles the BPHZ renormali-
sation procedure of Feynman diagrams on the RHS. The map M describes the
multiplication M : H ⊗ H → H and the connection between the LHS and the
RHS is given by the map P, which formalises the pairings in Wick’s formula and
projects onto connected diagrams, see [2, Sec. 3.5] for details.
Interaction with the other participants. The discussant, Markus Tempelmayr, did
a wonderful job and raised several interesting questions. The first question con-
cerns the generality of our approach, in particular with regards to

• the full subcritical regime of the Φ4
4−δ model that was recently investigated

in [4] or even
• the case of the critical Φ4

4 model, the triviality of which was established
by Aizenman and Duminil-Copin [1].
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A potential answer to this question is linked to another question raised by the
discussant, namely: Can we characterise the algebraic structure on the LHS of the
commutative diagram above? In our work, we have left that problem open but we
believe that one should be able to recast (a modification of) our construction in
the language of the above-mentioned work by Ebrahimi-Fard et al. [7]. While this
question remains open for now, the workshop has provided the author with the
opportunity to initiate a discussion with Nikolas Tapia, another participant and
co-author of the article [7], which could potentially lead to a follow-up project.
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Recentering for rough paths and regularity structures via multi-indices

Markus Tempelmayr

(joint work with Pablo Linares and Felix Otto)

Following [3, Section 6], we review the Hopf algebra structure underlying recenter-
ing in multi-index based regularity structures introduced in [4]. To simplify this
exposition, we consider instead of a PDE the rough differential equation

(1)
d

dt
u(t) = a(u(t))ξ(t), u(t = 0) = 0.

Here, we think of a : R → R as being a smooth nonlinearity, and of ξ as a random
Schwartz distribution, say ξ ∈ Cα−1 for α ∈ (0, 1). For such ξ, the product a(u)ξ
is a product of a function with a distribution which falls short of the Young regime.
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The basic idea to develop a solution theory in [4] is to parameterize the model,
which captures the local solution behaviour, by partial derivatives w.r.t. the non-
linearity a. We thus make the ansatz

u(t)− u(s) =
∑

β

Πsβ(t)

∞∏

k=0

( 1

k!

dka

duk

(
u(s)

))β(k)

for a base point s ∈ R, where β : N0 → N0 is a multi-index. With help of the

coordinates zk on the space of nonlinearities given by zk[a] :=
1
k!

dka
duk (0), the above

ansatz takes the more compact form of

u(t)− u(s) =
∑

β

Πsβ(t) z
β [a(·+ u(s))],

where the monomials z
β are given by z

β :=
∏∞

k=0 z
β(k)
k . This power series does

in general not converge. We thus “algebraize” our ansatz by not evaluating the
coordinates at a nonlinearity a, and consider instead formal power series in the
abstract variables {zk}∞k=0,

Πs(t) :=
∑

β

Πsβ(t) z
β ∈ R[[zk]].

Plugging this ansatz into (1) and comparing coefficients yields

d

dt
Πsβ(t) =

∞∑

k=0

∑

ek+β1+···+βk=β

Πsβ1(t) · · ·Πsβk
(t)ξ(t), Πs(t = s) = 0,

where we denote by ek the multi-index mapping l to δlk. Some examples are

d
dt
Πs e0 = ξ, d

dt
Πs e0+e1 = Πs e0ξ,

d
dt
Πs 2e0+e2 = Π2

s e0
ξ,

d
dt
Πs 2e0+e1+e2 = Πs 2e0+e2ξ + 2Πs e0Πs e1ξ.

Comparison to rough paths. We compare this construction to branched rough

paths [1]. For rooted trees τ1, . . . , τk and a tree τ =
τ1 τk

the rough path X(τ) is
recursively defined by

d

dt
Xs,t(τ) = Xs,t(τ1) · · ·Xs,t(τk)ξ, Xs,t=s(τ) = 0.

Some examples are

d
dt
Xs( ) = ξ, d

dt
Xs( ) = Xs( )ξ, d

dt
Xs( ) = Xs( )Xs( )ξ,

d
dt
Xs( ) = Xs( )ξ, d

dt
Xs( ) = Xs( )Xs( )ξ.

As these examples correctly suggest, every model component Πsβ can be expressed
as a linear combination of rough paths Xs(τ).

Proposition 1. For every β we have

Πsβ(t) =
∑

τ∈Tβ

σ(β)
σ(τ) Xs,t(τ),
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where Tβ is the set of all trees having β(k) nodes with k children for all k ∈ N0,

σ(β) :=
∏∞

k=0(k!)
β(k) is a symmetry factor of a multi-index, and σ(τ) is the

symmetry factor of the tree τ .

This induces a dictionary φ from (linear combinations of) multi-indices T to (linear

combinations of) trees T , given by φ(β) =
∑

τ∈Tβ

σ(β)
σ(τ) τ , such that

Π = X ◦ φ.

Recentering. We turn to recentering, and aim to relate Πs to Πs̄. Observe that
for given us̄ ∈ R and u[a(·+ us̄)] the solution to (1) with a replaced by a(·+ us̄),

ū := u
[
a(·+ us̄)

]
+ us̄

satisfies (1) with initial condition ū(0) = us̄. Allowing the shift to depend on a,
we might hope to choose us̄[a] such that ū(s̄) = 0. We thus informally identified
the transformation Γ∗

s̄0 that recenters solutions from 0 to s̄ by

(Γ∗
s̄0u)[a] = u

[
a(·+ us̄[a])

]
+ us̄[a].

The goal is to translate this to the level of Π, where the above can not directly
be applied as Π is not a well-defined functional of a (only a formal power series!).
Instead, we consider the infinitesimal generator D of the u-shift of a defined by

(Du)[a] := d
dv

∣
∣
v=0

u[a(·+ v)],

which as a derivation is well defined on formal power series R[[zk]]. Analogously,
the generator of the a-dependent u-shift is given by z

βD ∈ Der(R[[zk]]). The linear
span L := span{zβD |β multi-index} is then a pre-Lie algebra when equipped with

z
βD ⊲ zγD := (zβD.zγ)D,

the dot meaning the application of the derivation z
βD to the power series zγ . Note

that its universal enveloping algebra U(L) is naturally a Hopf algebra. We define
the space of “forests” of multi-indices T+ via the pairing

U(L)〈zβ1 · · · zβkD · · ·D, γ1 · · · γl〉T+ = δlkδ
γ1

β1
· · · δγk

βk
,

where zβ1 · · · zβkD · · ·D can be given a sense in U(L) by help of the pre-Lie product
⊲, which crucially does not depend on any order as the multiplication of monomials
z
β commutes. This turns T

+ into a Hopf algebra. From its character group, we
can analogous to the theory of regularity structures [2] with help of a comodule
build a (structure) group G containing endomorphisms Γss̄, such that their duals
Γ∗
ss̄ ∈ End(R[[zk]]) satisfy

Γ∗
ss̄Πs̄ = Πs.

By working on the “dual side”, we thus obtained a geometric interpretation of the
Hopf algebra at play in regularity structures for recentering.

Comparison to rough paths again. On the tree-side we consider the Grossman-
Larson pre-Lie algebra L := span{τ | τ tree} equipped with

τ1  τ2 :=
∑

τ

n(τ1, τ2, τ)τ,
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Actions on a L U(L) G
∗

T
+

G
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exp

pairing

Hopf theory

Hairer’s theory

dualizationdual side

primal side

Figure 1. Algebraic construction of the group G
∗.

where n(τ1, τ2, τ) is the number of single cuts performed on τ with branch τ1 and
trunk τ2, e.g.

