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Abstract. Variational principles for evolutionary systems arise in many set-
tings, both in those describing the physical world and in man-made algorithms
for data science and optimization tasks. Variational principles are available
for Hamiltonian systems in classical mechanics, gradient flows for dissipative
systems, as well as in time-incremental minimization techniques for more gen-
eral evolutionary problems. Additional challenges arise via the interplay of
two or more functionals (e.g. a free energy and a dissipation potential), thus
encompassing a large variety of applications in the modeling of materials and
fluids, in biology, and in multi-agent systems.

Variational principles and associated evolutions are also at the core of the
modern approaches to machine learning tasks, since many of them are posed
as minimizing an objective functional that models the problem. The discrete
and random nature of these problems and the need for accurate computation
in high dimension present a set of challenges that require new mathematical

insights. Variational methods for evolution allow for the usage of the rich
toolbox provided by the calculus of variations, metric-space geometry, partial
differential equations, and other branches of applied analysis.

The variational methods for evolution have seen a rapid growth over the
last two decades. This workshop continued the successful line of meetings
(2011, 2014, 2017, and 2020), while evolving and branching into new direc-
tions. We have brought together a wide scope of mathematical researchers
from calculus of variations, partial differential equations, numerical analysis,
and stochastics, as well as researchers from data science and machine learn-
ing, to exchange ideas, foster interaction, develop new avenues, and generally
bring these communities closer together.
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Introduction by the Organizers

The workshop Variational Methods for Evolution, organized by Franca Hoffmann
(Caltech), Alexander Mielke (Berlin), Mark Peletier (Eindhoven), and Dejan
Slepčev (Pittsburgh) brought together researchers with variety of backgrounds
and from a geographically diverse set of academic institutions.

Hamiltonian systems, gradient systems, or mixtures of these two extreme types
are almost ubiquitous in applications. They have been considered in connection
with many real-world models such as fluid dynamics, phase transitions, thin films,
quantum models, nonlinear diffusion and transport problems, chemical reactions,
rate-independent phenomena, material modeling, and many others. Variational
approaches to such evolutionary systems provide a powerful set of tools and meth-
ods, and the past years have seen impressive growth of this area, with the develop-
ment of generalized gradient flows in Banach spaces and gradient flows in metric
spaces, the characterisation of a very wide range of systems as variational evo-
lutions, the study of the interplay between energy landscape and the dissipation
geometry, the connections to stochastic particle systems, and many others.

These variational-evolution methods have recently found new applications in
the rapidly developing field of data science. Many of the models of data science
are variational in nature: to formulate a machine learning task one often cre-
ates an objective functional that describes the desired properties of the solution
sought and then minimizes the functional. Many of these involve minimization
over the probability measures and function spaces, whose minimization is closely
connected to variational evolutions of the relevant functionals. The discrete na-
ture, randomness, and high-dimensionality of the data create challenges that call
for new mathematical approaches.

For instance, one task is to utilize the geometry of the data distribution carried
by the available random samples. This leads to questions about evolutions on
graphs and their many nodes limits. The desire for high-dimensional computa-
tions leads to questions about geometries for gradient flows that can be estimated
accurately in high dimensions, and are robust to noise. Mean-field limits of neural
networks (including deep ones) show promising connections to PDE and evolu-
tionary problems. Likewise, sampling problems and generative models of learning
have evolutionary descriptions that raise important questions.

In this workshop we sought to bring together mathematicians studying variational
evolutions with researchers from the data science community for a stimulating
exchange of ideas. We invited a selected group of experts and young researchers
from both communities to work together to recognize the common mathematical
structures, formulate the most important mathematical questions, and exchange
ideas. Many participants said towards the end of the workshop that they had
found the mix of topics particularly motivating; it is clear that this aim of bringing
people together from different areas of mathematics was successful in creating a
productive scientific meeting.
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Another aim of the workshop was to offer the chance to many young and talented
researchers that have started in this promising area, to get exposed to broad
set of relevant ideas and have scientific discussions with the leaders in the field.
Again, this seems to have been successful, based on the observation that a number
of young researchers are now in contact with more established members of this
community, and various plans for follow-up visits and research activities have
already been made.

The workshop was purely on-site and in-person, despite two disruptive events: (i)
a large snow storm in South East Germany on the Saturday evening before com-
plicated the arrival of several participants and (ii) a strike involving the Deutsche
Bahn on Friday forced many participants to invest time in rearranging their de-
parture. Thanks to collective efforts alternative transport was arranged and most
participants were able to stay on Friday. Despite the adversity, the workshop had
an excellent atmosphere, featured exciting talks and lively scientific discussions;
the participants were uniformly positive about the event when they left.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Bharat K. Sriperumbudur in the “Simons Visiting Pro-
fessors” program at the MFO.
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Abstracts

Entropic interpolations are geodesics

Christian Léonard

(joint work with Marc Arnaudon, Giovanni Conforti)

Entropic interpolation. Let Ω = {paths} be the set of all continuous paths
from the time interval [0, T ] to the state space Rn and denote P(Ω) and M(Ω)
the sets of all probability measures and all positive measures on Ω. We choose
as a reference path measure R ∈ M(Ω) the law of the solution of the following
stochastic differential equation on Rn :

{
dXt = −a∇U(Xt)/2 dt+

√
adBt, 0 < t ≤ T,

X0 ∼ m := exp(−U) Leb, t = 0,

where Xt is the random position at time t, a > 0 is a positive number, B is a
standard Brownian motion, U : Rn → R is a scalar potential and Leb stands for
Lebesgue measure. Not only m is an invariant measure, but also R is reversible:
X and X∗ : s ∈ [0, T ] 7→ X∗

s := XT−s, are statistically indistinguishable.
The relative entropy of P ∈ P(Ω) with respect to R is

H(P |R) :=
∫

Ω

log

(
dP

dR

)
dP

and the Schrödinger problem is

infH(P |R); P ∈ P(Ω) : P0 = α, PT = β

where P0, PT ∈ P(Rn) are the initial and final marginals of P and α, β ∈ P(Rn)
are prescribed. As a strictly convex problem, it admits a unique solution Q (if
any) which is called the Schrödinger bridge between α and β and whose time
marginal flow is called the entropic interpolation between α and β. This problem
was addressed by Schrödinger in 1931 [9,10]. For a review see [7] for instance, and
for its applications to computational optimal transport see [8].

Bridges. Any Schrödinger bridge Q is a mixture of bridges Rab(·) := P(X ∈ · |
X0 = a,XT = b) of R, that is: Q(·) =

∫
Rn×Rn R

ab(·)Q0T (dadb) where Q0T

is the joint law under Q of the endpoint positions. One can extend the above
definition of entropic interpolation to the time marginal flow of any bridge Rab.
The results below remain unchanged provided we restrict our attention to the open
time interval (0, T ).
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Principle of least action. Any Schrödinger bridge inherits the Markov property
from R. Restricting, without loss of generality, the Schrödinger problem to Markov
path measures P allows to write

H(P |R) = F(µT )−F(µ0) +

∫

[0,T ]×Rn

|vcu|2 + |vos|2
2a

(t, x)µt(dx)dt,

where (µt)0≤t≤T is the time marginal flow of P , F(γ) = H(γ|m)/2, γ ∈ P(Rn)
plays the role of a free energy functional, the current velocity field vcu satisfies the
continuity equation

∂tµt +∇ · (vcuµ) = 0,

and the osmotic velocity field is given by the time reversal formula

vos(t, x) = a∇ log

√
dµt
dm

(x).

The idea of the proofs of these expressions dates back to Föllmer [6]. The main
difficulty in the present setting is to give sense to the above expressions while the
only assumption H(P |R) <∞ does not imply much regularity. This is done in [3].

One can also show that the current velocity field vcu of the Schrödinger bridge
is a gradient field (in some weak sense). Restricting, without loss of generality, our
attention to such Markov path measures P , the above continuity equation permits
us to interpret vcut as the tangent vector µ̇t at µt of the marginal flow (µs)0≤s≤T ,
in the sense of the Otto-Wasserstein geometry, see [11, Ch. 15].

On the other hand, plugging the time reversal formula into the expression of
H(P |R), noting that as regards the Schrödinger problem µ0 = α and µT = β are
prescribed, and multiplying by a, we arrive at the following least action principle

inf A(µ); µ := (µt)0≤t≤T : µ0 = α, µT = β,

with

A(µ) =
∫ T

0

(
‖µ̇t‖2µt

/2 + a2I(µt)
)
dt

where ‖µ̇t‖2µt
=
∫
Rn |vcut |2 dµt is the Otto-Wasserstein squared norm of the tangent

vector vcut = µ̇t at µt, and

I(γ) :=
∫

Rn

1

2

∣∣∣∣∣∇ log

√
dγ

dm

∣∣∣∣∣

2

dγ

is the Fisher information of γ ∈ P(Rn) with respect to m.

Newton’s equation. The action A is analogous to a usual classical mechanical
action on a Riemannian manifold M with Lagrangian L(γ̇, γ) = ‖γ̇‖2γ/2 + a2I(γ)
instead of the classical Lagrangian L(q, v) := |v|2q/2 − V (q). Since L gives rise to
the Newton equation:

ẍt = −gradxt
V,
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where ẍt = ∇ẋt ẋt is the acceleration of the trajectory t 7→ xt, one can show
similarly [4, 5] that the entropic interpolation µ solves the Newton equation

µ̈t = a2gradOW
µt
I

with respect to the Otto-Wasserstein geometry. The main issue when extending
the results of [4] to those of [5] is to overcome the lack of regularity under the weak
assumption H(P |R) <∞. In the special case (to keep the writing easy) where R
is the reversible Brownian path measure (i.e. U = 0), we have

gradOW
γ I = ∇Qγ where Qγ := −∆

2

√
γ
/√

γ

is the quantum potential and γ also stands for the density of the measure γ.

Geodesic in spacetime. On the other hand, it is known since Cartan’s article [2]
in 1923 that any solution of Newton’s equation ẍt = −gradxt

V , is such that (t, xt)
is a geodesic in the curved spacetime R×M with some Riemann curvature tensor
built on the original curvature tensor of M , plus an additional curvature tensor
built with the Hessian of the potential V. Similarly, it is proved in [1] that the
same property holds for entropic interpolations in a curved spacetime R× P(Rn)
whose curvature tensor is the sum of a curvature coming from the Otto-Wasserstein
geometry and a curvature tensor built with the Hessian of I. In the above special
case where U = 0,

HessOW
γ I(∇θ,∇θ) =

∫

Rn

(
HessQγ(∇θ,∇θ) +

∣∣∣∣
∆

2
∇θ +∇ log

√
γ · ∇θ

∣∣∣∣
2 )

dγ.
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Discrete-to-continuum limits of graph-based gradient flows

Yves van Gennip

(joint work with Yoshikazu Giga, Jun Okamoto, Samuel Mercer)

We are interested in discrete-to-continuum limits of graph-based gradient flows.
Such flows are of interest to image analysis, machine learning, and other graph-
based problems. A well-known example is the gradient flow based on the Allen–
Cahn (or Ginzburg–Landau) functional for image segmentation, as proposed by
Bertozzi and Flenner [2]. This treats the image segmentation problem as a graph
classification problem, to be solved by minimizing

1

2

∑

i,j∈V
ωij(ui − uj)2 +

1

ε

∑

i∈V
W (ui) +

1

2

∑

i∈Z
µi(ui − fi)2

over real-valued functions u defined on the node set V of a graph with edge weights
ωij . The double-well potentialW : R→ R has wells at 0 and 1, f contains a priori
known labels on a subset Z ⊂ V and ε and µi are parameters to be chosen. Such
a minimization problem can be tackled by computing a gradient flow.

By establishing a continuum limit, consistency of the method in the limit |V | →
∞ is shown. In the main part of this talk we discuss explicit interpolation methods
on a periodic grid to establish the continuum limit for total variation flow and for
one-dimensional Allen–Cahn flow. A key ingredient in the proofs of these results
is the variational inequality formulation for gradient flows.

In the latter part of the talk we present ideas from ongoing research into semi-
group methods for establishing convergence of gradient flows if Γ-convergence of
the underlying functionals is known. These methods can be applied to flows on
random geometric graphs, but (at the moment) still demand stronger convexity
requirements on the functionals than the variational-inequality-based results.

The main part of this talk is based on the work in [4]. Given a Hilbert space
(H, ‖ · ‖) and λ ∈ R, a function Φ : H → R∪{+∞} is called geodesically λ-convex
if Φ(·)− λ

2 ‖ · ‖2 is convex. In this case, a gradient flow of Φ with respect to ‖ · ‖ is
defined to be a locally absolutely continuous curve u : (0,∞)→ H which satisfies,
for almost all t > 0 and for all v in the domain of Φ, the evolution variational
inequality

1

2

d

dt
‖u(t)− v‖2 + λ

2
‖u(t)− v‖2 ≤ Φ(v)− Φ(u(t)).

From the perspective of generalisability this formulation is interesting, because by
replacing the norms ‖u(t) − v‖ with a general distance d(u(t), v), it allows us to
define gradient flows on (non-normed) metric spaces as well1. For the purposes of
this talk, it suffices to restrict ourselves to the Hilbert space setting. In this setting,
the evolution variational inequality is equivalent to the, perhaps more commonly
used, differential-inclusion-based gradient flow definition:

u′(t) ∈ −∂
(
Φ(u(t))− λ

2
‖u(t)‖2

)
− λu(t).

1In which case we also need to define geodesic λ-convexity in this generalised setting.
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Here ∂ denotes the subdifferential.
We wish to compare gradient flows on graphs with continuum gradient flows.

The evolution variational inequality allows us to do so, once we have determined
a way to embed these flows into the same space. Thus we consider a sequence of
Hilbert spaces (Hn, ‖ · ‖n) indexed by a parameter n ∈ N, which in our setting are
going to be spaces of functions defined on the node set (of size n) of a graph. We
require an embedding in : Hn → H and a corresponding ‘projection’ pn : H → Hn

such that pn ◦ in is the identity map on Hn. We assume moreover that the maps
in are isometries and that the maps pn are 1-Lipschitz continuous.

Given functions Φn : Hn → R ∪ {+∞}, we require each Φn as well as Φ to
be geodesically λ-convex for some λ ≤ 0 (the same λ for each function), lower
semicontinuous, not identically equal to +∞ and locally bounded below at some
point in their domains (not necessarily the same point for each function). By
Ambrosio et al. [1, Theorem 4.0.4], these conditions guarantee the unique existence
of gradient flows of Φn and Φ for given initial conditions in the closure of the
domains of the respective functions. We assume that these closures of the domains
are equal to the whole spaces Hn and H , for Φn and Φ, respectively.

Writing un for the gradient flow of Φn with initial condition u0n ∈ Hn and u
for the gradient flow of Φ with initial condition u0 ∈ H , the evolution variational
inequality allows us, in [4], to prove the following two theorems.

Theorem 1. Assume the following three conditions are satisfied, for all n ∈ N,
all v ∈ Hn and all w ∈ H: Φ(inv) ≤ Φn(v), Φn(pnw) ≤ Φ(w), and

(1) ‖v − pnw‖2 + ‖inpnw − w‖2 = ‖inv − w‖2.
Then inun is the gradient flow of Φ with initial condition inu

0
n and, for all t > 0,

‖inun(t)− u(t)‖2 ≤ e−2λt‖inu0n − u0‖2.

Theorem 2. Assume that the equality in (1) is satisfied and the following hold.

(a) For all w ∈ H, lim supn→∞ Φn(pnw) ≤ Φ(w).
(b) There exist T > 0, δ > 0, and a nonnegative function Ψ : H → R∪ {+∞}

such that Ψ(u(·)) ∈ L1(0, T ) and, for all w ∈ H and n large enough
Φn(pnw) ≤ Ψ(w).

(c) For all t ∈ [0, T ] and n large enough, Φ
(
inun(t)

)
≤ Φn

(
un(t)

)
+ o(1).

If inu
0
n → u0, then

lim
n→∞

sup
t∈[0,T ]

‖inun(t)− u(t)‖ = 0.

We apply these theorems in a setting in which Hn is the space of real-valued
functions on the node set Vn of the graph we obtain by discretising the flat d-
dimensional torus by a regular grid with nd nodes.

Theorem 1 can be applied to the total variation flow, with

Φn(u) =
1

2

∑

z∈Vn

∑

z̃∈Vn
z̃∼z

n1−d|u(z)− u(z̃)|, Φ(u) =

∫

Td

|Du|ℓ1 .
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The embedding maps in are constructed via piecewise-constant embedding and
the ‘projection’ maps pn by averaging over grid cells.

We apply Theorem 2 to the one-dimensional (i.e. d = 1) Allen–Cahn flow with

Φn(t) =
1

4

∑

z∈Vn

∑

z̃∈Vn
z̃∼z

n2−d(u(z)− u(z̃)
)2

+
∑

z∈Vn

n−dW (u(z)),

Φ(u) =
1

2

∫

Td

|∇u(x)|2 dx+

∫

Td

W (u(x)) dx.

In this case the embedding operator in is given by linear interpolation with pn a
corresponding ‘orthogonal projection’ map. Since these in are not an isometries,
Theorem 2 cannot be applied directly. Instead, the inner product structure on Hn

is adapted such that the in become isometries and it is shown that the resulting
gradient flows of Φn do not differ much from the original gradient flows of Φn, for
large n.

In the final part of the talk, which is based on work with Samuel Mercer which
is currently in preparation, we wish to prove convergence of gradient flows in cases
where Γ-convergence of the functions Φn is known, in the tradition of Sandier and
Serfaty’s work [5]. Moreover, we wish to be able to apply this in settings such as
random geometric graphs in which no regular grid is available and interpolation
techniques for embedding discrete functions into continuum function spaces re-
quires more attention. Preliminary results, based on semigroup techniques and an
extension of theorem by Brezis and Pazy [3, Theorem 3.1] to sequences of Banach
spaces suggest this is possible, yet potentially at the cost of requiring stronger
convexity of the functionals than geodesic λ-convexity.
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Thermodynamic limit of stochastic particle systems via
EDP convergence

André Schlichting

(joint work with Chun Yin Lam)

We consider N particles on a lattice of L sites. The state of the system is given
by the occupation numbers η = (ηx)x∈1,...,L of each site, and the time evolution is
modelled by a continuous-time Markov process (η(t))t≥0 on the set V N,L :=

{
η ∈

NL0 :
∑L

x=1 ηx = N
}
of configurations with a fixed number N of particles. The

process is characterized by the generator

(1) Lf(η) = 1

L− 1

L∑

x=1

L∑

y=1

K(ηx, ηy)
(
f(ηx,y)− f(η)

)
, f ∈ C(V N,L) ,

where ηx,y denotes the configuration obtained from η after one particle jumps from
x to y.

This is a particular model class of stochastic particle systems (SPS), which
has been introduced in [3] under the name misanthrope processes. The process is
irreducible and has a unique canonical stationary measure πN,L on V N,L.

We consider condensation as a phase separation phenomenon in the thermo-
dynamic limit N,L → ∞ with N/L → ρ ≥ 0: If the particle density ρ exceeds
a critical value ρc, the system phase separates into a homogeneous bulk and a
condensate, where a finite fraction of particles accumulates on a vanishing vol-
ume fraction of sites. Mathematically, we say that an SPS with canonical mea-
sures (πN,L) exhibits condensation (in the thermodynamic limit) if the single-site
marginals converge narrowly

πL,N [ηx ∈ .]⇒ νρ , a measure on N0 with
∑

k≥0
kνρ(k) < ρ = limN/L .

