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Abstract. Quantum field theory (QFT) is a fundamental framework for a
wide range of phenomena is physics. The link between QFT and SPDE was
first observed by the physicists Parisi and Wu (1981), known as Stochastic
Quantisation. The study of solution theories and properties of solutions to
these SPDEs derived from the Stochastic Quantisation procedure has stimu-
lated substantial progress of the solution theory of singular SPDE, especially
the invention of the theories of regularity structures and paracontrolled dis-
tributions in the last decade. Moreover, Stochastic Quantisation allows us to
bring in more tools including PDE and stochastic analysis to study QFT.

This Arbeitsgemeinschaft starts by covering some background material
and then explores some of the advances made in recent years. The focus of
this Arbeitsgemeinschaft is QFT models such as the Φ4, sine-Gordon and
Yang–Mills models as examples to discuss stochastic quantisation and SPDE
methods and their applications in these models. We introduce the key ideas,
results and applications of regularity structure and paracontrolled distribu-
tions, construction of solutions of the SPDEs corresponding to these models,
and use the PDE method to study some qualitative behaviors of these QFTs,
and connections with the corresponding lattice or statistical physical models.
We also discuss some other topics of QFT, such as Wilsonian renormalisation
group, log-Sobolev inequalities and their implications, and various connec-
tions between these topics and SPDEs.
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Introduction by the Organizers

The Arbeitsgemeinschaft QFT and Stochastic PDEs, organized by Roland Bauer-
schmidt (New York), Massimiliano Gubinelli (Oxford), Martin Hairer (London/
Lausanne), and Hao Shen (Wisconsin-Madison) was attended by 44 participants
(as well as a few remote participants). There was a broad geographic represen-
tation from all continents. Most of the participants were in early stages of their
careers, with background mostly in the areas of probability theory, analysis, and
theoretical physics. All the in-person participants delivered talks, with a total of
22 talks, each coordinated and presented by two speakers.

The talks were organized in a progressive order. The talks on Monday focused
on general introductions to Euclidean QFT, and local solutions to SPDEs in the
Da Prato–Debussche regime. The example of the stochastic quantisation of the
Φ4

2 model (which is the simplest nontrivial case of a nonlinear SPDE from Eu-
clidean QFT) was discussed. The talks on Tuesday then discussed global solution
theory to the stochastic quantisation of Φ4

2. The talks on Wednesday provided
more applications of the Da Prato–Debussche argument, and examples of using
PDE methods to study some qualitative behaviors of these QFTs such as integra-
bility of the Φ4

2 measure, as well as connections with the corresponding statistical
physical models. The Wednesday talks introduced the Yang-Mills model and its
Langevin dynamics, in continuum and on lattice. On Thursday, the theory of reg-
ularity structures was introduced by the participants, and some of the cornerstone
theorems of this theory were proved; an application to the stochastic quantisation
of the Φ4

3 model was given. The talks on Friday were focussed on the Wilsonian
renormalisation group approach, log-Sobolev inequalities and their implications,
and the connections between these topics and SPDEs.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Towards Euclidean quantum field theory

Wei Huang, Weile Weng

The talk consists of two parts: the first part focus on the Feynman-Kac formula
that leads to Euclidean quantum mechanics and the second part is about the
Ostwalder-Schrader axioms in Euclidean quantum field theory, with a focus on
reflection positivity.

We begin our first part with a brief introduction on the basic postulates of quan-
tum mechanics. Then we have a look at one of the simplest quantum mechanics
systems, the quantum harmonic oscillator. After rescaling, we get the Hamiltonian
H = 1/2(P 2 + Q2), where P = i∂x, Q = x. Note that H = A∗A + 1/2, where
A = 1√

2
(Q + iP ), A∗ = 1√

2
(Q − iP ). A is called the annihilation operator, as

for any eigenvector Ω of H with eigenvalue λ, A∗Ω(if non-zero) is an eigenvector
of H with eigenvalue λ − 1. A∗ is called the creation operator as it increases
the eigenvalue by 1 when acting on eigenfunctions. There is a unique ground
state which has the lowest eigenvalue 1/2, and the corresponding eigenfunction

is Ω0(x) = π−1/4e−x
2/2. The other eigenvectors can be obtained by acting A∗

on it and Ωn = (n!)−1/2A∗nΩ0 = (n!)−1/2Pn(Q)Ω0, where Pn are the Hermite
polynomials. The eigenvectors forms an ONS of H, and they can all be obtained
from the ground state by multiplying polynomials of Q.

The Feynman path integral expresses the integral kernel of the Schrödinger
propagator in terms of a path integral

e−itH/~(x, x′) =
1

Z

∫

γ0=x,γt=x′

e−
i
~

∫
t

0
1
2
γ̇2
s−V (γs)dsdγ.

It reveals a physical intuition that the particle takes all the possible path with
weights given by the classical action, but mathematically the integral is very prob-
lematic as it cannot be defined with a measure. We can avoid the problem by
running the dynamics in imaginary time(also called Wick rotation). We then get
the Feynman-Kac formula(we set ~ = 1):

e−tH(x, x′) =

∫

e−
∫

t

0
V (γ)dsdWx,x′(γ),

where Wx,x′ is the Wiener measure conditioned on starting at x and ending at
x′. The Feynman-Kac formula implies the positivity of kernel and uniqueness and
positivity of ground state, which are necessary to construct the measure in the
renormalized Feynman-Kac formula.

Assume there exists a ground state Ω and assume the ground state energy
to be E0. Then we subtract the energy to get Ĥ = h − E0. The ground state
transformation(×Ω−1) is a isometry from L2(R) to L2(R,Ω2dm) and we can trans-

fer Ĥ to a self-adjoint operator H∧ = ΩĤΩ−1 on L2(R,Ω2dm). Since e−tH
∧

has
positive kernel and H∧1 = 0, it generates a Markov process on R and we denote
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its distribution by µ. By the ground state transformation we get the following
renormalized Feynman-Kac formula,

(1) 〈Ω, A1e
−(t2−t1)ĤA2e

−(t3−t2)Ĥ . . . AnΩ〉 =
∫

A1(qt1) . . . An(qtn)dµ(q),

which enables us to express the Wightman function(ground state correlation in
Euclidean quantum mechanics) in terms of correlation of a stochastic process. If
we construct the measure µ, then we can compute the Wightman function and get
Schwinger function(ground state correlation in quantum mechanics) by analytic
continuation, and finally retrieve all the information of the quantum dynamics
from the Schwinger function.

We now turn our focus to the Euclidean fields. A EQFT is a certain probability
measure µ on real distributions D′ ≡ D′(Rd), where d is the space-time dimension.
Let D ≡ C∞

0 (Rd) be the space of test functions. For φ ∈ D′, f ∈ D, we write
φ(f) = 〈φ, f〉 to be the canonical pairing on Rd. The probability measure µ is
characterized by the generating functionals {Sf , f ∈ D}, with

Sf : φ 7→
∫

eiφ(f)dµ(φ), φ ∈ D′.

Osterwalder-Schrader axioms impose five conditions on µ:

(OS0) Analyticity: Sf is entire analytic. It ensures the super-exponential decay
of dµ.

(OS1) Regularity: log |Sf | ≤ c(||f ||L1 + ||f ||pLp), for p ∈ [1, 2], and some constant
c . If p = 2, then the second-order Schwinger function should be locally
integrable.

(OS2) Invariance: Sf is invariant under Euclidean symmetries of Rd, i.e. trans-
lation, rotation, and reflection. This is equivalent to the Euclidean invari-
ance of dµ.

(OS3) Reflection positivity (RP): for every finite sequence (fi) ⊂ Dreal, the ma-
trix Mij = Sfi−θfj has non-negative eigenvalues, where θ is the time re-
flection over the point 0.

(OS4) Ergodicity: the measure space (D′, dµ) is ergodic with respect to the time
translation subgroup T (t).

(OS0)-(OS2) are meant for all test function f . For (OS3), there is an equivalent
formulation. Let

A+ = {A : φ 7→
N∑

j=1

cje
φ(fj), for some cj ∈ C, fj ∈ C0(R

d
+), N ∈ N},

with Rd+ the half-space of positive time. Let E = L2(D′(Rd), dµ), then RP is
equivalent to

〈θA,A〉E ≥ 0, ∀A ∈ A+.

The reflection positivity axiom helps us to construct a quantum mechanical Hilbert
space H. The construction is based on A+, and the bilinear form b(A,B) :=
〈θA,B〉E . Specifically, it is constructed in three steps: first, take closure ofA+ in E ,



Arbeitsgemeinschaft: QFT and Stochastic PDEs 7

and denote it by E+; second, thanks to the RP, observe that || · ||b := b(·, ·) 1
2 defines

a semi-norm on E+, and thus a norm on E+/N , with N := {A ∈ E+, ||A||b = 0} the
null-set; finally, define H as the closure of the equivalent class E+/N in (E , || · ||b),
and check the Parallelogram identity, and conclude that H is a Hilbert space.

For A ∈ E+, let A∧ := A + N ∈ H. To this point, we have 〈A∧, B∧〉H =
〈θA,B〉E . Next, we wish to transfer an operator S on E to S∧ on H. In order for
the following equality to hold, 〈A∧, S∧B∧〉H = 〈θA, SB〉E , where S∧B∧ := (SB)∧,
S must map D(S) ∩ E+ to E+, and D(S) ∩N to N .

Now we are ready to construct the Hamiltonian H via the time translation
semi-group T (t).

Theorem (Construction of H). Suppose (OS3) and (OS2) hold (in particular, the
time translation invariance of dµ). Then for t ≥ 0, T (t)∧ is well-defined, and it
can be written as T (t)∧ = e−tH , where H is some positive self-adjoint operator,
with ground state Ω = 1∧.

The idea of the proof is to first show that R(t) := T (t)∧ maps N to N , and
satisfies the properties of semi-group, Hermitian, contraction and strong continu-
ity. Hence there exists a positive self-adjoint operator H satisfying the desired
relation. H has a ground state 1∧, i.e. H1∧ = 0, which follows from T (t)1 = 1.

For the lattice models where the space-time is Zd instead of Rd, under suitable
modified assumptions, we may apply above theorem to construct a self-adjoint
matrix K on H, such that Kn := T (n)∧, for n ∈ N. In addition, 1∧ is an invariant
vector for K. Here, K in the lattice model plays the role of e−H in the continuous
model.

Reflection positivity for lattice models is a sophisticated topic (see [2], [3, Chap.
10]). To enumerate examples, it is convenient to consider the space-time on a torus
TL, as it has natural reflection symmetry along planes orthogonal to one of the
lattice directions. In a broader language, we speak of reflections over one of such
hyperplane Π that splits the torus into two halves, and the splitting is either
through sites or through edges. The most simple case is the product measure, it
is RP with respect to all reflections. Gibbs measure of a class of lattice spin sys-
tems also possess reflection positivity, such as Ising, Potts and Heisenberg models.
We mention a more general result. Given a fixed plane of reflection Π, with the
corresponding reflection operator θ, let A+(θ) be the algebra of all bounded and
measurable functions supported on the positive half of the reflection plane. Now,
suppose the torus Hamiltonian takes the form −HL = A+ θA+

∑

α CαθCα, with
A,Cα ∈ A(θ)+, then the torus Gibbs measure is RP with respect to θ (for any
inverse-temperature). Such examples include the torus Hamiltonian for nearest
neighbor (ferromagnetic) interaction, Yukawa potentials, and the power-law decay-
ing potentials, which are RP with respect to any plane.

References
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R. (eds) Methods of Contemporary Mathematical Statistical Physics, vol.1970 of Lecture
Notes in Math., pages 1–86. Springer, Berlin, Heidelberg, 2009.

[3] S. Friedli, Y. Velenik. Statistical mechanics of lattice systems: a concrete mathematical
introduction. Cambridge University Press, 2017.

Gaussian free field and the φ4

2
measure on torus

Aleksandra Korzhenkova

Our goal is to construct a probability measure P on the space D′(T2) of distribu-
tions on the two-dimensional torus heuristically given by

P(dφ) ∝ exp

(

−
∫

T2

|φ|4dx− 1

2

∫

T2

(|∇φ|2 +m2|φ|2)dx
︸ ︷︷ ︸

=〈φ,(−∆+m2)φ〉

)

“dφ”

for m2 > 0.

Step 1: Absolute continuity w.r.t. massive GFF measure.
The alternative description of the second integral directly suggests we rewrite P

as P(dφ) ∝ e−
∫
|φ|4dxQ(dφ) for a centered Gaussian measure Q with the inverse

of −∆+m2 as covariance, called massive Gaussian free field (GFF). One way to
define Q rigorously is by diagonalizing −∆ + m2. More precisely, let 0 = λ1 <
λ2 ≤ λ3 ≤ . . . be the eigenvalues of minus Laplacian and (ej)j∈N be a family of
the corresponding eigenfunctions that forms an orthonormal basis of L2(T2). In
this basis, the desired covariance, called massive Green’s function, is given by

Gm2(x, y) =
∑

j≥1

1

λj +m2
ej(x)ej(y) for all x 6= y ∈ T2,

where the right-hand side is a convergent series in L2(T2 ×T2). Let further (αj)j
be a sequence of i.i.d. standard normal random variables. We set

Γ :=

∞∑

j=1

1
√
λj +m2

αjej .(1)

By Weyl’s law or alternatively since when re-indexed by Z2 ∋ k, λk = |k|2 and
ek(x) = ei〈k,x〉 are explicit, we can easily check that almost surely Γ ∈ H−ε(T2) =
{f =

∑

j〈f, ej〉ej |
∑

j≥1|〈f, ej〉|2(λj+m2)−ε <∞} for any ε > 0. That is, almost
surely Γ is a random distribution, and its covariance is clearly Gm2 , hence, we can
set Q to be the law of Γ.

