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Introduction by the Organizers

Spectra are ubiquitous throughout modern mathematics: The Zariski spectrum
of a commutative ring, the topological spectrum representing a generalized co-
homology theory, and the Balmer spectrum of a tensor-triangulated category are
important instances of the same underlying concept. In each case, the spectral rep-
resentation of a more familiar object reveals its hidden geometry and symmetries.
Amplified by modern homotopical and representation-theoretic techniques, recent
years have seen a whirlwind of activity and groundbreaking progress in the devel-
opment and application of spectral techniques, which may be loosely organized in
the following themes.

(1) Global classification problems: Classification of thick tensor ideals and lo-
calizing tensor ideals as the key to capturing the global structure of categories;
construction of novel support theories.

(2) Local-to-global principles: Assembly and disassembly in homotopy theory
and modular representation theory; adelic techniques in rational equivariant ho-
motopy theory; reconstruction theorems in (non-)commutative algebraic geometry.
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(3) Invariants, duality, and descent: The computation of Picard groups and
higher invariants like Brauer groups via ∞-categorical descent techniques; local
and global dualities.

Structurally the workshop consisted of five integral components: hour-long re-
search talks reporting on the most recent developments in tt-geometry; shorter
talks on Thursday morning given by all the graduate student participants; a mo-
tivic master class on Monday evening; a problem session on Wednesday evening;
and wide ranging and unrestricted discussions and collaborations during all the
remaining unscheduled time.

Motivic master class. On Monday evening Sasha Vishik and Tom Bachmann
gave a series of introductory lectures on the derived category of motives introducing
the other participants to the foundations of Voevodsky’s theory. The lectures were
given in a very accessible and interactive way and were much appreciated by the
non-geometers in the audience equipping them with the background necessary to
appreciate the next day’s talks on current motivic developments.

Problem session. On Wednesday night John Greenlees led an open problem
session which turned out to be very lively due to a special auction based format.
The potential contributors were mildly but firmly encouraged to bid for time to
describe their problems. The key principle was that those asking for the least
time got priority. This led to admirably succinct descriptions of the problems, and
left time for some discussion after each problem was stated. In several cases the
discussion led to a real prospect of progress. Keeping in character with the format
of our problem session we provide a very cursory list of the topics discussed:

(1) Paul Balmer enquired whether there was a uniform bound for nilpotence
degrees in tt-categories;

(2) Maxime Ramzi and Drew Heard posed questions on Tambara spectra which
led to a very good discussion revealing that Markus Hausmann thought
about the topic quite a bit;

(3) Dave Benson formulated questions around Greenlees’s conjecture for gen-
erating the category of finitely generated modules over C∗BG, and the
role of the nucleus in understanding singularity categories;

(4) Greg Stevenson asked a question about the relationship between dimension
of Balmer spectrum of a tt-category K and the Rouquier dimension of K;
followed by a finiteness question about “primes” for big tt-categories;

(5) Jan Stovicek suggested further explorations towards classification of com-
pactly generated t-structures;

(6) Sasha Vishik posed a problem about “points” of the spectrum of
DM(C,Fp): Are there only two and what is the relationship? Subsequent
discussion led to tangible progress;

(7) Dan Nakano and Kent Vashaw formulated questions about extending tt-
geometry to the non-symmetric setting; in particular about the relation-
ship of the (non-commutative) Balmer spectrum vs the homological spec-
trum;
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(8) Josh Pollitz asked about compact objects in the homotopy category of
injective dg-modules for a differential graded algebra; this was followed by
constructive discussions with Jan Stovicek;

(9) Ivo Dell’Ambrogio discussed the Bootstrap category and its connection
with KUG-modules; there was some tangible progress through Morita the-
ory.

Research presentations.

Towards spectral calculations in representation theory. Dave Benson reported on
joint work with Iyengar, Krause and Pevtsova on locally dualisable modules in
minimal cellularisations of the stable module category, giving numerous equiva-
lent definitions, including some concrete interpretations in terms of representation
theory. This led on to a classification of thick tensor ideals of dualisables in terms
of specialization closed subsets of the completed localization. Dan Nakano gave an
account of joint work with Matthew Hamil of a nilpotence theorem for Lie super-
algebras, including a complete description of the Balmer spectrum in many cases.
Eike Lau and Henning Krause (joint with Barthel, Benson, Iyengar and Pevtsova)
described in two independent talks the Balmer spectrum and stratification for sta-
ble categories of finite group schemes defined over commutative Noetherian rings.

tt-geometry and stable homotopy theory. Natàlia Castellana gave an account of
joint work with Barthel, Heard, Naumann and Pol giving analogues of a strong
Quillen stratification for a rather general equivariant cohomology theory. Clover
May described a number of results with Drew Heard on Balmer spectra of cate-
gories of modules over equivariant Eilenberg–MacLane spectra for constant Mackey
functors. Scott Balchin reported on a joint work with Barnes and Barthel on the
tt-geometry of the category of genuine equivariant G-spectra for G a profinite
group.

Other spectral calculations. Drew Heard described joint work with Arone, Barthel
and Sanders on the calculation of the Balmer spectrum of n-excisive functors
from spectra to spectra in Goodwillie calculus. He presented a complete answer
including topology and exhibited a close parallel with what happens for G-spectra
for a finite group G.

Structural questions in triangulated categories. Kent Vashaw described general
constructions in “non-commutative” tt-geometry, including the functorial map
from the Balmer spectrum to the categorical center. Jan Stovicek gave an ac-
count of work generalizing the classification of compactly generated t-structures
due to Alonso, Jeremias and Saorin, going beyond the Noetherian case and into
certain non-commutative contexts. Janina Letz described joint work with Marc
Stephan giving significantly improved bounds on the generation time by using
suitable exact bifunctors. Ivo Dell’Ambrogio described how to apply the meth-
ods of tt-geometry in C∗-algebras by considering cellular algebras and applying
countable versions of various constructions, which he showed to be particularly
effective for finite groups. Josh Pollitz described joint work with Ballard, Iyen-
gar, Lank and Mukhophadyay understanding singularities in prime characteristic
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through the lens of the Frobenius endomorphism. Their results show that a Frobe-
nius pushforward of a module of full support gives a strong generator and leads
to illuminating proofs of many Kunz-like regularity theorems. In Beren Sanders’s
talk the question of the tt-geometry properties of the “monogenisation” of a tt-
category was posed and some theorems and examples, coming from motivic and
equivariant settings, were stated. The choice of terminology proved controversial
with the audience and a lively discussion ensued.

tt-geometry and the category of motives. Sasha Vishik reported on the progress
towards Balmer spectrum for the Voevodsky and Morel–Voevodsky category of
motives. Vishik’s talk was intimately connected with the talk by Martin Gallauer
on the tt-geometry for the category of permutation modules for a profinite group
which was motivated by the tt-questions in the category of Artin motives. Tom
Bachmann gave an account of progress on the C2-equivariant motivic stable ho-
motopy theory, highlighting analogues of the geometric fixed points and also a
complete t-structure with an explicitly describable heart.

Graduate student research presentations. Charalampos Verasdanis dis-
cussed the “local-to-global” approach to costratification of tt-vategories, and ap-
plications to hypersurface singularities.

Changhan Zou explored tt-geometry in non-noetherian settings, introducing the
notion of small support.

Maxime Ramzi talked about work with Naumann and Pol giving a complete
classification of separable algebras in G-spectra for G a finite p-group.

Anish Chedalavada presented a generalization of the classical reconstruction
theorem for schemes from the Balmer spectrum of the perfect category of sheaves
to the setting of symmetric monoidal stable infinity categories, building on joint
work with Aoki, Barthel, Schlank and Stevenson.

Acknowledgement:We are grateful to the Mathematisches Forschungsinstitut Ober-
wolfach for providing such an excellent environment for our workshop. The MFO
and the workshop organizers would like to thank the National Science Foundation
for supporting the participation of junior researchers in the workshop by the grant
DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

C2-equivariant motivic stable homotopy theory

Tom Bachmann

Fix a finite group G and a field k in which |G| is invertible. The definition of the
G-equivariant motivic stable category was contemplated by various authors, until
it was put into definite form in the work of Hoyois [4]. The definition can be made
to look very familiar to the non-equivariant motivic practitioner. Write SmG

k for
the category of smooth k-schemes with a G-action. We start with the category

PSh(SmG
k )

of presheaves of spaces on SmG
k . We then perform a Bousfield localization in order

to arrive at motivic spaces

SpcG(k) = LA1,NisPSh(Sm
G
k ).

The pointed version SpcG(k)∗ acquires a symmetric monoidal structure called the
smash product, and the G-equivariant motivic stable category is obtained as

SHG(k) = SpcG(k)∗[((P1)∧G)−1].

The first result that I presented is a motivic variant of the presentation of classi-
cal equivariant stable homotopy theory using spectral Mackey functors. To explain
this, denote by Span(SmG

k , fet, all) the (2, 1)-category with the same objects as
SmG

k , but morphisms from X to Y given by groupoids of spans of the form

X
p←− Z f−→ Y,

where p is a finite étale morphism (and f is an arbitrary morphism). The compo-
sition of morphisms is via pullback. The category

PSh(Span(SmG
k , fet, all))

is thus the category of presheaves of spaces on SmG
k together with “wrong-way”

or “transfer” maps along finite étale morphisms. Out of this we can build the
category of motivic spaces with finite étale transfers

Spcfet,G(k) = LA1,NisPSh(Span(Sm
G
k , fet, all)).

Theorem 1. There is a canonical equivalence of categories

SHG(k) ≃ Spcfet,G(k)[((P1)∧G)−1].

This is the main result of [1]. It is essentially a categorified form of the motivic
tom Dieck splitting Theorem of Gepner–Heller [3].

One curious fact that we can read off from this theorem is that the category
SHG(k) is compactly generated by objects of the form Σ∞

+X ∧G∧n
m for X ∈ SmG

k

and n ∈ Z. Here Gm denotes the trivial representation (and the trivial action is
the curious aspect).



2310 Oberwolfach Report 40/2023

Definition 2. The homotopy t-structure on SHG(k) is the one with non-negative
part generated under colimits and extensions by the above objects.

It holds essentially by construction that the homotopy t-structure is left com-
plete, and one may also show that it is right complete. Moreover, there are certain
“(generalized) fixed point functors” which are t-exact for the homotopy t-structure.
For simplicity, we explain what these are in the case G = C2. The fixed point func-
tors come in three forms: there is the usual C2-fixed points functor

(−)C2 : SHC2(k)→ SH(k),

there is the “forgetful” functor

(−)e : SHC2(k)→ SH(k),

and for every field l/k with a non-trivial C2-action, there is

(−)l : SHC2(k)→ SH(lC2).

We also have the following result which might be of particular interest for this
workshop.

Theorem 3. The generalized fixed point functors form a conservative family.

The final result that I sketched was that in the case G = C2, the heart of the
homotopy t-structure on SHC2(k) can be described explicitly. This is done as
follows. A sheaf of abelian groups

F ∈ ShvNis(Sm
C2

k )

is called strictly homotopy invariant if for every X ∈ SmC2

k the canonical map

H∗
Nis(X,F )→ H∗

Nis(A
1 ×X,F )

is an isomorphism. Given such a sheaf F , one may prove that the presheaf
F−1(X) = F (X × Gm)/F (X) is again a sheaf. Now by a homotopy module (over
k, with C2-action) we mean a sequence of sheaves with finite étale transfers

Fi ∈ ShvNis(Span(Sm
G
k , fet, all))

together with isomorphisms (Fi+1)−1 ≃ Fi, such that each Fi is strictly homotopy
invariant.

Theorem 4. Let k be infinite. The heart SHC2(k)♥ of the homotopy t-structure
is equivalent to the category of homotopy modules over k with a C2-action.

The result is obtained by mimicking the non-equivariant proof. The key input is
a C2-equivariant generalization of Gabber’s presentation lemma from [2]. This is a
rather technical geometric statement, which is used to deduce a crucial connectivity
estimate:

Lemma 5 (C2-equivariant stable connectivity). Let E : (SmG
k )

op → Sp be a
spectral presheaf, which is Nisnevich locally connected. Then LA1,NisE is also
connected.
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Open question. It seems fairly clear that the results can be generalized from the
case of G = C2 to other groups. This seems particularly likely if all irreducible
representations of G are one dimensional. But what if G affords irreducible repre-
sentations of dimension > 1. Does stable connectivity still hold?
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The tensor-triangular geometry of G-spectra for profinite G

Scott Balchin

(joint work with David Barnes, Tobias Barthel)

We study the tensor-triangular geometry of the category of genuine equivariant G-
spectra where G is a profinite group. Taking a leaf from the structure theorem of
profinite groups — which says that any profinite group G is the cofiltered limit of
finite quotient groups Gi [7] — we define the category of G-spectra for a profinite
group as the filtered colimit of the Gi-spectra. This continuous construction of
the category SpG allows us to lift structural results form the finite group case to
the profinite case. For example, a result of Gallauer [4] allows us to compute the
Balmer spectrum as the limit of the Balmer spectra of the SpGi

. All in all we
prove a generalization (and strengthening) of the nilpotence theorem [1, 8] and
the thick subcategory theorem [1, 2] for finite groups:

Theorem 1. Let G be a profinite group. Then:

• The nilpotence theorem holds for SpG unconditionally. That is, the geo-
metric functors (Kp(n)∗Φ

H
G )H,p,n jointly detect ⊗-nilpotence of morphisms

in SpG with compact source.
• If G is moreover abelian, then there is a full classification of thick ideals
of SpωG.