 = 2 + .

The dictionary φ can by the pairings T〈β, zγD〉L = δγβ and T 〈τ1, τ2〉L = δτ2τ1 be

transposed to obtain φ† : L → L, given by φ†(τ) = σ(β)
σ(τ) z

βD provided τ ∈ Tβ .

Proposition 2. φ† is a pre-Lie morphism, i.e.

φ†(τ1  τ2) = φ†(τ1) ⊲ φ
†(τ2).

By the universality property it lifts to a Hopf algebra morphism φ† : U(L) → U(L).
Yet another pairing on forests of trees between the Grossman-Larson Hopf algebra
U(L) and the Connes–Kreimer Hopf algebra H defined by

U(L)〈τ1 · · · τk, σ1 · · ·σl〉H = δlkδ
σ1
τ1

· · · δσk
τk
,

allows to transpose φ† once more and yields a Hopf algebra morphism φ : T+ → H.
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Algebraic renormalization of rough paths and regularity structures
based on multi-indices

Pablo Linares

The theories of rough paths [13], [8, 9] and regularity structures [10] provide local
well-posedness results for RDEs (respectively SPDEs): The fundamental analytic
objects they are based on take the form of local expansions with respect to nonlin-
ear functionals of the driving noise, collected in what is called rough path (respec-
tively model). In their usual approaches, these local expansions and their natural
transformations (re-expansions, multiplication, renormalization) are encoded in
Hopf algebras of trees, leading to a systematic treatment of semi-linear subcrit-
ical singular SPDEs [2, 4, 6]. More recently, and in the context of quasi-linear
SPDEs, [14] obtained a priori bounds in a regularity structures set-ups based on



Combinatorial and Algebraic Structures in Rough Analysis 3077

multi-indices instead of trees: A deeper algebraic understanding of this new book-
keeping, and particularly of the recentering operation based on multi-indices, was
later given in [12].

The purpose of this talk, based on [5, 11], is to provide a complete description of the
algebraic structures emerging from multi-indices for a general class of semi-linear
equations of the form

Lu =
∑

l∈L

al(u)ξ
l, u : Rd → R, u =

(
1
m!∂

mu
)

m∈Nd
0
.

More precisely, we give a systematic construction of a regularity structure based on
multi-indices, including a careful study of the recentering transformations leading
to the so-called structure group; we introduce finite counterterms in the original
equation and describe a recursive procedure to construct an algebraically renor-
malized smooth model; and we provide, in the rough path case, the construction
of a renormalization group based on multi-indices.

The basis of the constructions consists of variables {z(l,k)}, l ∈ L, k ∈ M(Nd
0),

which are placeholders for the derivatives of the nonlinearities al; and {zn}, n ∈ Nd
0,

which represent Taylor coefficients of a local parameterization of the manifold of
solutions. Multi-indices arise when considering monomials in these variables z

β .
Next to this, we have infinitesimal generators of shifts in the space of solutions
(denotedD(n), n ∈ Nd

0), which act like pre-Lie products; and of shifts in space-time
(denoted ∂i, i = 1, ..., d), which are commutative linear maps. Appealing to the
construction of Guin and Oudom [7], combined with suitable grading properties,
we derive a Lie algebraic PDE in mild form describing a smooth model, namely

Πx = K ∗ ρ
(
exp(Πx)

)∑

l∈L

z(l,0)ξ
l +

∑

n∈Nd
0

zn(· − x)n,

where exp is a symmetric exponential and ρ some action onto the algebra of {z(l,k)}
∪ {zn}. Similar techniques give rise to the structure group as a group of symmetric
exponentials.

In the description of an algebraically renormalized model, the introduction of a
counterterm is reflected in a shift of the form z(0,0) 7→ z(0,0) + c, where we think

of ξ0 = 1 and c is a polynomial of {z(l,k)} ∪ {zn}; this, in particular, connects
with translation of rough paths [3] and preparation maps [1]. It is also possible
to characterize the infinitesimal generators of local counterterms to seek a non-
recursive construction of renormalized models; these generators create another pre-
Lie algebra, which in the simpler rough path case allows to write translation maps
as symmetric exponentials (the general SPDE case would require an enlargement
of the structure via extended decorations, cf. [4]).

As reflected in [5, 11, 12], multi-indices encode linear combinations of trees, and
have been proven more efficient e. g. when bookkeeping renormalization constants.
Understanding if there are any analytic or stochastic interpretations in this group-
ing of trees is an open problem which was brought up in the posterior discussion.
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Symmetries in stochastic Yang–Mills equations

Ilya Chevyrev

(joint work with Ajay Chandra, Martin Hairer, and Hao Shen)

Recent works [2, 3, 5] have made sense of the stochastic quantisation equations of
Yang–Mills (YM) on the torus Td, d = 2, 3, that read (in the DeTurck gauge)

∂tA
ε = − d∗AεFAε − dAε d∗Aε + CεA+ ξε = ∆Aε +Aε∂Aε + (Aε)3 + CεAε + ξε .

Here Aε : R+ × Td → gd is a 1-form and g is the Lie algebra of a compact Lie
group G, ξε is an adapted mollification at scale ε > 0 of a gd-valued white noise ξ
on R× Td, and {Cε}ε>0 ⊂ L(g, g) are renormalisation counterterms. In the final
expression we write the heuristic form of the non-linearities in the equation.

For d = 2 or d = 3, there exist choices for Cε such that, as ε → 0, the
solutions Aε converge (modulo blow-up) to a space-time distribution A that we
call a solution to the stochastic YM equations (SYM) with mass {Cε}ε>0.

In this report, we describe the argument in [3] based on small-noise limits
that shows there is distinguished choice for Cε such that the solution A is gauge-
covariant in the following way: if A(t) and Ā(t) are solutions of SYM with mass
{Cε}ε>0 and gauge equivalent initial conditions A(0) ∼ Ā(0), then [A(t)] is equal
in law to [Ā(t)] (modulo blow-up). Here [A] = {B : B ∼ A} is the gauge orbit of
A where ∼ denotes gauge equivalence which, roughly speaking, means that there
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exists g : Td → G such that Ag := AdgA − (dg)g−1 = B. Since solutions to SYM
are distributions, gauge equivalence needs to be interpreted appropriately.

This result is shown for d = 2 and d = 3 in [2] and [3] respectively (see also [4]
for a survey). It in particular implies that the projected process [A(t)] is Markov.
In the case d = 2, one can furthermore choose Cε ≡ C independent of ε, which is
‘atypical’ for a singular stochastic PDE. We also mention that in [5] it is shown,
for d = 2, that the Markov process [A(t)] has a unique invariant measure which
is the YM measure on T2 associated with trivial principal G-bundle and that the
operator Cε ≡ C ∈ L(g, g) with the above property is unique.

The first step in both [2, 3] in the proof of the gauge-covariance proprety is the
following result that follows from the general theory of regularity structures.

Proposition 1. There exist operators Cε
BPHZ

, C̃ε, C̃0,ε ∈ L(g, g) such that, for any

fixed C̊1, C̊2 ∈ L(g, g), the solutions to

(1) ∂tB = ∆B +B∂B +B3 +Adgξ
ε + (Cε

BPHZ
+ C̊1)B + (C̃ε + C̊2)(dg)g

−1 ,

(2) ∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + (Adḡξ)
ε + (Cε

BPHZ
+ C̊1)Ā+ (C̃0,ε + C̊2)(dḡ)ḡ

−1 ,

converge to the same limit in probability as ε ↓ 0, where g and ḡ solve

∂tg = ∆g − (∂jg)g
−1(∂jg) + [Zj , (∂jg)ḡ

−1]g with initial condition g(0)

with Z taken as B and Ā respectively.

