
Snapshots of modern mathematics
from Oberwolfach

№ 7/2023

The geometry of fai r d iv is ion

Flor ian Fr ick 1

How can we fairly divide a necklace with various
types of beads? We use this problem as a motivating
example to explain how geometry naturally appears
in solutions of non-geometric problems. The strategy
we develop to solve this problem has been used in
several other contexts.

1 Introduct ion

Famously, Wigner 2 called the effectiveness of mathematics in the natural
sciences “unreasonable.” This snapshot explores the entirely reasonable effec-
tiveness of geometry in understanding non-local information: Geometry, as the
study of shape, measures phenomena that are global instead of local. If the
solution to a mathematical problem depends on the aggregate of the data that
is given to us, instead of just a myopic view, one may expect that geometry
will be useful in the problem’s resolution—even if the problem itself is not a
geometric one.

There is a, by now well-established, approach to finding solutions for such
problems, which has the following outline:
1. Parametrize the space of all potential solutions. (This space is a geometric

object!)
2. Define a function on this space that measures to what extent a potential

solution differs from being actually a solution.

1 Florian Frick is supported by NSF grant DMS 1855591 and a Sloan Research Fellowship.
2 Eugene Paul Wigner (1902–1995) was a Hungarian physicist and mathematician. He
received the Nobel Prize in 1963.
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3. Use symmetry to establish that this function equals zero at some point, and
thus an actual solution exists.
This proof scheme is of central importance in the field of Geometric and

Topological Combinatorics and has been used for a multitude of problems ranging
from applications in economics (such as the existence of Nash equilibria [7]) to
cutting a sandwich with three ingredients with one straight cut such that both
halves have the same amount of each ingredient; see Matoušek’s book [5] for an
excellent introduction. That several problems follow the theme of fair division
is not a coincidence; after all, a solution is fair if it is symmetric in some sense.
Here we focus on a simple “toy problem” to showcase how modern mathematics
applies geometry to numerous (often non-geometric) problems.

In Section 2, we introduce the problem of fairly dividing a necklace with
white and black beads between two people. In Section 3, we add a third type
of bead, which complicates the problem. We thus start following the proof
scheme above, and visualize the space of potential solutions as a parallelogram.
Section 4 defines the function that measures how close we are to a fair division;
Section 5 exploits symmetries to show that a solution must always exist. In
Section 6, we collect a few examples of other problems, where this proof scheme
has been successfully applied.

2 Fair ly spl i t t ing a necklace

Alice and Bob inherited a necklace that consists of two different kinds of beads:
Black beads and white beads. The types of beads are not arranged in any
particular pattern, and Alice and Bob are unsure about which type of bead is
more valuable. Nevertheless, they want to fairly divide the necklace. The only
way to ensure that the division is indeed fair is if both Alice and Bob receive the
same number of white beads and the same number of black beads. Of course,
they would like to disturb the integrity of the necklace as little as possible, that
is, they want to use as few cuts as needed to achieve this fair division.

Perhaps the necklace to be divided looks like the one depicted in Figure 1
with twelve black beads and twelve white beads. One cut will not suffice to
achieve a fair division: This cut would have to be precisely in the middle of the
necklace, but then there are seven black beads on the left and only five black
beads on the right—unfair! Are two cuts sufficient?

Figure 1: A necklace with two kinds of beads.

Let us first observe that with two cuts, we separate a piece from the middle
of the necklace (and hand it to Alice, say), while Bob gets the outer two pieces.
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Since Alice is supposed to receive twelve beads in total, the two cuts must
be twelve beads apart. This means that the first cut uniquely determines the
second: If the first cut is after the bead in position j, the second cut must occur
after position j + 12. In general, if the necklace has 2n beads, the two cuts
must be at distance n.

A second simple observation is that if Alice receives the correct amount of
beads in total (twelve in our example) and she receives the fair amount of black
beads (that is, six), she automatically has the right number of white beads too.

These two observations give us a way of seeing that indeed two cuts suffice
in general: Call n consecutive beads along the necklace a window. Now slide
this window, starting with the first n beads, bead-by-bead, all the way to the
last n beads. If there was an excess of black beads among the first n beads,
then there must be a deficit among the others, the last n beads. Since excess
flips to deficit or vice versa, somewhere along the way the window contained
neither an excess nor a deficit of black beads; it has the right number of black
beads and so the right number of white beads too. Thus two cuts (three pieces)
are always sufficient.

Bob Alice Bob

Figure 2: A fair division with two cuts.

Sliding the two cuts bounding Alice’s piece along the necklace was sufficient
to establish the existence of a fair division for two types of beads. Next we will
investigate this problem for three types of beads. Here exhibiting the hidden
geometry will be crucial. Existence of fair divisions for necklaces with several
types of beads was shown by Goldberg and West [3] with simplified proofs
by Alon and West [1]. Here we present an elementary proof that is similar in
spirit to [3] and [1]. The concepts presented are elementary, but the proof will
require some bookkeeping (bead-counting, one might say), so follow carefully
the different values of the functions we will present.