We then focus our attention onto the rationalized category SpG,Q, with a par-
ticular focus on the question of stratification, that is, when the localizing ideals are
in bijection with the subsets of the Balmer spectrum [3]. We prove the following
characterization of stratification using work of Gartside–Smith [5, 6]:

Theorem 2. Let G be a profinite group. The category of rational G-spectra SpG,Q
is a tensor-triangulated category with Balmer spectrum

Spc(SpωG,Q)
∼= Sub(G)/G,

and the following conditions are equivalent:
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(1) SpG,Q is stratified;
(2) Sub(G)/G is countable;
(3) AQ(G), the rational Burnside ring of G, is semi-Artinian.

Moreover, if G is abelian, then these conditions hold if and only if G is topologically
isomorphic to A× Zp1

× · · · × Zpr
for pairwise distinct primes p1, . . . , pr and A a

finite abelian group.

The conditions appearing in this characterization are rather delicate as it relies
on the cardinality of conjugacy classes of subgroups. For example, one is able to
show that while SL2(Zp) contains uncountably many subgroups, it only contains
countably many up to conjugacy, and hence SpSL2(Zp),Qis stratified.
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Locally dualisable modules for finite groups

Dave Benson

(joint work with Srikanth Iyengar, Henning Krause, Julia Pevtsova)

Let G be a finite group and k a field of characteristic p. The cohomology ring
H∗(G, k) = Ext∗kG(k, k) is a graded commutative Noetherian k-algebra. The sta-
ble module category StMod(kG) has as objects the kG-modules, and the arrows
HomkG(M,N) are given by the quotient of the kG-module homomorphisms by
those that factor through a projective module. Then StMod(kG) is a tensor tri-
angulated category that comes with a map from cohomology to the graded centre

H∗(G, k)→ Z∗StMod(kG)

If p is a (homogeneous) prime ideal in H∗(G, k) then there are functors

Γp, Λ
p : StMod(kG)→ StMod(kG)
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that are idempotent, and pick out the minimal localising tensor ideals, respectively
colocalising tensor coideals of StMod(kG). These induce bijections

{localising tensor ideals} ←→ ProjH∗(G, k)←→ {colocalising tensor coideals}
and we have Γp(M) ∼= Γpk ⊗M , Λp(M) ∼= Homk(Γpk,M). The functors Γp, Λ

p

induce equivalences ΓpStMod(kG) ←→ ΛpStMod(kG). The cohomology is given

by Ĥ∗(G,Γpk) ∼= H∗(G, k)p, the localisation of the cohomology ring at p, and we

have Êxt∗kG(Γpk,Γpk) ∼= H∗(G, k)
∧

p , the completion of the localisation at p. For
details, see [1, 2].

In general, let T be a tensor triangulated category with tensor identity 1, and
assume that T has Brown representability: contravariant exact functors T → Ab
are representable. So there exists Hom objects:

[X ⊗ Y, Z] ∼= [X,Hom(Y, Z)]

where [X,Y ] denotes the morphisms in T from X to Y . We define the Spanier–
Whitehead dual of X to be DSW(X) = Hom(X,1). Then there is a natural
map DSW(X) ⊗ Y → Hom(X,Y ), and we say that an object X is dualisable if
this is an isomorphism for all Y . We say that X is compact if the natural map⊕

[X,Yα]→ [X,
⊕
Yα] is an isomorphism, and functionally compact if the natural

map
⊕Hom(X,Yα)→ Hom(X,

⊕
Yα) is an isomorphism. Then

(1) dualisable ⇒ functionally compact,
(2) X dualisable ⇒ DSWX dualisable, and X → DSWDSWX is iso,
(3) if T is generated by a set of dualisables then functionally compact ⇒

dualisable,
(4) if 1 is compact then functionally compact ⇒ compact.

In ΓpStMod(kG), we have Hom(M,N) = ΓpHomk(M,N), and so DSWM =
ΓpHomk(M,Γpk). But beware that the tensor identity Γpk in this category is
usually not compact, so compact and dualisable are different conditions. Compact
objects are dualisable, but there are usually more dualisables than compacts.

Recall from [5] that a π-point α of kG consists of a field extension K ⊇ k and
a flat homomorphism of algebras α : K[t]/(tp) → KG that factors through KE
for some elementary abelian p-subgroup E of G. We say that α : K[t]/(tp)→ KG
and β : L[t]/(tp)→ LG are equivalent (written α ∼ β) if for all finitely generated
kG-modules M , α∗(MK) is projective if and only if β∗(ML) is projective.

Given a π-point α : K[t]/(tp)→ KG, we look at the composite

H∗(G, k)→ H∗(G,K)
α∗

−−→ H∗(K[t]/(tp),K).

Since H∗(K[t]/(tp),K) is of the form K[x] (p = 2, |x| = 1) or K[x]⊗Λ(y) (p odd,
|x| = 2, |y| = 1), the inverse image in H∗(G, k) of the radical is a prime ideal pα
in ProjH∗(G, k). In [5], it is proved that α ∼ β if and only if pα = pβ, and that
this gives a bijection between the set of equivalence classes of π-points and the set
ProjH∗(G, k). Furthermore, given p, there exists a finite extension K of k(p) and
a π-point α : K[t]/(tp) → KG such that p = pα. We say that such a π-point is
good. So every equivalence class contains good π-points.
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Now let p be a point in ProjH∗(G, k). Let α : K[t]/(tp)→ KG be a good π-point
with pα = p. We define a kG-module

∆α = (KK[t]/(tp)↑KG)↓kG.
Let C be a compact generator for StMod(kG). For example, we can take for C
the permutation module on the cosets of a Sylow p-subgroup, or the direct sum of
the simple kG-modules. Then we have the following characterisations of compacts
and dualisables.

Theorem 1. For a module M in ΓpStMod(kG), the following are equivalent:

(1) M is compact,

(2) Ĥ∗(G,M ⊗ C) has finite length over H∗(G, k)p,
(3) M is in the thick subcategory generated by ∆α.

Theorem 2. For a module M in ΓpStMod(kG), the following are equivalent:

(1) M is dualisable,
(2) M is functionally compact,
(3) M is in the thick subcategory generated by ΓpC,
(4) α∗(MK) is a direct sum of a finite dimensional and a projective K[t]/(tp)-

module,
(5) Êxt∗kG(M,∆α) has finite length over H∗(G, k)p,
(6) Êxt∗kG(∆α,M) has finite length over H∗(G, k)p,

(7) Ĥ∗(G,M ⊗ C) is Artinian over H∗(G, k)p,

(8) Êxt∗kG(M ⊗ C,Γpk) is Noetherian over Êxt∗kG(Γpk,Γpk) ∼= H∗(G, k)
∧

p ,
(9) Homk(M,Γpk) is in the thick subcategory of ΛpStMod(kG) generated by

ΛpC.

The Balmer spectrum of dualisable objects in ΓpStMod(kG) is ProjH∗(G, k)
∧

p .
The reader should beware here that completion can change the spectrum. For
example, if k has odd characteristic and we take the ring R = k[x, y], with p =

(x, y), then the polynomial x2 − y2(1 − y) is prime in Rp, but factorises in R
∧

p

as (x + y
√
1− y)(x − y√1− y). This can be used to give a similar example in

the stable module category of (Z/p)4 by first homogenising, then adding another
variable so that p is not maximal, and then interpreting in the polynomial part of
the cohomology ring.
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Quillen stratification in equivariant homotopy theory

Natàlia Castellana Vila

(joint work with Tobias Barthel, Drew Heard, Niko Naumann, Luca Pol)

In this project (see [5]) we prove a generalization of strong Quillen’s stratification
theorem in the context of equivariant homotopy theory, formulated in the language
of tensor-triangular geometry.

Quillen [9] published a celebrated theorem known as strong Quillen stratification
theorem. The strong stratification theorem provides a decomposition of the Zariski
spectrum of the cohomology of any finite group G with coefficients in a field k

SpecH•(G, k) =
⊔

(E)⊆G

V+
G,E.

in terms of locally closed subsets indexed on the conjugacy classes of elementary
abelian subgroups and the strata V+

G,E are orbits of the Weyl group action on an

open subset of the Zariski spectrum SpecH•(E, k) of the cohomology of E, which
is well-known.

The weak version of this result in Quillen’s paper describes the spectrum as a
colimit of SpecH•(E, k) on the orbit category on elementary abelian subgroups.
Generalizations of this result had been obtained previously. On the one hand,
Mathew–Naumann–Noel [8] proved a generalization for coefficients in an arbitrary
commutative equivariant ring spectrum; on the other hand, this statement had
also found a tt-geometric version for the spectrum of Db(FpG) in Balmer’s [1].

The goal is to conceptualize these results in a uniform way getting together
equivariant tensor-triangular geometry, Quillen’s stratification of group cohomol-
ogy, and stratifications in modular representation theory. In particular, we estab-
lish a Quillen-type decomposition of the Balmer spectrum of equivariant tensor-
triangulated category and study the extent to which it is reflected in a stratification
of the category defined over it.

Suppose that T is a rigidly-compactly generated tt-category whose Balmer spec-
trum of compact objects is Noetherian. One would like to understand when the
Balmer spectrum of compact objects also parameterizes the localizing ⊗-ideals.
Balmer–Favi [4] and Stevenson [10] have extended the notion of Balmer support
from compact objects,T c, to all of T .

(1) {Localizing ⊗-ideals of T } Supp−→ {Subsets of Spc(T c)}
If the map Supp from (1) is a bijection, then we say that T is stratified. So, the
first question is to decide when this happens. Techniques to approach this question
are developed in [6]. Another question then is to identify Spc(T c) as a set or as
a topological space. If R is the graded endomorphism ring of the unit, Balmer
[3] defines a natural continuous comparison map ρ : Spc(K) → Spech(R) which

combined with Spech(R)→ Spec(R0) (that sends a homogeneous prime ideal p to
p ∩R0), gives rise to an ungraded comparison map

ρ0 : Spc(K)→ Spec(R0).
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We specialize to the following context. Let G be a finite group. We let SpG
denote the stable∞-category of G-spectra. Given a commutative equivariant ring
spectrum R, let ModG(R) denote the ∞-category of R-modules internal to SpG,
and write PerfG(R) for its full subcategory of compact (or perfect) modules. Given
a subgroup H ⊆ G, the geometric fixed point functor is denoted by ΦH .

In the following main result we establish an analogue of Quillen stratification
for an arbitrary commutative equivariant ring spectrum R and we show that the
category is stratified in terms of geometric fixed points.

Theorem 1. Let R be a commutative equivariant ring spectrum and write
ModG(R) for the category of G-equivariant modules over R. Then:

(1) The spectrum of perfect R-modules admits a locally-closed decomposition

Spc(PerfG(R)) ≃
⊔

(H)⊆G

Spc(Perf(ΦHR))/WG(H),

with the set-theoretic disjoint union being indexed on conjugacy classes of
subgroups of G;

(2) ModG(R) is stratified if the categories Mod(ΦHR) are stratified with Noe-
therian spectrum for all subgroups H in G.

In both (a) and (b) it suffices to index on a family F of subgroups H ⊆ G such
that R is F-nilpotent.

Specializing to the Borel-equivariant theory for HFp, the Eilenberg-MacLane
spectrum for Fp, one recovers a version of Quillen’s theorem (restricted to homo-
geneous prime ideals). We apply our methods to the relevant case of the Borel-
equivariant Lubin-Tate E-theory.

Theorem 2. Let E = En be a G-Borel-equivariant Lubin–Tate E-theory of height
n and at the prime p. The category ModG(E) is cohomologically stratified, and
there is a decomposition into locally-closed subsets.

Spc(PerfG(E)) ∼= Spec(E0(BG)) ≃
⊔

A

Spec(π0Φ
AE)/WQ

G (A),

where the disjoint union is indexed on abelian p-subgroups A of G generated by
at most n elements. In particular, the generalized telescope conjecture holds for
ModG(E) and there are explicit bijections

{
Thick ⊗-ideals of

PerfG(E)

} {
Specialization closed

subsets of Spec(E0(BG))

}
∼

and {
Localizing ⊗-ideals of

ModG(E)

} {
Subsets of

Spec(E0(BG))

}
.∼

A key input for the proof of the previous theorem is the following result which
allows to understand stratification for modules over the geometric points following
[7].
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Theorem 3. The commutative ring π0Φ
AE is regular Noetherian for any finite

abelian p-group A.

