
Mathematisches Forschungsinstitut Oberwolfach

Report No. 3/2024

DOI: 10.4171/OWR/2024/3

Discrete Geometry

Organized by
Karim Adiprasito, Jerusalem/Copenhagen/Paris

Xavier Goaoc, Villers-lès-Nancy
Zuzana Patáková, Prague
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Introduction by the Organizers

Discrete Geometry is a classical branch of mathematics, dating back at least to etr-
uscan polyhedra carved out of stone, and yet has remained a vital topic throughout
the ages, central to mathematics as a playground for tools from other areas as well
as providing those tools in return. Its main target is to study the structure and
complexity of discrete objects in a geometric space ranging from finite point sets
in the plane to more complex structures like arrangements of n-dimensional con-
vex bodies. Old and well-known problems such as Kepler’s conjecture, Sylvester’s
four-point question, and Hilbert’s third problem on decomposing polyhedra, as
well as classical works by mathematicians such as Minkowski, Steinitz, Hadwiger
and Erdős are part of the heritage of this area.

By its nature, this area is interdisciplinary and has relations to many other
vital mathematical fields, such as algebraic geometry, topology, combinatorics,
computational geometry, convexity, and probability theory. At the same time it
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is on the cutting edge of modern applications such as geographic information sys-
tems, mathematical programming, coding theory, solid modeling, computational
structural biology and crystallography.

The workshop gathered 48 participants on-site and 7 remote participants. A
conscious effort was made to highlight diverse interactions of discrete geometry to
other areas, in an effort to increase diversity both in science and in attendance,
mixing up the people in attendance. In particular, the workshop included five
distinguished survey talks that focused on such interactions and aspects of dis-
crete geometry, explaining recent advances and open problems in geometric graph
theory (speaker János Pach), convex geometry (Ramon van Handel), arithmetic
geometry (Rachel Greenfeld), topological combinatorics (Andreas Holmsen), and
triangulations (Gaku Liu).

A number of important recent developments in various branches of discrete
geometry were also presented at the workshop. Several outstanding results were
presented by junior scholars, with for instance a lecture by Rachel Greenfeld on her
recent progress (with Marina Iliopoulou and Sarah Peluse) on integer distance sets,
a lecture by Dmitrii Zakharov on his recent progress (with Alex Cohen and Cosmin
Pohoata) on the Heilbronn distance problem and its relation to Kakeya type prob-
lems, a lecture of Edgardo Roldán-Pensado (based on works with Cuauhtémoc
Gomez-Navarro and Leonardo Mart́ınez-Sandoval) on a conjecture of Dol’nikov
and a lecture by Linda Kleist on her solution (with James Davies, Chaya Keller,
Shakhar Smorodinsky and Bartosz Walczak) of Ringel’s circle problem. Equally,
we want to highlight the innovative topological combinatorics talk by Corrine Yap
(with Jason Long and Bhargav Narayanan) on topological Turán problems as well
as the talk by Pavel Paták (with Martin Tancer) on NP-hardness of shellability of
balls.

Other distinct highlights included the resolution of the long-standing problem
on the tightness cases of the Alexandrov-Fenchel inequality (Ramon van Handel
with Yair Shenfeld, Igor Pak with Swee-Hong Chan), a problem in which, prior to
the presented work, not even the right conjecture was established.

Altogether, there were 24 talks presenting new connections to classical topics
such as convex geometry (Henk, Oliveros), combinatorics (Zeng, Jung, Tomon),
topology (Tancer) as well as new developments in classical topics such as polytope
theory (Liu, Padrol), geometric graphs (Pach, Steiner), combinatorial convexity
(Holmsen, McGinnis), real algebraic and tropical geometry (Brandenburg, Raz)
and geometric measure theory (Avvakumov, Schnider).

Two open problem sessions took place on Tuesday and Thursday evening; the
collection of open problems resulting from this session can be found in this report.
The program left ample time for research and discussions.

There were several small informal sessions on specific topics of common in-
terest. On Thursday afternoon, a substantial fraction of the participants braved
the weather and joined the traditional outing to St. Roman with the black forest
cherry cake, enjoying the beautiful (and humid) winter air.
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Subject classification. The topics of the conference belong mainly to classes 52C
and 52B in the AMS-classification scheme. They fall into category 4 (Geometry)
of the International Mathematical Union (1995) classification. There is only a
minor overlap with other Oberwolfach meetings like “Convex Geometry and its
Applications” or “Topological and Geometric Combinatorics”.
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Foundation for supporting József Solymosi in the “Simons Visiting Professors”
program at the MFO.





Discrete Geometry 141

Workshop: Discrete Geometry

Table of Contents

Sergey Avvakumov (joint with Alexander Nabutovsky)
Boxing inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Marie-Charlotte Brandenburg (joint with Georg Loho, Guido Montúfar,
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Abstracts

Boxing inequality

Sergey Avvakumov

(joint work with Alexander Nabutovsky)

Recall the definition of Hausdorff content : for a subset X of a metric space, its
mth Hausdorff content HCm(X) is defined as the infimum of Σir

m
i , where the

infimum is taken over all coverings of X by a finite collection of metric balls, and
ri denote the radii of these balls.

I am going to talk about the following result [1]:

Theorem 1. For any m ≥ 1 there is a constant c(m) such that for any Banach
space B and any compact X ⊂ B, there is a homotopy H : X × [0, 1] → B with
H0 being the inclusion X ⊂ B and H1(X) lying in an (⌈m⌉ − 1)-dimensional
polyhedron in B such that:

(1) HCm(H1(X)) ≤ c(m)HCm(X),

(2) |x−H1(x)|B ≤ c(m)(HCm(X))
1
m for all x ∈ X.

The theorem says thatX can be filled in such a way that both HCm of the filling
and the distance from every point of the filling to X are controlled by HCm(X)
up to a constant independent of the ambient dimension, conditions (1) and (2) in
the theorem, resp. The remarkable part here is that HCm and not HCm+1 of the
filling is controlled. This is, for instance, in contrast with the classical isoperimetric
inequality, where for an m-submanifold Mm ⊂ Rn, the (m + 1)th-volume of the
filling is controlled by the mth volume of Mm.

Theorem 1 was partially motivated by its potential applications to study of
lengths of shortest periodic geodesics in essential manifolds, sys(Mm). In the
seminal paper [3] Gromov established the inequality

sys(Mm) ≤ c(m)(Volm(X))
1
m ,

first establishing an isoperimetric inequality in the space B = L∞(Mm) (of con-
tinuous functions on Mm with ℓ∞ norm) and then exploring the geometry of the
filling. In the same paper he observed that sys(Mm) ≤ 3 · UWm−1(M

m), where
the Urysohn width UWm−1(M

m) measures the distance from Mm to the nearest
(m− 1)-dimensional complex.

Gromov’s proof was later simplified by Wenger [7]. Its scheme was adopted
[6] to prove a weaker version of Theorem 1 – that there exists a filling satisfying

(2) and a weaker version of (1): HCm+1(H1(X)) ≤ c(m)(HCm(X))
m+1
m (it is

weaker because of the monotonicity (HCm+1(X))
1

m+1 ≤ (HCm(X))
1
m of Hausdorff

content). The result of [6], specifically part (2), proved the conjecture of Guth [5]

that the Urysohn width of X can be controlled in terms of (HCm(X))
1
m . It also

immediately implied a systolic inequality with Hausdorff content:

sys(Mn) ≤ c(m)(HCm(Mn))
1
m ,
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where Mn is an essential manifold and 1 ≤ m ≤ n is an integer.
Theorem 1 improved on [6] by providing a “better” deformation to a subset of

an (⌈m⌉ − 1)-dimensional polyhedron.
Before all that, the special case of B = Rm+1 of Theorem 1 was proved by

Gustin [4] who was answering a question posed by Fleming. A simpler proof was
soon found by Federer in [2], where it was used to prove a foundational result in
geometric measure theory.

The main steps of the proof of Theorem 1 are

• Reducing to the case of the ambient space of finite dimension n.
• Decreasing HCm(X) by a (very small) factor of (1 − 1

3m ) by contracting
parts of X to (⌈m⌉ − 1)-dimensional polyhedrons inside several disjoint
balls.

• Proving the theorem with a constant c(m,n) which may depend on the
ambient dimension n.

By repeating the second step a very large (but finite) number of times we make
HCm(X) very small, much smaller than 1

c(m,n) . Then we apply the third step,

which finishes the proof.
The second step is proved following the approach in [6]. To prove the third step,

we first construct a suitable dyadic covering of X with so-called “good geometry”,
i.e., such that neighboring cubes do not differ in size by the factor of more than
2. Then we use the classical Federer–Fleming idea of inductively projecting X to
lower dimensional skeleta of the covering. Unlike the classical case, however, our
cubes are not of the same size which presents additional difficulties with keeping
the projections continuous.
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Separating points by pieceweise linear functions: The real tropical
geometry of neural networks

Marie-Charlotte Brandenburg

(joint work with Georg Loho, Guido Montúfar, and Hannah Tseran)

The combinatorics of functions which can be represented by neural networks with
piecewise linear activations has received significant attention in recent years. A
function represented by a neural network is an alternating composition of affine lin-
ear functions and a chosen activation function. Undoubtedly, one of the most suc-
cessful activation functions is the ReLU activation function ReLU(x) = max(0, x).
Being a composition of affine linear functions with this activation function, a ReLU
neural network always represents a piecewise linear function. It is thus no surprise
that theoretical considerations of neural networks have entered the realm of dis-
crete geometry, with a rising interest to utilize tools from combinatorial tropical
geometry.

Suppose we are given a finite set D ⊂ Rd of points (the data points), which
we seek to separate by a piecewise linear function f into two distinct sets. The
function f serves as a classifier, separating the set D into classes D+(f) = {p ∈
D | f(p) ≥ 0} and D−(f) = {p ∈ D | f(p) ≤ 0}. A well-studied scenario
is the case of linear classifiers, in which f is a linear function. Parametrizing
the function as f(x) = a + 〈s, x〉 yields the parameter space of linear functions
Θ(d) = {(a, s) | a ∈ R, s ∈ Rd}.

Given any partition of D into two sets D+, D−, the set of parameters of linear
functions f such that D+(f) = D+, D−(f) = D− is the interior of the polyhedral
cone

C = {(a, s) ∈ Θ | a+ 〈s, p〉 ≥ 0 ∀p ∈ D+ and a+ 〈s, p〉 ≤ 0 ∀p ∈ D−},
Ranging over all possible partitions of D yields a complete polyhedral fan, whose
cones are chambers in a hyperplane arrangement. This gives rise to a rich and
well-studied combinatorial theory, which has been rediscovered multiple times by
several mathematical communities (see e.g. [1]). We summarize the main impor-
tant characterizations of the linear case as follows. Figure 1 illustrates an example
of these characterizations.

Theorem 1. Let D ⊂ Rd be a finite data set. Then

(i) the chambers of the hyperplane arrangement HD =
⋃

p∈D(1, p)⊥ subdivide the

parameter space Θ(d) into regions of linear classifiers whose classification of
D into D+ and D− agree,

(ii) HD induces the normal fan of the zonotope PD =
∑

p∈D conv(0, p),

(iii) the possible linear classifications correspond to the covectors of a realizable
oriented matroid.

But what happens if the functions f are piecewise linear functions? Recall
that any such function can be written as the difference of two convex piecewise
linear functions, i.e. are of the form f(x) = g(x)− h(x) = maxi∈[n] (ai + 〈si, x〉)−
maxj∈[m] (bj + 〈x, tj〉). A function of this shape is also called a tropical rational
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A lifted point config-
uration D × {1} =
{(p1, 1), (p2, 1), (p3, 1)}.

The hyperplane arrange-
ment HD =

⋃

p∈D
(p, 1)⊥.

The zonotope
PD =

∑

p∈D
conv(0, p).

Figure 1. The different characterizations from Theorem 1 on an
example of a 1-dimensional data set D = {p1, p2, p3}.

function. Fixing the number of linear terms in such a representation, we can
consider the parameter space of tropical rational functions as

Θ(d, n,m) =

{(

a1 . . . an b1 . . . bm
s1 . . . bn t1 . . . tm

)

| ai, bj ∈ R, si, tj ∈ R
d
, i ∈ [n], j ∈ [m]

}

.

Fixing a classification D = D+ ∪D−, the set of parameters of perfect classifiers
is described by the inequalities

max
i∈[n]

ai + 〈si, p〉 ≥ max
j∈[m]

bj + 〈tj , p〉 ∀p ∈ D+

max
i∈[n]

ai + 〈si, p〉 ≤ max
j∈[m]

bj + 〈tj , p〉 ∀p ∈ D−

and is thus a union of polyhedral cones, which form a polyhedral fan. Interestingly,
the above can be seen as a system of tropical polynomial inequalities, i.e. the set of
solutions is a tropical semialgebraic set. Ranging over all possible partitions yields
multiple polyhedral fans, and the collection of cones contained in these polyhedral
fans all together form a complete fan, called the activation fan of D. We show that
this polyhedral fan is the normal fan of the activation polytope, and this polytope
can be written as a Minkowski sum of (n + m − 1)-dimensional simplices. Note
that the case n = m = 1 recovers the linear case, in which the activation polytope
agrees with the zonotope from above. Also in analogy to the linear case, we may
label each cone in the fan by an activation pattern, which is the analogue of a
covector of an oriented matroid. We summarize our findings as follows:

Theorem 2. Let D ⊂ Rd be a finite data set. Then

(i) the cones of the activation fan subdivide the parameter space Θ(d, n,m) into
regions of piecewise linear classifiers whose classification of D agree,

(ii) the activation fan is the normal fan of the activation polytope,
(iii) the possible piecewise linear classifications correspond to the possible activa-

tion patterns

References

[1] T. Cover, Geometrical and Statistical Properties of Linear Threshold Device, PhD Thesis,
Stanford University (1964).



Discrete Geometry 147

Integer distance sets

Rachel Greenfeld

(joint work with Marina Iliopoulou, Sarah Peluse)

A set S ⊂ R2 is called an integer distance set if the Euclidean distance ‖s′ − s‖
between any two points in s, s′ ∈ S is an integer. In 1945, Anning–Erdős [1, 5]
proved that if an integer distance set S is not collinear (i.e., not contained in a
single line), then it must be finite. Indeed, let P1, P2, P3 be non-collinear points
in S, then any point X ∈ S must satisfy

|‖X − Pi‖ − ‖X − Pi+1‖| ∈ {0, 1, . . . , ‖Pi − Pi+1‖} , for both i = 1, 2.

This means that S ⊂ H1 ∩ H2 where Hi, i = 1, 2, is a family of ‖Pi − Pi+1‖ + 1
hyperbolas with foci (Pi, Pi+1). As P1, P2, P3 are non-collinear, the intersection
H1 ∩H2 must be finite.

In addition, Anning–Erdős constructed two infinite families of arbitrarily large
non-collinear integer distance sets: one of concyclic sets and one of sets in which
all but one point are collinear. Erdős [4, page 43] then raised the question:

“Can you find n points in general position, no three on a line, no four on a
circle, all distances are integers?”

All so-far-known integer distance sets have all but at most four of their points
on a single line or circle. Moreover, the largest known integer distance set with no
three points on a line and no four points on a circle consists of only seven points
[9]. In 2003, Solymosi [10] showed that if an integer distance set S ⊂ [−N,N ]2

has no three points on a line then its size |S| is at most1 O(N) (i.e., linear in N).
The proof is based on further geometric analysis of the corresponding set H1 ∩H2

of hyperbolas intersections.
Observe that the rather simple hyperbolas-based argument relies on fixing

merely three non-collinear points of S and analysing the constraints they derive on
S. Clearly, any additional point of S (in general position) one fixes as a reference
point, would derive further algebraic constraints on S. Therefore, to get good
understanding of the structure and size of S, one would ideally aim at fixing an
“optimal” number of reference points of S (in general position) and analyse the
system of algebraic constraints they impose on S. This requires a new approach,
which is algebraic in nature.

