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Abstract. The mechanics of fracture propagation provides essential knowl-
edge for the risk tolerance design of devices, structures, and vehicles. Tech-
niques of free energy minimization provide guidance, but have limited appli-
cability to material systems evolving away from equilibrium. Experimental
evidence shows that the material response depends on driving forces arising
from mechanical fields. Recent years have witnessed the development of new
methods for modeling complex dynamic and quasistatic fracture. New ap-
proaches may differ remarkably from previous ones, as they involve implicit
coupling between damaged and undamaged states, allowing fracture to be
modeled as emergent phenomena.

The focus of this workshop is on the most advanced techniques for mod-
eling fracture, represented by eigenerosion methods, variational approaches,
phase field fracture models, and non-local approaches. Technical progress is
contingent on the further development of the mathematical framework un-

derlying these techniques. This is necessary for accurate and reliable compu-
tational modeling of fracture for multiple freely propagating cracks. The ob-
jective of this workshop is to mathematically identify and discuss open issues
related to fracture modeling and to highlight recent advances. Addressing
fundamental issues will foster exchange between the different communities,
essential for advancing the field.
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Introduction by the Organizers

The workshop Fracture as an Emergent Phenomenon, organized by Patrick Diehl,
Robert Lipton, Anna Pandolfi and Thomas Wick, was well attended and involved
47 on site participants and 8 virtual participants with broad geographic repre-
sentation from Europe and North America. The participants were a blend of
researchers in Mathematics, Numerical Analysis, Scientific Computing, Materials
Science, Physics, and Engineering. It included researchers investigating the free
fracture problem using theoretical, numerical, and experimental tools.

In light of the diverse communities involved, the workshop consisted of three 15-
minute introductory lectures given by the organizers outlining techniques used by
the different communities and when applicable similarities between methodologies.
These were followed by 23 forty-five-minute lectures with lively 15-minute discus-
sions. Four shorter 15-minute lectures followed by 10 minutes of discussion were
given by graduate students. The five postdoctoral researchers presented posters
on their current research activity.

The workshop provided a forum and opportunity for interaction and synergy
between different communities for addressing the fracture problem. Several cross-
cutting issues were raised including the nucleation of fracture, homogenization of
fracture, dramatic effects of elastic anisotropy on fracture paths, stability of frac-
ture models, eigen-deformations and cohesive fracture, optimal control of fracture,
experimental real-time control of fracture paths, identification of relevant length
scales in fracture modeling and curvature effects in nonlocal models.

This schedule also left enough time for all participants for further discussions
in smaller groups that were used with great pleasure. It turned out - according
to feedback and discussions during the workshop - that indeed several people
from these diverse communities would never meet at their standard conferences
and explicitly stated that this has been a unique scientific occasion in which new
knowledge on ‘fracture’ is being created.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Analysis and simulation of a rate-independent phase-field damage model 22

Davide Riccobelli (joint with Pasquale Ciarletta, Guido Vitale,
Corrado Maurini, Lev Truskinovsky)
Buckling behind brittle fracture in soft solids . . . . . . . . . . . . . . . . . . . . . . . . 26

Corrado Maurini
Crack nucleation in variational gradient damage models endowed with a
local minimization principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

François Hild (joint with the Eikology group of LMPS)
On the use of image correlation techniques for the analysis of fracture . . 29

Florin Bobaru
Length-scales in peridynamic models of quasi-static and dynamic fracture 31

Christopher J. Larsen
Variational fracture and loads: a local variational principle for fracture . 32

Kai Partmann (PhD student talk)
Peridynamic modeling of the interplay of wave propagation and dynamic
fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Kaushik Dayal (joint with Janel Chua, George Gazonas, MaryamHakimzadeh,
Carlos Mora-Corral, Noel Walkington)
Phase-field modeling of fracture: nucleation, dissipation, large
deformation, and complex stress states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



8 Oberwolfach Report 1/2024

John E. Dolbow (joint with Oscar Lopez-Pamies)
The Brazilian Test: Understanding the Interplay Between Strength and
Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Kerstin Weinberg (joint with Kai Partmann and Christian Wieners)
Different peridynamic approaches to wave propagation and
dynamic fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Abstracts

New perspectives on non-local modeling for brittle fracture

Robert Lipton

(joint work with Debdeep Bhattacharya)

Peridynamic simulations implicitly couple the evolution of damage and deforma-
tion inside a material specimen through a nonlocal formulation using force inter-
action between neighboring points. They provide for the spontaneous emergence
and growth of fissures as part of the dynamic simulation [6], [7]. This idea has
been adapted and expanded since its inception and the literature has grown sig-
nificantly since then. The time evolution of peridynamic simulations are driven by
temporally and spatially nonlocal forces. What is missing so far is: 1) a complete
theory for a material undergoing irreversible damage guaranteeing energy balance
and 2) an explicit formula for the energy necessary for material failure and the
size of a d−1 dimensional “fracture” set proportional to the critical energy release
rate. Both of these aspects must follow directly from the evolution equation for
the deformation multiplied by the velocity and integration by parts.

We rigorously pursue these aspects for the free discontinuity problem in fracture
mechanics and propose a nonlocal field theory that demonstrably preserves energy
balance to uncover new advantages of the nonlocal approach. Motivated by [6],
the existence theory of [2], [1], [3] and the rate form of energy balance found
in [4] we introduce a new nonlocal dynamic field theory to show existence of
displacement-failure set pairs for two and three dimensional specimens Ω made
from homogeneous material. The purpose is to model brittle damage and to recover
dynamic energy balance for displacement-failure set pairs.

A small deformation model for brittle failure is constructed. Forces between
pairs of points in Ω are referred to as bonds. Bond forces depend on a two-point
strain. The force between pairs of points act elastically against compressive strain
and for moderate tensile strain the force is linear elastic. As one continues to
increase tensile strain it becomes nonlinear elastic and at a critical strain the force
becomes unstable and softens with increasing strain. The force eventually goes to
zero with increasing strain and the bond between points breaks. This process is
irreversible and the bonds once broken do not heal. Here the maximum length
scale of nonlocal interaction is both finite and small relative to the size of the
domain and is denoted by ǫ. The zone of nonlocal interaction about every point is
called is called the horizon. The failure set Γǫ(t) is the set of pairs of points with
broken bonds in Ω at time t.

The material is assumed to be homogeneous with density ρ and the balance of
linear momentum for each point x in the body Ω is given by

ρü(t,x) + Lǫ[u](t,x) = b(t,x),(1)

where b(t,x) is a prescribed body force density. The linear momentum balance is
supplemented with the initial conditions on the displacement and velocity given
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by

u(0,x) = u0(x), u̇(0,x) = v0(x),(2)

and we look for a solution u(t,x) on a time interval 0 < t < T . The operator Lǫ
is non-local both in space and time and is given by

Lǫ[u](t,x) = −
∫

Ω

f
ǫ(t,y,x,u) dy.(3)

Here f ǫ(t,y,x,u) is the elastic force acting on the point x due to the point y at
time t due to the displacement field u. The force is given by

(4) f
ǫ(t,y,x,u) =

2ρǫ(y,x)√
|y − x|

γ(u)(y,x, t)g′(r(t,u))e,

where ρǫ(y,x) = χΩ(y)J(|y − x|/ǫ)/ωdǫd+1, J(|x|) is positive and has support in
the unit ball and χΩ is the characteristic function of the set Ω. The two point
damage field γ(u)(y,x, t) takes values between zero and one. Zero indicates the
bond between x and y is broken and one indicates undamaged bonds, g′(r(t,u(t)))
is the force between x and y as a function of the strain between them. The
damage field γ(u)(y,x, t) is nonlocal in time as well as space and depends on past
values of u(t,x). This provides the coupling of damage and deformation. The
operator Lǫ[u](t,x) is the average of f ǫ(t,y,x,u) over y within the horizon about
x. The damage field γ(u)(y,x, t) is a two point phase field. Here γ(u)(y,x, t) = 1
corresponds to undamaged bonds and γ(u)(y,x, t) = 0 corresponds to broken
bonds.

This level of generalization together with Newton’s second law and the new
constitutive relation implicitly couple elastic forces and failure allowing failure
sets and deformation to emerge from a two point strain dynamics over Rd × Rd.
In addition to existence of a solution u(t,x), the model provides energy balance.
The rate form of energy balance is shown to follow directly from the evolution
equation for the deformation multiplied by the velocity and integration by parts.
The rate form of energy balance shows that damage must start occurring when
the energy input to the system exceeds the material’s ability to generate kinetic
and elastic energy through displacement and velocity,. The energy expended up
to time t resulting in material failure over a region Γǫ(t) is given by a bounded
d − 1 dimensional geometric integral of the set of broken bonds given by pairs
(x,y) such that γ(u)(y,x, t) = 0 projected onto the domain Ω. Application of
Gronwall’s inequality shows that the geometric integral is bounded uniformly in ǫ
for initial and boundary conditions that are independent of ǫ.

As an example, consider the failure set Γǫ(t) defined by a flat two dimensional
piece of surface Rt where points above the surface are no longer influenced by forces
due to points below the surface and vice versa. This is the case of alignment, i.e., all
bonds connecting points y above Rt to points x below are broken. Calculation of
the failure energy of Γǫ(t) shows that it is the product of the critical energy release
rate of fracture mechanics multiplied by the two dimensional surface measure of
Rt. The surface Rt defines an internal boundary to domain Ω and the crack
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is unambiguously described as the internal boundary. Displacement jumps can
only occur across Rt and traction forces are zero on either side of Rt. A similar
remark can be made for one dimensional cracks inside a two dimensional body.
An analysis shows that material failure is associated with a maximum energy
dissipation condition on each bond.

The example given above shows that the failure energy corresponds to Griffith
fracture energy for flat cracks, demonstrating that the energy is bounded and
nonzero on d− 1 dimensional sets corresponding to cracks. However the geometry
of the failure set is controlled by how it grows dynamically. Growth is governed by
the rate of work done against boundary forces and the dynamic interaction between
elastic displacement and bond failure. Although interaction is captured implicitly
through the evolution equations, one can apply the rate form of energy balance to
explicitly deliver the time rate of the damage energy and characterize the location
of the region undergoing damage. This region is the process zone PZǫ(t) and from
the constitutive law, corresponds to the regions of highest strain. The damage
rate and process zone are determined by the displacement field through the rate
of work done by the load and the change in both the kinetic energy and elastic
potential energy of the specimen. The rate form of energy balance also dictates the
onset of crack nucleation. For a flat mode-I crack in a plate the strain is greatest
in a neighborhood of the tips and this the location of the process zone. Simulation
using the field theory clearly show maximum strain energy dissipation as a crack
path selection mechanism.

Away from the damaging zones, it is shown that the field theory delivers the
energy density associated with isotropic linear elasticity. Explicit formulas for the
Lamé constants in terms of the force potentials can be obtained. In this way, it is
seen that the energy for this model is given by the surface energy over failure zones
and a volume energy associated with linear elastic behavior inside quiescent zones.
This is demonstrated for a flat crack propagating from left to right in a plate. We
consider a sequence of nonlocal initial value problems for a crack propagating from
left to right, parameterized by ǫ, and pass to the limit of vanishing nonlocality to
find that the limit displacement field is a solution of the linear elastic wave equation
outside a propagating traction free crack.

The field theory is presented in [5].
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The concept of eigenfracture and eigenerosion

Anna Pandolfi

(joint work with Kerstin Weinberg, Michael Ortiz)

According to Griffith’s criterion for fracture, in a brittle material crack growth is
results from the competition between elastic energy minimization and the fracture
energy cost of creating new surface. Assuming rate independence, crack growth in
a solid occupying a domain Ω ⊂ R3 is governed by the potential energy

Π(u) = E(u) + (forcing terms) ,(1)

where

E(u) =

∫

Ω\Ju

W (ε(u)) dx +Gc|Ju| ,(2)

is the total energy, including the elastic energy of the solid and the energy cost of
fracture, W (ε(u)) denotes the strain energy density, ε(u) = sym∇u the linearized
strain tensor, u(x) the displacement field, dx the element of volume and the forc-
ing terms include body forces, boundary tractions and prescribed displacements.
The jump set Ju collects the cracks across which the displacement u may jump
discontinuously and |Ju| denotes the crack surface area. The material-specific pa-
rameter Gc is the specific fracture energy density per unit area and measures the
fracture strength of the solid.

The governing principle of energy minimization states that the displacement
field u at any given time is expected to minimize the potential energy Π(u) sub-
ject to monotonicity of the jump set Ju and to crack closure constraints. Thus,
the problem of crack tracking is reduced to a pseudo-elastic problem, with mono-
tonicity and closure constraints, for every state of loading.

The posed problem is a free-discontinuity problem in the sense that the dis-
placement field u is allowed to be discontinuous and the jump set Ju itself is an
unknown of the problem. Free-discontinuity problems are notoriously difficult to
solve computationally, which has spurred the search for regularizations that re-
lax the sharpness of the discontinuities. Here we briefly summarize three such
regularizations: eigenfracture, phase-field models, and eigenerosion [1].

Eigenfracture. The method of eigenfracture (EF) is an approximation scheme
for generalized Griffith models based on the notion of eigendeformation [3]. The
approximating energy functional is assumed to be of the form

Eǫ(u, ε
∗) =

∫

Ω

W (ε(u)− ε∗) dx +
Gc
2ǫ

|{ε∗ 6= 0}ǫ|

= Ee(u, ε∗) + Eiǫ(ε
∗)

(3)
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where ε∗ is the eigendeformation field that accounts for fracture, Ee(u, ε∗) is the
elastic energy, Eiǫ(ε

∗) is the energy cost of the eigendeformation, or inelastic energy,
and ǫ is a small length parameter. The elastic energy Ee(u, ε∗) follows as the
integral over the entire domain of the strain energy density W as a function of the
total strain ε(u) reduced by the eigenstrain ε∗. In this manner, eigendeformations
allow the displacement field to develop jumps at no cost in elastic energy.

