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Introduction by the Organizers

The mini-workshop Mathematics of Many-body fermionic systems, organized by
Nikolai Leopold (Basel), Phan Thành Nam (Munich) and Chiara Saffirio (Basel)
gathered sixteen participants, including the organizers. The group covered a broad
range of expertise and maintained a well-rounded balance in terms of both age and
gender. The main goals of the workshop were to showcase the most recent math-
ematical techniques in many-body interacting fermionic systems and to foster the
interaction between different research groups. The newest results in the field were
presented in thirteen one-hour lectures. Several free slots as well as an open prob-
lem discussion session provided opportunities for in-depth scientific discussions on
cutting-edge methodologies and potential future research directions.
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The talks were centered on the following core themes: ground state energies
of many-body fermionic systems, effective dynamics for quantum systems and
quantum systems in interaction with radiation fields.

The majority of the contributions dealt with ground state energies of many-
fermion systems. Christian Hainzl opened the workshop with a presentation con-
cerning the correlation energy of the electron gas in the mean-field regime. Related
developments were reported by Martin Christiansen about spectral estimates for
fermionic n-body operators and reduced density matrices, by Emanuela Giacomelli
about the low density Fermi gas in three dimensions towards the Huang-Yang con-
jecture, and by Blazej Ruba concerning the bosonization for strongly interacting
Fermi gases. The topic was in addition addressed by Volker Bach who discussed
unitary renormalization group flows for fermion systems, Mathieu Lewin who gave
an overview on mathematical results in density functional theory, and Charlotte
Dietze who presented semiclassical estimates for Schrödinger operators with Neu-
mann boundary conditions on Hölder domains.

The time evolution of quantum systems was treated by Peter Pickl with his
presentation about effective evolution equations for tracer particles in interaction
with either bosonic or fermionic gases. François Golse gave insights into the ran-
dom batch method in the context of large N limit (uniform in ~) of the Wigner
transform of the single-particle reduced density matrix associated with an N -body
quantum system. Jani Lukkarinen’s talk was concerned with the propagation of
chaos via cumulant hierarchies in two example models: the discrete nonlinear
Schrödinger evolution and the stochastic Kac model.

Systems with radiation fields have been considered by Tadahiro Miyao who pre-
sented a unified mathematical framework to describe the magnetic properties of
ground states in many-electron systems, and Simone Rademacher who discussed
the Landau-Pekar conjecture on the effective mass problem for the classical po-
laron. The workshop ended with the talk of Manfred Salmhofer reviewing results
on the Hubbard model and the Fermi liquids, based on renormalization group
techniques.

Wednesday morning was devoted to a collaborative discussion session aiming
to maximize the interaction between the participants. The attendees were split
into four subgroups, each dedicated to exploring a given topic for an hour. Subse-
quently, the findings were shared in a large plenary session, sparking further dis-
cussions. This format, recommended to the organizers by Mathieu Lewin, proved
highly successful with many topics continuing to be explored during the traditional
afternoon hike. The subjects listed below were the main themes of the discussion.

Correlation estimates : The discussion revolved around the study of the energy in
terms of reduced density matrices, and in particular around Coulson’s challenge
related to the reconstruction of the N -particle states originated from a two-body
density matrix. At present it is believed that in practical applications the so-called
P-Q-G-T1-T2 conditions on two-body density matrices suffice for the reconstruc-
tion of the N -body states up to a very high precision. In 2013, Volker Bach, Hans
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Konrad Knörr and Edmund Menge showed that conditions P-Q-G imply the va-
lidity of the Hartree-Fock approximation, thus particularly explaining the success
of earlier numerical tests by Eric Cancès, Mathieu Lewin and Gabriel Stoltz. On
the other hand, the T1 and T2 conditions are obtained by suitable 3-body density
inequalities, and they seem to be hidden in recent developments in the correla-
tion energy. Potential links between the P-Q-G-T1-T2 conditions and the random
phase approximation were suggested, leading to interesting open problems to be
investigated in the upcoming years.

Effective dynamics : The second group focused on the derivation of effective evolu-
tion equations for many particle systems. Two key open problems were identified.
Firstly, there is an interest in deriving effective equations for longer time scales
than those thus far explored. Secondly, a highly desirable goal is to establish the
derivation of the Vlasov–Poisson equation from the classical dynamics of many par-
ticles with Coulomb interaction. The plenary discussion revolved around the latter
challenge, specifically addressing the fact that Sylvia Serfaty and Mitia Duerinckx
have successfully derived the Vlasov–Poisson equation with Coulomb potential
in the monokinetic case. The discourse then centered on exploring whether the
assumptions on the solutions of the pressureless Euler–Poisson equation (linked
to monokinetic solutions of the Vlasov–Poisson equation) can be relaxed in the
monokinetic derivation. Additionally, it was addressed how a derivation beyond
the monokinetic scenario could be accomplished.

Kinetic equations : The group directed its attention towards the derivation of the
quantum Boltzmann equation from the many-body Schrödinger equation. The
weakly interacting and dilute regime were identified for derivations of the quan-
tum Boltzmann equation with cubic collision operator. Recent findings about
the derivation of the quantum Boltzmann equation by Thomas Chen, Michael
Hott and Esteban Cárdenas as well as concerning the derivation of the wave ki-
netic equation by Tristan Buckmaster, Yu Deng, Pierre Germain, Zaher Hani and
Jalal Shatah were highlighted. The main focus of the discussion then shifted to
the technical aspects of the derivation. On the one hand it was investigated how
Gronwall-type estimates could be optimized to be more useful in the kinetic regime.
In this context it was discussed if the introduction of randomness could be helpful.
On the other hand attention was directed towards finding suitable macroscopic
observables for the derivation such as cumulants.

Semiclassical limits (including systems with radiation fields): Natural connections
between semiclassical analysis and density functional theory were mentioned, in-
cluding several problems on semiclassical estimates. In particular, challenging
questions on asymptotic behaviors of large Coulomb systems were promoted. Con-
cerning systems with radiation fields it was discussed in which way Maxwell’s equa-
tions emerge from the quantized electromagnetic field with large photon number.
Existing results were pointed out and a derivation of Maxwell’s equations from
non-relativistic quantum electrodynamics in a many-fermion limit as open prob-
lem identified. Additionally, the question if it is possible to define and analyze a
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microscopic model of a laser was raised. First results in this direction by Jean-
Bernard Bru and Walter de Siqueira Pedra were pointed out.
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Abstracts

Correlation energy of the electron gas in the mean-field regime

Christian Hainzl

(joint work with M. R. Christiansen and P. T. Nam)

In [5] we prove a rigorous upper bound on the correlation energy of interacting
fermions in the mean-field regime for a wide class of interaction potentials. Our
result covers the Coulomb potential, and in this case we obtain the analogue of
the Gell-Mann–Brueckner formula [6] c1ρ log (ρ) + c2ρ in the high density limit.
We do this by refining the analysis of our bosonization method in [3] to deal with
singular potentials, and to capture the exchange contribution which is absent in
the purely bosonic picture.

In a forthcoming paper we will actually also prove the corresponding lower
bound. Before stating the Theorem we give a precise definition of the model.

We consider N (spinless) electrons in the unit torus Ω = [0, 2π]3 (periodic b.c.)
where

N = |BF | = |B(0, kF ) ∩ Z
3|, kF ∼ N1/3,

BF denoting the Fermi ball and kBF
the Fermi momentum. The N -body Hamil-

tonian on L2
a(Ω

N ) has the form

HN =

N∑

i=1

(−∆xi
) +

1

kF

∑

1≤i<j≤N
V (xi − xj)

with mean-field periodic Coulomb potential

1

kF
V (x) =

1

kF (2π)3

∑

k∈Z3\{0}
V̂ke

ik·x, V̂k =
4π

|k|2 .

The main theorem about recovering the Gell-Mann-Brueckner formula for the
correlation energy reads as follows, where EHF is the Hartree-Fock energy.

Theorem.

EN = EHF + Ecorr,bo + Ecorr,ex + o(kF )kF→∞

with bosonic correlation contribution,

Ecorr,bo =
1

π

∑

k∈Z3\{0}

∫ ∞

0

F


k−1

F V̂k
(2π)3

∑

p∈Lk

λk,p
λ2k,p + t2


 dt ∼ kF log(kF )

and exchange correlation contribution

Ecorr,ex =
1

4(2π)6

∑

k∈Z3\{0}

∑

p,q∈Lk

k−2
F V̂kV̂p+q−k
λk,p + λk,q

∼ kF

F (x) = log(1 + x)− x, λk,p =
1
2 (|p|2 − |p− k|2) > 0, p ∈ Lk = (BF + k)\BF .
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The main idea of the proof can be summerized as follows. Starting from the
Hamiltonian in second quantization, one can approximate the main contribution
of the Hamiltonian by the following pseudo-quadratic Hamiltonian

Heff ≈
∑

k∈Z3\{0}

∑

p∈Lk

2λk,pb
∗
k,pbk,p+

∑

k,p,q

V̂kk
−1
F

2(2π)3
(2b∗k,pbk,q+bk,pb−k,−q+b

∗
−k,−qb

∗
k,p),

where the operators bk,p describe a pair of Fermions,

bk,p = a∗p−kap, p ∈ Lk = (BF + k)\BF ,

where a∗p−k annihilates a hole in the Fermi sea and ap annihilates a particle outside
the Fermi sea. These bk,p’s behave approximately like bosons. Following Sawada
[8, 9] we diagonalize the Hamiltonian as if these operators were bosons and obtain
the stated result. Since we track the non-bosoniscity of the b-operators exactly we
also recover the exchange contribution in contrast to Sawada. Using a different
approach, more precisely patching the Fermi sea, a similar result for smooth po-
tentials was obtained earlier, see [1, 2]. In a perturbative form a similar result was
obtained in [7]. In a similar way one can also track the elementary excitations.
Plugging in the Coulomb potential into the final formula, one obtains the so called
plasmon spectrum [4].
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Spectral Estimates for Fermionic n-Body Operators

Martin Ravn Christiansen

Fermionic n-Body Operators. Let h be a Hilbert space and let Ψ ∈ ∧N
h

be a normalized N -particle state. Then the n-body operator associated to Ψ,
γΨn :

⊗n
h → ⊗n

h, is defined with respect to elementary tensors by
〈
(ϕ1 ⊗ · · · ⊗ ϕn), γ

Ψ
n (ψ1 ⊗ · · · ⊗ ψn)

〉
= 〈Ψ, c∗(ψ1) · · · c∗(ψn)c(ϕn) · · · c(ϕ1)Ψ〉 .

