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Introduction by the Organizers

The workshop was organized by Andreas Bernig (Goethe-Universität Frankfurt),
Julius Ross (University of Illinois at Chicago) and Thomas Wannerer (Friedrich-
Schiller-Universität Jena). It was held over 5 days and included five introductory
talks over three topics, and 13 research talks.

The mini-workshop revolved around a recent theme that has connected many
seemingly different areas of mathematics, the so-called “Kähler package” that con-
tains Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann bilin-
ear relations. Originally coming from Kähler and algebraic geometry, it is now un-
derstood that this also appears in algebra, combinatorics and convex geometry. For
example, each of the following admits a version of the Kähler package: McMullen’s
algebra generated by the Minkowski summands of a simple convex polytope, the
combinatorial intersection cohomology of a convex polytope, the Chow ring of a
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matroid, and the ring of algebraic cycles modulo homological equivalence on a
smooth projective variety via Grothendieck’s standard conjectures on algebraic
cycles. A powerful idea in the groundbreaking work of the Fields medalist June
Huh and his collaborators is that the existence of a log-concave sequence is strong
evidence for a Kähler package in the background. The celebrated Alexandrov–
Fenchel inequality of convex geometry is an important example of a log-concave
sequence, and therefore it is no surprise that this inequality can be deduced from
at least three different incarnations of the Kähler package.

The aim of the mini-workshop was to bring together researchers interested in
different aspects of the Kähler package, with an emphasis on aspects that relate
most closely to complex and convex geometry.

The first introductory talk was titled Plurisubharmonic functions and com-
plex Brunn–Minkowski theory and was given by Bo Berndtsson. He introduced
the class of plurisubharmonic functions, sketched Bedford–Taylor theory, and dis-
cussed the complex version of Prekopa’s theorem. The second introductory talk,
over two hours, was titled Valuations and convex geometry and was given by Se-
myon Alesker. He introduced the algebraic structures on the space of valuations
on convex bodies that are fundamental in the (partly conjectured) Kähler package
for valuations. The final introductory talk, over two hours, was titled Lorentzian
polynomials and given by Hendrik Süß. He introduced the concept of Lorentzian
polynomials according to the work by Brändén and Huh and then explained various
operations that map Lorentzian polynomials to Lorentzian polynomials. Thanks
to the introductory talks, a common background knowledge was established at the
beginning of the week on which later talks could rely.

The research talks covered various related topics such as the Alexandrov–
Fenchel inequality and related inequalities for mixed volumes, the theory of valua-
tions on convex bodies and on manifolds, the Hodge–Riemann bilinear relations on
Kähler manifolds, Weighted Ehrhart theory, Gamma-positivity, Superforms and
Hodge–Riemann classes coming from ample vector bundles.

The stimulating atmosphere of the mini-workshop led to many fruitful discus-
sion that strengthened the links between different, but in fact closely related, areas
of mathematics.
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Abstracts

Plurisubharmonic functions and complex Brunn-Minkowski theory

Bo Berndtsson

This was an introductory lecture. I first defined the notion of plurisubharmonic
function. A function φ, defined in an open subset of Cn is plurisubharmonic if it
is upper semicontinuos and its restriction to any complex line is subharmonic as
a function of one complex variable. If the function is smooth, this is equivalent to
saying that its complex Hessian

(
∂2φ

∂zj∂z̄k
)

is positively semidefinite everywhere. With a plurisubharmonic function one can
associate the positive differential form – or current –

i∂∂̄φ := i
∑ ∂2φ

∂zj∂z̄k
dzj ∧ dz̄k.

If φ is smooth, this is a differential form of bidegree (1, 1) (meaning that it contains
one barred differential and one unbarred); in general it is a current (meaning that
the coefficients should be interpreted as distributions). That this form is posi-
tive means, in the smooth case, that the coeffcient matrix is positive semidefinite
everywhere. In the general case it means that for any vector (λ1, ...λn)

∑ ∂2φ

∂zj∂z̄k
λj λ̄k,

is a positive distribution, i.e. a positive measure.
If our funtion φ(z) = φ(x+ iy) = φ(x) depends only on the real part of z, then

φ is plurisubharmonic if and only if it is convex, and its complex Hessian coincides
with the real Hessian, modulo a factor 1/4. Moreover, one checks that

i∂∂̄φ = (1/2)
∑

φjkdxj ∧ dyk
then. So, this expression has a meaning as a current for any convex function, not
necessarily smooth.

It was discovered by E. Bedford and B.A. Taylor, that the (1, 1) currents associ-
ated to plurisubharmonic functions can be multiplied, provided that the functions
are locally bounded, so that e.g.

i∂∂̄φ ∧ i∂∂̄ψ
is a well defined current. This is remarkable since distributions, or even measures,
cannot be multiplied in general, but it turns out that the cancellation from the
wedge product of differential forms works in our favour. When φ depends only on
the real part of z, this gives in particular that

(
∑

φjkdxj ∧ dyk)n/n!
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is a well defined measure, the Monge-Ampère measure of φ. It can be shown that
this coincides with Alexandrov’s definition of Monge-Ampère measure.

The second topic of the lecture further developed the analogy between convexity
and plurisubharmonicity. The analog for convex functions of the Brunn-Minkowski
inequality for convex sets is Prékopa’s theorem. Prékopa’s theorem says that if
φ(t, x) is a convex on R

n+1, then

φ̃(t) := − log

∫

Rn

e−φ(t,x)dx

is again convex. One well known proof of this, by Brascamp and Lieb, uses a
certain Poincaré-type inequality: If u is a function on R

n sucht that
∫
ue−φdx = 0,

then ∫
u2e−φ ≤

∫
|du|2(φjk)e

−φ.

Here |du|2(φjk) :=
∑
ujukφ

jk is the norm of du measured with the inverse of the

Hessian of φ.
The Brascamp-Lieb inequality can be seen as the real variable counterpart of

Hormander’s L2-estimates for the ∂̄-equation. A natural question is then if there
is a complex version of Prékopa’s theorem? In one sense the answer is no: A
counterexample by Kiselman shows that the function

φ̃(τ) := − log

∫

Cn

e−φ(τ,z)dm(z)

is in general not subharmonic for plurisubharmonic φ(τ, z). It does, however, hold
under various extra assumptions, most notably if φ is S1-invariant in z, for fixed
τ :

φ(τ, eiθz) = φ(τ, z).

One way to see this is via the Bergman kernel, here defined as

Bτ (z) := sup
h

|h(z)|2∫
|h|2e−φ(τ,z)dm(z)

,

with the supremum taken over all holomorphic functions. The real variable analog
of this would be to take supremum over all constant functions, leading to the
function φ̃(τ) (as logBτ ) introduced above. The first complex Prékopa theorem
says that in general

logBτ (z)

is plurisubharmonic in (τ, z). In the special case of S1-invariance it is easily seen
that

Bτ (0) = 1/

∫

Cn

e−φ(τ,z)dm(z),

giving a more concrete Prekopa theorem in this case.
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The complex Prékopa (or Brunn-Minkowski ) theory is, however, considerably
richer than this. One way to explain the general picture is to start from the obser-
vation that the Bergman kernel is the squared norm of the evaluation functional

h→ h(z)

on the Hilbert space

A2
τ := {h ∈ H(Cn),

∫
|h|2e−φ(τ,z)dm(z) <∞}.

It turns out that one can replace the evaluation functional by any other family of
functionals µτ , that depend holomorphically on τ in the sense that

τ → µτ (h)

is holomorphic for holomorphic h. This means, intuitively, that the bundle of
Hilbert spaces τ → A2

τ has positive curvature.
This is finally the most general statement along these lines , in the setting of

Euclidean space. The complex case is, however, more naturally studied in the
setting of complex manifolds. We then replace Cn+1 by a complex manifold X ,
and the projection from Cn+1 to C by a surjective holomorphic map to another
manifold. It turns out that one can develop a similar theory in this setting, under
the crucial assumption that X be Kahler.

Valuations and convex geometry

Semyon Alesker

(1) I gave two introductory talks on translation invariant valuations on convex sets
focusing mostly on the structures on the space of smooth translation invariant
valuations (product, convolution, Fourier type transform), their relations to
the recent Kotrbatý’s conjectures on mixed hard Lefschetz (mHL) and mixed
Hodge-Riemann (mHR) type results, to McMullen’s polytope algebra, and
to toric varieties. Below we briefly summarize main relevant definitions and
theorems.

(2) Let V be a finite dimensional real vector space, n = dim V . Let K(V ) denote
the family of all convex compact non-empty subsets of V . Its elements are
also called convex bodies.

Definition 1. A valuation is a functional φ : K(V ) → C which is finitely
additive:

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A,B,A ∪B ∈ K(V ).