This local relaxation comes at the expense of a certain amount of fracture
energy. The challenge in regularized models of fracture is to estimate the inelas-
tic fracture energy Eiǫ(ε

∗) in a manner that converges properly as ǫ → 0. In
the method of eigenfracture, the crack area is estimated as the volume of the ǫ-
neighborhood {ε∗ 6= 0}ǫ of the support {ε∗ 6= 0} of the eigendeformations scaled
by 1/ǫ. Specifically, in this construction {ε∗ 6= 0} is the set of points where the
eigendeformations differ from zero, {ε∗ 6= 0}ǫ is the ǫ-neighborhood of {ε∗ 6= 0},
i. e., the set of points at a distance to {ε∗ 6= 0} less or equal to ǫ, and |{ε∗ 6= 0}ǫ|
is the volume of {ε∗ 6= 0}ǫ.

The method of eigenfracture is provably convergent [3], in the sense that the
total energy (3) Γ-converges to the Griffith energy (2) in the limit of ǫ → 0. This
convergence property shows that the eigenfracture method is indeed physically
and mathematically sound.

Phase-field models of fracture. In the PF approximation of Griffith fracture,
the state of the material is characterized by an additional continuous field v(x)
taking values in the interval [0, 1] and v = 0 at the crack. The crack set Ju is
then approximated as a diffuse interface where v 6= 1. The corresponding fracture
model traces back to the pioneering work of Ambrosio and Tortorelli [4], who
showed that a two-field functional Γ-converges to the Mumford-Shah functional
of image segmentation. Generalized to three-dimensional elasticity, the two-field
functional of Ambrosio and Tortorelli assumes the form

Eǫ(u, v) =

∫

Ω

(
(v2 + o(ǫ))W (ε(u)) +Gc

((1 − v)2

4ǫ
+ ǫ|∇v|2

))
dx

= Eeǫ (u, v) + Eiǫ(v),

(4)

where ǫ is a small length parameter and o(ǫ) stands in for a positive function
that decreases to zero faster than the small parameter ǫ. The work of Ambrosio
and Tortorelli, and other similar works [5, 2], subsequently spawned numerous
variants, extensions and implementations, but the differential structure of the
fracture energy Eiǫ(v) in (4) has remained essentially unchanged in the later works.

Eigenerosion. Eigenerosion (EE) supplies an efficient implementation of the
eigenfracture model [6]. To establish the connection between eigenfracture, eq. (3),
and eigenerosion, assume that W (ε) is quadratic and restrict eigendeformations
to the particular form

(5) ε∗ = ε(u)− (w + o(ǫ))1/2ε(u),
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with w taking the values 0 or 1, i. e., w(x) ∈ {0, 1}. Inserted into eq. (3) this gives
the EE functional

Eǫ(u,w) =

∫

Ω

(w + o(ǫ))W (ε(u)) dx +
Gc
2ǫ

|{w = 0}ǫ|

= Eeǫ (u,w) + Eiǫ(w).

(6)

By Jensen’s inequality and properties of extreme points [7], it follows that the
range of w can be extended to the entire interval [0, 1], i. e., 0 ≤ w(x) ≤ 1,
without changing the solutions. Thus, EE is a restricted form of eigenfracture and
it supplies an upper bound of the eigenfracture energy in general.

Evidently, the EE energy (6) may be regarded as a PF model with phase field

(7) v =
√
w

and a fracture energy computed by the ǫ-neighborhood construction. Conversely,
PF models of fracture may be viewed as special cases of EE, and hence eigenfrac-
ture, where the fracture energy is of the Ambrosio-Tortorelli type.

The great advantage of the EE model (6) vs. the conventional Ambrosio–Torto-
relli–type phase-field model (4) is that in the former, eq. (6), the phase-field is
undifferentiated and evaluates the fracture energy through an integral expression,
whereas the latter, eq. (4), requires the phase-field to be differentiated. Differ-
entiation in turn requires regularity and conforming interpolation, e. g., by the
finite-element method. By contrast, the integral form of the fracture energy in
(6) allows the phase-field to be approximated, e. g., as piecewise constant 0 or 1,
which leads to a considerable increase in implementational simplicity and robust-
ness [6, 8].
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Brief introduction to variational / phase-field fracture

Thomas Wick

This short talk serves to give a brief introduction and overview of variational /
phase-field method for modeling fracture to the audience of this workshop. As
this workshop is composed by three groups of people, namely peridynamics, eigen-
erosion, phase-field, as well as experimentalists, scientific computing, numerical
analysis, and theoretical mathematics, the principle properties of phase-field frac-
ture shall be explained in order to enable a common starting point for fruitful
discussions. A corresponding overview paper addressing mainly peridynamics and
phase-field, but with literature references to eigenerosion as well, is [4].

In phase-field fracture, the principal idea (here explained for quasi-static frac-
ture in brittle materials) is based on energy minimization in which potential and
fracture energies interact [2]. To this end, let Ω ⊂ Rn be the intact domain and
Γ ⊂ Rn−1 the fracture set. Let u : Ω → Rn be a displacement field and the total
energy be given by

E(u,Γ) =

∫

Ω

ψ0(ǫ(u))dV − F (u)

︸ ︷︷ ︸
=:P (u)

+

∫

Γ

Gc dA

︸ ︷︷ ︸
=ψc(Γ)

,

with the potential energy

P (u) :=

∫

Ω

ψ0(ǫ(u))dV − F (u),

composed by the bulk energy (first term) with ψ0(ǫ(u)) := Cǫ(u) · ǫ(u) being the
energy storage function with the stiffness tensor C ∈ Rn×n×n×n, and the linearized
strain tensor ǫ(u) = 1

2 (∇u+∇uT ). The external potential of volume and surface
forces is given by

F (u) =

∫

Ω

b∗udV +

∫

∂Ωt

t∗udA,(1)

where b∗ is the distributed body force and t∗ are traction forces. The crack surface
energy is given by

(2) ψc(Γ) =

∫

Γ

Gc dA,

where Gc > 0 is the critical energy release rate. The domain Ω describes the solid
with a (sharp) crack set Γ. For the boundary ∂Ω of the domain Ω two kinds of
boundary conditions along the normal vector n are considered such that ∂Ωu ∩
∂Ωt = ∅. On the boundary ∂Ωu Dirichlet displacement conditions are applied,
which are built, as usually done, into the governing function spaces. Tractions t∗

are applied to the ∂Ωt boundary.
From mathematical and numerical viewpoints, the sharp fracture representation

(2) is challenging because the crack ‘lives’ on a lower-dimensional manifold Γ.
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On the one hand, this requires special function spaces, e.g., SBV spaces, and
on the other hand, numerical approximations require specialized discretizations
as for instance generalized/extended finite elements among various other possible
techniques.

To handle this challenge one can borrow techniques from image processing. The
single-well Modica-Mortola functional is introduced by Ambrosio and Tortorelli [1]
in image processing to approximate the the surface area term in the Mumford–
Shah functional and is given by

∫

Γ

dA ≈
∫

Ωc

γ(φ,∇φ)dV,(3)

with

γ(φ,∇φ) = 1

2

[
1

l0
(1− φ)2 + l0|∇φ|2

]
.(4)

Bourdin et al. [3] proposed to use this energy in an appealing approach to regu-
larize the sharp crack defined on Γ by a domain integral defined on Ωc. In this
context it is given by

∫

Γ

GcdA ≈
∫

Ωc

Gcγ(φ,∇φ)dV,(5)

with γ(φ,∇φ) is now viewed physically as the crack surface density function. Here,
l0 > 0 is the so-called length scale (i.e., regularization) parameter and l0 charac-
terizes the width of the regularized domain Ωc.

Based on these ingredients phase-field modeling has seen world-wide develop-
ments with extensions in all directions such as other constitutive stress tensors
and their splitting into tension and compressive forces, multiphysics extensions
into porous media and thermo-elasticity, improvements of algorithms for nonlinear
and linear solvers, goal functional (quantities of interest) evaluations, optimization
loops, parameter identification, up to data-driven approaches, to name a few. All
these developments pose new questions and discussions from which some of them
shall be discussed during this workshop.
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Homogenisation of free discontinuity problems

Gianni Dal Maso

Free discontinuity problems are minimum problems for functionals of the form

(1)

∫

A\Ju

f(x,∇u)dx +

∫

A∩Ju

g(x, [u], νu)dHd−1,

where A ⊂ Rd is a given open set, Ju is the jump set of u (assumed to be a
(d − 1)-dimensional set), [u] = u+ − u− is the amplitude of the jump of u, νu is
the unit normal to Ju, and Hd−1 is the (d− 1)-dimensional Hausdorff measure.

In the applications to fracture mechanics u represents the displacement and its
jump set Ju is interpreted as the crack (for simplicity we consider here only the
antiplane case, where the displacement is a scalar function), and (1) represents
the sum of the stored elastic energy and of the energy dissipated by the crack.

In brittle fracture models we assume inf g > 0; typical example g(x, ζ, ν) = 1.
In the cohesive models we assume g(x, 0, ν) = 0 and the existence of the limit

limt→0+
1
t g(x, tζ, ν) =: g0(x, ζ, ν) < +∞; typical example g(x, ζ, ν) = |ζ| ∧1. This

condition reflects a force acting between the crack lips when the opening is small.
In both cases we assume that g is bounded. This is due to the fact that no force

is acting between the crack lips when the crack opening is sufficiently large.
Free discontinuity problems are studied in function spaces containing functions

that may be discontinuous across a (d − 1)-dimensional surface, like BV (A). For
every u ∈ BV (A) the gradient Du of u in the sense of distributions is a bounded
Radon measure that can be decomposed as Du = Dau+Dsu = Dau+Dju+Dcu,
where Dau is absolutely continuous with respect to the Lebesgue measure (its
density is denoted by ∇u), Dsu is singular, Dju (the jump part) is the restriction
of Dsu to the jump set, and Dcu (the Cantor part) is the remaining part of Dsu.

In the brittle case, when inf g > 0, it is convenient to formulate these prob-
lems in the space SBV (A) of special functions of bounded variation, introduced
by Ambrosio and De Giorgi in [7] and defined as the space of all u ∈ BV (A)
such that Dcu = 0. Under suitable technical assumptions that ensure the lower
semicontinuity of the functional, it is possible to prove the existence of a solution
of the free discontinuity problem by using a compactness result for SBV (A) due
to Ambrosio [1, 2].

In the cohesive case the compactness result in SBV (A) cannot be applied.
Moreover the functional (1) is not lower semicontinuous in BV (A) and one has to
consider its relaxed version, which, under suitable hypotheses, can be written as

∫

A

f(x,∇u)dx +

∫

A

f∞(x,
dDcu

d|Dcu| )d|D
cu|+

∫

A∩Ju

g(x, [u], νu)dHd−1,

where dDcu
d|Dcu| is the Radon-Nikodym derivative of the measure Dcu with respect to

its variation |Dcu| and f∞(x, ξ) := lim supt→+∞
1
t f(x, tξ) is the recession function.

Unfortunately this functional does not control the BV -norm of u, since it does not
control the amplitude of the jump [u]. Recall that g is bounded, so we cannot
have c|[u]| ≤ g(x, [u], νu).
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Therefore, we formulate the problem in the larger space GBV⋆(A), defined as
the space of functions u : A→ R whose truncations u(m) := (u∧m)∨ (−m) belong
to BV (A) for every m > 0 and satisfy

sup
m>0

( ∫

A

|∇u(m)|dx+ |Dcu(m)|(A) +
∫

J
u(m)

|[u(m)]| ∧ 1dHd−1
)
< +∞ .

The main point is that, althoughDu is not defined (umight not be a distribution!),
Dcu can be defined for every u ∈ GBV⋆(A) (see [5]).

The homogenization problem for free discontinuity functionals leads to the study
of the asymptotic behaviour, as ε→ 0+, of the minimisers of the functionals

∫

A

f(
x

ε
,∇u)dx+

∫

A∩Ju

g(
x

ε
, [u], νu)dHd−1,(2)

∫

A

f(
x

ε
,∇u)dx+

∫

A

f∞(
x

ε
,
dDcu

d|Dcu| )d|D
cu|+

∫

A∩Ju

g(
x

ε
, [u], νu)dHd−1,(3)

in the brittle and cohesive cases, respectively. For this we use Γ-convergence.
In the brittle case f has p-growth, i.e., a1|ξ|p ≤ f(x, ξ) ≤ a2(|ξ|p + 1) for some

constants p > 1 and 0 < a1 ≤ a2, while 0 < c1 ≤ g(x, ζ, ν) ≤ c2 for some constants
0 < c1 ≤ c2. We use the following notation:

• Q(x, ρ) = cube with centre x and side ρ, with faces parallel to the axes;
• Qν(x, ρ) = cube with centre x and side ρ, with a face orthogonal to ν;
• ℓξ = linear function with gradient ξ, i.e., ℓξ(x) = ξ · x;
• ux,ζ,ν = pure jump function defined by ux,ζ,ν(y) = ζ if (y− x) · ν > 0 and
ux,ζ,ν(y) = 0 if (y − x) · ν ≤ 0;

• m1,p(ℓξ, Q(x, ρ)) := inf{
∫
Q(x,ρ) f(y,∇u)dy : u− ℓξ ∈W 1,p

0 (Q(x, ρ));

• mpc(ux,ζ,ν, Qν(x, ρ)) := inf{
∫
Qν(x,ρ)∩Jv

g(y, [u], νu)dHd−1 : u piecewise

constant on Qν(x, ρ), u = ux,ζ,ν on ∂Qν(x, ρ)}.

Theorem 1 (see [3]). In the brittle case assume that the limits

lim
ρ→+∞

m1,p(ℓξ, Q(ρx, ρ))

ρd
=: fhom(ξ)(4)

lim
ρ→+∞

mpc(uρx,ζ,ν , Qν(ρx, ρ))

ρd−1
=: ghom(ζ, ν)(5)

exist and are independent of x. Then the functionals
∫

A

f(
x

ε
,∇u)dx+

∫

A∩Ju

g(
x

ε
, [u], νu)dHd−1,

which are well defined on the space GSBV (A) of functions whose truncations
belong to SBV (A), Γ-converge, as ε→ 0+, to the functional

∫

A

fhom(∇u)dx+

∫

A∩Ju

ghom([u], νu)dHd−1.
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In [4] a stochastic homogenisation result for free discontinuity problems in the
brittle case has been obtained. It shows that (4) and (5) are almost surely satisfied
under the natural hypotheses for stochastic homogenisation.