Here c∗(·) and c(·) denote creation and annihilation operators, which obey the
canonical anticommutation relations (CAR)

{c(ϕ), c∗(ψ)} = 〈ϕ, ψ〉 , {c(ϕ), c(ψ)} = 0 = {c∗(ϕ), c∗(ψ)} .
γΨn is a positive self-adjoint operator on

⊗n
h, and if (uk)k is an orthonormal basis

for h then its action can be recast as

〈
Φ, γΨn Φ

〉
=

∥∥∥∥
∑

k1,...,kn

Φk1,...,knckn · · · ck1Ψ
∥∥∥∥
2

where Φk1,...,kn = 〈uk1 ⊗ · · · ⊗ ukn ,Φ〉 for Φ ∈ ⊗n
h and ck = c(uk) for k ∈ N.

The n-body operator γΨn is trace-class with tr(γΨn ) = N !
(N−n)! . This trivially

implies that also ‖γΨn ‖op ≤ N !
(N−n)! ∼ Nn, which is optimal in the bosonic case.

For fermions this is untrue however, as e.g.
〈
ϕ, γΨ1 ϕ

〉
= 〈Ψ, c∗(ϕ)c(ϕ)Ψ〉 ≤ 〈Ψ, {c∗(ϕ), c(ϕ)}Ψ〉 = ‖ϕ‖2

by the CAR, which shows that
∥∥γΨ1

∥∥
op

≤ 1.

In terms of the basis (uk)k, this can be expressed as ‖∑k αkck‖2op ≤ ∑
k |αk|

2

for any coefficients (αk)k. This implies an improvement on the bound for ‖γΨn ‖op
for any n, since
√
〈Φ, γΨnΦ〉 ≤

∑

k1,...,kn−1

∥∥∥∥
(∑

kn

Φk1,...,knckn

)
ckn−1 · · · ck1Ψ

∥∥∥∥

≤
√ ∑

k1,...,kn

|Φk1,...,kn |2
√ ∑

k1,...,kn−1

∥∥ckn−1 · · · ck1Ψ
∥∥2 =

N !

(N − n+ 1)!
‖Φ‖

implies that ‖γΨn ‖op ≤ N !
(N−n+1)! ∼ Nn−1.

Yang’s Estimates. For n = 2 this simply reads ‖γΨ2 ‖op ≤ N , which was first
proved by Yang in [1], who also showed it to be optimal (for even N). Based on
his analysis of the optimizers, he conjectured - and later proved - the following:

Theorem. (Yang, [1, 2]) For any normalized Ψ ∈
∧N

h it holds that for all n ∈ N

‖γΨn ‖op ≤ CnN
⌊n

2 ⌋

for constants Cn > 0 depending only on n.
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This bound follows from two main points. The first is that if we define ΛNn =
supΨ 6=0 ‖γΨn ‖op‖Ψ‖−2

op - i.e. the quantity we wish to control - it is seen that

√
〈Φ, γΨnΦ〉 ≤

∑

k1

∥∥∥∥
( ∑

k2,...,kn

Φk1,...,knckn · · · ck2
)
ck1Ψ

∥∥∥∥

≤
√
ΛN−1
n−1

∑

k1

√ ∑

k2,...,kn

|Φk1,...,kn |2 ‖ck1Ψ‖

≤
√
ΛN−1
n−1

√ ∑

k1,...,kn

|Φk1,...,kn |2
√∑

k1

‖ck1Ψ‖2 =
√
NΛN−1

n−1 ‖Φ‖

which implies the recursive estimate ΛNn ≤ NΛN−1
n−1 .

The second point is that an argument of Bell [3] implies that ΛNn . C′
nΛ

N
n−1 for

odd n - combining these two estimates then yields Yang’s estimate ΛNn ≤ CnN
⌊n

2 ⌋
by induction.

To illustrate Bell’s argument, consider n = 3: Then as for n = 1

〈
Φ, γΨ3 Φ

〉
≤

〈
Ψ,

{(∑

k,l,m

Φk,l,mcmclck

)∗
,

(∑

k,l,m

Φk,l,mcmclck

)}
Ψ

〉

and since 3 is odd, the anticommutator reduces to a sum of terms containing at
most 4 creation/annihilation operators, rather than 6. Indeed, assuming without
loss of generality that the coefficients Φk,l,m are antisymmetric, this anticommu-
tator is

9
∑

k

∣∣∣∣
∑

l,m

Φk,l,mcmcl

∣∣∣∣
2

− 18
∑

k,l

∣∣∣∣
∑

m

Φk,l,mcm

∣∣∣∣
2

+ 6
∑

k,l

|Φk,l,m|2

which implies that ΛN3 ≤ 9ΛN2 + 6.

Hilbert-Schmidt Estimates for γΨ2 and γΨ,T2 . The argument of Bell was re-
cently used to obtain Hilbert-Schmidt estimates on 2-body operators and their

truncated versions γΨ,T2 = γΨ2 − (1− Ex) (γΨ1 ⊗ γΨ1 ).
First let us note that by the identity ‖γΨ2 ‖tr = N(N − 1) and Yang’s optimal

estimate ‖γΨ2 ‖op ≤ N , it easily follows that ‖γΨ2 ‖HS ≤ N
3
2 . This can however be

improved significantly:

Theorem. ([4]) For any normalized Ψ ∈
∧N

h it holds that

‖γΨ2 ‖HS ≤
√
5N, ‖γΨ,T2 ‖HS ≤

√
5N tr(γΨ1 − (γΨ1 )2).

Note that the bound ‖γΨ2 ‖HS ≤
√
5N is of the same order with respect to N

as Yang’s bound ‖γΨ2 ‖op ≤ N - informally speaking this implies that although γΨ2
can have eigenvalues of order N , it can not have “too many” large eigenvalues.
Furthermore, for Slater states Ψ it holds that ‖γΨ2 ‖HS =

√
2N , so this order is

optimal.
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The first estimate follows by noting that

tr(AγΨ2 ) = −
∑

n

〈 ∑

k,l,m

Ak,l,m,nc
∗
mclckΨ, cnΨ

〉

for any Hilbert-Schmidt operator A, whence

∣∣tr(AγΨ2 )
∣∣ ≤

√
N

∑

n

〈Ψ, T ∗
nTnΨ〉 ≤

√
N

∑

n

〈Ψ, {T ∗
n , Tn}Ψ〉

for Tn =
∑

k,l,mAk,l,m,nc
∗
mclck. Since this is again a sum of terms with 3 fermionic

operators, the anticommutator simplifies significantly, with the consequence that
(assuming without loss of generality an antisymmetry condition on Ak,l,m,n)

∑

n

{T ∗
n , Tn} ≤

∑

m,n

∣∣∣∣
∑

k,l

Ak,l,m,nclck

∣∣∣∣
2

+ 4
∑

k,n

∣∣∣∣
∑

l,m

Ak,l,m,nc
∗
l cm

∣∣∣∣
2

,

and since not only ‖
∑
k αkck‖2op ≤

∑
k |αk|

2
but also ‖

∑
k αkc

∗
k‖2op ≤

∑
k |αk|

2

this can be bounded as

∑

n

{T ∗
n , Tn} ≤ 5

( ∑

k,l,m,n

|Ak,l,m,n|2
)(∑

k

|ck|2
)

= 5N ‖A‖2HS

for the claim. The estimate on ‖γΨ,T2 ‖HS follows by a similar argument after noting
the identity

〈
(ϕ1 ⊗ ϕ2), γ

Ψ,T
2 (ψ1 ⊗ ψ2)

〉
=

〈
Ψ, c(γΨ1 ϕ2)c

∗(ψ1)c
∗(ψ2)c(ϕ1)Ψ

〉

−
〈
Ψ, c∗(ψ1)c

∗(ψ2)c(ϕ1)c((1− γΨ1 )ϕ2)Ψ
〉
.

References

[1] C. N. Yang, “Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid
He and of Superconductors”, Rev. Mod. Phys. 34, 694, 1962.

[2] C. N. Yang, “Some Properties of the Reduced Density Matrix”, J. Math. Phys. 4, 418, 1963.
[3] J. S. Bell, “On a Conjecture of C. N. Yang”, Phys. Lett. 2, 116, 1962.
[4] Martin Ravn Christiansen, ”Hilbert-Schmidt Estimates for Fermionic 2-Body Operators”,

to appear in Commun. Math. Phys..



12 Oberwolfach Report 49/2023

Unitary Flows for Fermion Systems

Volker Bach

(joint work with Jakob Geisler, Konstantin Merz)

1. Unitary Flows on Fermion Operators

1.1. Fermion Systems and Fermi Gases. Here we present a mathematical
study of fermion systems. Although we ultimately aim at treating atoms and
molecules, we focus on Fermi gases here. For d, L ∈ N, the configuration space
of the system is the d-dimensional torus Λ := R

d/LZd of sidelength L ≫ 1,
the corresponding momentum space is Λ∗ = 2π

L Z
d. States of the system are

represented by vectors in fermion Fock space F = Ff (h), where h = L2(Λ) is the
Hilbert space of a single fermion. The system’s dynamics is generated by the
second-quantized Hamiltonian

H̃g,ν =
∑

k∈Λ∗

(k2 − ν) â∗k âk +
g

2

∑

q,k,k′∈Λ∗

v̂q
|Λ| â

∗
k+q â

∗
k′ âk′+q âk ,(1)

where ν > 0 is the chemical potential, g ≥ 0 is the coupling constant, v̂ : Λ∗ → R

+
0

is the restriction to Λ ⊆ R

d of the Fourier transform F[V ] ∈ S(Rd) of a pair
potential V ∈ S(Rd), both assumed to be nonnegative, smooth functions of rapid
decrease, for simplicity.