The condensation threshold mass is denoted by ρc ∈ [0,∞], the largest ρ for which
no condensation occurs. Condensation, i.e. ρc < ∞, in SPS of type (1) has
been studied extensively (see e.g. [2] and references therein) and particular models
include zero-range processes [8] with bounded kernels of the form

(2) K(k, l) = u(k) = 1 +
b

kγ
with parameters b > 0, γ ∈ (0, 1] ,

or various models with product kernelsK(k, l) = kλ(d+lλ) for parameters d, λ > 0.
Spatially homogeneous SPS with these kernels are known to have stationary

measures of product form

(3) πN,L(η) =
1

ZN,L

L∏

x=1

Qηx with normalization ZN,L =
∑

η∈V N,L

L∏

x=1

Qηx ,

and stationary weights Q : N0 → (0,∞), playing the role of the chemical potential.
The condensation transition has been established rigorously in the thermody-

namic limit for zero-range processes of type (2) (see e.g. [8]), where the condensate
consists only of a single site.
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The configuration η ∈ V N,L of a mean-field SPS can be characterized by the
empirical cluster distribution

(4) FLk (η) :=
1

L

L∑

x=1

δk,ηx ∈ [0, 1] , k ≥ 0 .

In the thermodynamic limit these observables converge under quite general con-
ditions, forming the basis of a mesoscopic description of the dynamics. The law
of large numbers was obtained in [7]: Let the process (η(t))t≥0 be given by the
generator (1) for a kernel with at most linear growth, i.e.

(K1) 0 ≤ K(k, l− 1) ≤ CK k l for k, l ≥ 1 ,

If FLk (η(0))→ ck(0) satisfies some suitable tightness assumptions, then cLk (η(0))→
ck(t) converges weakly in the thermodynamic limit L,N → ∞, N/L → ρ ≥
0 to the cluster concentrations ck(t) solving the (deterministic) mean-field rate
equations

(EDG)

ċk =
∑

l≥1

K(l, k − 1)clck−1 −
∑

l≥1

K(k, l− 1)ckcl−1

−
∑

l≥1

K(l, k)clck +
∑

l≥1

K(k + 1, l− 1)ck+1cl−1 , for k ≥ 0 .

Note that the deterministic set of equations (EDG) can formally be obtained
from (5) by mass-action kinetics, and describe the time evolution of concentrations
of finite clusters, i.e. the bulk of the system, on a mesoscopic scale. This descrip-
tion, also known as exchange-driven growth [1]. Basic mathematical properties
regarding the well-posedness and the longtime behavior of the EDG model in the
form of (EDG) are investigated in [4, 6, 15].

Although the exchange-driven growth process is not necessarily realized by
chemical kinematics, it is convenient to be interpreted as a reaction network of
the form

(5) {k − 1}+ {l} K(l,k−1)−−−−−−⇀↽−−−−−−
K(k,l−1)

{k}+ {l − 1} , for k, l ≥ 1 .

Hereby, clusters of integer size k ≥ 1 are denoted by {k} and the variable {0}
represents empty volume. The kernel

(
K(k, l − 1)

)
k,l≥1

encodes the rate of the

exchange of a single monomer from a cluster of size k to a cluster of size l − 1.
Note that no mass is created or destroyed in the reaction.

In the present work, we lift the law of large numbers result to statement on the
convergence of gradient structures related to the large deviation rate functional
of the stochastic particle system. For the description and convergence, we use
the recent framework of gradient flows in continuity equation format established
in [13, 14]. The law of the empirical cluster distribution (4) of the SPS, denoted
with CN,L ∈ P(P(N0)) is associated with a discrete continuity equation encoding
the two conserved quantities of the system given in a suitable weak form of

(6) ∂tC
N,L
t + d̂iv JN,Lt = 0,
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where the flux is a measure in JN,L ∈ M(P(N0)× N× N0) and d̂iv is the adjoint

operator to the discrete gradient ∇̂f(c)(k, l − 1) = f(ck,l−1) − f(c) with ck,l−1 =
c+ 1

Lγ
k,l−1 and γk,l−1 = ek−1+el−ek−el−1. For the specific absolutely continuous

flux dJ
N,L

t (c, k, l−1) = L2

L−1ck
(
cl−1− δk,l−1

L

)
K(k, l−1)dCN,Lt (c), the solution of (6)

is exactly the forward Kolmogorov equation for the SPS-generator (1). Under the
detailed balance condition

(BDA)
K(k, l− 1)

K(l, k − 1)
=
K(k, 0)K(1, l− 1)

K(l, 0)K(1, k− 1)

the system has a also the formulation as a generalized gradient flow by the theory
developed in [11], which amounts to the fact, that the rate function LN,L(CN,L,
JN,L) takes the form

(7) FN,L(CN,Lt )
∣∣∣
T

t=0
+

∫ T

0

[
RN,L

(
C
N,L
t , JN,Lt

)
+RN,L∗(

C
N,L
t ,−∇DFN,L(CN,Lt )

)]
dt,

where the free energy F is the relative entropy with respect to the equilibrium
cluster distribution FL♯ π

N,L of the SPS from (3) and the functional R and R∗ are

dual dissipation functionals of cosh-type, which are typical for jump processes [9,
11, 13, 14]. In the form (7), a passage to the thermodynamic limit N,L → ∞
of the gradient structure with N/L → ρ ≥ 0 is possible via the notion of EDP-
convergence, also called evolutionary Γ-convergence [5, 10, 12, 14]. The strategy is
to exploit suitable compactness for curves (CN,L, JN,L) solving (6) such that along
converging subsequences (CN,L, JN,L) ⇀ (C, J) the following Γ-lim inf statement
holds

lim inf
N/L→ρ

LN,L(CN,L, JN,L) ≥ Lρ∧ρc(C, J).

The limit functional has a density with respect to the limit measure C and one
arrives at the diagram:

(CN,L, J
N,L

) solves (6) ⇐⇒ LN,L(CN,L, JN,L) = 0 Lρ∧ρc(C, J) = 0

cluster distribution (FL
k (η(t)))t≥0 Lρ∧ρc(c, j(c)) = 0 ⇐⇒ c solves (EDG).

EDP

N,L→∞
N/L→ρ implies

via superposition
Evolution of the law of

In the EDP convergence statement the choice of the topology is crucial and we
equip the space P<∞(N0) with the distance

(8) dEx(µ
0, µ1) = |T(µ0)− T(µ1)|ℓ1(N) with Tk(µ) =

∞∑

l=k

µl tail distribution.

The EDP convergence statement is then formulated in the topology (P<∞, dEx)
and for the sake of brevity, we state only the Γ-convergence for the free energy.

Theorem (Γ-convergence of free energy). In the thermodynamic limit N
L → ρ,

the free energy Γ converges

FN,L(CN,L)
Γ→
∫
H(c|νρ∧ρc)dCρ in the narrow topology on (P<∞, dEx) .
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[13] M. A. Peletier, R. Rossi, G. Savaré, and O. Tse. Jump processes as generalized gradient
flows. Calculus of Variations and Partial Differential Equations, 61(1):1–85, 2022.

[14] M. A. Peletier and A. Schlichting. Cosh gradient systems and tilting. Nonlinear Analysis,
231:113094, 2023.

[15] A. Schlichting. The exchange-driven growth model: basic properties and longtime behavior.
J. Nonlinear Sci., 30(3):793–830, 2020.

Normal form and the Cauchy problem for cross-diffusive mixtures

Katharina Hopf

(joint work with Pierre-Étienne Druet, Ansgar Jüngel)

Irreversible physical processes compatible with the second law of thermodynamics
can be modelled using the Onsager approach, which is based on a formal gradient-
flow ansatz in the dual form

u̇ = −K(u)DH(u).(1)

Here, u = u(t) denotes the state, u̇ = d
dtu, H a differentiable driving functional

and K the Onsager operator, a symmetric and positive semi-definite linear oper-
ator, whose symmetry property reflects the Onsager reciprocal relations. We are
interested in diffusive processes formally obtained by choosing u = u(t, x) ∈ O,
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t > 0, x ∈ Td, for a convex domain O ⊂ Rn, H(u) =
∫
Td h(u) dx with h : O → R

smooth and strongly convex such that H := D2h > 0 in O. The Onsager operator
is assumed to take the form K(u)ξ = −∇ · (M(u)∇ξ) with M(u) ∈ Rn×n symmet-
ric and positive semidefinite. Inserting these choices into (1) gives the quasi-linear
second-order system

∂tu = ∇ · (A(u)∇u), A(u) = M(u)H(u).(2)

While the matrix A(u) need not be symmetric, the positive definiteness of H(u)
and the positive semi-definiteness of M(u) ensure that it is diagonalisable over R
and all its eigenvalues are non-negative. If in addition rankA(u) = n, the PDE
system (2) is parabolic in the sense of Petrovskii, rendering the Cauchy problem
locally well-posed for sufficiently regular data.

The present note is motivated by an application in population dynamics deter-
mined by the choice

h(u) =

n∑

i=1

1

λi
ui(logui − 1), Mij(u) = uiBijλjuj , i, j ∈ {1, . . . , n},(3)

with O = (0,∞)n and where B = (Bij) ∈ Rn×n, λ = (λi) ∈ (0,∞)n are such that
the product BD(λ) is symmetric positive semidefinite, D(λ) := diag (λ1, . . . , λn).
Thus, in this application, Aij(u) = uiBij , and the system is no longer para-
bolic if rankB < n. We are thus faced with a borderline case, where local well-
posedness cannot directly be inferred from classical literature, but might still be
expected given the non-negativity of all eigenvalues of A(u). To gain insights in
the Cauchy problem, it is necessary to better understand the structure of the
system. In the context of fluid dynamics a systematic procedure has been devel-
oped by Kawashima and Shizuta [2] for quasi-linear second-order systems with
an entropy structure, who introduced a normal form, i.e. a change of the depen-
dent variables that brings the PDE system in the form of a composite symmetric
hyperbolic–parabolic system. The classical theory on normal forms strongly relies
on a null-space/range invariance property of the matrix associated with the diffu-
sive effects, which is not satisfied in the above model (with rankB < n) because
rangeM(u) = rangeD(u)B depends on the state u. Nevertheless, in the specific
example considered above, explicit calculations detailed in [1] allow us to identify
a change of variables u 7→ w that brings system (2) in the form of a symmetric
hyperbolic–parabolic system

AI

0(w)∂twI +

d∑

ν=1

AI

1(w, ∂xνwII) ∂xνwI = f I(w,∇wII),

AII

0∂twII −∇ ·
(
AII

∗(w)∇wII

)
= 0,

where the matrices AI
0(w) ∈ R(n−r)×(n−r), AII

0 ,A
II
∗(w) ∈ Rr×r, r := rankB, are

symmetric positive definite, and AI
1(w, ∂xνwII) ∈ R(n−r)×(n−r) is symmetric. At

this point, established methods for symmetric hyperbolic and symmetric parabolic
systems can be applied separately to the respective subsystem in order to construct
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short-time classical solutions emanating from initial data in Hs(Td), s > d
2 + 1,

that are positive componentwise.
Finally, consider more generally system (2) with rankA(u) = r < n. The

following question arises naturally: under which conditions can it be recast in a
normal form that ensures local well-posedness for smooth data?

References
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The large-data limit of the MBO scheme for data clustering

Tim Laux

(joint work with Jona Lelmi)

The MBO scheme is an efficient algorithm for data clustering, the task of partition-
ing a given dataset into several meaningful clusters. Vaguely speaking, a clustering
is considered meaningful if all elements in a given cluster are similar to each other
while they differ from those in others. Quantitatively, this is often interpreted as
finding minimal cuts in an associated graph. However, nonlinear methods (like
finding minimal graph cuts) have the disadvantage of being computationally in-
efficient, sometimes even giving rise to NP-hard problems. On the other hand,
there are plenty linear algorithms, such as k-Means, which find some clustering,
but cannot resolve the possibly nonlinear structure of the data set without suit-
able pre-processing of the data. The MBO scheme mediates between those two
extreme cases: One merely solves a linear problem and then applies a pointwise
nonlinearity which is computationally trivial. Therefore, it is as performant as a
linear method but is not blind to nonlinear effects in the data structure. In this
talk, I present the first rigorous analysis of this scheme in the large-data limit.

Given a point cloud X = {x1, . . . , xN} ⊂ Rd, we encode a clustering by a
partition X = Ω1 ∪ . . . ∪ ΩP for some P ∈ N. Equipping the set X with a graph
structure (for example by setting x ∼ y if and only if |x−y| < ε for some fixed scale
ε > 0), one can exploit the (say, random walk) graph Laplacian ∆ to understand
the geometry of the data set X .

The MBO scheme improves an initial guess (for example given by k-Means
or a random assignment) by alternating between linear diffusion and pointwise
thresholding. More precisely, given an (artificial) time-step size and an initial

clustering Ω
(0)
1 ∪ . . . ∪ Ω

(0)
P , for ℓ = 1, 2, . . ., compute

Diffusion: u
(ℓ)
i := e−h∆χ

Ω
(ℓ−1)
i

(1 ≤ i ≤ P ),(1)

Thresholding: Ω
(ℓ)
i :=

{
x ∈ X : u

(ℓ)
i (x) = max

1≤j≤P
u
(ℓ)
j (x)

}
(1 ≤ i ≤ P ),(2)
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until some stopping criterion is met, such as only few points changing their label
from Step L − 1 to Step L. The partition in the last step then is the proposed

clustering X = Ω
(L)
1 ∪ . . . ∪ . . .Ω(L)

P .
The starting point of the analysis is that each iteration of the MBO scheme can

be viewed as one step of minimizing movements for the thresholding energy on the
similarity graph of the dataset, i.e., writing Ω = (Ω1, . . . ,ΩP ), the combination
of (1) and (2) is equivalent to

Ω(ℓ) ∈ argmin
Ω

{
EN,εh (Ω) +

1

2h

(
dN,εh

(
Ω,Ω(ℓ−1)

))2}
,

where the energy EN,εh is defined on partitions Ω = (Ω1, . . . ,ΩP ) of X via

EN,εh (Ω) :=
1√
h

∑

1≤i<j≤P
〈χΩj , e

−h∆χΩj 〉(3)

with 〈·, ·〉 a suitable scalar product on functions on X that makes the graph Lapla-

cian ∆ = ∆N,ε self-adjoint, and dN,εh is a suitable distance function on partitions.

It is then natural to think that outcomes Ω(L) of the MBO scheme are (local)
minimizers of this energy. In [2], we prove that for large data sets the algorithm
is consistent with the original task of finding minimal cuts in the sense that these
(local) minimizers converge to (local) minimizers of the optimal partition problem
given by the continuum limit of the minimal cut problem.

More precisely, we employ the so-called manifold assumption postulating that
the points (xn)n are independent samples of some probability measure µ = ρVolM ,
where (M, g) is a closed k-dimensional submanifold of the high-dimensional feature
space Rd and ρ : M → (0,∞) is a smooth function. Then, the first result in [2]
establishes the large-data limit of the energies for fixed time-step size h.

Theorem. Under the manifold assumption, as the sample size N goes to infinity,
almost surely and in a suitable scaling regime for the length scale εN → 0, we have

EN,εNh → Eh in the sense of Γ-convergence w.r.t. the weak TL2-topology.

Here, the continuum energy Eh is defined on relaxed partitions, i.e., maps
u : M → [0, 1]P such that

∑
i ui = 1, and is of the form

Eh(u) =
1√
h

∑

1≤i<j≤P

∫

M

uie
−h∆ρ2uj ρ

2dVolM

(modulo some constants), where ∆ρ2f = − 1
ρ2∇ · (ρ2∇f) is the natural Laplacian

on the weighted manifold (M, g, ρ2).
The main ingredient for this result is the following natural fact that the diffusion

equation upgrades weak to strong convergence.

Proposition. In the situation of the theorem above, for any t > 0, we have

uN ⇀ u weakly in TL2 =⇒ e−t∆N,εN uN → e−t∆ρ2u strongly in TL2.(4)

Indeed, the proposition implies that the Γ-convergence in the theorem is in fact
continuous convergence: Every weakly converging sequence is a recovery sequence
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for its limit. Furthermore, the proposition even implies that the whole minimizing
movements functional (3) Γ-converges and hence we answer positively a question
of Bertozzi:

Theorem. Under the assumption of the above theorem, the iterates of the MBO
scheme on the graph converge to the corresponding iterates of the MBO scheme on
the weighted data manifold.

The proposition is shown in [2] via the stability principle of gradient flows and
exploiting the fact that the diffusion equation on the weighted manifold (M, g, ρ2)
is well-behaved so that the chain rule holds.

Finally, in the limit of vanishing time-step size, the problem converges to the
desired optimal partition problem.

Theorem. As h ↓ 0, we have Eh → E in the sense of Γ-convergence w.r.t. the
L1 topology, where the sharp-interface energy is the following weighted optimal
partition energy

E(u) =
∑

1≤i<j≤P

∫

∂∗Ωi∩∂∗Ωj

ρ2 dHk−1 if u = (χΩ1 , . . . , χΩP )(5)

and E(u) = +∞ otherwise.

This confirms that the MBO scheme indeed places small cuts in regions of low
data density. The work [2] is the first result on the large-data limit of the MBO
scheme and still the only one valid for more than two clusters. In the case of
two clusters, however, one can use the theory of viscosity solutions to get a more
precise understanding of the dynamics, see [1]. This is a crucial next step as the
non-convex energy (5) has many local minimizers. Understanding the effective
behavior of the dynamics of the scheme gives insight into the path taken by the
scheme in the energy landscape and therefore the selection of local minimizers.

The main ingredients for this analysis are (i) a new abstract convergence result
for arbitrary discrete structures based on quantitative estimates for heat operators
and (ii) the derivation of these estimates in the setting of random geometric graphs.

Overall, the results in [1] roughly state that the following.

Theorem. Under the manifold assumption and in the joint limit N → ∞,
ε → 0, h → 0, in a suitable scaling regime, the MBO scheme for two clusters
converges to the viscosity solution of mean curvature flow in the weighted data
manifold (M, g, ρ2), satisfying the level set equation

∂tu =
1

ρ2
∇ ·
(
ρ2
∇u
|∇u|

)
= ∇ ·

( ∇u
|∇u|

)
+
∇u
|∇u| · ∇ log ρ2.

Formally, this means that the limit is a solution to the geometric evolution equation

V = −H − ν · ∇ log ρ2,(6)

which shows that the evolution is driven by both surface tension and data den-
sity. Naturally, this flow is the L2-gradient flow of (the two-phase version of) the
energy (5) which wants to straighten the cut and move it to low-density regions.
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Remarkably, this proof also applies in case of a frequency cut-off, i.e., when re-
placing the diffusion semigroup e−h∆ with the computationally much simpler pro-
jected version e−h∆P〈ψ1,...,ψK〉, where ψk denotes the k-th eigenfunction of ∆N,ε.
The lower bound for the frequency cut-off which still guarantees convergence to (6)
is of the form K & (logN)q for some (explicit) exponent q > 0.

References

[1] T. Laux and J. Lelmi, Large data limit of the MBO scheme for data clustering: Convergence
of the Dynamics, To appear in J. Mach. Learn. Res. arXiv:2209.05837.

[2] T. Laux and J. Lelmi, Large data limit of the MBO scheme for data clustering: Γ-
convergence of the energies, Preprint. arXiv:2112.06737.