In the cohesive case f has linear growth, i.e., a1|ξ| ≤ f(x, ξ) ≤ a2(|ξ| + 1) for
some constants 0 < a1 ≤ a2, c1(|ζ|∧1) ≤ g(x, ζ, ν) ≤ c2(|ζ|∧1) for some constants
0 < c1 ≤ c2, and the limit g0(x, ζ, ν) := limt→0+

1
t g(x, tζ, ν) exists and is finite.

Given a bounded open set A ⊂ Rd with Lipschitz boundary, we define

Ef,g(u,A) :=

∫

A

f(x,∇u)dx+
∫

A

f∞(x,
dDcu

d|Dcu|)d|D
cu|+

∫

A∩Ju

g(x, [u], νu)dHd−1;

similar definitions for Ef,g
0

(u,A) and Ef
∞,g(u,A). For every t > 0 we define

mf,g0

t (ℓξ, A) := inf{Ef,g0(u,A) : u ∈ BV (A), |u− ℓξ| ≤ t, u = ℓξ on ∂A}
mf∞,g(ux,ζ,ν, A) := inf{Ef∞,g(u,A) : u ∈ BV (A), u = ux,ζ,ν on ∂A}.

Theorem 2 (see [6]). In the cohesive case for every ξ ∈ Rd there exists an explicit
constant κξ > 0 such that, if the limits

lim
ρ→+∞

mf,g0

κξρ (ℓξ, Q(ρx, ρ))

ρd
=: fhom(ξ)(6)

lim
ρ→+∞

mf∞,g(uρx,ζ,ν , Qν(ρx, ρ))

ρd−1
=: ghom(ζ, ν)(7)

exist and are independent of x, then the functionals
∫

A

f(
x

ε
,∇u)dx+

∫

A

f∞(
x

ε
,
dDcu

d|Dcu| )d|D
cu|+

∫

A∩Ju

g(
x

ε
, [u], νu)dHd−1,

defined on GBV⋆(A), Γ-converge, as ε→ 0+, to the functional
∫

A

fhom(∇u)dx+

∫

A

f∞
hom(

dDcu

d|Dcu| )d|D
cu|+

∫

A∩Ju

ghom([u], νu)dHd−1.

Using the technique developed in [4], from this theorem one can obtain a sto-
chastic homogenisation result for free discontinuity problems in the cohesive case,
which shows that (6) and (7) are almost surely satisfied.
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Identification of damage from 4D displacement field measurements

Ana Vrgoc (PhD student talk)

Digital Volume Correlation (DVC) approaches enable quantitative analyses of
specimen deformations to be performed by measuring 3D displacement fields be-
tween discrete states of samples imaged via, say, X-Ray Computed Tomography.
Such frameworks are limited by the number of scans (due to acquisition dura-
tion). Considering only one projection per loading step, Projection-based Digital
Volume Correlation (P-DVC) allows 4D (i.e., space and time) full- field measure-
ments to be carried out over entire loading histories. The sought displacement
field is generally decomposed over a basis of separated variables, namely, tempo-
ral and spatial modes. In the present work, the spatial modes are constructed
via scan-wise DVC and only the temporal amplitudes are sought via P-DVC. The
proposed method is applied to a specimen subjected to in-situ tension (i.e., im-
aged via X-Ray Computed Tomography). The P-DVC enhanced DVC method
employed herein enables for the quantification of damage growth over the entire
loading history up to failure.

Analysis and simulation of a rate-independent phase-field
damage model

Dorothee Knees

(joint work with Samira Boddin, Felix Rörentrop, Jörn Mosler)

We focus here on a phase-field model first introduced by Ambrosio and Tortorelli
as a diffuse approximation of sharp fracture models. For this model, the under-
lying energy is not simultaneously convex in all variables. In rate-independent
models this causes problems since there might be no time-continuous solutions
even if the applied loads are varying smoothly with time. Different (weak) solu-
tion concepts were developed that allow for discontinuous solutions, see [11] for
an overview. In general nonconvex cases, they typically are not equivalent. As
a consequence, different solution concepts might predict different critical loads at
which failure occurs. Hence, it is desirable to understand which of these concepts
is most appropriate from the physical point of view and to clarify which numerical
schemes should be used to approximate solutions of a certain class.

A meanwhile well established solution concept is that of (Global) Energetic So-
lutions, first introduced in [12] and applied to damage models in [13, 10, 3]. It
relies on a global minimization principle. However, from a physics point of view,
due to the global minimization such solutions tend to jump too early. For in-
stance, this means that solutions develop a discontinuity even though local force
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balances would predict no evolution at all, see [8] for an example with a single
propagating crack. To avoid this problem the class of Balanced Viscosity Solu-
tions (BV solutions) was introduced, see for instance [9] for the general theory
and [6, 7] for its application to damage and phase-field fracture models. Here, a
viscosity term/damping term is introduced into the model and the viscous limit
(i.e. vanishing viscosity parameter) is investigated. In this way, a solution class is
introduced that appears to have more realistic jump conditions compared to the
gobal energetic approach. In this note we focus on balanced viscosity solutions for
the Ambrosio-Tortorelli model and describe a time-adaptive algorithm that can
be applied to approximate such solutions, [1].

Let us first describe the model and our assumptions. Let Ω ⊂ R2 be a bounded
domain with Lipschitz boundary. Let u : [0, T ] × Ω → R2 with u(t) ∈ U :=
H1

0 (Ω,R
2) denote the displacement field and z : [0, T ] × Ω → R with z(t) ∈

H1(Ω) =: Z denote the scalar damage variable. Here, z(x) = 1 means no
damage in x ∈ Ω while z(x) = 0 means maximum damage in x. Given a load
ℓ ∈ C1,1([0, T ];U∗) the stored energy functional reads for u ∈ U and z ∈ Z

E(t, u, z) = 1
2

∫

Ω

g(z)Ce(u) : e(u) dx+ 1
2

∫

Ω

κ1z
2 + κ2|∇z|2 dx− 〈ℓ(t), u〉,(1)

where e(u) = sym∇u is the symmetrized strain and κ1, κ2 are some positive con-
stants. Moreover, g(z) = (z2 + η) for some η > 0. For v ∈ Z and fixed µ > 0, the
dissipation potential is given by

R(v) =

{∫
Ω
µv dx if v ≤ 0

∞ otherwise
.

The quasistatic evolution model written as a force balance reads: Given z0 ∈ Z
determine u and z such that z(0) = z0 and for t ∈ [0, T ]

0 = DuE(t, u(t), z(t)),(2)

0 ∈ ∂R(ż(t)) + DzE(t, u(t), z(t)) .(3)

In order to prove the existence of solutions via a vanishing viscosity procedure,
the differential inclusion (3) is regularized by adding the term νż(t) with a pos-
itive parameter ν. Solutions (uν , zν) of the regularized system do exist and are
continuous in time. In [6], the vanishing viscosity analysis for ν → 0 is carried
out. For that purpose an arc-length parameterization for the solution trajectories
was introduced. Let I(t, z) = min{E(t, v, z) ; v ∈ U} denote the reduced energy
functional. It is shown that in the parameterized setting the limits ν → 0 of the
sequences (uν , zν) can be characterized as follows:

Theorem 1. Assume that DzI(0, z0) ∈ L2(Ω). There exists S > 0 and functions
t̂ ∈ W 1,∞([0, S], [0, T ]) and ẑ ∈ W 1,∞((0, S);Z) with ẑ(0) = z0 satisfying for
almost all s ∈ [0, S] the normalization condition t̂′(s) + ‖ẑ′(s)‖Z ≤ 1 and the
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energy dissipation balance

I(t̂(s), ẑ(s)) +
∫ s

0

R(ẑ′(r)) +D∂R(0)(t̂
′, ẑ′,−DzI(t̂, ẑ)) dr

= I(0, z0)) +
∫ s

0

t̂′(r)∂tI(t̂(r), ẑ(r)) dr,

where

D∂R1(0)(t̂
′, ẑ′, ξ) =

{
dist(ξ, ∂R(0)) ‖ẑ′‖L2(Ω) if t̂′ = 0

χ{0}(dist(ξ, ∂R(0))) if t̂′ > 0
.

This is also the definition of (Z-parameterized) balanced viscosity solutions in
this context. One could now apply a time-incremental version of the vanishing
viscosity procedure to approximate balanced viscosity solutions numerically. The
convergence of solutions of such schemes to balanced viscosity solutions was ana-
lyzed in [6], as well. However, the numerical experiments in [8] (that were carried
out for the propagation of a single crack) showed that it is very difficult to choose
the time increment and the viscosity parameter in a good way so that already for
coarse discretizations the correct behavior is visible.

An alternative way to approximate balanced viscosity solutions is based on a
procedure suggested in [2]: Instead of discretizing the time one discretizes with
respect to the arc-length parameter of the solution trajectories. In [1], we combined
this approach with an alternate minimization scheme and analyzed the following
time-adaptive local minimization algorithm: Let ρ > 0 denote a locality parameter
and let V = Lα(Ω), α ≥ 3p

p−2 , or V = H1(Ω). Here, p > 2 is given by a theorem

about the uniform higher integrability of the strains ([4, 1]). In general, this value
unfortunately is not known explicitly.

The scheme reads: Given (tk, uk, zk) determine the values (tk+1, uk+1, zk+1) by

• inner loop: constrained alternate minimization, i ∈ N0

uk,i = argmin{ E(tk, v, zk,i−1) ; v ∈ U }(4)

zk,i = argmin{ E(tk, uk,i, ζ) +R(ζ − zk) ; ζ ∈ Z, ‖ζ − zk,i−1‖V ≤ ρ }(5)

There exist subsequences with

uk+1 := lim
m→∞

uk,im strongly in U , zk+1 := lim
m→∞

zk,im strongly in Z .

The limits are fixed points of (4)–(5).
• outer loop/time update: tk+1 := tk + ρ− ‖zk+1 − zk‖V .
• Repeat until tk+1 = T .

The following convergence result is proved in [1]:

Theorem 2. Let z0 ∈ Z, 0 ≤ z0 ≤ 1 and ũ0 ∈ U such that DzE(0, ũ, z0) ∈ V∗.
Then there exists a sequence ρn → 0, S > T and functions

t̂ ∈ W 1,∞(0, S;R), û ∈ W 1,∞(0, S;W 1,p̃(Ω)),

ẑ ∈ W 1,∞(0, S;V) ∩ L∞(0, S;Z) ∩H1(0, S;Z)
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such that suitable interpolants converge weakly∗ in the above spaces. Moreover, the
limit functions form a V-parameterized BV-solution:

• Complementarity: For a.a. s ∈ [0, S]:

t̂
′(s) ≥ 0, t̂

′(s) +
∥

∥ẑ
′(s)

∥

∥

V
≤ 1

t̂
′(s) distV∗

(

−DE(t̂(s), û(s), ẑ(s)), ∂Z
R(0)

)

= 0 .

• Balance of linear momentum: DuE(t̂(s), û(s), ẑ(s)) = 0 in U∗ .

• Energy disspation balance: for all s

E(t̂(s), û(s), ẑ(s)) +

∫

s

0

R(ẑ′) +
∥

∥ẑ
′
∥

∥

V
distV(−DzE(t̂, û, ẑ), ∂

Z
R(0))dσ

= E(0, u0, z0) +

∫

s

0

∂tE(t̂, û, ẑ)t̂
′dσ .

Numerical examples in [1] demonstrate the behavior of the algorithm.
In [5], we analyzed a time-incremental alternate minimization algorithm. There,

we also identified the limit as the time step size tends to zero. The numerical
examples from [1] suggest that there is no difference in the solutions provided
by the local minimization scheme combined with alternate minimization and the
pure alternate minimization scheme. However, first finite dimensional examples
show that solutions obtained via a pure alternate minimization procedure do not
necessarily belong to the class of balanced viscosity solutions.
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Buckling behind brittle fracture in soft solids

Davide Riccobelli

(joint work with Pasquale Ciarletta, Guido Vitale, Corrado Maurini,
Lev Truskinovsky)

In problems involving the propagation of pre-existing cracks, the linearized theory
of elasticity is commonly employed. However, we present evidence that crack
nucleation in soft materials requires the consideration of both geometrically and
physically nonlinear elasticity.

In this respect, we analyze a simple model of the traction of an elastic block
[−L, L]× [0, H ], as shown in Fig. 1 (left), exhibiting stress softening. The body is
assumed to be incompressible and homogeneous. The block is stretched along the
e1 direction with a mean stretch λ. The energy of the material can be described
by means of a scalar function W (F) = w(λ1), where F is the deformation gradient
and λ1 is its greatest principal value. The key assumption in the model is that the
material exhibits softening at large strains, so that w′′(λ1) < 0 for λ > λlm, where
λlm > 1 is a given stretch.

The force balance is given by ∇ · P = 0, where Pij are the components of the
first Piola-Kirchhoff stress tensor P. On the side boundaries x1 = ±L we impose
y1 = ±λL together with the free sliding condition P12 = 0; the upper boundary
x2 = 0 is assumed to be free so that P22 = P21 = 0; the lower boundary x2 = H
will be constrained only vertically so that y2 = H/λ and P21 = 0. It can be easily
shown that the homogeneous deformation y(X) = λX1e1 + λ−1X2e2 is always
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Figure 1. (Left) Schematic representation of the considered sur-
face instability showing the reference and the actual configura-
tions, detailing the nature of the boundary conditions. (Right)
Inverse of the critical buckling wavenumber ncr versus the aspect
ratio H/L.
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a solution of the nonlinear elastic problem quasi-static deformations and w′(λ) is
the stress along the direction of traction.

We explore both linear and nonlinear stages of the bifurcations of the homoge-
neous solution [2]. By means of the method of incremental deformations, we show
that the block can undergo a sequence of elastic instabilities. For each aspect ratio
H/L, an infinite number of bifurcations takes place in the interval λlm ≤ λ ≤ λcc.
The stretch λlm corresponds to the Considère or the load maximum threshold, i.e.
the maximum value of the axial stress w′(λ). The other end of the interval, λcc,
corresponds to the violation of the complementing condition, namely the stretch
at which the homogeneous traction of the block becomes unstable in the limit
H, L → ∞. The resulting bifurcation diagram is remarkably unconventional,
exhibiting an exceptional sensitivity to the aspect ratio H/L, which recalls the
transition to turbulence in fluids, see Fig. 1 (right).