The relevance of this result is that, if we choose Cε = Cε
BPHZ

+ C̊1, then B :=

Ag solves (1) provided that C̃ε + C̊2 = Cε. On the other hand, provided that

C̃0,ε + C̊2 = 0, then by Itô isometry, since (Adḡξ)
ε is equal in law to ξε (which is

where we use that (Adḡξ)
ε and thus ḡ are adapted), Ā is equal in law to A. The

gauge-covariance property would thus follow once we show that the limits

(3) lim
ε↓0

C̃ε − Cε
BPHZ

and lim
ε↓0

C̃0,ε exist.

This is because, if these limits exist, then we can choose C̊2 = − limε↓0 C̃
0,ε and

C̊1 = limε↓0{C̃ε − Cε
BPHZ

+ C̊2} to satisfy the the above conditions with Cε =

Cε
BPHZ

+ C̊1. However, since renormalisation constants generically diverge, it is
not clear a priori that (3) holds.

In [2] for d = 2, the claim (3) is shown by direct calculation since the number
of diverging diagrams involved is rather small (three to be precise).

For d = 3, the argument in [3] is different and inspired by the work [1] on
manifold-valued stochastic heat equations. We demonstrate this method by show-
ing that lim supε↓0 |C̃0,ε| < ∞ without knowing the precise form of C̃0,ε.

Arguing by contradiction, suppose lim supε↓0 |C̃0,ε| = ∞ and let C̃0,ε
σ denote the

renormalisation constant arising from a rescaled noise σξ. It is not difficult to see
that there exist σε ↓ 0 such that C̃0,ε

σε
→ Ĉ 6= 0 as ε ↓ 0 along a subsequence. Take

now bare masses C̊1 = 0, C̊2 = −Ĉ in the equation for Ā. Then, by continuity in
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the noise, Ā converges to the solution of ∂tĀ = ∆Ā + Ā∂Ā+ Ā3 − Ĉ dḡḡ−1. On
the other hand, Ā is equal in law to the solution of

∂tÃ = ∆Ã+ Ã∂Ã+ Ã3 + Cε
BPHZ,σε

Ã+ σεξ̃
ε + (C̃0,ε

σε
− Ĉ) dg̃g̃−1 .

Treating C̃0,ε
σε

− Ĉ as a bare mass that converges to 0, by joint continuity in noise

and bare mass, Ã converges to the deterministic YM heat flow ∂tÃ = ∆Ã+Ã∂Ã+
Ã3. The limits of Ā and Ã are not equal since Ĉ 6= 0, which yields a contradiction.

A similar but slightly different argument based on gauge-covariance of the de-
terministic YM heat flow shows that lim supε↓0 |C̃ε − Cε

BPHZ
| < ∞. With further

work, one can show that the limits in (3) actually exist, completing the proof of
gauge-covariance. This argument raises the natural question of whether there is
an algebraic framework to describe and unify the symmetries appearing in [1, 2, 3].
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Semimartingales with values in a (pre-)Frobenius manifolds

Noémie C. Combe

In the sixties, Pierre Cartier proposed a generalisation of probability theory on
richer structures such as manifolds. In this paper we follow this idea. We show
that there exists a class of symmetric spaces of Cartan–Hadamard type for which
Itô’s integrals of 1-forms along semimartingales with value in such a manifold have
no divergences. In particular, one can omit the approach relying on perturbative
expansion of the functional integral appearing as a sum labelled by Feynman
graphs. This is explained by the fact that the manifolds investigated below are
Hessian manifolds satisfying the properties of a pre-Frobenius potential manifold
and they contain a submanifold which is a Frobenius manifold.

For this class of manifolds, covariant derivatives form a pre-Lie algebra. The
fibres of the Frobenius manifold’s tangent bundle have the structure of a Frobenius
algebra. The fact that one can omit perturbative expansions here relates—among
others—to the phenomenon that F-manifold algebras are the corresponding semi-
classical limits of pre-Lie formal deformations of commutative associative algebras.
Moreover, by [6], the class of Frobenius algebras is a class closed under deforma-
tions. Finally, applying the geometric flavoured argument (the “no-go theorem”)
of [4] ends the discussion.
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1. A new approach

Let (Ω,F , (Ft)t≥0, P ) be a filtered complete probability space. For X to be a
martingale with values in a vector space V with some given connection ∇, it
is necessary and sufficient that for any 1-form ω, Yt = ∇

∫

Xt
0
ω is a real local

martingale.
We consider the problem of defining semimartingales with values in a Riemann-

ian manifold (M, g). Let (M, g) be a Riemannian manifold of dimension n and
consider its corresponding frame bundle, with frame (Hi)

n
i=1. An M-valued semi-

martingale X is defined throughout the set Z = (Zi)ni=1 of real semimartingales
such that the Stratonovitch formula is

(1) Zi
t =

∫

Xt
0

ωi,

where ωi ∈ T ∗M is a 1-form in the cotangent bundle T ∗M (see [5] for a precise
definition of (1)).

A classical problem in stochastic differential equations is to understand how
to reconstruct X from a real semimartingale Z. That is, given a real valued
semimartingale Z one looks for the M-valued semimartingale X with given X0

and satisfying

d2Xt = hXt
(d2Zt),

where h is defined by putting dxi = hi
aω

a.
The Stratonovitch like formula leads to the Itô formula. This step leads to

highlighting relations to connections on a manifold:

X i
t −X i

0 =

∫

Xt
0

dxi =

∫

Xt
0

hi
aω

a =

∫ 1

0

hi
a(Xb) · dZa

s .

Indeed, this implies that dX i
t = hi

a(Xs)dZ
a
s + 1

2d〈hi
a(Xs), Z

a
s 〉. But since

d〈hi
a(Xs), Z

a
s 〉 = Djh

i
a(Xs)d〈Xa

s , Z
a
s 〉 , d〈Xj , Za〉 = hj

b(Xs)d〈Zb, Za〉s ,
so dX i

t = hi
a(Xs)dZ

a
s + 1

2 (Djh
i
a(Xs)h

j
b(Xs)d〈Zb

s , Z
a
s 〉). Symbolically this amounts

to writing

dXt = dZa
t ·Ha(X).

2. Results on (M, g)-valued semimartingales

Theorem 1. Consider one of the following symmetric Riemannian manifolds
GLn(R)/SOn, GLn(C)/SUn, GLn(H)/Spn GL3(O)/F4 and O(1, n − 1)/O(n −
1)⊕R (or a linear combination of those), where n ≥ 2 is a positive integer. If M
is one of those manifolds then it possess all required conditions for (M, g)-valued
semimartingales to be well defined.

The proof of this relies on the approaches of L. Schwartz, M. Emery, P A.
Meyer. We illustrate this on the following fact. Let X1, · · · , Xn be continuous
semimartingales and f ∈ C2(Rn). Then Y = f(X) is a semimartingale and dY =
∑

i Dif(X)dX i+ 1
2

∑

i,j Dijf(X)d〈X i, Xj〉. The rightmost part of the equation is
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ruled by the connection of the manifold. Connections for the listed above manifolds
are torsion-free and the covariant derivatives form a pre-Lie algebra. By [1] those
manifolds are potential pre-Frobenius manifolds. This implies that there exists
everywhere locally a potential function (given by the Koszul–Vinberg characteristic
function) such that the Hessian is non-degenerate.

Furthermore, following [1] any of the spaces listed above obey to a decomposi-
tion into two submanifolds:

(1) a flat torus being a totally geodesic submanifold of (M, g). It carries the
structure of a Frobenius manifold; all geodesics lie in that subspace.