Other examples obtained by applying the main result are the following:

(1) The integral constant Green functor R = HZ for any cyclic p-group G.
(2) Equivariant K-theory R = KUG for any finite group G. In this case,

Spc(PerfG(KUG)) ∼= Spec(π0KUG), where π0KUG
∼= R(G) is the complex

representation ring of G.

•F3•F5•F7 · · · •F2 •F3•F5•F7 · · ·

•Q •Q

Figure 1. Here Spc(PerfC2
(KUC2

)) ∼= Spec(R(C2)). The clo-
sure goes upwards, and the primes are labeled by their residue
fields.

(3) Atiyah’s K-theory with reality R = KR for G = C2. In this case,
Spc(PerfC2

(KR)) ∼= Spec(Z).
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A derived refinement of a classical theorem in tt-geometry

Anish Chedalavada

We let 2CAlg := CAlg(Catperf∞ )rig the ∞-category of 2-rings be the underlying
(∞, 1)-category of symmetric monoidal, stable, idempotent complete ∞-categories
with a biexact tensor product that are rigid, meaning every object is dualizable
(here the symmetric monoidal structure on Catperf∞ is that of [BGT13, 3.1]). In
particular, for any object K ∈ 2CAlg, the homotopy category ho(K) is canonically
tensor-triangulated and rigid [Bar+23, 5.12]. To any small tensor-triangulated
category K0, one may equip the basic open sets of its Balmer spectrum Spc(K0)
with a “structure presheaf” of triangulated categories [Bal02, §5], specializing to
the following assignment:

U(a) 7→ K0(U(a)) := (K0/a)
♮

where U(a) ⊆ Spc(K0) is the basic open set corresponding to the primes which
contain a ∈ K0, K0/a denotes the Verdier quotient of K0 by the thick tensor-ideal
generated by a, and (−)♮ denotes idempotent completion.

Our first result demonstrates that for any K ∈ 2CAlg, the “structure presheaf”
on Spc(hoK) upgrades to a full structure sheaf valued in 2CAlg, with an appro-
priate locality condition. We recall the following definition.

Definition 1. [Bal10, 4.1] A tensor-triangulated category K0 is called local if the
thick tensor ideal {0} ⊆ K0 is prime.

We now have the following:

Theorem 2. For K ∈ 2CAlg, there is a natural sheaf OK ∈ Shv2CAlg(Spc(hoK))
such that for any a ∈ K, ho(OK(U(a))) = (hoK/a)♮. Furthermore, for every
x ∈ Spc(hoK), the homotopy category of its stalk OK,x is a local tt-category.

Remark 3. Any x ∈ Spc(hoK) corresponds to a prime tt-ideal P ⊆ K, and the
homotopy category of the stalk OK,x is exactly (hoK/P)♮.

This motivates the following definition, which we write informally for the pur-
pose of exposition.

Definition 4. The ∞-category Toploc2CAlg of locally 2-ringed spaces is the (∞, 1)-
category whose objects are pairs (X,OX) where X ∈ Top and OX ∈ Shv2CAlg(X)
has local homotopy categories of stalks, and morphisms f : (X,OX) → (Y,OY )
are given by pairs

[f# : X → Y ] ∈ Top∆
1

, [f# : OY → f∗OX ] ∈ Shv2CAlg(Y )∆
1

where f# induces conservative functors on homotopy categories of stalks.

We will henceforth utilise the notation Spc(K) to refer to the locally 2-ringed
space (Spc(hoK),OK). Our next result provides both functoriality and a universal
property for Spc(K) among all locally 2-ringed spaces.
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Theorem 5. The assignment K 7→ Spc(K) promotes to a fully faithful functor
Spc(−) : 2CAlgop → Toploc2CAlg. Furthermore, for any X ∈ Toploc2CAlg, one has the
following equivalence

MapToploc
2CAlg

(X, Spc(K)) ≃Map2CAlg(K,Γ(X,OX))

via the map that takes a morphism f : X → Spc(K) to the induced map on global
sections of structure sheaves.

We note that the results above have been obtained independently by joint work
of Ko Aoki, Tobias Barthel, Tomer Schlank, and Greg Stevenson.

We go on to apply the machinery above in proving a derived-geometric extension
of a classical result of Balmer-Thomason on the reconstruction of coherent schemes
from their categories of perfect complexes (stated in full generality as [KP17,
4.2.5]). To formulate the same, we need the following definition.

Definition 6. We write SpcLRS(K) ∈ ToplocCAlg to denote the locally spectrally

ringed space given by (Spc(K),End1(OK)), where End1 : 2CAlg→ CAlg denotes
the functor sending a 2-ring to the endomorphism ring spectrum of its unit object.

Remark 7. The fact that the spectrally ringed space above is locally spectrally
ringed is an observation originally made in [Bal10, 6.6]. Furthermore, the proposi-
tion preceding this observation implies that one has a functor LRS : Toploc2CAlg →
ToplocCAlg by sending (X,OX) 7→ (X,End1(OX)).

Our main result is the following version of reconstruction for a certain class of
spectral schemes.

Theorem 8 (Reconstruction). Let X ∈ SpSchnc be a nonconnective spectral
scheme whose underlying classical scheme X♥ is coherent and has affine diag-
onal. Then there is a canonical map of locally spectrally ringed spaces γX :
SpcLRS(PerfX)→ X, satisfying the following:

(1) Any open immersion of an affine spectral subscheme ι : Spec(R) →֒ X,

induces an open inclusion U := SpcLRS(PerfR) →֒ SpcLRS(PerfX), and

the restriction γX|U : SpcLRS(PerfR) → X is given by a composition

SpcLRS(PerfR)
ρR−−→ Spec(R)

ι−→ X.
The map ρR is the affinization map associated to the locally spectrally

ringed space SpcLRS(PerfR), and in particular on underlying classically
ringed spaces it recovers the comparison map Spc(hoPerfR)→ Spec(π0R)
of [Bal10].

(2) One has a natural equivalence

Map2CAlg(PerfX,K) ≃ MapToploc
CAlg

(SpcLRS(K),X)

for any K ∈ 2CAlg, where the map is induced by the functor composite
LRS ◦ Spc(−) following by pushing forward along γX.

We remark that part (1) of the above theorem can be interpreted as saying
that Balmer spectra of spectral schemes are governed by a “geometric direction”
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corresponding to the underlying classical scheme of X, and a “homotopy theoretic”
direction governed by the comparison maps on an affine chart.

Remark 9. We indicate a few examples of (1) below.

(1) From (1) one can immediately deduce that for any connective spectral
scheme satisfying the conditions of the theorem, the comparison map γ of
the theorem is surjective using the results of [Bal10, §7].

(2) The full reconstruction for classical schemes (with affine diagonal) as stated
in [KP17, 4.2.5] is a direct consequence of the reconstruction theorem
above, combined with [Bal10, 8.1].

(3) Given any locally even periodic spectral scheme whose underlying classical
scheme is regular noetherian and satisfies the conditions of the theorem, γ
is an equivalence. This promotes (and extends) the scheme case of [Mat15,
1.7] to a statement on ringed Balmer spectra, essentially by reformulating
[Mat15, 1.4] in terms of Balmer’s comparison map ρR. We intend to discuss
the reconstruction theorem for spectral DM-stacks in future work.

We end by indicating an application of part (2) of the theorem above.

Corollary 10. Given any locally monogenic 2-ring K such that SpcLRS(K) is
itself a coherent nonconnective spectral scheme whose underlying classical scheme
has affine diagonal, one has an equivalence of 2-rings

K ≃ PerfSpcLRS(K)

In particular, this yields an equivalence of tensor-triangulated categories upon pas-
sage to homotopy categories.

A key example of categories satisfying the above include the principal blocks
of any ∞-categorical enhancement of the stable module categories of a finite flat
group scheme G over a field k of characteristic p > 0, by results of [FP07]. Equiv-
alences of this form enable the computation of invariants in these categories using
descent-theoretic techniques based on the associated spectral scheme: these have
been utilised in chromatic homotopy theory to great effect, for example in the
computation of the Picard group of TMF via an étale descent spectral sequence
as in [MS16], or in the classification of certain Azumaya algebras for TMF as in
[BMS22]. We end our discussion with two questions:

Question 11. Can the Picard and Brauer groups of the principal blocks for stable
module categories be completely computed by a descent spectral sequence based
on their associated spectral schemes?

Question 12. Do the spectral schemes appearing in the equivalences above admit
natural spectral moduli-theoretic interpretations? I am presently able to provide
an affirmative answer only for elementary abelian groups.
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Stratification in Kasparov theory

Ivo Dell’Ambrogio

(joint work with Rubén Martos)

Kasparov’s KK-theory is an important tool for operator algebraists and noncom-
mutative geometers. It features prominently e.g. in the proof of the Baum-Connes
conjecture for large classes of groups [Kas88]. For every (say) countable discrete

group G, it defines an essentially small tt-category KKG and therefore a spectrum
Spc(KKG). Long ago I proved [Del10] that if the natural map

⊔H≤G finiteSpc(KK
H)→ Spc(KKG)

is surjective, then a strong form of the Baum-Connes conjecture holds for G. This
criterion, alas, appears to be useless, since the computation of such triangular
spectra has prove elusive, indeed KKG is a rather badly behaved tt-category to
which the usual techniques do not apply.

Recently, a little hope has been restored by replacing KKG with the more rea-
sonable subcategory CellG ⊂ KKG of cellular G-algebras, and the Balmer spectrum
with a countable version, Spcω:

Theorem 1 (D.–Martos 2022). If the map ⊔H≤G finiteSpcω(Cell
H)→ Spcω(Cell

G)
is surjective, G satisfies a strong form of the Baum-Connes conjecture.

The difference is that, this time, we know how to calculate Spcω(Cell
G) at least

in the case of some small finite groups (and possibly also rationally for all finite
groups; work in progress!). The way this works for G finite is that we observe that
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if CellG is stratified by the Balmer-Favi support (in a countable version of the usual

meaning, as these categories only have countable coproducts), then Spcω(Cell
G) is

just Spc(CellGc ), the usual spectrum of the tt-subcategory of compact-rigid objects.
The latter space is known for G = 1 and G = Z/pZ with p prime [DM21]. Even

better, in these cases we can apply the proposition because:

Theorem 2 (D.–Martos 2023). Stratification holds for Cell1 and CellZ/pZ.

The case of Cell1 (= the Rosenberg-Schochet bootstrap category) is easy, but for

CellZ/pZ we first use ∞-categorical enhancements to construct (for any finite G)

a rigidly-compactly generated tt-category CellGbig which is nicely functorial in G

and which contains CellG in a way which preserves the existing countable coprod-
ucts. We then apply the stratification theory of Barthel-Heard-Sanders [BHS21]

to CellGbig , and manage to prove stratification when G = Z/nZ. Finally, tricks from
Neeman’s theory of well-generated categories let us deduce ‘countable’ stratifica-
tion for the subcategory CellG when (usual) stratification holds for CellGbig.

The above ideas may well apply to more general finite groups. For G infinite,
however, all the usual techniques again break down, essentially because the natural
generating objects of CellG are neither dualizable nor compact. . . New ideas are
welcome!
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Going pro in tt-geometry

Martin Gallauer

(joint work with Paul Balmer)

For any field F there is a canonical equivalence of tt-categories between Artin
motives over F (in the sense of Voevodsky) and the derived category of permutation
modules over the pro-finite absolute Galois group G of F:

DAM(F) ≃ DPerm(G)

The latter can also be understood as the derived category of cohomological Mackey
functors, or as modules over the constant Green functor, see [1]. Motivated by
these equivalences, in recent work [2, 3, 4] we have been studying in detail the
tt-geometry of DPerm(G; k) for arbitrary pro-finite groups G with coefficients in
a field k.
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I will start by recalling our results in the case of a finite group. After that
the focus will be on the passage to pro-finite groups, leading us to the following
general task. Frequently, a tt-category T can be expressed as a filtered colimit of
tt-categories Ti that are more accessible. Ideally, one would like to reduce questions
about the tt-geometry of T to that of the Ti’s. The formula Spc(T ) = lim←−Spc(Ti),
while useful for theoretical purposes, doesn’t entirely solve this problem. Instead,
I will discuss a density theorem that, in good cases, identifies a subspace of Spc(T )
that is accessible and yet determines the entire space. Finally, this result will be
applied to the derived category of permutation modules (and therefore to Artin
motives).
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The geometry of functor calculus

Drew Heard

(joint work with Greg Arone, Tobias Barthel, Beren Sanders)

1. Introduction

To any (essentially small) tensor-triangulated category C, Balmer has associated
a topological space Spc(C), an analog of the Zariski spectrum of a commutative
ring [2]. The points of this space are the prime thick-⊗ ideals of C, and the
Thomason subsets classify the thick ⊗-ideals of C. In the case where C = D(R)c,
the compact objects in the unbounded derived category of a commutative ring,
then Spc(D(R)c) ∼= Spec(R), the usual Zariski spectrum of R.