The behavior close to the bifurcation point is analyzed close to the bifurcation
point through a weakly nonlinear analysis. The system exhibits two types of
bifurcations: if the bifurcation point is close to λlm, a diffuse necking takes place,
conversely if the critical stretch is close to λcc a surface wrinkling is observed. In
all the cases analyzed in the study, the bifurcation is subcritical.

Finite element simulations are exploited to explore the fully non-linear regime.
The bifurcation diagram is reconstructed by using a pseudo-arclength continuation
method. The elastic model is simulated until the limit of its validity, i.e. until the
violation of the complementing condition, where strain localization takes place at
the free surface, marking the onset of the formation of the cracks. The emerging
strain singularities make scale-free continuum elasticity inadequate. In order to
go beyond such a point, a regularization inspired by gradient damage models
of fracture is introduced [1]. The resulting post-buckling evolution shows the
gradual localization of the deformation in sharp regions, which precedes the actual
formation of cracks, see Fig. 2.

Figure 2. Normalized axial force F/µL versus the mean stretch
λ for the near necking case (H/L = 1, left) and the near wrinkling
cae (H/L = 2.5, right). The insets on the right show the distri-
bution of the phase field variable α in the reference configuration
corresponding to the points A and B. The parameter ℓ0/H = 0.01.
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Crack nucleation in variational gradient damage models endowed with
a local minimization principle

Corrado Maurini

Phase-field models of fracture originate variational regularization of the Griffith
brittle fracture model [1]. The variational approach to fracture has established
a precise link between the toughness of the sharp interphase Griffith model and
that of the smeared phase-field model, in terms of the convergence of the global
minima of the energy (Gamma-convergence). However, brittle fracture is charac-
terized by two key material parameters: fracture toughness and strength. Fracture
toughness is the energy dissipated during crack propagation, while strength is the
maximum allowable stress that the material can sustain before failure through
crack nucleation. From the energetic viewpoint, the strength can be related to the
energy barrier between the purely elastic solution and the solution with cracks,
an information that Gamma-convergence cannot provide. Currently, whether and
how phase-field approaches can correctly account for strength and crack nucleation
criteria is a matter of debate.

Differing from the global minimization formulation at the basis of Gamma-
convergence results, we consider quasi-static evolution based on the directional
local minimization principle. In this framework, we relate the length-scale intro-
duced in phase-field models to the stability margin of local energy minima, and
thus to the nucleation thresholds [3, 2, 4]. This viewpoint enables us to understand
crack nucleation phenomena and the morphogenesis of complex crack patterns as a
structural stability problem [4]. The crack nucleation threshold is identified as the
loss of stability of the purely elastic solution or solutions with diffused damage.
The first order optimality conditions for the phase-field energy functional give
a damage criterion, that can be regarded as the elemental necessary conditions
for crack nucleation. We discuss also second-order optimality conditions providing
necessary or sufficient criteria for the (in)stability. Hence, we present an algorithm
to test these conditions numerically and illustrate it in meaningful examples [4].

Finally, we address the problem of crack nucleation under multi-axial loading.
The theoretical stability analysis discloses the subtle influence of softening, en-
ergy decompositions, and loading modes on the strength observed in numerical
simulations. To address the limitations of existing approaches, we combine varia-
tional phase-field models and nonlinear elasticity, with a focus on the case of crack
nucleation in almost incompressible materials.
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On the use of image correlation techniques for the analysis of fracture

François Hild

(joint work with the Eikology group of LMPS)

The analysis of fracture involves kinematic fields that have special features, which
call for measurement techniques that enable damage to be quantified. Among all
optical techniques, digital image correlation (DIC) has become one of the most
popular choices [1]. The aim of the presentation is to introduce the general prin-
ciples of DIC for the registration of 2D images, its extension to that of 3D images
(i.e., digital volume correlation [2]), and applications dealing with damage and
failure.

Digital image correlation (DIC) was introduced in the early 1980s [3]. Very
early on, its use to analyze cracks under quasi-static and dynamic propagation
conditions was recognized [4, 5] and further confirmed over the years [6, 7]. The
first versions of DIC were based on local registrations with small interrogation
windows. In the first decade of the twenty first century, global approaches were
proposed, in which large regions of interest were registered when the displacement
field was, for instance, parameterized with finite element discretizations [8, 9].
Enriched kinematics was then included [10] to account for displacement disconti-
nuities induced by cracks. To mitigate displacement fluctuations due to measure-
ment uncertainties, elastic regularization was added in the total cost function to
be minimized [11]. Another route is to use closed-form solutions (e.g., Williams’
series [12]) as the kinematic basis of global DIC to directly extract fracture me-
chanics parameters from images. Such an approach corresponds to integrated
DIC [13] in which the measured displacement fields are mechanically admissible.
It has very recently been extended to spacetime formulations to calibrate phase
field parameters [14].

With the democratization of X-ray tomography, digital volume correlation
(DVC) has been applied to register 3D (reconstructed) volumes. The first imple-
mentation was also local in space [2]. It was then generalized to global DVC [15].
One of the very first applications was on the extraction of stress intensity factor
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profiles from measured 3D displacement fields [16]. DVC was also enriched (as in
DIC) to deal with displacement discontinuities induced by cracks [17]. Regular-
ized DVC was then introduced [18]. Subsequently, heterogeneous regularization
was considered to account for the presence of different elastic phases. Damage was
included to quantify degradation mechanisms in mortar [19]. The fracture energy
of a phase field model could also be calibrated at the microscale and the damaged
zones were rather well predicted when the measured boundary conditions were
applied to the numerical models [20].

These various examples illustrate how DIC/DVC provided thorough means for
validating damage and fracture models.
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[10] J. Réthoré, F. Hild, S. Roux, Extended digital image correlation with crack shape optimiza-
tion, International Journal for Numerical Methods in Engineering 73(2), 248 (2008)
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Length-scales in peridynamic models of quasi-static and
dynamic fracture

Florin Bobaru

I will present some recent results on dynamic fracture at an interface [1]. The loca-
tion and properties of a material interface in PMMA bonded samples has a strong
influence on whether a dynamic crack runs along the interface before punching
through the second PMMA layer or not. A peridynamic (PD) model that only
approximately represents the actual thickness of the interface can, nevertheless,
correctly predict the experimentally observed behavior. The peridynamic horizon
size, in this case, does not have to be smaller than the interface thickness to allow
us to obtain accurate results. Once the PD horizon is sufficiently close (one order
of magnitude) to the actual thickness of the interface, the results are relatively
insensitive to its size. The situation is quite different for the case of a thin, hot
glass plate with a notch, slowly immersed in cold water. In this case, a quasi-static
crack may grow from the notch and propagate straight, or oscillate in its path, or
even branch (but not from its tip!), depending on the immersion speed (microm-
eters to tens of micrometers per second) and the plate width, for example. We
show that for this quasi-static crack growth induced by thermal stresses, the PD
horizon size must be carefully determined from one experimental data point, to
fully predict an entire phase diagram of experiments for various plate widths and
immersion speeds [2]. In this case, finding the proper PD horizon size to match
material length-scales induced by the sample geometry and thermal loading con-
ditions is essential to predicting the correct failure behavior. If time permits, I
will also discuss fast solvers for PD models in dynamic and quasi-static brittle and
ductile fracture [3].
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Variational fracture and loads: a local variational principle for fracture

Christopher J. Larsen

We consider for simplicity scalar displacements u on Ω ⊂ RN with the simplest
elastic energy density 1

2 |∇u|2, Griffith constant Gc, and crack sets K. The total
energy of a displacement-crack pair (u,K), with u allowed to be discontinuous
across K, is given by [2]

EG(u,K) :=
1

2

∫

Ω

|∇u|2dx+GcHN−1(K),

where HN−1(K) is the N − 1 dimensional Haudorff measure (surface area) of the
crack K. Minimizing this energy (globally or locally) subject to a given displace-
ment boundary condition produces a displacement u and crack set K satisfying a
form of Griffith stability:

EG(u,K) ≤ EG(v, κ)

for pairs (v, κ) satisfying v = u on ∂Ω and κ ⊃ K. If (u,K) are obtained by global
minimization, then this inequality holds for all such (v, κ), and if they are obtained
by local minimization, then the inequality will hold if v is sufficiently close to u.

We now turn to the problem of including boundary and body loads in variational
fracture. With boundary load f on part of ∂Ω denoted ∂NΩ, and displacement
boundary condition zero, for example, on the remainder of the boundary ∂DΩ, it
would seem that we should minimize

ELoad(u,K) :=
1

2

∫

Ω

|∇u|2dx−
∫

∂NΩ

fu ds+GcHN−1(K)

over u ∈ H1(Ω \K) (a slight abuse of notation) with u = 0 on ∂DΩ. Minimizing
this energy is easily seen to be impossible (except in the trivial case f ≡ 0). The
idea is, we can choose a part of ∂NΩ in which the average of f is not zero, and if
we create a crack disconnecting that part of the boundary from ∂DΩ, the second
term in the energy can be sent −∞ with a controlled cost in the rest of the energy,
so the total energy goes to −∞. Essentially the same issue occurs with body loads.

But this problem is not present if we want the crack surface energy to compete
with elastic energy the same way it does with displacement boundary conditions,
as we advocated in [4]. There, we showed that this principle can be implemented
with boundary loads – instead of trying to minimize a single energy, we can simul-
taneously minimize two different energies:

1

2

∫

Ω

|∇u|2dx−
∫

∂NΩ

fu ds
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over displacements with the same crack, and

1

2

∫

Ω

|∇u|2dx+GcHN−1(K)

over displacements with the same displacement boundary condition even on ∂NΩ.
We then get the elastic plus load equilibrium u we want, but the crack results only
from competition between elastic and surface energy (of course, the crack indirectly
depends on the load, but only by the dependence of u on the load, and not direct
energy competition between the load and surface area). This formulation, and a
method for showing existence, are developed in [4].

This kind of dual minimality will not work for body loads, however. We still
want a dual variational principle – one for determining the equilibrium displace-
ment, and one with competition between elastic and surface energy, but the latter
variational principle must be local.

In addition to treating body loads, a local variational principle is necessary
in order to combine Griffith (sharp) fracture with strength [3], treat viscoelastic
materials [6], as well as study implementations of phase-field fracture [1].

Our local variational principle [5] is based on the idea that under a certain
rescaling, blow-up limits of stable states must have a global minimality property,
which we state for Ω ⊂ R

2 for simplicity. Given a displacement-crack pair (u,K),
for x0 ∈ Ω fixed, we set

(1) uε(x) := ε−
1
2 [u(x0 + εx)− u(x0)] and Kε := ε−1(K − x0).

If a pair (û, K̂) is the limit as ε → 0 of the above, then we consider the following
minimality for this pair:

Definition 1 (Global Griffith stability). (û, K̂) with û ∈ H1
loc(R

2 \ K̂) is globally
Griffith-stable if for every r > 0, it minimizes

EGr (w, κ) :=
1

2

∫

B(0,r)

|∇w|2dx+GcH1(κ ∩B(0, r))

over pairs (w, κ) satisfying w ∈ H1
û(B(0, r) \ κ) and κ ⊃ K̂ ∩B(0, r). Here, H1 is

the one-dimensional Hausdorff measure.

Our main definition then just requires all such blow-up limits to have this
minimality:

Definition 2 (Local Griffith stability). (u,K) is locally Griffith stable if for every

x0 ∈ Ω, every blow-up limit (û, K̂) of (uε,Kε) is globally Griffith stable.

This is then combined with the elastic equilibrium variational principle:

Definition 3 (elastic-Griffith stability). (u,K) with u ∈ H1(Ω \ K) is elastic-
Griffith stable if:

(1) u minimizes

w 7→ 1

2

∫

Ω

|∇w|2dx
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over w ∈ H1(Ω \K) with w = u on ∂Ω, i.e.,

∆u = 0 in Ω \K, ∂νu = 0 on K,

and
(2) (u,K) is locally Griffith stable (Definition 2).

Body and boundary loads are easily added:

Definition 4 (elastic-Griffith stability with loads).
We say (u,K) with u ∈ H1(Ω \ K) is elastic-Griffith stable with body load f

and boundary load g (applied to part of the boundary ∂NΩ) if:

(1) u minimizes

w 7→ 1

2

∫

Ω

|∇w|2dx−
∫

Ω

fw dx−
∫

∂NΩ

gw ds

over w ∈ H1(Ω \K) with w = u on ∂DΩ := ∂Ω \ ∂NΩ, i.e.,

∆u = f in Ω \K, ∂νu = 0 on K, and ∂νu = g on ∂NΩ,

and
(2) (u,K) is locally Griffith stable.

Incorporating viscoelasticity, and the connection to phase-field fracture, are also
discussed.
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Peridynamic modeling of the interplay of wave propagation and
dynamic fracture

Kai Partmann (PhD student talk)

Peridynamics is particularly well-suited for modeling discontinuities such as cracks
due to its integro-differential equation. In this study, we investigate the inter-
play between wave propagation and dynamic fracture, focusing on a compara-
tive analysis of different material formulations within the peridynamics frame-
work. Our research focuses on three material formulations: continuum-kinematics-
based peridynamics, non-ordinary state-based peridynamics, and bond-associated
non-ordinary state-based peridynamics. Each formulation has unique advantages
and challenges. Continuum-kinematics-based peridynamics, while conceptually
sound, suffers from the surface effect and is computationally very expensive. Non-
ordinary state-based peridynamics, although promising, exhibit instabilities, espe-
cially when dealing with cracks. In contrast, bond-associated non-ordinary state-
based peridynamics emerges as a promising candidate, demonstrating stability and
good results. Using examples from wave propagation and dynamic fracture, we
demonstrate the differences between these formulations with different numerical
results and compare them to analytical solutions.