In a joint work with M. Iliopoulou and S. Peluse [6], we developed a new ap-
proach to study the size and structure of integer distance sets. This approach
enabled us to prove a structure theorem that partially explains the above phe-
nomenon, showing that any integer distance set in [−N,N ]2 has all but at most
polylogarithmically many points lying on a single line or circle.

1For any two quantities X and Y , we write X = O(Y ) to mean that |X| ≤ CY for some
absolute constant C > 0 and X ≍ Y to mean X ≪ Y and Y ≪ X.
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Theorem 1 (Structure theorem). Let S ⊂ [−N,N ]2 be an integer distance set.
Then there exists a line or circle C ⊂ R2 such that

|S \ C| = O
(
(logN)O(1)

)
.

As an immediate consequence of Theorem 1, we get that integer distance sets
with no three points on a line and no four points on a circle must be very sparse.

Corollary 2 (New bound on Erdős integer distance set problem). Let S ⊂
[−N,N ]2 be an integer distance set with no three points on a line and no four
points on a circle. Then

|S| = O
(
(logN)O(1)

)
.

Outline of the method. Let S ⊂ [−N,N ]2 be an integer distance set. Our
method consists of choosing a collection of k ≍ log logN reference points P1, . . . , Pk

of S in general position, and analysing S with respect to the algebraic constraints
these points impose, by using algebraic geometry and algebraic number theory
tools. Below the fold we outline the main steps of our proof. We hope that this
new method will open the way to further advances in additive combinatorics.

Encoding S as rational points on a surface. Using [8], we can assume, on applying
translation and rotation to S, that

S ⊂
{
(x, y

√
m) : x, y ∈ 1

2M
Z

}

where m ∈ N is squarefree and M = O(N). Then, we fix k ≍ log logN points of
S in general position, P1 = (a1, b1

√
m), . . . , Pk = (ak, bk

√
m), according to which

we define the variety

Xk :=
{
(x, y, d1, . . . , dk) ∈ Ck+2 : Qj(x, y, dj) = 0, j = 1, . . . , k

}
,

where Qj(x, y, dj) = (x − aj)
2 + m(y − bj)

2 − d2j . Clearly, if X = (x, y
√
m) ∈ S

then

(x, y, ‖X − P1‖, . . . , ‖X − Pk‖) ∈ Xk ∩
(

1

2M
Z× 1

2M
Z× Zk

)
.

Each such point corresponds to a rational point of height at most O(N2) on the
projective closure Xk ⊂ Pk+2 of Xk. Thus, we have encoded the points of S as
rational points of small height on Xk. We show that Xk is an irreducible surface
of degree 2k defined over Q.

Covering rational points of small height by few low degree curves. It is known,
originally thanks to work of Heath-Brown [7], that almost all rational points of
small height on an irreducible projective surface defined over Q lie on a small
number of low degree curves. Applying a refinement of this result due to [3], we
obtain that there exists a homogeneous polynomial g ∈ Z[x0, . . . , xk+2] of bounded
degree (with explicit bound, depending on N, k) that vanishes at all these rational
points of small height on Xk. On applying appropriate projection, we show that
S itself can be covered by t = O

(
(logN)O(1)

)
irreducible curves, C1, . . . , Ct, each

of which of degree at most O
(
(logN)O(1)

)
.
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Counting rational points of small height on curves. We analyse the curvesCj , ..., Ct

and prove, for each Cj , 1 ≤ j ≤ t, that

• if Cj is not a line or a circle and |S ∩Cj | is not very small, then the points
of S ∩ Cj can be encoded as rational points of small height on a certain

irreducible curve Ck ⊂ Xk (defined over Q) of degree 2k ≤ d ≤ 2k degCj ,
with k ≍ log logN ;

• if Cj is a line or a circle and |S \ Cj | is not very small, then the points
of S \ Cj can be encoded as rational points of small height on a certain

irreducible curve Ck ⊂ Xk (defined over Q) of degree 2k ≤ d ≤ 2k+1, with
k ≍ log logN .

We then apply a refinement, due to [3, Theorem 2], of the Bombieri–Pila [2] bound
on the number of points of small height on irreducible curves of certain degree, to
the curve Ck ⊂ Pk+2 in either of the above cases, and obtain that if Cj is not a
line or a circle then

|S ∩ Cj | = O
(
(logN)O(1)

)
,

and otherwise, if Cj is a line or a circle,

|S \ Cj | = O
(
(logN)O(1)

)
.

Since t = O
(
(logN)O(1)

)
, this concludes the proof of our structure result, Theorem

1, and Corollary 2, in turn.
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Around the Alexandrov-Fenchel inequality

Ramon van Handel

The origin of the questions to be described below can be traced back to a re-
markable paper of H. Minkowski [11] that celebrated its 120th birthday just prior
to this workshop. This paper not only laid the foundation for the field of con-
vex geometry, but also introduced several notions that had an major impact on
other areas of mathematics—e.g., the Minkowski existence and uniqueness prob-
lems which led to much work on nonlinear PDEs in the 20th century, and one of
the earliest examples of stability of geometric inequalities. At the same time, some
fundamental questions that arise from this work remain open to this day.

At the heart of Minkowski’s theory lies the notion of mixed volumes and the
associated inequalities. To define these, we recall the basic fact that the volume
of convex bodies is a homogeneous polynomial in the sense that

Vol(λ1K1 + · · ·λmKm) =
m∑

i1,...,in=1

λi1 · · ·λin V(Ki1 , . . . ,Kin)

for all convex bodies K1, . . . ,Km in Rn and λ1, . . . , λm ≥ 0. Its coefficients
V(C1, . . . , Cn), called mixed volumes, capture numerous geometric parameters of
convex bodies as special cases. Consequently, many geometric inequalities are
unified and generalized by the following fundamental result.

Theorem 1 (Alexandrov-Fenchel). For convex bodies K,L,C1, . . . , Cn−2 in Rn

V(K,L,C1, . . . , Cn−2)
2 ≥ V(K,K,C1, . . . , Cn−2)V(L,L,C1, . . . , Cn−2).

This result was first proved by Minkowski [11] for the case n = 3 and by
Alexandrov [1] for general n (Fenchel independently announced the result but did
not publish a proof). The following question dates back to Minkowski:

Question. When does the Alexandrov-Fenchel inequality achieve equality?

Example 2. For any convex body K in R3

V(B,K,K)︸ ︷︷ ︸
surface area

2 ≥ V(B,B,K)︸ ︷︷ ︸
mean width

V(K,K,K)︸ ︷︷ ︸
volume

,

where B is the unit ball. Equality holds when K minimizes
surface area among all bodies with a given volume and mean
width. Such K are strikingly bizarre (see illustration).

This special example was considered by Minkowski [11] and Bol [2]. After that,
progress stalled for several decades as the question was believed to be intractable
[4, §20.5]. This would have likely remained the case if it were not for a remarkable
conjectured characterization put forward by Schneider [12], which spurred new
interest in the problem. Despite progress in additional special situations [13, §7.6],
however, the problem has largely remained open.

The reason the problem is challenging is that proofs of the Alexandrov-Fenchel
inequality rely on “nice” (e.g. smooth) bodies for which only trivial equality cases
arise, and deduce the general case by approximation. Nontrivial equality cases
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arise in the limit due to the fact that the objects used in the proof become singular,
and the heart of the matter is to understand these singularities.

A major step forward was achieved in joint work with Yair Shenfeld [16], which
completely settled the problem when C1, . . . , Cn−2 are arbitrary convex polytopes.
One central ingredient of the proof is a method to resolve the singularities.

Theorem 3 (Informal statement). When C1, . . . , Cn−2 are convex polytopes, the
equality cases of Theorem 1 arise by a superposition of three distinct mechanisms:

(1) translation and scaling;
(2) the relative positions of the normal cones of bdC1, . . . , bdCn−2;
(3) the relative positions of the affine hulls aff C1, . . . , aff Cn−2.

Let us note that mechanisms (1) and (2) were conjectured by Schneider, while
mechanism (3) is responsible for new equality cases. We refer to [16, §2] for a
precise statement and some explicit examples.

While mixed volumes belong firmly to geometry, they lead a double life as
combinatorial objects: when K1, . . . ,Kn are lattice polytopes (i.e., with vertices in
Zn), the scaled mixed volume n!V(K1, . . . ,Kn) is always an integer that counts, for
example, the number of solutions of systems of polynomial equations [4, §27] and
various other combinatorial structures [14]. The Alexandrov-Fenchel inequality
therefore also gives rise to combinatorial inequalities.

One of the earliest such results is due to Stanley [14]. Let P = {x, y1, . . . , yn}
be any partially ordered set, and let Ni be the number of linear extensions of P
(i.e., different ways to complete the partial order to a total order) so that x ∈ P
has rank i. Stanley realized that1 Ni = n!V(K[i − 1], L[n + 1 − i]) for suitable
lattice polytopes K,L in Rn. Thus the Alexandrov-Fenchel inequality immediately
implies the following conjecture of Chung-Fishburn-Graham.

Theorem 4 (Stanley). The sequence (Ni) is log-concave, i.e., N2
i ≥ Ni−1Ni+1.

Note that the presence of an equality N2
i = Ni−1Ni+1 in a log-concave se-

quence corresponds precisely to a geometric progression. Thus Minkowski’s ques-
tion translates in the combinatorial setting to whether we can characterize when,
where, and what kind of geometric progressions arise in log-concave combinatorial
sequences, and partially ordered sets that feature such geometric progressions are
combinatorial cousins of the strange bodies of Example 2.

The equality characterization of the Alexandrov-Fenchel inequality opens the
door to answering such questions. In particular, the geometric progressions in
Stanley’s inequality were fully settled in [16, §15], and corresponding results for
several related inequalities were obtained in [10, 18]. One surprising outcome of
these results is that all three equality mechanisms in Theorem 3 turn out to arise
naturally in combinatorial applications: these are not merely esoteric boundary
cases the arise only in “weird” geometric examples!

The circle of ideas discussed above is far from complete, and continues to give
rise to unexpected connections. We conclude by briefly describing three distinct
themes that are motivating ongoing work on this subject.

1The notation K[i− 1] indicates that K is inserted in i− 1 arguments of the mixed volume.
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Theme 1 (general convex bodies). The equality cases of the Alexandrov-Fenchel
inequality remain open in full generality (beyond polytopes). The issue is that
beside the combinatorial singularities that arise already in the polytope setting,
there are analytic singularities that arise as the boundary of general convex bodies
can be highly nonsmooth. New tools developed in [15] made it possible to sur-
mount these issues in the setting of Minkowski’s original paper [11], but a complete
understanding of the analytic aspect remains challenging.

Theme 2 (beyond convexity). While the Alexandrov-Fenchel inequality belongs
to convex geometry, analogous inequalities turn out to appear in other areas of
mathematics: in algebraic geometry [17], in complex geometry [7], and most re-
cently in combinatorics [8, 3, 5]. In particular, there appears to be a kind of
universal algebraic structure to such inequalities that is not specific to convex-
ity. It is natural to conjecture that the structure of the equality cases is similarly
universal. Initial progress on this question was recently made in [9].

Theme 3 (complexity theory). While Theorem 3 provides a complete geometric
characterization of the Alexandrov-Fenchel equality cases, it was shown in [6] that
it may nonetheless be computationally hard to recognize when equality holds. This
result and its complexity-theoretic and philosophical implications were discussed
in detail in the talk of Igor Pak at this workshop.
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Polynomial bounds in Koldobsky’s discrete slicing problem

Martin Henk

(joint work with Ansgar Freyer)

Let Kn be the set of convex bodies in Rn and the subfamily of convex bodies that
are origin-symmetric is denoted by Kn

os. The classical and central slicing problem
in Convex Geometry due to Bourgain (see, e.g. [2]) asks for the optimal constant
bn > 0 such that for any K ∈ Kn

os there exists a central hyperplane H , i.e., a
hyperplane passing through the origin, with

(1) vol(K) ≤ bnvoln−1(K ∩H) vol(K)
1
n .

Here vol(S) denotes the volume, i.e., n-dimensional Lebesgue measure of S ⊂ Rn,
and the d-dimensional volume of a set S contained in a d-dimensional affine plane
is denoted by vold(S).

It is conjectured that bn in (1) is upper bounded by an absolute constant and
the current best known bound due to a recent result of Klartag [6] is of order

O(
√

log(n)). This conjecture is equivalent to a multitude of other problems in
Convex Geometry and Geometric Analysis such as the isotropic constant conjec-
ture. It is considered to be one of the major open problems in Convex Geometry
and for more information we refer to [3, 4].

Koldobsky considered extensions of (1) to measures others than the Lebesgue-
measure (see, e.g., [7]). In particular, he also asked for the following discrete
variant of the slicing problem: determine the best possible constant dn > 0 such
that for any K ∈ Kn

os with dim(K ∩ Zn) = n there exists a central hyperplane
H ⊂ Rn with

(2) G(K) ≤ dn G(K ∩H)vol(K)
1
n ,

where G(K) = |K ∩ Zn| is the lattice point enumerator. In [1] it was shown
dn ∈ O(n 2n) as well as a lower bound of order Ω(n). The main reason for this
exponential gap is the unfortunate circumstance that, even though K is origin-
symmetric, the maximal (with respect to lattice points) hyperplane section does
not need to pass through the origin (see [1]).

We prove the following theorem on central sections of arbitrary dimension of
centered convex bodies, where a convex body is called centered if

∫
K xdx = 0.

Theorem. Let K ∈ Kn, dimK = n, be centered and let k ∈ {1, . . . , n−1}. There
exists a k-dimensional central plane L ⊂ Rn such that

G(K)
k
n ≤ O(ω(n))n−kO

(
max

{(
n+ 1

k + 1

)k

, ω(k) k n

})
G(K ∩ L).
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Here ω(n) is the well-known flatness constant. The best known upper bound
on ω(n) is due to Reis and Rothvoss [9]:

(3) ω(n) ≤ O(n log(n)3).

In the case of origin-symmetric convex bodies, the bound in the theorem above
can be improved and together with (3), we obtain the desired polynomial upper
bound for dn in Koldobsky’s discrete slicing problem (2).

Corollary. Let K ∈ Kn
os with dim(K ∩ Zn) = n, n ≥ 2. There exists a central

hyperplane H ⊂ Rn such that

G(K) ≤ O

(
n2 ω(n)

log(n+ 1)

)
G(K ∩H)vol(K)

1
n .

In particular,

G(K) ≤ O(n3 log(n)2)G(K ∩H)vol(K)
1
n .(4)

It is quite likely that the right order is linear in the dimension which would also
coincide with a result of Regev [8] where by a randomized construction it is shown

dn ∈ O(n) provided the volume of K is at most cn
3

for an absolute constant c.
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Topological Helly-type theorems

Andreas F. Holmsen

One of the milestones of combinatorial convexity is the (p, q)-theorem [2], a far-
reaching generalization of Helly’s theorem:

Theorem 1 (Alon–Kleitman, 1992). For all integers p ≥ q ≥ d + 1 > 1 there
exists a minimal integer N = N(p, q, d) with the following property. For any finite
family of convex sets in Rd, where among any p of them some q intersect, there
exists a set of N points that intersect every set in the family.