3 A paral le logram of possibi l i t ies

The previous fair division problem becomes more intriguing once we allow a
third kind of bead. You can check that our sliding window trick already fails
for a boring necklace such as the one depicted in Figure 3. At least three cuts
are necessary if we want that Alice and Bob receive equal numbers of black,
gray, and white beads, respectively.
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Figure 3: A necklace with three kinds of beads.

In order to show that, in general, three cuts do indeed suffice to achieve a
fair division, we first describe the general situation: We are given a necklace
with 2b black beads, 2g gray beads, and 2w white beads – even numbers – so
we could give Alice and Bob the same number of each. Our goal is to cut the
necklace into four connected pieces P1, P2, P3, P4, such that P1 and P3 together
contain b black beads, g gray beads, and w white beads. (And thus the same
is true for parts P2 and P4.) We then hand pieces P1 and P3 to Alice and
pieces P2 and P4 to Bob.

As in the case of only black and white beads, we first need to parametrize
all possible cuts of the necklace. For two types of beads, these possible cuts
appeared in a linear order, and we could slide a window through the necklace
from the first possible division to the last. Now the possible divisions make up
a two-dimensional object.

Let n = b + g + w. We can think of the necklace as having a bead at
every integer between 1 and 2n. Consider the parallelogram Q with vertices
at (0, 0), (n, n), (n, 2n), and (0, n).

(0, 0)

(0, n) (n, n)

(n, 2n)

Figure 4: The parallelogram Q parametrizing certain divisions of the necklace.

To any point (x, y) with integer coordinates within Q, we associate a division
of the necklace into four connected pieces P1, P2, P3, P4, such that the total
number of beads in pieces P1 and P3 is equal to the total number of beads in
pieces P2 and P4. Given such a point (x, y), place the first cut after the bead in
position x and the second cut after the bead in position y. (Here cutting after
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the zeroth bead simply means to cut before the first bead.) By definition of Q,
we have x ≤ y, so the cuts actually appear in this order along the necklace. We
allow equality x = y, which wastes a cut by performing it twice.

The third cut is now uniquely determined by the first two and the requirement
that the first and third pieces have the same total length as the second and fourth
pieces. The third cut needs to occur after the bead in position z = y − x + n.
These three cuts split the necklace into four pieces. Their lengths are x, y − x,
z − y = n − x, and 2n − z = x − y + n. Indeed, the first and third lengths
sum to n, as do the second and fourth lengths. Conversely, any such division
of the necklace into four pieces corresponds to an integer point within the
parallelogram Q. Non-integer points in Q also correspond to divisions of the
necklace. These divisions, however, may cut through beads and not only between
them. Note that a division corresponding to a point on the boundary of Q cuts
the necklace into two or three pieces instead of four.

To summarize, the point (x, y) in Q corresponds to the division of the
necklace, where we cut in three (not necessarily distinct) points: At position x, at
position y, and at position y −x+n. Think of the necklace as the interval (0, 2n]
with a bead at every positive integer. This divides the interval (necklace) into
pieces P1 = (0, x], P2 = (x, y], P3 = (y, y − x + n], and P4 = (y − x + n, 2n].
Here (a, a] will mean an empty piece.

4 Test ing fairness

Now that we have parametrized all valid divisions, let us associate two numbers
to every point in Q: The excess of black beads and the excess of gray beads in
the union P1 ∪ P3 of the first and third pieces. That is, to a point (x, y) in Q,
we associate the pair (β − b, γ − g), where β is the number of black beads up to
position x in the necklace plus the number of black beads between positions y
and z = y − x + n. The number γ is defined in the same way for gray beads.
Denote by f(x, y) the pair associated to the point (x, y). In other words, f(x, y)
encodes the difference between the number of black and gray beads in the
division determined by (x, y) and a fair division.

Suppose that for some point (x, y) in Q, we have f(x, y) = (0, 0). Then
this means that the first piece P1 and the third piece P3 of the corresponding
division contain together b black beads and g gray beads—the correct number.
Since their combined length is n beads and b + g + w = n, this also implies
that we have the right number w of white beads in P1 ∪ P3. Thus such a point
corresponds to a fair division. We might be worried that if x and y are not
integer points, then the division might cut through beads instead of between
them. However, if a bead of some color is cut, then since beads appear an even
number of times, another bead of that color must also be cut. We can adjust

5



such a pair of cuts simultaneously to not go through beads. (We sometimes may
have to adjust more than two cuts simultaneously.) Thus f(x, y) measures the
fairness of the division determined by the point (x, y). To find a fair division,
we need to find a a point where the function f equals zero. To find this zero we
will investigate the values of f on the boundary of Q.