Globally Lipschitz transport maps

Max Fathi

(joint work with Dan Mikulincer, Yair Shenfeld)

This talk presented some results of [1] on existence of globally Lipschitz transport
maps between probability measures, including in the Riemannian setting, as well
as some conjectures on global Lipschitz regularity for optimal transport maps. An
extended abstract on these results previously appeared in [2]
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On convergence of the fully discrete JKO scheme

Anastasiia Hraivoronska

(joint work with Filippo Santambrogio)

We study the convergence of the JKO scheme discretized on a regular lattice,
motivated by application to developing numerical schemes. The JKO scheme
introduced in [1] proved to be a powerful tool for analysis of evolutionary equations
with gradient structure in the space of probability measures P(Ω) endowed with
the L2-Wasserstein distance W2. We recall that it is an iterative scheme that for
a given energy functional F : P(Ω)→ R ∪ {+∞}, initial datum ρ0 ∈ P(Ω), and a
time step τ > 0 produces a sequence of probability measures {ρτk} as

(JKO) ρτk+1 ∈ arg min
ρ∈P(Ω)

{
F(ρ) + 1

2τ
W 2

2 (ρ, ρ
τ
k)
}
.
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The theory initiated in [1,2] and further developed in [3] allows to prove under ap-
propriate assumptions on F that the sequence of minimizers from (JKO) converges
to a solution of

(1) ∂tρ− div
(
ρ∇δF

δρ

)
= 0 (0, T )× Ω,

with non-flux boundary condition on ∂Ω. In this work, we focus on the energy
functionals including internal and potential energy:

(2) F(ρ) =





∫
Ω
f
(
dρ
dLd

)
dLd +

∫
Ω
V dρ, ρ≪ Ld,

+∞, otherwise.

The JKO scheme is a natural time discretization that preserves structural fea-
tures of the equation such as conservation of mass and energy dissipation, as well as
some properties of solutions of the corresponding PDEs. It is tempting to come up
with a numerical scheme based on (JKO) that enjoys similar properties. The chal-
lenging part is dealing with the Wasserstein distance term. Existing approaches
to this problem include the methods exploiting the Benamou-Brenier dynamic
formulation [4], using entropic regularisation and Sinkhorn algorithm [5, 6], and
semi-discrete approaches [7]. We explore a new approach based on discretizing the
JKO scheme on a regular lattice.

Let Ω ⊂ Rd be a bounded domain discretized with T h := hZd ∩ Ω. We notice
that any probability measure on T h can be represented as

ρh =
∑

x∈T h

ρhxδx,
∑

x∈T h

ρhx = 1.

We call the fully discrete JKO scheme, the iterative scheme

(JKOh) ρh,τk+1 ∈ arg min
ρ∈P(T h)

{
Fh(ρh) +

1

2τ
W 2

2 (ρ
h, ρh,τk )

}
.

The problem we want to address is convergence of the sequence of minimizers
in (JKOh) to a solution of (1) in a joint limit h→ 0 and τ → 0. The first question
is what is an appropriate relation between h and τ . We illustrate the importance
of this relation for convergence on a toy example with the potential energy.

Example (Movement driven by a potential). Let the energy functional include
only potential energy with V ∈ C1,1(Rd):

Fh(ρh) =
∑

x∈T h

V (x)ρhx.

In this case, it is reasonable to consider separately the movement of the Dirac
masses ρh0 (x)δx for x ∈ spt(ρh0 ), because they move independently in absence of
diffusion. Consider the movement of δx0 , x0 ∈ T h. If x1 is the minimizer of
V (x) + |x− x0|2/2τ restricted to T h, then

V (x0) ≥ V (x1) +
|x1 − x0|2

2τ
,
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which implies h/τ ≤ 2‖∇V ‖Lip. We see that if asymptotically h/τ > 2‖∇V ‖Lip,
then we cannot expect convergence to the continuous solution, because every sub-
sequent minimizer is equal to x0 and the discrete evolution is ”frozen”.

Moreover, one can derive that the accumulated error between minimizers {xk}
restricted to T h and minimizers on the full space {xk} for T = kτ is bounded as

|xk − xk| ≤ Ckh = CT
h

τ
.

Therefore, the convergence holds only if h/τ → 0.

Now we turn to a more interesting case of (JKOh) with the internal energy

Fh(ρh) =
∑

x∈T h

f
(ρhx
hd

)
hd,

with convex and differentiable f such that f ′ is monotone. Let {ρh,τk }k=0,...,N be a
sequence of minimizers of (JKOh) and T = Nτ . The goal is to prove convergence

of {ρh,τk }k=0,...,N to a solution of (1). Our strategy is to show that there exists a
limit curve [0, T ] ∋ t 7→ ρt which is a solution of (1) in the EDI sense. This means
that there exists a velocity field v such that (ρ, v) satisfies the continuity equation

∂tρ+ div(ρv) = 0 on (0, T )× Ω

and the energy-dissipation inequality (EDI) holds true

(3) F(ρT )−F(ρ0)+
1

2

∫ T

0

{∫

Ω

|vt|2dρt+
∫

Ω

|∇ℓ(ut)|2dLd
}
dt ≤ 0, ρt = utLd,

where ℓ related to the energy density f in the following way:
√
sf ′′(s) = ℓ′(s) and

ℓ(0) = 0.
For the standard JKO scheme, the analogous convergence result is proven using

the variational interpolation [3, Chapter 3]. The idea is to prove the inequality

(4) F(ρτk+1)−F(ρτk) +
W 2

2 (ρ
τ
k, ρ

τ
k+1)

2τ
+

∫ τ

0

W 2
2 (ρ

τ
k, ρ

τ
r )

2r2
dr ≤ 0,

where ρτr is variational interpolant between ρτk and ρτk+1. Combining (4) with the
lower bound on the Wasserstein distance with a slope of the energy

(5)
1

τ
W2(ρ

τ
k+1, ρ

τ
k) ≥ SlopeF(ρτk+1),

one gets a sharp inequality which is convenient to pass to the limit to recover (3).
The crucial step in the discrete setting is to find an appropriate replacement

for (5). Note that we cannot use the metric slope, because it blows up as h → 0.
Instead of the slope, we use the discrete Fisher information defined as

Sh(ρh) :=
1

4

∑

x∈T h

∑

y∼x

|ℓ(uhy)− ℓ(uhx)|2
h2

hd, uh =
ρh

hd
.
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Second, we do not expect the discrete counterpart of (5) to hold exactly. An
intuitive reason for that is that we know that we expect the inequality to fail if
h/τ does not tend to 0.

The lower bound on the Wasserstein distance with the discrete Fisher informa-
tion we find for the fully discrete case is presented in the following lemma.

Lemma. Let ρh0 ∈ P(T h) be given and ρτ,h is the minimizer of (JKOh). Then

1

τ2
W 2

2 (ρ
τ,h, ρh0 ) ≥

(
1− h

2τ

)
Sh(ρτ,h)−

dh

2τ
.

This abstract presents ideas on convergence of the fully discrete JKO scheme.
There are plenty of related questions that have to be explored, in particular: extend
the result to different energies such as interaction energy and energy appearing in
crowd motion models, where f becomes a constraint ρ ≤ 1; establish the rate of
convergence; and develop the numerical algorithm.
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Stability in Gagliardo-Nirenberg-Sobolev inequalities.

Nikita Simonov

(joint work with Matteo Bonforte, Jean Dolbeault and Bruno Nazaret)

In some functional inequalities, best constants and minimizers are known. The
next question is stability: suppose that a function “almost attains the equality”,
in which sense it is close to one of the minimizers? We will address a recent result
on the quantitative stability of a subfamily of Gagliardo-Nirengerg-Sobolev. The
approach is based on the entropy method for the fast diffusion equation and allows
us to obtain completely constructive estimates.

We consider the family of Gagliardo-Nirenberg-Sobolev inequalities given by

(1) ‖∇f‖θ2 ‖f‖1−θp+1 ≥ CGNS(p) ‖f‖2p ∀ f ∈ Hp(Rd) ,
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for simplicity we focus on the case d ≥ 3, but d = 1, 2 can be treated (see [1]).
The invariance of (1) under dilations determines the exponent

θ =
d (p− 1)(

d+ 2− p (d− 2)
)
p
,where p ∈ (1, p⋆] and p⋆ := d

d−2 .

The space Hp(Rd) is defined as the completion of C∞
c (Rd), with respect to the

norm f 7→ (1 − θ)‖f‖p+1 + θ‖∇f‖2, where ‖f‖q =
(∫

Rd |f |qdx
)1/q

for any q > 1.

In the limit case where p = p⋆, for which θ = 1, we are left with the space

Hp⋆(Rd) :=
{
f ∈ L2 p⋆(Rd) : |∇f | ∈ L2(Rd)

}
and the Sobolev’s inequality

(2) ‖∇f‖2 ≥ Sd ‖f‖2p⋆ ∀ f ∈ Hp⋆(Rd) .

Optimality in both (1) and (2) is achieved on the manifold of the Aubin-Talenti
functions (see, for instance [2] and [3] )

M :=
{
gλ,µ,y : (λ, µ, y) ∈ (0,+∞)× R× Rd

}

where g(x) =
(
1 + |x|2

)− 1
p−1 ∀x ∈ Rd ,

and gλ,µ,y(x) := λ
d
2p µ

1
2p g
(
λ (x − y)

)
with the convention µq = |µ|q−1 µ if µ < 0.

We can rewrite inequalities (1) and (2) in the form of a positive, non-scale-invariant
functional which we shall call the deficit functional

δ[f ] := (p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 −KGNS ‖f‖2p γ2p ≥ 0

with γ = d+2−p (d−2)
d−p (d−4) and KGNS chosen so that δ[g] = 0. Up to a scaling, the fact

that δ[f ] ≥ 0 is equivalent to (1) and (2) with optimal constants. In particular
KGNS can be computed in terms of CGNS.

Let us explain how fast diffusion equation enter into play. In self-similar vari-
ables, the fast diffusion equation, posed on Rd, d ≥ 3, with exponent m ∈ [m1, 1)
and m1 := 1− 1/d, is

(FDE)
∂v

∂t
+∇ ·

(
v∇vm−1

)
= 2∇ · (x v) , v(t = 0, ·) = v0 .

By applying this flow to the relative entropy (see [2])

F [v] := 1

m− 1

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

where B(x) :=
(
1 + |x|2

) 1
m−1 ,

we have d
dtF [v(t, ·)] = −I[v(t, ·)] where the relative Fisher information functional

I defined by

I[v] := m

1−m

∫

Rd

v
∣∣∇vm−1 −∇Bm−1

∣∣2dx .
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It is a key step to recognise that we are dealing with the same quantities as in the
variational approach. With

p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p
, v = f2p , B = g2p

and in particular with the condition 1 < p ≤ d/(d− 2), d ≥ 3, which is equivalent
to m1 ≤ m < 1. Indeed, it turns out that , as observed in [2],

(EEP)
p+ 1

p− 1
δ[f ] = I[v]− 4F [v] ≥ 0

for v = |f |2 p. Inequality (EEP) is called entropy-entopy production inequality
and its optimal constant is 4. In particular, one of the main observations of [2]
is that inequalities (1) and (2) are equivalent to (EEP). At the same time, by
applying (EEP) and Gronwall’s lemma, we get

(3) F [v(t, ·)] ≤ F [v0] e−4t ∀ t ≥ 0

if v solves (FDE) . Here the main observation is that the exponential decay
estimate with factor 4 in (3) is equivalent to the optimal constant in (EEP), see [1].
In the same spirit, if we are able to obtain a better convergence rate than the one
in (3) (for instance under some moment condition), this would translate into an
improved entropy-entropy prodcution inequality and, therefore, into a stability
result.

Our overall strategy is now to prove that under some moment conditions on v,
we can improve the decay with the rate F [v(t, ·)] ≤ F [v0] e−(4+ζ)t for all t ≥ 0
using the properties of (FDE). In a word, we look for improved decay rates of the
entropy in order to establish an improved entropy - entropy production inequality.
Details are given in [1, Chapter 2]. Why is it that we can expect to obtain an
improved decay rate of F [v(t, ·)] ? This can be obtained by a careful analysis
of the asymptotic time layer regime (that is, as t → +∞). It is of standard
knowledge, see for instance [4], that solutions to (FDE) converge to B in strong
topologies. Hence, it makes sense to consider the Taylor expansions of the entropy
and the Fisher information around B. This expansion give us two quadrativ forms
defined by

F[h] = lim
ε→0

ε−2 F
[
B + εB2−m h

]
and I[h] = lim

ε→0
ε−2 I

[
B + εB2−m h

]
.

By a Hardy-Poincaré inequality detailed in [1, Chapter 2], we have

I[h] ≥ Λ F[h]

with Λ = 4 if
∫
Rd hB2−mdx = 0 and Λ = 4

(
1 + d (m − m1)

)
if, additionally,

we assume that
∫
Rd xhB2−mdx = 0. In other words, the optimal decay rate of

F [v(t, ·)] is characterized in the asymptotic time layer regime as t → +∞ by the
spectral gap Λ = 4. Under the additional moment condition on the center of mass,
we obtain ζ = Λ − 4 > 0 if m > m1. Recall that m > m1 means p < d/(d − 2)
and covers the whole subcritical range of inequality (1), inequality (2) can also
be treated but the method is more involved. Altogether, we have an improved
decay rate on an asymptotic time layer [T⋆,+∞), that has been explored in [4]
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and subsequent papers. An important feature is that the estimates on Λ are
explicit but require strong regularity conditions, i.e., (1 − ε)B(x) ≤ v(t, x) ≤
(1 + ε)B(x) for all x ∈ Rd and t ≥ T⋆. This condition is ensured only if the
initial datum v0 satisfies the following moment condition (see [1, Chapters 3 and

7]) supR>0 R
2

1−m−d ∫
|x|>R v0(x)dx ≤ A <∞.

Once an improved decay rate is obtained in the asymptotic time layer, by using
a nonlinear nonlinear generalization of the carré du champ method of D. Bakry and
M. Emery, we are able to obtain an imporved decay rate in the initial time layer
[0, T⋆], which is also explicit. Combining the two layers, we are able to obtain the
improved entropy-entropy production inequality I[v] ≥ (4+ζ)F [v] for a functions
v which satisfy the above moment conditions.

In terms of the variational language introduced in the beginning, we can say
that for d ≥ 3 and 1 < p < p⋆, for any f ∈ L2p(Rd) with ∇f ∈ L2(Rd) such that

A := supr>0 r
d−p (d−4)

p−1
∫
|x|>r |f |2p dx <∞ we have the estimate

δ[f ] ≥ κ inf
ϕ∈M

∫

Rd

∣∣(p− 1)∇f + fp∇ϕ1−p∣∣2dx

for some explicit positive constant κ which depends only on d, p, ‖f‖2p, A, and
takes positive values on M. In the case p = p⋆ the above result still holds true
under a stonger moment assumption.
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Minimal Acceleration for the Multi-Dimensional Isentropic
Euler Equation

Michael Westdickenberg

We consider the multi-dimensional isentropic Euler equations

(1)

∂t̺+∇ · (̺u) = 0

∂t(̺u) +∇ · (̺u⊗ u) +∇π = 0

}
in [0,∞)×Rd,

(̺,u)(0, ·) =: (¯̺, ū) initial data.
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This system expresses local conservation of mass and momentum. To close system
(1) one needs to specify the pressure. We consider polytropic gases, for which

π(t, ·) = P
(
r(t, ·)

)
Ld for all t ∈ [0,∞),

where U(r) := κrγ with constants κ > 0 and γ > 1 and

P (r) = U ′(r)r − U(r) for r ≥ 0.

Here r is the Radon-Nikodym derivative of ̺ w.r.t. the Lebesgue measure Ld.
Smooth solutions (̺,u) of (1) satisfy the additional conservation law

(2) ∂t

(
1
2̺|u|

2 + U(̺)
)
+∇ ·

((
1
2̺|u|

2 + U ′(̺)̺
)
u

)
= 0,

which expresses local conservation of total energy

E(̺,u) := 1
2̺|u|

2 + U(̺),

which is the sum of kinetic and internal energy. Since solutions of (1) may become
discontinuous in finite time, solutions must be considered in the weak sense and
energy conservation (2) must be relaxed to an ≤ inequality.

Global existence of weak solutions to (1) is still an open problem in several
space dimension. A useful relaxation with guaranteed existence is the notion of
dissipative solutions, introduced by [1]. Dissipative solutions are defined as tuples
of (̺,m) and defect measures R, φ that satisfy the continuity equation and

∂tm+∇ ·
(
m⊗m

̺
+ P (̺)1

)
+ ∇ · (R+ φ1) = 0,

d

dt

∫

Rd

(
1
2̺|u|

2 + U(̺) +
1

2
tr(R) +

1

γ − 1
φ

)
(t, dx) ≤ 0.

Here R, φ are measures taking values in the symmetric, positive semidefinite ma-
trices and the non-negative numbers, which form closed convex cones. Dissipative
solutions become weak solutions of (1) iff the defect measures vanish.

The construction of infinitely many weak solutions to (1), pioneered by De
Lellis-Székelyhidi [2], starts from so-called subsolutions, which can be interpreted
as dissipative solutions with defect measures nonvanishing in open sets. Superim-
posing over (̺,m) highly oscillatory waves, one can then remove the discrepancy
between dissipative and weak solutions. To the extent that abstract arguments
like the Baire category theorem are used to ensure the convergence of the iterative
procedure, this result is based on the axiom of choice.

In contrast, our goal is to construct dissipative solutions to the isentropic Euler
equations (1) that minimizes the defect measures from the start. It may very well
be possible that for certain configurations, such as Kevin-Helmholtz instabilities,
nonvanishing defect measures must occur. Indeed, since no viscosity is present,
oscillatory features may persist at arbitrarily small length scales. In such cases,
the best one can hope for is to construct solutions that are as close to being a weak
solution as possible. One can speculate that in regions where defect measures do
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not vanish a variant of the De Lellis-Székelyhidi method could be used to repair
the dissipate solution to become a (or infinitely many) weak solution(s).

In order to construct dissipative solutions with minimal defect measures we
consider the acceleration functional, defined as

(3) |m′|(t) =
∫

Rd

tr
(
U(t, dx)

)
for a.e. t ∈ [0,∞),

with momentum flux

U :=

(
m⊗m

̺
+ P (̺)1

)
+ R+ φ1 .

As the notation suggests, (3) can be understood as the metric derivative of the
momentum curve t 7→m(t, ·) with respect to the dual Lipschitz norm, which is the
natural topology for the momentum field, given its finiteness in total variation due
to the energy bound. Notice that (3) is nonnegative because the defect measures
R and φ are in closed convex cones. Since minimizing (3) for all times amounts to
a multi-objective optimization problem, which typically does not have minimizers,
we instead look for Pareto-optimal solutions, i.e., for minimal elements with respect
to a suitable quasi-order defined in terms of comparing the acceleration (3) of
different dissipative solutions at all times. A quasi-order is a binary relation that
is reflexive and transitive, but not necessarily antisymmetric. If this quasi-order
is compatible with a topology, one can use the following result by Wallace [3]:

Theorem (Wallace). Suppose that X is a nonempty compact set with a quasi-
order R such that the set of predecessors P (x) of x is closed for every x ∈ X .
Then X has a minimal element, i.e., an element m ∈ X with the property that,

if y ∈ X and m can be compared at all, then (m, y) ∈ R.