Hadwiger and Debrunner, who conjectured the existence of N(p, q, d), showed
that for p(d − 1) < d(q − 1), we have N(p, q, d) = p − q + 1, while the current

general bounds are Ω(p logd−1 p) ≤ N(p, d+ 1, d) ≤ O(pd(d−1/2)).
An active research direction, initiated by Alon et al. [1], is to identify classes

of set systems for which a (p, q)-theorem is valid. (This is closely related to the
notion of χ-boundedness in graph theory.) A first step in this direction was their
generalization of the (p, q)-theorem to good covers in Rd, i.e. families of subsets of
Rd where the intersection of any subfamily is empty or contractible:

Theorem 2 (Alon–Kalai–Matoušek–Meshulam, 2002). The assertion of the (p, q)-
theorem remains valid for all finite good covers in Rd.

The following generalization of a good cover in Rd was introduced by Goaoc et
al. [3]. For a family F of sets in Rd, define the k-level homological complexity of
F as

HCk(F ) = sup
{
β̃i

( ⋂

S∈G

S
)
: G ( F, 0 ≤ i < k

}
.

Here β̃i denotes the ith reduced Betti-number with Z2-coefficients. (For a good
cover F in Rd we have HCd(F ) = 0.) Goaoc et al. [3] showed that bounding the
following Helly-type theorem:

Theorem 3 (Goaoc–Paták–Patáková–Tancer–Wagner, 2017). Let F be a finite
family of sets in Rd with HC⌊d/2⌋(F ) ≤ C. If any m or fewer members of F have
a point in common, then there is a point in common to all members of F , where
m is a constant depending only on C and d.

A natural question (which we answer below) is whether a (p, q)-theorem is valid
for set systems in Rd with bounded homological complexity.

Combinatorial aspects. The Alon–Kleitman proof of the (p, q)-theorem has
been scrutinized over the years, revealing a number of crucial combinatorial prop-
erties at work. Consider a set system C on a ground set X . For a subset Y ⊂ X
let c(Y ) =

⋂
S∈C S, and let c(Y ) = X if no set in C contains Y . For a finite family

F ⊂ C let τ(F ) denote its transversal number, and let τ∗(F ) denote its fractional
transversal number. If τ(F ) = 1, then F is called an intersecting family. We define
the following properties of C:
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(1) C has the Radon property if there exists an integer r such that any set
Y ⊂ X , with |Y | = r, has a partition Y = A ∪B where c(A) ∩ c(B) 6= ∅.
(The minimal such r is called the Radon number of C.)

(2) C has the colorful Helly property if there exists an integer m such that in
any collection of finite families F1, . . . , Fm ⊂ C, where ⋂m

i=1 Si 6= ∅ for all
choices S1 ∈ F1, . . . , Sm ∈ Fm, one of the Fi is intersecting. (The minimal
such m is called the colorful Helly number of C.)

(3) C has the fractional Helly-property for k-tuples if there exists a function
f : (0, 1) → (0, 1) such that in any finite family F ⊂ C, where at least

α
(
|F |
k

)
of the subfamilies of size k are intersecting, there is an intersecting

subfamily of size at least f(α)|F |. (The minimal k for which C has the
fractional Helly property is called the fractional Helly number of C.)

(4) C has the weak ε-net property if there exists a function g : Q → N such
that for any finite family F ⊂ C we have τ(F ) ≤ g

(
τ∗(F )

)
.

It is known that the system of all convex sets in Rd satisfies each of these
properties. The proof method Alon and Kleitman reveals the following:

Theorem 4. If a set system C satisfies properties (3) and (4), then assertion of
the (p, q)-theorem is valid for all finite F ⊂ C whenever p ≥ q ≥ k, where k is the
fractional Helly number.

A set system C is intersection-closed if the intersection of any sets in C is con-
tained in C. Examples include e.g. convex sets in Rd, convex lattice sets in Rd, and
abstract convexity spaces. Recent developments have culminated in the following:

Theorem 5. If C is an intersection-closed set system, then properties (1), (2),
(3), and (4) are equivalent.

The implication (3) ⇒ (4) was shown in [1], (1) ⇒ (2) in [6], (2) ⇒ (3) in [5],
and (4) ⇒ (1) in [7].

Topological set systems. The key step in extending Theorem 3 to a (p, q)-
theorem is the following result due to Patákova [8]:

Theorem 6 (Patákova, 2020). Let F be a family of subsets of Rd. If HC⌊d/2⌋(F ) ≤
C, then F has the Radon property, where the Radon number depends only on C
and d.

For a family F of subsets in Rd, let F∩ denote its intersection-closure, i.e.
F∩ = {⋂S∈G S : G ⊂ F}. Note that F and F∩ have the same Radon number
and that HCk(F ) = HCk(F

∩). Therefore, Theorems 4, 5, and 6 imply that a
(p, q)-theorem is valid for any family F of sets in Rd where HC⌊d/2⌋(F ) ≤ C. The
important caveat here is that we require p ≥ q ≥ k, for some rapidly increasing
function k = k(C, d).

The proof of Theorem 6 uses homological non-embeddability (homological mi-
nors) and the technique of “constrained chain maps” originally developed in the
proof of Theorem 3. Recently, Goaoc et al. [4] extended these techniques further
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to improve the bound on the fractional Helly number of topological set systems in
Rd:

Theorem 7 (Goaoc–Holmsen–Patáková, 2021). Let F be a family of sets in Rd.
If HC⌊d/2⌋(F ) ≤ C, then F has fractional Helly number at most d+ 1.

Consequently, the assertion of the (p, q)-theorem is valid for such families when-
ever p ≥ q ≥ d+ 1.

There are interesting examples from geometric transversal theory that indicate
that a constant bound on the homological complexity is not a necessary condition
for a (p, q)-theorem. Motivated by earlier conjectures of Kalai and Meshulam we
propose the following: Fix constants c and t, and consider families F of sets in Rd

which satisfy

⌊d/2⌋∑

i=1

β̃i

( ⋂

S∈G

S
)
≤ c · |G|t , for all finite G ⊂ F.

We conjecture that such families satisfy a (p, q)-theorem for all p ≥ q ≥ d+ 1.
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A purely combinatorial proof of (ℵ0, q)-theorems

Attila Jung

(joint work with Dömötör Pálvölgyi)

Let Kd be the hypergraph whose vertices are the compact convex sets in Rd and
edges represent intersecting families of convex sets. Many results of combinatorial
convexity can be stated as properties of this hypergraph.
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For a hypergraph H, let V (H) be its vertex set and for an S ⊂ V (H), let H[S]
be the subhypergraph spanned by S. We will denote the number of edges by e(H),
and the q-uniform part of the hypergraph by H(q).

The celebrated Alon-Kleitman theorem can be stated as follows.

Theorem 1 (Alon and Kleitman [1]). For every finite p ≥ d + 1 there exists a

D < ∞ with the property that if S ⊂ V (Kd) is such that K(d+1)
d [S] does not contain

independent sets of size p, then S can be covered with D edges of Kd.

One of the main ingredients in its proof, the fractional Helly theorem of Katchal-
ski and Liu can be phrased as follows.

Theorem 2 (Katchalski and Liu [2]). If S ⊂ V (Kd) is a finite subset and

e(K(d+1)
d [S]) ≥ a

(
|S|
d+1

)
with some a > 0, then there exists a clique of K(d+1)

d [S]

of size b|S| with some b(a, d) > 0.

For a q-uniform hypergraph H, we say that H satisfies the fractional Helly

property, if for all a > 0 there exists a b > 0 such that if e(H[S]) ≥ a
(
|S|
q

)
for some

finite S ⊂ V (H), then there exists a clique of H[S] of size b|S|.
For 0 ≤ k < d, let Bd,k be the hypergraph whose vertices are balls from Rd

and edges represent families of balls which can be intersected with a single k-
dimensional affine subspace. Keller and Perles proved the following infinite variant
of the Alon-Kleitman theorem for k-flats intersecting Euclidean balls.

Theorem 3 (Keller and Perles [3, 4]). If S ⊂ V (Bd,k) is such that B(k+2)
d,k [S] has

no infinitely large independent set, then S can be covered with a finite number of
edges of Bd,k.

We prove that such an infinite variant of the Alon-Kleitman theorem always
follows from the corresponding finite version and a fractional Helly theorem. Thus
we obtain the following analog of the result of Keller and Perles as one of the
corollaries.

Corollary 4 (Jung and Pálvölgyi). If S ⊂ V (Kd) is such that K(d+1)
d [S] has no

infinitely large independent set, then S can be covered with a finite number of edges
of Kd.

We actually prove that if our hypergraph satisfies the fractional Helly property,
then the condition of the infinite version of the Alon-Kleitman theorem implies
the condition of the finite version. We state that in the contrapositive form as
follows.

Theorem 5 (Jung and Pálvölgyi). If a q-uniform hypergraph satisfies the frac-
tional Helly property and has arbitrarily large finite independent sets, then it has
an infinitely large independent set.
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A solution to Ringel’s circle problem

Linda Kleist

(joint work with James Davies, Chaya Keller, Shakhar Smorodinsky,
Bartosz Walczak)

A constellation is a finite collection of circles in the plane in which no three circles
are tangent at the same point. The tangency graph G(C) of a constellation C is
the graph with vertex set C and edges comprising the pairs of tangent circles in C.

Jackson and Ringel [5] discussed four problems regarding the chromatic number
of constellations. The problems are illustrated in Figure 1.

(a) The penny problem. What is the maximum chromatic number of a con-
stellation of non-overlapping unit circles?

(b) The coin problem. What is the maximum chromatic number of a constel-
lation of non-overlapping circles (of arbitrary radii)?

(a) (c)

(d)(b)

Figure 1. An illustration of the four coloring problems of tan-
gency graphs of constellations: (a) a penny graph, (b) a coin
graph, (c) an overlapping penny graph, and (d) a general constel-
lation as in the circle problem.
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(c) The overlapping penny problem. What is the maximum chromatic number
of a (possibly overlapping) constellation of unit circles?

(d) The circle problem. What is the maximum chromatic number of a general
constellation of circles?

Jackson and Ringel provided a simple proof that the answer to the penny prob-
lem is 4. The claim that the answer for the coin problem is also 4 is equiv-
alent to the four color theorem [1, 2]. Indeed, on the one hand, if the circles
are non-overlapping, then G(C) is planar and thus 4-colorable by the four-color
theorem. On the other hand, by the Koebe-Andreev-Thurston circle packing the-
orem [8], every planar graph can be realized as G(C) for some constellation C of
non-overlapping circles, and hence, the assertion that every such constellation C
is 4-colorable implies the four color theorem.

The overlapping penny problem is equivalent to the celebrated Hadwiger-Nelson
problem, which asks what is the minimum number of colors needed for a coloring
of the plane such that no two points at distance 1 get the same color. Indeed, if
all circles in C have a radius of 1/2, then two circles are tangent if and only if the
distance between their centers is 1. For this setting, Isbell observed about 60 years
ago that 7 colors suffice [11], and much more recently de Grey [4] showed that 4
colors are not always sufficient, and hence, the chromatic number of the plane lies
between 5 and 7.

Unlike for the first three problems, in which a finite upper bound was known
already when they were stated, for the circle problem no finite upper bound was
known. This open problem was introduced for the first time by Ringel [10] in
1959 and appeared in several places as either a question (e.g., [5, 6, 9]) or a con-
jecture that there is a finite upper bound (e.g., [7]). For lower bounds, Jackson
and Ringel [5] presented an example that requires 5 colors; see Figure 1(d). An-
other such example follows from de Grey’s 5-chromatic unit distance graph. No
construction requiring more than 5 colors has been known so far.

We solve Ringel’s circle problem in a strong sense by showing that the chromatic
number is unbounded, even if we require high girth.

Theorem 1. There exist constellations of circles in the plane with arbitrarily large
girth and chromatic number.

The constellation condition (that no three circles are tangent at a point) is
crucial for Ringel’s circle problem to be interesting—otherwise one could drive
the chromatic number arbitrarily high by taking a set of circles all tangent at
one point. In Theorem 1, however, the condition is redundant because it follows
from the stronger condition that the girth of the tangency graph is greater than 3.
Actually, we prove an even stronger statement in which we additionally forbid
pairs of internally tangent circles.

To prove Theorem 1, we use a “sparse” version of Gallai’s theorem. In order to
guarantee that there are no “unwanted” tangencies in the resulting collection of
circles, we develop a refined “sparse” version of Gallai’s theorem with additional
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(polynomial) constraints. We believe that this version may be applicable to ob-
taining lower bound constructions for other geometric coloring problems, in which
some specific form of algebraic independence is requested.

Tangent circles can be thought of as circles intersecting at zero angle. We
extend Theorem 1 to graphs defined by pairs of circles intersecting at an arbitrary
fixed angle. Specifically, we say that two intersecting circles C1 and C2 intersect
at angle θ if at any intersection point of C1 and C2, the (smaller) angle between
the tangent line to C1 and the tangent line to C2 equals θ. For any θ ∈ [0, π/2],
the θ-graph Gθ(C) of a collection of circles C is the graph with vertex set C and
edges comprising the pairs of circles in C that intersect at angle θ. In particular,
the 0-graph is the tangency graph. We extend Theorem 1 as follows.

Theorem 2. For every θ ∈ [0, π/2], there exist θ-graphs of circles in the plane
with arbitrarily large girth and chromatic number.

The proof of Theorem 2 for θ > 0 is significantly simpler than the proof for
θ = 0 corresponding to Theorem 1. For full details, we refer to our paper on arxiv
or the SoCG proceedings [3].

References

[1] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part I: Discharging.
Illinois Journal of Mathematics, 21(3):429–490, 1977.

[2] Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four colorable. Part
II: Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 1977.

[3] James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak. A
Solution to Ringel’s Circle Problem. In 38th International Symposium on Computational
Geometry (SoCG 2022), volume 224, pages 33:1–33:14, 2022.

[4] Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5. Geombinatorics,
28:5–18, 2018.

[5] Brad Jackson and Gerhard Ringel. Colorings of circles. The American Mathematical
Monthly, 91(1):42–49, 1984.

[6] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons, 1995.
[7] Gil Kalai. Some old and new problems in combinatorial geometry I: Around Borsuk’s

problem. In Artur Czumaj, Agelos Georgakopoulos, Daniel Krá́l, Vadim Lozin, and Oleg
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Monographien. VEB Deutscher Verlag der Wissenschaften, 1959.

[11] Alexander Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Col-
orful Life of its Creators. Springer, 2009.



162 Oberwolfach Report 3/2024

Triangulations

Gaku Liu

We survey work on geometric triangulations from the past 30 years. We cover the
following topics:

(1) Geometric bistellar flips: Results on connectivity and non-connectivity of
spaces of triangulations through flips.

(2) Asymptotic enumeration of the number of triangulations with a given num-
ber of vertices.

(3) Lattice triangulations and unimodular triangulations: Dilation theorem of
Kempf–Knudsen–Mumford–Waterman and related results.

We give several open problems, including the following:

(1) Oda’s factorization conjecture: Do any two triangulations with the same
support have a common iterated stellar subdivision?

(2) Are any two point sets in R3 and R4 connected by bistellar flips?
(3) Is there a constant cd such that for any lattice polytope P in Rd, cdP has

a unimodular triangulation?