Let us walk along the boundary of Q. The vertex (0, 0) of Q is associated
with the division where we “cut” twice before the first bead, and thus the third
cut is after bead z = n. So the first n beads belong to piece P3, while the
remaining n beads belong to P4. As we diagonally walk up the edge toward
the vertex (n, n), we increase the length of the piece P1, which contains all
beads up to position x. Since x = y along this entire edge, the piece P2 always
has length zero. Thus along the edge from (0, 0) to (n, n), the union P1 ∪ P3
always occupies the first half of the necklace. In other words, all divisions along
this edge let us give the same beads to Alice – those from the first half of the
necklace. So f is constant here.

Trace up from (n, n) to (n, 2n) and keep track of the divisions parametrized
by the points along this edge. Since x = n along this edge, piece P1 remains
unchanged; it always consists of the first n beads. The third cut is at position
z = y − x + n = y, and so it coincides with the second cut. This means that P3
has length zero along this edge, and again P1 ∪ P3 is constantly equal to the
first half of the necklace. We have established that f is constant all the way
from (0, 0) via (n, n) to (n, 2n).

The other two edges of Q are more interesting. What is the value of f at
the vertex (0, n)? Recall that (0, n) corresponds to the division where we cut
at positions 0, n, and n − 0 + n = 2n. Thus pieces P1 and P4 have length
zero, P2 extends from position 0 to n, and P3 covers the rest, positions n to 2n.
Compared to the situation in vertex (0, 0) and (n, 2n), the roles of P1 ∪ P3
and P2 ∪ P4 have swapped; P1 ∪ P3 covers the second half of the necklace in
vertex (0, n) and (n, 2n), but the first half in vertex (0, 0). Thus, an excess of
black (or gray) beads for one division flips into a deficit for the other, or more
concisely f(0, n) = −f(0, 0) = −f(n, 2n).

This symmetry extends from the vertices to the two edges incident to (0, n).
Points along the top edge of Q are of the form (a, n + a) with 0 ≤ a ≤ n. Such
a point corresponds to the division where P1 is the interval (0, a], piece P2 is
(a, n + a], and P3 is (n + a, 2n] while P4 is empty. Points along the left edge
of Q are of the form (0, a) for 0 ≤ a ≤ n, and such a point gives the division
where P1 is empty, P2 is (0, a], piece P3 is (a, n + a], and P4 is (n + a, 2n]. That
is, from point (a, n + a) to (0, a) the roles of P1 ∪ P3 and P2 ∪ P4 flip. This
means f(a, n + a) = −f(0, a) for all a between 0 and n.
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5 Fol lowing paths to f ind zeros

The topologically inclined reader might have noticed that we are done: The
symmetry of f on the boundary of Q implies that f has odd mapping degree,
and so must pass through zero. Thus there is a fair division. Here we prove
this central topological fact in an elementary way.

We will exploit the symmetry of the function f on the boundary of Q to
find a zero, or equivalently a fair division of the necklace. If f(0, 0) = (0, 0),
meaning that one cut precisely in the middle of the necklace already constitutes
a fair division, we are done. If not, we may assume that the first coordinate
of f(0, 0) is non-zero. Because if only the second coordinate is non-zero, we
simply switch the roles of black and gray beads. Denote the first coordinate
of f , which counts the excess or deficit of black beads in parts P1 and P3, by f1.
Similarly, the second coordinate of f , measuring the excess or deficit of gray
beads in P1 and P3, will be denoted by f2.

Keep track of f1 as we go up the edge of Q that joins (0, 0) to (0, n). Since,
as we showed in the previous section, f(0, n) = −f(0, 0), the sign of f1 flips.
This means that along this edge the sign of f1 has to change an odd number
of times. Thus, along the edge from (0, 0) to (0, n), f1 passes through zero an
odd number of times. There is only one minor problem with this reasoning: f1
could be zero infinitely many times by being zero along an entire interval; for
example, by being negative, reaching zero and then going back again without
changing sign. We remedy this by instead considering f1 + 1

2 . Since 1
2 < 1

and f1(0, 0) is a non-zero integer, the sign of f1 + 1
2 still flips along the left

edge of Q. Now, since f1 cannot be equal to a non-integer along an interval, we
avoid the problem of having infinitely many zeros of f1 + 1

2 . 3

By the same reasoning, now using that f(0, n) = −f(n, 2n), the function
f1 + 1

2 has an odd number of zeros along the edge joining (0, n) to (n, 2n). More-
over, remembering that for each a between 0 and n, we have f(a, n+a)=−f(0, a),
we can deduce that f1 + 1

2 is positive (negative) along the upper edge of Q
for every integer a such that it is negative (positive) along the left edge. As a
result, f1 + 1

2 changes sign the same number of times along the upper edge as it
does along the left one.