The Fermi gas under consideration is characterized by the spectral properties of

H̃g,ν . These have been an object of research for almost a century, just like quan-
tum mechanics itself. The discovery of High-Tc superconductivity brought these
models into the focus of mathematical physics some 35 years ago. Monographs
that provide an overview are [10, 7, 9]

1.2. Hartree–Fock Theory and Bogoliubov Transformations. One of the
most important approximations to the ground state energy of a many-fermion
system is the Hartree–Fock approximation which is defined by restricting the
Rayleigh–Ritz variational principle to Slater determinants,

EHF(g, ν) :=(2)

inf
{〈
f1 ∧ · · · ∧ fN

∣∣
H̃g,ν(f1 ∧ · · · ∧ fN)

〉 ∣∣∣ N ∈ N0 , 〈fi|fj〉 = δi,j

}
.

In [6, 2] it was shown that the Hartree–Fock energy EHF(g, ν) coincides with the
smallest energy expectation value of wave functions, which are Bogoliubov trans-
forms UΩ of the vacuum vector Ω,

EHF(g, ν) = inf
{〈

Ω
∣∣
U

∗
H̃g,ν UΩ

〉 ∣∣∣ U ∈ Bog(F)
}
.(3)

Here, Bog(F) ⊆ U(F) denote the Bogoliubov transforms on F, i.e., all unitary
operators that act linearly on creation and annihilation operators. If we impose
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translation invariance of |UΩ〉〈UΩ|, then the best choice for U is

h∗k := Uµ â
∗
kU

∗
µ := â∗k , k2 ≥ µ ,(4)

ℓ∗k := Uµ â
∗
kU

∗
µ := âk , k2 < µ ,(5)

UµΩ :=
( ∏

k2<µ

â∗k

)
Ω ,(6)

where µ ≡ µ(g) = ν +O(g) is chosen as to minimize 〈Ω|U∗
µH̃g,νUµΩ〉. Note that

translation invariance of |UΩ〉〈UΩ| for the minimizing Bogoliubov transformation
U is a plausible assumption and actually violated sometimes; BCS theory builds
up on this assumption. For more details see [1] and references therein.

After conjugation with Uµ, the Hamiltonian reads

Hg := U

∗
µ H̃g,ν Uµ = EtHF(g, ν) + dΓ(ω) + gQ ,(7)

where EtHF(g, ν) is the Hartree–Fock energy restricted to translation-invariant
states, ωk = |k2 − µ|, and Q is purely quartic in h∗k, ℓ

∗
k, hk, and ℓk.

1.3. Flow Equations for Fermion Systems in Standard Representation.
We report on joint work in progress with J. Geisler and K. Merz. A suggestive
formulation of the renormalization group (RG) is given by a family

(
W(t)

)
t≥0

of

unitarily equivalent operators determined by the evolution equation

∀ t > 0 : Ẇ(t) = i
[
G(t) ,W(t)

]
, W(0) = Hg ,(8)

where G(t) = G∗(t) is chosen as to eliminate (“diagonalize away”) the undesired
terms in Hg. A concrete implementation of this idea is the Brockett-Wegner flow
[5, 11, 3, 4]. A main difficulty for setting up the flow (8) is to find an appropriate
Banach space on which it possesses basic properties such as (local and global)
existence in the flow parameter t ≥ 0.

A natural idea is to writeW(t) = Q[w(t)] ∈ B[F] and G(t) = Q[g(t)] ∈ B[F] as
images of symbols w(t), g(t) ∈ W under a linear quantization map Q : W → B[F],
where W is a suitable Banach space of coefficients. Here and henceforth, we
assume, for simplicity, Λ∗ to be finite and, hence, the one-fermion space h =
ℓ2(Λ∗) and also the fermion Fock space F = F[h] to be finite-dimensional, so
that all operators are bounded. The Banach space W =

⊕
m,n≥0 Wm,n contains

collections w(t) =
(
w

(t)
m,n

)
m,n≥0

and g(t) =
(
g(t)
m,n

)
m,n≥0

of antisymmetric functions

w
(t)
m,n, g(t)m,n : (Λ∗)m × (Λ∗)n → C. Given w =

(
wm,n

)
m,n≥0

∈ W , its quantization

Q[w] is defined as

Q[w] :=

∞∑

m,n=0

∑

xm
1 ∈(Λ∗)m

∑

yn1 ∈(Λ∗)n

wm,n(x
m
1 |yn1 ) a∗(xm1 ) a(yn1 ) ,(9)

where xm1 = (x1, . . . , xm) with x1 < . . . < xm and yy1 = (y1, . . . , yn) with y1 <
. . . < xn, for some fixed total order on Λ∗. Moreover, a∗(xm1 ) = a∗x1

· · · a∗xm
and
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a(yn1 ) = ayn · · · ay1 . Now observe that, for v =
(
vm,n

)
m,n≥0

, w =
(
wm,n

)
m,n≥0

∈
W , we have

Q[v]Q[w] = Q[v ∗ w] ,(10)

with the convolution product defined by

(v ∗ w)M,N (xM1 |yN1 ) :=

∞∑

r=0

M∑

m=0

N∑

n=0

(−1)mn+r r!

(
m+ r
r

) (
n+ r
r

)
(11)

AM,N

[ ∑

zr1∈(Λ∗)r

vM−m,n+r(x
M
m+1|zr1 , yn1 ) wm+r,N−n(z

r
1 , x

m
1 |yNn+1)

]
,

and AM,N being the antisymmetrization operator. While the parametrization (9)
seems natural, the No-Go theorem of Geisler [8] shows that, under some mild
assumption on its form, no choice of norm ‖ · ‖W on W will

• make the convolution product (11) submultiplicative, i.e.,

∀ v, w ∈ W : ‖v ∗ w‖W ≤ ‖v‖W ‖w‖W ,(12)

• and at the same time control the operator norm, i.e.,

∀w ∈ W : ‖Q[w]‖B[F] ≤ ‖w‖W .(13)

1.4. New Representation of Fermion Operators. We continue to report on
joint work in progress with J. Geisler and K. Merz. Given the negative result of [8]
that (12) and (13) plus some further natural assumptions lead to a contradiction,
we propose to change the parametrization of operators on fermion Fock space

altogether. We replace W by a different Banach space Ŵ of interaction coupling
functions ŵ : P(Λ∗)3 → C of the form ŵ =

(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗ , where P(Λ∗) is

the collection of subsets (power set) of Λ∗, and ∪̇ denotes disjoint union. The

quantization Q̂ : Ŵ → B[F] is defined by

Q̂[ŵ] :=
∑

I∪̇J∪̇K
ŵI,J,K a∗I nK aJ ,(14)

where the summation is defined as∑

I∪̇J∪̇K
F (I, J,K) :=

∑

K⊆Λ∗

∑

J⊆Λ∗\K

∑

I⊆Λ∗\(K∪J)
F (I, J,K) ,(15)

a∗∅ := a∅ := n∅ := 1, and

a∗A := aα∗
1
· · · a∗αn

, aA := aα∗
n
· · · a∗α1

, nA := a∗A aA ,(16)

for A = {α1, · · · , αn} ⊆ Λ∗ with α1 < · · · < αn. We can show that this quantiza-
tion possesses the following properties.

• For any v̂ =
(
v̂I,J,K

)
I∪̇J∪̇K⊆Λ∗ , ŵ =

(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗ ∈ Ŵ, the product

of their quantizations

Q̂[v̂]Q[ŵ] = Q̂[v̂ ∗ ŵ] ,(17)
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induces a convolution product on Ŵ given for disjoint I, J,K ⊆ Λ∗ by

(v̂ ∗ ŵ)I,J,K =(18)
∑

I′∪̇J′∪̇K′

∑

I′′∪̇J′′∪̇K′′

∑

G⊆J′∪̇I′′
SI,J,KI′,J′,K′; I′′,J′′,K′′;G v̂I′,J′,K′ ŵI′′,J′′,K′′ ,

where SI,J,KI′,J′,K′; I′′,J′′,K′′;G ∈ {−1, 1} is an explicit function.

• For ξ, η ≥ 1 with ξ2 ≥ 1+η define a norm on Ŵ for ŵ =
(
ŵI,J,K

)
I∪̇J∪̇K⊆Λ∗

∈ Ŵ by
∥∥ŵ

∥∥
ξ,η

:=
∑

I∪̇J∪̇K
ξ|I|+|J| η|K| |ŵI,J,K | .(19)

Then
∥∥v̂ ∗ ŵ

∥∥
ξ,η

≤
∥∥v̂

∥∥
ξ,η

∥∥ŵ
∥∥
ξ,η
.(20)

• For ŵ ∈ Ŵ , the operator norm of Q̂[ŵ] is bounded by the norm of ŵ,
∥∥
Q̂[ŵ]

∥∥
B[F]

≤
∥∥ŵ

∥∥
ξ,η
.(21)

Our current activity aims at implementing the diagonalizing flow (8) with W(t)

and G(t) given by Q̂[ŵ(t)] and Q̂[ĝ(t)], respectively, for suitable ŵ(t), ĝ(t) ∈ Ŵ .
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Bosonization for strongly interacting Fermi gases

Blazej Ruba

(joint work with S. Fournais and J. P. Solovej)

We study a gas consisting of N ≫ 1 spinless fermions interacting through a two-
body potential v modulated by the factor N−α, where α is a numerical parameter.
The gas is described by the Hamiltonian

(1) HN =

N∑

i=1

(−∆i) +N−α
∑

1≤i<j≤N
v(xi − xj)

on the Hilbert space of functions in L2((R/Z)3N ) antisymmetric with respect to
permutations of the N copies of (R/Z)3. We are interested mostly in the ground
state energy EN of HN .