A Complex Analogue of the Goodman-Pollack-Wenger Theorem

Daniel McGinnis

The well-known Helly’s theorem states that if a finite family F of convex sets
in Rd has the property that any choice of d + 1 or less sets in F have a non-
empty intersection, then there is a point in common to all the sets in F (see [1] for
surveys on Helly’s theorem and related results). A k-transversal is a k-dimensional
affine space that intersects each set of F , so Helly’s theorem provides a necessary
and sufficient condition for F to have a 0-transversal. In 1935, Vincensini was
interested in the natural extension of Helly’s theorem of finding necessary and
sufficient conditions for a finite family of convex sets F in Rd to have a k-transversal
for k > 0. In particular, Vincensini asked if there exists some constant r = r(k, d)
such that if every choice of r or fewer sets in F has a k-transversal, then F has a
k-transversal. However, Santaló provided examples showing that such a constant
r does not exist for any k > 0 [7].

In 1957, Hadwiger made the first positive progress toward this extenson of
Helly’s theorem considered by Vincensini by proving the following theorem.

Theorem 1 (Hadwiger [4]). A finite family of pairwise disjoint convex sets in R2

has a 1-transversal if and only if the sets in the family can be linearly ordered such
that any three sets have a 1-transversal consistent with the ordering.

Hadwiger’s theorem has been generalized in different ways, eventually resulting
in an encompassing result for (d − 1)-transversals in Rd [6]. Despite the previous
work on the existence of (d−1)-transversals, no necessary and sufficient conditions
for the existence of k-transversals in Rd for 0 < k < d − 1 have been proven or
conjectured. Our attempts to find such a condition for (d − 2)-transversals in
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Rd eventually led us to instead a necessary and sufficient condition for complex
(d− 1)-transversals in Cd. The statement of this result appears in Section 2.

1. Hyperplane transversals revisited

Here we will describe the result of Pollack and Wenger on (d−1)-transversals in Rd

as presented in [1], then we will discuss an equivalent rephrasing of this theorem
to put our main result in Section 2 into context.

Let F be a finite family of convex sets in Rd and let P be a subset of points in
Rk for some k. We say that F separates consistently with P if there exists a map
φ : F → P such that for any two subfamilies F1, F2 ⊂ F , we have that

conv(F1) ∩ conv(F2) = ∅ =⇒ conv(φ(F1)) ∩ conv(φ(F2)) = ∅.
Here we mean conv(Fi) to be conv(∪F∈FiF ). Another way to think about this
condition is that if the sets of F1 can be separated from the sets of F2 by a
hyperplane in Rd, then the sets of points φ(F1) and φ(F2) can be separated by a
hyperplane in Rk. We also note that F separates consistently with P if and only
if

conv(F1) ∩ conv(F2) = ∅ =⇒ conv(φ(F1)) ∩ conv(φ(F2)) = ∅.
whenever |F1|+|F2| ≤ k+2. This is a consequence of the well-known Kirchberger’s
theorem [5], which states that if U and V are finite point sets in Rk such that for
every set of k+2 points S ⊂ U ∪ V , we have that conv(S ∩U)∩ conv(S ∩ V ) = ∅,
then conv(U) ∩ conv(V ) = ∅.

We now have the terminology to state the Goodman-Pollack-Wenger theorem.

Theorem 2 (Goodman-Pollack-Wenger theorem [6]). A finite family of convex
sets F in Rd has a (d− 1)-transversal if and only if F separates consistently with
a set P ⊂ Rd−1.

The condition in our main result of Section 2 is quite similar to the condition
in Theorem 2, and we will first provide a slight rephrasing of the definition for F
to separate consistently with P in order to make this similarity more apparent.
By taking the contrapositive of the implication in the definition of separating
consistently, we may equivalently say that F separates consistently with P if there
exists a map φ : F → P ⊂ Rk such that

conv(φ(F1)) ∩ conv(φ(F2)) 6= ∅ =⇒ conv(F1) ∩ conv(F2) 6= ∅.
In other words, the existence of an affine dependence

∑

F∈F1∪F2

aF = 0,
∑

F∈F1∪F2

aFφ(F ) = 0

where aF ≥ 0 for all F ∈ F1 (not all 0) and aF ≤ 0 for all F ∈ F2 implies the
existence of points pF ∈ F and real numbers rF ≥ 0 such that

∑

F∈F1∪F2

rFaF = 0,
∑

F∈F1∪F2

(rF aF )pF = 0

is an affine dependence of the points pF and the numbers rF aF are not all 0.
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2. Main result

In this section, we provide a necessary and sufficient condition for a finite family
F of convex sets in Cd to have a complex (d − 1)-transversal, where a complex
(d−1)-transversal here is a complex (d−1)-dimensional affine subspace of Cd that
intersects each set in F .

First, following our discussion from Section 1, we make the following definition
in order to articulate our main theorem, Theorem 4.

Definition 1. Let F be a finite family of convex sets in Cd, and let P ⊂ Ck. We
say that F is dependency-consistent with P if there exists a map φ : F → P such
that for every subfamily F ′ ⊂ F and every affine dependence

∑

F∈F ′

aF = 0,
∑

F∈F ′

aFφ(F ) = 0

for complex numbers aF , there exist real numbers rF ≥ 0 and points pF ∈ F for
F ∈ F ′ such that ∑

F∈F ′

rFaF = 0,
∑

F∈F ′

(rF aF )pF = 0

where not all of the values rFaF are 0.

Remark 3. For the purpose of Theorem 4, we could add the additional restriction
that |F ′| ≤ 2k + 3 in Definition 1, and the statement of Theorem 4 still holds.
This is due to the following reasoning. By associating the points (aFφ(F ), aF )
with points in R2k+2, we have that the set of points {(aFφ(F ), aF )}F∈F ′ con-
tains 0 ∈ R2k+2 in its convex hull. Therefore, by Carathéodory’s Theorem, there
exist m ≤ 2k + 3 sets F1, . . . , Fm ∈ F ′ and real numbers si > 0 such that∑m

i=1 si(aFiφ(Fi), aFi) = 0. In other words, there is the complex affine depen-
dence

m∑

i=1

siaFi = 0,
m∑

i=1

(siaFi)φ(Fi) = 0

among the points φ(F1), . . . , φ(Fm).

Theorem 4 (Main theorem). A finite family of convex sets F in Cd has a complex
(d− 1)-transversal if and only if F is dependency-consistent with a set P ⊂ Cd−1.
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Borsuk and Vázsonyi problems through Reuleaux polyhedra

Déborah Oliveros

(joint work with Gyivan López-Campos, Jorge Ramı́rez Alfonśın)

The Borsuk partition problem and the frequent large distance problem are two
well-known problems in discrete and combinatorial geometry, both based on the
notion of diameter in bounded sets. The diameter of a bounded set S ⊂ Rd is
defined as diam(S) := supx,y∈S ||x− y||. If S is a finite set of points, the diameter
would be the maximum euclidean distance between any two points of S.

In 1933, Borsuk [1] proposed the following question (sometime known as the Borsuk
conjecture):

does every set S ⊂ Rd with finite diameter diam(S) is the union
of at most d+ 1 sets of diameter less than diam(S)?

It is known to be true for d = 2 (see [1]) and for d = 3 (see [14], [4] and [6] for a
simpler proof). Proved to be false for d > 63 see [19] for a survey on the Borsuk
conjecture, and the problem still open for 4 ≤ d ≤ 63.

Given a set S ⊂ Rd, the Borsuk number, denoted by a(S), is the smallest number
of subsets that S can be partitioned, in such way that each subset has a smaller
diameter than S. The diameter graph DiamV of finite V ⊂ R3 is the graph with
a set of vertices V and two vertices are joined by an edge if their distance is a
diameter. It is not difficult to observe that χ(DiamV ) = a(V ), where χ(G) denotes
the chromatic number of the graph G.

In the early 1990’s Boltyanski characterized all the sets in R2 having Borsuk num-
ber 3 as those ones that have a unique completion to a body of constant width
([3] for the original proof in Russian or [2, pp-245] for English). In the case of
R3, the same argument does not work, it is enough to observe, that four points
in tetrahedral position has Borsuk number 4 but its completition to a body of
constant width is not unique (see for example [15], [16]).

Although some attempts to find the characterization of sets with Borsuk number
4 were made for sets up to 7 points, (see [9]) no real progress was found until now.
In this talk, we gave a full characterization of all finite sets in R3 with Borsuk
number 4 via the frequent large distance problem (Main Theorem).

The frequent large distance problem, one of the oldest problems in discrete and
combinatorial geometry. Was first proposed in 1934 in the plane by Hopf and
Pannwitz [8] and later generalized to all dimensions:
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Given 0 < d < n, what is the maximum number of diameters over
all the sets of n points in Rd?

It is well known that in the plane the maximum is n and how all the extremal
configurations (set of points that achieve such maximum) look like (see [13, pp
213-214], [10]). For d = 3, the problem is better known as the Vázsonyi problem
in honor to Vázsonyi, who conjecture that the maximum must be 2n− 2. Proved
to be true by Grünbaum [5], Heppes [7] and Straszewicz [20]. See also a totally
diferent proof by K. Swanepoel in [21].

In 2010, Kupitz, Martini and Perles characterize all the extremal configurations,
pointing out several important facts about such characterization. (For details see
[11]) Among this facts, we recall that a set of points V in R3 is an extremal
configuration if the 1-skeleton of the ball set denoted by SF(B(V )) were B(V ) is
defined as B(V ) = {y ∈ R3 : ∀x ∈ V, ‖x− y‖ ≤ 1}, and behaves as follows:

a) The set is tight, (every vertex is essential, or its removal changes SF(B(V )))
b) Is planar and 2-connected (but not necessarily the 1-skeleton of a 3-

polytope)
c) posseses an involutory self-duality that is, an order reversing map, ϕ :

SF(B(V )) → SF(B(V )) of order two (ϕ2 = Id), that sends every vertex
v ∈ SF(B(V )) to its corresponding dual face Fv ∈ SF(B(V ))

A self-dual polyhedron G admitting an involution is called an involutive polyhe-
dron (see [18]). Note that τ(v) can be thought as a face of G (called dual face of v).
Let G = (V,E) be an involutive polyhedron and let a, x ∈ V . We say that [a, x]
is a diagonal of G if x ∈ τ(a). Next, Given an involutive polyhedron G = (V,E),
we define the diagonal graph DiagG arising from G, as the graph where the set
of vertices is V and set of edges consisting on the set of all the diagonals of G.
During this talk we outline the proof of the following Lemma using interesting
embeddings of self dual graphs presented in [17].

Key Lemma: [G. López-Campos., D.O. J. Ramı́rez Alfonśın (2023) [12]]
If G is an involutive polyhedron. Then, DiamG is 4-critical.
(χ(DiamG) = 4 and χ(DiamG \ v) = 3 for every vertex v ∈ V ).

We say that V is strongly critical, if V is an extremal configuration for the Vázsonyi
problem, any point of V is adjacent to at least 3 diameters and V does not have
an extremal configuration subset.

The Key Lemma allows us to prove the following conjecture posted in [11].

Conjecture: An extremal set V ⊂ R3 is a Reuleaux polyhedron B(V )
(i.e. the 1-skeleton of B(V ) is the 1-skeleton of a 3-polytope)
if and only if V is strongly critical.

Moreover the Key lemma together with all the previews work presented in [11]
allows us to present a full characterization of all finite sets in R3 with Borsuk
number 4 as follows:
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Main Theorem: [G. López-Campos., D.O. J. Ramı́rez Alfonśın (2023) [12]]
Let V ⊂ R3 be a finite set of points with | V |= n ≥ 4 . The following three
statements are equivalent:

(1) V is strongly critical for the Vázsonyi problem.
(2) diamV is 4-critical.
(3) B(V ) is a Reuleaux polyhedron.

For further details of the results shown in this extended abstract see [12]
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Enumeration of intersection graphs

János Pach

(joint work with Jacob Fox, Andrew Suk)

Given a collection C of n geometric objects, define their intersection graph G(C)
as follows. Let the vertex set of G(C) be C, and connect two elements of C
by an edge if and only if they have a point in common. The total number of

graphs on n labeled vertices is 2(
n
2). How many of them are intersection graphs of

connected arcs (”strings”) in the plane? Pach and Tóth proved that the answer is

2(3/4+o(1))(n2). If we restrict our attention to intersection graphs of strings, any pair

of which intersect at most k times, for a fixed k, then the number becomes 2o(n
2).

On the other hand, it was shown by Pach and Solymosi that the number of segment
intersection graphs on n vertices is 2(4+o(1))n logn. After giving a whirlwind tour
of enumeration results and methods of this kind, we present some recent results
by Jacob Fox, Andrew Suk, and the speaker.
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Moser’s shadow problem in high dimensions

Arnau Padrol

In a famous list of open problems in combinatorial geometry from 1966 (see [2]
and [5]), Moser asked for the largest sh(n) such that every 3-polytope with n
vertices has a 2-dimensional projection with at least sh(n) vertices. The solution
to this problem, popularly known as Moser’s shadow problem, was implicit in the
work of Chazelle, Edelsbrunner and Guibas in 1989 [1] but went unnoticed until
recently [4].

The results of [1] concerned silhouettes from arbitrary light sources, but they
can be easily adapted to show that sh(n) = θ (logn/log logn). The lower bound
was derived from a related result concerning stabbing numbers of convex subdivi-
sions of the plane by lines, that Tóth generalized to stabbing numbers of convex
subdivisions of Rd by lines [6]. He showed that for each convex subdivision of Rd

into n regions there is a line stabbing Ω
(
(logn/ log log n)1/(d−1)

)
cells. In the poly-

topal set-up, this implies that every d-polytope with n-vertices has a 2-dimensional
shadow with at least Ω

(
(log n/ log logn)1/(d−2)

)
vertices.

We consider the same questions with lines and 2-dimensional shadows replaced
by k-flats and k-shadows (open problems formulated in [6] and [4], respectively).

We define a k-shadow as an affine projection onto a k-dimensional subspace, and
the shadow number sh(n, d, k) to be the largest number such that every d-polytope
with n vertices has a k-shadow with at least sh(n, d, k) vertices. By polarity, this
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is equivalent to the largest number such that for every d-polytope P with n facets
containing the origin in its interior there is a k-dimensional subspace F through
the origin so that the intersection P ∩F has at least sh(n, d, k) facets. Similarly, we
define the silhouette number si(n, d, k) to be the largest number such that every
d-polytope with n vertices admits a projective transformation with a k-shadow
with at least si(n, d, k) vertices. By polarity, si(n, d, k) is the largest number such
that for every d-polytope with n facets there is an affine k-dimensional subspace
that induces a section with at least si(n, d, k) facets. Finally, we define the stabbing
number st(n, d, k) as the largest number such that for every subdivision of Rd into
n convex cells, there is a k-dimensional affine subspace that intersects at least
st(n, d, k) cells.

These functions are related by the following inequalities

st(⌈n/2⌉ , d− 1, k − 1) ≤ sh(n, d, k) ≤ si(n, d, k).

The second inequality is straightforward from the definition, as having more free-
dom (with the choice of a projective transformation or, in the polar, passing from
linear to affine flats), can only increase this minimax parameter. For the first
inequality, fix a polytope P and assume that the fixed point is the origin. Af-
ter a perturbation and a reflection if needed, we can assume that at least half of
the facets are lower (their normal vector has negative last coordinate). A central
projection from the origin onto the xd = −1 hyperplane will send lower facets to
convex cells, and linear k-subspaces intersecting these facets to affine (k − 1)-flats
stabbing the convex cells. A detailed proof can be found in [1, Lemma 5.1]. It is
formulated for the d = 3 and k = 2 case, but the generalization is straightforward.