The purpose of this talk was to explain a new computation in tensor-triangulated
geometry, namely a determination of the spectrum of Goodwillie’s category of d-
excisive functors from finite spectra to spectra.

2. The tt-category of d-excisive functors

We recall the following definitions. For more details, see Goodwillie’s original
paper [6].

Definition 1. Let d = {1, . . . , d}. A d-cube in finite spectra is a functor P(d)→
Spc, where P(d) denotes the poset of subsets of d. A d-cube X is said to be

https://arxiv.org/abs/2107.11797
https://arxiv.org/abs/2210.08311
https://arxiv.org/abs/2307.04398
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(1) cartesian, if the canonical map

X (∅)→ lim
∅ 6=S⊆d

X (S)

is an equivalence, and
(2) cocartesian, if the canonical map

colimS(d X (S)→ X (d)
is an equivalence.

Finally, a d-cube X is strongly cocartesian if it is left Kan extended from subsets
of cardinality at most 1 (equivalently, any 2-face in the cube is a pushout).

Definition 2. A functor Spc → Sp from finite spectra to spectra is said to be
d-excisive if it takes strongly cocartesian (d+ 1)-cubes to cartesian (d+ 1)-cubes.
We let

Excd(Sp
c, Sp) ⊆ Fun(Spc, Sp)

denote the full subcategory of functors which are d-excisive and reduced, i.e.,
F (∗) ≃ ∗.

For example, a reduced functor F : Spc → Sp is 1-excisive if and only if F
carries pushout squares to pullback squares (i.e., F is exact). In fact, this sets up
an equivalence of categories Exc1(Sp

c, Sp) ≃ Sp, given by evaluation at the sphere
spectrum.

In order to apply methods from tensor-triangulated geometry to the category
of d-excisive functors, we prove the following result.

Theorem 3. The category Excd(Sp
c, Sp) is a rigidly-compactly generated tensor-

triangulated category, that is, it is compactly generated and the compact and dual-
izable objects coincide.

Here the symmetric monoidal structure on Excd(Sp
c, Sp) is given as the local-

ization of the Day convolution monoidal structure on Fun(Spc, Sp).

3. The spectrum of d-excisive functors

The strategy for constructing prime ideals in Excd(Sp
c, Sp)c follows the methods of

Balmer and Sanders in equivariant homotopy theory, namely pulling back primes
from the stable homotopy category [4]. In equivariant homotopy the functor used is
geometric fixed points, while in the current work we use the Goodwillie derivatives
∂i which are symmetric monoidal functors

∂i : Excd(Sp
c, Sp)→ Sp

for 1 ≤ i ≤ d. We recall from [3, 7] that the spectrum of compact objects in
the stable homotopy category Spc has points Cp,h for p a prime number or 0, and
1 ≤ h ≤ ∞. Inclusions are essentially determined p-locally: we have

Cp,∞ ( . . . ( Cp,h ( Cp,h−1 ( Cp,2 ( C0,1.
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Here Cp,1 := C0,1 is the subcategory of torsion finite spectra, independently of p.
For a complete description, see [3, Section 9]. This allows us to make the following
definition.

Definition 4. Let Pd(i, p, h) be the image of Cp,h under the map

Spc(∂i) : Spc(Spc)→ Spc(Excd(Sp
c, Sp)c).

These give all the primes in Spc(Excd(Sp
c, Sp)c) by the following theorem, which

describes the spectrum completely as a set.

Theorem 5. Every prime in Spc(Excd(Sp
c, Sp)c) is of the form Pd(i, p, h) for

some triple (i, p, h) consisting of an integer 1 ≤ i ≤ d, p a prime number or p = 0,
and a chromatic height 1 ≤ h ≤ ∞. Moreover, we have Pd(i, p, h) = Pd(j, q, l) if

and only if i = j and Cp,h = Cq,l in Spc (i.e., h = l and if h = l > 1, then also
p = q).

To determine the topology on Spc(Excd(Sp
c, Sp)c) we show that it suffices to

describe all the inclusions among prime ideals. Using the comparison map to
the Zariski spectrum of the endomorphism ring of Excn(Sp

c, Sp)c (which we also
compute), we are able to determine the following basic restrictions:

Proposition 6. Suppose that Pd(k, p, h) ⊆ Pd(l, p,m) for 1 ≤ k, l ≤ d, a prime p
and chromatic integers 1 ≤ h,m ≤ ∞. Then the following hold:

(1) p− 1 | k − l ≥ 0;
(2) if h = 1 then m = 1 and k = l, so the two primes are equal.

To determine the topology, we translate the problem into determining the blue-
shift for a certain ‘Tate construction’ on the category of d-excisive functors. We
are able to solve this by using work of Arone and Ching [1] to translate this to a
problem in equivariant homotopy for a product of symmetric groups. Using tech-
niques from equivariant homotopy, we show that we can then reduce to studying
the case of cyclic groups, allowing us to apply the main theorems of [5] and [8].
The result can be stated as follows, where sp(k) denotes the weight of the p-adic
expansion of k, i.e., the sum of the coefficients of the p-adic expansion of k.

Theorem 7. Let p, q be prime numbers, 1 ≤ k, l ≤ d integers, and suppose 1 ≤
h, h′ ≤ ∞. There is an inclusion Pd(k, p, h

′) ⊆ Pd(l, q, h) if and only if the
following conditions hold:

(1) p− 1 | k − l ≥ 0;
(2) h′ ≥ h+ δp(k, l); and
(3) if h > 1, then p = q.

Here

δp(k, l) =





0 if k = l;

1 if p− 1 | k − l > 0 and l ≥ sp(k);
2 if p− 1 | k − l > 0 and l < sp(k);

∞ otherwise.
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We note the perhaps surprising result that the maximum shift is 2.
As applications, we give a classification of all the thick ⊗-ideals of Excd(Spc, Sp)

and give a d-excisive version of Kuhn and Lloyd’s chromatic Floyd and chromatic
Smith theorems [9].
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Lattices over finite group schemes and stratification

Henning Krause

My talk was devoted to explaining the following recent result from joint work with
Tobias Barthel, Dave Benson, Srikanth Iyengar, and Julia Pevtsova [1].

Theorem 1. For G a finite flat group scheme over a commutative noetherian ring
R, the tensor triangulated category Rep(G,R) is stratified and costratified by the
canonical action of the cohomology ring H∗(G,R).

The theorem unifies results from commutative algebra and representation the-
ory of finite groups, because one may specialise either by taking for G the trival
group or by taking for R a field and for G a discrete group. In the first case we
obtain a theorem of Neeman [4], while the second case recovers the main result
from [2]. A consequence of stratification is a classification of all tensor ideal lo-
calising subcategories of Rep(G,R) via subsets of the homogeneous prime ideal
spectrum of H∗(G,R), while the costratification implies a classification of all Hom
closed colocalising subcategories of Rep(G,R). An essential ingredient is a re-
cent theorem of van der Kallen which states that the cohomology ring H∗(G,R)
is noetherian [5]. The category Rep(G,R) arises as a suitable ind-completion of
the bounded derived category rep(G,R) of lattices, that is, representations of G
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that are finitely generated and projective over R. In particular we are able to
identify the Balmer spectrum of the tensor-triangulated category rep(G,R) with
the Zariski spectrum of H∗(G,R). This is in line with recent work of Lau which
discusses the case of a discrete group [3].
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The Balmer spectrum of the category of perfect complexes on a finite

flat groupoid of affine schemes

Eike Lau

Let k be a noetherian ring. All rings, schemes, and stacks are assumed to be of
finite type over k. For a rigid tt category T one can ask if the comparison map

ρ : Spc(T )→ Spech(R)

from the prime ideal spectrum of T to the homogeneous prime ideal spectrum of
the graded ring R = End∗T (1) is a homeomorphism.

Here we consider the case T = Perf(X), the category of perfect complexes on
an algebraic stack X . When X is a scheme, Spc(T ) is homeomorphic to X by a
result of Thomason [8]. It follows that ρ is a homeomorphism when X is an affine
scheme. Our main result is that this continues to hold if X is an algebraic stack
which is sufficiently close to an affine scheme.

Theorem 1. Let X be an algebraic stack such that there is a surjective finite flat
morphism Y → X where Y is an affine scheme. Then the comparison map ρ for
T = Perf(X) is a homeomorphism.

Example 1. Let k be a field and X = BG = [Spec(k)/G] where G is a finite
group or a finite group scheme over k. Then T ∼= Db(kG) and R = H∗(G, k), and
the theorem is a reformulation of classical results of [3, 5].

Example 2. The case X = [Y/G] where G is a finite group that acts on an
affine scheme Y = Spec(A) is treated in [7]. Here T ∼= D(AG)A-perf , the derived
category of A-perfect complexes of AG-modules, and R = H∗(G,A).

Example 3. The case X = BG = [Spec(k)/G] where G is a finite flat group
scheme over the noetherian ring k is proved in [2] as a consequence of a stratifica-
tion of a rigidly-compactly generated tt category with category of compact objects
T .



2328 Oberwolfach Report 40/2023

Example 4. The previous examples are subsumed by the case X = [Y/G] where
G is a finite flat group scheme over k that acts on an affine k-scheme Y .

Remark 2. The proof [7] for the case X = [Y/G] as in Example 2 carries over to
the general case of the theorem with some modifications; this will appear soon.

Remark 3. The category T = Perf(X) can be made explicit as follows. The
presentation Y → X gives rise to a finite flat groupoid Spec(B) ⇒ Spec(A) with
Spec(A) = Y and Spec(B) = Y ×X Y , which in turn corresponds to a finite
flat Hopf algebroid A ⇒ B. Then T is equivalent to the category of A-perfect
complexes in the derived category of comodules for this Hopf algebroid.

Finite generation of cohomology. The following technical condition seems to
be crucial. A rigid tt category T is called noetherian if End∗T (M) is a noetherian
module over R = End∗T (1) for each M ∈ T . If this holds, the comparison map ρ
is a homeomorphism iff it is bijective.

Proposition 4. For X as in the theorem, the category T = Perf(X) is noetherian.

In the situation of Example 2 this is classical [6]. The general case is a conse-
quence of results of van der Kallen on finite generation of cohomology of reductive
groups [9], as was recently explained in [10] for the situation of Example 4.

Sketch of proof. It suffices to show that R is a noetherian ring. Assume that the
morphism π : Y → X is finite flat of degree d. The stack X allows a representation
X ∼= [Z/GLd] where Z = Spec(C) is an affine scheme. Explicitly, Z is the scheme
that classifies trivializations of the locally free OX -module π∗OY . It follows that
R ∼= H∗(GLd, C). By [9, Th. 10.5], this graded ring is finitely generated over k iff it
has bounded torsion. In our case, the cohomology in positive degrees is annihilated
by d because the composition OX → π∗OY → OX (where the second map is the
trace) is equal to d, and R = H∗(X,OX), while H>0(X, π∗OY ) vanishes. �

Decomposition into fibers. The theorem is proved by a reduction to the known
cases where X is an affine scheme or where X = BG for a finite group scheme over
a field. For simplicity, we explain this when X = [Spec(A)/G] for a finite group
G as in Example 2. Let AG be the ring of G-invariants, i.e. the degre zero part of
R = H∗(G,A). We consider fibers over q ∈ Spec(AG) in two ways.

Spectral fibers. There is a natural map Spech(R) → Spec(AG), and we can take
the fibers over q in the source and target of ρ with respect to this map. This gives
the lower line of the following diagram.

Geometric fiber. There is a natural morphism X → Spec(AG). The reduced fiber
over q under this morphism, denoted X(q), gives rise to another instance of the
comparison map; this is the upper line of the following diagram. Explicitly, we
have X(q) = [Spec(A(q))/G] where A(q) is the product of the residue fields of the
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primes of A over q, and consequently R(q) = H∗(G,A(q)).

Spec(T (q))
ρ(q)

//

β

��

Spech(R(q))

α

��

Spc(T )q
ρq

// Spech(R)q

The vertical arrows of the diagram arise by functoriality. Now the comparison
map ρ is bijective (hence a homeomorphism) iff ρq is bijective for each q. This will
be a consequence of the following facts.

(1) The map ρ(q) is a homeomorphism, in particular bijective,
(2) the map α is a homeomorphism, in particular bijective,
(3) the map β is surjective.

(1) can be deduced from the case ofBG over a field (Example 1). (2) is based on the
following two lemmas. A ring homomorphism is called a universal homeomorphism
if it induces a homeomorphism on Spec after arbitrary base change.

Lemma 5. For a G-invariant nilpotent ideal I ⊆ A, the ring homomorphism
H∗(G,A)→ H∗(G,A/I) is a universal homeomorphism.