(2) A homogeneous Hadamard space, having strictly negative sectional cur-
vature.

This implies the following.

Proposition 1. Let (M, g) be a Riemannian manifold. Suppose that (M, g) is
one of the following GLn(R)/SOn, GLn(C)/SUn, GLn(H)/Spn GL3(O)/F4 and
O(1, n − 1)/O(n − 1) ⊕ R (or a linear combination of those), where n ≥ 2 is a
positive integer. Consider M the Frobenius manifold (a flat torus) in (M, g).
Each point of M has an open neighborhood U ⊂ M such that for every U -valued
martingale X with X1 ∈ M a.s the whole process (Xt)0≤t≤1 lives in the Frobenius

manifold M.

The proof is based on works of M. Emery [3] and of the theorem in [1].

Proposition 2. The Frobenius manifold in (M, g) (where (M, g) is defined as
above) is the locus in which exist pure fluctuations / local martingales.

Remark 1. The above Riemannian manifolds parametrise the space of Wishart
probability distributions. Wishart laws being exponential we can proceed to a direct
application of our statements above and of the main theorem of [2]. In the latter,
the existence of a Frobenius manifold in a space of probability distributions of
exponential type is shown.

So, as a corollary we have:

Corollary 1. Let (MW , gW ) be a manifold of Wishart distributions (finite di-

mensional). Then, there exists MW
a Frobenius manifold of (MW , gW ) such that

for each point of M one has an open neighborhood U ⊂ M and for every U -

valued martingale X with X1 ∈ MW
a.s the whole process (Xt)0≤t≤1 lives in the

Frobenius submanifold MW
.

Conclusion. We have explored some aspects of the question raised by P. Cartier.
Further developments concerning a discussion and classification of manifolds sat-
isfying good properties for semimartingales is expected.
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Planarly Branched Rough Paths Are Geometric

Ludwig Rahm

(joint work with Kurusch Ebrahimi-Fard)

In 2002 Foissy published the important work [3], where he characterized all finite-
dimensional comodules and all endomorphisms of the Butcher–Connes–Kreimer
Hopf algebra HBCK = (F ,⊙,∆BCK) of non-planar rooted trees. He furthermore
constructed a recursively defined projection map onto the primitive elements of
the Hopf algebra, and showed a Hopf algebra ismomorphism to the shuffle Hopf
algebra generated by the primitives. Almost all of his proofs were based on the
so-called natural growth operation

⊤ : HBCK ⊗HBCK → HBCK ,

and its relation to the reduced coproduct:

∆̂BCK(x⊤y) = x⊗ y + x(1) ⊗ x(2)⊤y,(1)

where y is a primitive element and we use Sweedler’s notation for the reduced
coproduct

∆̂BCK(x) = x(1) ⊗ x(2).

The Hopf algebra isomorphism constructed by Foissy was later used by Boedi-
hardjo and Chevyrev to interpret branched rough paths as being geometric rough
paths [1]. This allowed the authors to consider important results on the well-
studied theory of geometric rough paths, and obtain the same results for branched
rough paths.

Rough path theory is a very successful theory for solving rough differential
equations. A rough path is a two-parameter path taking values in the character
group of a Hopf algebra. A branched rough path takes values in the BCK Hopf
algebra, and a geometric rough path takes values in a shuffle Hopf algebra. Both
of these rough path theories are used for rough differential equations on Euclidean
spaces. In [2], the authors constructed so-called planarly branched rough paths to
solve rough differential equations on homogeneous spaces. These rough paths are
valued in the Munthe-Kaas-Wright Hopf algebra HMKW = (OF ,�,∆MKW ).
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In this talk we note that the MKW Hopf algebra can be endowed with a natural
growth operation, meaning a map that satisfies equation (1) for the reduced MKW

coproduct ∆̂MKW . This lets us apply the results Foissy obtained for HBCK , to
HMKW . In particular, we obtain a Hopf algebra isomorphism between HMKW

and a shuffle Hopf algebra. We also obtain a way to find the primitive elements via
a recursively defined projection map. Following the approach of Boedihardjo and
Chevyrev, we can then interpret planarly branched rough paths as being geometric
rough paths by using the Hopf algebra isomorphism. Results for geometric rough
paths can then be transfered to results for planarly branched rough paths. As an
example of this, we obtain the result that two planarly branched rough paths have
the same signature if and only if they are tree-like equivalent.
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Numerical approximations to rough solutions of dispersive equations

Yvonne Alama Bronsard

An introduction was given on resonance-based schemes, a class of schemes which
allows for the approximation at low-regularity to the following class of nonlinear
dispersive equation:

(1)
i∂tu(t, x) + L (∇)u(t, x) = p (u(t, x), u(t, x))

u(0, x) = u0(x), x ∈ T
d,

with L real operator, p polynomial nonlinearity. The idea behind their construction
was illustrated on the prototypical Nonlinear Schrödinger equation (NLS):

i∂tu(t, x) = −∆u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× T
d, + I.C,

where one goes to Fourier variables in space to carefully extract dominant and
lower-order contributions appearing from the interaction of the linear evolution
and the nonlinearity. This idea was worked out by [6] in the first order case.
A generalization was made by [7] which allows for first and second order low-
regularity approximation to a class of nonlinear evolution equation set on more
general domains. These new schemes, together with their optimal local error,
allow for convergence under lower regularity assumptions than required by classical
methods, such as exponential integrator or splitting methods.

Higher order extensions were then presented, following new techniques based on
decorated trees series inspired by singular SPDEs via regularity structures. The
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work of [4] was first presented, where the authors derive resonance-based schemes
up to arbitrary order for solving the class of equations (1).

We then presented the work [2] which considers the case of a randomized initial
condition of the form:

(2) u(0, x) = vη(x) =
∑

k∈Zd

vkηk(ω)e
ikx,

with (ηk)k∈Z i.i.d standard complex Gaussians. By letting u be solution of (1)
starting from the randomized initial data (2), we obtained higher order approxi-
mations to the second moment E(|uk(t, v

η)|2), together with a formal local error
bound. This second order moment is a central quantity of interest for the deriva-
tion of the Wave Kinetic equation. This equation is widely used in oceanography
for the forecasting of waves in the ocean.

A limitation of the former resonance-based approaches was, since the algorithm
for extracting dominant parts depended on Fourier computations, the method is
restricted to spatial domains which are periodic. In the work [3] we consider sys-
tematizing the higher order derivation of low-regularity schemes for the following
class of nonlinear evolution equations set on more general domains:

∂tu− Lu =
∑

l

fl(u, u)Vl, (t, x) ∈ R× Ω, Ω ⊆ R
d.

This work was inspired by the work [1] which dealt with the first and second or-
der low-regularity approximation to the Gross-Pitaevski equation. In the work [3]
we extended it to higher orders and for a more general class of nonlinear evolution
equations, using the commutators and filtering functions introduced in [7].

We finished by presenting a symmetric low-regularity schemes for the NLS equa-
tion, which exactly conserves time-reversibility of the underlying equation. We ex-
plained on the one hand the construction of this symmetric scheme, which inherits
much better structure preserving properties on the discrete level than previous
low-regularity schemes. On the other hand we presented rigorous low-regularity
error analysis results.