Remark. One can also define (massive) GFF in higher dimensions as well as on
more general domains [1, 4], e.g., on regular subsets of Rd (for d = 2, proper
subsets) with various boundary conditions. The distinguishing feature of the di-
mension two, which is of immense importance to our construction of P, is that
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Gm2 has a logarithmic singularity at the diagonal compared to the polynomial
ones in higher dimensions. More precisely, for d = 2

Gm2(x, y) ∼ −c log(m|x − y|) as |x− y| → 0

for an explicit constant c (some finite power of 2π).

Step 2: Renormalization of power.

Now that we have Q, for e−
∫
|φ|4dxQ(dφ) to be defined we at least need that

φ ∈ L4(T2) for Q-almost every φ. However, EQ[|φ|2] =
∑

k∈Z2
1

|k|2+m2 = ∞. To

cancel this divergence we perform a renormalization of power: instead of 〈φ4, 1〉
we consider 〈: φ4 :, 1〉, where for a centered Gaussian random variable X , : X4 : is
given by

: X4 := X4 − 6Var[X ]X2 + 3Var[X ]2 = (X2 − 3Var[X ])2 − 6Var[X ]2,

such that E[: X4 :] = 0. As φ ∼ Q is only a random distribution, we still have
to make sense of 〈: φ4 :, 1〉 rigorously. For this, consider the truncated Fourier

series (cf. (1)) φN
law
=
∑

k∈Z2:
|k|≤N

1√
λk+m2

αkek. It is almost surely a smooth centered

Gaussian field with variance on the diagonal Gm2,N (0, 0) ∼ c log(N) as N → ∞
for a constant c > 0. For simplicity set χN := 〈: φ4N :, 1〉. Using Wick’s formula
[2, Lemma 2.4 & Proposition 3.1], [5, Theorem I.3] and the aforementioned fact
that Gm2 has a logarithmic singularity at the diagonal one can show [2, Section
3] that (χN )N is uniformly bounded and convergent in L2(Q). Let us denote the
limit by χ = 〈: φ4 :, 1〉 (it is just notation, : φ4 : is not well-defined on its own). An
important observation is that each : φ4N : by definition is an element of the so-called
4th Wiener chaos (on the Gaussian probability space generated by φ) [2, Section
2.1], which is a closed subspace of L2(Q) spanned by “4th Hermite polynomials of
the white noise”. This in particular implies that also all χN and the limit χ are
elements of the 4th Wiener chaos, which allows us to use the hypercontractivity
result (2) stated below to conclude that the convergence also takes place in Lp(Q)
for any p ≥ 2.

Step 3: EQ[e
−〈:φ4:,1〉] <∞.

Now it only remains to verify that e−〈:φ4:,1〉 is integrable w.r.t. Q. We follow
Nelson’s argument’66 (cf. [3, Section 9]); the idea is to split the field φ ∼ Q into
its truncated Fourier series φN and the remaining part ψN and verify that the
latter is negligibly small. The key ingredient of this strategy is the aforementioned
hypercontractivity result that states that for any element X of the nth (n ∈ N)
Wiener chaos,

E[X2p] ≤ (2p− 1)npE[X2]p for any p ≥ 1.(2)

One can prove (2) either purely combinatorially [5, Lemma I.18], [2, Section 4.1] or
even in greater generality using tensorisation property and log-Sobolev inequality
[3, Section 7].

By the previous step we know that 〈: φ4 :, 1〉 := Lp(Q) − limN 〈: φ4N :, 1〉 (for
any p ≥ 2) is an element of the 4th Wiener chaos (as well as 〈: φ4N :, 1〉). Define
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YN = 〈: φ4 :, 1〉 − 〈: φ4N :, 1〉. It is possible to show (see [3, Section 9] for a sharper
bound or [2, Section 3]) that

EQ[|YN |2] ≤ C/N for some C > 0.

Then, by (2), for all p ≥ 1,

EQ[|YN |2p] ≤ (2p)4pCp/Np.

Combining this estimate with the observation that

: φ4N :≥ −6Var[φN ]2 ≥ −c(logN)2,

we get for all N, t > 1 sufficiently large such that log t− c(logN)2 > 0,

Q[e−〈:φ4:,1〉 ≥ t] ≤ Q[YN ≤ − log t+ c(logN)2] ≤ (2p)4pCp/Np

(log t− c(logN)2)2p
.

We can now adjust p and N to get a faster than polynomial decay for all t suffi-
ciently large, which in turn would conclude our construction. For instance, take

N such that log t− c(logN)2 ∈ [1, 2] and p =
⌊

1
25C e

√
(log t−2)/c

⌋
.
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Hölder-Besov spaces and space-time white noise

Alberto Bonicelli, Fabrizio Zanello

The study of stochastic PDEs encompasses equations with a random forcing to
model the behaviour of systems with a large number of interactions, whose evolu-
tion displays unpredictable features. Examples of paramount relevance in physics
are the KPZ equation, which suitably describes interface dynamics of two com-
peting media, or the so called stochastic ϕ4

d equation on Rd, which enters into
play when performing the stochastic quantization of a Euclidean self-interacting
scalar quantum field theory, as well as to describe phase transitions for systems
around the critical threshold. For a pedagogical exposition of these and many
more examples of stochastic PDEs we refer the interested reader to the review [3].

The first part of the talk is devoted to defining the random source for the class
of stochastic PDEs we are interested in, the so called space-time white noise, as a
centred Gaussian random tempered distribution. Starting from its covariance, a

https://homepage.univie.ac.at/nathanael.berestycki/?page_id=184
https://doi.org/10.1007/978-3-031-14031-0_1
https://www.hairer.org/Teaching.html
https://arxiv.org/abs/2004.04720
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direct calculation characterizes its behaviour under scaling. This scaling invariance
in law prompts the choice of suitable spaces of functions (and distributions) upon
which to construct a suitable solution theory. Focusing on parabolic problems, it
is natural to introduce Hölder spaces Cαs , α ∈ (0, 1) defined in terms of a scaled
distance, where time counts twice as space. Yet, as mentioned above, space-time
white noise is a distribution, hence we need a natural extension of such spaces
of function for negative exponents. The natural candidates are the Hölder-Besov
spaces, which with a slight abuse of notation we denote as Cαs and whose definition
heavily relies on scaling. The second part of the talk focuses on key results of
harmonic analysis. An important question is whether a pair of functions with low
regularity can be multiplied. The answer goes under the name of Young theorem
and states that the product of smooth functions can be extended to a continuous
bilinear map over Cαs ×Cβs if and only if α+ β > 0. Another fundamental result is
a Schauder estimate for parabolic operators characterizing the gain of regularity
in Hölder-Besov spaces.

The final step consists of individuating the space of distributions in which the
white noise lies. One has to resort to a Kolmogorov-like criterion that relates the
behaviours under scaling of the Lp norm of a distribution to its Hölder regularity.
To wit, a direct calculation entails that the space-time white noise lies in Cαs for
all α < − d+2

2 .
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The linear stochastic heat equation and some non-linear perturbations

Christopher Janjigian, Xuan Wu

This talk introduces the linear stochastic heat equation (SHE) with additive white
noise forcing through its mild (Duhamel) formulation. A proof of existence of so-
lutions in an appropriate Besov space will be sketched based on a version of Kol-
mogorov’s continuity theorem. During this portion of the presentation, graphical
notation will be introduced for certain stochastic integrals and associated non-
random integrals which appear in the moment estimates. These estimates will be
seen to suggest that solutions to the SHE should be functions only in dimensions
strictly less than two.

The second portion of the talk will discuss a class of non-linear perturbations
of the SHE, introduce the idea of scaling of SPDEs and how this relates to when
we should expect to be able to find non-trivial solutions to this class of non-
linear SPDEs. In particular, we will discuss what is meant by sub-criticality,
criticality, and super-criticality and will state a “meta-theorem” about existence
of solutions to sub-critical equations. With this concept in hand, we will see
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how the mild formulation of a non-linear equation leads to a fixed-point problem
that necessitates some renormalization if the solution to the linear SHE is not a
function.

References

[1] A. Chandra, and H. Weber, Stochastic PDEs, Regularity structures, and interacting particle
systems, Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume
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The Da Prato-Debussche argument

Peter Morfe, Florian Schweiger

For some semilinear stochastic PDEs it is possible to construct a solution if one can
make sense of the nonlinearity when applied to the solutions of the corresponding
linear equation. This method goes back to Da Prato and Debussche [2]. We explain
the details using the example of the dynamical Φ4

d model, where the method can
be applied for d = 2, but not for d = 3. Our presentation follows the review article
[1].

In more detail, consider the SPDE formally given by

(1) ∂tϕ(t, x) = ∆ϕ(t, x) − ϕ(t, x)3 + ξ(t, x)

on R+ × Td, where ξ is space-time white noise. Formally, this evolution should
have Φ4

d as its stationary measure, and in fact the idea of parabolic (or Parisi-Wu)
stochastic quantization is to construct Φ4

d as the stationary measure of (1).
The equation (1) is a nonlinear variant of the stochastic heat equation

(2) ∂tϕ(t, x) = ∆ϕ(t, x) + ξ(t, x).

As soon as d ≥ 2, solutions of (2) are only distributions, and the same should
be true for solutions of (1). However, this means that some renormalization is
required to make sense of the term ϕ(t, x)3 in (1). The approach we will take is
to renormalize by replacing ϕ(t, x)3 by the Wick power : ϕ(t, x)3 :.

To formalize this, consider a regularization ξδ of ξ (given by convolution with
a suitable mollifier), and consider the SPDE

∂tϕδ(t, x) = ∆ϕδ(t, x) − : ϕδ(t, x)
3 : + ξδ(t, x)

= ∆ϕδ(t, x) − ϕδ(t, x)
3 + 3Cδ(t)ϕδ(t, x) + ξδ(t, x),

(3)

where Cδ is a suitable renormalization constant. It is clear that for each fixed δ
there is a well-defined solution. The key result of the talk is that in dimension 2
and for short times one can pass to the limit δ → 0.

Theorem 1 ([2]). Let d = 2. For any κ > 0 there is an almost surely positive
random variable T such that the solutions of (3) on [0, T ]×T2 converge, as δ → 0,
in the parabolic Hölder space C−κ

s
to a nontrivial limit ϕ.
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The key idea of the proof due to Da Prato and Debussche is that the most
troublesome part of (3) comes from the solution of the stochastic heat equation.
Its powers can be defined via Wick’s theorem, and one can hope that the difference
of the two solutions has better properties, and can be constructed by a standard
fix-point argument.

Sketch of proof. Consider the solution δ of the regularized stochastic heat equation

∂t δ(t, x) = ∆ δ(t, x) + ξδ(t, x)

and its Wick powers δ = 2
δ − Cδ and δ = 3

δ − 3Cδ δ. We make the ansatz
ϕδ = δ + vδ. Then vδ should solve

(4) ∂tvδ(t, x) = ∆vδ(t, x)− v3δ − 3 δv
2
δ − 3 δvδ − δ.

It turns out that the inhomogeneities on the right-hand side of (4) all take values

in C−κ′

s
for any κ′ > 0. This allows to construct a solution of (4) via a fix-point

argument in C2−κ
s

. The reason this is possible is that we can combine Young’s
theorem on products of distributions with the Schauder estimate for the heat
equation. �

In the case that d = 3, one might be tempted to use the same method to
construct solutions of (1). The Wick powers up to order 4 still exist, however
their Hölder regularity is not good enough to close the fix-point argument to solve
(4). One might try to address this with a more elaborate ansatz that includes
more terms than just δ, however it turns out that one cannot eliminate all the
problematic terms. In fact, more elaborate methods like the theory of regularity
structures are necessary to solve (1) in d = 3.
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Global solutions and coming down from infinity, I.

Simon Gabriel, Ruoyuan Liu

This session, based on the article [1] by Mourrat–Weber, concerns the well–posed-
ness of the dynamic Φ4

2 model

(1) ∂tX = ∆X −X3 + ξ , X(0, ·) = X0 ,

globally in time on R2. Here ξ denotes a space–time white noise and X0 lies in a
suitable space of distributions.

In previous sessions, we saw that this SPDE is locally well–posed in time on
compact tori, using the DaPrato–Debussche trick X = Z + Y , i.e. by expanding



14 Oberwolfach Report 2351/2023

around the solution of the stochastic heat equation Z. This allowed to reduce the
study of (1) to

(2)
∂tY = ∆Y − (Y 3 + 3ZY 2 + 3Z(2)Y + Z(3))

=: ∆Y − Y 3 +Ψ′(Y, Z, Z(2), Z(3)) ,

with vanishing initial datum, where Z(k) are the (renormalised) Wick powers of Z.
Likewise, we first present an argument that yields global in time well–posedness
on a torus T2

M := [−M
2 ,

M
2 ]2, of arbitrary size M .