This result can be applied with X the set of dissipative solutions of (1) to given
initial data, and with the quasi-order defined in terms of the acceleration functional
(3). A suitable topology can be chosen as weak* convergence of Young measures.
Note that Wallace’s existence result constructs minimal elements starting from to-
tally ordered subsets of X , which exist because of the Hausdorff maximal principle.
Ultimately, it it therefore again an application of the axiom of choice.
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Transport meets variational inference

Nikolas Nüsken

(joint work with Francisco Vargas, Shreyas Padhy and Denis Blessing)

Given probability measures µ, ν ∈ P(Rd) and a fixed terminal time T > 0, our
objective is to (algorithmically) construct vector fields a : [0, T ]× Rd → Rd with
appropriate growth and regularity properties, such that the diffusion process

(1) dXt = at(Xt) dt+ dWt, X0 ∼ µ
transports µ to ν, that is, XT ∼ ν. More precisely, we aim to construct func-
tionals L : a 7→ R≥0 whose minimisers provide solutions to the stated transport
problem. Clearly, neither a nor L will be unique without imposing further con-
straints. Building on a parameterisation θ 7→ aθ, typically in terms of neural
networks, such functionals allow us to approximate transporting diffusions of the
form (1) by applying gradient-descent type algorithms to θ 7→ L(aθ).

In the recent preprint [1], we propose a framework based on augmenting (1) to
forward and reverse time diffusions,

dXt = at(Xt) dt+
−→
dWt, X0 ∼ µ,(2a)

dXt = bt(Xt) dt+
←−
dWt, XT ∼ ν,(2b)

where
−→
d and

←−
d denote forward and backward Itô integrals, respectively. 1 The

diffusions (2a) and (2b) induce path measures
−→
P µ,a,

←−
P ν,b ∈ P(C([0, T ];Rd)) , and

we consider mappings of the form

(3) (a, b) 7→ D(
−→
P µ,a|←−P ν,b),

where D is a divergence (meaning that D(Q|P) ≥ 0 for all Q,P ∈ P(C([0, T ];Rd)),
with equality if and only if P = Q), for example the Kullback-Leibler divergence

DKL(Q|P) = EX∼Q

[
log

dQ

dP
(X)

]
.

The simple but key observation is that D(
−→
P µ,a|←−P ν,b) = 0 if and only if the pair

(a, b) produces diffusions that transport µ to ν (and back), and therefore modifica-
tions of (3), such as imposing further constraints on a and b, allow us to approach
the transport problem stated at the beginning. In [1], we thereby recover entropic
interpolations, stochastic optimal control problems, as well as the recently intro-
duced score matching and action matching objectives from machine learning. We
also develop a novel loss functional for the Bayesian sampling problem,

φ 7→ E

[∫ T

0

|∇ log πt(Xt)|2 dt+
1√
2

∫ T

0

(∇ log πt −∇φt)(Xt) ·
←−
dWt − log πT (XT )

]
.

1The notions of stochastic integration in (1) and (2a) are the same; we use
−→
d in (2a) to

promote the symmetry of the framework.
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In the above, (πt)0≤t≤T ⊂ P(Rd) is a fixed curve of probability measures, and
at optimality, the diffusion driven by a = ∇φ∗ reproduces these time-marginal
laws. Motivated by excellent numerical results and relationships to the Crooks
and Jarzinksy identities from statistical physics, future work will aim at a deeper
understanding of this nonstandard control functional (nonstandard because of the
backward Itô integral), and extensions to kinetic diffusions.
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Gradient flow characaterisation of the heat flow with Dirichlet
boundary conditions

Matthias Erbar

(joint work with Giulia Meglioli)

In a bounded domain Ω ⊂ Rd we consider the porous medium equation

(1)





∂tρ = ∆ρα in (0,∞)× Ω;

ρ(0, ·) = ρ0 in Ω

ρ = λ on(0,∞)× ∂Ω ,

with constant Dirichlet boundary condition λ ∈ (0,∞) and α ≥ 1. Our goal is
to give a variational characterisation of solutions in terms of gradient flows in the
space of measures. While a large number of results characterising various evlution-
ary PDEs with Neumann boundary conditions as gradient flow w.r.t. the Wasser-
stein distance is available, little is known to date concerning other types of bound-
ary conditions. Figalli and Gigli [1] have introduced a variant of the Wasserstein
distance allowing for change of mass by letting the boundary ∂Ω act as a reservoir.
For µ, ν positive measures inMp(Ω) := {µ ∈ M+(Ω) :

∫
Ω
d(·, ∂Ω)pdµ <∞} they

define a distance Wbp(µ, ν) via

Wbp(µ, ν)
p := inf

γ∈Adm(µ,ν)

∫

Ω×Ω

|x− y|pdγ(x, y) ,

where Adm(µ, ν) is the set of admissible transport plans and consists of all γ ∈
M+(Ω× Ω) such that π1

#γ|Ω = µ and π2
#γ|Ω = ν.

Figalli and Gigli [1] for the heat flow (α = 1) and later Kim, Koo, and Seo [2] for
the porous medium equation (α > 1) showed the following. Consider the internal
energy functional

Eα(µ) =

{∫
Ω
Uα(ρ)dx , µ = ρLeb|Ω ,

+∞ , else ,
,
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with

Uα(s) =

{
s
[
log s− logλ− 1

]
+ λ , α = 1, λ > 0 ,

s
α−1

[
sα−1 − αλα−1

]
+ λα , α > 1, λ ≥ 0 .

Then we have

Theorem 1 ( [1, 2]). Solutions of the JKO-scheme

ρτn+1 = argmin
ρ

Eα(ρ) +
1

2τ
Wb2(ρ, ρn)

2

converge in Wb2 as the time step τ goes to zero to weak solutions (ρt)t of (1), i.e.
t 7→ ρα−1/2 − λα−1/2 belongs to L2

loc

(
[0,∞), H1

0 (Ω)
)
and it holds

∫

Ω

φ(ρt − ρs) =
∫ t

s

∫

Ω

∆φραr dr ∀φ ∈ C∞
c (Ω), s < t .

This is strong evidence that (1) should be regarded as the gradient flow of
Eα with respect to Wb2. We also mention the work of Profeta and Sturm [3]
who give a description of the heat flow with boundary condition λ = 0 as a
contraction of a larger auxiliary system of positive and negative densities which
can be characterised as a gradient flow.

We show that the porous medium equation can indeed be characterised as the
gradient flow of Eα w.r.t. Wb2 in the sense of curves of maximal slope. To this end,
we first give a dynamic characterisation of the transport distanceWb2. We denote
by CEΩT the set of all pairs (µ, v) of time-dependent measures and vectorfields such
that

(i) [0, T ] ∋ t 7→ µt ∈M2(Ω) is vaguely continuous,

(ii)
∫ T
0

∫
A |vt|dµtdt <∞ for all compact A ⊂ Ω,

(iii) the continuity equation holds in the following sense:

d

dt

∫
φdµt =

∫
∇φvtdµt ∀φ ∈ C∞

c (Ω) .

Note that the choice of test functions in the continuity equation above allows
for transport to and from the boundary. We obtain the following characterisation
of absolutely continuous curves w.r.t. the distance Wbp in terms of solutions to
the continuity equation.

Theorem 2. A curve (µt)t∈[0,T ] in (Mp(Ω),Wbp) is absolutely continuous if and
only if there exists a Borel family (vt)t of vector fields with

∫ T

0

∫
|vt|pdµtdt <∞ ,

such that (µ, v) ∈ CEΩT . In this case, the family of vector fields with minimal Lp-
norm satisfies |µ′|(t) = ||vt||Lp(µt) for a.e. t ∈ [0, T ], where |µ′| denotes the metric
derivative w.r.t. Wbp.

As an immediate consequence we obtain a dynamic characterisation of the dis-
tance Wbp in the spirit of the Benamou-Brenier formula for the Wasserstein dis-
tance.
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Corollary 1 (Benamou-Brenier formula). For µ0, µ1 ∈Mp(Ω) we have

Wbp(µ0, µ1) = inf

{∫ 1

0

∫
|vt|pdµtdt

}

where the infimum is taken over all pairs (µ, v) ∈ CE1 connecting µ0 and µ1.

We define the energy dissipation functional Iα :M2(Ω)→ [0,+∞] as follows:

Iα(µ) :=





C(α)
∫
Ω

∣∣∇
(
ρα−1/2

)∣∣2 if µ = ρLeb|Ω and ρα−1/2 − λα−1/2 ∈ H1
0 (Ω),

+∞ otherwise ,

for a numerical constant C(α). Note that the boundary condition λ for the density
of ρ of µ is encoded in finiteness of Iα(µ). We then obtain the following varia-
tional characterisation of the porous medium equation (1) with Dirichlet boundary
condition λ.

Theorem 3. For any curve (µt)t∈[0,T ] in (M2(Ω),Wb2) with Eα(µ0) < +∞ we
have

LT (µ) := Eα(µT )− Eα(µ0) +
1

2

∫ T

0

[
|µ′|2(r) + Iα(µr)

]
dr ≥ 0 .

Moreover, LT (µt) = 0 if and only if µt = ρtLeb|Ω with (ρt) a weak solution to the
porous medium equation (1).

In the framework of gradient flows in metric spaces the claim that LT (µ) ≥
0 states that Iα is a strong upper gradient of the functional Eα. The second
claim states that weak solutions to (1) are precisely the curves of maximal slope
w.r.t. this strong upper gradient. Note that the Dirichlet boundary condition is
encoded through finiteness of L though the appearance of Iα. This is consistent
with the observation that the De Giorgi functional L of a gradient flow PDE is
strongly related with the path level large deviation rate functional of an underlying
particle dynamics. In boundary driven particle systems leading to a macroscopic
limit described by a PDE with Dirichlet boundary conditions, the rate function is
typically infinite unless the boundary condition is satisfied for positive times.

We conclude by noting that the dissipation functional can be related to the
metric slope of Eα w.r.t. Wb2.

Proposition 1. For any µ ∈M2(Ω) we have

Iα(µ) ≤ |∇−Eα|(µ) := lim sup
ν→µ

(
Eα(µ)− Eα(ν)

)+

Wb2(µ, ν)

In particular, this shows that finiteness of the metric slope |∇−Eα|(µ) implies
that µ = ρLeb|Ω and ρ satisfies the Dirichlet boundary condition. Moreover, we
note that by abstract results for gradient flows in metric spaces together with the
last Proposition allow us to recover Theorem 1, i.e. the convergence of the JKO
scheme to a a weak solution, from the variational characterisation in Theorem 3.
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Poincaré and Logarithmic Sobolev Inequalities for Brownian Motion
with Sticky-Reflecting Boundary Diffusion

Max von Renesse

(joint work with Marie Bormann and Feng-Yu Wang)

Brownian motion on domains with sticky-reflecting boundary diffusion appears
naturally as a microscopic model for heat flow in solids with surface coating or
in interacting particle systems with sticky-reflecting zero-range interaction. A
rigorous construction of the such processes can be given efficiently via Dirichlet
forms, where both the invariant measure and the energy form are mixtures from
corresponding bulk and boundary contributions [5, 6]. The question of the speed
of convergence to equilibrium arises naturally. For convergence in quadratic mean
this question was addressed in a previous work [10], where we derived upper bounds
for the Poincaré constant under strict positivity assumptions on the Ricci curvature
of the manifold and the second fundamental form of the boundary. The central
method is an interpolation in the decomposition of the total variance into partial
variances. The latter can then be estimated by the bulk energy through (variants
of) the Steklov eigenvalue problem. In positive curvature one can get explicit
quantitative bounds from application of the Reilly formula to the corresponding
minimizers.

The talk presents new work [2] which extends the previous estimates in two ways.
First we extend the interpolation method to the case of general curvature bounds.
Instead of the Reilly formula the main tool in this case is based on integration
by parts with a properly chosen test function of specific boundary behaviour and
controlled energy contribution in the interior. As a side result we obtain new
explicit estimates for the Steklov eigenvalue in this case. The second extension
gives also bounds for the logarithmic Sobolev constant, where a similar type of
interpolation in the decomposition of the entropy of mixtures is used. As another
side result we obtain new explicit estimates for the norm of the boundary trace
operator for Sobolev functions and a corresponding boundary trace logarithmic
Sobolev inequality which was studied before in the special case of Euclidan balls
by Beckner [1].
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Regularized Stein Variational Gradient Flow

Bharath K. Sriperumbudur

(joint work with Ye He, Krishnakumar Balasubramanian, Jianfeng Lu)

Given a potential function V : Rd → R, the sampling problem involves generating
samples from the density

π(x) := Z−1e−V (x), with Z :=

∫

Rd

e−V (x) dx

being the normalization constant, which is typically assumed to be unknown or
hard to compute. The task of sampling arises in several fields of applied mathemat-
ics, including Bayesian statistics and machine learning in the context of numerical
integration. There are two widely-used approaches for sampling: (i) diffusion-
based randomized algorithms, which are based on discretizations of certain dif-
fusion processes, and (ii) particle-based deterministic algorithms, which are dis-
cretizations of certain approximate gradient flows. A central idea connecting the
two approaches is the seminal work [1] which provides a variational interpretation
of the Langevin diffusion as the Wasserstein Gradient Flow (WGF),

∂tµt = ∇ ·
(
µt ∇W2F (µt)

)
= ∇ ·

(
µt ∇ log

µt
π

)
,
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where the term ∇W2F (µt) = ∇ log µt

π is the Wasserstein gradient of the relative
entropy functional (also called as the Kullback–Leibler divergence), defined by

F (µt) = KL(µt|π) :=
∫

Rd

log
µt(x)

π(x)
µt(x)dx,

evaluated at µt. This leads to the idea that sampling could be viewed as optimiza-
tion on the space of densities/measures.

The Wasserstein gradient of the relative entropy, i.e., ∇ log µt

π is related to the

Stein operator by noting that, for any v ∈ Ld2(µt),
〈∇W2KL(µt|π), v〉Ld

2(µt)

=

〈
∇ log

µt
π
, v

〉

Ld
2(µt)

= 〈∇ logµt, v〉Ld
2(µt)

− 〈∇ log π, v〉Ld
2(µt)

= −
∫

Rd

(
∇ · v + 〈∇ log π, v〉2

)
µt(x) dx =: −

∫

Rd

Sπv dµt,

where Sπ is called the Stein operator and Ld2(µt) := {f = (f1, . . . , fd), fi ∈
L2(µt), ∀i :

∑d
i=1 ‖fi‖2L2(µt)

<∞}. Since

KL
(
(I + hv)#µt|π

)
= KL(µt|π) + h〈∇W2KL(µt|π), v〉Ld

2(µt) + o(h),

we have

∇W2KL(µt|π) = − arg inf
‖v‖

Ld
2
(µt)

≤1
KL
(
(I + hv)#µt|π

)
= arg sup

‖v‖
Ld
2(µt)

≤1

∫

Rd

Sπv dµt.

Recently, in the machine learning community, the Stein Variational Gradient
Descent (SVGD) [2,3] is proposed as a deterministic space-time discretization—in
contrast to the Langevin diffusion which is a randomized space-time discretization
of WGF—of the Stein Variational Gradient Flow (SVGF) [4] defined as

∂tµt = ∇ ·
(
µt Tk,µt∇ log

µt
π

)
,

where Tk,µ : Ld2(µ) → Ld2(µ) is the integral operator defined as Tk,µf(x) =∫
Rd k(x, y)f(y)µ(y)dy for any function f ∈ Ld2(µ), and k : Rd × Rd → R is the
reproducing kernel (r.k.) of a reproducing kernel Hilbert space, H. By defin-
ing idµ : Hd → Ld2(µ), f 7→ f as the inclusion operator, it can be shown that
Tk,µ = idµid

∗
µ, which yields Tk,µt∇ log µt

π = idµt id
∗
µt
∇ log µt

π , where

−id∗µt
∇ log

µt
π

= arg sup
‖v‖

Hd≤1

∫

Rd

Sπv dµt.

SVGD given by

x
(n+1)
i = x

(n)
i − h

N

N∑

j=1

k(x
(n)
i , x

(n)
j )∇V (x

(n)
j )−∇k(x(n)i , x

(n)
j ), i = 1, . . . , N

is an interactive particle system (unlike Langevin diffusion), whereN is the number
of particles, h > 0 is the step-size, and n is the time index. However, SVGD (which
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is based on SVGF) only provides a discretization of a constant-order approximation
to WGF due to the presence of the kernel integral operator in its vector field.
Indeed, if supp(µt) = Rd and k is a bounded continuous translation invariant
characteristic kernel [5] on Rd (e.g., Gaussian and Laplacian kernels), then

‖Tk,µt − I‖op = sup{‖Tk,µtf − f‖Ld
2(µt)

: ‖f‖Ld
2(µt) = 1} ≥ ‖Tk,µt1− 1‖Ld

2(µt)

≥ ‖1− ∫ k(·, x)µt(x) dx‖L2(µt) > 0,

where 1 = (1, d. . ., 1)⊤.
To overcome the above issue with the SVGF, we propose the Regularized Stein

Variational Gradient Flow (R-SVGF) [6] where the vector field is obtained as

(1) − arg sup
(1−ν)‖v‖2

Ld
2
(µt)

+ν‖v‖2

Hd≤1

∫

Rd

Sπv dµt,

where 0 ≤ ν ≤ 1 interpolates between WGF and SVGF. Clearly, ν = 0 corresponds
to the vector field in WGF while ν = 1 yields that of SVGF. The vector field in (1)
can be shown to be ((1−ν)Tk,µt +νI)

−1Tk,µt∇ log(µt/π) when seen as an element
of Ld2(µt), which satisfies

‖((1− ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π)−∇ log(µt/π)‖Ld
2(µt) → 0 as ν → 0

if ∇ log(µt/π) ∈ Ran(Tk,µt). Additionally, if ∇ log(µt/π) is sufficiently smooth,
i.e., there exists γ ∈

(
0, 12

]
such that ∇ log(µt/π) = T γk,µt

h, for some h ∈ Ld2(µt),
then

‖((1−ν)Tk,µt+νI)
−1Tk,µt∇ log(µt/π)−∇ log(µt/π)‖Ld

2(µt) = O(ν2γ) as ν → 0.

In other words, ((1− ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π) is a good approximation to
∇ log(µt/π) for small ν. With this motivation, the corresponding gradient flow

∂tµt = ∇ ·
(
µt
(
(1− ν)Tk,µt + νI

)−1 Tk,µt

(
∇ log

µt
π

))
,(2)

is referred to as R-SVGF, where ν ∈ (0, 1]. Clearly, R-SVGF interpolates between
WGF and SVGF. The key advantage is that (2), which approximates WGF, can be
discretized to yield a deterministic interacting particle system (similar to that of
SVGD but with modifications involving the inverse of regularized Gram matrix),
R-SVGD:

x̄n+1 = x̄n − hn+1K
−1
n


 1

N
Kn(Ln∇V )− 1

N

N∑

j=1

Ln∇k(x(n)j , ·)




where (hn)
∞
n=1 is the sequence of step-sizes, x̄n = [x

(n)
1 , · · · , x(n)N ]T ,

Kn :=

(
(1 − νn+1)

N
Kn + νn+1IN

)

with Kn being the Gram matrix, (Kn)ij = k(x
(n)
i , x

(n)
j ) for all i, j ∈ {1, . . . , N},

and Lnf := [f(x
(n)
1 ), . . . , f(x

(n)
N )]⊤ for f : Rd → RN .
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Our contributions in this work [6] are as follows:

(1) For the R-SVGF, we provide rates of convergence to the target density,
π in two cases: (i) in the Fisher Information metric under no further
assumptions on π and (ii) in the relative entropy under an LSI (log Sobolev
inequality) assumption on π. We also establish similar results for the time-
discretized R-SVGF.