Phase-field modeling of fracture: nucleation, dissipation, large
deformation, and complex stress states

Kaushik Dayal

(joint work with Janel Chua, George Gazonas, Maryam Hakimzadeh,
Carlos Mora-Corral, Noel Walkington)

The growth of cracks is challenging for numerical methods due to the numerous
singular surfaces that must be tracked. Phase-field modeling provides an attractive
alternative: by smearing out the singularities appropriately, it is possible to use
standard numerical techniques, such as the finite element method, to model cracks
that grow in complex ways. While current phase-field models of fracture are
widely applied to various types of engineering problems, they have some critical
shortcomings. Specifically, the model parameters that govern the nucleation of
cracks is unclear; the behavior of fast moving cracks is unphysical near the sonic
velocity; and the material response is unphysical in the large-deformation setting
when the crack closes under compressive loading. To address these issues, we
present results on a conservation law structure for the phase-field that enables us
to transparently incorporate nucleation and stick-slip kinetics; the role of viscous
stresses that, while small, are essential to provide regularity near the sonic velocity;
and the formulation of a crack strain energy density that appropriately mimics the
behavior of a crack under compression and other complex stress states.
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The Brazilian Test: Understanding the Interplay Between Strength
and Fracture

John E. Dolbow

(joint work with Oscar Lopez-Pamies)

The Brazilian test has become a standard approach to indirectly measure the ten-
sile strength of brittle materials with relatively large compressive strengths. The
test is simple to set up and execute, and it readily lends itself to theoretical anal-
ysis. It consists of a circular disk of the material loaded in compression (Figure 1)
until it fails, typically via a sudden fracture that splits the specimen in two.

H

(b)(a)

P

P

P

P

H

Figure 1. Schematics of the Brazilian test for a specimen of radius

R and thickness H under two standard types of loading configurations:

(a) flat loading platens and (b) curved loading platens with radius of

curvature Rp.

Although mostly used in quasi-static loading, versions of the test where the
specimen is impulsively loaded are also employed. While relatively simple to un-
derstand, the test has proven elusive to various models for fracture. This is no
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doubt due to the fact that the test represents a problem of crack nucleation, par-
ticularly under a significant degree of compression. As such it explores a region
of parameter space that is rarely the focus of model development for fracture me-
chanics. What is perhaps under-appreciated is the extent to which this oversight
has permitted for the development and acceptance of standardized expressions for
strength that can be widely inaccurate. For example, the International Society for
Rock Mechanics [2] proposes the use of the formula

(1) σts =
Pmax
πRH

to deduce the tensile strength σts from the test. In this expression, Pmax stands
for the maximum applied load indicated by the testing machine, while R is the
radius of the disk and H is its thickness; see Figure 1.

In this talk, I will highlight our recent work [1] that includes a complete quan-
titative analysis of where and when fractures nucleate and propagate in Brazilian
tests and how to appropriately interpret their results. This is accomplished by de-
ploying the revisited phase-field fracture theory [3] and its recent specialization to
compressive loads [4]. This theory is particularly well-suited to analyze the Brazil-
ian test as it allows for the accounting of arbitrary material strength surfaces as
well as the transition from crack nucleation to Griffith-like fracture.

The analysis indicates that the point of fracture in a standard Brazilian test
coincides with a region of the strength surface that is far from uniaxial tension. By
accounting for this basic observation, a modification to the standard formula 1 for
material strength arises. The extrapolated result for σts is given by the formula

(2) σts = f (Pmax, σcs)
Pmax
πRH

,

where f (Pmax, σcs) is a factor that, as indicated by its arguments, depends on the
maximum force Pmax measured in the test and the uniaxial compressive strength
σcs of the material. It is given by the fully explicit expression

(3) f (Pmax, σcs) =

(√
13− 2

) πRH
Pmax

σcs

2πRH

Pmax
σcs −

√
13− 2

.

The corrected expression was tested against simulations of Brazilian tests for
three materials with compressive-to-tensile strength ratios σcs/σts = 5, 8, and
20. For all three materials, the formula (2) yields results for the uniaxial tensile
strength σts that are within 5% of the exact values.
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Different peridynamic approaches to wave propagation and
dynamic fracture

Kerstin Weinberg

(joint work with Kai Partmann and Christian Wieners)

Peridynamics is a non-local continuum mechanics formulation that originally de-
scribes the interactions between material points with only one spring-like stiffness
parameter. Thus, this standard bond-based model is not consistent with classical
linear elasticity, and several extensions have been introduced since. In this contri-
bution, we compare different current peridynamic material formulations and their
ability to model wave propagation.

In general, the position of a material point inside a body B0 is described in a
reference placement as X and in its current position as

(1) x = X + u

with the displacement u(X). In peridynamics, material points interact with other
points inside of their a neighborhood H, which is defined as the set of points inside
a sphere with the radius δ ∈ R+, also named the horizon. The interaction of the
point X with its neighborX ′ is called bond and in reference and current placement
it is defined as

(2) ∆X = X ′ −X , ∆x = x′ − x .

The evaluation of the bond interactions for all X ∈ B0 results in the peridynamic
integro-differential equation of motion.

In peridynamics, the continuum is typically point-wise discretized, which, to-
gether with the underlying non-local continuum mechanics formulation, makes
it ideally suited for dynamic fracture simulation. An important implication in
terms of spallation is the correct treatment of elastic waves, such as pressure and
stress waves inside a body, which result from an impact or impulse. This moti-
vated us to investigate and compare the elastic wave propagation behavior of a
bond-based peridynamic, a continuum-kinematics-based peridynamic, and a non-
ordinary state-based peridynamic formulation. We found significant differences
in the ability of the different formulations to map the material under dynamic
loading, cf. [1, 2].

Using the example of a longitudinal pressure wave inside an elastic bar, we show
that the peridynamic formulations are able to reproduce the classical solutions to a
different extent. Figure 1 illustrates the wave propagating in a long bar discretized
with 10 × 10 × 1000 material points. The wave travels from the left to the right
through the bar and has crossed the bar after approximately t = 0.05 ms for
the first time. The right end of the bar is free, so the displacement amplitude
ûx increases when the wave front reflects at the boundary. The displacement
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Figure 1. Wave traveling through a bar at different instances of time

amplitude ûx has the same value after the reflection at the free end, and changes
to −ûx after the reflection at the fixed end, i.e. the left boundary of the bar.

Further studies show that the bond-based and continuum-kinematics-based for-
mulations can handle wave propagation correctly but suffer largely from the surface
effect, i.e. an incomplete horizon. The non-ordinary state-based correspondence
formulation does not suffer from the surface effect and models the wave propa-
gation with very high accuracy regarding the wave speed, cf. [3]. However, this
formulation does not allow cracks in a straightforward manner.

All simulations are performed with our Julia package Peridynamics.jl [4].
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Nonlocal gradients in bounded domains motivated by Continuum
Mechanics: functional analysis framework and applications in finite

and linear elasticity

José Carlos Bellido

(joint work with J. Cueto, C. Mora-Corral)

This is a joint work with J. Cueto and C. Mora Corral. Other collaborators in
recent or on-going work are H. Schönberger and P. Radu and M. Foss.

In nonlinear elastostatics, a fundamental question is the existence of equilibrium
solutions of the equations of nonlinear elasticity, which often arise as minimizers
of the elastic energy ∫

Ω

W (x,Du(x)) dx

of a deformation u : Ω → Rn. Here Ω is an open bounded subset of Rn representing
the reference configuration of the body (where n = 3 is the physically relevant
case), and W : Ω× Rn×n → R ∪ {∞} is the elastic stored-energy function of the
material. The usual approach for finding such minimizers is the direct method
of the calculus of variations. This theory is well established since the pioneering
paper of Ball [1] and its many subsequent refinements.

On the other hand, nonlocal models in solid mechanics have experienced a
huge development in the last two decades, especially from the introduction of the
peridynamics model by Silling [12]. Many refinements have been introduced since
then and, particularly, nonlocal models based on a nonlocal gradient have received
a great attention as an adequate substitute of local models.

In general, a nonlocal gradient of a function u : Ω → R takes the form

Gρu(x) =
∫

Ω

u(x)− u(y)

|x− y|
x− y

|x− y|ρ(x− y) dy,

for a suitable kernel ρ, usually with a singularity at the origin. The choice of ρ
determines the nonlocal gradient, which, in turn, specifies the functional space.

The most popular nonlocal gradient is possibly Riesz’ s-fractional gradient,
which is denoted by Dsu and corresponds to the choices Ω = Rn and ρ(x) =
cn,s

|x|n−1+s for some constant cn,s; see [10, 11]. Here 0 < s < 1 is the degree of differ-

entiability. While Riesz’ fractional gradient enjoys many desirable properties, it
has the drawback that the integral defining it is over the whole space, which makes
it unsuitable for solid mechanics where the body is represented by a bounded do-
main Ω ⊂ Rn. An adaptation of Riesz’ s-fractional gradient for bounded domains
was done in [3]. Precisely, for a C∞

c function u, its nonlocal gradient is defined as

Ds
δu(x) = cn,s

∫

B(x,δ)

u(x)− u(y)

|x− y|
x− y

|x− y|
wδ(x− y)

|x− y|n−1+s
dy,

where wδ is a fixed function in C∞
c (B(0, δ)) satisfying some natural properties

to be a truly cut-off function. Here δ > 0 plays the role of the horizon (in the
terminology of peridynamics), i.e., the maximum interaction distance.
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The existence of minimizers of functionals

(1)

∫

Ω

W (x,Ds
δu(x)) dx

was done in [4] under the assumption of polyconvexity of W (where we also wrote
down the corresponding Euler–Lagrange equations), and in [6] under the assump-
tion of quasiconvexity.

Starting with the Euler–Lagrange equations associated to the functional (1).
They can be interpreted as the equilibrium equations in nonlocal elasticity. Then
we perform a linearization of those equations, which is merely formal, as done
classically in texts of elasticity. As expected, the linear equations are remarkably
similar to the linear ones, just by replacing the local differential operators (notably,
gradient, divergence and Laplacian) by their nonlocal counterparts. In a further
stage, existence and uniqueness of those linear equations under the same assump-
tions as in the classical case, namely, the positive definiteness of the elasticity
tensor may be proved. This tensor is a local quantity acting on nonlocal gradi-
ents. The key ingredient for the well-posedness of the linear equations is a suitable
version of Korn’s inequality for nonlocal gradients. Our proof of that inequality is
based on the classical Korn inequality together with a procedure described in [4]
and [6] (and, earlier, in [9] for the case of the Riesz potential) to translate results
from the local case to the nonlocal context. Later, in [5] this model is proved to be
equivalent to the well-known Eringen’s nonlocal model for linear elasticity [7, 8]

In the talk, we review all the theory, starting from Riesz’s fractional gradients
and Bessel spaces, and existence for polyconvex functionals based on Riesz’ frac-
tional gradients and Γ-convergence to their local counterpart. Next, we describe
the functional spaces linked to nonlocal gradients Ds

δu and the main result in this
sense, and again, existence for polyconvex functionals based on those nonlocal gra-
dients. Finally, we obtain by linearization the nonlocal linearly elastic model. We
also report on recent work with J. Cueto, M. Foss and P. Radu on some interesting
vector analysis results for nonlocal operators in bounded domains, and on-going
work on the generalization of nonlocal gradients for general kernels.
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On some aspects of optimal control of phase field fracture propagation

Ira Neitzel

(joint work with Andreas Hehl)

In this talk we mainly discuss second order sufficient optimality conditions for a
time-discrete but spatially continuous optimal control problem governed by a reg-
ularized phase field fracture propagation model problem, cf. [5], with displacement
u and phase-field φ, controlled by a Neumann-boundary force q. We start by intro-
ducing the uncontrolled fracture propagation model problem similar to [7, 8] based
on an energy minimization functional with Ambrosio-Tortorelli-regularization, cf.
[1].

Since fracture propagation itself is a minimization problem, adding an outer
optimal control problem would lead to a bilevel optimization problem, where the
fracture irreversibility condition in the lower level problem would introduce specific
difficulties when discussing optimality conditions. We therefore regularize the
problem to eventually obtain a formulation fitting into the framework of PDE-
constrained optimization.

The fracture irreversibility condition is replaced by a penalization term as in
[9] in the energy functional, and a viscous regularization, cf. [6], guarantees strict
convexity and thus unique solvability of this minimization problem under a size
condition of the corresponding regularization parameter that can be interpreted
as a smallness-condition on the time-steps in the time-discrete model. Strict con-
vexity of the energy functional then allows to replace this minimization problem
by its first order necessary conditions in form of Euler-Lagrange equations. The
first time step of these reads as follows:

For a given boundary force q and initial pair of displacement and phase field
(u0, φ0) with 0 ≤ φ0 ≤ 1, find displacement and phase field u = (u, φ), solving

(ELγ,η)

(
g(φ)Ce(u), e(v)

)
− (q, v)ΓN

= 0,

ǫ(∇φ,∇ψ) − 1

ǫ
(1− φ, ψ) + η(φ− φ0, ψ)

+(1− κ)(φCe(u) : e(u), ψ)

+γ([(φ− φ0)+]3, ψ) = 0.
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Here, ǫ is the phase-field parameter due to the Ambrosio-Tortorelli regularization,
η is the viscous regularization parameter, and γ the penalization parameter for
the irreversibility conditions. We point out that all parameters remain fixed in
this talk. For a convergence analysis with respect to γ, we refer to [8] and [3].

With the forward model at hand, the tracking type optimal control problem

(NLPγ,η)
min
q,u

J(q,u) :=
1

2
‖u− ud‖2 +

α

2
‖q‖2ΓN

s.t. u = (u, φ) given the data q, solves (ELγ,η).

is introduced, where ud is a given desired displacement and α > 0 is the Tikhonov-
parameter. Further, control bounds of the form

qa ≤ q ≤ qb

can be considered. Note that the Euler Lagrange equations are quasilinear, so the
overall optimal control problem is nonconvex. For the precise functional analytic
setting we refer to [5].