Higher order construction of a class of symmetric schemes using the previously
introduced tree formalism was briefly discussed through our recent joint work [4].
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Resonances as a computational tool

Katharina Schratz

A large toolbox of numerical schemes for dispersive equations has been established,
based on different discretization techniques such as discretizing the variation-of-
constants formula (e.g., exponential integrators) or splitting the full equation into
a series of simpler subproblems (e.g., splitting methods). In many situations these
classical schemes allow a precise and efficient approximation. This, however, dras-
tically changes whenever non-smooth phenomena enter the scene such as for prob-
lems at low regularity and high oscillations. Classical schemes fail to capture the
oscillatory nature of the solution, and this may lead to severe instabilities and loss
of convergence. In this talk I present a new class of resonance based schemes. The
key idea in the construction of the new schemes is to tackle and deeply embed the
underlying nonlinear structure of resonances into the numerical discretization.

Let me explain the key idea behind resonances as a computational tool on the
nonlinear PDE1

(1) ∂tu(t, x) + iL
(
∇, ε−1

)
u(t, x) = f

(
u(t, x)

)
, u(0, x) = u0(x)

which covers a large class of important models, e.g., Schrödinger (L = −∆),
KdV (L = −i∂3

x) and half-wave (L =
√
−∆) equations, wave maps, Zakharov,

Kadomtsev–Petviashvili, and many more systems.
The symmetric differential operator L

(
∇, ε−1

)
thereby triggers oscillations (in

space and/or in time) and, unlike for parabolic problems, no smoothing can be
expected. At low regularity, e.g., for rough solutions and in highly oscillatory
regimes ε → 0, it is therefore crucial to capture these oscillations numerically.
Most classical schemes were originally developed for linear problems and fail to
resolve the nonlinear frequency interactions in system (1).

The key idea to overcome this is to understand, control and deeply embed the
nonlinear resonance structure (driven by the nonlinear frequency interaction of the
operator L and nonlinearity f in (1)) into the numerical discretisation. In order to
achieve this we have to first understand the behaviour of the nonlinear PDE (1).
Duhamel’s formula (suppressing the x-dependence) reads

1We include the parameter ε−1 to also cover relativistic regimes, e.g., relativistic Klein–Gordon
with L = ε−1

√
ε−2 −∆
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(2) u(t) = e−itLu(0) +

∫ t

0

e−i(t−ξ)Lf(u(ξ))dξ

with the next iteration (i.e., using that u(ξ) = e−iξLu(0) +
∫ ξ

0
. . .dξ1) given by

(3) u(t) = e−itLu(0) +

∫ t

0

e−i(t−ξ)Lf
(
e−iξLu(0)

)
dξ +

∫ t

0

∫ ξ

0

. . .dξdξ1.

At first order we can neglect the higher order terms (i.e., the double integral) and
observe that the underlying structure of the solution is driven by the nonlinear
frequency interaction of L and f with central oscillations of the form

(4) eiξLf
(
e−iξLu(0)

)
.

Classical numerical methods are based on linear frequency approximations, (e.g.,
splitting schemes, Gautschi-type, exponential and Lawson methods with possible
filter functions, and in general neglect the nonlinear interactions in (4). For in-
stance, in case of splitting or an exponential approach the underlying frequency
approximations read

(5) (splitting) eiξLf
(
e−iξLu(0)

)
≈ f (u(0))

While such linearised frequency approximations are computational very handy (as
on the right-hand side of (5) no oscillations anylonger appear), they dramatically
destroy the underlying structure of the PDE (1). This is due to the fact that
nonlinear frequency interactions play an essential role (especially on bounded do-
mains, where no dispersion can be expected) and can heavily impact the solution:
Note that while the influence of iL can be small, the influence of the interaction
of +iL with −iL can be huge, and vice versa. The central idea lies in a new
nonlinear approach: Instead of linearising the frequency interactions in the central
oscillations (4) (as done in (5)) the key idea is to filter out the dominant parts of
the oscillations and solve them exactly while only approximating the lower order
terms in spirit of

eiξLf
(
e−iξLu(0)

)
≈

[
eiξLdomfdom(u(0))

]
fnoc(u(0)) + lower order terms.(6)

Here, Ldom denotes a suitable dominant part of the high frequency interactions and
fnoc the corresponding non-oscillatory part. A first attempt of so-called resonance-
based schemes (Schratz et al. [4]), based on the approximation (6), was profoundly
inspired by major breakthroughs in the theoretical analysis of dispersive equations
at low regularity (Bourgain [3], Tao [8]) and rough path theory (Gubinelli [6])
and provides a powerful tool which in many situations allows for approximations
in a much more general setting (i.e., for rougher data) than classical schemes
(e.g., Splitting with Ldominant = 0 cf. (5)), see also the recent important works
[2, 5, 7, 9, 10] and references therein.

The severe shortcoming of the approach (6), however, lies in the fact that
the corresponding resonance-based schemes are not structure preserving as they
do not take the underlying geometric structure of PDEs into account. Lack of
structure preservation is also observed drastically in numerical experiments and, as
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for classical schemes, breaks down the earlier and earlier the rougher the solutions
becomes.

This is an open question, and up to now only symmetric schemes could be found
[1].
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Multiparameter iterated integrals

Joscha Diehl

Iterated sums and integral have in the last decade found great success in data
science applications. Whereas the original domain of their application is to data
indexed by one parameter, i.e. time series, there are recent investigations of multi-
parameter generalizations [2, 8, 4, 3].

The success of iterated sums/integrals is partly explained by the fact that their
calculation is possible in linear time, owing to a dynamic programming principle.
It finds its algebraic counterpart in Chen’s formula, which establishes a connection
between the concatenation of words and the concatenation of time series.

For multi-parameter objects, the situation is more complicated. There is no
canonical way to concatenate two objects, and, apart from special cases, none of
the algebraic structures in the mentioned papers is compatible with the different
concepts of concatenation. This has the consequence that the calculation of the
multiparameter sums from [2] or the multiparameter integrals from [3] is, in gen-
eral, not possible in linear time (lower complexity bounds for special cases are
established in [2]).
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Let us illustrate the problem with a simple example. Consider the following
integral of a two-parameter function Z : [0, 1]2 → R:

∫

0≤r11<r21≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr

Now, we try to split this integral in the horizontal direction at some point
u1 < t1:

. . . =

∫

0≤r11<r21<u1≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr +

∫

u1<r11<r21≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr

+

∫

0≤r11<u1<r21≤t1

0≤r12<r22≤t2

Zr11,r
1
2
Zr21,r

2
2
dr.

Note that the last term presents an issue, since the integral cannot be split into a
product of two integrals, as it would in the one-parameter case.

The problem of (naive) non-multiplicativity of multi-parameter integrals is well-
known in category theory and it has been addressed with techniques from higher
categories, see for example [1, 7] for entry points into the literature.

In the work in progress presented, which is joint with Ilya Chevyrev, Kurusch
Ebrahimi-Fard, and Nikolas Tapia, we build on the work of [5] to realize an analog
to the classical iterated-integrals signature that does satisfy a Chen-like identity
and allows for a linear-time calculation. An important ingredient is the notion
of crossed modules of Lie algebras, in particular the free crossed module of Lie
algebras over the free Lie algebra over Rn. Here n is the dimension of the ambient
space of the data.

The techniques are closely related to the recent work [6], but the two approaches
differ in at least two aspects:

(1) We work with the free crossed module of Lie algebras, whereas [6] works
with a specific crossed module. Our current expectation is that the object
obtained by us is universal in the sense that any “surface development” in
another crossed module can be arbitrarily well approximated by terms in
our object.