(2) We characterize the existence, uniqueness, and stability of the solutions
to the R-SVGF in the mean-field limit.

(3) We provide preliminary numerical experiments demonstrating the superi-
ority of R-SVGD over SVGD in estimating certain functionals involving π
based on their respective particle approximations.
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The superposition principle for BV curves of measures

Riccarda Rossi

(joint work with Stefano Almi, Giuseppe Savaré)

The evolution equations of diffusive type whose gradient-flow structure, in the
space of probability measures metrized by the Wasserstein distance, was unveiled
by Jordan, Kinderleher & Otto more than 25 years ago, all share a common
structure. The cornerstone of such structure is the continuity equation

(1a) ∂tµ+ div(ν) = 0 in (0, T )× Rd,

where µ = (µt)t∈(0,T ) is a Borel family of probability measures on (0, T ), and the
flux measure ν disintegrates into a family of measures absolutely continuous with
respect to µt, namely

(1b) νt = vtµt for L-a.a. t ∈ (0, T ).

The vector field v : (0, T ) × Rd → Rd is usually referred to as velocity field ;
equation (1a) is understood in the sense of contributions. The central role of (1)
in the variational approach to diffusion has motivated a thorough study of its
properties. In particular, we mention the deep results in [1, Chap. 8], where
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(i) it was proved that The continuity equation characterizes absolutely contin-
uous curves of measures with values in Wasserstein spaces. More precisely,
it was shown in [1, Thm. 8.3.1] that, in the case p > 1, for any given curve
of probability measures (with finite pth-moment) µ : [0, T ] → Pp(Rd),
p-absolutely continuous w.r.t. to the Wasserstein metric Wp with (Wp)-
metric derivative |µ′| ∈ Lp(0, T ), there exists a velocity field v : (0, T ) ×
Rd → Rd such that vt ∈ Lp(Rd;µt) for L-a.a. t ∈ (0, T ), the pair (µ,v)
solves the continuity equation (1), and the velocity field satisfies the ‘op-
timality condition’

(2) ‖vt‖Lp(Rd;µt) ≤ |µ′|(t) = lim
h→0

Wp(µt, µt+h)

|h| for L-a.a. t ∈ (0, T ).

Conversely, in [1, Thm. 8.3.1] it was also proved that for any solution
(µ,v) of the continuity equation, the curve (0, T ) ∋ t 7→ µt ∈ Pp(Rd) is
p-absolutely continuous and (2) holds as an equality.

(ii) A probabilistic representation of solutions of the continuity equation via
the superposition principle was provided.

We have extended the above results to curves of measures with values inW1(R
d),

that are just with bounded variation as functions of time. Simple examples show
that it is not to be expected that, with a curve µ ∈ BV([0, T ];W1(R

d)), a flux
measure ν absolutely continuous w.r.t. µ as in (1b) may be associated. We have
thus focused on the investigation of (1a) per se, understanding as solution of (1a)
a pair (µ,ν) such that

- µ is a finite positive Borel measure on (0, T )× Rd;
- the flux measure ν has finite variation on (0, T )× Rd;
- (µ,ν) solve (1a) in the distributional sense.

Hence, we have proved the following analogue of [1, Thm. 8.3.1], namely that
For any µ ∈ BV([0, T ];P1(R

d)) there exists a Borel measure ν ∈ M([0, T ]×Rd;Rd)
solving the continuity equation (1a) in the sense above specified, such that, more-
over,

(3) |ν|([0, T ]×Rd) = VarW1(µ; [0, T ])

(which is the counterpart to (2)), and the singular part of ν w.r.t. µ, ν⊥, is minimal
in a suitable sense. Conversely, let µ ∈M+([0, T ]×Rd) and ν ∈ M([0, T ]×Rd;Rd)
solve the continuity equation (1a) in the BV sense. Then, µ disintegrates w.r.t. the

Lebesgue measureL on (0, T ), i.e. µ =
∫ T
0
µt dt, such that the curve (0, T ) ∋ t 7→ µt

is in BV([0, T ];P1(R
d)), and (3) holds.

We have also provided a ‘BV’ counterpart to the superposition principle, by

• associating with (1a) a continuity equation in an augmented state space,
• resorting to the superposition principle for the ‘augmented continuity
equation’
• obtaining therefrom a probabilistic representation for the measures µ and
ν in terms of trajectories with values in the extended phase space.
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Graph limits for nonlocal interaction PDEs

Antonio Esposito

(joint work with Georg Heinze, Francesco Patacchini, André Schlichting,
Dejan Slepčev)

The study of evolution equations on graphs and networks has been receiving in-
creasing interest in view of possible applications in several real-world phenomena
where individuals interact if they are interconnected in specific ways. In social
networks, for example, one can model the spread of opinions, or behaviours, by
assigning probabilities for individuals to adopt certain attitudes based on their
neighbours’ choices. This is useful to model polarisation and formation of echo
chambers, cf. for example [1]. Another possible application concerns transporta-
tion networks, where the flux from one vertex to a connected one depends on some
scalar quantities at the neighbour vertices, see e.g. [7]. Graphs are also used in
applications to data science, as they are indeed a suitable mathematical structure
to classify and represent data by studying clustering, as in [6, 8] and the refer-
ences therein. In [5], we introduce nonlocal dynamics relevant to detecting local
concentrations in networks. The class of partial differential equations (PDEs) we
consider can be specified through three elements: a nonlocal continuity equation,
an upwind flux interpolation, and a constitutive relation for a nonlocal velocity.
The nonlocal continuity equation is concerned with the time-evolution of a prob-
ability measure ρt ∈ P(Rd), for t ∈ [0, T ], where mass located at a vertex x ∈ Rd

can be nonlocally transported to y ∈ Rd along a channel with capacity, referred to
as weight, given by an edge weight function η : Rd × Rd \ {x = y} → [0,∞). The
nonlocal continuity equation on a time interval [0, T ] is of the form

(1a) ∂tρt + divjt = 0, with divjt(dx) =

∫

Rd\{x}
η(x, y)djt(x, y),

where the flux is a time-dependent antisymmetric measure, jt ∈ M(G), on the set
G = {(x, y) ∈ R2d \ {x = y} : η(x, y) > 0}.

The relation constituting the flux depends on a σ-finite absolutely continuous
measure µ ∈M+(Rd), wherein µ acts as an abstract notion of vertices of a graph.
More precisely, we associate to a nonlocal time-dependent velocity field vt : G→ R

the induced flux by using an upwind interpolation as follows

(1b) djt(x, y) = vt(x, y)+d(ρ⊗ µ)(x, y) − vt(x, y)−d(µ⊗ ρ)(x, y).
Here, for a ∈ R, we denote with a+ = max{a, 0} and a− = max{−a, 0} the positive
and negative part, respectively. Intuitively, the support of µ defines the underlying
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set of vertices, i.e. V = supp µ. In particular, any finite graph can be represented
by choosing µ = µN = δxi/N , for x1, x2, . . . , xN ∈ Rd.

The last element is the identification of the velocity field in terms of a symmetric
interaction potential K : Rd × Rd → R and a potential P : Rd → R by

(1c) vt(x, y) = −∇K ∗ ρt(x, y)−∇P (x, y),
where the nonlocal gradient is defined by ∇f(x, y) := f(y)− f(x).

In [5] we show that system (1) is a Finslerian gradient flow of the interaction
energy

(2) E(ρ) = 1

2

∫∫

R2d

K(x, y)dρ(y)dρ(x) +

∫

Rd

P (x)dρ(x),

with respect to a nonlocal Wasserstein quasi-metric based on the upwind interpo-
lation. In this framework we show existence of weak solutions, curves of maximal
slope with respect to a specific strong upper gradient, and estabilish a discrete-
to-continuum limit as the number of vertices n goes to ∞, so called graph limit.
Different types of flux interpolations are considered in [4].

An intriguing problem is to understand the limiting behaviour of weak solutions
to (1) as the graph structure localises, i.e. the range of connection between vertices
decreases, while the weight of each connecting edge increases, so called graph-to-
local limit. One expects to approximate weak solutions of the more standard
nonlocal interaction equation on Rd. However, the intrinsic geometry of the graph
impacts the limiting gradient structure of the equation. Accordingly, the main
goal of [3] is to provide a rigorous proof of the local limit of the system (1) along
a sequence of edge weight functions ηε : Rd × Rd \ {x = y} → [0,∞) defined by

ηε(x, y) :=
1

εd+2
ϑ

(
x+ y

2
,
x− y
ε

)
,(3)

in terms of a reference connectivity ϑ : Rd × Rd \ {0} → [0,∞) satisfying suitable
assumptions. The scaling in (3) leads to the local evolution

(NLIET) ∂tρt = div(ρtT(∇K ∗ ρt +∇P )),
where the tensor T : Rd → Rd×d depends on the nonlocal structure encoded
through the reference measure µ and the connectivity ϑ.

Following a heuristic argument based on several approximations and smoothness
assumptions, which are not a priori satisfied by solutions to (1) and (NLIET), one
can show the link between the two equations. This is made rigorous in [3] by using
a variational framework, allowing to handle measure-valued solutions.

An interesting byproduct of this result is the link between Finslerian and Rie-
mannian gradient flows. More precisely, (1) is shown to be a gradient flow of the
nonlocal interaction energy in the infinite-dimensional Finsler manifold of proba-
bility measures endowed with a nonlocal upwind transportation quasi-metric, T ,
peculiar of the upwind interpolation (1b). Due to the loss of symmetry the un-
derlying structure of P(Rd) does not have the formal Riemannian structure, but
Finslerian instead. On the other hand, following [9], we establish a chain-rule in-
equality for the nonlocal interaction energy in a 2-Wasserstein space defined over
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RdT, which is Rd endowed with a metric induced by T−1. Upon considering the
correspondingWasserstein scalar product on the tangent space of P2(R

d
T), at some

probability measure with bounded second moment, one can notice the underlying
Riemannian structure, thereby making the connection between the weak and vari-
ational formulations of (NLIET). We stress that not only do we connect the graph
and tensorized local gradient structures using the notion of curves of maximal slope
for gradient flows after De Giorgi, but, upon identifying weak solutions of (NLIET)
with curves of maximal slopes, we also obtain an existence result for (NLIET) via
stability of gradient flows. This is indeed another interesting property of the graph,
as it represents a valuable space-discretisation for the PDE under study, working
in any dimension, in addition to other methods, e.g. particle approximations and
tessellations. Indeed, our result can be also seen as a deterministic approximation
of (NLIET). The results in [3] are extended to the multi-species case in [2].
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An adversarial mean curvature flow

Leon Bungert

(joint work with Tim Laux, Kerrek Stinson)

In this talk we discuss how mean curvature flows appear in the context of training
adversarially robust classifiers in machine learning. Such classifiers can be obtained
using an algorithm called adversarial training. To set the scene, let Ω ⊂ Rd denote
an open and bounded set and let µ ∈ P(Ω × {0, 1}) be a probability measure,
modeling the distribution of training data with the labels 0 and 1 in Ω. Adversarial
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training finds a binary classifier A in the Borel subset B(Ω) of Ω by solving the
following robust optimization problem

inf
A∈B(Ω)

E(x,y)∼µ

[
sup

x̃∈Bε(x)

|1A(x̃)− y|
]
,(1)

parameterized by the so-called adversarial budget ε > 0.

E(x,y)∼µ

[
sup

x̃∈Bε(x)

|1A(x̃)− y|
]
= E(x,y)∼µ

[
|1A(x) − y|

]
+ εPerε(A;µ),(2)

where Perε(A;µ) denotes a nonlocal perimeter functional. This rewriting, the
asymptotic results in [3], and the fact that Perε(·;µ) Gamma-converges to a local
perimeter as ε→ 0 [2] suggest that (1) can be interpreted as time discretization of
mean curvature flow, where ε acts both as time step and non-locality scale of the
perimeter functional. To make this connection rigorous, we consider the following
iteration for k ∈ N0:

A0 ∈ argmin
A∈B(Ω)

E(x,y)∼µ
[
|1A(x) − y|

]
(3a)

Ak+1 ∈ argmin
A∈B(Ω)

∫

Ω

|1A(x)− 1Ak
(x)| dist(x, ∂Ak) d̺(x) + εPerε(A;µ).(3b)

Here the set A0 in (3a) is a so-called Bayes classifier which acts as initial condition.
Starting from there, the iteration (3b) performs adversarial training using the label
distribution from the previous classifier Ak and modifying (2) by means of the
distance function dist(·, ∂Ak) to the decision boundary of the previous classifier.
The probability measure ̺ ∈ P(Ω) in (3b) is the first marginal of µ, that is
̺ := µ(· × {0, 1}). The presence of the distance function is necessary to obtain
the correct normal velocity for mean curvature flow [7]. Since the minimization
problem in (3b) does not have unique solutions, we take the approach of [5] to select
a solution using a strongly convex minimization problem. For this we replace (3b)
by Ak+1 := Tε(Ak), where the operator Tε : B(Ω)→ B(Ω) is defined as

Tε(A) := {u∗ ≤ 0} where u∗ solves

u∗ := argmin
u∈L2(Ω)

1

2

∫

Ω

|u(x)− sdist(x,A)|2 d̺(x) + εTVε(u;µ).
(4)

Here TVε(u;µ) :=
∫
R
Perε({u ≥ t};µ) dt denotes a total variation functional and

sdist(·, Ak) := dist(·, Ak)−dist(·,Rd \Ak) is the signed distance function of the set
Ak. It can indeed be shown that Ak+1 := Tε(Ak) is a solution of the minimization
problem in (3b).

The goal is to prove that (4) is a monotone and consistent scheme for the
weighted mean curvature flow t 7→ A(t) with normal velocity

v(t) := −1

̺
div
(
̺ νA(t)

)
,(5)
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where νA(t) is the outer unit normal to the boundary ∂A(t). The abstract results
of [6] then imply that (3) converges to a so-called barrier solution of the weighted
mean curvature flow as ε→ 0.

Monotonicity of (4) in the sense of set inclusion (i.e., A ⊂ B implies Tε(A) ⊂
Tε(B)) is a straightforward consequence of a comparison principle for the mini-
mization problem in (4).

To verify consistency, one works with smooth super- / subflows, i.e., smooth
evolutions of smooth sets t 7→ A(t) which move strictly faster / slower than mean
curvature flow. Consistency of Tε then means that for ε > 0 small enough it holds
Tε(A(t)) ⊃ A(t + ε), meaning that the superflow also moves strictly faster than
the scheme (and vice versa for subflows).

To show this we follow the strategy developed in [4] and utilize a superflow
t 7→ A(t) in order to construct a supersolution of the minimization problem in (4).
The signed distance function d(t, x) := sdist(x,A(t)) of a smooth superflow satisfies
the partial differential inequality

∂td(t, x) >
1

̺(x)
div
(
̺(x)∇d(t, x)

)
, x ∈ ∂A(t).(6)

Considering the rescaled function vε(x) := ψ(d(t + ε, x)) with an appropriately
chosen function ψ : R → R that satisfies ψ(s) ≥ s for all s ∈ R and ψ(s) = s for
|s| small, one then gets for small ε > 0 that:

vε(x)− d(t, x) >
1

̺(x)
div

(
̺(x)

∇vε(x)
|∇vε(x)|

)
.(7)

The main ingredient for proving consistency is a careful analysis of the subdif-
ferential of the total variation u 7→ TVε(u;µ) and the proof that for functions u
with non-vanishing gradient and ε→ 0 it is consistent with the 1-Laplace operator

− div
(
̺ ∇u
|∇u|

)
. Applying this expansion to the function u = vε yields that on a

neighborhood of the interface ∂A(t) we have
(
vε(x) − d(t, x)

)
̺(x) + εp(x) ≥ 0(8)

for a subgradient p ∈ ∂ TVε(vε;µ). Inequality (8) together with a careful analysis
of boundary conditions imply that vε is a supersolution of the problem (4) which
implies Tε(A(t)) ⊃ {vε ≤ 0} = {d(·, t+ ε) ≤ 0} = A(t+ ε) and hence consistency.

These results have interesting theoretical and practical implications: First, the
minimizing movement scheme (3) can be modified to build discrete approximations
to mean curvature flow on grids. The corresponding discrete perimeter functional
was already investigated in [2]. Following a similar approach as in the continuum
setting, we expect that such schemes are also monotone and consistent with mean
curvature flow, yielding a novel discretization method. Second, on the applied
side, the schemes (3b) or (4) give rise to novel adversarial training methods that
involve the distance function to the decision boundary. The interpretation of
(3b) is that—in contrast to (2)—the adversarial budget ε is replaced by a data
dependent budget ε

dist(x,∂Ak)
which becomes large for points x which are close to

the decision boundary and small for points far away.
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Minimizing movements along families of energies and dissipations

Andrea Braides

This is a short user’s guide for the analysis of evolution for families of energies and
dissipations, and its connection with Γ-convergence. For applications I have found
it convenient to use a flexible version of the minimizing-movement approach as in
the following definition.

Definition (see e.g. [5]). Given sequences ε = εk → 0 and τ = τk → 0 of positive
numbers, X a topological space, Fε : X → R ∪ {+∞} and Dε : X ×X → [0,+∞],
a minimizing movement along Fε with dissipations Dε at scale τ with initial data
uε0 → u0 is a function u : [0,+∞) → X such that u(t) is the pointwise limit of
uk(t) for all t ≥ 0, and uk(t) = uk⌊t/τk⌋, where u

k
0 = uεk0 and uki is a minimizer of

v 7→ Fεk(v) +
1
τk
Fεk(v, u

k
i−1).

We note that the usual conditions ensuring the existence of a minimizing move-
ment for a single functional and dissipation (see [2]) allow to prove the existence
of a minimizing movement along Fε with dissipations Dε. In particular this is
achieved when (X, d) is a complete metric space, Fε are lower semicontinuous and
coercive, and Dε(u, v) =

1
2d

2(u, v) (in which case we use the shorthand Dε =
1
2d

2).
However that is an extremely abstract result and must be coupled with some char-
acterization of u. A way to characterize u is in terms of curves of maximal slope.

Theorem (commutativity in terms of curves of maximal slope). Let
(X, d) be a complete metric space, Dε = 1

2d
2, Fε a family of functionals, and F0

a functional on X such that the following property holds.

(H) if vε → v is such that supε(Fε(vε) + |∂Fε|(vε)) < +∞, then we have
lim
ε→0

Fε(vε) = F0(v) and lim inf
ε→0

|∂Fε|(vε) ≥ |∂F0|(v).
Then every minimizing movement along Fε is a curve of maximal slope for F0.

We note that, while implied by convexity (and valid also under more general
assumptions), condition (H) is unlikely to hold when we have many local minima
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vε, for which |∂Fε|(vε) = 0. Indeed, if such families are dense, we obtain that
|∂F0| is identically 0, and F0 is a constant.

Link with Γ-convergence. If |∂Fε| are equibounded in a neighbourhood of v
then F0(v) coincides with the Γ-limit of Fε at v. An example by M. Solci shows
that this equality in general may fail at all points even if |∂F | is everywhere finite
(see [5]). Here and below we give as understood that Γ-limits are computer with
respect to the topology of X .

We now consider the minimizing-movement scheme in terms of convergence of
minimum problems, which are compatible with Γ-convergence.

Theorem (extreme regimes). Let (X, d) be a complete metric space, let Fε be a
equi-coercive family, Dε =

1
2d

2, and u0ε → u0, and let u be a minimizing movement
along Fε with dissipations Dε at scale τ with initial data uε0 → u0. Then

(i) there exists τε such that if τk ≤ τεk then any such minimizing movement u
is a limit of minimizing movements for Fεk with initial datum uεk0 ;

(ii) there exists τ ε such that, if τk ≥ τ εk and F0 is the Γ-limit of Fεk , any such
minimizing movement u is a minimizing movements for F0 with initial datum u0.