Assuming that the Fourier series of v has non-negative coefficients v̂(k) satisfy-
ing

∑
k |k|v̂(k) <∞, we have elementary bounds

(2) E
(0)
N ≤ EN ≤ E

(0)
N + cN

2
3−α

∑

k

|k|v̂(k) + o(N
2
3−α),

where c > 0 is an explicit constant and

(3) E
(0)
N = min

p1,...,pN∈2πZ3

distinct

N∑

i=1

|pi|2 +
N−α

2

∫
v − N1−α

2
v(0).

One may ask whether one of the bounds in (2) is sharp up to o(N
2
3−α). The

answer is, at least for regular enough v: for α > 1
3 the upper bound is sharp,

for α = 1
3 neither is sharp, and for α < 1

3 the lower bound is sharp. The last
statement is our main new result.

The choice α = 1
3 , often called the mean field scaling, has been studied exten-

sively. In [1] Hamiltonians in the mean field scaling with small and very regular v
were studied. It was explained how in such models one can use second order per-
turbation theory rigorously. If we take α > 1

3 , which corresponds to interactions
weaker than in the mean field scaling, the perturbative expansion is an even better
approximation. In particular the reasoning in [1] shows that the upper bound in
(2) is sharp up to our desired accuracy. The next term in EN , given by second

order of the perturbative expansion, is of order N1−2α ≪ N
2
3−α.

The understanding of the ground state energy in the mean field scaling was
further improved in two series of works, [2, 3, 4] and [5, 6], where two approaches
to approximate bosonization were developed. In both treatments one introduces
operators which, in some sense, satisfy approximate canonical commutation rules
and derives an effective Hamiltonian quadratic in the approximate bosons. Then
that Hamiltonian is diagonalized using a Bogoliubov transformation. It is unclear
whether the last step of this procedure can be justified also for α < 1

3 , because
then the generator of the Bogoliubov transformation is so large that it is difficult
to control errors of the bosonic approximation.
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In order to avoid the difficulties of working with a large Bogoliubov transfor-
mation, we do a variational calculation with the class of all vectors which can be
obtained from the ground state of a non-interacting gas by acting with a poly-
nomial in approximate bosons. More precisely, we construct a linear map from
the Fock space of exact bosons to the fermionic Hilbert space and show that it is
approximately isometric and approximately intertwines between HN and the ef-
fective Hamiltonian. The quality of the approximation gets better as N increases,
but it deteriorates very rapidly with the number of bosons in the state. Consider-
ing general states with O(1) bosons and optimizing over the state after taking the
limit N → ∞ we obtain our result:

(4) EN = E
(0)
N + o(N

2
3−α).

If one performs the Bogoliubov calculation non-rigorously, i.e. without control-
ling the error terms, one arrives at

(5) EN ≈ E
(0)
N +

N
1−α

2

√
2

∑

k

|k|
√
v̂(k). (conjectural!)

It seems that in order to justify this formula using the bosonization method one
would have to understand how to control errors in calculations with states involving
many bosons.
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Estimation of propagation of chaos via cumulant hierarchies in two
example models

Jani Lukkarinen

(joint work with Aleksis Vuoksenmaa)

Propagation and generation of “chaos” is an important ingredient in rigorous con-
trol of applicability of kinetic theory, in general. Chaos can here be understood as
sufficient statistical independence of random variables related to the “kinetic” ob-
servables of the system. Cumulant hierarchy of these random variables thus often
gives a way of controlling the evolution and the degree of such independence, i.e.,
the amount of chaos in the system.

Motivated by recent successes of “direct” perturbation expansion results, such
as those in [1, 2], we propose a way to combine such techniques into a simpler
method to rigorously control the evolution of the cumulant hierarchy in two, qual-
itatively different, example cases for which kinetic theory is believed to be appli-
cable: the discrete nonlinear Schrödinger evolution (DNLS) with suitable random,
spatially homogeneous initial data, and the stochastic Kac model. In both cases,
we set up suitable random variables and propose methods to control the evolution
of their cumulant hierarchies. In this abstract, we focus only on the latter results.

The stochastic Kac model is a toy model introduced by Mark Kac in 1956 [3] for
deriving a Boltzmann equation. It consists of N particles, where only velocities vi,
i = 1, 2, . . . , N , of the particles are tracked, and collisions between particles take
place stochastically. The collisions are determined by a Poisson clock whose rate
is scaled to match the time-scale of the kinetic evolution. Once the clock rings,
the labels of the two colliding particles are picked randomly and, for the chosen
pair, their velocities are mixed randomly in such a way that the total energy is
always preserved in a collision.

Assuming, for simplicity, that the initial distribution has energy density one, it
has been proven that the distribution of the system approaches uniform distribu-
tion on the corresponding constant energy surface. However, this convergence can
be quite slow, taking order N time units for typical initial data. Also, already in
his original work, Kac proved a version of propagation of chaos for this system: if
the initial data is approximately of a product form, then it will remain approxi-
mately in a product form for later times and the single velocity marginal can be
well approximated by the solution to a corresponding Boltzmann-type evolution
equation. Summary of the related results and literature may be found from [4, 5].

In our work in progress, we have been able to improve these results in two ways:
(1) We have fairly accurate estimates for finite cumulants which become very small
(consistent with approximate independence) already at times which are order one.
(2) Since our initial data is less restricted, we are also able to conclude generation
of chaos for these cumulants.

A more precise summary, whose proof and detailed assumptions can be found
from our upcoming work, is given in the following Theorems. The results concern
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cumulants of the energies of the particles, i.e., the random variables ei := v2i and,
for simplicity, we only consider the one-dimensional case, vi ∈ R.

Theorem 1 (preliminary for non-repeated cumulants). Assume that the
initial distribution is exchangeable, i.e., label permutation invariant. Suppose there
is B ≥ 0 such that the initial non-repeating energy cumulants MN

n (0) satisfy a
bound |MN

n (0)| ≤ B(n!)2. Then there is a constant A which only depends on B,
such that the time-evolved non-repeating cumulants MN

n (t) satisfy the following
bound for n ≥ 3 and t ≥ 0:

|MN
n (t)| ≤ An(n!)2

(
1

(N − 1)n−1
+ e−

n
4 t

)
.

This indeed proves generation of chaos for all finite order non-repeating cumu-
lants whenever lnN ≫ lnn. The first term in the bound is uniformly O(N−(n−1))
hence goes to zero as N → ∞. This is consistent with the above mentioned con-
vergence to a stationary distribution since the variables ei are mildly correlated
under the uniform distribution on the energy surface.

Theorem 2 (preliminary for general cumulants). Assume that the initial
distribution is exchangeable, i.e., label permutation invariant. Suppose there is

B ≥ 0 such that the initial energy cumulants κn,N0 (es) satisfy a bound |κn,N0 (es)| ≤
Bn

2

(n!)2. Then there is a constant A, which only depends on B, and N0(n) ∈ N,

such that for every N ≥ N0(n) the time-evolved cumulants κm,Nt (es) satisfy the
following bound for any t ≥ 0 and any sequence s of m labels, m ∈ {3, 4, . . . , n}:

|κm,Nt (es)| ≤ Am
2

(m!)2
(

1

(N − 1)len(s)−1
+ e−

1
4
t

)

In the above, s is a sequence of m labels from {1, 2, . . . , N}, and len(s) is the
number of different labels in this sequence. The earlier bound for non-repeating

cumulants is e−
len(s)

4 t while here we are only able to prove e−
1
4 t. The proof is

based on using an order on the structure of certain partition classifiers to control
the linear part of the evolution and then iteratively propagating the upper bound.

In addition to the above generation of chaos bounds, it would be of interest to
also look at relaxation for fixed N : Could we control (exponential) convergence
of cumulants to their values in the uniform distribution on the sphere, as t → ∞
for a fixed N? Would it be possible to control the accuracy of kinetic theory
predictions such as improving the earlier estimates for the accuracy of the solution
of the Boltzmann equation?

How much of these techniques can be used for cumulant hierarchies of other
models, such as the nonlinear Schrödinger equation, is still under investigation.
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The low density Fermi gas in three dimensions

Emanuela L. Giacomelli

(joint work with Marco Falconi, Christian Hainzl, Marcello Porta)

In 1957 Huang-Yang (HY) conjectured a formula for the asymptotic expansion of
the ground state energy density of the Fermi gas at low density and in the infinite
volume limit (see [1]), the rigorous validation of which is still an open problem.
Here we present some recent results aimed at paving the way for rigorously proving
the HY formula. We consider N interacting fermions with spin σ = {↑, ↓} in a
box ΛL := [−L/2, L/2]3, with periodic boundary conditions. The Hamiltonian of
the system is

(1) HN = −
N∑

i=1

∆xi
+

N∑

i<j=1

V (xi − xj),

and it acts on L2
a(Λ

N↑

L ) ⊗ L2
a(Λ

N↓

L ), where L2
a(Λ

Nσ

L ) is the antisymmetric tensor
product ofNσ copies of L2(ΛL) withNσ denoting the number of particles with spin
σ = {↑, ↓} (N = N↑ +N↓). Correspondingly, we set ρσ := Nσ/L

3 (ρ = ρ↑ + ρ↓).
In the following, we will assume that our system is dilute, i.e., ρσ ≪ 1. The
interaction potential V is such that

(2) V (x − y) =
1

L3

∑

p∈ 2π
L

Z3

V̂∞(p)eip·(x−y), V̂∞(p) =

∫

R3

dxV∞(x)e−ip·x,

where V∞ is supposed to be non negative, radial, smooth and compactly supported.
We are interested in the thermodynamic limit, meaning that Nσ, L→ ∞ keep-

ing ρσ fixed. In this setting, it is well know [2] that, in units such that ~ = 1 and
putting the masses of the particles equal to 1/2, the ground state energy per unit
volume can be approximated as

(3) e(ρ↑, ρ↓) =
3

5
(6π2)

2
3 (ρ

5
3

↑ + ρ
5
3

↓ ) + 8πaρ↑ρ↓ + o(ρ2) as ρ→ 0.