Figure 1. Given a time T and an initial condition Y0, we have the
a priori estimate with the constant C(T ) (the red line). Moreover,
we find a solution up to time T ∗(‖Y0‖ + C(T )), using the local
well–posedness, which will lie below the red threshold. Hence,
once more we find a solution on the interval [T ∗, 2T ∗]. Gluing
together the two trajectories yields a solution on [0, 2T ∗], which
by the a priori estimate must again lie below the red line. Thus,
a grey trajectory as depicted above is not possible. Iterating this
procedure until exhausting the interval [0, T ] yields unique solu-
tions on arbitrary large intervals.

In order to convey the general idea of the argument, the following two ingredi-
ents are necessary: Considering a suitable norm ‖·‖ on the state space of solutions
(which we shall fix below), we require local in time well–posedness of the type

∀K > 0 ∃T ∗ > 0 ∀Y0 with ‖Y0‖ ≤ K ⇒ ∃! solution (Yt)t∈[0,T∗] .

and an a priori estimate:

∀T > 0 ∃C > 0 ∀T ∗ ≤ T ⇒ ∀ solutions (Yt)t∈[0,T∗] : sup
t∈[0,T∗]

‖Yt‖ ≤ ‖Y0‖+ C .

Note that the local in time well–posedness result is slightly stronger than the one
presented previously, because the random time T ∗ only depends on the upper
bound K of ‖Y0‖. Now, having these two results at hand, the global in time
well–posedness can be summarised pictorially, see Figure 1.
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The underlying function spaces used in the well-posedness argument are Besov
spaces defined by the norm

‖f‖Bα
p,q

=
∥
∥
(
2αk‖δkf‖Lp

)

k≥−1

∥
∥
ℓq
,

where δ−1 is a smooth frequency cutoff onto {|ζ| ≤ 1} and δk for k ≥ 0 is a
smooth frequency cutoff onto {|ζ| ∼ 2k}. The Besov spaces enjoy the following
useful properties:

(1) Embeddings: For 1 ≤ p, q1, q2 ≤ ∞ and α1, α2 ∈ R with q1 ≥ q2 and
α1 ≤ α2, we have

‖f‖Bα1
p,q1

≤ ‖f‖Bα2
p,q2

.

For 1 ≤ p, q, r ≤ ∞ and α, β ∈ R with p ≥ r and β = α + d(1r − 1
p ), we

have
‖f‖Bα

p,q
≤ C‖f‖Bβ

r,q
.

(2) Interpolation: For 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞, α, α1, α2 ∈ R, and θ ∈
[0, 1] satisfying 1

p = θ
p1

+ 1−θ
p2

, 1
q = θ

q1
+ 1−θ

q2
, and α = θα1 + (1− θ)α2, we

have
‖f‖Bα

p,q
≤ C‖f‖θBα1

p1,q1

‖f‖1−θ
B

α2
p2,q2

.

(3) Multiplicative inequalities: For 1 ≤ p, p1, p2, q ≤ ∞ with 1
p = 1

p1
+ 1

p2
and α > 0, we have

‖fg‖Bα
p,q

≤ C‖f‖Bα
p1,q

‖g‖Bα
p2,q

.

For 1 ≤ p, p1, p2 ≤ ∞ with 1
p = 1

p1
+ 1

p2
, 1 ≤ q ≤ ∞, and β < 0 < α with

α+ β > 0, we have

‖fg‖Bβ
p,q

≤ C‖f‖Bβ
p1,q

‖g‖Bα
p2,q

.

(4) Duality: For 1 ≤ p1, p2, q1, q2 ≤ ∞ with 1
p1

+ 1
p2

= 1
q1
+ 1
q2

= 1 and α ∈ R,

we have
|(f, g)| ≤ C‖f‖Bα

p1,q1
‖g‖B−α

p2,q2
.

(5) Smoothing of the heat flow: For 1 ≤ p, q ≤ ∞, α, β ∈ R with α ≥ β,
t > 0, and f supported on an annulus, we have

‖et∆f‖Bα
p,q

≤ Ct
β−α

2 ‖f‖Bβ
p,q
.

We shall now focus on the a priori estimate only. Using a classical Schauder
estimate, one can guess that mild solutions (Yt)t∈[0,T∗] of (2) take values in B2−

p,q .
Indeed, Yt will be function–valued and it suffices to consider ‖ · ‖ := ‖ · ‖Lp , the Lp

norm on the torus with periodic boundary condition. The a priori estimate then
requires control of the difference

1

p
(‖Yt‖pLp − ‖Y0‖pLp) =

∫ t

0

(Ψ′
s, Y

p−1
s )−

(
(p− 1)(|∇Ys|2, Y p−2

s ) + ‖Y p+2
s ‖L1

)
ds ,

where p is an even, large natural number. Here, we conveniently expressed the
difference in terms of an Lp–energy identity, derived by testing a mild solution Yt
against Y p−1

t , cf. [1, Proposition 6.8].
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The a priori estimate is an immediate consequence, once we show integrability
of the right–hand side of the above energy identity. To this end, we analyse each
summand in Ψ′

s separately. As an example, we use duality, interpolation and
Young’s inequalities to obtain

(3)

|(ZsY 2
s , Y

p−1
s )| ≤ C‖Y p+1

s ‖Bε
1,1
‖Zs‖B−ε

∞,∞

≤ C
(
‖Y p+1

s ‖1−εL1 ‖Y ps ∇Ys‖εL1 + ‖Y p+1
s ‖L1

)
‖Zs‖B−ε

∞,∞

≤ c
(
(p− 1)(|∇Ys|2, Y p−2

s ) + ‖Y p+2
s ‖L1

)
+ f(s) ,

for some integrable function f and c < 1 small enough. Equivalently, we find
bounds for the other terms in (Ψ′

s, Y
p−2
s ) such that the sum of all such c’s lies

in (0, 1). Lastly, exploiting the two negative terms in the integrand of the energy
identity together with estimates of the form (3), we conclude integrability of the
bound for the a priori estimate. Here we shall stress the importance of the term
−‖Y p+2

s ‖L1 in the energy identity, which is due to the negative sign of the non–
linearity −X3 in (1).

On the other hand, global well-posedness of (1) on the whole plane R2 can be
proved in three main steps. Firstly, one shows global well-posedness of (1) on the
large torus T2

M , where we d enote the global solution by YM . Secondly, one estab-
lishes a priori estimates for YM in (weighted) Besov spaces, uniformly in M . By
using compact embeddings of weighted Besov spaces, one can extract a converg-
ing subsequence of {YM}M∈N as M → ∞. Lastly, one proves uniqueness of the
solution Y to the equation on the whole plane, which then shows the convergence
of the whole sequence {YM}M∈N.
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Global solutions and coming down from infinity, II.

Juraj Foldes, Jaeyun Yi

We discuss the “coming down from infinity” property for the Φ4
2 model on R2

based on [1]. In other words, we establish a priori estmates for the global-in-
time solution of Φ4

2 in suitable weighted Hölder spaces, uniformly over the initial
data. This problem is strongly related to the construction of Φ4 measure since
global-in-time bounds for the solution can be applied to the construction.

In order to prove the global bounds, we introduce localization operators to de-
compose the solution into singular and regular parts. In particular, the regular
part can be controlled by the help of a minus cubic term of Φ4 model. We then
show the uniform bounds on solutions to regularised equation driven by a regu-
larised white noise, with renomalization constants which diverges as regularising
parameter ǫ → 0. Using compactness argument, we shall prove the existence of a
solution and its uniform bounds.
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In the end, we use a further time weight to get the coming down from infinity
property. One of key ideas is that the time weight is zero at the initial time so that
it removes in some sense the dependency of the time from estimates. However,
we should modify the tools such as the Schauder estimate to be fit with the time
weights.
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Tightness via the energy method for the ϕ4

2
measure

Azam Jahandideh

Formally the measure of the dynamical ϕ4
2 model on S ′(R2) is given by

(1) ν(dϕ) =
1

Z exp
[

−
∫

R2

(
1

4
λϕ4 − 3

2
λ∞ϕ2)

]

µ(dϕ) ,

where λ > 0 is the coupling constant, Z ≥ 1 is normalization factor, µ(dϕ) is
the Gaussian measure with covariance (m2 − ∆)−1 and ∆ is the Laplacian on
R2. The corresponding semilinear parabolic partial differential equation to the
measure ν(dϕ) according to the Langevin dynamics is given by

(2)

{

(∂t −∆+m2)Φ(t, x) = −λΦ3(t, x) + 3λ∞Φ+ ξ(t, x)

Φ(0, x) = ϕ(x) ,

where ξ(t, x) is the unique space-time Gaussian white noise on S ′(R+ ×R2). The
above SPDE has the ϕ4

2 measure, i.e., ν(dϕ) as its invariant measure. This implies
that if Φ is a solution to Eq. (2) with the initial condition Φ(0, ·) = ϕ(·) distributed
according to the measure ν(dϕ), then for all t ∈ R the random field Φ(t, ·) is
also distributed according to this measure. Consequently, one has Law(Φ(t, ·)) =
Law(Φ(0, ·)) = ν(dϕ) .

By the parabolic scaling, the sample paths of ξ belong almost surely to the
space of regularity −2 − κ for all κ > 0. The heat kernel is 2 regularizing, which
implies that the solution to SPDE (2) has regularity −κ. Hence, we expect the
regularity of the renormalized non-linear term to be −κ for all κ > 0.

Observe that the measure of the dynamical ϕ4
2 model as given in (1) is ill-

defined. Firstly, a typical field ϕ in the support of the Gaussian measure µ(dϕ)
lacks integrability, i.e., it does not decay at infinity. Secondly, such a field does
not have enough regularity as oftentimes it is a distribution. Consequently, the
non-linear term, in Eq. (2) is ill-defined. These two problems are known as IR
and UV problems, respectively. To get around these problems, we first introduce
the discrete family of measures (νM,ǫ)M,ǫ corresponding to the ϕ4

2 model on lattice
ΛM,ǫ = (ǫZ)2 ∩ [−M/2,M/2)2, where ǫ and M play the role of UV and IR cut-offs
respectively.
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The lattice approximation of the ϕ4
2 measure

Let ΛM,ǫ be a periodic lattice with mesh size ǫ and size length M . Consider the
scalar filed φ : ΛM,ǫ → R. The corresponding regularized family of measures to
the ϕ4

2 model on RΛM,ǫ is given by

(3) νM,ǫ(dϕ) :=
1

ZM,ǫ
exp

[

− 2ǫ2
∑

x∈ΛM,ǫ

UM,ǫ(ϕ)
]

µM,ǫ(dϕ) ,

where ZM,ǫ is normalization factor, UM,ǫ(ϕ) = λ
4 |ϕ|4 − 3

2 λaM,ǫ |ϕ|2 + 3
4a

2
M,ǫ,

µM,ǫ(dϕ) is the discrete Gaussian measure with mean zero and covarianceKM,ǫ :=
(m2 − ∆ǫ)

−1, ∆ǫ is the discrete Laplacian, and aM,ǫ = Tr(KM,ǫ) = (m2 −
∆ǫ)

−1(x, x), which diverges like log(ǫ−1) . Observe that aM,ǫ is independent of
t ∈ R as we deal with the stationary solutions.

Remark 1. For fixed ǫ,M the measure νM,ǫ(dϕ) is well-defined.

Definition 2. A ϕ4
2 measure is any non-Gaussian, Euclidean invariant and re-

flection positive accumulation point of the family of regularized measures νM,ǫ(dϕ)
as ǫ → 0 and M → ∞, where UM,ǫ(ϕ) is any 4-th order polynomial, which is
bounded from below with ǫ, M dependent coefficient [Gub21].

Discrete stochastic quantization equation

Utilizing the parabolic stochastic quantization, we obtain the discrete stochastic
quantization equation corresponding to the measure νM,ǫ(dϕ) on S ′(R×ΛM,ǫ) as
follows

(4) (∂t +m2 −∆ǫ)ΦM,ǫ(t, x) = −λΦ3
M,ǫ(t, x) + 3λaM,ǫ ΦM,ǫ + ξM,ǫ(t, x)

such that Law(ΦM,ǫ)(t, ·) = Law(ΦM,ǫ)(0, ·) = νM,ǫ(dϕ) for all t ∈ [0,∞) and ξM,ǫ

is the discrete space-time Gaussian white noise defined on R × ΛM,ǫ, which is of
regularity −2− κ for all κ > 0.

Our aim is to show the existence of the infinite volume measure associated to the
ϕ4
2 model using tightness of the family of the regularized Gibbs measures νM,ǫ(dϕ)

defined on S ′(ΛM,ǫ). To this end, we shall utilize the energy method in L2(ΛM,ǫ).
Note that we cannot apply the energy method directly to the Eq. (4), since as
ǫ → 0 it becomes singular. That is why we need to come up with an appropriate
decomposition of the random field ΦM,ǫ .

Decompose the solution into singular and regular parts

Using the Da Prato and Debussche decomposition [DD03], one writes ΦM,ǫ =
XM,ǫ + ηM,ǫ with XM,ǫ solving

(5) (∂t +m2 −∆ǫ)XM,ǫ(t, x) = ξM,ǫ(t, x) .