Critical scales. If the minimizing movements in the two extreme cases described
by items (i) and (ii) above do not coincide, then there exist one or more critical
scales at which we have a “change of regime”. The simplest such case is when the
domain of Fε is a discrete space, in which the only possible minimizing movements
in regime (i) are constant (pinning). In this case there exists a minimal scale
τ = τε for which the evolution is not trivial for some initial datum (depinning
regime). Conversely, if the minimizing movements in cases (i) and (ii) coincide, it
is not clear if all possible u are characterized by (ii) (or (i)).

The following result states that in the convex case minimizing movements are
independent of the scale (see [3]).

Theorem (the convex case) Let (X, d) be a complete metric space, let Fε be a
equi-coercive family of convex energies and Dε = 1

2d
2, and u0ε → u0. Let F0 be

the Γ-limit of Fεk . Then every minimizing movement u along Fε with dissipations
Dε at scale τ with initial data uε0 → u0 is a minimizing movement u for F0 with
initial datum u0, and is also a limit of minimizing movements for Fεk with initial
data uεk0 .

This theorem states in a sense that the convex case is ‘trivial’ since the limit is
the same at all scales. Nevertheless it may be useful to characterize the limits of
gradient flows of convex energies through the study of their discrete-in-time ap-
proximations obtained by solving the Euler-Lagrange equations of the incremental
problems. As such it has been applied for example to prove the convergence of
non-local gradient flows to standard parabolic equations [1], and of gradient flows
of double-porosity models to parabolic equations with memory [4].
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Diffusive transport: geodesics, convexity, and gradient flows

Daniel Matthes

(joint work with Eva-Maria Rott, André Schlichting, Giuseppe Savaré)

1. The diffusive transport metric

On the space X := {ρ ∈ L1(S1)|ρ ≥ 0,
∫
ρ dx = 1} of probability densities on the

circle, introduce the Hellinger distance H, the L2-Wasserstein metric W, and the
diffusive transport distance D, respectively, by

H(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs − ws = 0

}
,

W(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs + ∂xws = 0

}
,

D(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dx ds

∣∣∣∣∣ ∂sρs − ∂xxws = 0

}
,

where the infima are taken over all parametrized pairs (ρs, ws)s∈[0,1] of probability

densities ρs and Radon measures ws on S1, respectively, that connect ρ0 to ρ1
by means of the (generalized) continuity equation. It is known that (X,H) is a
complete metric space with the L1-topology, and that (X̄,W) is a complete metric
space, where the completion X̄ is the space of probability measures on S1, with
the narrow topology. We show:

Theorem 1. (X̄,D) is a complete metric space with the narrow topology. More
precisely:

∥∥µ1 − µ0

∥∥
(Ẇ 2,∞(S1))′

≤ D(ρ0, ρ1) ≤
2

− log
∥∥µ1 − µ0

∥∥
(Ḣ1(S1))′

.

Geodesics w.r.t D are currently little understood. Formally, the geodesic equa-
tions for H, W and D read, respectively, as follows:
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∂sρs − ρs ψs = 0, ∂sψs +
1

2
ψ2
s = 0,

∂sρs + ∂x(ρs ∂xψs) = 0, ∂sψs +
1

2
(∂xψs)

2 = 0,

∂sρs − ∂xx(ρs ∂xxψs) = 0, ∂sψs +
1

2
(∂xxψs)

2 = 0.

While the first system is solvable by plain linear interpolation w.r.t.
√
ρs, and the

second one is solvable in principle by the method of characteristics, the third one
appears inaccessible to explicit solution.

2. Contractive and gradient flows

Observation 1. The linear diffusion equation ∂tρ = ∂xxρ induces on X . . .

• . . . a contractive flow w.r.t. H,
• . . . a contractive gradient flow w.r.t. W,
• . . . a contractive flow w.r.t. D.

The contractivity properties are essentially consequences of Jensen’s inequality
and the fact that linear diffusion is a linear averaging process. The potential for
the gradient flow w.r.t. W is Boltzmann’s entropy functional H(ρ) =

∫
ρ log ρ dx.

Observation 2. The DLSS equation ∂tρ = −∂xx(ρ ∂xx log ρ) induces on X . . .

• . . . a contractive flow w.r.t. H [2],
• . . . a (non-contractive) gradient flow w.r.t. W [1],
• . . . a (non-contractive) gradient flow w.r.t. D [5].

There is apparently no easy explanation for the contractivity in H. The poten-
tials for the gradient flows w.r.t. W and D are, respectively, the Fisher information
F(ρ) =

∫
ρ (∂x log ρ)

2 dx and the entropy H.

3. Discretization

Consider an equidistant discretization of S1 of mesh width δ > 0, denote the
space of piecewise constant probability densities by Xδ. A mere restriction of the
distances W or D to Xδ would produce metric spaces with pathological proper-
ties. Instead, the definitions of H, W and D can be modified to provide adapted
distances Hδ, Wδ and Dδ on Xδ: replace the derivative(s) in the continuity equa-
tions by difference quotients, and replace the denominator in w2

s/ρs by a suitable
mean value of the neighboring densities — simply ρk for Hδ, a two-point average
m(ρk−1/2, ρk+1/2) for W

δ, and a three-point average M(ρk−1, ρk, ρk+1) for D
δ.

Observation 3. The discretization ρ̇k = (ρk+1 − 2ρk + ρk−1)/δ
2 of the linear

diffusion equation by central finite differences induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ,
• . . . a contractive gradient flow w.r.t. Wδ [3,4]
• . . . a contractive flow w.r.t. Dδ [5].
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Contractivity follows again by the linear averaging effect of the (discretized)
diffusion. For the appropriate mean in the definition of Wδ, one uses the logarith-
mic mean m(ρκ−1/2, ρκ+1/2) = (ρκ+1/2−ρκ−1/2)/ log(ρκ+1/2− log ρκ−1/2), and in

the definition of Dδ, one uses M(ρk−1, ρk, ρk+1) = ρk.

Observation 4 ( [5]). The following discretization of the DLSS equation

ρ̇k =
(
Fk+1 − 2Fk + Fk−1

)
/δ2, Fℓ =

(√
ρℓ+1ρℓ−1 − ρℓ

)
/δ2(1)

induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ

• . . . a (non-contractive) gradient flow w.r.t. Wδ

• . . . a (non-contractive) gradient flow w.r.t. Dδ.

Differently from Observation 3, we choose m(ρκ−1/2, ρκ+1/2) =
√
ρκ+1/2ρκ−1/2 for

Wδ, and for Dδ:

M(ρk−1, ρk, ρk+1) =

√
ρk+1ρk−1 − ρk

log
√
ρk+1ρk−1 − log ρk

.

These choices of m/M appear to be crucial to guarantee the contractivity in Hδ.
Indeed, the proof uses that (1) can be re-formulated as

∂t
√
ρk = −uk+1 − 2uk + uk−1

δ2
+

u2k√
ρk

with uk =

√
ρk+1 − 2

√
ρk +

√
ρk−1

δ2
.

Our main result is about the convergence of the scheme (1).

Theorem 2 ( [5]). Let an initial condition ρ̂ ∈ X be given. For each mesh width
δ, consider a strictly positive approximation ρ̂δ ∈ Xδ of ρ̂. Then the initial value
problem for (1) possesses a unique solution ρδ : [0,∞)→ Xδ, and

ρδ → ρ∗ in L1
loc

(
(0,∞)× S1

)
∩ Cα

(
[0,∞); (W 2,∞(S1))′

)
as δ → 0,

where ρ∗ is a weak solution to the DLSS equation.

The proof heavily uses the properties stated in Observation 4, particularly the
contractivity in Hδ and the monotonicity of H. The key a priori estimate is

− d

dt
H(ρδ) ≥ δ

∑

k

(√
ρk+1 − 2

√
ρk +

√
ρk+1

δ2

)2

,

which provides weak compactness of the
√
ρδ in L2

(
(0,∞);H2(S1)

)
.
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Damage in viscoelastic materials at finite strains

Marita Thomas

(joint work with Manuel Friedrich, Martin Kruž́ık, and Riccarda Rossi)

This contribution reports on an ongoing work in progress dedicated to the math-
ematical analysis of a model for the evolution of damage in viscoelastic materials
with physical and geometrical nonlinearities and under the influence of dynamic
effects due to the propagation of elastic waves.

1. Challenges related to dynamic effects at finite strains

As has been already observed in existing literature, cf. e.g., [1,2], one major chal-
lenge in this setting is the correct treatment of the axiom of material frame indif-
ference ensuring that a model is independent of orthogonal rotations of the chosen
coordinate system. Firstly, this requires static material frame indifference, i.e.,
W (QF ) =W (F ) for all (d×d)-matrices F ∈ GL+(d) and Q ∈ SO(d), for a hyper-
elastic material with a stored elastic energy density W : GL+(d)→ R. Yet, due to
the presence of dynamic effects, this static condition is not enough to ensure the
independence of the model of orthogonal rotations. Additionally, also dynamic
material frame indifference is required, cf. [1], i.e., V (QF ; ∂t(QF )) = V (F ; ∂tF )
for all sufficiently smooth maps F : [0, T ]→ GL+(d) and Q : [0, T ]→ SO(d), and
where V : GL+(d)× Rd×d → [0,∞] denotes a dissipation potential to account for
viscous effects of Kelvin-Voigt-type rheology. A simple, suitable choice is given by

(1) V (F ; Ḟ ) =
1

2
V(F )∂t(F

⊤F ) : ∂t(F
⊤F ) ,

with V(F )G : G ≥ cV|G|2 for all F,G ∈ Rd×d and with a constant cV > 0. Suppose
now that certain a priori estimates result in a bound on the corresponding integral
functional, i.e. that V(∇ϕ;∇ϕ̇) :=

∫
Ω
V (∇ϕ;∇ϕ̇) dx ≤ C. Then (1) directly

results in the bound cV
2 ‖Ḟ⊤F + F⊤Ḟ‖2L2 ≤ C, but it does not provide a separate

estimate on the partial time derivative Ḟ = ∂tF = ∇ϕ̇. In turn, this can be
achieved thanks to generalized Korn’s inequalities [3, 4] of the form

(2) ‖∇ϕ̇(t)‖L2 ≤ CK‖∇ϕ̇⊤(t)∇ϕ(t) +∇ϕ⊤(t)∇ϕ̇(t)‖L2

with a constant CK > 0. Yet, (2) to be valid requires that, firstly, ∇ϕ(t) ∈
C0(Ω;Rd×d) with ‖∇ϕ(t)‖∞ ≤ C, and secondly, that

(3) det∇ϕ(t) ≥ c > 0 on Ω, uniformly for all t ∈ [0, T ].
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The first condition can be achieved by adding a higher order gradient term to the
energy density in the spirit of second grade non-simple materials, i.e., a term

(4) H(ϕ) :=
∫

Ω

H(∇2ϕ) dx

will ensure the required regularity. Secondly, the term (4), given that W + H
additionally satisfies a growth estimate of the form

(5) W (F ) +H(G) ≥ cW
(
|F |s + 1

(detF )q
)
+ cH |G|p

for all F ∈ GL+(d) and G ∈ Rd×d×d with fixed constants cW , cH > 0 and fixed

exponents p > d, q ≥ pd
p−d , s > 1, will also provide condition (3) thanks to a result

by Healey and Krömer [5]. The above considerations motivate the structure of the
stored elastic energy density and of the viscoelastic dissipation potential.

2. The damage model

The effects of an evolving damage process on the elastic behavior of a body with
reference configuration Ω ⊂ Rd are further modeled with the aid of a damage
variable z : [0, T ] × Ω → [0, 1], where z(t, x) = 1 means that the material is
undamaged and z(t, x) = 0 that the material is maximally damaged in the material
point x ∈ Ω at time t ∈ [0, T ]. The energy functional is of the form

E(t, z, ϕ) :=





∫
Ω

(
E1(z, ϕ,∇ϕ,∇2ϕ)− 〈ℓ(t), ϕ〉+ E2(z,∇z)

)
dx

if E1(z, ϕ,∇ϕ,∇2ϕ)− 〈ℓ(t), ϕ〉+ E2(z,∇z) ∈ L1(Ω) ,
∞ otherwise,

(6)

with E1(z, ϕ,∇ϕ,∇2ϕ) := W (z,∇ϕ) +H(z,∇2ϕ) , E2(z,∇z) := 1
2 |∇z|2 + φ(z) .

Here, the energy term E2 serves as a regularization for the damage variable and
the function φ is chosen such that z ∈ [0, 1] can be ensured for a solution of the
problem. The densities W and H are assumed to be suitably smooth, equipped
with suitable analytical and physically reasonable growth properties, e.g., in the
line of (5) and to ensure that a decrease of the damage variable (corresponding to
an increase of damage) leads to a decrease of the stored elastic energy and, hence,
the elastic stresses. A further ingredient to the model is the dissipation potential
for the damage variable, which is assumed to be of the form

R(ż) :=
∫

Ω

(
R1(ż) +R2(ż) + I(−∞,0](ż)

)
dx(7)

with R1(ż) := a1|ż|, R2(ż) :=
a2
2 |v|2, with constants a1, a2 > 0, and the indicator

function I(−∞,0], i.e., I(−∞,0](ż) = 0 if ż ∈ (−∞, 0] and I(−∞,0](ż) =∞ otherwise.
The presence of two convex but non-smooth terms, the rate-independent dissipa-
tion R1 and the indicator function I(−∞,0] to prevent healing of damage, leads to
an evolution law for the damage variable in terms of a subdifferential inclusion

(8) a1Sign(ż) + a2ż + ∂I(−∞,0](ż) + φ′(z) + DzW (z,∇ϕ)−∆z ∋ 0 ,
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where Sign and ∂I(−∞,0] denote the subdifferentials of the absolute value function
and the indicator function in the sense of convex analysis.

3. Existence of weak solutions and improved results

By means of a staggered time-discrete scheme one can prove the existence of weak
solutions (z, ϕ), which are defined by the following three ingredients:

1. Weak formulation of the momentum balance:

〈ϕ̈(t), η〉W 2,p +

∫

Ω

(
DḞV (z(t),∇ϕ(t);∇ϕ̇(t)) + DFW (z(t),∇ϕ(t))

)
:∇η dx

+

∫

Ω

DGH(z(t),∇2ϕ(t)) : ∇2η dx = 〈ℓ(t), η〉W 2,p

(9a)

for almost all t ∈ (0, T ) and for all η ∈W 2,p(Ω;Rd) ∩H1
0 (Ω;R

d), together with

min
(t,x)∈[0,T ]×Ω

det(∇ϕ(t)) > 0 and ϕ(t)|∂Ω(t, ·) = Id for all t ∈ [0, T ].

2. Damage flow rule in terms of a one-sided variational inequality, cf. also [6]:
∫

Ω

(
a1 + a2ż(t) + φ′(z(t)) + DzW (z(t),∇ϕ(t)) + DzH(z(t),∇2ϕ(t))

)
ζ dx

+

∫

Ω

∇z(t) · ∇ζ dx ≥ 0
(9b)

for almost all t ∈ (0, T ) and for all ζ ∈ H1(Ω) ∩ L∞(Ω) with ζ ≤ 0 a.e. in Ω.
3. Upper energy-dissipation estimate:

E(t, ϕ(t), z(t)) +K(ϕ̇(t))

+ 2

∫ t

s

(
V(z(r), ϕ(r); ϕ̇(r)) +R2(ż(r))

)
dr +

∫ t

s

R1(ż(r)) dr

≤ E(s, ϕ(s), z(s)) +K(ϕ̇(s)) +
∫ t

s

∂tE(r, ϕ(r), z(r)) dr ,

(9c)

for all t ∈ [0, T ] and almost all s ∈ [0, t) and where K(ϕ̇) :=
∫
Ω
ρ
2 |ϕ̇|2 dx denotes

the kinetic energy with a constant mass density ρ > 0.
Under the additional assumption that H : (z,G) 7→ H(z,G) is convex, it can be

further shown that the inequality (9c) improves to an equality. Moreover, if the
regularization term H does not depend on z, then one obtains z ∈ H1(0, T ;H1(Ω))
and (9b) can be replaced by the subdifferential inclusion (8).
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Gradient flow: yes or no?

Jan Maas

(joint work with Morris Brooks)

Let X ∈ Γ(TM) be a vector field on a smooth manifold M and let f :M → R be
a smooth function. Does there exist a Riemannian metric g on M such that the
evolution equation u̇ = X(u) is the gradient flow equation for f with respect to
the metric g? In order words, using standard index notation, does there exist a
metric gαβ such that gαβX

β = −Dαf?
Some assumptions are clearly needed:
Firstly, Df should be zero at every stationary point of the evolution: the vector

field X and the co-vectorfield Df should have the same set of zeroes.
Secondly, X and −Df should “agree on the sign” outside the set where they

vanish: for all x ∈ M with X(x) 6= 0, they should satisfy XαDαf(x) < 0 (since
XαDαf = −gαβXαXβ and g is positive definite.) This requirement reflects the
fact that f should decrease along the evolution.

Thirdly, at every point x where X(x) = 0, one should have that DαDγf =
ḡαβDγX

β , for some scalar product ḡαβ on TxM . This somewhat less obvious
condition is obtained by differentiating the equation Dαf = gαβX

β at x, using
the assumption that X(x) = 0.

Our main result asserts that these conditions are not only necessary, but also
sufficient, under mild regularity conditions.

Theorem 1. Let f : M → R be a function and Xα ∈ Γ(TM) be a vector field.
We assume that f and X are real-analytic (in some coordinate chart). Suppose
further that Df has a unique zero, x̄ ∈M , at which f attains its minimum. Then
there exists a Riemannian metric gαβ ∈ Γ(T ∗M ⊗ T ∗M) satisfying

∇βf = gαβX
α,

if and only if the following conditions hold:

(1) DXαf(x) < 0 for all x ∈M with x 6= x̄;
(2) Xα|x̄ = 0;
(3) The linear map Λ := DαX

β|x̄ : Tx̄M → Tx̄M is positive and symmetric
with respect to the Hessian scalar product hαβ := DαDβf |x̄ on Tx̄M .

In fact, [3] contains a more general version of this result, in which Df is replaced
by an arbitrary co-vector field Y . We also prove a variant of this result in which
X and Y are of class Ck+1 for k ≥ 0. In this case, the metric g is of class Ck. The
case k = 0 was proved earlier in [2].

The existence of a metric with the desired properties is easy to prove outside the
set of critical points; see, e.g., [1]. The nontrivial part of the proof is to establish
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the existence of a smooth metric in a neighbourhood of every point where X
vanishes. This is done using a power series construction by an iterative argument,
in which each iterative step involves the solution of a certain tensor equation.