In [3], in joint work with Alfredo Hubard, we proved that for every convex sub-
division of Rd into n cells there exists a k-flat stabbing Ω

(
(logn/log logn)1/(d−k)

)

of its cells, showing that :

Theorem 1. Let k ≤ d− 1 be fixed, then

Ω
(
(logn/log logn)1/(d−k)

)
≤ st(⌈n/2⌉ , d− 1, k − 1) ≤ sh(n, d, k) ≤ si(n, d, k)

as n → ∞.

I presented a new construction a family of convex polytopes in Rd with at least

exp(αdn
⌈d−k

k−1 ⌉ logn) facets such that no affine k-flat can simultaneously intersect
more than βdn of them, for some constants αd, βd depending on the dimension.
This provides a new upper bound for the shadow, silhouette and stabbing numbers
that simultaneously generalizes the particular cases settled in [1] and [6]. It is
asymptotically tight for 2- and (d − 1)-shadows and silhouettes, and for stabbing
numbers for lines and hyperplanes.

Theorem 2. Let k ≤ d− 1 be fixed, then

st(⌈n/2⌉ , d− 1, k − 1) ≤ sh(n, d, k) ≤ si(n, d, k) ≤ O

(
(logn/log logn)

1

⌈ d−k
k−1⌉

)

as n → ∞.
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Equality cases of the Alexandrov–Fenchel inequality

Igor Pak

Describing the equality conditions of the Alexandrov–Fenchel inequality has been
a major open problem for decades. Recently, Shenfeld and van Handel gave a geo-
metric characterization of the equality conditions for the case of convex polytopes.
From the computational point of view, this characterization is not explicit and
can be hard to efficiently verify. We show that this difficulty is inherent to the
problem.

Formally, we prove that in the case of totally uniform convex polytopes, the
description of equality cases is not in the polynomial hierarchy unless the poly-
nomial hierarchy collapses to a finite level. This is the first hardness result for
the problem, and is a complexity counterpart of the above mentioned result by
Shenfeld and van Handel.

In the talk, we give an introduction to the problem, give a quick overview of
the earlier work, and describe our result in the context. We also emphasize the
applications of our work to stability of geometric inequality, and the problem of
finding combinatorial interpretations. The proof involves Stanley’s order polytopes
and employs poset theoretic technology, but we will limit ourselves to a brief sketch.
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Shellability of balls in 3D

Pavel Paták

(joint work with Martin Tancer)

A simplicial complex K is called purely k-dimensional, if all its facets have dimen-
sion k.

A purely k-dimensional simplicial complex is called shellable, if there exists an
ordering F1, . . . , Fk of its facets such that for all k > 1, Fk∩

⋃
i<k Fi is a non-empty

union of (k− 1) simplices. Shellability plays an important role in theory of convex
polyhedra, however it also find applications in algebra or poset theory.

If K is a simplicial complex, and σ is a face that is contained in a uninque
facets τ ⊇ σ different from σ, the elementary collapse of K along σ consist in
deleting all simplices ρ ⊇ σ from K. A complex is called collapsible, if it can be
transformed into a single point by a series of elementary collapses. Collapsibility
is a combinatorial analogue of of contractibility.

We use the reduction from planar rectilinear monotone 3-SAT, to show that the
following problems are NP-complete:

(1) Deciding whether a 3D simplicial ball is shellable.
(2) Deciding whether a purely 2D simplicial complex in R3 is shellable.
(3) Deciding whether a 3D simplicial complex in R3 is collapsible.

For shellability of purely 2D simplicial complexes in R3, the construction refines
the previous construction from [1]: We replace the original clause gadgets, which
did not fit into R3 with a modified version of the 3-turbine from [2], which can be
embedded into R3. Moreover, instead of using a reduction from a general 3-SAT
formula, we use the reduction from planar rectilinear mononote 3-SAT, which al-
lows us to keep the whole construction in R3. In other words, we have a polynomial
time procedure that turns each instance ϕ of planar rectilinear monotone 3-SAT
into a purely 2-dimensional complex Kϕ such that ϕ is satisfiable if and only if
Kϕ is shellable.

For the result about collapsibility, we replace the variable gadget in the con-
struction for shellability with a 3-dimensional piece: the join of a segment with a
boundary of a triangle. Otherwise the construction is the same.

For the main result about balls, we thicken the construction and replace 2D
pieces with their thickened 3D versions. However, this thickening has to be done
carefully and is description is thus rather technical. The main problem is to
maintain the shellability if the instance ϕ is satisfiable and to not introduce any
unwanted shellings if the instance ϕ is not. For more details, see [3].
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Discretized Elekes-Ronyai theorems and projection theory

Orit Raz

(joint work with Josh Zahl)

In the talk I talked about a recent result with Josh Zahl where we show how to
use ideas from discrete geometry in order to prove results in projection theory.
Specifically, we prove the following theorem:

Theorem 1. Let E ⊆ R2 be a Borel set of Hausdorff dimension α. Let γ ⊆ R2

be a smooth curve with non-vanishing curvature. Then

dimH{q ∈ R2 | dim∆q(E) ≤ α

2
+ c} = 0,

where c = c(α) > 0 and ∆q(E) is the set of distances spanned between the point q
and the set E.

To prove this we show a discretized analogue of a question from discrete geom-
etry about distances of a set from 3 fixed points.

On Dol’nikov’s Conjecture.

Edgardo Roldán-Pensado

(joint work with Cuauhtémoc Gomez-Navarro, Leonardo Mart́ınez-Sandoval)

This work is focused on a conjecture by Dol’nikov and its relation to the colorful
Helly theorem. The colorful Helly theorem states the following.

Theorem 1 (Colorful Helly theorem). Let F1, . . . ,Fd+1 be families of convex
bodies in Rd, such that for any choice of sets C1 ∈ F1, . . . , Cd+1 ∈ Fd+1, the

intersection
⋂d+1

i=1 Ci is non-empty. Then, there exists an index i for which
⋂Fi 6=

∅.
Dol’nikov’s conjecture is similar to the colorful Helly theorem but there are less

intersecting sets overall. To compensate, the sets are required to be translates of
each other.

Conjecture 1 (Dol’nikov’s Conjecture). Let K be a compact convex set in R2.
Consider F1,F2,F3 as finite families of translates of K. If for every A ∈ Fi and
B ∈ Fj with i 6= j, the intersection A ∩ B is non-empty, then there exists an Fj

that can be pierced by 3 points.

In 2015 Jerónimo-Castro, Magazinov and Soberón [2] validated this conjecture
when K is centrally symmetric or a triangle. Moreover, they established a stronger
result when K is a circle.

Further progress was made in 2023, through a collaboration with Gomez-Navarro
[1]. We proved Dol’nikov’s conjecture to encompass additional convex sets in a
more general setting.
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Theorem 2. Let K be a convex body in R2. Let F1 and F2 be finite families of
translates of K such that A∩B is non-empty for every A ∈ F1 and B ∈ F2. If K
is of constant width or has a Banach-Mazur distance of at most 1.1178 to a disk,
then either F1 or F2 can be pierced by 3 points.

The proof of this theorem is related to a strenghening of the Colorful Helly
Theorem. This result was proved previously in in collaboration with Mart́ınez-
Sandoval and Rubin [3].

Theorem 3. Let F1, . . . ,Fd be finite families of convex sets in Rd, such that for

every choice of sets C1 ∈ F1, . . . , Cd ∈ Fd, their intersection
⋂d

i=1 Ci is non-empty.
Then one of the following statements holds:

(1) there is a family Fj that can be pierced by f(d) points, or
(2) the combined family

⋃
iFi can be intersected by g(d) lines.

Describing the pairs (f(d), g(d)) for which this theorem holds is an open prob-
lem. In particular, we do not know if the theorem is applicable for f(d) = 1 with
a sufficiently large g(d). In collaboration with Gómez-Navarro [1], we improved
the values for f(2) and g(2).

Theorem 4. Let F1, . . . ,Fn be finite families of convex sets in R2, where n ≥ 2.
Assume that for every A ∈ Fi and B ∈ Fj with i 6= j, the intersection A ∩ B is
non-empty. Then one of the following statements holds:

(1) there exists an index j such that
⋃

i6=j Fi can be pierced by 1 point, or

(2) the family
⋃

iFi can be crossed by 2 lines.

The numbers in this theorem are best possible. A simple proof of this result
uses the Knaster-Kuratowski-Mazurkiewicz (KKM) theorem and is adapted from
a result by McGinnis and Zerbib [5]. Additionally, an alternative proof exists that
works in higher dimensions, but uses hyperplanes in place of lines.

For translates we managed to improve the numbers in an unexpected way.

Theorem 5. Let K be a convex body in R2. Consider F1, . . . ,Fn as finite families
of translates of K such that A ∩ B is non-empty for every A ∈ Fi and B ∈ Fj

with i 6= j. Then one of the following statements holds:

(1) there exists an index j such that
⋃

i6=j Fi can be pierced by 3 point, or

(2) the family
⋃

iFi can be crossed by 1 line.

This theorem plays an important role in our proof of Theorem 2, especially
in establishing the existence of a line transversal to F1 ∪ F2. Using Theorem
5 and building on the same foundational ideas, we can demonstrate Dol’nikov’s
conjecture with 8 points instead of 3. More recently, through collaboration with
Leonardo Mart́ınez-Sandoval [4], we managed to further reduce this number to 4
points.

Theorem 6. Let K be a compact convex set in R2, and let F1, . . . , Fn be finite
families of translates of K. Suppose that A∩B is non-empty for every A ∈ Fi and
BinFj with i 6= j, then there exists an index j such that

⋃
i6=j Fi can be pierced by

4 points.
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The novel idea used to prove this theorem is a new result related to the Banach-
Mazur distance between a convex body K and the square.

Lemma 7. Let K be a convex body in R2 and let u be a given direction. Then
there exists a parallelogram P ⊂ K with one of its sides aligned with u, and a
translated copy 2P that fully contains K.

There are many open problems described in [1] and [3] which remain unsolved.
We hope that these will spark further research and discussions in the study of
discrete geometry and its applications.
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Depth Measures for Hyperplane Arrangements

Patrick Schnider

(joint work with Pablo Soberón)

A central topic in combinatorial geometry and computational geometry is the
study of structural properties of finite families of points in Euclidean spaces.
Studying which sets can be separated from others by hyperplanes is a natural
question, which leads us to study combinatorial properties of convex sets. Classic
results, such as Tverberg’s theorem [11] and Rado’s centerpoint theorem [6] follow
from this line of thought.

In some cases, instead of being provided our data as a finite set of points in
Rd, we might receive it as a set of hyperplanes. Understanding which results for
families of points transfer to families of hyperplanes is a natural question.

Given a hyperplane arrangement A in Rd and a point q, we first consider the
depth of q with respect to A as follows.

Definition 1. The regression depth of a query point q with respect to hyperplane
arrangement A, denoted by RD(A,q), is the minimum number of hyperplanes in
A intersected by or parallel to any ray emanating from q.

Given an arrangement A of n hyperplanes, the existence of points with regres-
sion depth at least n/(d+1) has been established by Amenta, Bern, Eppstein, and
Teng [1], and later by Mizera [5] as well as Karasev [2]. This can be considered
a hyperplane version of Rado’s centerpoint theorem [6]. In the full version [9] we
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prove that the centerpoint theorem for regression depth is the consequence of a
Tverberg-type theorem, confirming a conjecture of Rousseeuw and Hubert [7].

Theorem 1. Let r, d be positive integers and A be an arrangement of at least
(r − 1)(d + 1) + 1 hyperplanes in Rd. Then, there exists a point q in Rd and a
partition of A into r parts such that q has positive regression depth with respect to
each of the r parts.

This was previously known when d = 2 [7] or when r is a prime power [3, 4]. The
version for prime powers by Karasev holds with a slightly more restrictive version
of regression depth. Based on this result, we define the hyperplane Tverberg depth
of a point.

Definition 2. The hyperplane Tverberg depth of a query point q with respect to
hyperplane arrangement A, denoted by HTvD(A,q), is the maximum r such that
there is a partition of A into r parts such that q has positive regression depth with
respect to each part.

1. Correspondence to depth measures for point sets

For an arrangement A and a query point q, we define the dual of A at q, denoted
by A∗

q , as follows. For each hyperplane h ∈ A, let p(h) be the unique point on h
that is closest to q. We define A∗

q as the set formed by all these points, that is,
A∗

q := {p(h) | h ∈ A}. Note that if q lies on k hyperplanes, then those k dual
points coincide with q in A∗

q .
Using this duality, for every depth measure ρ on point sets we can define a

corresponding depth measure ρ∗ on hyperplane arrangements and vice versa, by
setting ρ∗(A, q) = ρ(A∗

q , q). We have the following observation.

Observation 1.

(1) a ray r emanating from q intersects a hyperplane h if and only if the half-
space r⊥ defined by the hyperplane thorugh q orthogonal to r, oriented such
that it contains r, contains p(h);

(2) the point q has positive regression depth with respect to h1, . . . , hn if and
only if it is in the convex hull of p(h1), . . . , p(hn).

(3) the point q lies in the simplex defined by h1 . . . , hd+1 if and only if it is in
the interior of the convex hull of p(h1), . . . , p(hd+1).

The depth measures for hyperplane arrangements defined above all have nat-
ural corresponding depth measures for point sets that follow immediately from
Observation 1. For regression depth, the corresponding depth measure is Tukey
depth (TD), which is defined as the minimum number of data points contained in
any closed half-space containing the query point q [10]. For hyperplane Tverberg
depth we get Tverberg depth (TvD), which is defined as the maximum r for which
there exists an r-partition of the data points containing the query point q in their
intersection.
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2. Axioms for hyperplane depth

Let AR
d

denote the family of all finite arrangements of hyperplanes in Rd. A depth

measure for hyperplanes is a function ρ : (AR
d

,Rd) → R≥0 which assigns to each
pair (A, q) consisting of a hyperplane arrangement A and a query point q a value,
which describes how deep the query point q lies within the arrangement A. A
depth measure is called combinatorial if it is the same for all points in a face of
A. Similar to [8], we introduce some axioms, that reasonable depth measures for
hyperplane arrangements should satisfy.

We say that a combinatorial depth measure for hyperplanes is super-additive if
it satisfies the following four conditions.

(i) for all A ∈ AR
d

and q ∈ Rd and any hyperplane h we have |ρ(A, q)−ρ(A∪
{h}, q)| ≤ 1,

(ii) for all A ∈ AR
d

we have ρ(A, q) = 0 if q is in an unbounded cell of A,

(iii) for all A ∈ AR
d

we have ρ(A, q) ≥ 1 if q is in a bounded cell or if q lies on
a hyperplane of A,

(iv) for any disjoint subsets A1, A2 ⊆ A and q ∈ Rd we have ρ(A, q) ≥
ρ(A1, q) + ρ(A2, q).

Following [8] we get

Theorem 2. Let ρ be a super-additive depth measure for hyperplanes. Then for

all A ∈ AR
d

and q ∈ Rd we have RD(A, q) ≥ ρ(A, q) ≥ HTvD(A, q) ≥ 1
dRD(A, q).
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A logarithmic bound for simultaneous embeddings of planar graphs

Raphael Steiner

Given a planar graph G, a straight-line embedding of G in the plane is an injective
mapping π from the vertex-set V of G to R2 such that adding in all the straight-line
segments with endpoints π(u) and π(v) for every edge uv in G yields a crossing-
free drawing of G in the plane. Given a planar graph G and a point set P ⊆ R2

in the plane, we say that G has a straight-line embedding on P or equivalently
that it embeds straight-line on P if there exists a straight-line embedding of G
in the plane in which every vertex of G is mapped to a distinct point of P . If
G is a labelled planar graph with vertices numbered as {v1, . . . , vn}, and if P is
a labelled point set, that is, its elements are numbered as P = {p1, . . . , pn}, then
we say that G has a label-preserving straight-line embedding on P if the bijection
π : V (G) → P , π(vi) := pi, forms a straight-line embedding of G.