Set X :2:
M,ǫ := X2

M,ǫ − aM,ǫ and X
:3:
M,ǫ := X3

M,ǫ − 3 aM,ǫXM,ǫ , where aM,ǫ is chosen

in a such way that for all κ > 0 the stochastic objects XM,ǫ, X
:2
M,ǫ and X

:3
M,ǫ can

be almost surely bounded in some Besov space of regularity −κ for all κ > 0. Let
ρ denote a polynomial weight of the form ρ(x) = 〈hx〉−ν = (1+ |hx|2)−ν/2, where
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ν ≥ 0 and h > 0, Bα,ǫp,q (ρ) denote the discrete weighted Besov spaces on ΛM,ǫ and

X = {XM,ǫ, X
:2:
M,ǫ, X

:3:
M,ǫ}.

Proposition 3. Let p ∈ [2,∞), κ > 0 and aM,ǫ = E

[

XM,ǫ(t, x)
2
]

. There exists

C > 0 such that for all ǫ, M and t ∈ R it holds E

[

‖ρX(t, ·)‖p
B−κ,ǫ

p,p

]

≤ C .

Proof. The proof follows from the Kolmogorov type estimate and hypercontrac-
tivity estimate with the use of the discrete semigroup property. Similar bounds
can be found in [GH18, MWX16]. �

For later use let

QM,ǫ(X)(t) = ‖ρXM,ǫ(t, ·)‖8B−κ,ǫ
8,8

+ ‖ρX :2:
M,ǫ(t, ·)‖4B−κ,ǫ

4,4

+ ‖ρX :3:
M,ǫ(t, ·)‖2B−κ,ǫ

2,2

.

Observe that by Prop. 3 one has E[QM,ǫ(X)(t)] ≤ C , where C ∈ (0,∞) is some
constant independent of ǫ and M .

Application of the energy method

In this section we aim to show that for all κ > 0 there exists C > 0 such that for
all ǫ, M and t ∈ R it holds

(6) E

[

‖ηM,ǫ(t, ·)‖2B−κ,ǫ
2,2 (ρ)

]

≤ C .

The remainder ηM,ǫ(t, x) solves

(7) (∂t +m2 −∆ǫ)ηM,ǫ(t, x) = −λ
[

η3M,ǫ(t, x) + 3 ηM,ǫ(t, x)X
:2:
M,ǫ(t, x)

+ 3 η2M,ǫ(t, x)XM,ǫ(t, x) +X :3:
M,ǫ(t, x)

]

.

Observe that in the limit as ǫ→ 0 all the product terms in Eq. (7) are well-defined
as the sums of their regularities are positive. To obtain the uniform bound (6), we
shall apply the energy method to Eq. (7) in L2(ΛM,ǫ). To this end, we multiply
both sides of Eq. (7) by ρ(x)4 ηM,ǫ(t, x) and perform the sum over ΛM,ǫ .

Proposition 4. There exist κ ∈ (0,∞), δ ∈ (0, 1) sufficiently small, C ∈ (0,∞),
p ∈ [2,∞), an appropriate polynomial weight ρ such that for all ǫ and M it holds

(8)
1

2
∂t‖ρ2 ηM,ǫ(t, .)‖2L2,ǫ

+ λ(1− δ)‖ρ ηM,ǫ(t, .)‖4L4,ǫ + (m2 − Cδ C
2
ρ)‖ρ2 ηM,ǫ(t, ·)‖2L2,ǫ

+ (1− δ − λ δ)‖ρ2 ∇ǫηM,ǫ(t, ·)‖2L2,ǫ ≤ λCQM,ǫ(X)(t) .

Proof. The proof is an application of the energy method in L2(ΛM,ǫ) as outlined
above, integration by part, the discrete Leibniz rule, Hölder’s and Young’s in-
equalities. To conclude one uses Lemma 5 with n = 3 for X = XM,ǫ, n = 2 for
X = X :2:

M,ǫ, n = 1 for X = X :3:
M,ǫ . This finishes the proof. �
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Lemma 5. Let n ∈ {1, 2, 3}, δ ∈ (0, 1) and κ > 0. There exists Cδ ∈ (0,∞) such
that for p ∈ [2,∞) it holds

∣
∣
∣〈ρ4 ηnM,ǫ, X〉L2,ǫ

∣
∣
∣ ≤ δ‖ρ2∇ǫ ηM,ǫ‖2L2,ǫ + δ‖ρ ηM,ǫ‖4L4,ǫ + Cδ‖ρX‖p

B−κ,ǫ
p,p

.

Proposition 6. Let κ ∈ (0,∞). There exists a constant C ∈ (0,∞) such that for
all ǫ, M , λ > 0 and all t ∈ R it holds

E

[

‖ηM,ǫ(t, ·)‖2B−κ,ǫ
2,2 (ρ2)

]

≤ C .

Proof. By Prop. 4 combined with the fact that ΦM,ǫ, XM,ǫ and ηM,ǫ are jointly
stationary one has

(9) E

[

‖ηM,ǫ(t, .)‖2L2,ǫ(ρ2)

]

≤ C EQM,ǫ(X)(t) ,

where we used the fact that for suitably chosen ρ and δ, all the coefficients in the
LHS of Eq. (8) are positive. To conclude, recall that E[QM,ǫ(X)(t)] ≤ C , and
‖ · ‖B−κ,ǫ

2,2 (ρ2) . ‖ · ‖B0,ǫ
2,∞

(ρ2) . ‖ · ‖L2,ǫ(ρ2) . This finishes the proof. �

Tightness

In this section we aim to verify that the family of measures (νM,ǫ)M,ǫ is tight,
i.e., it is sequentially compact in the topology of weak convergence of measures.
Specifically, we want to prove the following.

Theorem 7 (Main Result). Let k ∈ (0,∞). There exists a choice of the sequence
(aM,ǫ)M,ǫ such that the family of measures (νM,ǫ)M,ǫ appropriately extended to
S ′(R2) is tight. In particular, for every accumulation point ν it holds

(10)

∫

‖ϕ‖2
B−3κ

2,2 (ρ2+κ)
ν(dφ) <∞.

Proof. Using Prop. 3 with X = XM,ǫ for p = 2, Prop. 6 and the triangle inequality
one has

(11) E

[

‖(ΦM,ǫ)(t, ·)‖2B−κ,ǫ
2,2

(ρ2)

]

≤ C

for some constant C ∈ (0,∞) uniformly in ǫ and M and for any κ > 0. To go
from S ′(ΛM,ǫ) to S ′(R2), one utilizes the extension operator Eǫ, which is bounded
uniformly in ǫ [GH21, Lemma A.15]. Hence,

(12) E

[

‖EǫΦM,ǫ(t, ·)‖2B−κ
2,2 (ρ

2)

]

≤ E

[

‖(ΦM,ǫ)(t, ·)‖2B−κ,ǫ
2,2 (ρ2)

]

≤ C .

Note that up to a subsequence one can pass to the limits as ǫ → 0 and M → ∞.
Evoking the fact that Law(ΦM,ǫ)(t, ·) = νM,ǫ for all t ∈ [0,∞) yields

(13)

∫

‖ϕ‖2
B−κ

2,2 (ρ
2)
ν(dφ) = lim

ǫ→0
M→∞

E

[

‖EǫΦM,ǫ(t, .)‖2B−κ
2,2 (ρ

2)

]

≤ C
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uniformly in ǫ and M . Note that B−κ
2,2 (ρ

2) →֒ B−2κ
2+2κ,2(ρ

2+κ) continuously and

B−2κ
2+2κ,2(ρ

2+κ) →֒ B−3κ
2,2 (ρ2+κ) compactly. It holds

(14)

∫

‖ϕ‖2
B−3κ

2,2 (ρ2+κ)
ν(dφ) <∞ .

Use Prokhorov’s theorem to infer the tightness. This concludes the proof. �

Let Eǫ : Bα,ǫp,q (ρ) → Bαp,q(ρ). By Eǫ♯νM,ǫ we indicate the measure on S ′(R2)
obtained from the measure νM,ǫ on S ′(ΛM,ǫ).

Reflection Positivity

Let F be some cylindrical function on S ′(R2) depending on ϕ’s which are supported
in {(x1, x2) ∈ R2 ; x1 > 0}. We denote the algebra of all such functionals by F+.
Let ϕ ∈ S ′(R2) and f ∈ C∞(R2). We set 〈Θϕ, f〉 := 〈ϕ,Θf〉 and (Θf)(x1, x2) =
f(−x1, x2) for all f ∈ C∞(R2).

Proposition 8. Let ν be a weak limit of a subsequence of the sequence of measures
(Eǫ♯νM,ǫ)M,ǫ on S ′(R2). For all F ∈ F+ it holds

∫
F (Θϕ)F (ϕ) ν(dϕ) ≥ 0 .

The preceding proposition implies the reflection positivity axiom in [OS75]. To
prove it, one can start off by verifying an analogous property on ΛM,ǫ . Then, use
the extension operator Eǫ and take the limits M → ∞, ǫ → 0. It is believed that
one needs to start from finite volume lattice measures, as the only concrete way,
to prove the reflection positivity axiom for the infinite volume measure [GH21].
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[GH21] M. Gubinelli, M. Hofmanová, A PDE construction of the Euclidean φ4
3
quantum field

theory. Commun.Math.Phys. 384 (2021) 1, 1-75.
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Integrability of Φ4
2

Lucas Broux, Wenhao Zhao

This talk is a survey of the article [5] by Martin Hairer and Rhys Steele. In the
talk we show that the Φ4

2 measure1 on the 2-dimensional torus T2
M := (R/MZ)2 of

length M admits quartic exponential tails, as expected from its formal expression

µ ∼ exp

(

−
∫

T2

(1

2
|∇Φ|2 + 1

4
Φ4
)

dx

)
∏

x∈T2

dΦ(x), over Φ ∈ S ′(T2
M ).

Even though this expression is purely formal, it is known since the 1970’s that
µ can actually be rigorously constructed via a suitable procedure of regularization
and renormalization. Now, the main theorem of [5] reads as follows.

Theorem 1 ([5, Theorem 1.1]). For any ψ ∈ C∞
c (R2), M > 0 large enough to

accomodate the support of ψ, and β > 0 small enough depending only on ψ,

EΦ∼µ
[

exp
(
β〈Φ, ψ〉4

)]

<∞.

Let us quickly comment on this result:

(1) Such a bound was already known in the QFT literature, although with
different methods [2]. The novelty of [5] is to establish this result in the
three-dimensional case of the Φ4

3 measure.
(2) This implies that the Φ4

2 measure is not gaussian, since no gaussian mea-
sure satisfies such a quartic exponential integrability estimate.

(3) The same method would in principle apply to other quartic functionals of
Φ, for instance also EΦ∼µ

[
exp

(
β|Φ|4−κ

)]
< ∞ would hold for any κ > 0,

where |Φ|−κ denotes the (homogeneous) Sobolev norm.
(4) In the context of QFT, such estimates are used for estabishing the regu-

larity axiom of Osterwalder–Schrader.
(5) The bound is independent of the size of the torus, which may give some

result for the Φ4 measure on the full space.

In the remainder of this extended abstract, we wish to sketch some ideas of the
proof.

A first attempt by stochastic quantization of Φ4
2. A first idea is to argue by

stochastic quantization, namely to realize µ as an invariant measure to the SPDE

∂tΦ = ∆Φ− Φ3 +∞Φ + ξ, (t ∈ R+, x ∈ T2),(Φ4
2)

where ξ denotes space-time white noise. Rigorously, one takes mollifiers (ρǫ)ǫ>0 ⊂
C∞
c (R2) and considers rather the equation with smooth noise

∂tΦǫ = ∆Φǫ − Φ3
ǫ + cǫΦǫ + ξ ∗ ρǫ.

As is by now well-known, by suitably choosing the diverging sequence (cǫ)ǫ>0

of deterministic constants, one can make (Φǫ)ǫ>0 converge (in probability in a
suitable Hölder space of distributions) as ǫ→ 0 to a random distribution Φ which

1in fact the article presents the (more difficult) case of the Φ4
3
measure
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does not depend on the choice of (ρǫ)ǫ>0, and which admits µ as a unique invariant
measure. See e.g. [1, 7] for the two-dimensional case of Φ4

2. One crucial point is
that Φǫ is controlled by a finite number of stochastic objects, given for Φ4

2 by the
random distributions

Zǫ
def
= (∂t −∆)−1ξ ∗ ρǫ, :Z2

ǫ :
def
= Z2

ǫ − cǫ, :Z3
ǫ :

def
= Z3

ǫ − 3cǫZǫ.

One may now use PDE techniques to deduce properties of the measure µ. For
instance, by combining (amongst other) techniques of Schauder theory and a max-
imum principle for the damped heat operator u 7→ ∂tu−∆u + u3, the authors of
[6] were able to obtain a priori estimates of the form: for all N > 0, R ∈ (0, 1),
κ > 0 small,

sup
t∈(R2,1)

x∈[−N+R,R−N ]2

|(Φ− Z)(t, x)|

≤ Cmax
(

R−1, lim sup
ǫ→0

‖Zǫ‖
2

1−κ

C−κ , lim sup
ǫ→0

‖:Z2
ǫ :‖

2
2−2κ

C−2κ , lim sup
ǫ→0

‖:Z3
ǫ :‖

2
3−3κ

C−3κ

)

,

where the Hölder norms are over t ∈ (0, 1), x ∈ [−N,N ]2. Let us denote by Y
the right-hand side of this display. It is possible to bound the stochastic objects
appearing in Y and obtain E

[
exp(βY 1−κ)

]
< ∞ for any κ > 0 and β > 0 small

enough. Then, starting Φ at time t = 0 according to its invariant measure µ,
at later times Φ(t, ·) is still distributed according to µ and it is straigtforward to
deduce from the above the stretched-exponential estimate

EΦ∼µ
[

exp
(
β〈Φ, ψ〉1−κ

)]

<∞.