Since f is constant on the other two edges of Q, there are no more zeros of
f1 + 1

2 on the boundary of Q. We have established that f1 + 1
2 has 2k zeros

on the boundary of Q, where k is odd. Furthermore, because of the symmetry
of f , these zeros come in pairs: For every zero of f1 + 1

2 with positive second
coordinate f2, there is such a zero with negative f2. So there are exactly k zeros
of f1 + 1

2 on the boundary of Q, where f2 is positive.

3 Try to draw this on paper and see why it works.
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We are now in a position to understand the zeros of f1 + 1
2 on all of Q.

Split Q into triangles such that the vertices of the triangles are the points with
integer coordinates in Q and edges that only connect vertices whose coordinates
differ by at most one, as in Figure 5. Since f1 achieves integer values at points
with integer coordinates, f1 + 1

2 is never zero at a vertex of one of the small
triangles. A zero of f1 + 1

2 on an edge of a small triangle occurs if and only if f1
changes sign from one endpoint of the edge to the other. Going along a small
triangle, the sign of f1 can only change two times or none at all: If f1 changes
sign from, say, the first endpoint to the second, it has to change back between
the second and the third or the third and the first, but cannot at both – as with
a third change we will end up with a different sign from what we started with.
Thus if f1 + 1

2 has a zero somewhere on a small triangle, this triangle contains
a line segment of zeros, joining the two zeros of f1 + 1

2 on the boundary of the
triangle. This implies that zeros of f1 + 1

2 come in non-branching paths that
either start and end in the boundary of Q or close up to loops.

(0, 0)

(0, n) (n, n)

(n, 2n)

Figure 5: Splitting Q into triangles. Here n = 4.

We have established that the 2k zeros of f1 + 1
2 on the boundary of Q are

joined in pairs by paths of zeros. Since k is odd, the k zeros of f1 + 1
2 with

positive f2 cannot be joined in pairs. So at least one of these paths must connect
a point on the boundary of Q with positive f2 to a point with negative f2.
Since the sign of f2 flips along this path, there must be a point where f2 = 0.
Since the path consists of points with f1 + 1

2 = 0, we have found a point with
f1 + 1

2 = 0 and f2 = 0. The corresponding division of the necklace fairly divides
the gray beads (since f2 = 0) and up to half a bead fairly divides the black beads
(since f1+ 1

2 =0). Thus the division must cut through a black bead and we can
adjust the corresponding cut in such a way that the division of black beads is
precisely fair. Then, as we argued before, the white beads are also fairly divided.
Finally, we have found a fair division of the necklace using only three cuts.
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6 Fur ther problems

The reader may be worried that since it took some effort to establish fair
division for necklaces with three kinds of beads, the reasoning will be much
more involved for four or even five kinds of beads. However, the good news is
that we have developed all ideas required to fairly divide necklaces with any
number of types of beads. For a necklace that consists of beads with k different
colors, the space of divisions with k cuts will be a (k − 1)-dimensional geometric
object. Define the function f as before, now measuring the fairness of the
division with respect to the first k − 1 kinds of beads. To establish that f has a
zero, either appeal to a topological fact, or give an elementary proof following
paths of zeros of the first k − 2 coordinates of f , where the first coordinate was
shifted by 1

2 .
The ideas we have presented here can be used in many other contexts and

for a variety of problems. Some examples where this proof scheme has been
applied include:

• The square peg problem: Does any simple closed curve in the plane have
four points that are the vertices of a square? This is still unknown in
general, but has been settled with various restricting conditions on the
curve; see [6].

• Lovász [4] used this proof scheme to show the following result about
intersections of finite sets: If one wants to partition the collection of
k-element subsets of {1, 2, . . . , n} into c parts, such that in each part all
sets intersect pairwise, then c ≥ n − 2k + 2 parts are needed.

• The rent of a 3-bedroom apartment can be split among the three rooms in
such a way that the rooms may be assigned to three roommates with their
own subjective preferences so that no roommate is envious of another.
The same holds true for n roommates in an n-bedroom apartment [8],
even if the preferences of one roommate are unknown [2].

• The sandwich we mentioned in the introduction: where the objects we
want to divide are arranged in three-dimensional space rather than along
a line as the beads.

The reader is invited to identify why these problems benefit from detecting
global phenomena and how they depend on inherent symmetries. Finding the
relevant space of potential solutions can be easy (for the square peg problem,
one may argue with the space of four points on a curve) or the main difficulty:
Lovász used the space of probability measures supported on k-element sets
disjoint from a common k-element set to prove his result. New applications of
this powerful proof scheme are found regularly.
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