Definition 2. A valuations φ is called translation invariant if

φ(K + v) = φ(K) for any K ∈ K(V ), v ∈ V.
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(3) Let us denote by V al(V ) the set of all continuous (in the Hausdorff metric)
translation invariant valuations. It is a vector space over C. Being equipped
with the topology of uniform convergence on compact subsets of K(V ) it be-
comes a Banach space.

Definition 3. A valuation φ is called α-homogeneous if

φ(λK) = λαφ(K) for any K ∈ K(V ), λ > 0.

Let V alα(V ) ⊂ V al(V ) denote the subset of α-homogeneous valuations. Clearly
it is a closed linear subspace. The following structural result is very important
in the theory.

Theorem 4 (P. McMullen [6], 1977). One has the decomposition

V al(V ) = ⊕n
i=0V ali(V ).

It is known that:
(1) V al0(V ) = C · χ. This is trivial.
(2) V aln(V ) = C · vol. This is not trivial and due to Hadwiger.

The space V al(V ) has an important distinguished dense subspace V al∞(V)
of so called smooth valuations which carries rich algebraic structures. The
definition was given in the lectures.

(4) The space V al∞(V ) carries a canonical multiplicative structure. Let us fix a
positive Lebesgue measure volV on V .

Theorem 5 (Alesker [2], 2004). (1) V al∞(V ) has a canonical (thus GL(V )-
equivariant) continuous (in the Garding topology) product V al∞ × V al∞ →
V al∞ which is uniquely characterized by the following property: Let φ(K) =
volV (K +A), ψ(K) = volV (K +B). Then

(φ · ψ)(K) = volV 2(∆(K) + (A×B)),

where volV 2 := volV × volV is the product measure, and ∆: V → V ×V is the
diagonal imbedding, i.e. ∆(x) = (x, x).

(2) Equipped with this product V al∞(V ) is an associative commutative al-
gebra with a unit (= χ).

(3) V al∞(V ) is a graded: V al∞i · V al∞j ⊂ V al∞i+j .
(4) Poincaré duality: the bilinear map

V al∞i × V al∞n−i → V aln = C · vol
is a perfect pairing, i.e. for any 0 6= φ ∈ V al∞i there exists ψ ∈ V al∞n−j such
that φ · ψ 6= 0.

Furthermore V al∞(V ) satisfies a version of the hard Lefschetz theorem which
is a combination of results of Alesker [1, 3] and Bernig-Bröcker [4].

(5) Another important structure is the Bernig-Fu convolution.

Theorem 6 (Bernig-Fu [5],2006). (1) V al∞(V ) has a continuous (in the
Garding topology) convolution V al∞ × V al∞ → V al∞ commuting with the
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group of linear volume preserving transformaitons which is uniquely character-
ized by the following property: Let φ(K) = volV (K+A), ψ(K) = volV (K+B).
Then

(φ ∗ ψ)(K) = volV (K + A+B).

(2) Equipped with this convolution V al∞(V ) is an associative commutative
algebra with a unit (= volV ).

(3) V al∞n−i ∗ V al∞n−j ⊂ V al∞n−i−j .

Poincaré duality and hard Lefschetz theorem (for intrinsic volumes) are also
satisfied by convolution.

(6) Alesker [1, 3] has constructed an isomorphism of topological algebras, called
Fourier type transform,

F : (V al∞(V ), ·)→̃(V al∞(V ∗), ∗)
commuting with the group of linear volume preserving transformations.

(7) The Kotrbatý’s conjectures are formulated in terms of convolution and they are
mixed hard Lefschetz and mixed Hodge-Riemann type results for valuations.
I explained a heuristic argument in favor (imho) of the conjectures. It is based
on the connection of valuations to the McMullen’s polytope algebra established
by Bernig and Faifman. Then I indicated a relation to toric varieties.
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Gamma-positivity for symmetric edge polytopes

Martina Juhnke-Kubitzke

Symmetric edge polytopes are a class of lattice polytopes that has seen a surge
of interest in recent years for their intrinsic combinatorial and geometric prop-
erties [MHN+11, HKM17, OT21a, OT21b, CDK23] as well as for their relations
to metric space theory [Ver15, GP17, DH20], optimal transport [ÇJM+21] and
physics, where they appear in the context of the Kuramoto synchronization model
[CDM18, Che19] (see [DDM22] for a more detailed account of these connections).

Given a finite simple graph G = ([n], E), the associated symmetric edge polytope
PG is defined as

PG = conv(±(ei − ej) : ij ∈ E).
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Symmetric edge polytope have been shown to exhibit several nice properties, in-
dependent of the underlying graph: all of these polytopes are known to admit
a pulling regular unimodular triangulation [OH14, HJM19] and to be centrally
symmetric, terminal and reflexive [Hig15]. In particular, by this latter property,
it follows from work of Hibi [Hib92] that their h∗-vectors are palindromic. Thus,
given the h∗-vector h∗(PG) = (h∗0, . . . , h

∗
d) of a symmetric edge polytope, one can

define the γ-vector of PG by applying the following change of basis:

(1)

⌊ d
2
⌋∑

i=0

γit
i(t+ 1)d−2i =

d∑

j=0

h∗j t
j .

Obviously, γ(PG) = (γ0, . . . , γ⌊ d
2
⌋) stores the same information as h∗(PG) in a

more compact form. More generally, in the same way, one can associate a γ-vector
with any symmetric vector and this has been done and studied extensively in a
lot of cases. One of the most prominent examples in topological combinatorics,
which is strongly related to the just mentioned example of h∗-vectors of reflexive
polytopes, are h-vectors of simplicial spheres. For flag spheres, Gal’s conjecture
[Gal05] states that their γ-vectors are nonnegative. Several related conjectures
exist, including the Charney–Davis conjecture [CD95], claiming nonnegativity only
for the last entry of the γ-vector, and the Nevo–Petersen conjecture [NP11] which
even conjectures the γ-vector of a flag sphere to be the f -vector of a balanced
simplicial complex.

If a polytope P admits a regular unimodular triangulation ∆, which is the
case for symmetric edge polytopes, then the restriction of ∆ yields a unimodular
triangulation of the boundary complex of P , as well. If, in addition, P is reflexive,
it is well-known that the h∗-vector of P equals the h-vector of any unimodular
triangulation ∆ of its boundary, which in particular is a simplicial sphere. This
provides a link between the study of the γ-vector of PG and the rich world of
conjectures on the γ-nonnegativity of simplicial spheres; however, note that the
objects we are interested in will not be flag in general. Despite the lack of flagness,
in all the cases known so far the γ-vector of PG is nonnegative, and this brought
Ohsugi and Tsuchiya to formulate the following conjecture, which is the starting
point of this paper:

Conjecture 1. [OT21a, Conjecture 5.11] Let G be a graph. Then γi(PG) ≥ 0 for
every i ≥ 0.

On the one hand, it is already known and follows e.g. from [BR07] that a weaker
property, namely, unimodality of the h∗-vector holds. On the other hand, though
it is tempting to hope that even the stronger property of the h∗-polynomial being
real-rooted is true, this is not the case in general, as shown by the 5-cycle. The
γ-nonnegativity conjecture above has been verified for special classes of graphs,
mostly by direct computation: as shown in [OT21a, Section 5.3], such classes
encompass cycles, suspensions of graphs (which include both complete graphs
and wheels), outerplanar bipartite graphs and complete bipartite graphs. This
last instance was originally proved in [HJM19] but was generalized in [OT21a]
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to bipartite graphs H̃ obtained from another bipartite graph H as in [OT21a, p.
708].

The main goal of this work is to provide some supporting evidence to the γ-
nonnegativity conjecture, independent of the graph. We take two different ap-
proaches: a deterministic and a probabilistic one.

In the deterministic part, we focus on the coefficient γ2. Through some deli-
cate combinatorial analysis, we are able to prove that γ2 is always nonnegative.
Moreover, we provide a characterization of those graphs for which γ2(PG) = 0:

Theorem 2. ] Let G = ([n], E) be a graph. Then γ2(PG) ≥ 0. Moreover, if G
is 2-connected, then γ2(PG) = 0 if and only if either n < 5, or n ≥ 5 and G is
isomorphic to one of the following two graphs:

• the graph Gn with edge set {12} ∪ {1k, 2k : k ∈ {3, . . . , n}}; or
• the complete bipartite graph K2,n−2.

The “if” part of the equality statement can be deduced from the results in
[HJM19] and [OT21a], where the authors compute explicitly the γ-vector of the
families of graphs appearing in 2.