Lemma 6. If t ∈ AG is an A-regular element, then H∗(G,A)/t→ H∗(G,A/t) is
a universal homeomorphism.

The proof of Lemma 6 is related to an argument of [4]. It may be interesting
to see how one uses that R = H∗(G,A) is noetherian:

Sketch of proof. We can assume that a prime power pr annihilates H>0(G,A).
The key point is to show that for a homogeneous element a ∈ H∗(G,A/t) of even
degree, the connecting homomorphism δ : H∗(G,A/t) → H∗(G,A) associated to
A → A → A/t sends ap

r

to zero. Since R is noetherian, after replacing t by a
power tm, we can assume that the annihilators in R of t and of t2 coincide. Using
that the connecting homomorphism δ̄ : H∗(G,A/t) → H∗(G,A/t) associated to
A/t → A/t2 → A/t is a graded derivation, we get δ̄(ap

r

) = 0. Hence δ(ap
r

) = tb
for some b ∈ R. But then t2b = tδ(ap

r

) = 0 and thus tb = 0 as desired. �

Finally, (3) is deduced from a surjectivity criterion of [1]: If a tt functor T → T ′

detects tensor nilpotence of morphisms, then Spc(T ′)→ Spc(T ) is surjective. This
applies due to the following counterparts of Lemmas 5 and 6.

Lemma 7. If A′ = A/I for a G-invariant nilpotent ideal I ⊆ A, then the functor
D(AG)A-perf → D(A′G)A′

-perf detects tensor nilpotence of morphisms.

Lemma 8. If t ∈ AG is an A-regular element and B = A/t × A[t−1], then the
functor D(AG)A-perf → D(BG)B-perf detects tensor nilpotence of morphisms.

The factor A[t−1] in Lemma 8 is of auxiliary nature; it has the effect that A→ B
and hence AG → BG are universally bijective on spectra. There is a version of
Lemma 6 with B = A/t×A[t−1] in place of A/t, which is not very useful in that
context, but which would further streamline the structure of the argument.
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Generation time in triangulated categories under biexact functors and

for Koszul objects

Janina C. Letz

(joint work with Marc Stephan)

In a triangulated category T an object X generates an object Y , if Y can be
obtain from X by taking finite coproducts, rectracts, suspensions, desuspensions,
and cones. The generation time of Y from X is the minimal number of cones
necessary in this process. Explicitly, given X we define

• thick0T (X) as the smallest strictly full subcategory containing the zero
object;
• thick1T (X) as the smallest strictly full subcategory containing X that is
closed under finite coproducts, rectracts, suspensions and desuspensions;
• thicknT (X) as the smallest strictly full subcategory of objects Y for which
there exists an exact triangle

Y ′ → Y ⊕ Ỹ → Y ′′ → ΣY with Y ′ ∈ thick1(X) and Y ′′ ∈ thickn−1(X) .

These subcategories give an exhaustive filtration of the smallest thick subcategory
of T containing X ; they were first constructed by [BvdB03, Section 2.2]. The
generation time is defined as

levelXT (Y ) := inf{n ≥ 0 | Y ∈ thicknT (X)} ;
this invariant was introduced by [ABIM10, 2.3].

For various X the invariant level coincides with some algebraic invariants for
modules, like the projective dimension. Level is also connected to the Rouquier
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dimension of a triangulated category; cf. [Rou08]. In general, it is hard to compute
the Rouquier dimension, and it is not known for most triangulated categories. We
expect, that understanding level will help computing Rouquier dimension.

It is straightforward to see that the value of level decreases along an exact
functor of triangulated category. Along a bifunctor, for example a tensor product,
the behavior is more complicated. In fact, we require additional conditions for the
biexact functor to get a reasonable bound:

Theorem 1. Let F : S×T → U be a biexact bifunctor that admits a strong Verdier
structure. Then

level
F(X,X′)
U (F(Y, Y ′)) ≤ levelXS (Y ) + levelX

′

T (Y ′)− 1

for X,Y ∈ S and X ′, Y ′ ∈ T ′.

The notion of a strong Verdier structure is motivated by [May01, KN02]. It
is satisfied in many examples that appear in nature. In fact, if the triangulated
categories are the homotopy category of a model category, then any bifunctor that
is induced by a biexact functor on the model categories, admits a strong Verdier
structure. By [May01, GPS14a], the tensor product of many tensor triangulated
categories admits a strong Verdier structure, for example for the derived category
of modules over a commutative ring or the stable module category of a finite
dimensional group algebra. Another class of bifunctors admitting a strong Verdier
structure is the tensor product of dg bimodules

−⊗L
B − : D(Bimod(A,B))×D(Bimod(B,C))→ D(Bimod(A,C))

for dg algebras A and B and C over a commutative ring. This includes in partic-
ular, the tensor action ⊗L

A of D(Bimod(A,A)) on D(Mod(A)).
Any action F : S × T → T of a tensor triangulated category (S,⊗,1) on a

triangulated category T induces a graded ring homomorphism

End∗S(1)→ Z∗(T ) :=
⊕

d∈Z

{α : idT → Σd | αΣ = (−1)dΣα}

of the endomorphism ring to the center of T . This homomorphism is given by

f 7→ αf , αf (X) := (X ∼= F(1, X)→ F(Σ|f |
1, X) ∼= Σ|f |X) .

The elements in the center induced by an action, as well as their Koszul objects,
have particularly nice properties.

The Koszul object of α1, . . . , αc ∈ Z∗(T ) on X ∈ T is

X//(α1, . . . , αc) :=





X c = 0

cone(α1(X)) c = 1

(X//(α1, . . . , αc−1))//αc c > 1 .

Theorem 2. Let Fi : Si × T → T be an action of a tensor triangulated category
on T and fi ∈ EndSi

(1). If Fi admits a strong Verdier structure for all 1 ≤ i ≤ c,
then

levelXT (X//(αf1 , . . . , αfc)) ≤ c+ 1 .



2332 Oberwolfach Report 40/2023

References

[ABIM10] Luchezar L. Avramov, Ragnar-Olaf Buchweitz, Srikanth B. Iyengar, and Claudia
Miller, Homology of perfect complexes, Adv. Math. 223 (2010), no. 5, 1731–1781.
MR 2592508

[BvdB03] Alexey I. Bondal and Michel van den Bergh, Generators and representability of func-
tors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1,
1–36, 258. MR 1996800

[GPS14a] Moritz Groth, Kate Ponto, and Michael Shulman, The additivity of traces in monoidal
derivators, J. K-Theory 14 (2014), no. 3, 422–494. MR 3349323

[KN02] Bernhard Keller and Amnon Neeman, The connection between May’s axioms for a
triangulated tensor product and Happel’s description of the derived category of the

quiver D4, Doc. Math. 7 (2002), 535–560. MR 2015053
[May01] J. Peter May, The additivity of traces in triangulated categories, Adv. Math. 163

(2001), no. 1, 34–73. MR 1867203
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The Balmer spectrum for equivariant Eilenberg–MacLane spectra

Clover May

(joint work with Drew Heard)

For the cyclic group G = Cp, we compute the Balmer spectrum of the compact
objects in equivariant HR-modules, where R is a (fairly nice) constant Mackey
functor. Many of these Balmer spectra are known. For example, in the case p = 2
and R = F2, this was described in previous work joint with Dugger and Hazel, and
computed independently by Balmer–Gallauer. Recent work of Balmer–Gallauer
describes the spectrum of HR-modules where R is a field of characteristic p (and
more generally for G any finite group). Our computations recover these cases for
G = Cp, and generalize to include rings such as R = Z and Z(p). We also compute
the Balmer spectrum for HRG-modules, where HRG is inflated from the trivial
group and now G is any finite group, generalizing a computation of Patchkori–
Sanders–Wimmer. This is joint work in progress with Drew Heard.

The talk began in the classical (nonequivariant) setting, recalling that coho-
mology is represented by stable objects or spectra. More precisely, for R a com-
mutative ring, singular cohomology with R coefficients H∗(−;R) is represented
by a commutative ring spectrum HR. The homotopy category of HR-modules is
completely algebraic. Schwede–Shipley showed in [9] there is a Quillen equivalence

HR−Mod ≃Q Ch(R)
and thus an equivalence of homotopy categories

Ho(HR−Mod) ≃ D(R).
Lurie showed there is a symmetric-monoidal equivalence of ∞-categories

HR−Mod ≃ Ch(R)
in Theorem 7.1.2.13 of Higher Algebra, so

Ho(HR−Mod) ≃ D(R).
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as tt-categories. For the Balmer spectrum of compact objects, we write

Spc(Perf(HR)) = Spc(HR−Modc) ∼= Spc(Dperf(R)) ∼= Spec(R)

where the last isomorphism is due to Hopkins–Neeman [6, 7] in the case where R
is Noetherian and Thomason [10] for general R.

Example 1. The commutative ring spectrum HFp is a “field” in the following
sense. Any X ∈ HFp−Mod splits as a wedge of suspensions of HFp, so

X ≃
∨

i∈I

ΣniHFp

and Spc(Perf(HFp)) = •.

Now we turn to the equivariant setting. For G a finite group and V a real repre-

sentation of G, the one-point compactification is a representation sphere SV = V̂ .
LetH∗

G(−;M) denote RO(G)-graded equivariant cohomology with coefficients in a
commutative Mackey ring (or commutative Green functor)M . This is an equivari-
ant cohomology theory graded on the real representation ring with a suspension
isomorphism with respect to representation spheres. Like the nonequivariant case,
this cohomology theory is represented by a stable object. Let HM ∈ SpG denote
the genuine equivariant Eilenberg–MacLane spectrum representing equivariant co-
homology with coefficients in M . We are motivated by the following question.

Question 2. Can we describe the Balmer spectrum Spc(PerfG(HM))?

One might also be motivated to ask this question from the algebraic side. Build-
ing on work of Patchkoria–Sanders–Wimmer, we show the following.

Theorem 3 (Patchkoria–Sanders–Wimmer [8], Heard–M. in progress). There is
a symmetric-monoidal equivalence of ∞-categories

PerfG(HM) ≃ Dperf(M).

The Balmer spectrum Spc(PerfG(HM)) is known in several cases. For example,
take G = C2, the cyclic group of order 2, and M = F2 the constant Mackey func-
tor. The RO(C2)-graded equivariant cohomology theoryH∗

C2
(−;F2) is represented

by the equivariant Eilenberg–MacLane spectrum HF2. The Balmer spectrum was
computed independently by Balmer and Gallauer, and by Dugger, Hazel and my-
self.

Theorem 4 (Balmer–Gallauer [2], Dugger–Hazel–M. [5]). The Balmer spectrum

Spc(PerfC2
(HF2)) =

In a sense, we took the wrong approach to computing the Balmer spectrum
because we classified everything.
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Theorem 5 (Dugger–Hazel–M. [5]). If X ∈ PerfC2
(HF2) then X splits as a wedge

of RO(G)-suspensions of

HF2, (Sn
a )+ ∧HF2, and cof (τm) ,

where n ≥ 0 and m ≥ 1.

With this complete classification of compact objects, we were able to tensor
everything together. Notice this classification and the computation of the Balmer
spectrum show that HF2 is not a field.

A similar approach will not work in more general settings. In work in progress
with Grevstad, we show there is no complete classification for odd primes.

Theorem 6 (Grevstad–M. in progress). For G = Cp with p an odd prime, the
classification of PerfCp

(HFp) is wild.

So we need another approach. Balmer and Gallauer have used different tactics
to compute the Balmer spectrum for PerfCp

(HFp).

Theorem 7 (Balmer–Gallauer [3]). The Balmer spectrum

Spc(PerfCp
(HFp)) =

In fact, Balmer and Gallauer do much more. For G a finite group and k a field
of characteristic p > 0, they describe Spc(PerfG(Hk)). In their previous work on
Artin–Tate motives [2] they also describe Spc(PerfC2

(HZ)) using C2 as the Galois
group.

So we consider the case of a more general ring.

Question 8. For G = Cp (with p either 2 or and odd prime) and R the constant
Mackey functor for a commutative ring R, can we describe the Balmer spectrum
Spc(PerfCp

(HR))?

Let us first deal with a fairly trivial case.

Remark 9. If p is invertible in R then Spc(PerfCp
(HR)) ∼= Spec(R).

So assume p is not invertible in R. We can compute Spc(PerfCp
(HR)) as a

set using work we heard about earlier this week. Applied to HR we have the
following.

Theorem 10 (Barthel–Castellana–Heard–Naumann-Pol [1]). As a set

Spc(PerfCp
(HR)) ≃

∐

(H)≤G

Spc(Perf(ΦHHR))/WGH.

In the case G = Cp this reduces to

Spc(PerfCp
(HR)) ≃ Spc(Perf(ΦCpHR)) ⊔ Spc(Perf(ΦeHR))/Cp.

Since HR is a global spectrum, the action is trivial and we have

Spc(PerfCp
(HR)) ≃ Spc(Perf(ΦCpHR)) ⊔ Spc(Perf(ΦeHR)).