The study of straight-line embeddings of planar graphs is a classical area in
graph drawing. For instance, one of the most fundamental results on this topic,
the Fáry-Wagner-Theorem [7], states that every planar graph G admits a straight-
line embedding in the plane on some point set. However, it is not true that a planar
graph on n vertices can be embedded on any given point set of size n. In fact, for
a fixed planar graph G on n vertices, only a small fraction of all potential n-point
sets may allow a straight-line embedding of G. Thus, many interesting questions
in graph drawing arise from considering the embeddability of (restricted classes
of) planar graphs on (restricted types of) point sets. One of the biggest branches
of research in this direction concerns simultaneous embeddings of sets of planar
graphs, we refer to [4] for a survey on this topic. Given a set G of planar graphs
and a point set P in the plane, we say that G is simultaneously embeddable on
P if every member G ∈ G admits a straight-line embedding on P . If n ∈ N and
G is a set of planar graphs, each on n vertices, we say that G is simultaneously
embeddable (without mapping) if there exists a point set P ⊆ R2 of size n such
that G is simultaneously embeddable on P .

There are two major open problems in geometric graph theory related to the
notions introduced above. First, there is the so-called the universal set problem,
which asks to find the asymptotics of the function f(n), defined as the smallest
size of a point set P in the plane such that the set of all n-vertex planar graphs
is simultaneously embeddable on P (such a set is called n-universal). Currently
there is still a large gap in our understanding of this problem, with the best
asymptotic estimates being f(n) ≤ 1

4n
2 +O(n) by Bannister et al. [3] and f(n) ≥

(1.293− o(1))n by Scheucher et al. [10].
Second, there is a major open problem concering the simultaneous embeddabil-

ity of small collections of planar graphs, a systematic study of which was initiated
by Brass et al. [5]. In particular, they raised the following intriguing open problem,
which remains unsolved.

Problem 1 (cf. [5]). Is there a set G = {G1, G2} consisting of two planar graphs
of the same order such that G is not simultaneously embeddable?
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Following the terminology of [6, 8, 10], let us call a set G of planar graphs, all of
the same order n ∈ N, a conflict collection if G is not simultaneously embeddable.
Addressing small values of n, Cardinal et al. [6] proved that for n ≤ 10, there
exists no conflict collection consisting of n-vertex planar graphs. In contrast,
they showed that for every n ≥ 15 a conflict collection does exist. Motivated by
Problem 1, it is natural to study the value σ(n), defined as the smallest size of a
conflict collection of n-vertex planar graphs (if such a collection exists). By the
Fáry-Wagner-Theorem, we have σ(n) ≥ 2 for every n, and Problem 1 is equivalent
to the question whether there exists some n such that σ(n) = 2. Approaching
this question, Cardinal et al. [6] constructed a relatively small conflict collection
on 35-vertex graphs, proving that σ(35) ≤ 7393. A significantly smaller conflict
collection consisting of 11-vertex graphs was found by Scheucher et al. [10], showing
that σ(11) ≤ 49. Regarding the general asymptotic bounds on the function σ(n), it
was recently proved by Goenka et al. [8] that σ(n) ≤ O(n · 4n/11) < O(1.135n), by
an explicit general construction of a conflict collection on n-vertex planar graphs.
While this bound is exponential in n, we give a short probabilistic proof that
σ(n) = O(log n), and thus for large enough n much smaller conflict collections of
n-vertex graphs of only logarithmic size in n exist.

Theorem 1. It holds that σ(n) ≤ (3 + o(1)) log2(n).

Using the same technique, but with a more careful analysis, we obtain the
following upper bounds, which improve upon the benchmark of 49 for the size of
the previously smallest known conflict collection of planar graphs [10]. In contrast
to the heavily computer-assisted proof of the bound 49 in [10], our proof of this
new bound is computer-free, elementary and self-contained.

Theorem 2. For every n ∈ {107, 108, . . . , 193}, we have σ(n) ≤ 30. In particular,
there exists a conflict collection consisting of 30 planar graphs.

The proofs of Theorem 1 and 2 rely on the probabilistic method and thus
unfortunately do not provide explicit constructions of the asserted conflict col-
lections. Motivated by this, we also present a different, fully explicit construc-
tion of a conflict collection of less than n6 planar n-vertex graphs for every large
enough n. This still improves significantly over the explicit construction of size
(21n+552)4(n+37)/11 given by Goenka et al. [8], reducing the size of the constructed
conflict collection from exponential to polynomial.

Theorem 3. For every n ≥ 7! = 5040, there exists an explicit construction of a
conflict collection consisting of n6 + 1 = n(n − 1) · · · (n − 5) + 1 planar n-vertex
graphs.

Very brief proof overview. The main new idea to prove Theorems 1 and 2 is to
construct a probability distribution on the set of n-vertex labelled planar graphs,
more specifically on a certain class of stacked triangulations, such that a random
planar graph G drawn at random from this distribution satisfies the following
properties:



Discrete Geometry 179

• For every fixed point set P ⊆ R2 of size n, the probability that G embeds
on P is at most 2−(1−o(1))n, and

• For every fixed labelled point set P ⊆ R2 of size n, the probability that
G admits a label-preserving straight-line embedding on P is at most

1
n!2(1−o(1))n .

The idea is then to construct a conflict collection of planar graphs by inde-
pendently sampling several planar graphs from this distribution. For any fixed
point set P , the probability that all the sampled planar graphs embed on P will
be very very small, and thus this can be weighed in a union bound against the
total number of distinct order types of n points in the plane in general position.
Denoting by ts(n, 2) the number of labelled order types of n-point sets in general
position and working out the details of this argument, one obtains that

σ(n) ≤
⌊
log2(ts(n, 2))− (n− 4)− log2((n− 3)!)

n− log2(16n(n− 1)(n− 2))

⌋
+ 2

for every n ≥ 16. Plugging in the asymptotically tight estimate ts(n, 2) =
n(4+o(1))n due to Alon [2], one then obtains the upper bound in Theorem 1. To
get the bounds in Theorem 2, one has to work a little harder to obtain preciser
estimates of ts(n, 2) for moderately small values of n. This can be achieved by
using Warren’s inequality [11] which gives an upper bound on the number of sign-
patterns defined by a collection of multivariate polynomials. This yields

ts(n) ≤ 2 · 16n ·
2n∑

k=0

2k
((n

3

)

k

)

for every n ≥ 3, which then can be plugged into the above upper bound on σ(n),
yielding Theorem 2.

Finally, to prove Theorem 3, a totally different combinatorial construction is
used. Let n ≥ 5040 be given. Let us start by considering the set

Sn :=

{
(n1, n2, n3, n4, n5, n6, n7, n8) ∈ N ∪ {0}

∣∣∣∣
8∑

i=1

ni = n− 6

}

of ordered partitions of the number n − 6 into 8 non-negative integers. We then
have

|Sn| =
(
(n− 6) + 8− 1

8− 1

)
=

(
n+ 1

7

)
=

(n+ 1)7

7!
=

(n+ 1)n6

7!
> n6,

where we used that n ≥ 5040 = 7! in the last line. It is therefore possible to select
(explicitly) a subset S ′

n ⊂ Sn such that |S ′
n| = n6 + 1. We now define a collection

Gn of planar triangulations on n vertices as follows:
Let H denote the octahedron graph, which is a triangulation with 6 vertices

a, b, c, d, e, f and 8 faces f1, . . . , f8.
Now, for every element (n1, n2, n3, n4, n5, n6, n7, n8) ∈ S ′

n, construct a planar
triangulation by (1) adding for every one of the 8 faces fi of H a set of exactly ni
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additional vertices that are placed into the corresponding face, and (2) triangulat-
ing each of the faces fi together with the ni new vertices placed in it.

Clearly, there may be many different ways to triangulate, but for the sake of
this construction, we just choose and fix for every given x ∈ S ′

n one possible way
to do this, and call the resulting triangulation Tn(x).

Finally, we define Gn = {Tn(x)|(x) ∈ S ′
n}.

The claim is now that the family Gn of planar n-vertex graphs is not simultane-
ously embeddable, which then yields Theorem 3. The idea of the proof is simple:
For any fixed point set P of n points, there are at most n6 ways of choosing the
location of the 6 vertices of the octahedron in a straight-line embedding. Since
|S ′

n| > n6, the pigeon-hole principle implies that in any simultaneous embedding
of Gn, there would need to be two distinct triangulation Tn(x), Tn(x

′) with x 6= x′

whose straight-line embeddings on P embed the octahedron H contained in them
in the same way. However, counting points that are in the faces of the octahedron
now is easily seen to imply that x = x′, a contradiction.

Open problems. One open problem that would be very interesting to settle
(in particular with regards to Problem 1) is the following: For large n, what
is the probability that two independently sampled random planar graphs G1,G2

from the probability distribution used in the proofs of Theorem 1 and 2 admit a
simultaneous embedding?
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Pach’s animal problem within the bounding box

Martin Tancer

A collection of unit cubes with integer coordinates in R3 is an animal if its union
is homeomorphic to the 3-ball. Pach’s animal problem asks whether any animal
can be transformed to a single cube by adding or removing cubes one by one in
such a way that any intermediate step is an animal as well. In the talk we have
provided an example of an animal that cannot be transformed to a single cube
this way within its bounding box.

In more detail, a grid cube is a subset of R3 that can be written as [a, a+ 1]×
[b, b+1]× [c, c+1] where a, b and c are integers. A grid complex is a 3-dimensional
polytopal complex formed by a finite collection of grid cubes and the faces of the
cubes in this collection. A grid complex is an animal if the union of cubes in the
complex is homeomorphic to a 3-ball. In 1988 Pach asked whether any animal can
be transformed to a single cube by adding or removing cubes one by one in such a
way that any intermediate step is an animal as well [6]. This question is known as
Pach’s animal problem and has been reproduced in several other venues; see, e.g.,
notes in Chapter 8 of [10] or [3, 5]. In the following text, when we consider cube
removals or additions, we always mean that each intermediate step is an animal.

Surprisingly, this innocent-looking question is actually very complex and resis-
tant. On the one hand, there are examples of animals that cannot be transformed
to a single cube by removals only: The first one (the author is aware of) is Furch’s
“knotted hole ball” from 1924 [4] (see also [9]). Another one from 1964 is a 3-
dimensional variant of famous Bing’s house with two rooms [1].1 After Pach asked
about the animal problem, Shermer obtained a particularly small such animals
independently of the earlier results [7]. (See also [5].) On the other hand, allowing
also cube additions adds much more flexibility how to transform animals. If we
replace “cube removals” and “cube additions” with closely related “collapses” and
“anticollapses”, it follows from a classical result of Whitehead [8] that any animal
can be reduced to a point (or a cube) by collapses and anticollapses. But the inte-
ger grid does not seem to be flexible enough to emulate all possible anticollapses.
Altogether, adding geometric restrictions coming from the integer grid to classical
setting in topology makes the question interesting.

Pach’s animal problem within the bounding box. For all the aforemen-
tioned examples, even if they cannot be transformed to a single cube by removals,
it is extremely easy to transform them to a single cube if we also allow additions
of cubes. All the aforementioned examples can be built by gradual removals of
cubes from the bounding box (i. e., the smallest grid-aligned box containing the
animal) while each intermediate step is an animal. If we revert this process, each
of the aforementioned examples can be transformed to the bounding box (by cube
additions) and then to a single cube (by cube removals).

1The aim of the constructions of Furch and Bing is to obtain so called non-shellable balls.
But for an animal non-shellable exactly means that the animal cannot be transformed to a single
cube by removals only.
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Dumitrescu and Hilscher [2] provided an example of an animal which cannot be
transformed to the bounding box by cube additions but this example is essentially
the complement of Shermer’s construction. Thus the cost is that this animal can
be easily transformed to a single cube by removals.

In principle it should be possible to combine (and possibly iterate) two types of
the aforementioned constructions which would require alternating cube additions
and cube removals in order to transform the animal into a single cube within
the bounding box. But this would still leave the hope that there is an algorithm
for Pach’s animal problem which gradually simplifies the “innermost” part of the
animal (or its complement) eventually reaching a single cube.

We provide a new significantly stronger construction showing that this hope is
vain.

Theorem 1. There is an animal A such that it cannot be transformed to a single
cube by additions or removals of cubes which are inside the bounding box of A. In
fact, if we remove a cube from A or add a cube to A contained inside the bounding
box, we never obtain an animal.

Part of our motivation for proving Theorem 1 is also that we find it realistic
that this construction (or the ideas beyond it) could be a part of a construction
of a counterexample to original Pach’s animal problem (without any restriction
coming from the bounding box), of course, only if such a counterexample exists.
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Exponential Erdős-Szekeres theorem for matrices

István Tomon

(joint work with Recep Altar Çiçeksiz, Zhihan Jin, Eero Räty)

The Erdős-Szekeres theorem [5] from 1935 is one of the cornerstone results of
Ramsey theory, with countless applications in analysis, combinatorics, geometry
and logic. It states that any sequence of (n − 1)2 + 1 real numbers contains a
monotone increasing or decreasing subsequence of length n, and this bound is the
best possible. See Steele [14] for several different proofs and applications.

Since then, many generalizations and extensions of the Erdős-Szekeres theorem
are proposed [3, 4, 7, 9, 10, 12, 13, 15], among which one of the most natural is
due to Fishburn and Graham [7]. Say that a matrix is row-monotone if every row
is monotone increasing or every row is monotone decreasing, and define column-
monotone analogously. A matrix is monotone if it is both row- and column-
monotone. With this notation in our hand, the result of Fishburn and Graham
states that for every n there exists a smallest number N = M2(n) such that
every N × N real matrix contains an n × n monotone submatrix. In particular,
they proved that M2(n) ≤ tw5(O(n)), where the tower function twk(x) is defined

recursively as tw1(x) := x and twk(x) := 2twk−1(x). On the other hand, the best
known lower bound, due to a simple probabilistic argument, gives M2(n) ≥ nn/2.
Recently, the upper bound was greatly improved by Bucić, Sudakov, and Tran

[2] to M2(n) < 22
O(n)

. Lichev [11] slightly improved their upper bound, but the

improved bound is still of the order 22
O(n)

. Therefore, it remained a puzzling open
problem whether M2(n) grows exponentially or double-exponentially. We prove
the following bound, which answers this question:

M2(n) ≤ 2O(n4(logn)2).

In [2], in order to prove a double-exponential upper bound on M2(n), a key idea
is to show that any 2n×N matrix contains an n× n row-monotone submatrix if

N > (n − 1)2
2n

. A natural idea would be to show that this bound on N can be
significantly improved. Unfortunately, this is not possible due to a construction of
Burkill and Mirsky [3], see also Lichev [11]. Our key contribution is showing that
if

N ≥ 2cn
4(log2 n)2 ,

then every 8n2 ×N matrix contains a row-monotone n× n matrix. This tells us
that roughly n2 rows are enough to guarantee an n× n row-monotone submatrix
if the number of columns is exponential. It comes as a surprise that there is a
very sharp transition for this phenomenon around n2. We also prove there exists

an ⌊n2/6⌋ × 22
⌊n/2 log2 n⌋

matrix with no n× n row-monotone submatrix.
Our main results have further implications about lexicographic matrices as well.