For the probabilistic approach, we consider the Erdős-Rényi model G(n, p(n)),
which is one of the most popular and well-studied ways to generate a graph on
the vertex set [n] via a random process: for a graph G ∈ G(n, p), the probability
of ij with 1 ≤ i < j ≤ n being an edge of G equals p(n), and all of these
events are mutually independent. Our question is then: for an Erdős-Rényi graph
G ∈ G(n, p), how likely is it that the entries of the γ-vector of PG are nonnegative?
As an extension, we pose the question of how big those entries will most likely be.
Our main result, answering both questions, is the following:

Theorem 3. Let k be a positive integer. For the Erdős-Rényi model G(n, p(n)),
where p(n) = n−β for some β > 0, β 6= 1, the following statements hold:

• (subcritical regime) if β > 1, then asymptotically almost surely γℓ = 0 for
all ℓ ≥ 1;

• (supercritical regime) if 0 < β < 1, then asymptotically almost surely
γℓ ∈ Θ(n(2−β)ℓ) for every 0 < ℓ ≤ k.

In particular, this shows that γℓ ≥ 0 for 1 ≤ ℓ ≤ k with high probability,
thereby proving that (up to a fixed entry of the γ-vector) Gal’s conjecture holds
with high probability. To prove this result, we need to distinguish two regimes:
subcritical (β > 1) and supercritical (0 < β < 1), the subcritical one being the
easier one. Along the proof, we derive concentration inequalities for the number
of non-faces and faces of the triangulation of PG studied in [HJM19, Proposition
3.8]. Unfortunately, our approach does not give results for the critical regime.

This is joint work with Alessio D’Aĺı, Daniel Köhne and Lorenzo Venturello.
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Lorentzian polynomials

Hendrik Süß

In [1] Brändén and Huh introduced the notion of Lorentzian polynomials. This
is a class of polynomials which generalizes the log-concavity properties of volume
polynomials appearing in convex and algebraic geometry and behaves well with
respect to many natural operations, such as multiplication, specialization and
(positive) linear transformation. The theory of Lorentzian polynomials has been
used to prove and reprove important conjectures in matroid theory, see [1, 2].
Moreover, many polynomials arising from representation theory are conjectured
to be (denormalized) Lorentzian [3].

In my introductory talk I gave an overview of the definitions and basic theory
of Lorentzian polynomials as presented in [1] and discussed the proof of the Strong
Mason Conjecture also given in [1] as an exemplary application to matroid theory.
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Some analogies between valuation on convex bodies and algebraic
cycles on varieties

Nguyen-Bac Dang

Fix X = Pd(C) the complex projective space of dimension d ≥ 1 and a rational
map f : X 99K X on X whose image is not contained in a hypersurface (i.e f is
called dominant). Fix a Kähler form ω, for each k ≤ d, a general problem is to
estimate the growth of the sequence (degk(f

n))n∈N where

degk(f
n) =

∫

X

(fn)∗(ωk) ∧ ωd−k.

When the map f is holomorphic, these sequences can be understood on the coho-
mology of X . Namely, the element ωk represents a class in the Dolbeaut cohomol-
ogy Hk,k(X) and f induces a pullback action this vector space by multiplication
by deg1(f)

k. To tackle this problem for general meromorphic maps, the general
strategy is to consider the pullback action of f on an infinite vector space:

n-Ck(X ) = lim−→Hk,k(Y ),

where the inductive limit is taken over all birational models Y with a birational
morphism π : Y → X . More generally, one sees that the group of bimeromorphic
transformations Cr(d) of Pd(C) (the Cremona group) induces an action on the
graded algebra:

(1) Cr(d) →֒ ⊕d
k=0 n-C

k(X ).



2916 Oberwolfach Report 51/2023

This viewpoint was very fruitful and allowed for example Cantat [Can11] to study
group theoretic properties of the Cremona group of dimension 2.

One can then read the growth of the sequence degk(f
n) on the growth of the

sequence of vectors (fn)∗ωk ∈ n-Ck(X ). In [BFJ08, DF21] a purely exponential
growth of the sequence deg1(f

n) was obtained under some conditions. The method
was to complete the space n-C1(X ) with a suitable Banach norm so that the
sequence of classes (fn)∗ω converges to a unique eigenvector for the operator f∗.

The situation is very well-understood when k ≥ 2 if the map f is defined by
monomials. Fix a matrix A = (aij) ∈ GLd(Z), the monomial map associated to
A is:

fA : (x1, . . . , xd) 7→


y1 =

d∏

j=1

x
a1j

j , . . . , yd =
d∏

j=1

x
adj

j


 .

The map A ∈ GLd(Z) → fA ∈ Cr(d) induces an injection of GLd(Z) in the
Cremona group. In that case, this subgroup acts on the subspace:

⊕d
k=0 n-C

k(Xtor) = ⊕k lim−→
Y toric

Hk,k(Y ),

where the injective limit is taken over all toric compactifications Y of (C∗)d. On

one hand, elements of n-Ck(Xtor) correspond to collection of classes of algebraic
cycles living on a toric variety, but on the other hand, the theory of toric varieties
allows one to view those as valuations on convex bodies. Namely, if P is the
fundamental polytope of Rd, then

degk(fA) =MV (A(P )[k], P [d − k]),

where MV (A(P )[k], P [d − k]) denotes the mixed volume of A(P ) taken k times
and P taken d− k times. Precisely, the class of ωk is associated to the translation
invariant valuation φωk homogeneous of degree d− k such that

φωk(K) =MV (P [k],K[d− k]),

for all K convex body in Rd. The action by GLd(Z) is then given by A · φ(K) =
φ(A−1(K)). Denote by V alk(R

d) vector space of translation invariant valuations
of given degree k, one recovers an action on the graded vector space

(2) GLd(Z) →֒ ⊕kV alk(R
d).

Comparing (1) with (2), one sees that the previous space had a structure of
graded algebra while in the second, it is only a graded vector space since the
convolution between two valuations is not always well-defined. When d = 2, the
analog in convex geometry of the norm defined by Boucksom-Favre-Jonsson is
given by:

(3) ||φ||2 = 2φ(B)2 − φ ⋆ φ

where B is a ball of volume 1 and where φ is a smooth valuation of degree 1.
Taking the completion of smooth valuations for this norm yields a smaller space
on which the convolution extends continuously. The fact that the above formula
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yields a norm is a consequence of Hodge-index theorem in algebraic geometry,
and in convex geometry is the Legendre-Fenchel inequality or the Hodge-Riemann
property for degree 1 valuations.
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Schur polynomials, positivity and the Hodge-Riemann property

Matei Toma

(joint work with Julius Ross)

We present recent joint work with Julius Ross, [1], [2], [3], showing that Schur
polynomials evaluated on ”positive” forms or cycle classes exhibit strong posi-
tivity properties themselves, such as the Hard Lefschetz property and the Hodge-
Riemann property. Our work was motivated by the need to understand intersection
properties of algebraic cycles on complex projective manifolds and was inspired
by two parallel developments. On one hand, in algebraic geometry the extension
of the classical Hard Lefschetz Theorem proved by Bloch and Gieseker, [4], paved
the way towards the work of Fulton and Lazarsfeld, [5], on positivity of Schur
classes of ample vector bundles. On the other hand, in Kähler geometry it was
suggested by Gromov in [6] and proved by Dinh and Nguyen, [7], that the Hard
Lefschetz Theorem and the Hodge-Riemann bilinear relations may be extended to
a mixed situation, meaning by this that both work with a product of Kähler classes
replacing the power of a single Kähler class in the classical statements. A natu-
ral question arises, whether other combinations of positive classes, besides those
exhibited by the Bloch-Gieseker and Dinh-Nguyen theorems, have similar Hard
Lefschetz and Hodge-Riemann properties. Our results, which we next describe,
say that this is the case for two-codimensional Schur classes.

We will denote by c0, c1, . . . , ce ∈ k[x1, . . . , xe] the elementary symmetric poly-
nomials, by Λ(d, e) the set of partitions λ = (λ1, . . . , λN ) of d with

0 ≤ λN ≤ . . . λ1 ≤ e, and

N∑

i=1

λi = d

and we will set

sλ := det




cλ1
cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2
· · · cλ2+N−2

...
...

...
...

cλN−N+1 cλN−N+2 · · · cλN


 .
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The sλ are called Schur polynomials and build a basis of the space k[x1, . . . , xe]
sym
d

of degree d homogeneous symmetric polynomials in e variables, when λ runs
through Λ(d, e).

Then we can prove the following three instances of Hard Lefschetz and Hodge-
Riemann properties for ”Schur classes” of degree d = n− 2.

Theorem (linear algebra case). Let ω1, . . . , ωe be strictly positive (1, 1)-forms on
V = Cn, λ be a partition in Λ(n − 2, e) and vol be the standard volume form on
V . Then the linear map

2∧

R

V ∗ →
2n−2∧

R

V ∗, α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : (

1,1∧
V ∗)R → R, α 7→ (α ∧ sλ(ω1, . . . , ωe) ∧ α)/vol,

is non-degenerate of signature (1, n2 − 1).