We first give an overview about the challenges of second order sufficient opti-
mality conditions in function spaces and PDE-constrained optimization and some
regularity results that are needed, before we show a result on second order suffi-
cient conditions that follows from the abstract theory in [2], once all prerequisites
are established. We finish the talk with a short overview on how local conver-
gence of the sequential quadratic programming method can be obtained, cf. [4]
for details. This follows from a discussion of Newtons-method for the first order
optimality conditions in form of generalized equations, cf. e.q. also the meanwhile
classical result in [10]. We indicate in particular the role of second order sufficient
optimality conditions.
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Goal oriented error estimation for space-time adaptivity in
phase-field fracture

Viktor Kosin (PhD student talk)

In this talk, we introduce a phase-field fracture model in a space-time formula-
tion and use the dual-weighted residual (DWR) method to formulate a goal ori-
ented error estimator for adaptive refinement in space and time. Tensor-product
space-time finite elements are being used with continuous elements in space and
discontinuous elements in time, such that the primal problem can be solved with
a time-stepping scheme. Because the irreversibility condition is solved using an
active set method, the time dependency vanishes for the adjoint problem and no
backwards time-stepping is needed. The error is localized using partition of unity
(PU). The convergence order of the space-time adaptivity is analyzed on numerical
tests with different goal functionals.

On the energy decomposition in variational phase-field models for
brittle fracture under multi-axial stress states

Laura De Lorenzis

(joint work with Francesco Vicentini, Camilla Zolesi, Pietro Carrara,
Corrado Maurini)

Phase-field models of brittle fracture are typically endowed with a decomposition
of the elastic strain energy density in order to realistically describe fracture under
multi-axial stress states. The major contents and findings of this work can be
summarized as follows:

• We define essential requirements for a phase-field model of brittle fracture
dealing with multi-axial stress states to correctly describe both nucleation
and propagation of cracks. These requirement turn out to be the followng:
strain-hardening, stress-softening, tension/compression asymmetry, flexi-
bility (i.e. the ability to independently calibrate not only the uniaxial
tensile strength but also the uniaxial compressive strength and the shear
strength), and crack-like residual stress.

• In light of these requirements we review some available variational phase-
field models of brittle fracture based on energy decomposition, namely the
volumetric-deviatoric [1], the spectral [2], the no-tension [3] and the DP-
like models [4]. We discuss their advantages and limitations in light of the
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identified requirements. None of the analyzed existing decompositions is
found to meet all the requirements.

• We propose a new model that we denote as star-convex model. This model,
based on a minimal modification of the volumetric-deviatoric decomposi-
tion, is equipped with a γ⋆ parameter that allows independent calibration
of compressive and tensile strengths. Such partial flexibility can be ex-
tended to the shear strength by modifying the softening laws. Addition-
ally, the model satisfies all other requirements. Thus, it represents a very
simple but effective step forward towards the realistic prediction of brittle
fracture mechanisms under multiaxial stress states.
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Meshfree method applied to the dynamic fracture in quasi-brittle
materials: an eigensoftening approach

Rena C Yu

(joint work with Pedro Navas, Bo Li, Gonzalo Ruiz)

In the realm of numerical modeling, our work with the eigensoftening algorithm
marks a significant leap forward from the traditional eigenerosion approach, es-
pecially in the context of accurately capturing the nuances of material failure in
concrete. The essence of eigensoftening lies in its refined mathematical and com-
putational techniques, which are meticulously tailored to estimate tensile stresses
and peak strains with remarkable precision. This advanced algorithm, with its in-
tricate modifications, stands in closer alignment with experimental data, thereby
offering a more realistic representation of material behavior under stress [1].

Delving into the experimental validation, the three-point bending tests con-
ducted on concrete samples using a drop-weight device were meticulously designed.
These tests, characterized by their detailed specifications such as the concrete sam-
ple dimensions and the precise calibration of the drop-weight, were augmented with
strategically placed strain gauges to capture a comprehensive dataset. The com-
parison of these experimental results with the model predictions was not just a
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matter of numerical matching; it involved sophisticated statistical analyses, high-
lighting how the eigensoftening algorithm significantly narrows down the error
margins, offering a more robust and reliable prediction of material behavior.

In the realm of energy dissipation analysis, the eigensoftening algorithm sheds
light on the intricate dynamics of energy evolution and distribution within concrete
beams under varying impact speeds. This analysis reveals intriguing insights,
particularly the observation that the area under the reaction-deflection curve vastly
overshadows the energy dissipated due to fractures.

The foray into modeling fiber reinforced concrete using the eigensoftening al-
gorithm is yet another testament to its versatility [2]. The adoption of a bilinear
relation for this purpose marks a significant departure from the linear softening
stress-equivalent crack opening relation, offering a more nuanced understanding
of the dynamic fracture behavior of such materials. The influence of the notch
position on crack patterns, a key finding from this study, opens up new avenues
for material design, particularly in optimizing fiber reinforced concrete structures
for enhanced durability and resilience.

Our parametric studies, exploring various notch positions, add another layer of
depth to our understanding of concrete behavior. These studies are not confined to
academic curiosity but are rooted in practical applications, potentially influencing
the design of structures in seismically active regions.

Looking ahead, the potential applications of the eigensoftening algorithm ex-
tend beyond its current use. Its adaptability to different materials and loading
conditions, coupled with the profound implications of our findings for industrial
and real-world applications, suggest a future where this research could significantly
influence construction practices and material selection.
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Effective Models for Membranes and Plates with Soft Inclusions and
an Eigendeformation Model for Cohesive Fracture

Bernd Schmidt

(joint work with V. Auer-Volkmann, L. Beck, M. Santilli)

We report on some recent results on effective theories and their approximation
for objects that are subject to both elastic deformations and fracture. In part 1
we study the formation of voids and cracks in membranes and (Kirchhoff-)plates,
[7, 8]. In part 2 we extend the Eigenfracture approximation for brittle materials
[9] to materials undergoing cohesive fracture, [1, 2].
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Part 1. Membranes and Plates with Soft Inclusions. We consider a
reference configuration Ω ⊂ R3 subject to the deformation y ∈ W 1,p(Ω,R3), p ∈
(1,∞), with an unknown ‘void set’ D ∈ F(Ω) (a set of finite perimeter). Its
configurational energy is assumed to be

E(y,D) =

∫

Ω\D

W
(
∇y(x)

)
dx+

∫

Ω∩∂∗D

ψ
(
ν(D)

)
dHn−1,

where W satisfies a standard two-sided Lp growth condition, ψ is a norm on R3

and ν(D) denotes the (exterior measure-theoretic) unit-normal of D. A theorem
of Braides, Chambolle and Solci in (see [3] and a simplified proof in [7]) identifies
the (L1-)relaxation of E on GSBV p1 (Ω;R

m)×F(Ω) in which W is replaced by its
quasiconvex hull W qc and an additional surface term on Jy ∩D0, D0 the measure
theoretic exterior of D, with density ψ depending on the crack normal ν(y) occurs.

Our first objective is to extend this analysis to thin membranes. More precisely,
we consider the same functional on the h-dependent domain Ωh = ω× (0, h) ⊂ R3,
and seek to analyze its asymptotics as h ց 0. Rescaling the domain to Ω =
ω × (0, 1) and the energy by h−1, this amounts to identifying the Γ-limit of

Eh(y,D) =

∫

Ω\D

W
(
∇′y, 1

h∂3y
)
dx+

∫

Ω∩∂∗D

ψ
(
ν′(D), 1

hν3(D)
)
dH2

for (y,D) ∈W 1,p(Ω;R3)×F(Ω).
To this end, we introduce x3-relaxed densities W0(ξ

′) = inf
{
W (ξ′, ξ3) : ξ3 ∈

R3
}
for ξ′ ∈ R3×2 and ψ0(ν

′) = inf
{
ψ(ν′, ν3) : ν3 ∈ R

}
for ν′ ∈ R2.

Theorem A. The Eh Γ(L1)-converge to Erel
0 : GSBV p1 (ω;R

3)×F(ω) → R, where

Erel
0 (y,D) =

∫

ω\D

W qc
0 (∇′y) dx

+ 2

∫

Jy∩D0

ψ0(ν
′(y)) dH1 +

∫

ω∩∂∗D

ψ0(ν
′(D)) dH1.

The proof of this theorem, together with a matching compactness result is
contained in [7]. We also mention the related analysis provided in [4] for brittle
membranes.

We now consider thin elastic plates whose stored energy functional is the same
as for membranes, but whose fracture toughness scales with h2. Rescaling their
energy by h−3 now leads to

Eh(y,D) =
1

h2

∫

Ω\D

W
(
∇′y, 1h∂3y

)
dx+

∫

Ω∩∂∗D

ψ
(
ν′(D), 1

hν3(D)
)
dH2

for (y,D) ∈ W 1,p(Ω;R3) × F(Ω). We assume suitable growth and smoothness
assumptions on W and introduce an ‘x3-relaxed’ Hessian Q2 at Id on R2×2 and
let ψ0 as before. We define the space

SBV 2,2
iso (ω) =

{
r ∈ SBV 2(ω,R3) ∩ L∞(ω,R3) :

∇r ∈ SBV 2(ω,R3×2), (∇r, ∂1r ∧ ∂2r) ∈ SO(3) a.e.
}
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and the second fundamental form of r ∈ SBV 2,2
iso (ω) as

IIr = −
(
∂ijr · (∂1r ∧ ∂2r)

)
1≤i,j≤2

.

Our main result for plates is the following passage to a limiting ‘Blake-Zisserman-
Kirchhoff’ plate functional.

Theorem B. Under a technical ‘minimal droplet assumption’ and assuming L∞

bounds one has a variational convergence result of the Eh in the sense of Γ-
convergence as yh → r, χDh

→ χD in L1 to the limiting functional

E(r,D) =
1

24

∫

ω\D

Q2(II) dx
′

+ 2

∫

J(r,∇r)∩D0

ψ0(ν(J(r,∇r))) dH1 +

∫

ω∩∂∗D

ψ0(ν(D)) dH1

for (r,D) ∈ SBV 2,2
iso (ω)×F(ω) (and +∞ elsewhere on L∞(Ω,R3)×F(Ω)).

For the precise statement, its proof, a related compactness result and further
discussion we refer to [8].

Part 2. An Eigendeformation Model for Cohesive Fracture. We now
consider numerical approximation schemes for fracture problems. Our main aim
is to extend the ‘eigenfracture scheme’ for britte fracture developed in [9] (which
itself was motivated by the classical Ambrosio-Tortorelli scheme and nonlocal ap-
proximations through convolution integrals) to models that allow for cohesive
fracture. Concentrating on the linearized antiplane shear setting we consider
Eε : L

1(Ω)×M(Ω) → [0,∞],

Eε(u, γ) :=






∫
Ω |∇u − g|2 dx if u ∈ W 1,1(Ω), ‖u‖L∞ ≤ K,

+ 1
ε

∫
Ω
f
(
ε−
∫
Bε(x)∩Ω

|g|dt
)
dx and γ = gL1, g ∈ L1(Ω),

∞ otherwise on L1(Ω)×M(Ω).

Our main result is the following.

Theorem C. Eε Γ-converges (w.r.t. the strong × flat topology on L1 × M) to
E : L1(Ω)×M(Ω) → R ∪ {∞},

E(u, γ) :=






∫
Ω |∇u− g|2 dx+ Gc

2

∫
Ω |g| dx if u ∈ BV (Ω), ‖u‖L∞ ≤ K,

+
∫
Ju
θ(|[u]|) dHd−1 γ = Dsu+ gL1,

+Gc

2 |Dcu|(Ω) ∇u− g ∈ L2(Ω),

∞ otherwise on L1(Ω)×M(Ω),

where θ is explicitly given as

θ(s) := 2

∫ 1

0

f

(
ωd−1

ωd
|s|

(√
1− t2

)d−1
)
dt for all s ∈ R.
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For the proof, a related compactness result and further discussion we refer to
[1, 2]. Here we only mention that in the one-dimensional setting the results in
[5, 6] can be adapted (see [1]), while the general case is more involved, see [2].

For the functionals with energetically optimal eigendeformations we have:

Corollary D. The Ẽε(u) := infγ∈MEε(u, γ) = infg∈L1 Eε(u, gLd) Γ-converge to

Ẽ(u) := inf
g∈L1

E(u,Dsu+ gLd)

=

∫

Ω

ψ(|∇u|) dx+ c0|Dcu|(Ω) +
∫

Ju

θ([u]) dHd−1

for u ∈ BV (Ω), ‖u‖L∞ ≤ K, γ = Dsu+ gLd, ∇u− g ∈ L2(Ω,Rd), +∞ otherwise,

where ψ(t) = t2 if t < c0
2 and ψ(t) = c0t− c20

4 if t ≥ c0
2 .
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Towards a Complete Theory of Fracture: The Insightful
Case of Elastomers

Oscar Lopez-Pamies

In the first part of this talk, I will review what is that is known at present from
centuries of experimental observations about the nucleation and propagation of
fracture in elastomers subjected to mechanical loads applied monotonically and
quasi-statically.

The observations will reveal that there are three basic ingredients that any
attempt at a complete macroscopic theory of fracture ought to account for:
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• the stored-energy function

W (F)

describing the elasticity of the elastomer for arbitrary deformation gradi-
ents F,

• the strength surface

F(S) = 0

describing the strength of the elastomer for arbitrary first Piola–Kirchhoff
stress tensors S, and

• the critical energy release rate

Gc

describing the intrinsic fracture energy of the elastomer, that is, the amount
of energy per unit undeformed area required to create new surface in the
elastomer.

Having pinpointed the basic ingredients required for a complete theory, I will
then present one such theory, regularized, of phase-field type for the basic case of
nominally elastic brittle elastomers [1, 2, 3]. The theory can be viewed as a natural
generalization of the phase-field approximation [4] of the celebrated variational
theory of brittle fracture of Francfort and Marigo [5] — which is nothing more
than the mathematical statement of Griffith’s [6] competition of bulk and fracture
energies in its general form — to account for the strength of the elastomer.

In the second part of the talk, I will deploy the theory in order to explain in
a detailed and quantitative manner the nucleation and propagation of fracture in
poker-chip experiments, both on natural rubber [7, 8] and on synthetic elastomers
[9, 10]. In a nutshell, the simulations will show that

(1) The nucleation of internal cracks in poker-chip experiments of elastomers
is dominated by the strength — in particular, the entire first octant S =
diag(s1 > 0, s2 > 0, s3 > 0) of the strength surface F(S) = 0 — of the
elastomer. That is, internal cracks nucleate in regions where the strength
surface of the elastomer has been exceeded, soon after it has been exceeded.