Tensor-Triangular Geometry and Interactions 2335

In nice circumstances, we can also determine the topology.

Theorem 11 (Heard–M. in progress). A complete description of Spc(PerfCp
(HR))

as a space when R is commutative, Noetherian, regular, and p-torsion free, with p
not invertible in R.

The proof uses various comparisonmaps together with results of Dell’Ambrogio–
Stanley [4].

Finally, for G an arbitrary finite group, one can inflate the Eilenberg–MacLane
spectrum HZ to an equivariant spectrum by giving it the trivial action. This is
denoted HZG = inflG

e HZ and has the property ΦH(HZG) = HZ for all subgroups
H ≤ G. In [8], Patchkoria, Sanders, and Wimmer computed Spc(PerfG(HZG)) as
a space. Their proof involves reducing to the caseG = Cp and showing a particular
inclusion. Our techniques recover this inclusion via HZCp

→ HZ, the adjoint to
the identity.
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A nilpotence theorem via homological residue fields for Lie

superalgebra representations

Daniel K. Nakano

(joint work with Matthew H. Hamil)

For a small rigid symmetric tensor triangulated category (TTC), K, Balmer in-
troduced the concept of homological primes and homological residue fields [Bal20,

BalC21]. For a TTC, the collection of homological primes, Spch(K), forms a
topological space that can potentially realize the Balmer spectrum, Spc(K), and
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its supports in a concrete way. Such a realization enables one then to prove the
tensor product property on support data. The central problem in the theory of
homological primes is the following “Nerves of Steel” Conjecture (cf. [Bal20]).

Conjecture [NoS Conj] Let K be a small rigid (symmetric) tensor triangulated

category. Then the comparison map φ : Spch(K)→ Spc(K) is a bijection.

For the stable module category of finite group schemes, the [NoS Conj] can be
verified by using a deep stratification result (see [Bal20, BIKP18]). The speaker
(with Hamil) is interested in verifying the [NoS Conj] in the case of Lie superalgebra
representations over C.

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra. In this talk, we will consider
the tensor triangular geometry for the stable category of finite-dimensional Lie
superalgebra representations: stab(F(g,g0̄)). The localizing subcategories for the
detecting subalgebra f are classified which answers a question of Boe, Kujawa and
Nakano [BKN10]. As a consequence of these results, we prove a nilpotence theorem
and determine the homological spectrum for the stable module category of F(f,f0̄).

The speaker (with Hamil) [HaN23] has verified [NoS Conj] for g = gl(m|n)
and has been working on the verification for other Type I classical simple Lie
superalgebras. The method of proof involves using recent work of Serganova and
Sherman [SS22] on the existence of “splitting subgroups” where one can find a
copy of the trivial module in the induction of the trivial module from the splitting
subgroup to the ambient supergroup, in addition to, results proved in [Bal20].
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Frobenius pushforwards and the bounded derived category

Josh Pollitz

(joint work with Matthew Ballard, Srikanth Iyengar, Pat Lank,
Alapan Mukhophadyay)

Throughout R is a commutative noetherian ring having prime characteristic p > 0.
In this setting one has access to the Frobenius endomorphism F : R→ R given
by r 7→ rp, and its iterates F e : R → R given by r 7→ rp

e

. As with any ring map
one obtains functors

F e
∗ : ModR→ ModR ,

via restriction of scalars along F e, called the eth Frobenius pushforward. Ex-
plicitly, given an R-module M , the R-action on F e

∗ (M) is given by

r · F e
∗ (m) = F e

∗ (r
pe

m) for r ∈ R, m ∈M .

These are classical objects of study in prime characteristic commutative algebra
and algebraic geometry as will be recalled below.

Looking forward, we will be interested with how these functors behave on the
bounded derived category of finitely generated R-modules Db(modR), and so a
mild (yet relevant) assumption will be that R is F -finite. That is, F is a finite ring
map (i.e., F∗R is a finitely generated R-module). Such rings are exactly the rings
where the pushforwards restrict as endofunctors on the category of finitely gen-
erated R-modules modR. Most natural examples in commutative algebra fit into
this context: any ring that is essentially of finite type over a field k of characteristic
p satisfying [k : kp] <∞.

The jumping off point in prime characteristic commutative algebra and algebraic
geometry is the following classical theorem of Kunz [8]: For an F -finite ring R,
the following are equivalent

(1) R is regular ;
(2) F e

∗R is projective over R for all e > 0;
(3) F e

∗R is projective over R for some e > 0.

This theorem has motivated a tremendous amount of research in the study of “F -
singularities”, where one is interested in understanding singularities through the
lens of the Frobenius; see, for example, [2, 5, 6, 11, 12]. The main result reported
on gives a structural explanation of the theorem of Kunz and other theorems of
this ilk, and provides a uniform way to deduce such results.

Theorem 1 (Ballard–Iyengar–Lank–Mukhophadyay–P. [3]). When R is an F -
finite commutative noetherian ring of prime characteristic p and M is an object of
Db(modR) with suppRM = Spec(R), the R-complex F e

∗M is a strong generator
for Db(modR) for any natural number e > logp(codepth(R)). In particular F e

∗R

is a strong generator for Db(modR) when e > logp(codepth(R)).

Recall a strong generator for a triangulated category T is an object that builds
any other object of T using finitely many cones, suspensions, and retracts, where
there is a uniform bound on the number of cones needed; cf. [4, 10]. The fact that
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Db(modR) admits a strong generator when R is F -finite (more generally, quasi-
excellent) follows from [1, 7, 9]; however, these proofs do not identify explicit strong
generators for Db(modR). Hence part of the novelty of Theorem 1 is that over
F -finite rings one can explicitly obtain many strong generators for Db(modR) by
applying enough Frobenius pushforwards to objects with full support (in particular
to R itself).

The codepth is an invariant measuring the singularity of R: for example, R is
regular if and only if codepth(R) = 0. For an F -finite ring, this value is finite and
is in fact at most the minimal number of generators for the R-module F∗R. An
obvious question is whether, in Theorem 1, the specified bound on the number of
pushforwards needed to obtain strong generators is always necessary.

Question 2. For an F -finite ring R, is F∗R a strong generator for Db(modR)?

The most decisive result we have concerning this question is the following.

Theorem 3 (Ballard–Iyengar–Lank–Mukhophadyay–P. [3]). If R is an F -finite
locally complete intersection ring and M in Db(modR) has suppRM = Spec(R),
then F∗M is a strong generator for Db(modR).

Outside of the locally complete intersection setting, we have verified that F∗R
is a strong generator for Db(modR) in a number of examples [3]. However, in full
generality Question 2 remains open.

In the geometric context, we are also able to say something regarding strong
generation via reduction to the affine case. For a noetherian scheme X , this
reduction goes by regarding the category Db(cohX) as a module over the tensor-
triangulated category Perf(X).

Theorem 4 (Ballard–Iyengar–Lank–Mukhophadyay–P. [3]). Let X be a noether-
ian F -finite separated scheme of prime characteristic p, and G a generator for
Perf(X). For any M in Db(cohX) with suppXM = X, the complex F e

∗ (G⊗L
X M)

is a strong generator for Db(cohX) for any natural number e > logp(codepthX).

Here subtleties arise because Perf(X) is not typically generated by its tensor
unit OX . For instance, there are examples where no pushforward F e

∗ (OX) is
a strong generator for Db(cohX); examples include F -finite smooth curves of
positive genus. Another delicate point is that a G, as in the theorem, is known
to exist [4], however such a generator is only described explicitly in a handful of
cases; one of the known cases is when X is a quasi-projective scheme in which case
one can take G to be OX ⊕L⊕ · · · ⊕LdimX where L is a very ample line bundle.
So getting your hands on explicit strong generators for Db(cohX), using Theorem
4, is less effective than in the affine case; nonetheless, it still provides a structural
explanation for why pushforwards in the geometric setting are natural to study
and detect singularities.
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Commutative separable algebras in genuine G-spectra

Maxime Ramzi

(joint work with Niko Naumann, Luca Pol)

Commutative separable algebras are a generalization of étale algebras, that one can
define in an abitrary symmetric monoidal ∞-category C; namely a commutative
algebraA is said to be separable if the multiplication map µ : A⊗A→ A admits an
A⊗A-linear section. They were introduced in tt-geometry by Balmer in [1], where
they were shown to have surprisingly nice features, for example a good theory
of modules despite the lack of higher coherences. As étale algebras in classical
algebraic geometry, they also encode some information about the geometry of a
tt-category. The goal of this talk was to explain joint work with Niko Naumann
and Luca Pol, where we compute separable commutative algebras in compact
genuine G-spectra, for some finite p-group G. The restriction to compact objects
is to avoid complications related to idempotent algebras (which are separable), i.e.
smashing localizations - classifying them, even for trivial G, is a longstanding open
problem in stable homotopy theory. I will say a few words about the restriction
to p-groups at the end.

Similar classification results have been obtained previously: in algebraic ge-
ometry, Neeman classifies separable algebras in the tt-category of quasicoherent
sheaves on a noetherian scheme X [5] - when restricting to the dualizable ones,
he proves that they are all of the form f∗OU , where f : U → X is a finite étale
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morphism (if we keep the restriction to dualizable objects, Naumann and Pol [4]
remove the noetherian hypothesis). In representation theory, Balmer and Carlson
[2] classify the separable commutative algebras in the (small) stable module cate-
gory of kCp where k is a separably closed field of characteristic p and Cp is a cyclic
group of order p (descent methods allow to more generally classify them for G any
finite group of p-rank 1, see also [4, Prop 14.11, Theorem 14.14] for an alternative
proof, using Galois theory under more restrictive assumptions): they are all of the
form (k[X ])∨ for X some finite G-set. Informally, in any “equivariant context”
one has these “standard” separable algebras, given by duals of (linearizations of)
finite G-sets. Since in Spω , the category of finite spectra, the only separable alge-
bras are “trivial”, i.e. they are finite products of the unit, the following is not too
surprising:

Theorem 1 (Naumann-Pol-R.). Let G be a finite p-group. The canonical functor
Finop

G → CAlgsep(SpωG) from the category of finite G-sets to the category of com-
mutative separable algebras in compact genuine G-spectra1 sending X to the dual
of Σ∞

+X is an equivalence of categories.
More generally, given any family F of subgroups of G closed under conjuga-

tion and subgroups, letting SpωG/F denote the Verdier quotient of SpωG by the

orbits G/H,H ∈ F , and letting Fin¬F
G denote the category of finite G-sets all

of whose isotropy groups do not lie in F , the canonical functor (Fin¬F
G )op →

CAlgsep(SpωG/F) is an equivalence of categories.

The “More generally” part, more than being interesting in its own right, is
used to prove the main result by descending induction on the family F , using the
following:

Proposition 2 (Krause, [3]). Let G be a finite group, F a family of subgroups of
G closed under conjugation and subgroups, and K a subgroup of G minimal among
subgroups not in F , there is a pullback square of stably symmetric monoidal ∞-
categories:

Spω
G/F SpωG/F ∨ {K}

SpBWG(K) SpBWG(K)/〈S[WG(K)]〉
Here, WG(K) is the Weyl group of K, i.e. NG(K)/K, the quotient of the normal-
izer of K by K.

Using that the functor CAlgsep(−) preserves limits (a sort of descent property,
see [4]), this allows for an inductive strategy (where we reduce the size of F at each
stage) to prove Theorem 1. Indeed, using again the limit preservation property, we
are able to compute the bottom left corner, using induction we are able to compute

1I have proved in [6] that this category does not depend on whether we view Spω
G

as a
stably symmetric monoidal ∞-category, or as its associated homotopy tt-category : their (a
priori ∞-)categories of separable commutative algebras are always equivalent, and they are both
1-categories.
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the top right corner, so we are reduced to understanding the base case and the
bottom right corner. The case where F = P is the family of proper subgroups of
G is easy to understand because Spω

G/P ≃ Spω, so really the only difficulty lies in
the bottom right corner, which is some form of stable module category over the
sphere spectrum. Luckily, we do not need to classify all separable algebras therein,
we only need to understand maps between “standard” ones (as all the separable
algebras in (Spω)BWG(K) are standard, by descent). This is where the hypothesis
that G is a p-group comes in. Using standard induction-coinduction techniques,
this reduces the question to understanding idempotents in StQ for subquotients Q
of G, and these are all trivial if and only if G is a p-group.

A topic which was not touched upon in the talk is the case of non-p-groups,
which we are currently studying. In this case, we can give counterexamples
to Theorem 1, but there is still some hope to describe explicitly the category
CAlgsep(Spω

G) using this inductive approach – the answer should be some more
complicated combinatorial gadget associated to G.
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Monogenization in tensor triangular geometry

Beren Sanders

Let T be a rigidly-compactly generated tensor-triangulated category; that is, a
compactly generated tensor-triangulated category in which the compact objects
coincide with the dualizable objects: Tc = Td. In particular, the unit object 1 is
a compact/dualizable object. We say that T is monogenic if Loc〈1〉 = T; equiva-
lently, if thick〈1〉 = Tc. Basic examples of monogenic categories include the stable
homotopy category SH and the derived category of a commutative ring D(R). On
the other hand, the equivariant stable homotopy category SH(G) is not monogenic.