Say that a matrix M is lex-increasing if the following is satisfied: M(a, b) ≤
M(a′, b′) holds whenever a < a′, or a = a′ and b < b′. Say that a matrix is
lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.
Fishburn and Graham [7] proved that there exists a smallest N = L2(n) such
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that every N × N matrix contains an n × n lex-monotone submatrix. As every
lex-monotone matrix is also monotone, we trivially have M2(n) ≤ L2(n). On the
other hand, Fishburn and Graham showed that

L2(n) ≤ M2(2n
2 − 5n+ 4),

which combined with the result of [2] gave the previously best known upper bound

L2(n) ≤ 22
O(n2)

. However, our main result immediately implies the following
improvement, which also has the right order on an exponential scale:

L2(n) ≤ 2O(n8(logn)2).

Fishburn and Graham [7] also established higher dimensional analogues of the
Erdős-Szekeres theorem. A d-dimensional array is a function A : S1 × · · · ×
Sd → R, where S1, . . . , Sd are finite subsets of integers. Say that A is monotone
if f(x) = A(a1, . . . , ai−1, x, ai+1, . . . , ad) is a monotone function for every fixed
a1, . . . , ai−1, ai+1, . . . , ad, and whether it is increasing or decreasing only depends
on i. Fishburn and Graham proved that for every d and n, there exists a smallest
number N = Md(n) such that every d-dimensional array of size N × · · · × N
contains an n× · · · × n sized d-dimensional monotone subarray. Observe that the
Erdős-Szekeres theorem is equivalent to the statement that M1(n) = (n− 1)2 +1.

The first proofs of Fishburn and Graham [7] of the existence of Md(n) gave
Ackermann-type upper bounds of order d for d ≥ 4. On the other hand, the best
known lower bound for every d ≥ 2 is

Md(n) ≥ n(1−1/d)nd−1

,

due to a simple probabilistic argument. Bucić, Sudakov, and Tran [2] greatly
improved the upper bounds in every dimension by showing that

M3(n) ≤ 22
O(n2)

, and Md(n) ≤ tw4(Od(n
d−1)) for d ≥ 4.

Girão, Kronenberg, and Scott [8] removed one exponential for d ≥ 4, and estab-

lished the inequality Md(n) ≤ 22
Od(nd−1)

, which is then the best known upper
bound for every d ≥ 3. They proved this bound by considering a more general
problem about the Ramsey properties of the Cartesian products of graphs. De-
spite the recent progress, there is still an exponential gap between the best known
lower and upper bound for every d ≥ 3. Unfortunately, there seem to be multiple
obstacles if one tries to adapt our argument already for d = 3.

One can also consider a d-dimensional generalization of lexicographically or-
dered matrices. A d-dimensional array A is lex-monotone if there exists a permu-
tation σ ∈ Sd and a sign vector s ∈ {−1, 1}d such that

A(a1, . . . , ad) < A(b1, . . . , bd) ⇔
(s(σ(1)) · aσ(1), . . . , s(σ(d)) · aσ(d)) <LEX (s(σ(1)) · bσ(1), . . . , s(σ(d)) · bσ(d)).

Here<LEX denotes the lexicographic ordering, that is, (x1, ..., xd)<LEX (y1, ..., yd)
if xb < yb, where b is the smallest index such that xb 6= yb. Fishburn and Graham
[7] proved that there exists a smallest N = Ld(n) such that every d-dimensional
N × · · · × N array contains a d-dimensional n × · · · × n lex-monotone subarray.
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This result has found applications in poset dimension theory [6] and computational
complexity theory [1].

Bucić, Sudakov, and Tran [2] proved the following relationship between the
functions Md and Ld for d ≥ 3:

Ld(n) ≤ Md(2
Od(n

d−2)).

Combining this with the result of Girão, Kronenberg, and Scott [8], we get the
best known upper bound Ld(n) ≤ tw4(Od(n

d−2)) for d ≥ 3.
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A Topological Turán Theorem

Corrine Yap

(joint work with Jason Long, Bhargav Narayanan)

Extremal combinatorics revolves around finding the discrete structures that max-
imize or minimize a certain quantity. For example, what is the maximum number
of edges that an n-vertex graph with no triangles can have? By Mantel’s Theo-

rem [4], the answer is n2

4 . We can replace “triangle” with a more complicated graph
H , and this is often called the Turán problem. The answer is well-understood in
all cases except when H is a bipartite graph. We may generalize this problem to



186 Oberwolfach Report 3/2024

hypergraphs, where a hypergraph H on vertex set V is a collection of subsets of V ,
called (hyper)edges. We say H is k-uniform if every edge has size k. Observe that
a 2-uniform hypergraph is simply a graph.

By taking the closure of a hypergraph under subset inclusion, one can obtain
an abstract simplicial complex and thus introduce a topological version of Turán’s
problem. Nati Linial [1, 2] first posed the following question in 2008 regarding
facets (maximal simplices) in a simplicial complex rather than edges in a graph:
given a k-dimensional simplicial complex (“k-complex”) S, what is the maximum
number of facets in an n-vertex k-complex that contains no homeomorphic copy
of S?

The maximum number of facets in a k-dimensional simplicial complex is
(

n
k+1

)
,

which is asymptotically on the order of nk+1, so we are interested in finding some
λ(S) such that nk+1−λ(S) facets guarantees a homeomorph of S. It is essentially
folklore that for every S, there does exist some such λ(S) > 0. One could instead
ask for a universal exponent λk that depends only on the dimension k and not the
choice of S. In particular, does there exist λk > 0 such that for any k-complex S,
every n-vertex k-complex with nk+1−λk facets contains a homeomorphic copy of
S?

Previous work had been done for k = 1, 2. Indeed, when k = 1, our k-complexes
are simply graphs and a theorem of Mader [5] shows that linearly many edges is
enough to guarantee the existence of a subdivision of every graph, thus implying
that λ1 = 1. For k = 2, Brown, Erdős, and Sós proved that λ(S2) = 1

2 where S2 is
the 2-sphere. Much more recently, Kupavskii, Polyanskii, Tomon, and Zakharov [8]
proved that 1

2 is the exponent not only for the sphere but also for all orientable
closed surfaces, and Sankar [9] extended these results to all non-orientable surfaces.
Regarding the universal exponent, however, a complete answer is yet unknown.
Keevash, Long, Narayanan, and Scott [6] provided the first known bounds of
λ2 ≥ 1

5 .
We show for the first time the existence of the universal exponent.

Theorem (Long–Narayanan–Y. [3]). For all k ∈ N, there exists λk ≥ k−2k2

such
that for any k-dimensional simplicial complex S, every n-vertex k-dimensional
simplicial complex with at least nk+1−λk facets must contain a homeomorphic copy
of S.

We prove this by first reducing from a topological statement to a strictly com-
binatorial statement by associating the desired k-complex S with a specific home-
omorph called the barycentric subdivision of S. The (k + 1)-uniform hypergraph
H corresponding to this homeomorph is not only (k + 1)-partite but possesses a
property we define as d-trace-boundedness, which roughly refers to the degrees of
the vertices being bounded within certain traces of H. This reduces our problem
from a topological one to a strictly combinatorial one: our goal becomes to bound
the so-called Turán exponent for this class of hypergraphs. To do this, we uti-
lize a nonstandard version of a probababilistic technique called dependent random
choice. Given a dense (k+1)-unifornm hypergraph G, we prove the existence of a
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large subset of vertices whose small subsets have a large common neighborhood.
This property allows us to embed a copy of H into G greedily.

Several open questions in this area remain, primarily: what is the exact value of
λ2 and can we obtain better bounds on λk? A possible approach to the latter would
be considering the sphere Sk in higher dimensions. The techniques of Brown-
Erdős-Sós can be generalized to provide bounds but not exact values, and for
example, λ(S3) remains unknown.
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search Notices, 2022:17 (2022), 13246–13271.

[9] M. Sankar, The Turán Number of Surfaces, arXiv preprint arXiv:2210.11041 (2022).

Variation of no-three-in-line problem

Ji Zeng

(joint work with Andrew Suk, Yaobin Chen, Xizhi Liu, Jiaxi Nie)

The famous no-three-in-line problem raised by Dudeney [6] in 1917: Is it true that
one can select 2n points in [n]2 such that no three are collinear? Clearly, 2n is an
upper bound as any vertical line must contain at most 2 points. For small values
of n, many authors have published solutions to this problem obtaining the bound
of 2n (e.g. see [7]), but for large n, the best known general construction is due to
Hall et al. [8] with slightly fewer than 3n/2 points.

As a generalization of this problem, we consider the quantity αd,k(n), defined
as the maximum size of a subset S ⊂ [n]d such that no k + 2 points of S is
contained in a k-dimensional affine subspace. The original no-three-in-line problem
is equivalent to asking whether α2,1(n) = 2n. Since [n]d can be covered by nd−k

many copies of [n]k, we have the trivial upper bound αd,k(n) ≤ (k + 1)nd−k. For
certain fixed values of d and k, and n tends to infinity, this bound is known to
be asymptotically tight: Many authors [13, 3, 10] noticed that αd,d−1(n) = Θ(n)
by looking at the modular moment curve over a finite field Fp; In [11], Pór and
Wood proved that α3,1(n) = Θ(n2). On the other hand, Lefmann [10] (see also [9])
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showed that αd,k(n) ≤ O
(
n

d
⌊(k+2)/2⌋

)
, which behaves differently from Θ(nd−k) for

infinitely many values of d and k. The first result of this talk is an improvement
of Lefmann’s upper bound.

Theorem 1 (Suk–Zeng [15]). For fixed d and k, as n → ∞, we have

αd,k(n) ≤ O
(
n

d
2⌊(k+2)/4⌋ (1−

1
2⌊(k+2)/4⌋d+1 )

)
.

In particular, this theorem tells us that, when 4 divides k + 2, αd,k(n) only

behaves like Θ(nd−k) if k = d − 1. For example, we have α4,2(n) ≤ O(n
16
9 ), and

this is quite interesting compared to the result on α3,1(n) by Pór and Wood [11].
The proof of this theorem is a modification of the arguments of Cilleruelo and
Timmons [5] regarding “k-fold Sidon sets” in additive combinatorics. Essentially,
we observed that any S ⊂ [n]d without the hypothesized affine dependency must
be a higher dimensional analog of “k-fold Sidon sets”.

Let us note that Lefmann [10] showed that αd,k(n) ≥ Ω
(
n

d
k+1−k− k

k+1

)
, which

is the current best lower bound for this quantity for general values of d and k.

Problem 1. Determine the asymptotic magnitude of α4,2(n), and more generally,
of αd,k(n) for all fixed d and k.

As another variation of the no-three-in-line problem, we consider the quan-
tity α(F2

q , p), defined as the maximum size of a collinear-triple-free subset S in

a p-random set of F2
q, that is, the plane over the finite field of order q. Here, a

p-random set is a random subset where each point is sampled uniformly indepen-
dently with probability p. The second result of this talk characterizes α(F2

q , p) up
to polylogarithmic factors for all possible values of p.

Theorem 2 (Chen–Liu–Nie–Zeng [4]). As the prime power q → ∞, asymptotically
almost surely, we have

α(F2
q , p) =





Θ(pq2), q−2+o(1) ≤ p ≤ q−3/2−o(1),

q1/2+o(1), q−3/2−o(1) ≤ p ≤ q−1/2+o(1),

Θ(pq), q−1/2+o(1) ≤ p ≤ 1.

Moreover, all qo(1) factors here are polylogarithmic.

This theorem is partially established by Roche-Newton–Warren [12] and Bhow-
mick–Roche-Newton [2] previously for p within some smaller ranges. Following
their approach, our proof is based on the container method. Specifically, we proved
that there always exists a collection C of subsets (called containers) of F2

q such that:

(i) every collinear-triple-free subset of F2
q is contained in some C ∈ C; (ii) |C| ≤ 9q

for all C ∈ C; and (iii) |C| ≤ exp
(
O(q1/2(log q)2)

)
. We remark that container

theorems of this type can also be applied to counting problems of collinear-triple-
free subsets and their variants, see [12, 2, 4] for details.

One of the key tools in our proof is the well-known hypergraph container lemma,
proved independently by Balogh–Morris–Samotij [1] and Saxton–Thomason [14].
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To obtain the desired quantitative bounds of our containers, we apply the hy-
pergraph container lemma together with a “balanced supersaturation” result of
collinear triples in F2

q. And we leverage the pseudorandomness of the point-line

incidence bipartite graph of F2
q to achieve such a “balanced supersaturation”. This

is the technical reason that we considered this problem over finite fields, hence a
future direction is to study the same problem for the n-by-n grid.

Problem 2. Characterize the quantity α([n]2, p), defined as the maximum size of
a collinear-triple-free subset S in a p-random set of the grid [n]2.
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Lower bounds for incidences

Dmitrii Zakharov

(joint work with Alex Cohen, Cosmin Pohoata)

Consider the following problem: let p1, . . . , pn ∈ [0, 1]2 be a set of points and for
every i = 1, . . . , n, let ℓi be a line passing through pi. What is the smallest possible
distance δ = d(pi, ℓj) between a point pi and a line ℓj for i 6= j? Our ‘goal’ is to
make δ as large as possible. Here are some examples:
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• Let p1, . . . , pn be equally spaced points on the segment [0, 1] × {0} and
ℓi = pi + 〈e2〉 be the vertical line through pi. Then δ ∼ n−1, achieved on
adjacent indices j = i+ 1.

• Let p1, . . . , pn be equally spaced on the unit circle and ℓi is the tangent
line to pi. Then δ ∼ n−2.

• Let p1, . . . , pn form a
√
n×√

n square grid. Then it is possible to choose
lines ℓi so that δ ∼ n−1 and Minkowski’s theorem implies that this is best
possible.

• Let p1, . . . , pn be a random set of points in [0, 1]2. Then with high proba-

bility we can choose ℓi so that δ ∼ logn
n .

These examples suggest that perhaps δ ≤ nε−1 for any configuration of points
and lines pi, ℓi. If true, this would be best possible and would have some nice
consequences.

The Heilbronn’s triangle problem asks to find the smallest area triangle among
an arbitrary set of n points in the unit square [0, 1]2. Using a pigeonhole argument,
it is easy to find triangles of area O(n−1) but beating this bound turned out to be
quite challenging. We can find a smaller triangle using a bound on δ as follows.
First, any set of n points contains m ∼ n pairwise disjoint pairs pi, qi, i = 1, . . . ,m
such that d(pi, qi) ≤ Cn−1/2. Second, let ℓi be the line passing through the points
pi, qi. So we get a collection of ∼ n points pi and each point has a line through it.
Then we can find i 6= j such that d(pi, ℓj) ≤ δ. But then we have

Area(pi, pj, qj) =
1

2
d(pj , qj)d(qi, ℓj) ≤ Cn−1/2δ.

This gives a better bound than n−1 as long as δ ≪ n−1/2 and if we assume the best
possible bound δ ≤ nε−1, then this gives triangles of area nε−3/2. The best current

upper bound on the Heilbronn’s triangle problem is Area(x, y, z) ≤ n− 8
7−

1
2000 due

to Cohen, Pohoata and the author [1], very far away from this optimistic bound.
On the other hand, there are point sets with all triangles having area at least
n−2+o(1).