Theorem (Kähler case). If ω1, . . . , ωe are Kähler classes on a compact Kähler
manifold X of dimension n and λ is a partition in Λ(n− 2, e), then the linear map

H2(X,R) → H2n−2(X,R), α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : H
1,1(X)R → R, α 7→

∫

X

α ∧ sλ(ω1, . . . , ωe) ∧ α,

is non-degenerate of signature (1, h1,1 − 1).

Theorem (ample vector bundle case). If E is a rank e ample vector bundle on a
complex projective manifold X of dimension n and λ ∈ Λ(n−2, e), then the linear
map

H2(X,R) → Hn−2(X,R), α 7→ α ∧ sλ(ω1, . . . , ωe)

is an isomorphism and the quadratic form

Qsλ(ω1,...,ωe) : H
1,1(X)R → R, α 7→

∫

X

α ∧ sλ(ω1, . . . , ωe) ∧ α,

is non-degenerate of signature (1, h1,1 − 1).
We start by proving the ”ample vector bundle case” and in doing so we make

use of the Bloch-Gieseker Theorem and of the Fulton-Lazarsfeld cone construction.
We then successively deduce the ”linear algebra case” and the ”Kähler case”. Let
us note that a different, more algebraic, approach to prove the ”linear algebra
case” has appeared in the meantime in [8]. It seems however that for the ”ample
vector bundle case” a geometric proof is needed.
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Bezout inequalities for mixed volumes

Maud Szusterman

Bezout inequality (in Pn) and the Bernstein-Khovanskii-Kushnirenko (BKK) the-
orem allows to derive inequalities of mixed volumes

V (A1, ..., Ar,∆)V (∆)r−1 ≤
∏

i≤r

V (Ai,∆[n− 1]),

where Ai are arbitrary convex bodies in Rn, and ∆ is an n-simplex. Another
consequence of the BKK theorem is

V (A1, ..., An)V (∆) ≤ V (A2, ..., An,∆)V (A1,∆[n− 1]).

We introduce the affine invariant quantities br(K) and b(K) as the least br, b ≥ 1
such that

V (A1, ..., Ar,K)V (K)r−1 ≤ br
∏

i≤r

V (Ai,K[n− 1]), respectively

V (A1, ..., An)V (K) ≤ bV (A2, ..., An,K)V (A1,K[n− 1]),

holds true for any (Ai). In particular note that 1 ≤ b2(K) ≤ br(K) ≤ b(K)r−1 for
any n ≥ 2, and for any K.

In [1], C. Saroglou, I. Soprunov and A. Zvavitch have proven that b(K) = 1
characterizes the simplex among all convex bodies, and that b2(K) = 1 charac-
terizes the simplex among all n-polytopes: we shall review the proof of this latter
characterization, and explain where it fails to generalize to the setting of convex
bodies (if one uses Wulff-shape perturbations of K rather than “perturbated poly-
topes”). Moreover it follows from Fenchel’s inequality, respectively from Diskant’s
inequality (see also [3]) that b2(K) ≤ 2 and b(K) ≤ n for all K (both constants are
sharp, as shown by the cross-polytope for b2, and by the unit cube for b). While
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the characterization of all K such that b2(K) = 2 is known, that of all K such
that b(K) = n remains open.

This study of Bezout inequalities for mixed volumes was initiated by Soprunov
and Zvavitch in [2], where they conjectured that the n-simplex is the only mini-
mizer of b2. Though this conjecture remains open, we will discuss recent progress
on restricting the set of potential minimizers; namely we will present a necessary
condition on the support of the surface area measure of K. In dimension 3, this
necessary condition, together with previously established restrictions, is enough to
answer positively Soprunov-Zvavitch’s conjecture.
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Applications of Legendre transforms in Kähler geometry

Xu Wang

The Legendre transform of a generalized function φ : Rn → [−∞,∞] is defined by

φ∗(y) := sup
x∈Rn

x · y − φ(x).

It is one of the most important concepts in convex geometry. For instance, it can
be used to define the interpolating family between two convex functions and prove
that the mixed volume function is a polynomial for convex bodies (see formula
(3.2) and Corollary 3.8 in [1]). It also plays an crucial role in the intersection
theory in algebraic geometry. For example, it can be used to prove compactness
of a Delzant toric manifold and the Bernstein-Kushnirenko inequality (see section
2 in [6]). In this talk, we will introduce a few recent applications of Legendre
transforms in Kähler geometry. The first result is the following generalization [3]
of McDuff–Polterovich’s result [4] (for β = (1, · · · , 1), in which case ǫx(ω;β) is
called the Seshadri constant).

Theorem A. Let (X,ω) be a compact Kähler manifold. Fix x ∈ X, we have

ǫx(ω;β) = cx(ω;β), β = (β1, · · · , βn), βj > 0, 1 ≤ j ≤ n,

where the β-Seshadri constant of (X,ω) at x ∈ X is defined by

ǫx(ω;β) := sup{γ ≥ 0 : there exists ψ ∈ PSH(X,ω) such that

ψ = γ log(|z1|2/β1 + · · ·+ |zn|2/βn) near x},
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and “ψ ∈ PSH(X,ω)” means that ψ is upper semi continuous on X and ω+ddcψ ≥
0, dc := (∂ − ∂̄)/(4πi), in the sense of currents on X. The β-Kähler width

cx(ω;β) := sup
{
πr2 : Bβ

r →֒ holx(X, ω̃), ∃ ω̃ ∈ Kω

}
,

Bβ
r :=



z ∈ C

n :

n∑

j=1

βj |zj |2 < r2



 ,

where “Bβ
r →֒ holx(X, ω̃)” means that there exists a holomorphic injection f :

Bβ
r → X such that f(0) = x and f∗(ω̃) = i

2

∑n
j=1 dzj ∧ dz̄j, Kω denotes the space

of Kähler metrics in [ω].

The main ingredient of our proof is the following Legendre transform result.

Theorem B ([3, Theorem 3.7]). Let φ be smooth strictly convex on Rn and
A ⊂ Rn be closed. Put φA(x) = supy∈A y · x − φ∗(y). If x satisfies φA(x) < φ(x)
then φA(x) = supy∈∂A y · x− φ∗(y), where ∂A denotes the boundary of A.

Another application of Theorem B is the following Ross-Witt Nyström theorem
[5].

Theorem C. Let φ be a smooth strictly convex function on Rn. Assume that A :=
∇φ(Rn) is bounded. Fix a concave function u on A and assume that u ∈ C∞(Rn).
Then for every t > 0,

(φ∗ − tu)∗ = sup
α∈R

{φα + tα}, φα(x) := sup
u(y)≥α

y · x− φ∗(y).

The compact Kähler version of the above theorem is known as the Ross-Witt
Nyström correspondence between the maximal test curves and geodesic rays.

Definition D. Let (L, e−φ) be a positive line bundle over a compact complex
manifold X. A map α 7→ vα from R to PSH(X,ω), ω := ddcφ, is called a bounded
test curve if

(1) λv := inf{α ∈ R : vα ≡ −∞} <∞;
(2) α 7→ vα(x) is concave, decreasing and usc for any x ∈ X;
(3) vα ≡ 0 for α ≤ 0 and sup{α ∈ R : vα ≡ 0} = 0.

A bounded test curve is said to be maximal if P [vα] = vα for every α ∈ R, where

P [vα] :=
∗

sup{v ∈ PSH(X,φ) : v ≤ 0 and v − vα is bounded on X},
is called the maximal envelope of vα.

Definition E. Let (L, e−φ) be a positive line bundle over a compact complex man-
ifold X. A map t 7→ ut from (0,∞) to PSH(X,ω), ω := ddcφ, is called a sub-linear
sub-geodesic ray if

(1) φ(x) + u− log |ξ|2(x) is psh on X × {ξ ∈ C : |ξ| < 1};
(2) ut ≥ limt→0 ut = 0 and λu := limt→∞ supX ut/t <∞.

A sub-linear sub-geodesic ray ut is called a geodesic ray if for every 0 < a < t < b
we have ut = sup{vt} where the supremum is taken over all sub-geodesics vt with
lim supt→a,b vt ≤ ua,b.
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The main theorem in the Ross-Witt Nyström correspondence theory is the
following result.

Theorem F ([5, Theorem 1.1]). The α-Legendre transform v̂t := supα∈R{vα +
tα}, t > 0, gives a bijective map, say L, between

(1) bounded test curves and sub-linear sub-geodesic rays;
(2) maximal bounded test curves and geodesic rays.

Moreover, we have λv = λv̂ and L−1(ut) is given by the t-Legendre transform

ǔα := inf
t>0

{ut − tα}, α ∈ R.

The above theorem implies the following Bergman kernel estimate in [2].