The first term in the above expansion is purely kinetic (the kinetic energy of
the free Fermi gas), and the fact that this contribution is proportional to ρ5/3

is a consequence of the fermionic nature of the wave function. The effect of the
interaction appears at the next order, via the parameter a, which is the scattering
length of the interaction potential. In particular the contribution O(ρ2) in (3)
corresponds to the leading order in the asymptotic expansion for the correlation
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energy, which is defined as the difference between the ground state energy and
that of the free Fermi gas. In [1] Huang-Yang conjectured a refined version of the
asymptotics in (3) in the case where ρ = ρ↑/2 + ρ↓/2:

(4) e(ρ) =
3

5
(3π2)

2
3 ρ

5
3 + 2πaρ2 +

4(11− 2 log 2)

35π2

(
3

4π

) 4
3

a2ρ
7
3 + o

(
ρ

7
3

)
.

as ρ → 0. In 2021, the same asymptotics as the one in (3) have been re-derived
in [3]. Differently than in [2], in [3] more restrictions are put in the interaction
potential, but better error estimates are obtained. However, the main difference
between [2] and [3] is the approach taken. In particular, the main novelty in [3] is
the use of Bogoliubov theory applied to pairs of fermions (particle-hole pairs) that
behave approximately as bosonic particles. Developing further this approach, in
[4] refined asymptotics estimates are obtained, as stated below.

Theorem 1. Let V, V∞ as in (2) with V∞ non negative, radial, smooth and com-
pactly supported. There exists L0 > 0 such that for L ≥ L0, it holds

(5) eL(ρ↑, ρ↓) =
3

5
(6π2)

2
3 (ρ

5
3

↑ + ρ
5
3

↓ ) + 8πaρ↑ρ↓ + rL(ρ↑, ρ↓),

where a is the scattering length of the interaction potential V∞ and

−Cρ2+ 1
5 ≤ rL(ρ↑, ρ↓) ≤ Cρ

7
3 .

Note that the upper bound in Theorem 1 is optimal, in the sense that it agrees
with the HY formula in (4). We also mention that very recently the ground state
energy of the dilute spin-polarized Fermi gas was studied in [6] and with similar
techniques an almost optimal upper bound for the ground state energy of a dilute
spin 1/2 Fermi gas was derived (via cluster expansion) in [5].

The general strategy of the proof of Theorem 1 is based on the use of almost
bosonic operators to describe the low energy excitations around the Fermi ball.
These operators are defined as

(6) b∗p,σ =
∑

k∈Bσ
F

k+p/∈Bσ
F

a∗k+p,σa
∗
k,σ, bp,σ =

∑

k∈Bσ
F

k+p/∈Bσ
F

ak,σak+p,σ

where a∗, a are the fermionic creation/annihilation operators. In (6), BσF denotes
the Fermi ball, i.e., BσF :=

{
k ∈ (2π/L)Z3 | |k| ≤ kσF

}
, and kσF is the Fermi

momentum which, for fixed densities and in the limit L → ∞, can be written as

kσF = (6π2)1/3ρ
1/3
σ + o(1). The reason why we refer to the operators in (6) as

almost-bosonic operators is that, when acting on states with few particles, they
approximately behave as bosonic creation/annihilation operators (i.e., they almost
satisfy the canonical commutation relations). Once these operators are introduced,
the main idea is to express the relevant contributions to the correlation energy
in terms of b, b∗ and to diagolanise this effective energy via an (almost-bosonic)
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Bogoliubov transformation, which is explicitly written as

(7) T = exp





1

L3

∑

p∈ 2π
L

Z3

ϕ̂(p)b̂p,↑b̂−p,↓ − h.c.



 .

Note that, the choice of ϕ̂ is responsible for getting the right dependence on the
scattering length in the constant term we want to extract, i.e., 8πaρ↑ρ↓. In other
words, ϕ̂ is related to the scattering equation. Finally, we emphasise that since
we are working directly in the thermodynamic limit, both in [3, 4] we need to
introduce some localizations in order to obtain decay estimates that are not true
in the original setting. More specifically, we need to use a regularised version
of the almost bosonic creation/annihilation operators. In [4]1 this corresponds
to discarding some momenta inside the Fermi ball, i.e., all the k ∈ (2π/L)Z3 in
kF + ρ2/3 < |k| < kF and some others outside2, i.e., all the momenta in the
annulus kF < |k| < 2kF or |k| > ρ−β . In our approach, however, we not only need
to regularise the almost bosonic operators but we also need to localise ϕ̂: it turns
out that it is convenient to do this localisation in configuration space. The way
we do it is different in [3] and [4]. We conclude by comparing these two different
approaches. In [3] we take3 ϕ ≡ ϕγ , where ϕγ is the periodization of the solution
of the Neumann problem in a ball B ≡ Bρ−γ (0) ⊂ R3 centered at zero and with
radius ρ−γ . More precisely, ϕγ is the periodization of ϕγ,∞ which is the solution
of

−2∆(1− ϕγ,∞) + V∞(1− ϕγ,∞) = λγ(1− ϕγ,∞), ϕγ,∞ = 2∇ϕγ,∞ = 0 on ∂B,

where |λγ | ≤ Cρ3γ . In [4], instead, ϕ(x) is taken to be the periodization of
a localized version of the solution of the zero energy scattering equation in R3,
which reads as

ϕ∞(x) := ϕ0(x)χ(x/ρ
−1/3), 2∆ϕ0V (1− ϕ0) = 0, ϕ0(x) → 0 as |x| → ∞,

where χ is a smooth cut-off function in R3, which varies smoothly between 0 and
1 in the annulus ρ−1/3 ≤ |x| ≤ 2ρ−1/3. As a consequence of our localization,
ϕ∞ = ϕ0 in the support of the interaction potential V∞ and it is such that ϕ∞

2∆ϕ∞ + V∞(1− ϕ∞) ∼ −2a

[
2ρ

1
3

|x|2 +
ρ

2
3

|x|

]
χ(|x| ∼ ρ−

1
3 ),

where a is the scattering length of the interaction potential. This different way
of doing the localization allows us to better estimate many error terms recovering
the optimal estimate in the proof of the upper bound in Theorem 1.

1In [3] a different choice of the cut-off is used.
2The smoothness of the interaction potential is needed to justify the ultraviolet cut-off.
3In [3], we take γ = 2/9 for the upper bound and γ = 1/3 in the lower bound.
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A tracer particle interacting with a cold quantum gas

Peter Pickl

(joint work with Viet Hoang, Maximilian Jeblick, Jonas Lampart,
David Mitroskas, Sören Petrat)

The computation of effective equations in many body systems is an interesting
area of research and was the topic of the Oberwolfach Min-Workshop where this
presentation was held. In the talk I will present recent findings on the dynamics
of a so called tracer particle entering a cold quantum gas. Both cases, gases
made of Fermions and of Bosons, will be considered. The question is of physical
interest, since the influence of the gas on the dynamics of the tracer can be used
to gain information of the underlying interactions of the system. In the Bosonic
case it has been shown recently, that – assuming constant density of the gas
and a respective scaling of the interaction of the gas particles with the tracer
– the system is effectively described by the Bogoliubov-Fröhlich Hamiltonian: the
interaction of the tracer will be of leading order influenced by the Bogoliubov
excitations in the gas [1] and excite itself further particles of a similar number as
the Bogoliubov excitations. In the Fermionic case the rigidity of the Fermi-ball
plays an important role for the dynamics of the tracer. It suppresses the effective
interaction significantly and leads to free evolution of the tracer for relatively strong
couplings [2] respectively an effective interaction between tracers when shooting
more than one tracer particle into the gas [3]. At the end of the talk, new, so
far unpublished findings for the Fermi gas will be presented. Together with Viet
Hoang we could show that, increasing the tracer-gas coupling, the leading order
dynamics will be given by a tracer coupled to a phonon field. The phonons describe
the pair-excitations in the gas and behave like Bosons.

Possible extensions and open questions are the generalization of these findings
to systems of large volumes. Further it should, at least in the case of an absence
of interaction within the gas, be possible to extend the time scales for which one
can proof validity of the effective descriptions to times polynomial in the density
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rather than logarithmic. On large time scales, new physical phenomena should
become visible.
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Some mathematical results in Density Functional Theory

Mathieu Lewin

(joint work with Elliott H. Lieb and Robert Seiringer)

I review some mathematical results in Density Functional Theory (DFT) follow-
ing [4]. Consider N electrons in R3 and assume that they have the one-particle
density ρ (a non-negative function such that

∫
R3 ρ(x) dx = N). Lieb’s functional [5]

provides the lowest possible energy of these electrons at the given ρ:

(1) F (ρ) := inf
ρΓ=ρ

tr
(
HN (0)Γ

)
.

The infimum is over all N -particle mixed states Γ on
∧N

1 L2(R3,C2) having density
ρΓ = ρ. Here

HN (V ) :=

N∑

j=1

(−∆xj
+ V (xj)) +

∑

1≤j<k≤N

1

|xj − xk|

is the usual Coulomb N -particle Hamiltonian in an external potential V — in (1)
we took V ≡ 0. The main interest of F (ρ) is that the ground state energy in any
external potential V can be expressed as

(2) min σ(HN (V )) = inf
ρ∫

R3
ρ=N

{
F (ρ) +

∫

R3

ρ(x)V (x) dx

}
.

This minimization problem is settled in the physical space R3 and not in the N -
particle space R3N . If we knew how to compute F (ρ), this would dramatically
decrease the computational cost of the ground state energy. Unfortunately, F (ρ)
is a highly nonlinear and nonlocal unknown functional which is defined in terms
of N -particle states. The cost of computing F (ρ) is probably at least as high as
solving Schrödinger’s equation. The purpose of (orbital-free) DFT is to provide
simple but efficient approximations of F (ρ).
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The most famous is the Local Density Approximation (LDA), where it is as-
sumed that ρ is locally flat and the local energy is taken to be that of an infinite
gas of constant density, per unit volume:

F (ρ) ≈ FLDA(ρ) :=
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy +
∫

R3

f
(
ρ(x)

)
dx,

where f : R+ → R is the energy per unit volume of the infinite uniform electron
gas. The LDA was rigorously justified for the first time in [3], for the grand-
canonical version of F (ρ). It is an open problem to justify the LDA for the
canonical functional F (ρ).