(2) We consequently do calculations in the Lie algebra, in what can be con-
sidered a Magnus-like expansion.
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From bialgebras to algebraic operads

Pedro Tamaroff

Algebraic homotopy theory explains that, in order to find new robust and more
general definitions of algebras (algebras up to homotopy), one can find (possibly
non-minimal) models for operads. These also allows us understand the homotopy
theory of their (co)algebras and, in particular, define their deformation theory.
This has been done in many situations: for associative algebras [1], commutative
algebras, Lie algebras [2], Gerstenhaber and Poisson algebras [3], and Batalin–
Vilkovisky algebras [4, 5, 6], among others. In the context of the current work-
shop, it is useful to remark that pre-Lie algebras fall within the scope of Koszul
duality theory, through which most of the previous examples are handled, and
other interesting recent generalizations due to P. Laubie [7] involving Greg trees
decorated by coalgebras, have been proved to also fall within the scope of Koszul
duality.

The present talk explained how to take an operadic point of view of the well
known fact that, for any bialgebra H , the category of left H-modules admits an
internal tensor product —defined through the so called diagonal action of H—
coming from its coproduct. This means that it makes sense to consider associative
algebras in the category Hmod of left H-modules, which we show are controlled
by an algebraic operad. There is a functor H 7−→ AssH that assigns to each weight
graded bialgebra H a weight graded operad AssH so that an associative algebra
in H mod is the same as an AssH -algebra. The idea of producing such functors
from certain “amenable” categories to study operads and related structures, or
even producing endofunctors on operads themselves, has already appeared several
times in the literature, see [18, 11, 19] and [13]*Chapter 4, for example.

Unraveling the definitions, we see that the way the associative product x1x2

of an AssH -algebra and an operation Th coming from h ∈ H behave with respect
to each other is dictated by the coproduct of H : using Sweedler notation, we re-
quire that the following compatibility relation holds (á la Boardmann–Vogt [8])
Th(x1x2) = Th(1)

(x1)Th(2)
(x2). This relation is not quadratic, so the operad AssH

falls outside the scope of the theory of Koszul duality, in strong contrast to the
examples we mentioned above. To counter this, we use the methods of V. Dot-
senko [19] (word operads) and pertubation theoretic methods in the spirit of B.
Vallette and S. Merkulov [9] to show how to obtain a minimal model of AssH

from an associated quadratic operad qAssH which, in case H is Koszul, is itself a
Koszul operad. Moreover, we showed that this functor behaves well with respect to
Gröbner bases: one can directly compute one of AssH in case H admits a Gröbner



Combinatorial and Algebraic Structures in Rough Analysis 3091

basis. In particular, we showed that qAssH is strongly Koszul —that it admits a
quadratic Gröbner basis— in case H is itself strongly sKoszul.

The takeaway is that we can explicitly describe the differential of the minimal
model of AssH provided we can do this for the Koszul model ofH and its coproduct.
This problem, pertaining to the domain of algebras and coalgebras, is usually a
simpler problem to tackle, so our result gives a useful bridge to solve from a much
familiar problem a seemingly more complicated one. The theory of Koszul duality
for usual associative algebras, on the other hand, has existed for almost five decades
since its inception in [10], and now extensive literature and methods exist to deal
with them and with many of their variants; see for example [12, 14, 15, 16, 17].

As a by product, the talk introduced key concepts in the study of algebraic
operads and their theory, which lead to and allowed for a detailed discussion of
the results of P. Laubie [7] regarding families of pre-Lie algebras with a common
Lie bracket by participant U. Nadeem. In particular, Koszulness of the operads
constructed by Laubie, which follow from the existence of Gröbner bases for them,
were discussed, and compared to the results presented in the talk.
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An algebraic geometry of (rough) paths

Rosa Preiss

In previous work, see e.g. [1], the complex projective Zariski closure of the fi-
nite dimensional semialgebraic set that is σ(k)(Xℓ), where Xℓ is piecewise linear
paths/polynomial paths/log-linear rough paths of order ℓ.

Our new approach, however, is to introduce a Zariski topology and algebraic
geometry on the infinite dimensional path space itself, see the preprint [2].

The algebraic and combinatorial structure we are working with is

(T (Rd),�,∆•,A,≻,≺),

where (T (Rd),�,∆•,A) is the well known shuffle-deconcatenation Hopf algebra.
Let the right ≻ and left ≺ halfshuffles be recursively defined by

w ≻ i := wi, i ≺ w := iw

w ≻ vi := (w ≻ v + v ≻ w)i, iv ≺ w := i(w ≺ v + v ≺ w)

Then x � y = x ≻ y + y ≻ x = x ≺ y + y ≺ x and A(x ≻ y) = Ay ≺ Ax,
A(x ≺ y) = Ay ≻ Ax. Let

〈
W

〉

≻
denote the ≻-ideal generated by W .

In classical algebraic geometry, affine varieties in R
d are sets of the form

V (P ) = {x ∈ Rd|p(x) = 0 ∀p ∈ P}, where P is a set of polynomials p : Rd → R.

Similarly, we now consider varieties in the space C2−-var(Rd) of continuous paths
in Rd with finite p-variation for some p < 2. We call an affine path variety any
subset of the form

V(W ) := {X ∈ C2−-var(Rd)|〈σ(X), x〉 = 0 ∀x ∈ W}, W ⊆ T (Rd)

They form the closed sets of what we introduce as the path Zariski topology. Path
varieties are in 1-to-1 correspondance to the 2−-var ’radical’ shuffle ideals

I(U) := {x ∈ T (Rd)|〈σ(X), x〉 = 0 ∀X ∈ U}, U ⊆ C2−-var(Rd).

V ◦ I is the closure operator, and I ◦ V is the 2−-var radical operator. Our first
main result is the following.

Theorem 1. Whenever a set of paths U contains history, i.e. all left subpaths of
reduced paths, I(U) is a ≻-ideal. Whenever I is a ≻-ideal, V(I) contains history.

The next corollary is of key importance.

Corollary 1. Let p : Rn → Rm be a polynomial map with p(0) = 0. Then
V(

〈
ϕ(pi), i

〉

≻
) is the variety P∈M of all paths X such that X̌−X0 lies in the point

variety M defined by the vanishing of all pi.
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This allows us to define rough paths on point varieties! Indeed, it makes sense
to demand that geometric rough paths living on an affine point variety should
be those which are limits of smooth paths living on that point variety. This is
a strictly stronger property than just the underlying path living on that point
variety!

Our second main result concerns another way of using the time ordered aspect
of paths, through concatenation.

Theorem 2. If M ⊆ C2−-var(Rd) is a set of paths closed under concatenation,
then the variety M̄ is closed under concatenation, time reversal and taking admis-
sible roots, and I(M) is a Hopf ideal.

Corollary 2. The set of lattice paths L is Zariski dense in C2−-var(Rd).

To summerize, if an affine path variety V contains history then I(V ) is a half-
shuffle ideal, and thus its coordinate ring R[V ] := T (Rd)/I(V ) is a Zinbiel algebra
again.

If an affine path variety V is stable under concatenation, then I(V ) is a Hopf
ideal, and this means R[V ] := T (Rd)/I(V ) is a Hopf algebra.

An important remark, however, is that to understand the geometrical structure
of V , we need the algebraic structure of the coordinate ring R[V ] plus the 2−-var
radical operator on the power set of R[V ]. At least until we can find a purely
algebraic characterization of I ◦ V , and can answer whether the radical operator
can be derived from the ring structure of R[V ] alone, or not.

In the discussion led by Ludwig Rahm we answered that while understanding

I ◦ V for C2−-var(Rd) is a very hard problem, the solution to which would in
particular solve the important open problem about how to characterize the image
of the signature, understanding the radical operator for piecewise linear paths and
polynomial paths should be feasible much earlier. Furthermore, as also brought
up in a question by Ludwig Rahm, generalizations of our approach to maps from
subsets of Rn to Rd, instead of just time dependend paths, will become relevant.
Finally, as asked by Ilya Chevyrev, a generalization of the notion of variety to
vanishings 〈σ(X), x〉 = 0 for infinite series x ∈ T ((Rd)) which can be paired with
the signature is another opportunity for future work.