Theorem G. Let (L, e−φ) be a positive line bundle over an n-dimentional compact
complex manifold X. Assume that the Seshadri constant of L is > n on X. Then
Bφ ≥ HSφ, where

Bφ(x) := sup
f∈H0(X,O(KX+L))

in
2

f(x) ∧ f(x)e−φ(x)

∫
X
in2 f ∧ f̄e−φ

, ∀ x ∈ X,

denotes the φ-weighted Bergman kernel form on X and

HSφ(x) :=
(ddcφ)n(x)∫

TxX
e−φL,x(ddcφ)n(x)

, ∀ x ∈ X,

is called the Hele-Shaw form on X, where

φL,x := sup

{
Ghom,x : G ∈ PSH(X,ω) with sup

X
G = 0

}

is called the canonical growth condition [7] of ω := ddcφ at x, here

Ghom,x(w) := lim sup
t→0

{G(expx(tw)) − νx(G) log(|t|2)}, w ∈ TxX,

expx denotes the exponential map from TxX to X with respect to ω and

νx(G) := lim inf
z→0

G(z)

log(|z|2)
denotes the Lelong number of G at x.

The proof of Theorem G is to use an Ohsawa-Takegoshi extension theorem (see
Theorem A in [2]) behind Theorem F.
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Towards Hodge theory for smooth translation-invariant valuations

Jan Kotrbaty

Let A =
⊕n

k=0 Ak be a commutative, associative, graded algebra over R with
An

∼= R and a fixed cone K ⊂ A1. Let k be any integer between 0 and n
2 . We say

that A satisfies

(1) Poincaré duality if for each x ∈ Ak with x 6= 0 there exists y ∈ An−k such
that x · y 6= 0;

(2) hard Lefschetz theorem if for each x1, . . . , xn−2k ∈ K, the map Ak → An−k

given by y 7→ y · x1 · · ·xn−2k is an isomorphism;
(3) Hodge–Riemann relations if for each x1, . . . , xn−2k+1 ∈ K and y ∈ Ak such

that y 6= 0 and y · x1 · · ·xn−2k+1 = 0 one has (−1)k y · y · x1 · · ·x2n−k > 0.

A prototypical example of such an algebra—from which the terminology was
inherited—is the subring

⊕
kH

k,k of the Dolbeault cohomology of a compact
Kähler manifold (M,ω). The statement is classical for the one-dimensional cone
K = R>0ω. However, the case when K is the full Kähler cone was proved only
recently by Dinh–Nguyên [9]. A more elementary example is the linear counter-

part
⊕

k

∧k,k
(Cn)∗ proven by Timorin [15]. Further examples are the McMullen’s

algebra Π(P ) generated by polytopes strongly isomorphic to a fixed simple poly-
tope P [14] or the Chow ring of a matroid, as proven by Adiprasito–Huh–Katz
[1]. Many more examples along with remarkable applications of these properties
to combinatorics are listed in the excellent account of Huh [10].

Let K denote the space of convex bodies, i.e., compact convex subsets in Rn.
We call φ : K → R a valuation if

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A,B,A ∪ B ∈ K. The space Val of translation-invariant, continuous
valuations is a Banach space. It carries a natural left GL(n) action given by
g · φ = φ ◦ g−1. GL(n)-smooth vectors in Val are called smooth valuations. It
follows from a classical result of McMullen [14] that the space of smooth valuations
is graded by the degree of homogeneity of a valuation: Val∞ =

⊕n
k=0 Val

∞
k .

Moreover, by a combination of results of Alesker and Bernig–Fu [2, 4, 8], Val∞

is in fact a graded algebra satisfying Poincaré duality with respect to a natural
product given as follows: Denoting the mixed volume on Rn by V and k copies
of a convex body by [k], one has A 7→ V (B1, . . . , Bk, A[n− k]) ∈ Val∞n−k provided
the convex bodies Bi are from K∞

+ , i.e., have smooth boundaries with positive
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curvature. Then we define

V (B1, . . . , Bk, •[n− k]) ∗ V (C1, . . . , Cl, •[n− l])

= cnk,lV (B1, . . . , Bk, C1, . . . , Cl, •[n− k − l])

where cnk,l =
(n−k)!(n−l)!
n!(n−k−l)! .

Motivated by the aforementioned results in other contexts and by known special
cases listed below, the following conjecture was formulated in [11]:

Conjecture 1. The algebra Val∞ satisfies the hard Lefschetz theorem and the
Hodge–Riemann relations with respect to K = {V (C, •[n− 1]) | C ∈ K∞

+ }.
The conjecture is now known to hold for the one-dimensional cone

{V (D, •[n− 1]) | D ∈ K∞
+ is a Euclidean ball}.

In this case, the hard Lefschetz theorem was first showed by Alesker [3] for the
subalebra of even valuations. Later on, Bernig–Bröcker [7] removed the evenness
assumption and prove the statement for Val∞. Similarly, the Hodge–Riemann
relations were first proved in the even case by Kotrbatý [11]. Somewhat later,
Kotrbatý–Wannerer [13] proved the Hodge–Riemann relations for Val∞ and also
gave a new proof of the hard Lefschetz theorem. The point of working with
the Euclidean cone is that the Lefschetz map then commutes with the group
SO(n). This makes it possible to use representation theory, in particular the
known decomposition of Val∞ into SO(n)-types established by Alesker–Bernig–
Schuster [6].

For the full cone K, Conjecture 1 is proven in general only for k = 0, 1. The
former case is easily seen to be equivalent to non-negativity of the mixed volume.
The latter was proved by Kotrbatý–Wannerer [12] (and observed independently by
Alesker) by generalizing the Alexandrov’s second proof of the Alexandrov–Fenchel
inequality

V (A,B,C1, . . . , Cn−2)
2 ≥ V (B,B,C1, . . . , Cn−2)V (A,A,C1, . . . , Cn−2).

Conversely, it was first observed by Alesker that the Hodge–Riemann relations
for valuations subsume geometric inequalities: Taking n = 2, k = 1, and y =

V (K, •)− V (K,D)
V (D,D)V (D, •), where K ∈ K∞

+ is arbitrary and D ∈ K∞
+ is a Euclidean

ball, the Hodge–Riemann relations together with the definition of the product ∗ of
valuations yield at once the isoperimetric inequality on the plane. More generally,
the case k = 1 of Conjecture 1 implies for general n the Alexandrov–Fenchel
inequality [11]. Moreover, Alesker [5] and Kotrbatý–Wannerer [13] deduced in
this way from the Hodge–Riemann relations new inequalities for mixed volumes,
apparently beyond the previously known geometric methods.
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Octonionic Monge-Ampère operator and its applications to valuations
theory and PDE

Semyon Alesker

(1) In this talk I introduce an octonionic Monge-Ampère (MA) operator for 2
octonionic variables, apply it to a construction of translation invariant con-
tinuous valuations on R16, in particular a Spin(9)-invariant example. Then I
introduce (jointly with Peter Gordon) an octonionic analogue of Kähler met-
rics on 16-torii and prove a Calabi-Yau type theorem for them. The latter
states solvability of certain non-linear elliptic second order PDE.

(2) Let O be the (non-commutative, non-associative) field of octonions. Recall
that any octonion q ∈ O can be written uniquely

q =
7∑

i=0

xpe
p,

where xp ∈ R, and ep are octonionic units such that e0 = 1 and (ep)2 = −1
for p > 0. The conjugate is defined by

q̄ = x0 −
7∑

i=1

xpe
p.
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(3) Let F be a smooth O-valued function on O ≃ R8. Define two operators

∂F

∂q̄
:=

7∑

i=0

ep
∂F

∂xp
,
∂F

∂q
:=

7∑

i=0

∂F

∂xp
ēp.

Such operator can be defined in the case of several octonionic variables for
each variable.

(4) For a smooth function f : On → R define its octonionic Hessian

HessO(f) =

(
∂2f

∂q̄i∂qj

)
.

This n× n matrix is Hermitian, i.e. aij = āji.
(5) In order to define the MA operator we need a notion of determinant. There

is such a notion for 2 × 2 octonionic Hermitian matrices. A general such a
matrix has the form [

a q
q̄ b

]
, a, b ∈ R, q ∈ O.

Its determinant is defined by the usual formula ab− qq̄ = ab− q̄q.
Finally we define the octonionic MA operator for a C2-smooth real valued

function f by
MAO(f) := detHessO(f).

(6) We show that MAO(f) can be defined by continuity (with respect to the
uniform convergence) for arbitrary continuous plurisubharmonic (in particular
for convex) functions on 2 ≃ R16 which is not necessarily C0-smooth as a non-
negative measure.