Another regime is the large density limit, where the kinetic energy dominates
and the system becomes non-interacting. This limit can be stated as

lim
λ→∞

F (ρλ)

λ2
= T (ρ), ρλ(x) = λ3ρ(λx).

The kinetic energy can be expressed in terms of the one-particle density matrix γ
(a trace-class operator on L2(R3)) as

(3) T (ρ) = inf
Γ

ρΓ=ρ

tr
( N∑

j=1

(−∆)xj

)
Γ = inf

0≤γ=γ∗≤1
ργ=ρ

tr(−∆)γ.

Let us now discuss some known bounds on T (ρ) and work in any dimension
d ≥ 1. The Hoffman-Ostenhof inequality state that

T (ρ) ≥
∫

Rd

|∇√
ρ(x)|2 dx.

This implies that
√
ρ ∈ H1(Rd) is a necessary condition for T (ρ) to be finite. It was

proved in [5] that this is also a sufficient condition. For the proof one takes as trial

state the Slater determinant Ψ = (N !)−1/2 det(φj(xk)) with φj =
√
ρ/Neiθj(x).

The phases θj are chosen so that the φj are orthonormal, with
∫
Rd ρ|∇θj |2 < ∞.

It is very hard to construct such phases and get good bounds. In [5] Lieb got

T (ρ) ≤
(
π2

3
N2 + CN

)∫

Rd

|∇√
ρ(x)|2 dx.

This blows up quite fast with N . The growth was later improved to the optimal
rate CN2/d in [1]. In fact, an extensive bound cannot only involve gradients. It
should at least also include the semi-classical approximation of T (ρ),

T (ρ) ≈ cTF

∫

Rd

ρ(x)1+
2
d dx, cTF =

π2d

(d+ 2)q2/d

(
d

|Sd−1|

) 2
d

where cTF is the semi-classical (a.k.a. Thomas-Fermi) constant. Here q is the
number of spin states, which is q = 2 for electrons. Choosing the phases θj
appropriately, March and Young [6] had already obtained in dimension d = 1

(4) T (ρ) ≤ π2

12

∫

R

ρ(x)3 dx+

∫

R

∣∣∣
(√
ρ
)′
(x)

∣∣∣
2

dx.
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The first constant is just cTF in d = 1, which led them to conjecture the following
inequality in any dimension

(5) T (ρ)
?

≤ cTF

∫

Rd

ρ(x)1+
2
d dx+ C

∫

Rd

|∇√
ρ(x)|2 dx,

This conjecture is still open in dimension d ≥ 2, but recent works came arbitrarily
close to the result in the following sense.

Theorem 1 (Semi-classical estimates on the kinetic energy functional). Let d ≥ 1.
There exists a constant C = C(d) such that

(6) cTFe
−ε

∫

Rd

ρ1+
2
d − C

ε

∫

Rd

|∇√
ρ|2 ≤ T (ρ)

≤ cTF(1 + ε)

∫

Rd

ρ1+
2
d − C(1 + ε)

ε

∫

Rd

|∇√
ρ|2

for any ε > 0 and any ρ ≥ 0 with
√
ρ ∈ H1(Rd).

The lower bound was first proved in [7] but with the coefficient C/ε3+4/d in
front of the second term. The upper bound was shown in [3], using the simple
trial state

γ =

∫ ∞

0

√
η

(
t

ρ(x)

)
1

(
−∆ ≤ d+ 2

d
cTFt

2
d

) √
η

(
t

ρ(x)

)
dt

t
,

where η ∈ C∞
c (R+,R+) is so that

∫∞
0
η(t) dt = 1 and

∫∞
0
t−1η(t) dt ≤ 1. Here

the two functions
√
η(t/ρ(x)) are interpreted as multiplication operators. The

main idea is to locate the places where ρ(x) ≈ t using the cut-off function η and
to place a free Fermi gas of density t there. Concentrating η about 1 at scale
ε one obtains the upper bound in (6). This idea was recently pursued in [8] to
also provide the stated lower bound. In fact, taking ε large enough and using the
Hofmann-Ostenhof inequality provides a very simple proof of the Lieb-Thirring
inequality. If we scale a density ρ as ρ(~x) and take ε = ~ in(6), we find

T (ρ~) = cTF~
−d

∫

Rd

ρ1+
2
d +O(~−d+1).

An interesting open problem is to justify the next order, which is predicted to be

d− 2

3d
~
−d+2

∫

Rd

|∇√
ρ(x)|2 dx.

The negativity of the coefficient in d = 1 is related to the non-optimality of the
semi-classical constant for the Lieb-Thirring inequality in dimension d = 1 [2].
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Spectral estimates for Schrödinger operators with Neumann boundary
conditions on Hölder domains

Charlotte Dietze

Netrusov and Safarov proved Weyl’s law

(1) N
(
−∆N

Ω − λ
)
=

|Bd1 (0)|
(2π)d

|Ω|λ d
2 + o

(
λ

d
2

)
as λ→ ∞,

for γ-Hölder domains Ω with Neumann boundary conditions for all Hölder expo-
nents γ ∈

(
d−1
d , 1

)
[1, Corollary 1.6]. They also showed that Weyl’s law fails for

all γ ∈
(
0, d−1

d

]
. More precisely, for those γ, there exists a γ-Hölder domain Ω

such that (1) is not true [1, Theorem 1.10].

We consider Weyl’s law for Schrödinger operators on Hölder domains Ω

(2) N
(
−∆N

Ω + λV
)
= (2π)−d

∣∣Bd1 (0)
∣∣λ d

2

∫

Ω

|V | d2 + o
(
λ

d
2

)
as λ→ ∞,

where V : Ω → (−∞, 0]. In view of [1], one might expect that (2) holds for all
γ ∈

(
d−1
d , 1

)
and V ∈ Ld/2(Ω). For every γ ∈

(
d−1
d , 1

)
we give an explicit example

for a γ-Hölder domain Ω, and V ∈ Ld/2(Ω), where (2) fails [2, Theorem 1.1].
However, if we assume more integrability on V , namely that it is in some weighted
Lp-space for some p = p(d, γ) > d/2, we prove (2) [2, Theorem 1.3].

The proof of (2) relies on a Cwikel-Lieb-Rozenblum-type bound for the number of
negative eigenvalues of the Schrödinger operator −∆N

Ω + V [2, Theorem 1.2]. In
the proof of this Cwikel-Lieb-Rozenblum-type bound, we use a new covering the-
orem, and a new Poincaré-Sobolev inequality for suitably chosen small rectangles
intersected with Ω.

Further details and explanations can also be found in [3].
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The Random Batch Method for Quantum Dynamics

François Golse

(joint work with Shi Jin & Thierry Paul)

Consider the quantum Hamiltonian for a system of N identical particles

HN :=

N∑

m=1

− 1
2~

2∆xm
+ 1

N−1

∑

1≤l<n≤N
V (xl − xn) ,

where V is an even, real-valued function. The cost of computing the interaction
potential is 1

2N(N − 1) evaluations of V and additions.
The Random Batch Method (RBM) is, at each time step (1) to replace the

total interaction of each particle with the N − 1 other particles by the interaction
with p ≪ N other particles chosen at random multiplied by (N − 1)/p (with a
computing cost Np ≪ 1

2N(N − 1) operations), and (2) to reshuffle the particles
at each time step (with a computating cost O(N) by Durstenfeld’s algorithm [3]).

1. Formulation of the RBM: Case p = 2

Let N ≥ 2 be an even integer. Let σ1, σ2, . . . , σj , . . . be a sequence of random
mutually independent elements of SN distributed uniformly. Given ∆t > 0, define

Tt(l, n) :=

{
1 if {l, n} = {σ[t/∆t]+1(2k − 1), σ[t/∆t]+1(2k)} for some k = 1, . . . N2 ,

0 otherwise.

and

H̃N (t) :=

N∑

m=1

− 1
2~

2∆xm
+

∑

1≤l<n≤N
Tt(l, n)V (xl − xn) .

The RBM dynamics is defined by the Cauchy problem

i~∂tR̃N (t) = [H̃N (t), R̃N (t)] , R̃N (0) = RinN .

In the sequel, we seek to compare

RN (t) := e−itHN/~RinN e
itHN/~ , and R̃N (t) .
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2. Convergence of the RBM

The convergence of the RBM is couched in terms of the Wigner function. Any
trace-class operator S on H = L2(Rd) is defined by an integral kernel s ≡ s(x, y)
such that (see Lemma 2.1 in [1])

z 7→ [x 7→ s(x+ z, x− z)] ∈ Cb(R
d
z;L

1(Rd
x)) .

Its Wigner function is the Fourier transform (in S ′(Rd ×Rd))

W~[S](x, ξ) :=
1

(2π)d

∫

Rd

s(x + 1
2~y, x− 1

2~y)e
−iξ·ydy .

We shall also need the dual norm

|||f |||−m :=sup

{∣∣∣∣
∫

R2d

f(z)a(z)dz

∣∣∣∣ : a ∈ C∞
c (R2d) and max

0<|α|≤m
‖∂αa‖L∞ ≤ 1

}
.

Finally, the notion of symmetrized 1-particle marginal R̃N :1(t) of R̃N (t) is defined
as follows: for all A ∈ L(H),

trH(R̃N :1(t)A) :=
1
N

N∑

k=1

trHN
(R̃N (t)JkA)

where HN = H⊗N = L2(RdN ) and

JkA := I
⊗(k−1)
H

⊗A⊗ I
⊗(N−k)
H

.

Theorem. [4] Assume that V is an even real-valued function on Rd with Fourier

transform V̂ ∈ L2(Rd; (1+|ω|2)dω), while (RinN )∗ = RinN ≥ 0 satisfies trHN
RinN = 1.