References
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Branched Itô formula

Nikolas Tapia

(joint work with Carlo Bellingeri, Emilio Ferrucci)

Branched rough paths were introduced by Gubinelli [8], as an extension of Lyons’
original approach [9], in order to encode iterated integrals of processes that do not
satisfy an integration-by-parts rule. These are defined as families of characters
over the Connes–Kreimer Hopf algebra HCK [3] of non-planar decorated rooted
trees satisfying certain regularity and compatibility conditions. By leveraging
Foissy’s decomposition of this Hopf algebra in terms of its primitive elements [6]
and iterations of the natural growth operator [2], we show that nonetheless an
integration by parts rule is still satisfied. Primitive elements can be interpreted as
higher-order variations of the process, analogous to the stochastic bracket present
in classical Itô calculus, in the sense that they describe the correction terms in said
formula. The algebraic structure precisely describing this new integration-by-parts
identities is that of a B∞-algebra [7].

Let P denote the space of primitive elements, π : HCK → P be Foissy’s projec-
tion and Q := im(π)⊥. Denote by F+ the set of non-empty forests. We define
rough differential equations with drifts, as solutions to RDEs of the form

dy =
∑

f∈F+

Fπ∗(f)(Y ) dXπ(f),

where F ∈ L(Q, C∞(Rn,Rn)) is a given collection of vector fields, and show they
satisfy the following change of variable formula: there exists a family of differential
operators F : L(Q,Diff(Rn)) such that for any smooth observable ϕ : Rn → R we
have

(1) ϕ(yt) = ϕ(y0) +
∑

f∈F+

∫ t

0

Fπ∗(f)ϕ(yu) dX
π(f)
u ,

where the integrals are defined in the rough sense.
In the case of quadratic drift, i.e., an Itô SDE, (1) coincides with the classical Itô

formula. The definition of Fq fully relies on the pre-Lie structure of vector fields
on Euclidean space, and the proof relies on an extended form of Davie expansion
including corrections induced by the drifts.

We also show that quasi-geometric rough paths correspond to a particular quo-
tient of branched rough paths, and therefore an analog of formula (1) holds in that
case. This is connected to already-known formulas [1, 5].

Question 1. Any coalgebra equipped with a family of 1-cocycles indexed by its
primitive elements is cofree. What other kinds of rough paths can be show to
satisfy integration-by-parts, and therefore an Itô formula? This question has been
partially answered by K. Ebrahimi-Fard and L. Rahm.
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Question 2. In regularity structures Hopf algebras also play an important role.
Is it possible to obtain a similar decomposition for positive and/or negative renor-
malization? If so, what would be the interpretation of primitive elements in that
context?
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Natural Itô-Stratonovich isomorphism

Emilio Ferrucci

(joint work with Carlo Bellingeri, Nikolas Tapia)

Following the theory introduced by Nikolas Tapia in a previous talk, we consider
the Connes–Kreimer Hopf algebra HCK as a commutative B∞-algebra over its
primitive elements P . After introducing the Eulerian idempotent of a Hopf algebra
and some of its properties, we use it, together with Foissy’s idempotent π : HCK →
P , to define an explicit Hopf isomorphism from the shuffle algebra over P to HCK.
This isomorphism can be used to transform branched rough paths to geometric
ones of inhomogeneous regularity over a larger space. Compared to the work of [1,
2], who considered this problem previuosly, our isomorphism has the distinguishing
property of being a natural transformation when HCK and the shuffle algebra are
viewed as a covariant functor in the decorating vector spaces. The motivation
for naturality comes from, among other things, the requirement that our theory
continue to work when shifted to the setting of smooth manifolds. We compare
our isomorphism with Hoffman’s exponential [3], which can be obtained from it,
but which contains strictly fewer terms: those not present come from interactions
between forests that may contain edges. Our work has since appeared on arXiv
[4].

During the Q&A, the question of uniqueness (subject to naturality) came up.
During the discussion portion, Yvain Bruned brought up the question of how the
theory might develop along similar lines when HCK is replaced with more recently-
introduced Hopf algebras that appear in the context of regularity structures. When
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cofreeness no longer holds, it might not be reasonable to find an isomorphism, and
a natural epimorphism may be the next best thing.

References

[1] Hairer, M. & Kelly, D. Geometric versus non-geometric rough paths. Annales De L’Institut
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Solution theory for quasilinear generalised KPZ Equation

Muhammad Usama Nadeem

(joint work with Yvain Bruned and Mate Gerencser)

In this work, we provide a (local-in-time) solution theory for the so called quasi-
linear generalised KPZ equation defined on the 1-d torus, that takes the following
form:

(1) ∂tu− a(u)∂2
xu = f(u)(∂xu)

2 + k(u)∂xu+ h(u)
︸ ︷︷ ︸

F1

+ g(u)
︸︷︷︸

FΞ

ξ.

Here f, k, h, and g are assumed to be smooth (although one may be able to survive
with functions regular enough), a is smooth with the additional constraint of
being bounded by some c ∈ R+, and ξ is a random spacetime distribution - the
quintessential example being that of the spacetime white noise. This equation falls
under the umbrella of singular Stochastic Partial Differential Equation (SPDEs) of
the parabolic type and as such the regularising effect of the dynamics fall short of
facilitating the pathwise understanding of certain products in the equation. In the
equation above and the sort of random fields we are after, g(u)(∂xu)

2 for example,
does not make sense.

In the semilinear case (i.e. when a(u) ≡ 1) the advent of the theories such
as regularity structures [7] have provided a definite solution to this problem. A
major component of this theory is the notion of (negative) renormalisation, which
amounts to subtracting infinite constants (dubbed renormalisation constants) from
the equation to cure the divergence caused by the ill-defined products in the equa-
tion. From a generalisation of Hairer’s work [2] we can quote the renormalised
equation for the semilinear gKPZ:

(2) ∂tuε−∂2
xuε = f(uε)(∂xuε)

2+k(uε)∂xuε+h(uε)+
∑

τ

ΥF [τ ]

S(τ)
Cε(τ)+ g(uε)ξε,

where ξε is a mollified version of the noise, τ denotes rooted trees that encode mul-
tiple stochastic integral, S(τ) is a symmetry factor, Cε(τ) are the renormalisation
constants, and ΥF [τ ] are elementary differentials that are defined by taking deriva-
tives of F1 and FΞ. This has also inspired investigation into potential adaptation
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of these techniques to quasilinear problems. We refer the reader to [5, 8, 9, 10, 11]
for the existing state of this work. The present work is an extension of the work
[5], wherein the authors employ an innovative extension of the Hairer’s original
work. What the authors realise in [5], is that the local-in-time solution of (1)
solves the following the system of equations:

u = I(a(u), F̂ ), vα = Iα(a(u), F̂ ),

F̂ =
[
q(f − a′) + a(a′)2v(2,0) + aa′′v(1,0)

]
(∂xu)

2

+ 2(aa′)(u)(∂xu)v(1,1) + a′(u)(∂xu)v(0,1) + ĝ(u)ξ.