Unfortunately, this approach only yields the exponent 1 − κ rather than the
desired 4.

The Hairer–Steele argument. The idea at this point is to focus instead on the
tilted measure

dν := exp
(
β〈Φ, ψ〉4

)
dµ,

so that the theorem reduces to proving that ν is a finite measure. One naturally
argues by stochastic quantization on ν: Formally, it should be invariant for

∂tΨ = ∆Ψ−Ψ3 +∞Ψ+ β〈Ψ, ψ〉3ψ + ξ,(Ψ4
2)

which can be seen as a perturbation of the Φ4
2 equation. In particular, when β > 0

is small enough, the contribution of β〈Ψ, ψ〉3ψ should be absorbed in that of the
damping term −Ψ3, which motivates that the same a priori estimates as for Φ
should hold.

In fact, it is convenient to rather work with a sequence (νn)n of probability
measures where the fourth power is replaced by a bounded approximation:

dνn := Z−1
n exp

(
βFn(〈Φ, ψ〉)

)
dµ,
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for some smooth Fn : R → R with

Fn(x) =

{
x4

4 , |x| ≤ n
n4

4 + 1, |x| ≥ n+ 1
, 0 ≤ F ′

n ≤ n3,

and where Zn = EΦ∼µ
[
exp

(
βFn(〈Φ, ψ〉)

)]
denotes the corresponding normaliza-

tion. By Fatou’s lemma,

EΦ∼µ
[
exp

(
β〈Φ, ψ〉4

)]
≤ lim inf

n→∞
Zn,

so that the theorem follows once one establishes the boundedness of (Zn)n. The
article [5] proceeds to prove the following properties:

(1) The measure νn is invariant for the SPDE

∂tΨ
(n) = ∆Ψ(n) − (Ψ(n))3 +∞Ψ(n) + β〈Ψ(n), ψ〉3ψ + ξ.(Ψ4,n

2 )

(2) The following a priori estimate holds for all N > 0, R ∈ (0, 1), and β > 0
small enough:

sup
t∈(R2,1)

x∈[−N+R,R−N ]2

|(Ψ(n) − Z)(t, x)| ≤ Y,

where Y is the same right-hand side as in the a priori estimate of Φ above.

The proof of property (1) follows from a discretisation argument, which is also
used to prove that the Φ4

3 measure is an invariant measure of the corresponding
SPDE in [3]. At this point it is convenient to work with a bounded density, which
is a reason to introduce νn rather than to work with ν. The exponential mixing
property proved in [4] is used in the argument to prove the convergence of the
discretised measure.

As for property (2), it follows along the same argument as in [6]. Note that the
bound is independent of the size of the torus, which is the key for the independence
in the torus size of the tail bound for the measure.

We may conclude from there. Starting Ψ(n) from its invariant measure νn, and
appealing to the a priori estimate (2) and the fact that the stochastic objects in Y
are almost surely finite, we deduce that for some K > 0, denoting BK the centered
ball of radius K in the Hölder space C−κ,

1

2
≤ P

[
‖Ψ(n)‖C−κ ≤ K

]
= νn(BK) = Z−1

n

∫

BK

exp
(
βFn(〈Φ, ψ〉)

)
dµ.

But for Φ ∈ BK one bounds Fn(〈Φ, ψ〉) ≤ CK4 for some constant C uniform
in n, yielding the desired uniform bound Zn ≤ 2 exp(βCK4), and concluding the
proof of the theorem.
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More Applications of the Da Prato-Debussche Argument

Xiaohao Ji, Younes Zine

Besides the effectiveness of the Da Prato-Debussche trick for the stochastic quanti-
zation equations, it can also be adapted to several other singular SPDEs to derive
local existence and uniqueness. The first example we discuss is the parabolic sine-
Gordon model in the range 0 < β2 < 4π following [1], where the regularity of
imaginary Gaussian multiplicative chaos is assumed. Another variation of the Da
Prato-Debussche trick is the exponential Ansatz initiated in [2], where it is applied
to prove local existence and uniqueness of the parabolic Anderson model (PAM)
on R2 in a relatively simple way. The exponential Ansatz is then further modified
in [3] for the simple construction of the Φ4

3 model on 3d torus.
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Convergence of the Two-Dimensional Dynamic Ising-Kac Model to Φ4
2

Benoit Dagallier and Markus Tempelmayr

The Ising model with Kac interactions is a model of magnetism on a lattice, where
elementary components of magnetism called spins interact in a way made precise
below. Let ΛN = (Z/NZ)2 denote the two-dimensional discrete torus with linear
size N ≥ 1. The Ising model is a measure on spin configurations, i.e. elements
σ ∈ {−1, 1}ΛN , defined for γ ∈ (0, 1) and β ≥ 0 by:

λγ(σ) ∝ exp
[
− βHγ(σ)

]
,

where β plays the role of an inverse temperature and Hγ is the Hamiltonian:

Hγ(σ) = −1

2

∑

i,j

σiσjKγ(i− j) = −1

2

∑

i

σihγ(σ, i).
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Above, Kγ : R2 → [0, 1] is the kernel encoding the Kac interaction, defined by
Kγ(x) = K(x/γ) for some smooth, compactly supported K : R2 → [0, 1] with unit
integral. The quantity hγ(σ, i) = (Kγ ∗ σ)(i) (i ∈ ΛN ) is called the magnetisation
field, with ∗ the discrete convolution on ΛN .

The parameter γ tunes the range of the interaction. For fixed γ, it is well
known that the above Ising model admits a phase transition at a certain value
βc(γ) of the inverse temperature. It is expected, with known partial results [2],
that the magnetisation field has non-Gaussian fluctuations close to βc(γ), and
that this critical point satisfies βc(γ) = 1 + cγ2 log γ−1 + O(γ2) for an explicit
constant c = c(K) (βc = 1 is the mean-field value, corresponding to the model with
γ = 1/N). Following [1], we explain how the γ2 log γ−1 shift in the critical inverse
temperature naturally arises as the appropriate counterterm for a suitably rescaled
version of the magnetisation field undergoing Glauber dynamics to converge, when
γ is small and N is large, to the solution of the dynamical Φ4

2 model on the torus.

The Glauber dynamics is defined as follows. Put independent Poisson clocks on
all sites of ΛN , and if the clock rings at position j ∈ ΛN flip the corresponding
spin with the jump rate

cγ(σ, j) =
λγ(σ

j)

λγ(σ) + λγ(σj)
.

Here, σj denotes the spin configuration that coincides with σ except for a flipped
spin at position j. This defines a (jump) Markov process (σ(t))t≥0 with λγ as its
reversible measure.

With the slight abuse of notation hγ(t, k) = hγ(σ(t), k), we write for t ≥ 0 and
k ∈ ΛN the Martingale decomposition

hγ(t, k) = hγ(t = 0, k) +

∫ t

0

Lγhγ(s, k) ds+mγ(t, k),

where Lγ denotes the generator of the Markov process σ(·), and mγ(·, k) is a
martingale. We remark that a short calculation using the definitions of λγ , Hγ

and hγ yields

Lγhγ(σ, k) = −hγ(σ, k) +Kγ ∗ tanh(βhγ(σ, k)).
By Taylor’s approximation tanh(βh) = βh− (βh)3/3 + . . . , we obtain

Lγhγ(σ, k) = −hγ(σ, k) + βKγ ∗ hγ(σ, k)− β3

3 Kγ ∗ h3γ(σ, k) +Kγ ∗ . . . ,
and plugging this into the Martingale decomposition yields

hγ(t, k) = hγ(t = 0, k) +

∫ t

0

(

Kγ ∗ hγ(s, k)− hγ(s, k) + (β − 1)Kγ ∗ hγ(s, k)

− β3

3 Kγ ∗ h3γ(s, k) +Kγ ∗ . . .
)

ds+mγ(t, k).

We now aim to rescale the lattice ΛN to a box of size 1. Hence for ǫ = 1/N we
denote Λǫ = ǫΛN ≈ T2. Furthermore, let α, δ > 0. Then for t ≥ 0 and x ∈ Λǫ the
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rescaled locally averaged field Xγ(t, x) := δ−1hγ(α
−1t, ǫ−1x) satisfies

Xγ(t, x) = Xγ(0, x) +

∫ t

0

(
ǫ2

γ2α∆γXγ(s, x) +
β−1
α K(ǫ)

γ ∗ǫ Xγ(s, x)

− β3

3
δ2

αK
(ǫ)
γ ∗ǫ X3

γ(s, x) +K(ǫ)
γ ∗ǫ Eγ(s, x)

)

ds

+ 1
δmγ(

t
α ,

x
ǫ ),(1)

where ∗ǫ denotes convolution on Λǫ, K
(ǫ)
γ is a kernel at scale ǫ/γ approximating a

Dirac in the regime ǫ≪ γ, ∆γX = γ2/ǫ2(K
(ǫ)
γ ∗ǫX−X) is an approximation of the

Laplacian, and Eγ(t, x) = (αδ)−1(tanh(βδXγ(t, x)−βδXγ(t, x)+(βδXγ(t, x))
3/3).

In order for the scaling factors in front of the discrete Laplacian and the cu-
bic term to stay of order one, imposes ǫ2/(γ2α) ≈ 1 ≈ δ2/α. Similarly, one can
check that the predictable quadratic co-variation of the martingale term approxi-
mates a cylindrical Brownian motion which is delta-correlated in space, provided
ǫ2/(δ2α) ≈ 1. We thus choose the scaling

ǫ = γ2, α = γ2, δ = γ, N = 1/γ2.

Note that Eγ ≈ (αδ)−1(βδXγ)
5, which is of the order δ4/α = γ2 provided βXγ is

of order one, and is thus expected to disappear in the limit γ → 0.
It remains to control the linear term in (1) with the pre-factor (β − 1)/α. This

is where the inverse temperature needs to be chosen in a suitable window around
the critical temperature. A naive guess would be to take β = 1 + αA = 1 + γ2A
(A ∈ R) for this term to be of order 1. However if one believes that the limit X
of Xγ as γ → 0 should solve the dynamical Φ4

2 model, then we know a diverging
counterterm must be added to (1) for X to be non-trivial. This corresponds to
taking β = 1 + c(K)γ2 ln γ−1 +Aγ2 as guessed earlier.

The main result of [1] can be paraphrased as follows.

Theorem. Under the above scaling, the rescaled locally averaged field Xγ con-
verges in law1 to the dynamical Φ4

2 model X on T2, i.e. the solution of

(2) ∂tX = ∆X − 1
3

(
X3 − 3∞X

)
+AX +

√
2ξ on R+ × T2,

provided the respective initial conditions converge2. Here, ξ denotes a space-time
white noise.

We refer to [1, Section 3] for details on how to interpret (2) and conclude with
some ideas of the proof in [1]. The main idea is to use a suitable version of the
Da Prato-Debussche decomposition, writing Xγ as a deterministic function of the
solution Zγ of a discrete heat equation:

dZγ = ∆γZγ dt+ dMγ ,

with Mγ(t, x) = γ−1mγ(γ
−2t, γ−2x) the rescaled martingale appearing in (1). A

careful study allows one to obtain tightness for Zγ and its suitably interpreted Wick

1w.r.t. the Skorokhod topology of C−ν -valued cadlag functions for ν > 0 small enough
2in C−ν , and are uniformly bounded in C−ν+κ for an arbitrarily small κ > 0
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powers (special care has to be taken as Zγ is not Gaussian). Convergence to a
solution of the stochastic heat equation then relies on a martingale characterisation
of such solutions. This convergence is the main input. The convergence for Xγ

then follows, after a number of technical steps, by checking how close the discrete
convolution and Laplacian appearing in the right-hand side of (1) are to their
continuous counterparts.
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Gaussian Multiplicative Chaos and Liouville Quantum Gravity

Xingjian Di and Michael Hofstetter

Let (Σ, g) be a Riemannian manifold. It is possible to derive the area measure
vg(dx), the scalar curvature Rg and other quantities from the metric. We take

ĝ to be the round metric on the Riemann sphere Ĉ. Following [1, Section 2], we
define the Gaussian Free Field (GFF) on the Riemann sphere to be the zero-mean
Gaussian process with covariance function

(1) Gĝ(z, z
′) := E[Xĝ(z)Xĝ(z

′)] = ln
1

|z − z′| −
1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2− 1

2
.

The celebrated Gaussian Multiplicative Chaos (GMC) theory defines in great
generality the following measure as a weak limit (for 0 < γ < 2)

(2) µh(dx) = lim
ǫ→0

ǫγ
2/2eγhǫ(x)σ(dx),

where h is a log-correlated Gaussian field (in particular the GFF), hǫ the ǫ-circle
average of h and σ some reference Radon measure. We take h to be the GFF on
the Riemann sphere and σ the area measure associated to the spherical metric,
and refer to µh the quantum area measure.