As an application of Theorem 1 we solve a problem that arose in joint work with
Carlen on gradient flow formulations of Lindblad equations, which describe the
time-evolution of open quantum systems. It was shown earlier [4, 9] that Lind-
blad equations with a certain symmetry condition (GNS-detailed balance) can be
formulated as gradient flow equation for the quantum relative entropy. The no-
tion of GNS-detailed balance is one among several quantum generalisations of the
notion of detailed balance for classical Markov chains. Subsequently, a different
notion of detailed balance (BKM-detailed balance) was shown to be necessary for
the existence of an entropic gradient flow structure for Lindblad equations [5].
However, as the notion of BKM-detailed balance is strictly weaker than the notion
of GNS-detailed balance, there was a gap between the necessary and sufficient
conditions above. As a consequence of Theorem 1, we close this gap: the notion
of BKM-detailed balance is also sufficient for the existence of an entropic gradient
flow structure. This result provides a quantum analogue of earlier work on the
sufficiency of detailed balance [6] in gradient flow structures for classical Markov
chains [7, 8].
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Shape Optimisation for nonlocal anisotropic energies

Lucia Scardia

(joint work with R. Cristoferi, M.G. Mora)

In this work we consider shape optimisation problems for sets of prescribed mass,
where the driving energy functional is nonlocal and anisotropic. More precisely, for
a given mass m > 0, we are interested in the minimisation of the energy functional

(1) I(Ω) =
∫

Ω

∫

Ω

(
W (x− y) + 1

2
|x− y|2

)
dxdy,

over the class of sets with mass m,

Am =
{
Ω ⊂ Rd : Ω measurable, |Ω| = m

}
,

for d = 2, 3. In (1), the interaction potential W is defined for x 6= 0 as

(2) W (x) =





− log |x|+ κ

(
x

|x|

)
if d = 2,

1

|x|κ
(
x

|x|

)
if d = 3,

and W (0) = +∞. For the profile κ : Sd−1 → R we require that it is even, and

that both W and Ŵ are continuous on Sd−1. Additionally, if d = 3, κ is assumed
to be strictly positive on Sd−1. The potential W is an anisotropic extension of the
classical, radially symmetric Coulomb potential, which corresponds to the special
case of a constant profile κ. The anisotropy is fully encoded in the profile κ, which
introduces an additional dependence on the directions of interaction.

The energy I is the sum of two competing terms: an attractive, quadratic inter-
action, that dominates at large distances, and a repulsive, Coulomb-like interac-
tion, driven by the anisotropic potentialW . The additional positivity requirement
for κ in the three-dimensional case is there to preserve the repulsive nature of W ;
this is not needed for d = 2 since κ is bounded, and hence at short range the
repulsive nature of − log | · | is not affected by the additional anisotropy κ.

1. Main result

Our main result is the characterisation of the minimiser of I in the class of sets
Am, for any mass m > 0. This is done under the sole assumption that the Fourier

transform Ŵ of the potential W on the sphere Sd−1 is nonnegative.

In fact we have two main results, depending on whether Ŵ is strictly positive
or not. In the first case we show that above a given threshold for the mass the
unique minimiser of I is a d-dimensional ellipsoid. Uniqueness has to be intended
up to translations, since the functional I is translation-invariant.

In the case of degeneracy of Ŵ , instead, we have the following dichotomy: either
there exists a threshold value for the mass as in the case above, or the minimiser
is an ellipsoid for any positive value of the mass.
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The occurrence of one or the other possibility is related to the minimisation
problem for the energy (1) in the wider class of measures (rather than sets) with
prescribed mass (see [2, 3, 5]).

2. Method of proof

For the proof of existence, we consider the relaxed energy

(3) I(ρ) =
∫

Rd

∫

Rd

(
W (x− y) + 1

2
|x− y|2

)
ρ(x)ρ(y) dxdy,

which extends (1) to the class of densities

(4) Am,1 =
{
ρ ∈ L1(Rd) ∩ L∞(Rd) : ‖ρ‖L1 = m, 0 ≤ ρ ≤ 1 a.e.

}
.

It was proved in [1] that a set Ω ∈ Am is a minimiser of (1) if and only if its
characteristic function χΩ ∈ Am,1 is a minimiser of the relaxed energy (3), and
the same holds true in our case. Since for small mass m the minimising densities
are not the characteristic functions of a set, our original problem on sets can only
have a solution for large enough mass.

For large mass we then (equivalently) study the problem on densities, for which
existence and compact support of minimisers can be proved by standard argu-
ments. Uniqueness, up to translations, follows by the sign condition on the Fourier
transform of W , which implies that the energy I is strictly convex (on measures
with barycentre at the origin). Strict convexity of the energy, in its turn, guar-
antees that the minimiser can be characterised as the only solution of the Euler-
Lagrange optimality conditions.

Motivated by the results in [2,3] and [5] we look for a candidate ellipsoid E ⊂ Rd

centred at the origin, with |E| = m, such that its characteristic function χE
satisfies the Euler-Lagrange conditions

(W ∗ χE)(x) +m
|x|2
2

= λ if x ∈ ∂E,(5)

(W ∗ χE)(x) +m
|x|2
2
≤ λ if x ∈ E◦,(6)

(W ∗ χE)(x) +m
|x|2
2
≥ λ if x ∈ Rd \ E,(7)

for a constant λ ∈ R. To evaluate the potential of a generic ellipsoid E we use
the representation of the potential in Fourier form proved in [5, 6] for d = 2, 3.
Following [5, 6] one can see that condition (7) is automatically satisfied by any
solution E of (5)–(6).

The key idea to solve (5)–(6) is to rewrite (5) as the stationarity condition for
an auxiliary scalar function f defined on symmetric and positive definite matrices
M (encoding the information on the semi-axes and orientation of E), under the

determinant constraint detM = m2

|B|2 (encoding the mass constraint |E| = m).

One of the main advantages of this alternative formulation is that (6) corresponds
to a condition on the sign of the Lagrange multiplier associated to the constraint.
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The strategy is then to first show that the auxiliary minimisation problem
for f obtained by replacing the equality constraint for the determinant with the

unilateral condition detM ≥ m2

|B|2 admits a solution. As a final step we show that

this solution in fact satisfies the equality constraint. This immediately gives the
required sign condition for the multiplier, and concludes the proof of (5)–(6).

2.1. Motivation and comparison with the radially symmetric case. The
problem we consider can be interpreted as a first shape optimisation result for
nonlocal anisotropic energies with competing attractive and repulsive terms.

The isotropic counterpart of this problem is well-studied. The closest analogue
to our energy I is the energy considered in [1, 4], namely

(8) E(Ω) =
∫

Ω

∫

Ω

K(x− y) dxdy, Ω ∈ Am,

where K is a power-law potential of the form

(9) K(x) =
|x|q
q
− |x|

p

p
, −d < p < 0, q > 0.

In the special case of Coulomb repulsion and quadratic attraction there is a thresh-
old for the mass, given by the volume of the unit ball B, such that the energy E
admits no minimiser if m < |B|, while for m ≥ |B| the minimiser of E is a ball
of mass m. While this is similar to our main result, the corresponding proofs are
substantially different. In particular, the radial symmetry of the interactions in
E allows immediately to identify a (unique) ball as the candidate minimiser and
greatly simplifies the proof.

Another important class of isotropic attractive/repulsive energies is given by

EP(Ω) =
∫

Ω

∫

Ω

1

d− 2

1

|x− y|2−d dxdy + Per(Ω), Ω ∈ Am,

where Per denotes the classical perimeter. The energies EP have been first intro-
duced by Gamow in his liquid drop model and widely studied since.

Considering an anisotropic analogue of EP is a very natural direction of inves-
tigation, but this is not a direction we will pursue in this work.
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Existence and uniqueness in law for some doubly nonlinear SPDEs

Ulisse Stefanelli

(joint work with Carlo Orrieri, Luca Scarpa)

Assume to be given a stochastic basis (Ω,F , (Ft)t≥0,P) satisfying the usual con-
ditions, a bounded Lipschitz domain O ⊂ Rd, and a cylindrical Wiener processW
on L2(O) =: H . The progressive σ-algebra associated with (Ft)t≥0 is indicated by
P . We are interested in the doubly nonlinear parabolic SPDE

du = (∂tu
d)dt+GdW,(1a)

α(∂tu
d)−∆u+ β(u) = f(u).(1b)

Relation (1a) entails that ud is the absolutely continuous part of the Ito process
u. The Hilbert-Schmidt operator G ∈ L2(H,H) is given. Moreover, α, β ∈ C0(R)
are nondecreasing, with β bounded, α−1 ∈ C0,η(R) for some η ∈ (0, 1), and
r ∈ R 7→ α−1(r) − κr bounded for some κ > 0. This in particular entails that α
is nondegenerate: there exists c > 0 such that α(r)r ≥ cr2 − 1/c for all r ∈ R.
Eventually, we ask f ∈ W 1,∞(R).

Equation (1b) is posed in the space-time cylinder O × (0,∞) and is comple-
mented with boundary and initial conditions

u = 0 on ∂O × (0,∞),(1c)

u(·, 0) = u0 in O.(1d)

In particular, the Laplacian −∆ in (1b) is seen as an unbounded, linear, selfadjoint
operator in H with domain D(−∆) := H2(O) ∩ H1

0 (O). Via spectral decompo-
sition, one classically defines the powers (−∆)σ and the corresponding domains
D((−∆)σ) for any σ > 0. Eventually, we ask G to have kerG = {0} and to
commute with −∆. Problem (1) is a concrete example for the abstract theory
developed in [4,5], where indeed the above assumptions are somewhat generalized.

In the deterministic caseG ≡ 0, a general well-posedness theory covering (1) has
been obtained by Akagi [2], see also Colli & Visintin [3] for the unperturbed case of
f ≡ 0. Solutions to the deterministic problem are unique for β Lipschitz continuous
and α strongly monotone. In case α is not strongly monotone, uniqueness may
fail, also for β = 0, see [1].

In the stochastic case G 6≡ 0, we are able to give two distinct results, relating
to two different regularity setting for the initial datum u0 and the noise G. Corre-
spondingly, we consider two different type of solutions to (1), both of probabilistic-
weak type. For more regular data, we focus on analytically strong solutions. In
the less regular setting, we resort to Friedrichs weak solutions instead. We record
our findings in the two theorems below.

Theorem 1 (More regular setting). Let u0 ∈ H1
0 (O) and G ∈ L2(H,H1(O)).

Then, there exists an analytically strong solution to (1), namely,

(Ω,F , (Ft)t≥0,P,W, u, u
d)
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where (Ω,F , (Ft)t≥0,P) is a filtered probability space, W is a cylindrical Wiener
process on H, and, for all T > 0, u ∈ L2

P(Ω;C
0([0, T ];H) ∩ L∞(0, T ;H1

0 (O)) ∩
L2(0, T ;H2(O))), and ud ∈ L2

P(Ω;H
1(0, T ;H)) solve

u(t) = u0 +

∫ t

0

∂tu
d(s) ds+

∫ t

0

GdW (s) a.e. in O, ∀t ≥ 0, P− a.s.,

α(∂tu
d)−∆u+ β(u) = f(u) a.e. in O × (0,+∞), P− a.s.

In addition, if α is strongly monotone and β is Lipschitz continuous we have that
analytically strong solutions are unique and (Ω,F , (Ft)t≥0,P) and W can be a-
priori chosen.

This result is proved in [5] by means of an approximation procedure: for all
λ > 0 one solves the approximate problem

duλ = (∂tu
d
λ)dt+GdW,(2a)

λ∂tu
d + αλ(∂tu

d) +Bλu = f(u),(2b)

along with the boundary and initial conditions (1c)-(1d). In (2b), Bλ is the Yosida
approximation of −∆+β at level λ > 0: for all u ∈ H we define Bλu = (u−vλ)/λ,
where vλ ∈ H2(O) ∩ H1

0 (O) is the unique solution to vλ − λ∆vλ + λβ(vλ) = u
a.e. in O. The well-posedness of (2) for all λ > 0 follows from the Lipschitz
continuity of (λ id + αλ)

−1, Bλ, and f . One derives λ-independent estimates on
uλ and udλ, extracts suitably converging subsequences, and passes to the limit
λ→ 0 in (2a)-(2b) obtaining an analytically strong solution. Pathwise uniqueness
in case α is strongly monotone and β is Lipschitz is straightforward. Based on
such uniqueness, the possibility of a-priori fixing (Ω,F , (Ft)t≥0,P) and W follows
by classical arguments.

Before moving on, let us remark that (1) can be equivalently rewritten as

du− κ∆u dt+ κβ(u) dt = κf(u) dt+ C(u) dt+GdW

where the operator C : H2(O) ∩H1
0 (O) is defined as

C(u) = α−1(f(u) + ∆u− β(u)) − κ(f(u) + ∆u− β(u)).
Note that the range of C is bounded in H . For all λ > 0, we also define Cλ(u) =
α−1(f(u)−Bλu)− κ(f(u)−Bλu) for all u ∈ H .

Theorem 2 (Less regular setting). Let u0 ∈ H and G(H) ⊂ D((−∆)σ) for some
σ with

(3) 0 < σ < min

{
η

4− 2η
,
1

6

}
.

Then, for any sequence λn → 0 there exists a Friedrichs-weak solution to (1),
namely, (Ω,F , (Ft)t≥0,P,W, u, y) where (Ω,F , (Ft)t≥0,P) is a filtered probability
space satisfying the usual conditions, W is a cylindrical Wiener process on H,
and, for all T > 0, u ∈ L2

P(Ω;C
0([0, T ];H) ∩ L2(0, T ;H1

0 (O))), and y ∈ L∞
P (Ω ×

(0, T );H) such that there exists a not relabeled subsequence λn, a sequence of data
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(u0n, Gn) ∈ H1
0 (O)×L2(H,H1

0 (O)), and a sequence of analytically strong solutions
to

dun − κ∆un dt+ κβ(un) dt = κf(un) + Cλn(un) dt+Gn dW

with boundary condition (1c) and initial condition un(·, 0) = u0n such that, for all
T > 0,

u0n → u0 in H, λ−1/2−σ
n ‖Gn −G‖L2(H,H) → 0,

un
∗
⇀ u in L2

P(Ω;L
∞(0, T ;H) ∩ L2(0, T ;H1

0 (O))),
un → u in L2(0, T ;H) P-a.s., Cλn(un)

∗
⇀ y in L∞

P (Ω× (0, T );H).

Two such Friedrichs-weak solutions u1 and u2 with the same (Ω,F , (Ft)t≥0,P),
W , and initial datum u0 coincide in law in C0([0, T ];H), namely,

(4) E[g(u1(t))] = E[g(u2(t))] ∀g ∈ Cb(H), ∀t ≥ 0,

where Cb(H) are the bounded continuous functions on H and E denotes the expec-
tation w.r.t. P.

This result is proved in [4], as a subcase of a more general abstract theory.
The existence statement follows by an approximation argument via analytically
strong solutions. The uniqueness-in-law statement results from the analysis of the
associated Kolmogorov equation. For given γ > 0 and g ∈ Cb(H) one considers

γϕ(h)− 1

2
Tr(G∗GD2ϕ(h)) = g(h) +

∫

O
(∆h− β(h) + f(h))Dϕ(h) dx,

to be solved for all h ∈ H2(O) ∩ H1
0 (O). Assuming ϕ ∈ C2

b (H) to solve such
Kolmogorov equation, an application of the Ito formula to ϕ ◦ u on the time
interval [0, t] and a limit for t→∞ formally entail that

∫ ∞

0

e−γsE[g(u(s))] ds = ϕ(u0).

By establishing the latter for any Friedrichs-weak solution, as γ > 0 is arbitrary,
basic properties of the Laplace transform and the a.s. continuity of g ◦u imply (4).
In order to make the above argument rigorous, one has to argue at the approximate
λn level, where the corresponding Kolmogorov equation is solved by ϕλn . Then,
one proves estimates on ϕλn and its derivatives, applies the Ito formula to ϕλn ◦un,
and passes to the limit. In the process, the qualification (3) on σ is used.
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Quantum computing with Rydberg-atom quantum processors:
A personal journey

Oliver Tse

(joint work with Robert de Keijzer, Servaas Kokkelmans, Luke Visser)

Recent advancements in Rydberg atoms along with the spectacular degree of ex-
perimental control of state-of-the-art platforms have made it possible to realize
quantum gates with high fidelity, thereby drawing the advent of universal quantum
computers closer to reality. Yet, quantum computing is still in the so-called noisy
intermediate-scale quantum (NISQ) era, where the number of available error-free
qubits is modest, and quantum algorithms have yet to outperform their classical
counterparts in practice.

This talk introduces and reports on progress in the following research topics:

Variational Quantum Optimal Control (VQOC). The development of hybrid and
near-term quantum algorithms, such as Variational Quantum Eigensolvers (VQEs)
based on digital quantum circuits, has been progressing at an enormous pace to
allow for quantum advantage in the NISQ era. This development, however, has
mostly been independent of the developments in quantum computing hardware,
where the physical control of qubits in Rydberg systems is governed by inherently
analog laser pulses. In this talk, we introduce the VQOC framework, which brings
together recent progress in the understanding and control of Rydberg platforms
and the well-developed theory of quantum optimal control, and show applications
of VQOC on examples related to the electronic structure problem.

Learning quantum channels. The state of a closed quantum system evolves under
the Schrödinger equation, where the reversible evolution of the state is propa-
gated from initial time by an action of a unitary operator. However, realistic
quantum systems are open, i.e. they interact with their environment, resulting in
non-reversible evolutions, described by quantum semigroups on density matrices.
To simulate an open quantum system using an ideal quantum computer, which is
intrinsically closed, thus requires one to model an open quantum system with a
closed one. We do this by invoking the Stinespring dilation theorem, allowing us to
learn a target quantum semigroup by approximating equivalent unitary evolutions
on an extended system. We further report on an experimentally feasible method
to extrapolate the quantum evolution at later times using only data from the first
few time steps.

Towards understanding noisy qubits. Noise on a controlled quantum system is
generally introduced via the non-reversible Lindblad equation. This equation
describes the average state of the system via the density matrix. One way of
deriving this Lindblad equation is by taking a sample average of states evolving
under the stochastic Schrödinger equation (SSE) driven by white noise. However,
white noise, where all noise frequencies contribute equally in the power spectral
density, is not a realistic noise profile as lower frequencies commonly dominate the
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spectrum. For this reason, we provide analytical solutions to the full fidelity distri-
bution for important cases of the SSE driven by more realistic noise. This allows
for predictions of the mean, variance, and higher-order moments of the fidelities of
these qubits, which can be of value when deciding on the allowed noise levels for
future quantum computing systems, e.g. deciding what quality of control systems
to procure. Furthermore, these methods will prove to be integral in the optimal
control of qubit states under (classical) control system noise.
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Discrete to continuous crystalline curvature flows

Antonin Chambolle

(joint work with Daniele DeGennaro, Massimiliano Morini)

The talk described a work in progress, where we investigate a fully discrete version
of the Almgren-Taylor-Wang / Luckhaus-Sturzenhecker scheme [1, 7] for building
mean curvature flows. This scheme, after some rewriting, can be described as
follows: given a set E0, and dE0 the signed distance function to its boundary, we
solve in Rd, for h > 0 small and each n ≥ 1:

(1)

{
−hdiv zn + un = dEn−1 ,

|zn| ≤ 1, zn ·Dun = |Dun|

which is formally the Euler-Lagrange equation of

min
u

∫
|Du|+ 1

2h

∫
(u− dEn−1)2dx

(yet this energy is infinite in the whole space). We let then En = {x : un(x) ≤ 0}.
By translational invariance and comparison, un is trivially 1-Lipschitz (since dEn−1

is), in particular the second condition in (1) reads z ∈ ∂| · |(∇d) a.e. in Rd (the
subgradient of the Euclidean norm). One also deduces that dEn ≥ un in {un > 0},
and dEn ≤ un in {un < 0}. Hence,

dn − dn−1

h
≥ div zn

out of En. Getting some control on dn in time and div zn in space allows then to
pass to the limit and deduce the existence of E ⊂ Rd× [0,∞) (the Hausdorff limit
of
⋃
n≥0E

n × {nh}) a closed set such that

(2) ∂td ≥ div z in D′((Rd × (0,∞)) \ E), z ∈ ∂| · |(∇xd) a.e.
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with d(x, t) = dist(x,E(t)) for all x, t. Reasoning with the complement, one
finds a similar equation for A ⊂ E, the complement of the Hausdorff limit of⋃
n≥0(R

d \ En)× {nh}).
This equation, which holds in the distributional or measure sense, is seen to

hold also in the viscosity sense [5, 6] and hence characterizes the mean curvature
flow (with a possible, but exceptional, fattening of the set E \A), as shown in [8].
An important step in proving the convergence is an estimate of the solution of (1)
with the right-hand side replaced with |x|, first computed in [3], this is crucial to
estimate the variation of dn in time as well as div zn from above where dn > 0.