Consider a variant of the problem: given n points in [0, 1]2, what is the small-
est area of a 4-gon determined by these points? Here again a simple pigeonhole
argument gives a 4-gon of area Cn−1 but the best lower bound construction only
avoids 4-gons of area n−3/2+o(1). Presently we cannot even show that there al-
ways exists a 4-gon of area o(n−1). However, if we assume that δ ≤ nε−1 holds
in the point-line problem, then we can find 4-gons of area at most n−9/8+Cε, a
polynomial improvement provided that ε is small enough. The argument is similar
in spirit to the n−3/2+ε bound in case of triangles. One can go further and show
an upper bound n−1−ck+Ckε for the area of the smallest k-gon determined by n
points.

Another neat application of an upper bound on δ is the following ‘point-line
incidence dichotomy’. For a set of points P ⊂ [0, 1]2 and a set of lines L let us
define I(δ;P,L) to be the number of pairs p ∈ P , ℓ ∈ L such that d(p, ℓ) ≤ δ.
This is a ‘blurred’ version of the number of incidences between points and lines in
the plane and understanding this quantity well has many applications to additive
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combinatorics, discrete geometry and analysis. The most studied questions are dif-
ferent ‘blurred’ variants of Szemeredi–Trotter theorem: given some distributional
constraints on P and L, how large can the number of incidences I(δ, P, L) be? A
remarkable example of this type of question is the Furstenberg set problem very
recently resolved by Ren and Wang [2] completing a long line of research.

We ask the opposite question: how small can the number of incidences I(δ, P, L)
be? Of course, it can be 0, just draw all lines far away from points in P . On the
other hand, if P and L were ‘random’, then we would have I(δ, P, L) ≈ δ|P ||L|. If
we know the bound δ ≤ nε−1 for our point-line problem then, in some sense, these
are the only two possibilities.

More precisely, suppose that δ ≤ nε−1 holds for the point-line problem. Let
δ > 0 and P,L be arbitrary sets of points and lines in [0, 1]2. Then one of the two
possibilities holds:

• We have I(δ;P,L) ≥ δ1+ε|P ||L|,
• There exist subsets P ′ ⊂ P and L′ ⊂ L such that |P ′| ≥ (1 − δε)|P | and
|L′| ≥ (1− δε)|L| and I(δ, P ′, L′) = 0.

But what can we actually prove? A trivial upper bound is δ ≤ Cn−1/2 follows
from a packing argument. We can improve this by a polynomial factor to some-
thing like δ ≤ n−4/7+ε (and perhaps even better) using harmonic analysis and
multi-scale arguments. Our method has a hard barrier at the exponent δ = n−2/3

though. The reason is the following ‘Szemeredi–Trotter’ example

P =
√
n×√

n grid inside, [0, 1]2, L = the set of n1/3-rich lines for P,

it then turns out that: |P |, |L| ∼ n and

I(δ;P,L) ∼
{
δ|P ||L|, δ ≥ n−1/3,

n4/3, δ ≤ n−1/3,

i.e. there is a change of behavior of the incidence count below the scale n−2/3.
Because of this, our method cannot control incidences below this scale. In some
sense, proving the bound δ ≤ nε−1 (or even anything better than n−2/3) would
have to rule out ‘Szemeredi–Trotter examples’ where the number of incidences is
much smaller than expected.
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Open Problems in Discrete Geometry

Collected by Nikita Gladkov

Problem 1 (Sergey Avvakumov). A grid graph is a graph drawn in the plane
such that each of its vertices has integer coordinates and each of its edges has
unit length. A drawing of a graph is 1–thick if the distance between x and y is
at least 1 whenever x and y are disjoint vertices, disjoint edges, or disjoint vertex
and edge.

Is there a constant C such that for any n any grid graph with n vertices admits
a 1–thick drawing in a square of side length C

√
n?

This question is based on the “Sponge problem”, see [1].

[1] Larry Guth, The Width-Volume Inequality Geometric and Functional Analysis 17 (2007),
pp. 1139–1179.

Problem 2 (Luis Montejano). For what topological groups G, does the collection
of cosets of closed subgroups satisfy a Helly theorem?

It is known that the answer is yes for S1 and R1.
The answer is probably yes for S3 and SO(3).

Problem 3 (Günter Rote). What is the probability p3 that a random face in a
random simple pseudoline arrangement is a triangle, in the limit as the number n
of pseudolines goes to infinity?

Here, a random pseudoline arrangement is a uniform choice among the combi-
natorial types of simple pseudoline arrangements, and a random face is a uniform
choice among the

(
n−1
2

)
bounded faces of the arrangement. (The answer would be

unchanged if we including the 2n unbounded faces.)
The same question can be asked for the probability p4 of a quadrilateral, etc.

Computational experiments suggest the values p3 ≈ 0.3, p4 ≈ 0.45, p5 ≈ 0.2,
p6 ≈ 0.04. It is not even proved that these probabilities converge as n → ∞.
However, it is known that the average face size converges to 4 [1]. The answer is
the same if we ask for the size of the convex hull in a random abstract order type.

The question can also be asked for line arrangements with a random combina-
torial type. It is not clear that the answer is the same. One may also generate
n random lines in some way and consider the resulting line arrangement.

[1] Xavier Goaoc and Emo Welzl, Convex hulls of random order types. Journal of the ACM 70

(2023), Article No. 8: 47 pp.

Problem 4 (Karim Adiprasito). A Moore graph is the graph which attains the
smallest girth with the given diameter.

girth = 2 diam− 1

Except for Kn and C2n+1 there are just sporadic regular Moore graphs. What
about regular Moore graphs satisfying

girth = (2− c) diam?

Is their number also finite?
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What if I have a Riemanian manifold with

systole

diam
≤ 2?

Gromov showed that this bound is attained only at RPn. Is the number of
topologies for 2− ε finite? As shown by Buser Somak, this ratio is infinitely often
greater than some c > 0.

Problem 5 (Patrick Schnider). Let P be a finite set of n points in Rd (maybe in
general position or even in strongly general position). Let q ∈ Rd be another point.
We define the Tverberg depth of q with respect to P , denoted by TvD(P, q), as
the maximum k such that there is a partition of P into k pairwise disjoint subsets

P1, . . . , Pk ⊂ P with
⋂k

i=1 conv(Pi) 6= ∅. In this language, Tverberg’s theorem says
that there is a point q with TvD(P, q) ≥ n

d+1 . Consider the region Dk of points in

Rd that have Tverberg depth at least k, that is, Dk = {q ∈ Rd | TvD(P, q) ≥ k}.
The question is the following:

Question 1. For what values of k is Dk contractible for every point set P of size
n?

Note that D1 is just the convex hull of P , which is of course contractible. On
the other hand, the set of Tverberg points is in general not even connected, so Dk

is generally not connected for k ≥ n
d+1 (and is of course empty for large k). In R2

it is not hard to show that Dk is convex and thus contractible for k ≤ ⌊n
3 ⌋.

Problem 6 (Raphael Steiner). This problem was asked by Pavel Valtr at another
workshop, and I (Raphael Steiner) am only restating it.

Does there exist an absolute constant c ∈ N such that for every d ∈ N the
hypercube graph Qd admits a topological drawing in the plane such that there
exists no collection of c pairwise crossing edges?

This relates to another open question, namely whether the maximum number
of edges in an n-vertex k-quasi-planar graph is bounded linearly in n.

Problem 7 (Dima Zakharov). Let n ≥ k ≥ 2 and A ⊂ Sn be a measurable subset
which does not contain k pairwise orthogonal vectors. Show that µ(A) . e−cn/k for
some c > 0. A double cap construction shows that this would be best possible. We

know this only in the special cases k = 2 or k & n, and in general µ(A) . e−
√

n/k.
See [1] for details and further references.

[1] Dmitrii Zakharov, Spherical sets avoiding orthogonal bases. arXiv:2310.06821, 2023, 7 pp.

Problem 8 (Xavier Goaoc). Let S be an arbitrary set of n great circles in S2

such that no three have a point in common. Let c be a 2-dimensional cell chosen
equiprobably from the arrangement of S. Let S′ ⊂ S be the subset of great circles
not touching c, and let c′ be the 2-dimensional cell of the arrangement of S′ that
contains c. Let x denote the number of edges of c′. Note that x is a random
variable whose distribution depends on the arrangement of S.

How large can the expectation of x be?
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Motivation. The maximum (over the choice of S) expectation of x bounds from
above the average number of points on the second onion layer of a realizable order
type chosen uniformly at random.

Problem 9 (Ji Zeng). Let Bt be the bipartite graph with bipartition L ⊔ R
such that L = {x1, . . . , xt} ∪ {y1, . . . , yt} ∪ {z1, . . . , zt} and R = {wijk; i, j, k ∈
{1, . . . , t}}, and the edges of Bt are xiwijk, yjwijk , and zkwijk for all indices
i, j, k.

Are there constants σ < 3 and positive C such that any large enough bipartite
graph G = (A⊔B,E(G)) with |A|σ < |B| and |E(G)| > C|B| must contain a copy
of Bt?

Problem 10 (Igor Pak). Let X be a finite set of points in the plane in general
position. Denote by c(X) the number of triangulations of the convex hull of X
with vertices in X . Prove that for every sufficiently large k there exists a set X
with c(X) = k.

Problem 11 (Imre Bárány). Let X be a set of n points in the plane in general
position. Three points a, b, c ∈ X determine an empty triangle if conv {a, b, c} ∩
V = {a, b, c}. Let f(X) denote the number of empty triangles in X .

The first question is about f(n), the minimum of f(X) taken over all n-element
sets X in general position in the plane.

Question 2. Show that f(n) > 1.001n2.

It is known that

n2 +Ω(log n)2/3) < f(n) < 1.62n2.

The lower bound comes from [1], the upper one from [3]

For the second question define the degree, deg(a, b), of a, b ∈ X as the number of
c ∈ X such that a, b, c form an empty triangle in X and let degX be the maximum
of deg(a, b), when a, b ∈ X .

Question 3. Show that degX tends to infinity when |X | = n → ∞.

This question appeared first in [4] and later in [2]. A construction with degX =
O(

√
n) is given in [3].

[1] O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, B. Vogten-
huber, A superlinear lower bound on the number of 5-holes. J. Combin. Theory Ser. A 173
(2020), 105236, 31 pp.

[2] I. Bárány and Gy. Károlyi, Problems and results around the Erdős-Szekeres convex polygon
theorem. Discrete and computational geometry (Tokyo, 2000), 91–105, Lecture Notes in
Comput. Sci., 2098, Springer, Berlin, 2001.

[3] I. Bárány and P. Valtr, Planar point sets with a small number of empty convex polygons.
Studia Sci. Math. Hungar. 41 (2004), no. 2, 243–266.

[4] P. Erdős, On some unsolved problems in elementary geometry (in Hungarian), Mat. Lapok
2 (1992), 1–10.
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Problem 12 (Boris Bukh). A k-hole in a set X ⊂ R2 is a set of vertices of an
empty convex k-gon. Erdős asked if, for every fixed k, every sufficiently large X
contains a k-hole. Horton constructed a counterexample, a family of arbitrarily
large sets not containing a 7-hole.

Horton’s construction is inductive: Let H0 be a one-point set. Given Hi, the
set Hi+1 is obtained by taking the union of Hi and Hi + p where the point p has
very large y-coordinate and small non-zero x-coordinate.

We would like to know if Horton’s construction is essentially unique. Specifi-
cally, must every sufficiently large 100-hole-free set in general position contain a
copy of H3, i.e., 8 points whose order type is the same as that of H3?

Problem 13 (Alexander Barvinok). What is the maximum number of edges that
a centrally symmetric 4-dimensional polytope with n vertices can have?

Problem 14 (Eran Nevo). Let c(n) be the maximal number of faces that a cubical
4-dimensional polytope on n vertices can have. Is c(n) = o(n2)?

Remarks:
1. That c(n) = O(n2) is easy (also for higher dimensional cubical polytopes.
2. Joswig-Ziegler [1] showed that c(n) = Ω(n lg(n)).
3. It is not hard to see that any upper bound on the following quantity t(n) is

also valid, up to a multiplicative constant, for c(n) above.

[1] M. Joswig and G. M. Ziegler. Neighborly Cubical Polytopes. Discrete & Computational Ge-
ometry 24 (2000), pp. 325–344.

Problem 15 (Eran Nevo). Let t(n) be the maximal number of geometric triangles
in R3 whose vertices form a subset of size n, such that for every two of the triangles
their intersection is either empty or consists of a single point which is a vertex in
each. Is t(n) = o(n2)?

Remarks:
1. For combinatorial / piecewise-linear triangles,

(
n
2

)
triangles are possible, as

demonstrated by Steiner triple systems (PL-embedded in R3).
2. Károlyi-Solymosi [1] showed that t(n) = Ω(n3/2).

[1] Károlyi and Solymosi. Almost Disjoint Triangles in 3-Space. Discrete & Computational Ge-
ometry 28 (2002), pp. 577–583.

Problem 16 (Dima Zakharov). Let X ⊂ Rn be a finite set such that no 3 points
of X determine an angle more than π

2 (1 − 10−10000). Is it true that |X | ≤ 1.99n?
If you forbid angles less than π/2 then it is known that |X | ≤ 2n and this is
essentially sharp. But it could be the case that decreasing the angles a little bit
already forces a significant drop in size.

We know that such X has to have size at most (2 − 10−20000)n and there is a

construction of size (
√
2− 0.01)n. See [1] for precise formulation and more details.

[1] Andrey Kupavskii and Dmitriy Zakharov. The right acute angles problem? European Journal
of Combinatorics 89 (2020), 7 pp.

Problem 17 (János Pach). Let f(n) be the largest number such that no matter
how we choose n red and n blue points in the plane, in general position, we can
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always find at least m(n) monochromatic empty triangles. (A triangle determined
by three of our points is empty if there is no other point in its interior.) Is it true
that f(n) = o(n2)?

In a joint paper with Géza Tóth, I showed a long time ago that f(n) ≥ cn4/3

for a positive constant c. See Discret. Appl. Math. 161(9): 1259-1261 (2013). On
the other hand, Bárány and Valtr constructed several (uncolored) n-element point
sets with only O(n2) empty triangles.

[1] Pach, J., & Tóth, G. (2013). Monochromatic empty triangles in two-colored point sets. Dis-
crete Applied Mathematics, 161(9), 1259-1261.

Problem 18 (Karim Adiprasito). For what maximal εd is there an infinite number
of d-polytopes with all dihedral angles ≤ π − εd?

Problem 19 (Bartosz Walczak). Does there exist a constant c > 0 such that
every intersection graph of n axis-parallel boxes in R3 with clique number 2 (i.e.,
no three meeting at a common point) has an independent set of size at least cn?

For rectangles in R2, a stronger statement holds—every triangle-free intersec-
tion graph of axis-parallel rectangles has chromatic number at most 6 [1]. Such
a stronger statement fails in R3—Burling constructed triangle-free intersection
graphs of axis-parallel boxes with arbitrarily large chromatic number [2]. Fur-
thermore, the answer to the weighted analogue of the problem above is negative,
because the graphs constructed by Burling are known to have arbitrarily large
fractional chromatic number [3].

[1] E. Asplund, B. Grünbaum. On a coloring problem, Math. Scand. 8, 181–188, 1960

[2] J. P. Burling. On coloring problems of families of polytopes. PhD thesis, University of Col-
orado, Boulder, 1965

[3] B. Walczak. Triangle-free geometric intersection graphs with no large independent sets, Dis-
crete Comput. Geom. 53, 221–225, 2015

Problem 20 (Arnau Padrol). What is the maximum number of vertices that the
convex hull of a subset of k-barycenters of a set of n points in Rd can have?

Reporter: Patrick Schnider
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