In general, Loc〈1〉 is a rigidly-compactly generated tensor-triangulated subcat-
egory of T. More generally, if G ⊂ Tc is a set of objects which contains 1 and
is closed under the tensor-product and taking duals, then Loc〈G〉 is a rigidly-
compactly generated tensor-triangulated subcategory of T.

A number of interesting examples fit into this framework. For example, the
derived category of Tate motives DTM(k;R) := Loc〈R(n) | n ∈ Z〉 ⊂ DM(k;R)
sitting inside the derived category of all Voevodsky motives, or the category of
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cellular motivic spectra SHcell(k;R) ⊂ SH(k;R) sitting inside the stable homo-
topy category of all motivic spectra. In these examples, k is a field and R is a
commutative ring in which the characteristic of k (if positive) is invertible. (This
latter assumption ensures that the categories are rigidly-compactly generated.)

We call T〈1〉 := Loc〈1〉 ⊂ T the monogenization of T. The goal of this project
was to understand the tensor triangular geometry of this construction. This led to
a general study of faithful and fully faithful functors in tensor triangular geometry.

To state the main theorem, let F : T → S be a geometric functor (that
is, a tensor-triangulated functor which preserves coproducts) between rigidly-
compactly generated tensor-triangulated categories. It preserves compact objects
and hence induces a map

ϕ : Spc(Sc)→ Spc(Tc)

on Balmer spectra.

Theorem 1 (S.). Assume Spc(Sc) is noetherian.

(1) If F is faithful then ϕ is a topological quotient map.
(2) If F is fully faithful then the fibers of ϕ are connected.

Without assuming that Spc(Sc) is noetherian, the theorem also holds, but in a
slightly more technical form: in (1) “topological quotient map” is replaced by a
suitably notion of “spectral quotient map” and (2) becomes “the fiber over each
weakly visible point is connected”.

We discussed how this theorem can be applied to numerous examples, including
the motivic ones mentioned above, connecting with work of Gallauer, Balmer–
Gallauer, Vishik, Deng–Vishik, Gheorge–Wang–Xu, and Burklund.

It is also fruitful to consider the relation with Balmer’s comparison map

ρ : Spc(Tc)→ Spech(End∗(1)).

Since a category T and its monogenization T〈1〉 have the same graded endomor-
phism ring of the unit, we have a commutative diagram:

Spc(Tc)

Spc(Tc
〈1〉) Spech(End∗(1)).

ρ

ϕ

ρ

It follows that ϕ is a homeomorphism for categories T for which the top ρ is
a homeomorphism, such as T := KInj(kG). That is, for such categories, monoge-
nization induces a homeomorphism on Balmer spectra. On the other hand, it is
easy to find examples in algebraic geometry in which the monogenization has a
very different Balmer spectrum than the original category.

We also discussed how the above theorem provides a common strengthening of
theorems due to Balmer and to Lau, namely:

Theorem 2 (Balmer, Lau, S.). The comparison map ρ : Spc(Tc)→ Spech(End∗(1))
is a spectral quotient map if the graded ring End∗(1) is coherent.
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In the last part of the talk we discussed monogenization for the equivariant
stable homotopy category SH(G):

Theorem 3 (S.). Let G be a finite group.

(1) Let T := SH(G)≤n be the truncation below a finite height n. The monoge-
nization T〈1〉 →֒ T induces a homeomorphism on Balmer spectra.

(2) Let T := D(HZG) be the category of derived Mackey functors. The spec-
trum of the monogenization coincides with the spectrum of the Burnside
ring: Spc(Tc

〈1〉)
∼= Spec(A(G)).

(3) Let T = SH(G). On Balmer spectra, monogenization T〈1〉 →֒ T performs
the gluing which occurs in the spectrum of the Burnside ring — but only
at height ∞.

We illustrated part (3) of the theorem in the case G = Cp. Here the map on
Balmer spectrum glues together two points (the points at height infinity at the
prime p) and leaves everthing else untouched.

At the end of the talk, we opened up a discussion on the choice of terminology
“monogenization”. Many in the audience seemed to think this was an imperfect
choice of terminology and some alternatives were suggested.
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Spectra and t-structures

Jan Šťov́ıček

The aim of the talk was to explain a known classification of t-structures in derived
categories of commutative rings and ask about possible extensions to non-affine
schemes and connective dg rings.

To start with, let R be a commutative noetherian ring and D = D(Mod-R).
Even in the case R = Z, it is virtually impossible to classify all t-structures in D.
The reason is that there is a proper class of torsion pairs in the category of abelian
groups and each such torsion pair induces a so-called Happel-Reiten-Smalø [4] t-
structure in D. So, unlike localizations [7], t-structures in D may form a proper
class, as was noticed by Stanley [9].

However, it is possible to classify compactly generated t-structures (D≤0,D≥0),
i.e. t-structures with D≥0 = KerHomD(S,−) for a set S of compact objects (= per-
fect complexes) in D. This is a result of Alonso, Jeremı́as and Saoŕın [1], based
on previous work of Deligne, Bezrukavnikov, Kashiwara and Stanley [9]: Such t-
structures are in bijection with decreasing filtrations by supports, that is functions
f : Z→ 2Spec(R) such that each f(n) ⊆ Spec(R) is closed under specialization and
f(n) ⊇ f(n+ 1) for each n ∈ Z.

In one direction, given a compactly generated t-structure (D≤0,D≥0), the cor-
responding filtration by supports is given by f : n 7→ SuppHn(D≤0), where

Hn : D(Mod-R)→ Mod-R

is the standard cohomology functor for complexes of R-modules. In the other
direction, given a filtration by supports f : Z→ 2Spec(R), we have

D≥0 = KerHomD(Sf ,−),
where Sf consists of those shifts of Koszul complexesK•(x)[n] where x = (x1, ..., xr)
runs over sequences of elements of R such that V(x) ⊆ f(n) and K•(x) =⊗n

i=1(R
xi→ R) lives in cohomological degrees −r to 0.

In order to get a better intuition for the correspondence, here are a few examples:

(1) The canonical t-structure in D(Mod-R) corresponds to the filtration f : Z→
2Spec(R) given by f(n) = Spec(R) for n ≤ 0 and f(n) = ∅ for n > 0.

(2) More generally, if V ⊆ Spec(R) is a specialization closed set, there is a
(hereditary) torsion pair (TV ,FV ) with the torsion class TV consisting of
all modules supported in V , by a famous result by Gabriel [3]. The induced
Happel-Reiten-Smalø t-structure corresponds to the filtration by supports
given by f(n) = Spec(R) for n < 0, f(0) = V and f(n) = ∅ for n > 0.

https://arxiv.org/abs/2309.09077
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(3) Given a specialization closed set V ⊆ Spec(R) again, the constant filtration
given by f(n) = V for each n ∈ Z corresponds to the compactly generated
localization of D(Mod-R) from Neeman’s classification [7].

(4) If R has a dualizing complex, one can consider the height filtration f(n) =
{p ∈ Spec(R) | ht(p) ≥ n}. The restriction of the corresponding com-
pactly generated t-structure to Db(mod-R) is a Grothendieck dual of the
canonical t-structure on the bounded derived category. This example was
considered by Yekutieli and Zhang [11].

Besides the classification, there are other aspects of the localization theory for
D(Mod-R) with R noetherian, which extend to the realm of t-structures. For in-
stance, a version of the Telescope Conjecture for t-structures, extending Neeman’s
results [7], was proved by Hrbek and Nakamura [6].

More remarkably, compactly generated t-structures have been recently classified
in D = D(Mod-R) for all commutative rings R by Hrbek [5]. This is completely
analogous to the story for localizations [10], but the result is only available in the
affine setting. Most of the above is still true if we drop noetherianness, the only
difference is that we must consider decreasing functions f : Z → 2Spec(R) where
each f(n) ⊆ Spec(R) is a so-called Thomason set. That is, f(n) is of the form⋃

I∈In
V(I), where In is some set of finitely generated ideals of R. Thomason sets

form open sets of a topology on Spec(R) and they are none other than specializa-
tion closed sets if R is noetherian.

Our first, more down to earth, open question is whether such a classification
extends to settings not entirely distant from commutative algebra.

Question 1. Can one classify (suitable) compactly generated t-structures in

(1) D = D(Qcoh(X)), where X is a noetherian scheme?
(2) D = D(R), where R is a cohomologically non-positive and cohomologically

bounded commutative dg ring?

In the first case, results in [2] essentially settle the problem for Happel-Reiten-
Smalø t-structures. Among others, [2, §5] establishes a bijection between special-
ization closed subsets V ⊆ X and torsion pairs (T ,F) of finite type (i.e. with T
generated by a set of coherent sheaves) such that T is a ⊗-ideal in Qcoh(X). In
general, there may be many more torsion classes of finite type in Qcoh(X) which
are not ⊗-ideals, even for X = P1; see [2, Examples 5.5 and 6.14]. The condi-
tion of T being a ⊗-ideal has a geometric relevance as is explained in [2, Lemma
5.9], and it may not be very surprising from retrospective as the classification of
compactly generated localizations of D due to Thomason [10] also treats only lo-
calizing classes which are (derived) ⊗-ideals. In view of this discussion, we can
make Question 1(1) more precise:

Question 2. Let X be a noetherian scheme and D = D(Qcoh(X)). Let us denote
(D≤0

can,D≥0
can) the canonical t-structure and call a full subcategory X ⊆ D a t-⊗-

ideal if Y ⊗ X ∈ X whenever Y ∈ D≤0
can and X ∈ X . Is there then a bijection

between
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(i) the compactly generated t-structures (D≤0,D≥0) for which D≤0 is a t-⊗-
ideal and

(ii) filtrations by supports f : Z→ 2X?

Let us conclude by quickly discussing Question 1(2). It is much less supported
by evidence from existing results than Question 1(1), but we at least have a clas-
sification of localizations of D(R) if H∗(R) is noetherian; see a recent preprint by
Shaul and Williamson [8]. For experts, D(R) is then stratified by the canonical
action of H0(R) = EndD(R)(R). As R is the ⊗-unit in D(R), this means that the
canonical map ρ : Spc(Perf(R)) → Spec(EndD(R)(R)) from the Balmer spectrum
of Perf(R) to the Zariski spectrum of EndD(R)(R) is a homeomorphism. Based
on discussions during the workshop, we conclude with a much more speculative
question:

Question 3. Suppose that (D,⊗,1) is a rigidly compactly generated ⊗-triangu-
lated category such that

(i) the unit 1 is compact and generates a non-degenerate t-structure (D≤0
can,D≥0

can)
in D and

(ii) the canonical map ρ : Spc(Dc)→ Spec(EndD(1)) is a homeomorphism.

Are then compactly generated t-structures classified by filtrations by supports of
Spec(EndD(1))?
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Noncommutative algebra via tensor categories

Kent Vashaw

(joint work with Hongdi Huang, Daniel Nakano, Van Nguyen, Charlotte Ure,
Padmini Veerapen, Xingting Wang, Milen Yakimov)

By a foundational theorem of Thomason, brought into the context of tensor-
triangular geometry by Balmer, a scheme can be entirely reconstructed from
tensor-triangular data. In this talk, we discuss recent approaches towards describ-
ing noncommutative algebra and noncommutative algebraic geometry via tensor
and tensor-triangulated categories. We approach this problem by addressing two
foundational goals:

(1) Associate a tensor category C to a given noncommutative algebra A such
that fundamental homological and ring-theoretic properties of A are re-
flected in C;

(2) Develop the tools for determining Balmer spectra of stable categories as-
sociated to abelian tensor categories.

In classical noncommutative projective algebraic geometry, the noncommuta-
tive projective scheme associated to a connected graded algebra is given by a
quotient of its category of graded modules, playing the role of coherent sheaves on
the (nonexistent) noncommutative scheme. Unlike in the commutative case, this
category is not endowed with an intrinsically defined tensor product. To associate
tensor categories to these module categories, we use the universal quantum groups
defined by Manin [4]. If A is a connected graded algebra which is locally finite,
then there is a Hopf algebra, denoted aut(A), which coacts on A universally. We
call two connected graded algebras A and B quantum-symmetrically equivalent
if there is an equivalence of tensor categories comod(aut(A)) ∼= comod(aut(B)),
which sends A to B.

Some of the primary objects of study in noncommutative algebraic geometry
are Artin–Schelter regular algebras, which are defined by homological and growth
conditions resembling those of polynomial rings [1]. They play the role of noncom-
mutative projective spaces. Classifying Artin–Schelter regular algebras has been
a difficult problem over the past thirty years. We prove how the Artin–Schelter
regular property behaves under quantum-symmetric equivalence.