Theorem 1 (Alesker [1], 2008). Fix ψ ∈ C0
c (R

16,R). Define the functional
on the family of all convex compact subsets of O2 ≃ R16 by

K 7→
∫

O2

ψ ·MAO(hK),

where hK is the supporting functional of K. This is a continuous translation
invariant 2-homogeneous valuation.

Note that the valuation property follows from a version of the Blocki’s for-
mula saying that if u, v are continuous octonionic psh functions and min{u, v}
is also psh then

MAO(min{u, v}) +MAO(max{u, v}) =MAO(u) +MAO(v).

If the function ψ is O(16)-invariant then the corresponding valuation is
Spin(9)-invariant. For different such ψ’s the corresponding valuations are
proportional.

The same argument works to construct continuous valuations on the class
of continuous octonionic psh (in particular, on convex) functions on O2 ≃ R16.

(7) P. Gordon and me introduced a class of metrics on O2 which are octonionic
analogues of Kähler metrics and proved a Calabi-Yau type theorem for an
octonionic MA equation on 16-torii for such metrics.
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Singularities of plurisubharmonic functions

Dano Kim

This talk was a survey on recent results in the study of singularities of plurisub-
harmonic functions, a topic which has seen active interactions among complex
analysis, algebraic geometry and convex geometry.

A plurisubharmonic (psh for short) function ϕ on a complex manifold X is
said to have analytic singularities (of type a

c) if it is locally of the form ϕ =
c log

∑m
i=1 |gi| + u where c ≥ 0 is real, u bounded and g1, . . . , gm are local holo-

morphic functions generating a (global) coherent ideal sheaf a ⊂ OX . Informally,
let us say that such ϕ is algebraic psh in that its singularities are encoded in a

c

which is algebro-geometric data. Otherwise, let us say ϕ is general psh, which is a
transcendental object.

General psh functions emerge in several different contexts in algebraic geometry:
for example, from the study of graded sequence of ideal sheaves (cf. [5], [11]) or
from local weight functions of singular hermitian metrics for a pseudoeffective
line bundle (cf. [4]). In many concrete statements/results, one can observe two
patterns. 1) A general psh function behaves very differently from algebraic ones.
2) A general psh function behaves similarly to algebraic ones.

An instance of 1) is a recent result [12, Thm. 5.7] joint with Hoseob Seo on
psh functions with accumulation points of jumping numbers, which generalized a
single initial example due to [8] to infinitely many examples, in fact characterizing
them among all toric psh functions in dimension 2. Seo generalized this result to
arbitrary dimension in [14]. Connection with convex analysis and geometry played
an important role in these works. In this regard, another recent paper of Seo with
An [1] developed further methods of using convex analysis to study equisingular
approximation of psh functions.

On the other hand, as an instance of 2), the following result (joint with J.
Kollár, in preparation) was announced. (J (ϕ) is the multiplier ideal sheaf of ϕ,
cf. [4].)

Theorem 1. Let X be a complex manifold and ϕ a quasi-plurisubharmonic func-
tion on X such that (X,ϕ) is log canonical. Then every point of X has a Stein open
neighborhood U ⊂ X with holomorphic functions gi on U and real ci > 0, such
that ψ :=

∑m
i=1 ci log |gi| is log canonical at every point of U , and J (ϕ) = J (ψ).

In the second part of this talk, we consider psh functions with isolated singu-
larities at a point, say 0 ∈ Cn. For such psh functions u1, . . . , un, we denote their
mixed Monge-Ampère mass at 0 ∈ Cn by

m(u1, . . . , un) =

∫

{0}

(ddcu1) ∧ . . . ∧ (ddcun)
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which is defined due to work of Demailly [3]. In the case when uk = log |ak| , k =
1, . . . , n, for zero-dimensional ideals ak at 0, m(u1, . . . , un) is equal to the mixed
multiplicity µ(a1, . . . , an) of the ideals. In the joint work with Alexander Rash-
kovskii [10], we have the following Alexandrov-Fenchel inequality for mixed Monge-
Ampère masses (generalizing a result of [5]).

Theorem 2. Let u1, . . . , un be psh functions with isolated singularities at 0 ∈ Cn.
Then we have the inequality

m(u1, u1, u3, . . . , un)m(u2, u2, u3, . . . , un) ≥ m(u1, u2, u3, . . . , un)
2.

As a consequence for convex geometry, we derive an Alexandrov–Fenchel in-
equality for mixed covolumes [10, Cor. 1.5] using the case when u1, . . . , un are
appropriate toric psh functions.

An important special case of mixed MA masses is ‘higher Lelong numbers’ of u
defined as

(1) ek(u) =

∫

{0}

(ddcu)k ∧ (ddc log |z|)n−k

for k = 1, . . . , n, generalizing the usual Lelong number e1(u). The main result of
[5] (cf. [2]) is the following lower bound for the log canonical threshold lct(u) at 0,

(2) lct(u) ≥ en−1(u)

en(u)
+
en−2(u)

en−1(u)
+ . . .+

1

e1(u)
.

When u is algebraic psh associated to a zero-dimensional ideal a, this improves

an earlier result of [7], lct(u) ≥ n( 1
en(u)

)
1

n which was applied in the topic of

birational rigidity from birational geometry. The author does not yet know of
an instance where (2) itself was used in birational geometry so far.

On the other hand, in a recent paper [9], we discovered an application of (2) to a
completely different topic in algebraic geometry, namely hypersurface singularities.
Let (f = 0) be a germ of an isolated hypersurface singularity at 0 ∈ Cn. In [15],
Teissier defined the polar invariant θ(f) which measures the rate of vanishing of
the Jacobian ideal Jf of f with respect to that of the maximal ideal m of 0 ∈ Cn.
Also consider θ(f1), . . . , θ(fn−1) where fj denotes the restriction of f to general
j-codimensional planes containing 0 ∈ Cn. We have the following upper bound for
the particular combination of these polar invariants from a question in [15].

Theorem 3. [9] Let lct(m · Jf ) be the log canonical threshold at 0 ∈ Cn of the
product ideal m · Jf . We have

(3)
1

1 + θ(f)
+

1

1 + θ(f1)
+ . . .+

1

1 + θ(fn−1)
≤ lct(m · Jf ).

In fact, in his question [15, p.7], Teissier conjectured that one can put the Arnold
exponent σ(f) of f at 0, in the place of lct(m·Jf ) in (3). The Arnold exponent σ(f)
is related to log canonical thresholds by lct(f) = min{σ(f), 1}. The conjectured
upper bound was proved by [6] whose methods are very different from [9] and
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based on more algebraic theories such as Saito’s theory of mixed Hodge modules
and the theory of Hodge ideals (cf. [13]).
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Weighted Ehrhart theory

Katharina Jochemko

The convex hull of finitely many points in the integer lattice Zd is called a lattice
polytope. Ehrhart [2] showed that for any lattice polytope P ⊂ Rd, there is a
polynomial EP (n) such that EP (n) = |nP ∩ Zd| for all integers n ≥ 0. The
polynomial EP (n) is called the Ehrhart polynomial and is the central object of
study in Ehrhart theory. At the heart of Ehrhart theory are questions about the
interpretation and characterization of the coefficients of the Ehrhart polynomial.
A standard technique is to consider the h∗-polynomial h∗P (t), a linear transform
of the Ehrhart polynomial, with many desirable properties. For a d-dimensional
polytope P it is a polynomial of degree at most d given by the numerator of the
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generating series
∑

n≥0

EP (n)t
n =

h∗P (t)

(1− t)d+1

A fundamental result by Stanley [4] states that the coefficients of the h∗-polynomial
are always nonnegative and integers, in contrast to the coefficients of the Ehrhart
polynomial which can be negative and rational in general. Another desirable
property due to Stanley [5] is monotonicity of the coefficients, that is, for lattice
polytopes P,Q ⊂ Rd with h∗-polynomials h∗P (t) =

∑
i≥0 h

∗
i (P )t

i and h∗Q(t) =∑
i≥0 h

∗
i (Q)ti , if P ⊆ Q then

h∗i (P ) ≤ h∗i (Q) for all i ≥ 0 .

In this talk we present extension of Stanley’s nonnegativity and monotonicity
results [4, 5] to weighted lattice point enumeration. These results were obtained
in joint collaboration with Esme Bajo, Robert Davis, Jesús A. De Loera, Alexey
Garber, Sof́ıa Garzón Mora and Josephine Yu [1].

A naive way to express the number of lattice points in a polytope P is∑
x∈P∩Zd 1. We consider more general expressions of the form

ehr(P,w) =
∑

x∈P∩Zd

w(x)

where w : Rd → R is a polynomial function. Weighted sums of that type appear
in various different areas, in particular, in enumerative combinatorics, optimiza-
tion, convex geometry and statistics, see [1] and references therein. By results
of Khovanskĭı and Puklikov [3], Ehrhart’s polynomiality result [2] extends to this
weighted setup. More precisely, if w is a polynomial function of degree at most m
and P a lattice polytope of dimension d then ehr(nP,w) is given by a polynomial
of degree at most d + m in the dilation factor n ≥ 0. It follows that the corre-
sponding generating series is again a rational function and we define the weighted
h∗-polynomial of P , denoted h∗P,w(t), to be its numerator:

∑

n≥0

ehr(nP,w)tn =
h∗P,w(t)

(1− t)d+m+1
.