(2) For an elastomer whose hydrostatic strength shs is comparable to or smaller
than its uniaxial sts and biaxial sbs tensile strengths, the first nucleation
of internal cracks occurs around the centerline of the specimen.

(3) For an elastomer whose hydrostatic strength shs is large relative to its
uniaxial sts and biaxial sbs tensile strengths, the first nucleation of internal
cracks occurs radially away from the centerline of the specimen.

(4) If in addition to featuring a relatively large hydrostatic strength, the elas-
tomer features a relatively small critical energy release rate Gc, the first
nucleation of cracks occurs from the free boundary of the specimen near
one of the fixtures. In this case, the nucleated cracks are not internal but
external cracks.

(5) The propagation of all nucleated (internal and external) cracks is governed
by the Griffith competition between the bulk elastic energy of the synthetic
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elastomer and its constant intrinsic fracture energy. This competition leads
to the nucleation of fewer internal cracks in thicker specimens.

These findings provide a complete description and explanation of the poker-chip
experiments of elastomers at large and thus bring resolution to the understanding
of one of the pioneering problems in the fracture of soft matter, one that had
remained open for over six decades.

What is more, the results provide compelling evidence that the proposed theory
may indeed provide a complete framework for the description of fracture nucleation
and propagation in elastic brittle materials at large — not just elastomers — under
arbitrary monotonic and quasi-static loadings.
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Nonlocal curvature for integrable interaction kernels

Petronela Radu

(joint work with Animesh Biswas, Mikil Foss)

Curvature is a fundamental concept in physics and it plays a crucial role in various
areas such as: classical mechanics, general relativity, optics, and fluid dynamics.
In particular, the curvature of surfaces can affect the mechanical, electrical, and
optical properties of materials, so curvature effects need to be taken into account
when designing and analyzing new materials. The recently introduced concept of
nonlocal curvatures provide a frameworks for measuring the “bend” of a surface
under little or no smoothness assumptions, while connecting to classical curvature
as the horizon of interaction converges to zero.
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This talk focuses on the problem of constant nonlocal curvature defined via
integrable kernel. Our results offer some extensions to the constant mean curvature
problem for nonintegrable kernels, where counterparts to Alexandrov theorem [1]
in the nonlocal framework were established independently by two separate groups.
Ciraolo, Figalli, Maggi, Novaga [4] and respectively, Cabré, Fall, Solà-Morales,
Weth [2, 3]. Using the nonlocal version of Alexandrov’s moving plan method, we
identify surfaces of constant nonlocal mean curvature based on integrable kernels
and show they are unions of balls situated at distance δ > 0 apart, where δ
measures the radius of nonlocal interactions.

In the second part of this talk we will present some results related to the con-
cept of ordered curvature. In the classical setting, Li and Nirenberg studied the
problem where the mean curvature is assumed to be monotone (ordered) in a given
direction ν. Under certain geometric assumptions, they showed that there must
be a hyperplane orthogonal to ν across which the surface is symmetric. Thus, if
the mean curvature is ordered in all directions, the surface is a sphere. we have
developed the concept of nonlocal ordered curvature, but considering the nonlocal
curvature for a surface of minimal regularity (for example, open sets) under some
technical, but general assumptions regarding intersections of the set with parallel
lines.

Given a measurable set Ω ⊆ Rn, the nonlocal curvature at x ∈ Rn associated
with an integrable kernel J , is defined as

HJ
Ω(x) :=

∫

Rn

J(x− y)(χΩ(y)− χΩc(y)) =

∫

Rn

J(x− y)τΩ(y)dy,

where χΩ is the characteristic function of the set Ω. When J is the characteristic
function of a ball of radius r (i.e. J(x − y) = 1 for |x − y| < r and J(x − y) = 0,
otherwise) the curvature simply measures the difference between the volume of the
set Ω inside the ball and the volume outside the ball - see figure below.

While the concept is easily formulated, the computation of nonlocal curvature,
even for sets with polygonal contours, is non-trivial. Similarly, the theoretical
analysis requires careful estimates. Yet, the physical motivation and intuition
behind its definition propels it as an important and efficient tool in applications.
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Phase-field fracture in finitely-strained viscoelastic solids in an
Eulerian formulation

Tomáš Roub́ıček

Continuum mechanics and thermomechanics of solids at finite strains can be for-
mulated either in the referential frame (i.e. the Lagrangian approach) or in the
actual evolving frame (i.e. the Eulerian approach). Of course, these options apply
also to the damage mechanics. Here the latter option is considered.

The basic kinematic ingredients are the Eulerian velocity v and the deformation

gradient F , subjected to the evolution rule
.
F= (∇v)F where the dot denotes the

convective time derivative, i.e.
.
F= ∂

∂tF + (v·∇)F . Beside the usual Kelvin-Voigt
rheology, one can consider rheologies with internal variables. The simplest one
is of the Maxwell type (describing creep or plasticity) using the Kröner-Lee-Liu
multiplicative decomposition F = FeF p to the elastic and the inelastic distortions
Fe and F p, combined possibly with the Stokes’ type viscosity. Introducing the

inelastic distortion rate Lp =
.
F p F−1

p , one can eliminate F and F p, obtaining the

kinematic equation for Fe as
.
Fe= (∇v)Fe − FeLp.

This basic kinematics is then used for visco-elastodynamics considered mostly
within a framework of hyperelastic materials, i.e. the symmetric Cauchy stress is
derived from a stored energy ϕ = ϕ(Fe). In principle, there are three options
how to understand ϕ: as a referential potential in Pa (as energy per referential
volume) or as an actual potential in Pa (as energy per actual current volume) or
as a referential potential in J/kg as energy per mass, to which the corresponding

Cauchy stress T is ϕ′(Fe)F
⊤
e /detFe or ϕ′(Fe)F

⊤
e + ϕ(Fe)I or ̺ϕ

′(Fe)F
⊤
e with ̺

denoting the mass density, respectively. Below in (2), we will choose the 2nd one.
This basic isothermal scenario can be then enhanced by considering varying

temperature θ or/and various internal variables like damage (or phase field) de-
noted by α, or porosity, aging, or some fluid content, etc. Depending on θ, one
should speak rather about free energy ψ than mere stored energy ϕ. Here, one
should think about letting ψ = ψ(Fe, α, θ).

The full thermodynamically consistent model should then comply with the 2nd-
law of thermodynamics (expressed by Clausius-Duhem inequality) through the
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entropy equation
.
η =

ξ − divj

θ
− (div v)η ,(1)

where η = −ψθ(Fe, α, θ) denotes the entropy, ξ denotes the dissipation rate, and
j denotes the heat flux considered governed by the Fourier law (in the physical
form) as κ∇(1/θ) with κ = κ(θ) denoting a (rescaled) heat conductivity coefficient.
From (1), one obtains the heat equation, cf. (2f) below.

Other ingredients are dissipation potentials: ζ = ζ(θ; e(v)) for the Stokes viscos-
ity with e(v) = 1

2∇v⊤+ 1
2∇v, ζp = ζp(θ;Lp) for the inelastic distortion (plasticity

or Maxwellian creep), and ζd = ζd(θ; α̇) for the damage (or a phase-field).
We consider (as most often) the isochoric inelastic distortion, i.e. detF p = 1.

Thermodynamically coupled system for the six-tuple (̺,v,Fe,Lp, α, θ) consists
from the continuity equation for the mass density, the momentum equation, the
mentioned kinematic equation for Fe, a flow rule for the inelastic distortion, a flow
rule for damage α, and a heat-transfer equation for temperature θ:

.̺
= −̺ div v ,(2a)

̺
.
v = div(T+D+K) + ̺g, with T = SF⊤

e + ψ(Fe, α, θ)I ,(2b)

D = ζ′
e
(θ; e(v)) − div(ν(θ)|∇2v|p−2∇2v) ,

K = µ∇α⊗∇α− µ

2
|∇α|2I , and S = ψ′

Fe
(Fe, α, θ) ,

.
Fe = (∇v)Fe − FeLp ,(2c)

∂Lp
ζp(θ;Lp) ∋ −dev(F⊤

e S) + div(κp(θ)|∇Lp|q−2∇Lp) ,(2d)

∂α̇ζd(θ;
.
α) ∋ µ∆α− ψ′

α(Fe, α, θ) ,(2e)
.
w = ξ(α;∇v,Lp,

.
α)− divj + ψ′

Fe
(Fe, α, θ):

.
Fe +

(
ψ(Fe, α, θ)−wv

)
div v(2f)

with w = ω(Fe, α, θ) := ψ(Fe, α, θ) − θψ′
θ(Fe, α, θ) , j = κ(θ)∇1

θ
,

and ξ(α;∇v,Lp,
.
α) = ζ′

e
(θ; e(v)):e(v) + ∂

Lp
ζp(θ;Lp):Lp

+ ν(θ)|∇2v|p + κp(θ)|∇Lp|2+ .
α ∂α̇ζd(θ;

.
α).

The variable w = ψ + θη in (2f) is the internal energy while F⊤
e S in (2d) is (the

deviatoric part of) the Mandel stress. The higher-order contribution to the dissipa-
tive contribution D to the Cauchy stress in (2b) which involves the “hyperstress”
ν(θ)|∇2v|p−2∇2v is known as a concept of the so-called 2nd-grade multipolar
(nonsimple) materials. Analytically, for p bigger than space dimension, this term
ensures Lipschitz continuity of the velocity field v in space, which in turn avoids
developing of singularities in the transport equations (2a) and (2c), cf. [3, 4, 6, 7].

The system is to be completed by suitable (here unspecified) boundary con-
ditions. Let us only say that, in the Eulerian formulation, the most often one
imposes the impenetrability condition v·n = 0 with n denoting the normal to the
boundary of a domain Ω on which the system (2) is considered.

The energetics behind the system is revealed when testing (2b) by v, (2d) by
Lp, (2e) by

.
α, and (2f) by 1. After some calculations within which we used also

(2a) tested by 1
2 |v|2 and (2c) tested by ψ, we obtain a balance for the total (i.e.
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kinetic and internal) energy:

d

dt

∫

Ω

̺

2
|v|2 + ω(Fe, α, θ) +

µ

2
|∇α|2 dx =

∫

Ω

̺g·v dx ,(3)

which expresses the 1st law of thermodynamics. The symmetric Korteweg-type
stress K in (2b) balances the energy when confronted by the term µ∆α in (2e)
tested by the convective derivative

.
α. Also the expected entropy balance complying

with the Clausius-Duhem inequality (the 2nd law of thermodynamics) is fulfilled.
It should be emphasized that the Korteweg stressK is related with the Eulerian

formulation of the gradient damage and, depending nonlinearly on ∇α, needs
strong convergence of ∇α of the (here unspecified) approximate solutions. This
causes specific analytical problems which seem ultimately to require ζd(θ; ·) with
a polynomial growth, i.e. to allow damage healing. The unidirectional damage in
Eulerian formulation thus seems analytical as an open problem.

An example of a referential free energy ψr is a neo-Hookean model with a
volumetric-deviatoric split allowing for modelling of a mode-dependent fracture
distinguishing pressure vs tension in Mode I, with a damageable bulk elastic mod-
ulusKe and a damageable shear elastic modulus Ge, combined with the phase-field
fracture with Gc > 0 a fracture toughness and ε > 0 a regularizing parameter,
θ0 > 0 a reference temperature at which the heat capacity is c0, and γ > 0:

ψr(Fe, α, θ) =
1

2
Ke(α)

(
[detFe−1]+

)2
+

1

2
Ke(0)

(
[detFe−1]+

)2
(4)

+Ge(α)
tr(FeF

⊤
e )

(detFe)2/d
+
Gc detFe

2ε
α2 − c0θ

1+γ

γ(1+γ)θγ0
.

The actual free energy ψ which would then be used for (2) is then ψ(Fe, α,∇α, θ) =
ψr(Fe, α,∇α, θ)/detFe. The actual heat capacity c(Fe, θ) = −θψ′′

θθ(Fe, θ) is then
c0(θ/θ0)

γ/detFe and satisfies c(Fe, 0) = 0, which is the physically relevant at-
tribute advocated already by W.Nernst. Combining it with the ∇α-term with
µ = Gcε, we obtain the Ambrosio-Tortorelli phase-field fracture model.

The model (2) is very general with a lot of potential applications. Particular
cases are modeling of rupture of tectonic faults with earthquakes or a birth of new
faults or fracture combined with a thermomechanical Stefan-type phase transition
with a latent heat and melting/healing (as in ice/water or in rock/magma). A
benefit from the Eulerian formulation is a possibility of direct coupling with spatial
fields as gravitational or electromagnetic, or of coupling of solids and fluids.

Acknowledgment: This research was done under the grants 22-00863K “Control-
lable metamaterials and smart structures: nonlinear problems, modelling and ex-
periments” of the Czech Sci. Foundation.
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Space-time phase-field fracture complementarity model and
optimal control

Denis Khimin (Phd student talk)

In this talk we formulate a space-time continuous phase-field fracture model as an
abstract energy minimization problem in a Banach space. First, optimality condi-
tions for such a formulation, with a focus on the specific choice of function spaces
to ensure the required regularity, are derived. Then, using the previously for-
mulated optimality conditions, we present a higher level optimal control problem
with constraints. Finally optimality conditions for the optimal control problem
are stated.

Energy release rate and Griffith’s criterion for phase field fracture

Matteo Negri

(joint work with Eleonora Maggiorelli)

Griffith’s criterion [1] is widely used to model the propagation of sharp cracks in
brittle materials: it is a rate independent criterion, usually written in Karush-
Kuhn-Tucker form, based on the interplay between toughness Gc > 0 and energy
release G ≥ 0.