Then, for all ∆t, ~ ∈ (0, 1), all even N ≥ 2 and all t ≥ 0,

|||W~[ER̃N :1(t)−RN :1(t)]|||−[d/2]−3

≤ 5∆t · γdL(V )(1 + (1 + 2
√
d)L(V )t)e6tmax(1,

√
dL(V )) ,

where L(V ) = (2π)−d‖(d+ |ω|2)V̂ ‖L1 .
This result proves the convergence of 1-particle observables for the RBM as

the reshuffling time step ∆t → 0, uniformly in the particle number N and in the
Planck constant ~. We have treated only the case p = 2; larger values of p can be
handled in essentially the same manner — in fact, one expects that the larger p,
the better the RB approximation will be.

3. Metrizing the Set of Density Operators

Let D(H) = {R = R∗ ∈ L(H) : R ≥ 0 and trH(R) = 1} the set of density
operators on H. For R,S ∈ D(H), set

d~(R,S) := sup
A∈L(H)

{|trH((R − S)A)| : sup
1≤j,k≤d

SCj,k(A) ≤ 5~2} ,

where
SCj,k(A) :=~‖[xj , A]‖+ ~‖[−i∂xj , A]‖+ ‖[xk, [xj , A]]‖

+ ‖[−i~∂xk , [xj , A]]‖+ ‖[−i~∂xk , [−i~∂xj , A]]‖ .
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Proposition. [4]
(1) The functional d~ : D(H)×D(H) → [0,+∞] is an extended metric.
(2) There exists γd > 0 depending only in the space dimension d such that

|||W~[R− S]|||−[d/2]−3 ≤ γdd~(R,S) , R, S ∈ D(H) .

The proof of this proposition is based on the duality formula
∫

R2d

W~[T ](x, ξ)a(x, ξ)dxdξ = trH(TA
∗)

where A is the Weyl operator with symbol a, and on the Calderón-Vaillancourt
theorem [2].

The definition of d~ is reminiscent of the Kantorovich-Rubinstein duality for-
mula (Theorem 1.14 in [6]) for the Monge-Kantorovich distance MK between
Borel probability measures on Rn with finite first order moment

MK(µ, ν) := sup
Lip(φ)≤1

∣∣∣∣
∫

Rn

φ(z)µ(dz)−
∫

Rn

φ(z)ν(dz)

∣∣∣∣

The quantum analogue of this metric for R,S ∈ D(H) is

MK~(R,S) := sup
A∈L(H)

{|trH((R− S)A)| : sup
1≤j≤d

S̃Cj(A) ≤ ~} ,

where

S̃Cj(A) = max(‖[xj , A]‖, ‖[−i~∂xj , A]‖) .
The analogy comes from the correspondence principle, which says that

i
~
[xj , ·] → {xj , ·} = −∂ξj , i

~
[−i~∂xj , ·] → {ξj , ·} = ∂xj ,

where {·, ·} is the Poisson bracket defined on pairs of C1 functions on phase space,
while ξj is the j-th component of the classical momentum variable ξ, which is
conjugate to the jth position coordinate xj .

The proof of the theorem of convergence of the RBM is based on proving that

d~(ER̃N :1(t), RN :1(t)) ≤ 5∆tL(V )(1 + (1 + 2
√
d)L(V )t)e6tmax(1,

√
dL(V ))

by a duality argument. In the course of the proof, one needs to control com-
mutators with the interaction potential V in terms of d~. This is done with the
following lemma.

Lemma. Let f ≡ f(x) such that f̂ and ∂̂xf belong to L1(Rd). Then

‖[f, T ]‖ ≤ max
1≤j≤d

‖[xj , T ]‖ · 1
(2π)d

d∑

j=1

‖∂̂xjf‖L1 .

For a quick proof of this inequality, see formula (55) in [5].
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Magnetic properties of ground states in many-electron systems

Tadahiro Miyao

(joint work with K. Nishimata, H. Tominaga)

In crystals, electrons exhibit the following fundamental properties: (i) Fermi sta-
tistics, (ii) spin, (iii) Coulomb repulsion, and (iv) itinerancy. Explaining ferro-
magnetism in metals solely based on these properties remains a significant goal in
condensed matter physics.

In 1963, Gutzwiller, Kanamori, and Hubbard proposed a simple model to de-
scribe electrons on a crystal lattice and analyzed the magnetic properties of the
ground state [1, 2, 3]. This model, known today as the Hubbard model, is one
of the simplest models that captures the four fundamental properties mentioned
earlier.

Subsequently, various studies, including numerical calculations, have been con-
ducted on this model in theoretical physics. However, a precise explanation of the
quantum origin of metallic ferromagnetism remains incomplete.

In this talk, I will first explain fundamental issues in the rigorous analysis of
metallic ferromagnetism. Next, I will elaborate on the basic theorems in this
field, namely the Marshall–Lieb–Mattis theorem [5, 6], Lieb’s theorem [4], and
their stability [9, 10]. After revealing the similar structures inherent in these three
theorems, I will consider the following problem: constructing a unified mathemat-
ical theory that can describe them all. In this talk, I will formulate this theory
using the standard form of von Neumann algebras. As a result, I will establish
the existence of a set of Hamiltonians CMLM possessing the following properties
[11, 13]:

(1) All ground states of Hamiltonians in CMLM exhibit properties akin to
those stated in the Marshall–Lieb–Mattis theorem for the ground states
of Heisenberg models.

(2) CMLM contains a countably infinite number of elements.

We refer to CMLM as the Marshall–Lieb–Mattis (MLM) stability class. The
MLM stability class enables the explanation of the magnetic properties of ground
states in half-filling many-electron systems on bipartite lattices. For instance, it is
demonstrated that Hamiltonians describing systems where many electrons interact
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with phonons or photons belong to CMLM. Consequently, the magnetic properties
of the ground states of these Hamiltonians satisfy the aforementioned property
(1), see [9, 10, 11]. This implies the stability of magnetic properties in the ground
states under electron-lattice interactions.

In addition to the MLM stability class, several stability classes can be con-
structed, such as the Nagaoka–Thouless stability class [11, 13, 14]. These stability
classes are determined by factors such as the filling factor, crystal structure, and
Coulomb interaction, each corresponding to different scenarios in many-electron
systems. Each stability class describes the stability of magnetic states in many-
electron systems in different situations.

A modified version of the MLM stability class, known as the deformed MLM
stability class, encompasses models such as the Kondo lattice model and the peri-
odic Anderson model. Moreover, it includes Hamiltonians derived by introducing
electron-phonon interactions to these models [12, 15]. Consequently, the stability
of magnetic properties in the ground states of the Kondo lattice model and peri-
odic Anderson model, influenced by these interactions, can be expounded through
the attributes of this deformed MLM stability class.

In this talk, due to time constraints, I will elucidate findings pertaining to finite
lattice systems. For discussions on the infinite volume limit using conditional
expectations between von Neumann algebras, please refer to [13].

In addition to the rigorous results mentioned here, the flat-band ferromagnetism
theory proposed by Mielke and Tasaki is considered to describe more realistic
many-electron systems [7]. A methodology for constructing stability classes de-
scribing flat band ferromagnetism is becoming evident, and I am presently engaged
in the detailed investigation of this phenomenon.
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The effective mass problem for the classcial polaron

Simone Rademacher

(joint work with Dario Feliciangeli and Robert Seiringer)

The polaron is a quasi-particle that models an electron in a charged crystal. While
moving through the crystal, the electron interacts with its self-induced polarization
field that is mathematically either described by a quantum field (Fröhlich model)
or by a classical field (Landau-Pekar equations). Here we consider the classical
field description: For that we consider a pair (ψ, ϕ) ∈ H1(R3) × L2

ε(R
3) where ψ

denotes the L2-normalized wave function of the electron and ϕ the polarization
field that is an element of the weighted L2-space

L2
ε(R

3) := {f : R3 → C|
∫
ε(k)|f(k)|2dk <∞}(1)

for a positive function ε : R3 → R+. The dynamics of the classical polaron is given
by the solution (ψt, ϕt) to the Landau-Pekar (LP) equations

i∂tψt = h√αϕt
ψt, iε−1(k) ∂tϕt(k) = ϕt(k) +

√
ασψt

(k)(2)

where α > 0 denotes the coupling constant and

hϕ := − ∆
2m + 2Re

∫
v(k)ϕ(k)eik·xdk, σψ(k) = (2π)3/2

v(k)

ε(k)
|̂ψ|2(k)(3)

for some v : R3 → R. Landau and Pekar [5, 6, 9] first described the classical
polaron in the strong coupling regime, α → ∞, by (2) with the choice

v(k) = |k|−1, ε = 1(4)

for the form factor resp. the dispersion of the underlying medium.
The dynamics of the polaron is closely related to the polaron’s effective mass:

While interacting with the self-induced polarization field, the electron slows down;
and thus the polaron’s effective mass increases. Landau and Pekar [6] formulated a
quantitative conjecture on the effective mass of the polaron in the strong coupling
regime, whose mathematical verification is an outstanding open problem. For the
effective mass problem of the quantum (Fröhlich) polaron there is recent progress
for lower [1, 2, 10] and upper bounds [3] improving earlier results [11].
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Here we address the effective mass problem for the classical polaron given by
(2) as originally studied by Landau and Pekar. The heuristic arguments of Landau
and Pekar are based on traveling wave solutions to (2) that are given for v ∈ R3

by initial states (ψv, ϕv) such that

(ψt(x), ϕt(k)) = (eiωvtψv(x− vt), eik·vϕv(k))(5)

solves the Landau-Pekar equations (2) for some phase factor ωv ∈ R. Due to a
vanishing speed of sound for the choice (4) we, however, conjecture that there are
no traveling wave solutions for the classical polaron with the choice (4).

Considering a regularized polaron model with non-vanishing speed of sound,
i.e. considering the dispersion ε of the underlying medium such that

vc := inf
k
ε(k)/|k| > 0(6)

for v ≤ vc, I prove [8] that there exist traveling wave solutions of the form (5):

Theorem 1. [8] Let ε satisfy (6) and v/ε1/2 ∈ L2
(|k|+1)4(R

3) , v/ε1/2(k) ≥ |k|−1/4.