Tentatively, the Liouville action functional is defined as

(3) S(X, g, µ) =
1

4π

∫

Σ

(
|∂gX |2 +QRgX + 4πµeγX

)
dvg,

and the path integral measure is defined as

(4) 〈O(X)〉tent.g,µ =

∫

O(X)e−S(X,g,µ)DX,

where O is some generic observable associated to the field.
It has been known to physicists via renormalization arguments that if we take

Q = γ/2 + 2/γ, the resulting quantum field theory is conformally invariant. We
keep this choice. Note that GFF on the Riemann sphere is defined up to a global
additive constant. We now let φ = h + c where φ is required to have zero mean.
The key construction in [1, Section 3.1] is to integrate out c with respect to the
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Lebesgue measure. Also observe that in the spherical metric, Rg ≡ 2. Let P be the
law of zero-mean GFF on the Riemann sphere. We have the rigorous definition

(5) 〈O(X)〉ĝ,µ =

∫ ∞

−∞

∫

O(φ)e−µφ(C)+2QcP(dh)dc.

The observables of physical interest are the vertex operators eαφ(x) for some
α ∈ R and x ∈ C. Since φ not defined pointwise, we follow a similar regularization
and renormalization process. It follows that the convergence and nontriviality
criterion of the partition function is the Seiberg bounds,

(6) αi < Q, and
∑

i

αi > 2Q.

The latter inequality follows easily as we analyze the integral near c = ±∞, while
the former follows essentially states the condition that the quantum area of an
infinitesimal neighborhood of an insertion point does not blow up. The proof uses
the multifractal spectrum estimate [2, Section 3.8]

(7) E[µh(Br)
q] ≍ r(2+γ

2/2)q−γ2q2/2

and the Chebyshev inequality to bound µφ(Br) as r → 0.
We also briefly presented some properties of the resulting measure, including the

KPZ formula and Weyl anomaly, which allows us to generalize to other background
metrics. Lastly, we discussed some recent development and application of the
theory, including the compactified imaginary Liouville theory [3] and the backbone
exponent in critical percolation [4].
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[1] François David, Antti Kupiainen, Rémi Rhodes, and Vincent Vargas. Liouville quantum
gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869-907, 2016.
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Introduction to continuum and lattice Yang Mills theory

Léonard Ferdinand, Sarah-Jean Meyer

Yang-Mills (YM) theory is central to the description of elementary particles in the
standard model but unfortunately a rigorous mathematical foundation is lacking.
As such, the rigorous construction of YM in the physically relevant 3 + 1 dimen-
sional space-time is an important unsolved problem in mathematics [8]. The goal
of this talk is to introduce the core ideas to understand the problem of constructing
a (Euclidean) YM theory and present some interesting open questions concerning
the mass gap, quark confinement, the area law as well as the large N -factorization.
As even the correct spaces to consider are up to debate, the discussions are almost
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exclusively at an informal level. We mainly follow [4], but also refer to the surveys
[9, 6] and the recent works [3, 2, 1, 5, 10, 7] for more details and further reading.

The Yang-Mills measure. Fix a semi-simple Lie group G ⊂ SU(N) and denote
its Lie algebra by g. We equip g Ad-invariant inner product 〈·, ·〉 and the induced
norm. Here, the adjoint action is given by g ·X = AdgX := gXg−1. For example,
in the case g = su(N), we may use 〈X,Y 〉 = −Tr(XY ). Consider a trivial G-
principal bundle P over Rd, where G ⊂ SU(N). The space of g-connections A is
the affine space of all elements of the form dA := d + A for A a g valued 1-forms
A = (A1, . . . , Ad) : R

d → gd, and d an arbitrarily fixed trivial connection. On the
Euclidean space Rd, the Yang-Mills measure is formally defined on A for β > 0 as

µβ(dA) := Z−1
β exp

(
− βSYM(A)

)
dA ,

where d formally corresponds to the Lebesgue measure on A, and Z is a normal-
ization constant. Here, SYM is the YM action formally defined as

SYM(A) :=

∫

Rd

|F (A)|2
g
,

where F (A) := dAA is the curvature 2-form of the connection A, in coordinates
given by Fij(A) = ∂iAj−∂jAi+[Ai, Aj ], and | · |g is the Euclidean norm associated
with the Ad-invariant inner product.

In addition to the usual UV and IR problem arising in the definition of any
singular EQFT, the Yang-Mills action turns out to be invariant under an infinite
dimensional group of “gauge transformations”, the group of G valued 0-forms cor-
responding to the changes of coordinates on P . This last fact makes its definition
even more subtle, since it involves working on the non-linear(!) quotient space of
connections modulo these gauge transformations.

Lattice Yang-Mills theories. As for the scalar theories, one attempt to rigor-
ously define the Yang-Mills measure is to start from a finite dimensional approx-
imation defined on the discrete torus Λ = Λǫ,L. In this setting, the connection is
approximated by its holonomies Uxy along the edges of Λ. The discrete Yang-Mills
measure is defined by

µβ,Λ(dU) := Z−1
β,Λexp

(
β
∑

p

χǫ(Up)
)
dU ,

where the sum runs over all plaquettes p, that over all squares with edges in Λ and
χǫ is suitably chosen to recover the continuum Yang-Mills measure in the limit.
Finally, dU denotes the Haar measure on the field configuration. Some examples
of discrete actions are given by

χǫ(g) =

{

ǫd−4RTr(id− g) (Wilson action) ,

− log e
1
4
ǫ4−d∆G(id, g) (Villain action) .

The discrete measure is invariant under the action of the discrete gauge group GΛ

that acts on Uxy via conjugation g · Uxy = gxUxyg
−1
y . To make the connection to
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the continuous setting, one can heuristically always identify U with a connection
A in the continuum via Ux,x+ǫei ≈ eǫAi(x).

Wilson loops. The invariance of the Yang-Mills measure under the group of
gauge transformations makes it necessary to work with gauge invariant observables.
A natural choice is to consider the traces of the holonomies of the connection along
closed loops γ : [0, 1] → Rd, known as Wilson loops, and often denoted by Wγ(A).
An important conjecture (see also [8]) about non-Abelian Yang-Mills theories,
known as “mass gap”, is that, in the infinite volume limit Lր ∞, the correlation
length of the Wilson loops

ξ−1(ǫ, β) := − lim
d(γ1,γ2)→∞

log
(
Cov(Wγ1 ,Wγ2)

)

d(γ1, γ2)

takes a finite non-zero value for all finite β, and diverges as β ր ∞. This indicates
that it should be possible to obtain non-trivial correlations in the continuum limit.

Parabolic stochastic quantisation for YM. A nice reference for this part is
[6]. One way to try to rigorously define the continuous Yang-Mills measure is by
studying its Langevin dynamic, or noisy gradient descent, that formally reads

∂tA = −∇ASYM(A) + ξ ,

where ξ is a space-time white-noise. A consequence of gauge invariance is that the
linear part of ∇ASYM(A) = d∗AdAA is not elliptic. One way to circumvent this
issue is to introduce by hand a DeTurck-Zwanziger-term −dAd

∗
AA on the r.h.s. In

coordinates, the new equation (noisy YM heat flow) reads

(∂t −∆)Ai = [Aj , 2∂jAi − ∂iAj + [Aj , Ai]] + ξi .

While this equation is no longer gauge invariant, since the gauge breaking term
is tangent to the gauge orbits at A, the equation still exhibits a gauge covariance
property. Indeed, denoting by ΦtA the flow of some initial condition A under the

noisy YM-heat flow, we verify that Φt(A
g0 )

Law
= (ΦtA)

g(t) provided we choose the
gauge g(t) dynamically, so that

(∂tg)g
−1 = −d∗Ag ((dg)g−1).
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Langevin Dynamics of Lattice Yang-Mills Model

Jiasheng Lin, Kihoon Seong

The goal of the talk is to introduce Yang-Mills measures and Langevin dynamics for
the lattice Yang-Mills model in [9, 10]. We first explain the set-up and preliminaries
required to understand this lattice Yang-Mills model. Let ΛL ⊂ Zd be (vertices
of) a finite lattice with side length L and unit lattice spacing. Orient the edges
in lexographic direction (for a careful description see Chatterjee [1] section 2).
Denote by E+

ΛL
the set of positively oriented edges whose end points belong to ΛL.

Denote by P+
ΛL

the set of positively oriented plaquettes, concatenation of four

edges tracing out the boundary of a unit square (in d = 2 positively oriented
means going anticlockwise viewed from the reader). Let N ∈ N and G be the Lie
group SO(N), U(N) or SU(N). We work in the so-called configuration space

(1) QL := G
E+

ΛL = {(Qe)e∈E+

ΛL

| Qe ∈ G}

of “configurations” of matrices from the Lie group, one for each edge. Given a
configuration Q = (Qe)e∈E+

ΛL

and for ℓ = e1e2 · · · en a path or loop consisting of

concatenation of successive edges, we impose the matrix Qℓ := Qen · · ·Qe1 , where
we also set Qe := Q−1

e−1 if e is negatively oriented. Let g be the Lie algebra of G
and we note that a tangent vector to QL at a configuration (Qe)e∈E+

ΛL

would be

a configuration of the form (XeQe)e∈E+

ΛL

=: XQ, where Xe ∈ g, lying in the full

space MN(C)
E+

ΛL which is finite dimensional Euclidean and where QL embeds.
For two such tangent vectors XQ, Y Q we define the inner product 〈XQ, Y Q〉 :=
∑

eTr(XeY
∗
e ) where A

∗ denotes the adjoint of A.
The main object of study is the probability measure µΛL,N,β on QL given by

the density expression

(2) dµΛL,N,β(Q) := Z−1
ΛL,N,β

eSΛL,N,β(Q)
∏

e∈E+

ΛL

dσG(Qe),

where ZΛL,N,β is the normalization constant, β > 0 is the inverse coupling con-
stant, σG is the Haar measure on the Lie group G, and SΛL,N,β is the Yang-Mills
action

(3) SΛL,N,β(Q) := Nβ
∑

p∈P+

ΛL

ReTr(Qp).
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The main method of study is to exhibit (2) as the invariant measure of a stochastic
differential equation (SDE) on QL,

(4) dQt =
1

2
∇SΛL,N,β(Qt)dt+ d ~Bt,

called the lattice Yang-Mills SDE, where ∇SΛL,N,β(Qt) is the gradient of SΛL,N,β

valued at Qt, taken under the inner product described above, and ~Bt an edgewise
independent tuple of Brownian motions onG, discussed below. This SDE describes

the stochastic gradient flow of SΛL,N,β with noise produced by ~Bt.
To show long time stochastic well-posedness of (4) one first show it in the

Euclidean space MN(C)
E+

ΛL following the ordinary procedure and then use Itô
formula to show the solution lies a.s. in QL. To show µΛL,N,β is invariant is also a
standard argument, by computing explicitly the Feller generator, see Shen, Smith
and Zhu [9]. These are in parallel with the treatment of Brownian motion on G.

To define Brownian motion (BM) on G (starting at the identity IN ) first define
the BM, Bt, on g (with the above inner product) which is the ordinary BM, starting
at zero. Then the BM on G is defined by solving in MN(C) the SDE

(5) dBt =
1

2
cgBtdt+ dBt · Bt,

where cg is the constant making
∑

i e
2
i = cgIN for an o.n. basis {ei}i of g, and the

solution lies a.s. in G. This corresponds to the following intuitive picture: com-
pare G to a sphere and g to a tangent plane to the sphere at a point denoted 0; pick
a trajectory of Bt starting at 0, roll the sphere without slipping on the plane so
that the contact point traces out the trajectory, then the corresponding trajectory
on the sphere would be one of the BM on G. This picture is made rigorous by the
McKean “injection method”, see McKean [8] sections 4.7-4.8. More comprehen-
sively see the monograph by Liao [7]. See also the first section of Dahlqvist [3] (in
French) for a nice, shorter summary and an Itô formula.

By applying Itô’s formula to the dynamics of (4) Shen, Smith and Zhu [9]
managed to obtain a version of the so-called Makeenko-Migdal (MM) equations
on the lattice. We explain (MM) in the continuum which is simpler. There, instead
of on QL one considers a measure on A, the space of connections on the (trivial)
principal G-bundle over R2, which is formally µYM ∝ exp(− 1

2SYM(A))dL(A), SYM

being the Yang-Mills action defined in the previous talk and L the nonexistent
“Lebesgue” measure on A. For a piecewise smooth loop ℓ in R2, the matrix Qℓ is
defined accordingly to be the holonomy matrix along ℓ.1 Then Eµ[Tr(Qℓ)] defines
a function of ℓ. If on ℓ we perform a “surgery” turning it into finitely many
loops ℓ1, . . . , ℓn, then (MM) gives a set of PDEs relating the function Eµ[Tr(Qℓ)]
to Eµ[Tr(Qℓ1) · · ·Tr(Qℓn)]. The key to the formal derivation lies in writing down a
formal integration-by-parts formula for µYM and differentiating a clever functional
in a clever direction. But in finite dimensions integration-by-parts formula of the
ordinary Gaussian measure is also a consequence of it being the invariant measure

1In fact, our lattice matrix configuration Q should be seen as the parallel transport matrices
induced by a connection over the background continuum.
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of the Ornstein-Uhlenbeck process and Itô’s formula. Inspired by this fact, [9]
obtain a new proof of lattice (MM) which was previously obtained by Chatterjee
[1]. Another interesting aspect is that when the matrix size N tends to infinity,
the random variable Tr(Qℓ) converge in law to a deterministic number Φ(ℓ), thus
defining a function Φ on the space of loops, called the master field. The (MM)
equations turn then into PDEs describing Φ. For fuller treatment of (MM) in the
continuum see Lévy [5] and [6], on the lattice [1], and also Singer [11] for a broader
perspective.