In the phase field context rate-independent evolutions are often obtained by means
of time discrete schemes, providing (or selecting) at each time step an equilib-
rium configuration of the system. In practice, equilibria are computed by descent
methods for the free energy (e.g., staggered and monolithic schemes) endowed
with a suitable irreversibility constraint on phase-field parameter (e.g., by mono-
tonicity in time). Specifically, we consider [2] phase field energies of the form
F(t, u, v) = E(t, u, v) +GcL(v) where (for ǫ≪ 1, η = o(ǫ), and δ = o(ǫ))

E(t, u, v) = t2
∫

Ω

Wel(v, ε) dx, Wel(v, ε) =
1
2 (v

2+η)
(
|εdev|2+|ε+vol|2

)
+|ε−vol|2+δv2,

L(v) =
∫

Ω

ǫ−1(v − 1)2 + ǫ|∇v|2 dx,
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We consider incremental problems in which at each time tk = kτ the configuration
is a separate minimizer of the energy F , i.e.,

{
uk+1 ∈ argmin {F(tk+1 , u , vk+1) for u = tg on ∂DΩ}
vk+1 ∈ argmin {F(tk+1 , uk+1 , v ) for v ≤ v(tk)},

where the monotonicity constraint in v models irreversibility. In this way we pro-
vide a general result, which holds independently of the incremental scheme, since
the update (uk+1, vk+1) could be a global minimizer, a local minimizer or simply
a separate minimizer. In practice, numerical schemes employ energy descent al-
gorithms, e.g. staggered [3], monolithic [4], active set [6] etc. converging (up to
subsequences) to a separate minimizer of the energy.

Clearly, these time discrete evolutions are considered as approximations of their
time continuous limit, to be computed as the time step vanishes. To this end we
consider the affine interpolation vτ of the time discrete configurations vk. Com-
pactness of vτ is quite delicate since the limit evolution v is in general discon-
tinuous in time. Technically, compactness relies on Kuratowski convergence of
a suitable reparametrization of the time discrete points tk, weak compactness of
reparametrized evolutions, and on strong (a.e. in time) convergence of vτ . Qualita-
tively, continuity points corresponds to the steady-sate regime while discontinuity
points corresponds to the unsteady regime.

We provide [2] a few characterizations of the limit evolution v in the steady-state
regime. The first is a variational system of the form





∂uF(t, u(t), v(t))[φ] = 0 for every φ = 0 on ∂DΩ,

∂vF(t, u(t), v(t))[ξ] ≥ 0 for every ξ ≤ 0,

∂vF(t, u(t), v(t))[v̇(t)] = 0,

which holds a.e. in time. The second is the system of PDEs (actually, a weak
variational inequality) which is of the form [6]





div(σ(t)) = 0 Ω

σ(t)n̂ = 0 ∂NΩ

u(t) = tg ∂DΩ,





−ǫ∆v(t) + ǫ−1(v(t) − 1) + ∂vWel(v(t), ε(t)) ≤ 0 in Ω

∂n̂v(t) ≤ 0 on ∂Ω
[
− ǫ∆v(t) + ǫ−1(v(t)− 1) + ∂vWel(v(t), ε(t))

]
v̇(t) = 0 in Ω

∂n̂v(t) v̇(t) = 0 on ∂Ω,

and holds in the sense of measures, under the regularity assumption v̇(t) ∈ C(Ω̄).

Moreover, as far as properties, we show that the monotonicity constraint turns
out to be thermodynamically consistent since the dissipated energy is monotone
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in time, i.e. ∂vL(v(t))[v̇(t)] ≥ 0, and since ∂vL(v(t))[ξ] > 0 for every ξ ≤ 0 with
ξ 6= 0.

Finally, we provide a characterization of the evolution in terms of Griffith’s crite-
rion. To this end we first define the energy release [7] to be given by

G(t, v) = sup{−∂vẼ(t, v)[ξ] : ξ ≤ 0 with dL(v)[ξ] = 1}

where Ẽ(t, v) = E(t, ut,v, v) and ut,v ∈ argmin {E(t, u, v) : u = tg on ∂DΩ}. In
equilibrium points, we actually have [2]

G(t, v) = lim sup
zրv

−Ẽ(t, z)− Ẽ(t, v)
L(z)− L(v) = max

{
−dẼ(t, v)[ξ]
dL(v)[ξ] : ξ ≤ 0 and ξ 6= 0

}
.

The limit evolution v satisfies Griffith’s criterion, in the following form. In the
steady state regime, for a.e. t ∈ [0, T ] we have





v̇(t) ≤ 0 and L̇(t) = dL(v(t))[v̇(t)] ≥ 0

G(t, v(t)) ≤ Gc

(G(t, v(t)) −Gc) L̇(t) = 0

G(t, v(t)) = −∂vẼ(t, v(t))[λv̇(t)] where dL(v(t))[λv̇(t)] = 1.

In the unstable (snap-back) regime: for every t ∈ Jv we have
{
v+(t) ≤ v−(t) and L(v+(t)) ≥ L(v−(t))
G(t, v) ≥ Gc for some v ∈ co{v−(t), v+(t)}.

Finally, we show that the limit v satisfies the energy identity

E(t, u(t), v(t)) = E(0, u0, v0) +

∫ t

0

Pext(t, u(t), v(t)) dt

−Gc
(
L(v(t)) − L(v0)

)
+

∑

t∈Jv

[F(t, u(t), v(t)) ]

where the jump [F(t, u(t), v(t)) ] is non-positive. We remark that in general there
is no uniqueness of solutions.

Numerically, we compare the evolutions computed in the sharp crack setting using
Griffith’s criterion and in the phase field setting using an alternate minimization
scheme, and thus satisfying the phase field Griffith’s criterion stated above [2].
We consider in particular a couple of examples: a double cantilever beam and a
single edge notch under tension. The first yields a steady state evolution, while the
second gives an unstable discontinuous evolution concentrated in a single jump.
The comparison (in terms of energy, energy release and evolution) shows a perfect
consistency of the two approaches for the double cantilever beam and a very good
consistency for the single edge notch under tension [8].
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Phase-field modeling and computation of fatigue fracture

Pietro Carrara

(joint work with Jonas Heinzmann, Laura De Lorenzis)

The phase-field approach to fracture [1] is able to model crack nucleation and prop-
agation by describing a steep but smooth transition from intact to fully cracked
material states through a phase-field variable d [1]. In this context, the free energy
of a linear elastic body occupying the domain Ω and susceptible of brittle fracture
is written as

(1) Eℓ(u, d) =

∫

Ω

ψel (ε(u), d) dx+
Gc
4cw

∫

Ω

(
w(d)

ℓ
+ ℓ|∇d|2

)
dx .

where x is the spatial coordinate, ε(u) is the infinitesimal strain tensor related
to the displacement field u by ε = ∇s(u), ∇s(•) being the symmetric gradient of
(•), while d is the phase-field parameter taking values between 0 (sound material)
and 1 (broken material). Also, the stored elastic energy density ψel (ε(u), d) =
g(d)ψ+

0 (ε(u))+ψ−
0 (ε(u)) features the monotonically decreasing degradation func-

tion g(d) governing the transition from the sound to the cracked state and the
decomposition of the undegraded stored energy density ψ0 into an active part
ψ+
0 (ε(u)) contributing to the crack evolution and an inactive part ψ−

0 (ε(u)) not
participating to the evolution of d [2]. The last term in (1) is the dissipated energy
due to fracture, featuring the regularization length ℓ, the fracture toughness Gc
the monotonically increasing dissipation function w(d) and the normalization con-
stant cw. Local minimization of the energy (1) under the irreversibility constraint

ḋ ≥ 0 leads to the governing equations of the problem in terms of momentum
balance and phase-field evolution, along with respective boundary conditions.



60 Oberwolfach Report 1/2024

The energy (1) allows the crack to evolve only under monotonic loading condi-
tions, making its application unfeasible in case of fatigue loading [3]. To overcome
this issue we propose to modify the total energy as [3]

(2) Eℓ (u, d | ᾱ) =
∫

Ω

ψel (ε(u), d) dx+

+

∫

Ω

∫ t

0

f(ᾱ(τ))
Gc
4cw

(
w(d)

ℓ
ḋ+ 2ℓ∇d · ∇ḋ

)
dτdx ,

The introduction of the time integral in (2) makes the energy (time-)history-
dependent, therefore we minimize here the rate of the free energy while considering
ᾱ(t) a parameter, namely we freeze its value during a given time step within a time
discrete setting. Note that this approximation leads to a non-variational approach.

Using numerical experiments we demonstrate that the framework stemming
from (2) is able to reproduce the main characteristics of the fatigue behavior
[3], however the associated computational effort is very high, especially for high-
fidelity (HF) cycle-by-cycle analysis of components in the high-cycle fatigue regime,
namely when a number of cycles N above 105 has to be simulated. To reduce the
computational cost, we propose a cycle-jump acceleration scheme, whereby the
HF computation of a certain number of cycles ∆N is skipped by extrapolating
selected local state variables using the results obtained from previous cycles.

In this context, we illustrate an adaptive approach able to automatically deter-
mine the extension of the jump to be performed [4]. The core idea lies in adopting
as local extrapolated quantity the fatigue history variable at the peak load of the
cycle N ᾱ(x, N), while the decision about when and how many cycles to jump
is based on the rate of change of a global scalar variable λ. However, it is not
possible to identify a single global variable suitable for this purpose during the
whole fatigue life of a component [4]; therefore, we subdivide the fatigue life in
three stages, stage I before the onset fatigue effects, stage II during localization
of the phase-field variable, and stage III during stable crack propagation until
failure. The global variable λ is then defined for stages I, II and III as the max-
imum fatigue history variable max

x∈Ω
(ᾱ(x, N)), the maximum phase-field variable

max
x∈Ω

(d(x, N)) and the crack length, respectively [4].

The efficiency of the proposed scheme is first demonstrated by comparing HF
and accelerated results , highlighting a speed-up of up to three orders of magni-
tude. Then, different virtual specimens including complex geometries with mul-
tiple cracks, branching and merging are studied. Finally, the obtained accuracy
and computational cost are compared with those of other available cycle-jump
approaches, demonstrating higher speed-ups and better accuracy.
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Optimization of Phase-Field Damage Evolution

Winnifried Wollner

(joint work with R. Haller-Dintelmann, A. Hehl, D. Khimin, H. Meinlschmidt,
M. Mohammadi, I. Neitzel, N. Simon, T. Wick)

Within this talk, we will address optimization problems governed by time-discrete
phase-field damage processes. The presence of an irreversibility of the fracture
growth gives rise to a nonsmooth system of equations. To derive optimality
conditions we introduce an additional regularization and show that the result-
ing optimization problem is well-posed. In particular, under suitable assump-
tions [1], given an intial phase-field 0 ≤ φ0 ≤ 1, the Euler-Lagrange equations for
i = 1, . . . , n

(ELγ)

(
g(φi)Ce(ui), e(v)

)
− (qi, v)∂NΩ = 0

ǫ(∇φi,∇ψ)− 1

ǫ
(1− φi, ψ) + (1 − κ)(φiCe(ui) : e(ui), ψ)

+γ([(φi − φi−1)+]3, ψ) + η(φi − φi−1, ψ) = 0

admit a solution ui ∈W 1,p
D and φi ∈ L∞ ∩H1 for some p > 2.

To tackle discretization errors, as well as convergence in the limit of the ir-
reversibility penalty, an improved differentiability result is shown for the time
discrete regularized damage process. It is based on a new differentiability result
for solutions of elliptic systems with non smooth coefficients [2]. Based on a boot-
strapping argument this result implies the additional regularity ui ∈ H1+s for
some s > 0 uniformly with respect to suitable norms of the control variable q. As
a consequence, convergence rates with respect to the mesh size of a discretization
of optimization problems governed by the linearized Euler-Lagrange equations can
be shown [3]. Moreover, these results allow passing to the limit γ → ∞ in the
regularization for the Euler-Lagrange equations (ELγ) giving the expected com-
plementarity system [4]

(EL)

(
g(φi)Ce(ui), e(v)

)
− (qi, v)ΓN

= 0,

ǫ(∇φi,∇ψ)− 1

ǫ
(1− φi, ψ) + η(φi − φi−1, ψ)

+(1− κ)(φiCe(ui) : e(ui), ψ) + (λi, ψ) = 0,

φi ≤ φi−1, λi ≥ 0, (λi, φi − φi−1) = 0.
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Moreover, it could be shown, that certain, isolated local, minimizers of the
optimization problem

min
q,u

J(q, u) s.t. (EL)

can be approximated by local minimizers of

min
q,u

J(q, u) s.t. (ELγ).

Additionally, convergence of the corresponding first order optimality conditions
can be asserted see [5].

Moving away, from control by boundary forces, a coefficient control problem for
the obstacle problem

min J(qγ , uγ)

s.t.

{
−∇ · (qγ∇uγ) + r(γ;uγ) = f ∈ L2(Ω),

uγ ∈ U, qγ ∈ Qad,
,

where r(γ;uγ) is a smooth regularization of the obstacle u(x) ≤ ψ, is discussed.
For this existence of solutions can be obtained by H-convergence and limiting
optimality conditions (γ → ∞) can be obtained [6, 7]
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Phase-field modelling of fatigue fracture in anisotropic
aluminium sheets

Martha Kalina (PhD student talk)

We model the cyclic crack propagation under fatigue loading, which is a typical
scenario for e. g. fuselage shells of aircrafts due to repetitive take-off and land-
ing. The phase-field method is a promising approach to model arbitrary fracture
phenomena like this one. However, fatigue comes along with high numbers of load
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cycles, so an explicit simulation of the load path is very expensive. Therefore,
time-efficient simulation methods are required. In this contribution, we approach
this challenge by combining the phase-field method for brittle fracture with the
Local Strain Approach (LSA), an empirical method originally designed for life
span estimation of metallic components. In this way, we avoid the explicit simu-
lation of the load cycles by executing a local cyclic damage accumulation. Based
on that, the critical fracture energy is degraded locally in order to describe the
dissipation due to damage. Metal sheets, such as the aluminium sheet material
we consider here, show a distinct anisotropy due to the rolling process during
production. Therefore, we now want to take the direction-dependency of fracture
into account. Experiments show that from all material parameters it is mainly
the fracture toughness which depends on the angle to the sheet’s rolling direction.
This anisotropy is included in the approximation of the crack surface density.

Reporter: Nicole Buczkowski
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13071 Ciudad Real
SPAIN

Prof. Dr. Yue Yu

Department of Mathematics
Lehigh University
14 E. Packer Avenue
Bethlehem, PA 18015-1237
UNITED STATES