(3)

The benefit of this reformulation is that the existing results of the semilinear
SPDEs can be applied with only minor changes. Unfortunately, due to the restric-
tions of the methodology (1) remains out of reach of this work. We ameliorate this
condition by introducing some new abstract derivatives ∂vα for α ∈ N2, wherewith
we define new elementary differential equations: Υ

F̂
and ΥVα

. This allows us to
prove the following theorem:

Theorem 1. The renormalised version of (1) is given by:

∂tuε − a(uε)∂
2
xuε = f(uε)(∂xuε)

2 + k(uε)∂xuε + h(uε) + g(uε)ξε

+
∑

Cc
ε(τ)

Υ
F̂
[τ ](uε)

S(τ)
.

(4)

Also, the local solutions uε on T endowed with an initial condition uε(0, ·) = ϕ ∈
C2δ(T), converge in probability in Cδ

⋆ to a nontrivial limit u.

The defect that [5] suffers from, and by extension our work, is that there is no
systematic way of proving that the renormalisation constants Cc

ε do not depend on
the non-local terms vα that were introduced into the equation when transforming
the equation into the non-divergence form. The way this is dealt with by them,
is to prove that the constants satisfy some integration by parts [4, Lemma 2.4],
and then use this result to check for each τ that the non-local terms cancel out
[4, Section 3.4]. The problem with this approach is that it very easily becomes
unwieldy, due to the amount of calculations involved. Our solution to this problem
is to recognise that the integration-by-parts formula is just a specific case of the
chain rule that was derived in [3]. To leverage the results of that paper we need
to specify a set of covariant derivatives that are capable of generating the space
of τ , and at the same time are independent of the non-local terms. By positing
these, we suspect the following result is immediate from the arguments in [3]:

Conjecture 1. The renormalised equation of (1) is given by:

∂tuε − a(uε)∂
2
xuε =

f(uε)(∂xuε)
2 + k(uε)∂xuε + h(uε) + g(uε)ξε +

∑

τ

Ca(uε)
ε (τ)

ΥF [τ ](uε)

S(τ)

where the C
a(u)
ε (τ) satisfy certain chain rule identities. Moreover uε converges in

the same sense as before.



3098 Oberwolfach Report 54/2023

Some possible open problems in this programme include that of global-in-time
solutions, identification of the Butcher series for these problems á la [1], and finally
one could look at the same problem in some other manifold.
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Novikov algebras and multi-indices in regularity structures

Yvain Bruned

(joint work with Vladimir Dotsenko)

We are looking at the class of subcritical semi-linear stochastic partial differential
equations (SPDEs) of the form

(1) (∂t − L)u =
∑

l∈L−

al(u)ξl.

where L− is a finite set, L is a differential operator, ξl are space-time noises and
al(u) are non-linearities depending on the solution u and its derivatives. This class
of equations have been successfully treated via the theory of Regularity Structures
[9, 3, 1, 6]. The resolution is based on new Taylor expansions whose monomials
are recentered iterated integrals that can be described in a systematic way via
decorated trees in [3]. More recently, another index set has been proposed in
[13, 11] for quasi-linear SPDEs. It has been extended in [4] for covering equations
of the form (1). The simplest possible instance of multi-indices corresponds to
considering a set of abstract variables (zk)k∈N, where the variable zk encodes
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nodes of the tree that have k children. Multi-indices β over N can be represented
as monomials

zβ :=
∏

k∈N

z
β(k)
k .

The pre-Lie product on the vector space of such monomials is defined as

zβ ⊲ zβ
′

= zβD(zβ
′

), D =
∑

k∈N

(k + 1)zk+1∂zk .

The action of this operator corresponds to adding one child to one of the nodes
of our tree in all possible ways. We focus on multi-indices satisfying the so called
“populated” condition [11]:

∑

k∈N

(1 − k)β(k) = 1.

It was conjectured by Dominique Manchon that populated multi-indices form the
free Novikov algebra. A Novikov algebra is a vector space equipped with a bilinear
product x, y 7→ x ⊲ y, satisfying the identities

(x ⊲ y) ⊲ z − x ⊲ (y ⊲ z) = (y ⊲ x) ⊲ z − y ⊲ (x ⊲ z),

(x ⊲ y) ⊲ z = (x ⊲ z) ⊲ y.

This type of algebras was considered in [8, 5, 12]. It turns out that the corre-
sponding theorem does exist in the literature; it goes back to [7].

Theorem 1. [7, 10, 2] The Novikov algebra of populated multi-indices is isomor-
phic to the free algebra on one generator.

One first extends this theorem to general multi-indices defined using formal
variables of the form z(l,w) with l belongs to L− and w is a commutative monomial

in the alphabet A = Nd+1. One can define a collection of derivations D(n) indexed
by A. These very general multi-indices have been proposed in [4]. One needs
a new structure for these multi-indices called multi-Novikov algebra which is a
vector space equipped with bilinear products x, y 7→ x ⊲a y indexed by a set A

(x ⊲a y) ⊲b z − x ⊲a (y ⊲b z) = (y ⊲a x) ⊲b z − y ⊲a (x ⊲b z),

(x ⊲a y) ⊲b z − x ⊲a (y ⊲b z) = (x ⊲b y) ⊲a z − x ⊲b (y ⊲a z),

(x ⊲a y) ⊲b z = (x ⊲b z) ⊲a y,

for all a, b ∈ A. This is analogue to the generalisation from pre-Lie algebras to
multi-pre-Lie algebras in [1]. One gets a new version of Theorem 1.

Theorem 2. [2] The multi-Novikov algebra of populated general multi-indices is
isomorphic to free algebra generated by the set L−.

For capturing the complexity of the multi-indices for singular SPDEs, one has to
introduce other derivations ∂i, 0 ≤ i ≤ d, that satisfy, together with the derivations
D(n), the following relations:

D(n)D(m) = D(m)D(n), ∂i∂j = ∂j∂i

D(n)∂i = ∂iD
(n) + niD

(n−ei),
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where ei is the standard basis vector of Nd+1. There is a corresponding generali-
sation of multi-indices which we shall call SPDE multi-indices.

Theorem 3. [2] The multi-Novikov algebra of populated SPDE multi-indices is
isomorphic to free algebra generated by the set Nd+1 × L−.

After free multi-pre-Lie, one has a new free structure useful for expanding so-
lutions of singular SPDEs. They are several applications/open problems to such
a result:

• One can try to find other combinatorial sets and their free structures that
will be different from multi-indices and decorated trees.

• One can get a more operadic perspective as it was initiated in [14] that
recovers as an example the multi-Novikov algebra.

• One can study symmetries in the contex of multi-indices like the chain
rule or Itô isometry by defining maps from the free Novikov structure.

References

[1] Y. Bruned, A. Chandra, I. Chevyrev, M. Hairer. Renormalising SPDEs in regularity struc-
tures. J. Eur. Math. Soc. (JEMS), 23, no. 3, (2021), 869–947. doi:10.4171/JEMS/1025.

[2] Y. Bruned, V. Dotsenko. Novikov algebras and multi-indices in regularity structures.

arXiv:2311.09091 .
[3] Y. Bruned, M. Hairer, L. Zambotti. Algebraic renormalisation of regularity structures. In-

vent. Math. 215, no. 3, (2019), 1039–1156. doi:10.1007/s00222-018-0841-x.
[4] Y. Bruned, P. Linares. A top-down approach to algebraic renormalization in regularity

structures based on multi-indices. arXiv:2307.03036 .
[5] A. A. Balinskii, S. P. Novikov. Poisson brackets of hydrodynamic type, Frobenius algebras

and Lie algebras. (Russian) Dokl. Akad. Nauk SSSR 283, no. 5, (1985), 1036–1039.
[6] A. Chandra, M. Hairer. An analytic BPHZ theorem for regularity structures.

arXiv:1612.08138.
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-Mathématiques-
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