For |v| ≤ vc there exist traveling wave solutions of the form (5).

In this case, the heuristic arguments of Landau and Pekar can be made rigorous
and the effective mass of the classical regularized polaron can be defined through
an energy-velocity expansion of sub-sonic traveling waves, i.e.

(ψv, ϕv) satisfying (4) with |v| ≤ vc, ωv ≥ −eα + v2/4(7)

that have low energy, i.e. such that

G(ψv, ϕv) = 〈ψv, hϕvψv〉+ ‖ϕ‖2L2
ε
< eα + κ(8)

for sufficiently small κ > 0 and where eα = infψ,ϕ G(ψ, ϕ). I prove the following
expansion for states of the set

Iv := {(ψv, ϕv) ∈ H1(R3)× L2
ε(R

3) | (7), (8) hold } .(9)

Theorem 2. [8] Let ε satisfy (6) and v/ε1/2 ∈ L2
(|k|+1)4(R

3) , v/ε1/2 ≥ |k|−1/4.

Then for all α ≥ α0, and α≪ 1, it is

Ev := infIvG(ψ, ϕ) = eα +
meffv

2

2
+O(αv3) .(10)

The constant meff is explicitely given and, in particular, satisfies in the strong
coupling limit

lim
α→∞

α−1meff = lim
α→∞

α−1 lim
v→0

Ev − eα
v2/2

=
2(2π)3

3
‖kvε−3/2‖22(11)

that agrees with findings for the effective mass the regularized (quantum) Fröhlich
model [7]. Moreover, I prove in [8] that alternatively the effective mass can be
defined based on an energy-momentum expansion of low-energy states with fixed
total momentum.

However, for the Landau-Pekar equations with the choice (4) for the dispersion
relation resp. the form factor, as originally considered by Landau and Pekar,
non of these two approaches work (the reason is related to the vanishing speed of
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sound in this case). In [4] we therefore provide a novel approach for the definition
of the effective mass based on an energy-velocity expansion for solutions to the LP
equations with that gives a first verification the conjecture of Landau and Pekar
for the classical polaron.
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Hubbard Models, Fermi Liquids, and Renormalization

Manfred Salmhofer

I review some ideas and results in mathematical condensed-matter physics, specifi-
cally about many-electron models for metals, magnets, and superconductors, along
the lines of [1].

A prototypical such model is the Hubbard model, a quantum many-body system
on a square or cubic lattice, introduced independently by Gutzwiller, Hubbard,
and Kanamori [4] in the late 1950s. The particles obey Fermi statistics, their ki-
netic term is the discrete Laplacian, and their interaction is an on-site repulsion.
More general Hubbard-type models involve different lattices, general short-range
hopping amplitudes in the kinetic term, and also more general short-range interac-
tions that may also be attractive. Since the late 1980s these models have received
enormous attention as microscopic models for high-temperature superconductors
[2, 3]. Because the high-Tc materials have a layered structure, where hopping
amplitudes between layers are at least one order of magnitude smaller than those
within a layer, the Hubbard model on a two-dimensional lattice is of particular
interest.
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For fermions on a finite lattice, the Fock space is finite-dimensional. Thus the
Hamiltonian H is bounded below, the ground state is well-defined, and so is the
thermal state of quantum statistical mechanics in finite volume, as a positive linear
functional on the fermionic C∗ algebra, given by the appropriately normalized trace
with e−β(H−µN), where β > 0 is the inverse temperature (the grand canonical
ensemble, with the number operator N and the chemical potential µ fixing the
average density). The interest lies in finding and proving statements that hold in
the thermodynamic limit where the volume becomes infinite, or that are uniform
in volume at large volumes.

In spite of the simplicity of the Hamiltonian, many of the properties of the
ground state and the thermal state remain controversial. Some remarkable rigorous
results, in particular about magnetism in these models, are reviewed in [4, 5].

In the physical application, the interaction is very often strong, i.e. the typical
two-body interaction energy is much larger than the band width defined by the
kinetic term. But it is already very nontrivial to treat the weakly coupled case,
which arises from noninteracting Fermi gases at positive particle density when a
weak, short-range interaction is included. The positive density implies that the
Fermi gas has an extended Fermi surface, in particular the spectrum of the kinetic
energy operator is gapless in the infinite-volume limit.

This property is essential for much of the phenomenological importance of these
models – the presence of a Fermi surface is the basis for metallic behaviour – but
it also presents an essential mathematical difficulty, in that naive perturbation
theory diverges at zero temperature and gives a wrong temperature dependence
at small positive temperatures. This necessitates renormalization to give a rigorous
treatment of interaction effects.

It is a fundamental question whether the low-lying excitations of the weakly in-
teracting system, i.e. the states energetically just above the ground state, have the
character of fermionic quasiparticles, which very loosely speaking means that the
states in Hilbert space correspond to wave packets with a small damping, which
satisfy Fermi statistics. Landau’s Fermi liquid (FL) theory asserts that a rather
general class of fermion systems (which also includes ones with strong interactions)
has this property [6, 7]. From the mathematical point of view, FL theory remained
largely conjectural for some time, partly because a precise definition of a Fermi
liquid is not straightforward, partly because of the difficulty of the problem. In
one dimension, the exact solution of the Luttinger model shows that FL theory is
not valid. This was proven to extend to Hubbard-type models in one dimension
in [8, 9]. FL theory was very successful in many three-dimensional fermion sys-
tems, but its limitations became obvious in the high-Tc materials, which exhibit
striking deviations from the predictions of FL theory, such as a linear rise of elec-
trical resistivity as a function of temperature above the critical temperature for
superconductivity.

A mathematically precise condition for a weakly interacting Fermi system to
be a Fermi liquid at positive temperature was formulated in [10], as follows. The
quantum-field theoretical fermionic two-point function of a Fermi gas has Fourier
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transform Ĉ(ω, k) = (iω − e(k))−1, where ω is an odd multiple of π
β , e(k) =

ε(k) − µ, and k 7→ ε(k) is the Fourier transform of the hopping amplitude. The

level set S = {k : e(k) = 0}, where Ĉ becomes large, and singular in the zero-
temperature limit β → ∞, is called Fermi surface in three dimensions, and Fermi
curve in two dimensions (for brevity, always referred to as the Fermi surface in the
following). The system with an interaction with coupling strength λ is a Fermi
liquid at sufficently low temperatures (say, β > 1) if there is C > 0, independent
of the volume, such that (a) renormalized perturbation theory converges on the
set R of all pairs (λ, β) satisfying |λ| log β < C and (b) on R, the fermionic two-

point function has Fourier transform Ĝ(ω, k) = (iω− e(k)−Σ(λ, ω, k))−1 and the
fermionic self-energy Σ is a C2 function of (ω, k), with sup norms of the second
derivatives bounded uniformly on R.

This condition is fine enough to separate FL from the one-dimensional Luttinger
liquids: in one dimension, (a) holds but (b) fails, since already the first derivative of
Σ diverges on the zero set of e (which in one dimension is a set of two points). This
second-order divergence is the first indication for the anomalous decay exponents
of the full solution in one dimension. In two spatial dimensions, the detailed
calculation of the order-λ2 contribution to the self-energy [14] shows that (b) is
the best one can hope to get, and in the limit β → ∞, the second derivative blows
up.

The deeper motivation for condition (a) is that, because of the Kohn-Luttinger
effect [11], one should not expect a Fermi system that satisfies e(−k) = e(k) to
be a FL at zero temperature. Specifically, for ε(k) = k2 the ground state will
be superconducting for any µ > 0, i.e. it has off-diagonal long range order that
spontaneously breaks the U(1) particle number symmetry of the action. In other
words, the restriction to the set R places the temperature β−1 above the critical
temperature for the superconducting transition.

When analyzing the Fermi system, it becomes clear that the validity or failure
of FL theory in this sense is intimately tied to the geometry of the Fermi surface
S: if the Fermi surface is regular, i.e. ∇e(k) 6= 0 for all k ∈ S, and if it obeys
a relatively weak non-nesting condition, then the first derivatives with respect to
momentum and frequency are bounded [12, 13]. (The singularity in one dimension
arises because there is no curvature.) If the interior of S is strictly convex and if
S is regular and positively curved, (b) holds. These properties were proven to all
orders in λ in all dimensions d ≥ 2 in [13, 14, 15]. In subsequent work, the above
FL condition was proven to hold for models with positively curved Fermi surfaces
in two dimensions in [17, 18, 19, 20, 21]. Conversely, it was proven not to hold in
the half-filled case, where the Fermi surface is perfectly nested [22]. It was also
shown that even in the absence of nesting, the presence of Van Hove singularities,
i.e. points k ∈ S where ∇e(k) = 0, leads to singularities in the fermionic self-
energy Σ that violate (b) [23, 24]. The regularity of Σ as a function of ω and of k
is different, unlike in the one-dimensional Luttinger model [24].

Fermi systems with e(−k) 6= e(k) (defined by precise conditions) were shown to
be Fermi liquids in a more general sense by Feldman, Knörrer, and Trubowitz [25].
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Remarkably, their proof holds in the limit of zero temperature, β → ∞, i.e. in [25]
the region R plays no role, and the only condition on the coupling is |λ| < const.
The intuitive reason is that the asymmetry of the band function in k removes the
Cooper pairing instability, but the full proof requires more, namely rather subtle
bounds on particle-hole contributions to the effective interaction. The result of
[25] includes the proof that the fermionic occupation density has a discontinuity
at the Fermi surface (which is never true at any positive temperature).

In all the above proofs, mathematical renormalization group methods [26, 27,
28] were used; the same methods also serve to prove an inversion theorem [16] that
justifies renormalization. A variant of these methods have also been successful in
theoretical physics studies. Their application to the Hubbard model in the param-
eter range interesting for the high-Tc materials explains the phase diagram of these
systems and sheds light on the interplay of antiferromagnetic and superconducting
correlations in the Hubbard model [24, 29, 30, 31, 1].
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