A natural question to ask is for which classes of polynomial functions w the
weighted h∗-polynomial h∗P,w(t) satisfies nonnegativity and monotonicity of its
coefficients. We consider two families of weights: sums of products of linear forms
that are nonnegative on P , denoted RP , and nonnegative sums of products of
linear forms, denoted SP . Clearly, RP ⊂ SP . In general, this inclusion is strict.
For example, if P = conv(0, e1, e2) ⊂ R2 then w(x1, x2) = (x1 − x2)

2 is in SP but
not in RP . It is rather easy to find examples of non-homogeneous weight functions
for which the weighted h∗-polynomial has negative coefficients, even if the value
of the weight function at every point in the polytope is nonnegative [1]. We thus
restrict to homogeneous polynomial weight functions.

We have the following nonnegativity results.
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Theorem 1 ([1]). Let P ⊂ Rd be a lattice polytope and let w : Rd → R be a
polynomial function.

(i) If the weight w is a homogeneous element in RP , then the coefficients of
h∗P,w(t) are nonnegative.

(ii) If the weight w is a homogeneous element in SP , then h
∗
P,w(t) ≥ 0 for all

t ≥ 0.

We remark that Theorem 1 (i) is rather sharp in the sense that it does in general
not even extend to the case when w is the square of a single linear form, except
for if P is a lattice polygon in R2 [1].

Further, we have the following monotonicity results.

Theorem 2 ([1]). Let P,Q ⊂ Rd be a lattice polytopes, P ⊆ Q, and let w : Rd → R

be a polynomial function.

(i) If the weight w is a homogeneous element in RP , then h∗P,w(t) � h∗Q,w(t)
coefficient-wise.

(ii) If the weight w is a homogeneous element in SP and dimP = dimQ, then
h∗P,w(t) ≥ 0 for all t ≥ 0.

Observe that in Theorem 2 (ii) the assumption dimP = dimQ is necessary [1],
in contrast to the classical monotonicity result by Stanley [5] and Theorem 2 (i)
where P and Q may have different dimensions.

While the talk focusses on weighted Ehrhart polynomials of lattice polytopes,
the theory and result hold more general for rational polytopes after suitable ad-
justments. See [1] for detailed statements.
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Uncertainty and quasianalyticity on higher grassmannians

Dmitry Faifman

1. Introduction

Recall two integral transforms playing important roles in integral geometry.
The Radon transform is defined for p < k by

Rp,k : C(Grp(R
n)) → C(Grk(R

n)), Rp,kf(F ) =

∫

Grp(F )

f(E)dE;

The cosine transform is given by

Ck : C(Grk(R
n)) → C(Grk(R

n)), Ckf(F ) =
∫

Grk(Rn)

| cos(E,F )|f(E)dE.

Both admit natural extensions to the space of distributions.
For a geometric application, let Ks(R

n) the centrally symmetric convex bodies,
and by Ss(R

n) the centrally-symmetric star-shaped sets. Let Ak(E;S) := volk(E∩
S) ∈ C(Grk(R

n)) denote the k-section function of S ∈ Ss(R
n), and Pk(E;K)) :=

volk(PrE(K)) ∈ C(Grk(R
n)) the k-projection function of K ∈ K(Rn).

It then holds that Ak(E;S) = R1,k(
1
kρ

k
S)(E), where ρS is the radial function of

S. Far less obviously, it holds also that Pk(E;K) lies in the closure of Image(Ck).
Two foundational results in geometric tomography are as follows.

Theorem 1 (Funk 1916). Fix 1 ≤ k ≤ n−1. If S, S′ ∈ Ss(R
n) satisfy Ak(E;S) =

Ak(E;S′) for all E ∈ Grk(R
n), then S = S′.

Theorem 2 (Aleksandrov 1937 [1]). Fix 1 ≤ k ≤ n− 1. If K,L ∈ Ks(R
n) satisfy

Pk(E;K) = Ak(E;L) for all P ∈ Grk(R
n), then K = L.

The former result is based on the injectivity of the Radon transform R1,k. The
latter makes use of the injectivity of the cosine transform C1.

2. Results

In the following, T denotes either the Radon transform Rp,k with dimGrp <
dimGrk, or alternatively Ck with 2 ≤ k ≤ n − 2. We will write ImageCN (T ) :=
ImageC−∞(T ) ∩ CN , where ImageC−∞(T ) is the image of T on distributions.

In either cases, ImageNC (T ) is not dense in CN (Grk(R
N )) N ∈ {−∞, 0,∞}. A

representation-theoretic description of the image is available, which we now recall.
Denote κ = min(k, n− k), and Λκ = {λ1 ≥ · · · ≥ λκ : λi ∈ 2Z+}. One has the

multiplicity-free decomposition [8]

L2(Grk(R
n)) = ⊕λ∈Λκ

Vλ,

where Vλ are certain pairwise distinct irreducible representations of O(n).
We then have

Theorem 3 (Gelfand-Graev-Rosu [5]). Image(Rp,k) consists of those Vλ with
λp+1 = 0.
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Theorem 4 (Alesker-Bernstein [2]). Image(Ck) consists of those Vλ with λ2 ≤ 2.

It follows that any f ∈ Image(T ) has rather stringent restrictions on its spec-
trum. Our goal is to find a geometric rigidity manifestation of this spectral re-
striction. It will be realized through a quasianalyticity phenomenon. Generally
speaking, a class of functions is called quasianalytic if it has a unique continuation
property understood in broad terms: the values of a function from the class in an
appropriate small set must determine the function uniquely.

Definition 5. Fix F ∈ Grn−k(R
n). The open Schubert cell Σk

F ⊂ Grk(R
n)

is Σk
F = {E : E ∩ F = {0}}. The Schubert equator X ikF is its complement,

X ikF = {E : E ∩ F 6= {0}}.
Definition 6. A class of functions A ⊂ C(Grk(R

n)) is exp-X i-quasianalytic if,
whenever f, g ∈ A coincide exponentially on X ikF , namely if for some C, c > 0 it
holds for all E that

|f(E)− g(E)| ≤ C exp

(
− c

dGr(E,X ijF )

)
,

then f = g.
A class of distributions A ⊂ C(Grk(R

n)) is Bernstein-X i-quasianalytic if, when-
ever f, g ∈ A coincide in a neighborhood of X ikF , then f = g.

Our main result is as follows.

Theorem 7 (F [4]). Let T denote either Rp,k with dimGrp < dimGrk, or Ck
with 2 ≤ k ≤ n− 2. Then ImageC0(T ) is exp-X i-quasianalytic, and ImageC−∞(T )
is Bernstein-X i-quasianalytic.

This immediately implies sharper version of Funk’s and Aleksandrov’s theorems:

Theorem 8 (Sharper Funk, F [4]). Fix 1 ≤ k ≤ n − 1. If for S, S′ ∈ Ss(R
n) it

holds that Ak(E;S) and Ak(E;S′) coincide on any single Schubert equator, then
S = S′.

Theorem 9 (Sharper Aleksandrov, F [4]). Fix 1 ≤ k ≤ n−1. If for K,L ∈ Ks(R
n)

it holds that Pk(E;K) and Pk(E;L) coincide on any single Schubert equator, then
K = L.

One similarly obtains a sharper version of the Klain injectivity theorem [9] in
convex valuation theory, which can then be used to prove also a sharper version
of the Schneider injectivity theorem [10].

3. Sketch of proof of Theorem 7

The idea of the proof is quite simple. Let us work with T = Ck.
Assume by contradiction that a counterexample f exists, which for simplicity we

assume to be supported inside Σk
F . The first step is producing a counterexample

supported at a point. We use a trick going back to Gelfand-Graev-Rosu [5], writing
Ck as a GLn(R)-equivariant transform between spaces of sections of certain line
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bundles. Considering f as such a section, this allows to take gǫ = PrF⊥ + ǫPrF ∈
GLn(R), and define fǫ = g∗ǫ (f). Evidently fǫ has support shrinking to {F⊥},
and one can show that a sequence cǫ → 0 exists such that cǫfǫ converges to a
distribution f0 supported at {F⊥} which is still inside Image(Ck).