Let us explore additional outcomes related to the lattice Yang–Mills measure.
As long as the smallness assumption for β holds (i.e. strong coupling regimes),
the infinite volume (tight) limit µYM

β,N of the finite volume Yang–Mills measures
µΛL,β,N as L→ ∞ is unique, which is also the unique invariant measure under the
solution to the Yang-Mills SDE (on entire Zd). The proof of uniqueness is obtained
by a variation of the Kendall–Cranston coupling. In addition to uniqueness, we
can obtain various properties of the infinite volume measure µYM

β,N by establishing
functional inequalities associated with the measure. We first consider the finite
volume Yang–Mills measures µΛL,β,N . Then, under the smallness assumption for

β, the Bakry–Émery condition is satisfied: for any tangent vector v (of the product

of Lie group i.e. QL = G
E+

ΛL ),

Ricc(v, v)−HessS(v, v) ≥ KS |v|2

where KS > 0 does not depend on the volume parameter size L. In these ap-
proaches, the Ricci curvature properties of the Lie groups are importantly used
through the verification of the Bakry–Émery condition. In other words, in strong
coupling regimes, the Hessian of the Yang Mills action S can be controlled by the

Ricci curvatures of the configuration spaceQL = G
E+

ΛL to guaranteeKS > 0. Note
that the Barkly Émery criterion implies the log-Sobolev and Poincaré inequalities
for the measure µΛL,β,N . This gives that the dynamics (lattice Yang-Mills SDE)
on QL is exponentially ergodic. Moreover, the log-Sobolev and Poincaré inequali-
ties for the measure µΛL,β,N extend to the infinite volume measure µYM

β,N as they
are independent of dimension. We point out that in the strong coupling regime
one of the important parts is to be able to take β small uniformly in the large
N parameter, which allows us to take the large N limit with the infinite volume
measure µYM

β,N in the below applications.
We present various applications of the Poincaré inequality. For cylinder func-

tions F ∈ C∞
cyl(Q), we have

VarµYM
β,N

(F ) =

∫

|F −
∫

Fdµβ,N |2dµYM
β,N ≤ 1

KS

∫

|∇F |2dµYM
β,N ,

which implies that (i) the rescaled Wilson loop converges to a deterministic limit
and (ii) the factorization property of Wilson loops holds as follows:
∣
∣
∣
∣

Wℓ

N
→ EµYM

β,N

Wℓ

N

∣
∣
∣
∣
→ 0 and

∣
∣
∣
∣
EµYM

β,N

Wℓ1 · · ·Wℓm

Nm
−

m∏

i=1

EµYM
β,N

Wℓi

N

∣
∣
∣
∣
→ 0
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in probability as N → ∞, where Wγ = Tr(Qe1 · · ·Qen) with a loop γ = e1e2 · · · en
is called a Wilson loop.

The other application is to exhibit the existence of mass gap for lattice Yang–
Mills. By exploiting the Poincaré inequality, one obtains the mass gap as follows:
for any f, g ∈ C∞

cyl(Q) with supports Λf ∩ Λg = ∅, we have the exponential decay
of correlations

CovµYM
β,N

(f, g) ≤ c1e
−c2d(Λf ,Λg)

where d(A,B) means the distance between A and B ∈ E+. In particular, selecting
the functions f and g as Wilson loops is of particular interest in physics.
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Basic Concepts and Reconstruction Theorem

Sefika Kuzgun, Ilya Losev

Theory of regularity structures is a very important tool in the modern theory
of Stochastic Partial Differential Equations, which allows one to make sense and
study basic properties of certain SPDEs. In particular, they play crucial role in
the solution theory of KPZ and Φ4

3 equations.
The notion of regularity structures is a generalization of such well-known things

as Taylor polynomials and rough paths. In our talk we discuss the basic concepts
in the theory of regularity structures and illustrate them using an example of poly-
nomial regularity structure, which is a regularity structure designed to describe
the theory of Taylor polynomials.

https://users.sussex.ac.uk/~and22/
https://users.sussex.ac.uk/~and22/
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A regularity structure consists of a structure space (a graded linear Banach
space) together with a structure group, which encodes how elements of the struc-
ture space change when one shifts an argument. In the case of polynomial regular-
ity structure the structure space consists of all polynomials with a natural grading
given by degree.

A regularity structure is an abstract notion, and it needs to be endowed with
a model, which allows one to represent elements of its structure space as concrete
distributions on Rd. A model consists of realisation map and reexpansion map.
Realisation map turns elements of structure space into distributions which form an
expansion around a given point. For polynomial regularity structure the realisation
map returns a Taylor polynomial with given coefficients around a given point. The
reexpansion map, in turn, tells you how to turn a given expansion around a point
into a similar expansion around a different point.

Finally, we introduce a notion of modelled distribution. Essentially, a modelled
distribution is an analogue of a function in the theory of regularity structures. In
the case of polynomial regularity structure we have that the space of modelled
distributions exactly coincides with the classical Hölder class.

In our talk we also discuss the Reconstruction Theorem. This theorem allows
one to represent any modelled distribution as a concrete distribution on Rd.

Theorem 1 ([2]). Let T be a regularity structure and let (Π,Γ) a model for T on
Rd. Then for γ > 0, there exists a unique linear map R : Dγ → D′(Rd) such that

|(Rf −Πxf(x))(ψ
Λ
x )| . λγ(1)

uniformly over ψ ∈ Br and λ ∈ (0, 1], and locally uniformly in x.

The second part of our presentation is devoted to proving this fundamental
theorem. We closely follow the proof as presented in second edition of the book
[1], which is based on the proofs given in [5] and [4]. Hairer’s original proof in [2]
is based on the wavelength analysis, the former presentation is self-contained.

Let α > 0. The proof relies on the existence of an even smooth function
ρ : Rd → R that is compactly supported in the unit ball and satisfies

∫

Rd

xkρ(x)dx = δk,0, 0 < |k| ≤ α,

where k denotes a d-dimensional multi-index and δ Kronecker’s delta. Detailed
construction of such a function can be found in [6].

To construct an approximation scheme, define ρn(x) := 2ndρ(2nx) for n ∈ N,
and ρn,m := ρn ∗ · · · ∗ ρm for n,m ∈ N, m ≥ n. It can be shown that ϕn :=
limm→∞ ρn,m exists, is compactly supported and satisfies a similar scaling as ρ.

Using these smooth functions, it is possible to construct a two layer approxi-
mation to obtain Rf as limit of

Rn,m := ρn,m−1 ∗
(
(Πyf(y))

(
ϕmy
))

first sending m→ ∞ and then n→ ∞. The final step in the proof is to show that
the distribution constructed this way satisfies (1). Some details of these steps are
provided in our presentation.
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Fixed point problem in the space of modelled distributions

Sky Cao, Fabian Höfer

A standard way to solve a semilinear parabolic PDE

(1)

{

∂tu = Au+ F (u)

u(0) = u0

locally in time, where A generate a semigroup S(t) = eAt, is to set up a fixed-point
problem. By Duhamel’s formula the mild form of (1) is

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (u(s))ds =: (Mu)(t).

The strategy then is to find a complete metric space XT consisting of space-time
functions up to time T , such that M : XT → XT is a contraction for sufficiently
small T .

In many cases the same methodology can be applied when we are looking for
solutions in the space of modelled distributions. To motivate the necessary ingre-
dients needed for this, we consider the Φ4

3 model

(2) ∂tΦ = ∆Φ− Φ3 + ξ

where ξ denotes space-time white noise and the spatial variable takes values in the
3-dimensional torus. The mild formulation of (2) is then given by

(3) Φ = K ∗ (ξ − Φ3) +KΦ0

where K denotes the heat kernel, ∗ the space-time convolution and KΦ0 the
harmonic extension of the initial data Φ0, i.e. the solution to the linear heat
equation with initial data Φ0.

The “abstract” formulation of (3), where Φ is now a modelled distribution,
should then be given by

(4) Φ = K(Ξ− Φ3) +KΦ0.
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Here Ξ is a symbol representing the noise ξ and K is a linear operator acting on
the space of modelled distributions correspoding to the convolution with the heat
kernel.

In order to make sense of (4) we need

(1) Make sense of products of modelled distributions, e.g. of Φ 7→ Φ3.
(2) Schauder theorem: Given a β-regularising kernel K, build K : Dγ → Dγ+β

such that RKf = K ∗ Rf .
HereR denotes the reconstruction operator. The Schauder theorem will be the key
ingredient to get a gain T κ in estimates for M and thus making it a contracting
self-map for small T .

In order to state the multiplication theorem, we need to assume that our regu-
larity structure is equipped with a product itself.

Definition 1. Given a regularity structures (T,G) and two sectors V, V̄ ⊂ T ,
a continuous bilinear map ⋆ : V × V̄ → T is called a product on (V, V ) if for
any τ ∈ Vα and τ̄ ∈ V̄β, one has τ ⋆ τ̄ ∈ Tα+β and if for any Γ ∈ G one has
Γ(τ ⋆ τ̄) = Γτ ⋆ Γτ̄ .

Using the notation f ∈ Dγ
α(V ) iff f ∈ Dγ and f(x) ∈ V≥α for all x ∈ Rd and

letting Q<γ denote the projection onto T<γ , we have

Theorem 1. Let f1 ∈ Dγ1
α1
(V ) and f2 ∈ Dγ2

α2
(V̄ ) . Then the function

f(x) := Q<γ(f1(x) ⋆ f2(x))

belongs to Dγ
α with

α = α1 + α2, γ = (γ1 + α2) ∧ (γ2 + α1).

In the second half of the talk, we discussed the multilevel Schauder theorem
for modelled distributions. In particular, we defined β-regularizing kernels and
admissible models. Then given such a model, we described how to realize convo-
lution with a regularizing kernel on the space of modelled distributions. Finally,
we stated the multi-level Schauder estimate.

Theorem 2 (Multi-level Schauder estimate). Let K be a β-regularizing kernel.
Let T be a regularity structure satisfying certain assumptions. Let (Π,Γ) be an
admissible model for T . For γ > 0, there exists a bounded operator K : Dγ → Dγ+β

such that RKf = K ∗ Rf for all f ∈ Dγ .

We emphasize the two key features of this operator K: (1) it increases “homo-
geneity” by β, and (2) it plays well with the reconstruction operator, so that we
may indeed think of K as an abstract version of convolution with K.
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Stochastic quantisation of Φ4
3

Salvador Cesar Esquivel Calzada, Huaxiang Lu

In this tall, we will provide a concise overview of the Φ4
3 model, highlighting

the main result [1, Proposition 4.9] and the renormalization constants. Then we
will explain how to associate a regularity structure to this SPDE, referring to [1,
Section 4.1-4.5]. We will introduce the model for mollified noise and discuss the
non-convergence of the mollified model, which leads to the brief introduction to
the renormalisation group. Then we will derive the renormalization equations for
the Φ4

3 model, with a focus on proving [1, Proposition 4.9].
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Convergence of renormalized models

David Lee, Harprit Singh

We recall the notion of Wiener chaos and Nelson’s hypercontractive estimate.
Then, after introducing some diagrammatic notation, we explain how this can be
used to obtain convergence of renormalised models for the φ43 equation.
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Hyperbolic stochastic quantization

Petri Laarne, Rui Liang

1. Background

In this talk, we will initially transition from the concept of path integrals to Gibbs
measures by incorporating fictitious time and formulating a new Lagrangian [1].
Following this, we will delve into the concept of canonical stochastic quantization
[6], presenting a heuristic argument that anticipates the invariance of the Gibbs
measure under the flow of the canonical stochastic quantization equation. Subse-
quently, we will examine the hyperbolic ϕ4

2 model as a specific case study.
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By these considerations (see also the introduction of [7]), it is possible to show
that the corresponding Gibbs measure is formally invariant under the stochastic
damped nonlinear wave equation

(∂2t + ∂t + 1−∆)u+ u3 = ξ,

which is posed on R×T2, where ξ is the spacetime white noise. A related question
is to solve the undamped equation

(∂2t + 1−∆)u + :u3 : = ξ,

where such an invariance does not hold.

2. Solving the damped equation

2.1. Local-in-time solution. This is based on Sections 1.3 and 4 in [5]; see also
Section 4 in [2], which presents the similar deterministic equation in detail.

The idea is to apply the Da Prato–Debussche trick. We decompose the solution
as u = v + w, where w solves the linear equation ∂ttw + ∂tw + (1 −∆)w =

√
2ξ

with the given initial data (u0, u1). This equation is solved in H−ε by

w(t) = Dtu0 +D′
t(u0 + u1) +

√
2

∫ t

0

Dt−sξ(s) ds, Dt =
e−t/2 sin(t

√

3/4−∆)
√

3/4−∆
,

for arbitrarily large times. The remainder v solves the coupled nonlinear equation
∂ttw+∂tw+(1−∆)w = :(v + w)3 : with zero initial data. We solve this part with
a fixed-point argument in the more regular space C([0, τ ], H1−ε(T2)).