Theorem 1 ([3]). If A is a Koszul Noetherian Artin–Schelter regular algebra and
B is quantum-symmetrically equivalent to A, then B is Artin–Schelter regular as
well. If C is an Artin–Schelter regular algebra with the same Hilbert series as A,
then A and C are quantum-symmetrically equivalent.

The existence of quantum-symmetric equivalences in this theorem uses a foun-
dational result of Radschaelders–Van den Bergh [6]. It remains an open question
to fully determine the quantum-symmetric equivalence class of an Artin–Schelter
regular algebra.

Given a finite tensor categoryC, which is not necessarily symmetric or braided,
we would like to determine the Balmer spectrum of its stable category C, thus
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recovering geometry from abstract tensor categories in the spirit of Balmer. To do
this, we define a version of cohomological support varieties, which we call central
support, relative to the categorical center of C, which consists of morphisms in the
extended endomorphism ring of C which tensor-commute with morphisms idS for
simple objects S of C. Using these versions of support varieties, we are able to
prove the following result.

Theorem 2 ([5]). There is a continuous map of topological spaces ρ : SpcC →
ProjC, where C is the categorical center of C. If a weak finite generation condi-
tion holds, then ρ is surjective. If additionally the central support satisfies a tensor
product property and extends to the big category Ind(C), then ρ is a homeomor-
phism.

The map ρ is a noncommutative analogue of the comparison map produced in
[2] in the symmetric case. We conjecture that the map ρ is a homeomorphism for
every finite tensor category.
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Costratification and actions of tensor-triangulated categories

Charalampos Verasdanis

Let T be a rigidly-compactly generated tensor-triangulated cateogry and let K be
a comapctly generated triangulated category. An action of T on K is a coproduct-
preserving triangulated functor − ∗ − : T × K→ K that satisfies a host of certain
coherence conditions; see [4]. Let X be an object of T. Brown representabil-
ity implies that the functor X ∗ − : K → K has a right adjoint [X,−]∗ : K → K

called the relative internal-hom. We are interested in studying the colocalizing
hom-submodules of K, i.e., those triangulated subcategories C of K that are closed
under products and [X,A]∗ ∈ C, ∀X ∈ T, ∀A ∈ K. This leads us to the notions
of cosupport and costratification, which we will explain after providing some mo-
tivation. It should be noted that for K = T and ∗ = ⊗, all concepts developed in
this context specialize back to classical tensor-triangular geometry.
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Motivation. (i) The main motivational example that leads one to develop the
theory of cosupport and costratification in this more general setting, as described
above, is the following: Let R be a commutative noetherian ring. The singularity
category of R is S(R) = Kac(InjR) the homotopy category of acyclic complexes of
injective R-modules. By [2], S(R) is a compactly generated triangulated category.
However, S(R) is not a tensor-trinagulated category and so it is not immediately
clear how one can use support (resp. cosupport) theory to study the localizing
(resp. colocalizing) subcategories of S(R). Nevertheless, there is an action of the
derived category D(R) on S(R) defined as follows: if X ∈ D(R) and A ∈ S(R),

then X ∗A = X̃⊗RA, where X̃ is a K-flat resolution of X . In the case where R is
a locally hypersurface ring, it was proved in [5] that the localizing subcategories of
S(R) stand in bijection with the subsets of Sing(R) the singular locus of R. This
result was obtained by using a support for objects of S(R) induced by the action of
D(R) on S(R). We are interested in a similar theorem concerning the colocalizing
subcategories of S(R).

(ii) The second example that motivated this work is the following: Let R be
a commutative noetherian ring. In [3] it was proved that the colocalizing sub-
categories of D(R) stand in bijection with the subsets of Spec(R). We generalize
this result to derived categories of schemes. As we shall see, this is attained by
reducing costratification to certain smashing localizations.

Cosupport and costratification. Assume that every point of Spc(Tc) the
Balmer spectrum of T is visible (so that the Balmer-Favi idempotents gp are de-
fined) and let A be an object of K. The cosupport of A is Cosupp(A) = {p ∈
Spc(Tc) | [gp, A]∗ 6= 0}. We have maps:

{colocalizing hom-submodules of K} {subsets of Spc(Tc)},
σ

τ

where σ(C) =
⋃

A∈C
Cosupp(A) and τ(W ) = {A ∈ K | Cosupp(A) ⊆W}.

Definition. We say that K is costratified if the maps σ and τ |Imσ are mutually
inverse bijections.

In order to verify costratification in practise, it is easier to check the validity of
two conditions that we introduce next.

Let A be a collection of objects of K. Then colochom(A) denotes the smallest
colocalizing hom-submodule of K that contains A. Also, let I denote the cogenera-
tor of K that is the product of the Brown–Comenetz duals of the compact objects
of K.

Definition.

(a) K satisfies the colocal-to-global principle if

colochom(A) = colochom([gp, A]∗ | p ∈ Spc(Tc)), ∀A ∈ K.

(b) K satisfies cominimality if colochom([gp, I]∗) is minimal, for all p ∈ Spc(Tc).

In the case K = T and ∗ = ⊗, the following theorems were also obtained
independently in [1].
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Theorem 1 ([6]). The following are equivalent:

(a) K is costratified.
(b) K satsfies the colocal-to-global principle and cominimality.

Theorem 2 ([6]). Suppose that Spc(Tc) =
⋃

i∈I Ui is a cover of the Balmer spec-
trum by complements of Thomason subsets. Provided that T satisfies the colocal-
to-global principle, the following are equivalent:

(a) T is costratified.
(b) T(Ui) is costratified, for all i ∈ I.

Applications. Appealing to Theorem 1 and Theorem 2 and Neeman’s classifica-
tion of colocalizing subcategories of D(R) for a commutative noetherian ring R,
one obtains the following result:

Theorem 3 ([6]). Let X be a noetherian separated scheme. Then D(X) the
derived category of quasi-coherent sheaves on X is costratified.

Finally, we have the following result that will appear in a future paper.

Theorem 4. Let R be a locally hypersurface ring. Then S(R) the singularity
category of R is costratified; there is a bijection between the collection of colocalizing
subcategories of S(R) and subsets of Sing(R).
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On Balmer spectra of Voevodsky and Morel-Voevodsky categories

Alexander Vishik

(joint work with Peng Du)

The difference in complexity between algebraic geometry and topology is apparent
from the comparison of ”atomic objects“ in both worlds. While in topology there
is only one kind of a point, in algebraic geometry there are many types of them
– spectra of various field extensions of the ground field k. This is reflected in the
structure of the respective Balmer spectra.

Our approach is based on isotropic realisations. In the case of DM(k), such re-
alisations are parametrized by a choice of a prime number p and an extension E/k.
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The isotropic motivic category DM(k/k;Fp) introduced in [2] is the localisation
of DM(k) by the subcategory generated by motives of p-anisotropic varieties, i.e
varieties having no points of degree prime to p. If the field k is flexible (that is,
a purely transcendental extension of infinite transcendence degree of some other
field), then isotropic category will be really handy. Namely, as in the global case,
on the compact part of this category there is a weight structure in the sense of
Bondarko [1] whose heart is the category Chow(k/k;Fp) of isotropic Chow mo-
tives. Objects here are direct summands of isotropic motives of smooth projective
varieties, while morphisms are given by isotropic Chow groups Ch∗iso. The lat-
ter groups are obtained from the usual Chow groups by moding out anisotropic
classes, that is, elements coming from p-anisotropic varieties. These naturally sur-
ject to numerical Chow groups Ch∗Num (with Fp-coefficients). It appears that over
flexible fields both versions coincide.

Theorem 1. ([3, Theorem 1.2]) Let k be flexible. Then Ch∗iso = Ch∗Num.

This implies that the category of isotropic Chow motives over a flexible field is
equivalent to the category of numerical Chow motives, which is semi-simple and
where homs are finite groups. We get a family of isotropic realisations with values
in flexible isotropic categories

ψp,E : DM(k)→ DM(Ẽ/Ẽ;Fp),

where E/k is a field extension and Ẽ = E(P∞) is the flexible closure of E. More-

over, it is sufficient to consider extensions only up to
p∼-equivalence relation, where

E/k
p∼ F/k iff the p-anisotropy of k-varieties is equivalent over E and F . Let

ap,E := ker(ψc
p,E). With the help of Theorem 1 one obtains:

Theorem 2. ([3, Theorem 1.3])

(1) The ideal ap,E of DM c(k) is prime and so, defines a point of the Balmer
spectrum Spc(DM c(k)).

(2) ap,E = aq,F ⇔ p = q and E/k
p∼ F/k.

This provides a large supply of new points of the Balmer spectrum Spc(DM c(k)).
A similar technique may be applied to the study of the Balmer spectrum

of SH(k). Here we need to substantially generalize the notion of anisotropy,
extending it to any oriented cohomology theory A∗ on Smk. We say that a

smooth projective variety X
π→ Spec(k) is A-anisotropic, if the push-forward map

π∗ : A∗(X)→ A∗(Spec(k)) = A is zero.
The theories we need are Morava K-theory K(p, n)∗ and P (m)∗-theory. Both

of them are obtained from BP ∗-theory (and so, also from the algebraic cobordism
Ω∗ of Levine-Morel), by change of coefficents: K(p,m)∗ = BP ∗ ⊗BP Fp[vm, v

−1
m ]

and P (m)∗ = BP ∗/I(m), where I(m) = (p, v1, . . . , vm−1) ⊂ BP is the invariant
ideal of Landweber. Here 1 ≤ m ≤ ∞ and P (∞)∗ = K(p,∞)∗ = Ch∗ = CH∗ /p.
For any oriented cohomology theory A∗ one may introduce the isotropic A∗

iso and
numerical A∗

Num versions. The following vast generalization of Theorem 1 was
proven in [3].
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Theorem 3. ([3, Theorem 1.4]) Let k be flexible. Then, for any 1 ≤ m ≤ ∞, we
have:

(1) P (m)∗iso = P (m)∗Num;
(2) K(p,m)∗iso = K(p,m)∗Num.

This allows to construct isotropic variants of topological ap,m-points. This was
done in our joint paper with Peng Du [4]. For any prime p and any 1 ≤ m ≤ ∞,
we introduce the Morava-isotropic stable homotopy category SH(p,m)(k/k) as a
localisation of the Morel-Voevodsky category SH(k) by the subcategory generated
by those compact objects U whose MGL-motive belongs to the subcategory of
MGL(k) −mod generated by the MGL-motives of K(p,m)-anisotropic varieties
and 1

MGL/vm. We get a family of isotropic realisations

ψ(p,m),E : SH(k)→ SH(p,m)(Ẽ/Ẽ)

taking values in flexible Morava-isotropic stable homotopy categories, where as
above, only the K(p,m)-equivalence class of an extension E/k matters. Here

E/k
(p,m)∼ F/k iff the K(p,m)-isotropy of k-varieties is equivalent over E and

F . Denote as a(p,m),E (the compact part of) the kernel of ψ(p,m),E . Theorem 3
permits to show that the zero ideals of the targets of these realisations are prime.
Moreover, we obtain:

Theorem 4. ([4, Theorem 1.1])

(1) The ideal a(p,m),E of SH(k) is prime and so, defines a point of the Balmer
spectrum Spc(SHc(k)).

(2) a(p,m),E = a(q,n),F ⇔ p = q, m = n and E/k
(p,m)∼ F/k.

(3) The point a(p,∞),E is the image of ap,E under the natural map Spc(DM c(k))
→ Spc(SHc(k)) of Balmer spectra.

We obtain many new points of the Balmer spectrum. For example, for the field

of real numbers R, we get 22
ℵ0

new isotropic points a(2,m),E, for every topological
point a(2,m),Top, 1 ≤ m ≤ ∞, of characteristic two of the spectrum Spc(SH(R)).
In particular, the cardinality of the Balmer spectrum is equal to the cardinality
of the set of all subsets of SHc(R). The interesting feature is that the speciali-
sation relations among isotropic points don’t follow the topological pattern. The
obstructions are provided (in particular) by the norm-varieties of Rost.
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Support theories for non-Noetherian tensor triangulated categories

Changhan Zou

We will explain how the support theory developed by Benson, Iyengar, and Krause
can be constructed without the Noetherian hypothesis. A key ingredient is a new
notion of small support for modules over commutative rings that are not neces-
sarily Noetherian, which depends on the notion of weakly associated prime. For
a tensor triangulated category, we establish relations between the canonical BIK
support and the tensor triangular support defined by Sanders, which generalizes
the Balmer–Favi support. With these notions of support, we develop the associ-
ated stratification theories and show that the stable module category of a finite
group over a field is canonically stratified by the Tate cohomology ring. With the
support defined by Sanders we show that the p-local stable homotopy category
satisfies the detection property. As a consequence, the non-zero dissonant spectra
are exactly the spectra whose support is the single point at infinity in the Balmer
spectrum.
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