The second step consists of proving an uncertainty principle. Namely, we prove

Theorem 10 (F [4]). Assume 1 ≤ k ≤ n − 1. Assume f0 ∈ C−∞(Grk(R
n)) is

supported at one point. Consider supp(f̂0) = {λ ∈ Λκ : f̂0(λ) 6= 0}. Then

lim
m→∞

#{λ ∈ supp(f̂0) :
∑
λi ≤ 2m}

#{λ ∈ Λκ :
∑
λi ≤ 2m} = 1.

Moreover for k ∈ {1, n− 1}, supp(f̂0) must be co-finite.

However by the theorem of Alesker-Bernstein, that limit above must vanish,
leading to a contradiction.

Let us conclude by remarking that by results of Grinberg [7], Gonzalez and
Kakehi [6], the image of the Radon transform admits a description as the kernel of
SO(n)-invariant differential operator, while the image of the cosine transform lies
in the kernel of another such operator by results of Alesker-Gourevitch-Sahi [3].
However, this quasianalyticity property does not appear to be a consequence of the
PDEs. Furthermore, the methods and results above apply in greater generality to
various GLn(R)-modules realized as spaces of sections of equivariant line bundles
over the grassmannians, where no PDE description is known to exist.
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Valuations on Kähler manifolds

Gil Solanes

(joint work with Andreas Bernig, Joseph H.G. Fu, Thomas Wannerer)

LetMn be a smooth manifold, and let P(M) be the class of compact submanifolds
with boundary ofM . A smooth valuation onM (cf. [1]) is a functional φ : P(M) →
R of the form

φ(A) =

∫

N(A)

ω +

∫

A

η

where N(A) is the so-called conormal cycle of A, and ω ∈ Ωn−1(S∗M) is a differ-
ential form on the cosphere bundle S∗M of M , while η ∈ Ωn(M).

Remarkably (cf. [2]), the space V(M) of smooth valuations onM has an algebra
structure fulfilling e∗(φ · ϕ) = e∗(φ) · e∗(ϕ) for all φ, ϕ ∈ V(N) and any smooth
embedding e : M → N .

As a consequence of H. Weyl’s tube theorem, every riemannian manifold Mn

has a canonical subalgebra LK(M) ⊂ V(M), called the Lipschitz-Killing algebra,
characterized by the following facts:

i) if e : M → N is an isometric embedding between riemannian manifolds,
then e∗(LK(N)) = LK(M)

ii) if M is euclidean space Rn, then LK(M) is the full algebra ValO(n) of
isometry invariant valuations.

It follows that the algebra structure of LK(M) is universal: it depends only on
the dimension of M . Another simple consequence is that the algebras of invariant
valuations of euclidean space Rn and the round sphere Sn are isomorphic to each
other.

It was realized in [3] that also the algebra of isometry invariant valuations of CPn

is isomorphic to the algebra ValU(n) of valuations of Cn invariant under hermitian
isometries. This suggested the possibility that an extened version of the Lipschitz-
Killing algebra might be present on any Kähler manifold. This is precisely the
content of the following theorem.

Theorem 1 ([4]). To every Kähler manifold Mn there is an associated subalge-

bra KLK(M) ⊂ V(M) isomorphic to ValU(n) in such a way that e∗(KLK(N)) =
KLK(M) for every isometric holomorphic embedding e : M → N of Kähler mani-
folds.
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Superforms and convex geometry

Bo Berndtsson

This lecture continues the first part of my introductory lecture. A superform on Rn

is defined as a differential form on Cn whose coefficients depend only on x = Re z;

α =
∑

αJK(x)dxJ ∧ dξK .
The usual exterior differentiation operator acts on superforms, and we define

d# =
∑

∂/∂xj dξj ∧ .

This coincides with the operator dc = i(∂̄ − ∂) from complex analysis (the d-
operator twisted with the complex structure), but we write d# to emphazise that
we consider only its action on superforms. If φ(x) is a function on Rn we have

d#φ =
∑

φjkdxj ∧ dξk,

which makes sense as a current with measure coefficients for any convex (finite
valued) function, and also for functions that can be written locally as the difference
of two convex functions. By the theory of Bedford and Taylor (see the (abstract
of) the introductory lecture), wedge products of such currents

Ωk = d#φ1 ∧ ...d#φk
are also well defined. Taking k = n and φ = φ1 = ...φn we get the Monge-Ampère
measure of φ, MA(φ).

The integral of a superform of maximal degree is defined as
∫
a0(x)dx1 ∧ dξ1 ∧ ...dxn ∧ dξn :=

∫
α0(x)dx,

meaning essentially that we define
∫
dξ1 ∧ ...dξn = ±1

(Berezin integration).
The main point of the lecture was to advocate the use of superforms for cal-

culations involving the volume of convex bodies (this is partly based on previous
work of my students A. Lagerberg and S. Larsson) , and we tried to illustrate that
with a possibly new proof of the Alexandrov-Fenchel theorem. If φ is the support
function of a convex body K, one finds that MA(φ) is a a Dirac measure at the
origin of size |K|, the volume of K. More generally, if φj are support functions of
convex bodies Kj ;

d#φ1 ∧ ...d#φn = V (K1, ...Kn)δ0,

where V (K1, ...Kn) is the mixed volume of the Kj. More generally we can then
define in the same way V (u1, ...un), where uj are 1-homogeneous functions that
can be written as differences of support functions of convex bodies. Fixing convex
bodies K3, ...Kn and their support functions, we then get a quadratic form

Q(u, u) := V (u, u, φ3, ...φn).
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The essence of the Alexandrov-Fenchel theorem is that this form has Lorentzian
signature, i. e. that it is positive somewhere, and seminegative on a subspace of
codimension 1.

One approach to proving this (essentially Alexandrov’s approach) is to note
that

Q(u, v) = V (u, v, φ3...) =

∫

∂U

d#u ∧ d#v ∧ Ωn−2,

where U is any convex neighbourhood of the origin. After a rewrite this can be
written as ∫

∂U

uA(v)dm

where dm is, say, surface measure and A(v) is an elliptic second order differ-
ential operator. Alexandrov’s proof proceeds by studying the eigenvalues of A.
We sketched an alternative way, based on a study of Dirichlet problem for A on
domains in ∂U of the form

D = {x ∈ ∂U, x1 > 0}.
The main points were that the only function in D with zero boundary values,
solving A(u) = 0, is u = x1, and that this statement implies the Alexandrov-
Fenchel theorem.

On the Adler-Taylor Gaussian kinematic formula

Joseph Fu

The statisticians R. Adler and J. Taylor have introduced a new type of kinematic
formula based on the behavior of Gaussian random fields on a Riemannian man-
ifold Mn: that is, smooth random functions f = fω, ω ∈ Ω, on M whose value
f(x) is an N(0, 1) random variables for each x ∈M , and which give an isometric
embedding M → RΩ. Specifically, given d i.i.d. random functions of this type we
obtain a random mapping F :M → R

d. For convex bodies D ⊂ R
d, Adler-Taylor

show that for nice objects A ⊂M that

(1) E[χ(A ∩ F−1D)] =
∑

ciµi(A)γi(D)

where the µi are the intrinsic volumes and the γi are the “Gaussian intrinsic
volumes” on Rd, viz. the Gaussian measure γ0 and its derivatives with respect to
metric expansion.

We propose that Adler-Taylor theory should be viewed as a chapter in the
theory of valuations initiated by Alesker. To do so requires the resolution of two
technical issues.

First, we recall that Faifman and Hofstätter [3] have shown that any π belonging
to the algebra V(M) of smooth valuations on M may be expressed as

(2) π =

∫

S

χ(· ∩ S) dS,
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and subject to the multiplication formula

(3) ν · π =

∫

S

ν(· ∩ S) dS

for any ν ∈ V(M), where (S, dS) is a measured family of subsets of M . The left
hand side of (1) is an expression of the type (2), and we expect that it is also
subject to (3), but we do not yet have a full understanding of the conditions on
the family (S, dS) that would ensure this. This is surely true of the (1), in view
of the the higher Adler-Taylor formulas

(4) µj · E[χ(· ∩ F−1D)] = E[µj(· ∩ F−1D)] =
∑

ci,jµi+j(·)γi(D)

Second, [2] proposes a proof of (1) via embeddings of M into spheres ΣN ⊂
RN+1 of radius

√
N and dimension N , obtaining the Gaussian projection of M

into R
d by precomposing a given orthogonal projection R

N+1 → R
d with a random

rotation of ΣN . This brings the spherical kinematic formula into play, which
we understand thoroughly using the methods of algebraic integral geometry. To
confirm (1) by this means requires a careful study of the resulting tube formulas
in ΣN .

Beyond these technical questions, Adler-Taylor theory also suggests an avenue
towards resolving a central puzzle of integral geometry: the extension of the Weyl
Tube Theorem (that the µi(M) are Riemannian invariants) to singular spaces such
as convex hypersurfaces or sets with positive reach.
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