There is only the Duhamel term in v, and we can estimate its norm by

sup
0≤t≤τ

∥
∥
∥
∥

∫ t

0

Dt−s: (v + w)3 :(s) ds

∥
∥
∥
∥
H1−ε

≤ Cτ1/2
∥
∥: (v + w)3 :

∥
∥
L2([0,τ ]; H−ε)

.

Here we used Cauchy–Schwarz in time and uniform boundedness of Dt from H−ε

to H1−ε. We then apply the binomial formula and estimate each term with Besov
space properties (as presented by Gabriel and Liu); for example

∥
∥v2w

∥
∥
L2([0,τ ]; H−ε)

≤ C ‖v‖2L∞([0,τ ]; B2ε
6,6)

‖w‖L2([0,τ ]; B−ε
6,6)

≤ C ‖v‖2L∞([0,τ ]; H1−ε) ‖w‖L2([0,1]; B−ε
6,6)

.

In the end, we see that a radius-R ball is mapped into a radius Cτ1/2M(1 + R3)
ball, where M is sum of L2([0, 1]; B−ε

p,p) norms of Wick powers of w. We can then

choose R =M and local solution time τ = cM−10. Contractivity follows similarly.

2.2. Global-in-time solution. Bourgain’s argument [3] gives almost sure solu-
tion up to time T > 0. If the stochastic linear part w has norms bounded by
M > 0, then u exists on [0, τM ]. If we restart the linear part from u(τM ), and
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the norm bound also holds on [τM , 1 + τM ], then we can continue u to [τM , 2τM ].
Repeating this, we can estimate the probability of finding a solution by

P(u exists on [0, T ]) ≥ 1− P





T/τM⋃

j=0

3⋃

k=1

‖:wk :‖L2([kτM ,1+kτM ]; B−ε
p,p)

> M





≥ 1−
T/τM∑

j=0

3∑

k=1

P

(

‖:wk :‖L2([0,1]; B−ε
p,p)

> M
)

≥ 1− CTM10
3∑

k=1

E ‖:wk :‖p
L2([0,1]; B−ε

p,p)

Mp
.

Here we used invariance of measure, the choice of τ , and Markov’s inequality. The
Wick powers of φ4 have bounded moments for any p <∞, and this also translates
to the linear part w. Thus we can choose p and M large to get an arbitrarily high
probability of solution.

To be precise, the invariance only holds in a finite-dimensional system. All
of the previous estimates are uniform in Fourier truncation. It then remains to
perform a (technical) limit argument; see Section 4.4 in [2].

3. Solving the undamped equation

Apart from Bourgain’s globalisation argument, we will also see how combining the
I-method in a stochastic setting with a Gronwall-type argument can establish the
norm’s double exponential growth. We will go over the difficulties encountered in
this process and then present the ideas used to overcome these challenges.

By using the Da Prato–Debussche trick,

u = v +Ψ,

where Ψ is the stochastic convolution, we then consider the following equation:

(∂2t + 1−∆)v + v3 + 3v2Ψ+ 3v:Ψ2 : + :Ψ3 :
︸ ︷︷ ︸

perturbation

= 0.

There are two difficulties coming from the perturbation and roughness of v. If
there is no perturbation, then we can use conservation of the Hamiltonian

H(∂tv, v) =
1

2

∫

(|v|2 + |∇v|2)dx+
1

2

∫

(∂tv)
2dx+

1

4

∫

v4dx
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to get the globalisation. However, we have perturbation here. Nevertheless, we
can see how the the Hamiltonian grows by taking derivative

∂tH(v) =

∫

T2

∂tv ((∂
2
t + 1−∆)v

︸ ︷︷ ︸

=−(v+Ψ)3

+v3)

︸ ︷︷ ︸

∼v2Ψ+vΨ2+Ψ3

dx

C-S

. (H(v))
1
2

(

‖Ψ‖2CTL∞

x

∫

v4dx+ ‖Ψ‖6CTL6
x

) 1
2

≤ C(T,Ψ)(1 +H(v)),

provided that the noise is smoother. Then by Gronwall’s inequality, we have

‖v(t)‖2H1 ≤ H(t) ≤ H(0) e2C(T,Ψ)T , for 0 < t ≤ T,

which gives global solution. However, as v is not in H1, we need to remedy by
using the I-method [4] given by an operator I = IN such that

‖v‖Hs . ‖Iv‖H1 . N1−s‖v‖Hs ,

from which we are led to try using Iv to replace the role of v in the Gronwall-
type argument stated above. After some estimates for some commutators and
some analytical techniques, we get the norm’s double exponential growth which
contradicts the blowup criteria.
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On the Polchinski Equation

Zhituo Wang

The Polchinski equation [1] is a partial differential equation for the renormalized
effective action in quantum field theory. It is a powerful tool for proving renor-
malizability of quantum field theory models and has been applied successfully in
the study of the scalar φ44 model [1, 2], the QED [3], the Gross-Neveu model [4],
the noncommutative Grosse-Wulkenhaar model [5], ect. In this short presentation
I will derive the Polchinski equation for the scalar Φ4 model. An explicit smooth
cutoff function for the momentum has been introduced and the integration-by-
parts formula has been used.
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Stochastic control approach to Φ4

2
measure

Abdulwahab Mohamed

We discuss the stochastic control approach for Φ4
2 measure in [1]. We introduce a

convenient way of regularising the measure which naturally leads to a stochastic
process. The regularised measure is given by νt and has the form

νt(dϕ) = Z−1
t e−Vt(ϕt)µ(dϕ),

where ϕt = ρt∗ϕ is a mollified distribution with ρt → δ0, µ is the Gaussian free field
on T2, Zt is the partition function and Vt is a suitable function. We construct a
probability space (Ω,F ,P) and a process (Yt)t≥0 such that LawP(Yt) = Lawµ(ϕt).
With this formulation, we have for any A ∈ F

νt(A) = Z−1
t E[1A(Yt)e

−Vt(Yt)].

From there we see that it is enough to study the process (Yt)t≥0 and the density

Z−1
t e−Vt(Yt).
The process (Yt)t≥0 is constructed by an Itô integral with respect to a Brownian

motion which enables us to use techniques from stochastic calculus. For instance,
using Girsanov’s transform, we establish a direct link between the measure νt
and a stochastic control problem. The control problem is based on Boué–Dupuis
formula which allows us to express − logE[e−pVt(Yt)] in terms of a minimisation
problem. The functional that we minimise can be easily bounded from above and
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below after suitable renormalisation. These bounds are based on fairly standard
inequalities in Sobolev spaces, for example duality, product rule and interpolation.
In the bounds, we exploit the fact that the Gaussian free field on T2 has all its
Wick powers in C−κ for any κ > 0. The bounds obtained for the minimisation
problem then leads to a lower and upper bound for the quantity E[e−pV (Yt)]. From
there we can show that the Radon-Nikodym derivative Z−1

t e−V (Yt) is bounded in
Lp(P) uniformly in t ≥ 0. This yields tightness of the measure νt for which the
limit as t→ ∞ is going to be a candidate for the Φ4

2-measure.
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Log-Sobolev Inequality

Henri Elad Altman, Chunqiu Song

Consider our models on finite lattice Λ = Λε,L ⊂ LTd∩εZd and field configurations
are denoted by ϕ : Λ → R. The Hamiltonian H(ϕ) is of the form H(ϕ) =
1
2 (ϕ,Aϕ) + V (ϕ) where (f , g) := εd

∑

x∈Λ fx · gx, V (ϕ) = εd
∑

x∈Λ V (ϕx) with V
bounded below, and A is positive. The statistical property of the system is given
by the Gibbs measure 1

Z e
−H(ϕ)dϕ, where dϕ is the Lebesgue measure on RΛ, and

Z =
∫

RΛ e
−H(ϕ)dϕ. The Gibbs measure is attained by the equilibrium measure of

the Glauber-Langevin dynamics

dϕt = −∇H (ϕt) dt+
√
2dWt

whose solution is a Markov process with the Markovian semigroup Pt. How fast
does it equilibrate? Denote Law (ϕt) = νt, hence ν∞ = 1

Z e
−H(ϕ)dϕ. For a positive

function G, a probability measure ν and Φ(x) = x ln(x), define the entropy and
Fisher information to be

Entν(G) := Eν [Φ(G)]− Φ (Eν [G]) , Iν(G) := 4Eν

[

(∇
√
G)2

]

.

The log-Sobolev inequality

Entν∞

(
dνt
dν∞

)

= H (νt | ν∞) ≤ 1

2γ
I (νt | ν∞) =

1

2γ
Iν∞

(
dνt
dν∞

)

implies that te dynamics equilibrates exponentially fast with rate γ:

‖νt − ν∞‖2TV ≤ 2H (νt | ν∞) ≤ 2e−2γtH (ν0 | ν∞)

where the first inequality is given by Pinsker.
Definition 1. (Log-Sobolev Inequality) A probability measure ν on RΛ is said

to satisfy the log-Sobolev inequality with constant γ, if for all bounded smooth
positive function G : RΛ → R+, the inequality Entν(G) ≤ 1

2γ Iν(G) is true. The

largest choice of γ is called the log-Sobolev constant of ν.
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One natural question is: when does the Gibbs measure satisfy the log-Sobolev
inequality? By decomposing the entropy along the Langevin dynamics, one can
show the following:

Theorem 2. (Bakry-Emery) If there is a constant λ > 0 such that for all ϕ ∈ RΛ,
the inequality Hess H(ϕ) ≥ λ id (where id denotes the identity matrix) is true,
then the Gibbs measure satisfies the LSI with log-Sobolev constant γ ≥ λ.

In the UV limits of continuum models, the divergent counterterms break the
convexity of the Hamiltonian, hence the theorem does not apply. One way to
generalise the theorem is given by decomposing the entropy along another process
inspired byWilson’s RG (see [1], [2]). The kinetic part 1

2 (ϕ,Aϕ) in the Hamiltonian

provides a Gaussian in the Gibbs measure with covariance A−1. We assume there
is a scale decomposition of covariance A−1 with the form A−1 = C∞ =

∫∞
0
Ċsds

where Ċt are assumed to be positive definite with C0 = 0. The idea is to build up
a dynamical system by keep averaging out the part of the field with smaller scale
interactions (corresponding to Cs ) which result in an updating of the effective
interaction in large scale (corresponding to C∞ − Cs ), and hence an updating of
the measure. That is to consider the renormalised measure νs defined as

1

Z
e−

1
2 (ϕ,(C∞−Cs)

−1ϕ)
∫

e−V (ϕ+ψ)e−
1
2 (ψ,C

−1
s ψ)dψdϕ

=
1

Z
e−

1
2 (ϕ,(C∞−Cs)

−1ϕ)−Vs(ϕ)dϕ

where we define the renormalised potential

Vs(ϕ) = − ln

∫

e−V (ϕ+ψ)e−
1
2 (ψ,C

−1
s ψ)dψ.

Theorem 3. (Bauerschmidt&Bodineau 21) Suppose Ċt is differentiable, and

there is some real-valued functions λ̇t such that

ĊtHessVt(ϕ)Ċt −
1

2
C̈t ≥ λ̇tĊt ∀ϕ ∈ RΛ and t > 0

and define λt =
∫ t

0 λ̇sds and
1
γ =

∫∞
0 e−2λtdt. Then ν0 satisfies the LSI Entν0 [G] ≤

1
2γ Iν0(G)Ċ0

.

The above result, known as a multi-scale Bakry-Emery criterion, can be used
to derive log-Sobolev inequalities for the continuum Sine-Gordon model, which is
a 2-dimensional model (d = 2) described by the probability measure on RΛ given
by

νε,L ∝ exp

(

−1

2
(ϕ,Aϕ) − V0(ϕ)

)

dϕ,

where Aϕ = (−∆εϕ+m2ϕ), with ∆ε the discrete Laplacian on RΛ and

V0(ϕ) = 2ε2
∑

x∈Λ

ε−β/4πz cos(
√

βϕx).

Here, m > 0 is a mass term, z ∈ R is the coupling constant, and β ∈ (0, 8π).
The above potential is highly non-convex, all the more so as the non-convexity is
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amplified by the diverging renormalisation parameter ε−β/4π entering the picture
as we take the continuum UV limit ε → 0. However, for β < 6π, the multi-scale
Bakry-Emery criterion applies to the effective potential Vt associated with the
renormalisation semi-group, and provides a LSI with a constant that is uniform in
ε. To show the required bounds on HessVt one exploits the fact that this effective
potential solves the so-called Polchinski PDE, in order to represent it using an
Ansatz due to Brydges and Kennedy [3], with coefficients that can be bounded
uniformly in ε.
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1205 Genève
SWITZERLAND

Dr. Kihoon Seong

Department of Mathematics
Cornell University
590 Malott Hall
Ithaca, NY 14853-4201
UNITED STATES

Prof. Dr. Hao Shen

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706-1388
UNITED STATES

Dr. Nikita Simonov

Laboratoire Jacques-Louis Lions
Sorbonne Université
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