Now, in [4, 6], it is also shown that the same scheme (and the same proof)
can be applied to build and characterize anisotropic, or crystalline flows. Sticking
to the simpler case of [6], and given ϕ a convex norm (with possibly polyhedral
level sets) we replace Du above with ϕ(Du), the distance with the ϕ◦ distance
(ϕ◦(x) = sup{x ·ν : ϕ(ν) ≤ 1}), the condition on zn in (1) with zn ∈ ∂ϕ(∇un) and
end up with a distributional definition of a well posed crystalline mean curvature
flow (see [6] for a comparison result which guarantees the uniqueness, in general,
of the limit—when A is the interior of E). In this case, the motion is still described
by (2) yet the second condition is z ∈ ∂ϕ(∇xd) and d is the ϕ◦-distance to E.

In this work, with M. Morini (Parma) and our student D. DeGennaro (Cere-
made), we propose a to solve a fully discrete equation, which reads (for h, ε > 0,
small time and space steps)




h(D∗zn)i + uni = dn−1

i for i ∈ εZd
|zni,j| ≤ β j−i

h
, zni,j(uj − ui) = β j−i

h
|uj − ui|

where D : RZd → RZd×Zd

is defined by (Du)i,j = (uj − ui)/h, D∗ is its adjoint
(for the standard scalar product), and βk, k ∈ Zd, is a finitely supported family of
positive weights (positive at least on a basis of Zd). One then sends h, ε→ 0. In
case ε ≪ h, but more interestingly and somewhat surprisingly in case ε = h, one
may then adapt the techniques above to show again the convergence to (2), for the
crystalline anisotropy ϕ(p) =

∑
k∈Zd βk|k · p|. Interestingly, in case ε = h, we may

define dn from un with a sort of interpolation scheme (defined by suitable inf/sup
convolutions with the distance ϕ◦), so that the limiting evolution is precisely given
by (2) without any drift, contrarily to the dicrete scheme introduced previously
in [2], which was the starting point for our study, and where a rounding occurs at
each step which accumulates in the limit.
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Coarse-graining to GENERIC

Johannes Zimmer

(joint work with Alexander Mielke, Mark A. Peletier)

We study a model system on two different scales, called microscopic and macro-
scopic, with the aim of deriving the macroscopic description from the microscopic
one.

The macroscopic description is governed by a thermodynamic formulation in
form of GENERIC, the General Equation for the Non-Equilibrium Reversible-
Irreversible Coupling [3], sometimes also called metriplectic evolution. It takes
the form

(1) ẏ = J(y)DE(y) +K(y)DS(y);

here y ∈ Y is the macroscopic variable defined on a state space Y, J : Y∗ → Y is a
symplectic operator, K : Y∗ → Y is a positive semidefinite operator, E ,S : Y → R

are the energy and entropy functionals and D denotes a derivative. The structure
of GENERIC immediately implies that the energy E is constant along trajectories
and the entropy S is non-decreasing. Thus, GENERIC ensures thermodynamic
consistency, and very different thermodynamic systems can be put in this frame-
work [2].

The aim is to derive (1) as macroscopic description of a microscopic model,
i.e., give a mathematically rigorous coarse-graining procedure. We choose a clas-
sic microscopic system, which has been investigated in detail [1], though to our
knowledge not in connection with GENERIC. The model is purely Hamiltonian,
to reflect the description of atoms and molecules by Newtonian mechanics. It
consists of a finite-dimensional Hamiltonian system (System A) coupled to an
infinite-dimensional heat bath (System B) via a coupling C. Both System B and
the coupling are linear, while system A can be nonlinear. Specifically, with z ∈ Z
denoting the state of system A and η ∈ H denoting the state of system B, the
total Hamiltonian of the microscopic system is

(2) Htotal(z, η) = HA(z) +HB(η) +HC(z, η),
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where the Hamiltonian for the heat bath is

HB(η) =
1

2
‖η‖2

H
for all η ∈ H,

and the coupling is described by the Hamiltonian

HC = (Az|Pη)
H
;

here (·|·)
H
is the inner product inH, A : Z→ H is a linear embedding operator and

P is an orthogonal projection operator discussed later. Below, we write B := PA.
One can show that, due to the linearity of the heat bath, the corresponding

evolution satisfies for t ∈ R

ż(t) = JA(DHA(z(t)) + B∗η(t)),(3a)

η(t) = eJBt
(
η(0) + Bz(0)

)
− Bz(t) +

∫ t

0

eJB(t−s)Bż(s)ds,(3b)

where JA and JB are the sympletic operators associated with HA and HB.
So far, we have not specified the initial condition of the heat bath B. While the

coupled microscopic system evolves deterministically, we introduce randomness
through the initial data η(0) for the heat bath. Then (3b) involves a memory
term, namely the time integral in the right, and a stochastic term stemming from
the initial data. One can show that one can rephrase this equation as a generalized
(i.e., non-Markovian) Langevin equation.

Such non-Markovian equations are often encountered in a Mori-Zwanzig reduc-
tion procedure, where suitable projections of an infinite-dimensional microscopic
system are considered [6]. Often, when dealing with non-Markovian systems, one
tries to rephrase them as Markovian ones by augmenting the state space.

The GENERIC equation (1) is Markovian (in the sense that it is a nonlinear
semigroup, hence in particular local, i.e., memoryless in time). Abstractly, due to
the presence of the dissipative term K(y)DS(y), one expects GENERIC systems
to be given by a (nonlinear) contraction semigroup. The evolution given by (3),
however, corresponds to a unitary group on Z×H. To link these two, we use the
concept of compressions. Compressions can be seen as the ‘inverse’ of dilations;
the theory of dilations provides an embedding of a given contraction semigroup
e−tD defined on a Hilbert space W into a strongly continuous unitary group etJ

defined on a bigger space such that the restriction of the unitary group to W
agrees with the given contraction semigroup,

(4) PetJ
∣∣
W

=

{
e−tD t ≥ 0

etD
∗

t ≤ 0
on W,

where P is the orthogonal projection on W. A minimal dilation is unique up to
Hilbert space isomorphism [5, Chapter 1].

The existence of a compression means that given the unitary group etJ, a sub-
spaceW and an orthogonal projection P ontoW and a contraction semigroup e−tD

exist such that (4) holds. For existence of compressions we refer to [4, Section 5].
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The coarse-graining to go from the microscopic evolution (3), i.e., the unitary
group associated with (2), to a GENERIC evolution, i.e., a macroscopic evolution
which can be cast in the general form (1), that involves as key step finding a
(finite-dimensional) compression subspace Y of Z×H such that the compression
of the unitary group on Y is defined. It is natural that the compression subspace
Y contains Z.

Here a compression of the heat bath can be interpreted as reduction to ob-
servables, as elements of W. For the coupled system, a compression subspace is
given by Z ×W, where W = PH. Thus observables are (z, w) with w = Pη. A
GENERIC evolution can be formulated if this state space is augmented by a suit-
ably defined energy e. The GENERIC form has the following structure. For the
contraction semigroup D, we consider the split in symmetric and skew-symmetric
parts,

D = Dsym + Dskw with Dsym =
1

2
(D+D∗) and Dskw :=

1

2
(D−D∗).

Then the symplectic operator J of the GENERIC evolution (1) in y := (z, w, e)
involves JA and Dskw, while Dsym enters the positive semi-definite operator K of
GENERIC. The random initial data of the heat bath enters the entropy S and
the dissipative operator K. In passing from the stochastic microscopic system via
compression to GENERIC, an interim stage is a stochastic version of GENERIC,
which includes a noise term Σ. One can show that a fluctuation-dissipation state-
ment linking K and Σ holds.
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Analytic properties of the sliced Wasserstein distance

Sangmin Park

(joint work with Dejan Slepčev)

Given two probability measures µ, ν ∈ P2(R
d) := {µ ∈ P(Rd) :

∫
|x|2dµ(x) <

∞}, recall that the 2-Wasserstein distance W2 between them is defined as follows:

W2(µ, ν) := inf
γ∈Γ(µ,ν)

(∫

Rd×Rd

|x− y|2 dγ(x, y)
)1/2

where Γ(µ, ν) =
{
γ ∈P(Rd × Rd) : π1

#γ = µ, π2
#γ = ν

}
.

The sliced Wasserstein distance, introduced by Rabin, Peyré, Delon, and Bernot
[4], compares probability measures on Rd by taking averages of the Wasserstein
distances between projections of the measures to each 1-dimensional subspaces of
Rd. To be more precise, for each θ ∈ Sd−1 define the projection πθ : Rd → R by

πθ(x) = θ · x.
The 2-sliced Wasserstein distance SW2 is defined by

SW2(µ, ν) =

(
1

|Sd−1|

∫

Sd−1

W 2
2 (π

θ
#µ, π

θ
#ν) dθ

) 1
2

where # denotes the pushforward of a measure.
Thanks to its lower sample and computational complexities relative to the

Wasserstein distance especially in high dimensions, the sliced Wasserstein dis-
tance has recently expanded its applications in statistics and machine learning as
a tool to compare measures and construct paths in spaces of measures.

In this talk we presented a number of analytic properties of the SW2 and the
sliced Wasserstein length metric ℓSW , defined as the infimum of the lengths of
curves between measures in the SW2-space. Moreover, we discussed their impli-
cations on the sliced Wasserstein gradient flows and statistical estimation rates in
the metrics.

Comparison of sliced Wasserstein metric with negative Sobolev norms and Wasser-
stein metric. To understand the metric properties of the sliced Wasserstein dis-
tance, we establish the comparison theorems of SW2 with negative Sobolev norms
near absolutely continuous measures and comparisons of SW2 with the Wasserstein
metricW2 near discrete measures. In particular, consider an absolutely continuous
measure µ bounded away from zero and infinity on some bounded open convex do-
main Ω. For all measures µ, ν which are within constant multiples of the Lebesgue
measure restricted to Ω, we show
(1)
‖µ−ν‖Ḣ−(d+1)/2(Rd) . SW2(µ, ν) ≤ ℓSW (µ, ν) . SW2(µ, ν) . ‖µ−ν‖Ḣ−(d+1)/2(Rd),

where the rightmost inequality additionally requires ν to coincide with µ near the
boundary of Ω. In other words, near µ, SW2 is equivalent to Ḣ−(d+1)/2.
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On the other hand, we show that

(2) SW2(µ
n, ν) ≤ ℓSW (µn, ν) ≤ 1

d
W2(µ

n, ν) ≤ (1 + o(1))SW2(µ
n, ν)

for ν near discrete measures of the form µn =
∑n

i=1miδxi .
These two results provide interesting insights about the SW2 measure. Near

smooth measures it behaves like a highly negative Sobolev space, in contrast to the
Wasserstein metric which for such measures behaves like the Ḣ−1 norm as noted by
Peyre [3], while near discrete measures SW2 behaves like the Wasserstein distance.

Approximation by discrete measures in sliced Wasserstein length. It is known that
finite-sample estimation of measures with respect to maximum mean discrepancy
(MMD) also enjoys parametric rate [5, Theorem 3.3]. MMD distance is nothing but
the norm in the dual of a reproducing kernel Hilbert space (RKHS). In particular
the results of [5] apply to the dual of the Sobolev space Hs with s > d

2 (when
the spaces embeds in the spaces of Hölder continuous functions and are RKHS).
The comparison (1) says that near absolutely continuous measures, SW2 behaves

like Ḣ−(d+1)/2-norm; as the associated norm ‖ · ‖H−(d+1)/2(Rd) is an MMD, we
can formally understand SW2 to exhibit behaviors like an MMD. Thus MMD
parametric estimation can be seen as a tangential or a linearized analogue of the
finite sample estimation rates in SW2 distance. Indeed, Manole, Balakrishnan,
and Wasserman [2, Proposition 4] have shown that a finite random sample (i.e.
the empirical measure of the set of n random points) of a probability measure on
Rd estimates the measure in the sliced Wasserstein distance at a parametric rate,
1√
n
, for a large class of measures.

We establish that finite sample approximation in ℓSW happens at the parametric
rate up to a logarithmic correction, namely that

SW2(µ, µ
n) ≤ ℓSW (µ, µn) .

√
logn

n
with high probability,

where µn = 1
n

∑n
i=1 δXi with Xi

i.i.d.∼ µ. This is in stark contrast with the Wasser-
stein distance where the approximation rate is poor in high dimensions and scales
like n− 1

d .

Implications on gradient flows. The comparison results on ℓSW , SW2 can be used
to obtain comparisons for the metric slopes. Given a metric space (X,m), recall
that metric slope |∂E|m of a functional E : X → R is defined by

(3) |∂E|m(u) = lim sup
v

m−→u

[E(u)− E(v)]+
m(u, v)

.

Consider the potential energy V(µ) :=
∫
Rd V (x) dµ(x). When V is smooth and

compactly supported, for suitable absolutely continuous µ ∈P2(R
d) it holds that

(4) |∂V|Ḣ(d+1)/2(Rd)(µ) . |∂V|ℓSW (µ) ≤ |∂V|SW (µ) . |∂V|Ḣ(d+1)/2(Rd)(µ)
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whereas the slope behaves quite differently at discrete measures, µn =
∑n
i=1miδxi ,

namely that

(5) |∂V|SW2(µ
n) = |∂V|ℓSW (µn) =

√
d |∂V|W (µn).

Hence |∂V|SW2 (resp. |∂V|ℓSW ) is not lower-semicontinuous in SW2 (resp. ℓSW )
in general, even when V ∈ C∞

c (Rd). This implies that the potential energy is
not λ-geodesically convex in (P2(R

d), ℓSW ). Consequently, the curves of maximal
slope in the Wasserstein space starting from discrete measures with finite number
of particles, after a constant rescaling of time, is the curve of maximal slope in
SW2 space.

On the other hand, for smooth measures, the curves of maximal slope with
respect to the Wasserstein metric are not curves of maximal slope in SW2 space.
We formally show that SW2 gradient flow of potential energy is a higher order
equation given by a pseudodifferential operator of order d, which is consistent
with the rigorous results (4).
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Entropic propagation of chaos for population dynamics

Jasper Hoeksema

Interacting particle systems where particles can be created and deleted form the
backbone of several models in ecology, with the particular example of the Bolker-
Pacala-Dieckmann-Law (BPDL) model [1], which was originally introduced to
study the evolution of and pattern formation in populations of plants, but which
turned out to accurately describe models involving mutation of traits.

Various methods exist to derive mean-field limits for these systems, but these
sometimes require stringent assumptions on the interactions and use weak notions
of convergence. In this talk, we discuss past [6] and current work to alleviate
both these restrictions for weakly interacting birth/death processes where, using
techniques inspired by convergence of gradient flows for interacting particle sys-
tems [3–5], we prove entropic propagation of chaos for the BPDL model.
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We model the particles as a collection of points {Xn,1
t , . . . , Xn,Nt

t } in a compact
Polish space X , where the parameter n will control the order of the number of
particles in the system. We are interested in convergence in a suitable sense of the
rescaled empirical measure νnt ∈ Γ :=M(X ) given by

νnt :=
1

n

Nt∑

i=1

δXn,i
t
.

Formally, νnt is a measure-valued jump process with generator

QnF = n

∫

X

(
F (ν + 1

nδx)− F (ν)
)
χ+
ν (dx) + n

∫

X

(
F (ν − 1

nδx)− F (ν)
)
χ−
ν (dx)

with F ∈ Cc(Γ) and the measure-dependent birth/death rates χ±
ν , which in the

case of the BPDL model looks like

χ+
ν (dx) =

(∫

X
m(x, y)ν(dy)

)
γ(dx), χ−

ν (dx) =

(∫

X
c(x, y)ν(dy)

)
ν(dx)

where m, c are the mutation and competition kernels, and γ ∈ Γ is some reference
measure.

It is the corresponding forward Kolmogorov equation that is our object of study.
It describes the law of νnt , and for a path of measures (Pnt )t∈[0,T ] over some time
horizon [0, T ] it satisfies

∂tP
n
t = Q∗

nP
n
t .

After a Taylor expansion of QnF , with F a suitable cylindrical function, one can
expect that under suitable conditions

lim
n→∞

QnF = Q∞F =

∫

X
(∇ΓF )(ν, x)Vν(dx),

where Vν(dx) := χ+
ν (dx) − χ−

ν (dx), and would surmise that limn→∞ Pnt = Pt
narrowly, where Pt satisfies the corresponding Liouville equation with velocity
field V . In particular, if Pn0 → P0 := δν̄t then one would expect that

(1) Pnt → δν̄t

where ν̄t satisfies the mean-field equation

∂tν̄t = Vν̄t .

The convergence (1) is known as propagation of chaos, and implies narrow con-
vergence of the corresponding correlation functions. However, we are interested
in a strictly stronger notion, called entropic propagation of chaos, which implies
vanishing relative entropy. For suitable bounds on ν̄t the latter can be shown to
be equivalent to the statement

lim
n→∞

1

n
Ent(Pn0 |Πn) =

∫

Γ

Ent(ν|γ)P0(dν) =⇒ lim
n→∞

1

n
Ent(Pnt |Πn) =

∫

Γ

Ent(ν|γ)Pt(dν)

for all t ∈ [0, T ], with Πn a rescaled Poisson point measure induced by γ.
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In our work we prove this property, using large deviation techniques for the
rescaled entropies, lower semicontinuity of the entropy dissipation, and the Sandier-
Serfaty approach [2] to obtain convergence.

A key tool is the fact that the rescaled entropy dissipation, in the reversible
setting where m = c and c(x, x) = 0 for all x ∈ X , reduces to (with a slight abuse
of notation)

Kn(P) = 2Ent
(
P(dν)χ+

ν (dx)
∣∣∣P
(
d(ν + 1

n )
)
χ−
ν+

1
n

(dx)

)
,

and is related to the convergence of the associated gradient flow structures as
shown in [6]. In current work we extend this to the irreversible setting.
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Department of Mathematics
King’s College London
Strand
London WC2R 2LS
UNITED KINGDOM

Sangmin Park

Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213-3890
UNITED STATES

Prof. Dr. Mark A. Peletier

Department of Mathematics and
Computer Science
Eindhoven University of Technology
MetaForum 5.062
P.O. Box 513
5600 MB Eindhoven
NETHERLANDS

Dr. D.R. Michiel Renger

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München
GERMANY

Prof. Dr. Riccarda Rossi

Department of Mechanical and
Industrial Engineering
University of Brescia
Via Branze 38
25133 Brescia
ITALY



74 Oberwolfach Report 57/2023

Prof. Dr. Tomas Roubicek

Mathematical Institute
Charles University
Sokolovska 83
186 75 Praha 8
CZECH REPUBLIC

Prof. Dr. Giuseppe Savaré
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