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Abstract. Artin and Coxeter groups are naturally occurring generalisations
of the braid and symmetric groups respectively. However, unlike for Coxeter
groups, many basic group theoretic questions remain unanswered for gen-
eral Artin groups – most notably the K(π, 1)-conjecture for Artin groups
remains open except for certain special families of Artin groups. Recently,
Artin groups have also appeared as groups acting on triangulated categories,
where the associated spaces of Bridgeland’s stability conditions provide new
realisations of the corresponding K(π, 1) spaces. The aim of the workshop
is to bring together experts and early career researchers from two seemingly
different areas of research: (i) geometric and combinatorial group theory and
topology, and (ii) triangulated categories and stability conditions, to explore
their intersection via the K(π, 1)-conjecture.
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Introduction by the Organizers

Artin and Coxeter groups are ubiquitous in mathematics and have facilitated ap-
plications in geometry and topology; such as Davis’ construction of a counterex-
ample to the conjecture that all aspherical manifolds have Euclidean spaces as
universal covers [Dav83] and Agol’s proof of the virtual Haken conjecture [Ago13].
However, unlike for Coxeter groups, it is surprising how many basic group the-
oretic questions remain unanswered for general Artin groups. For example, it is
unknown whether Artin groups are torsion-free, and whether they a have solvable
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word problem (a broader overview can be found in [McC17]). The most promi-
nent conjecture is the K(π, 1)-conjecture for Artin groups, which is only proven
for certain special families of Artin groups, notably the finite (spherical) types
[Del72], FC types [CD95], and more recently, the affine types [PS21] and a new
hyperbolic-type family [HH23].

On the other hand, there has been a trend towards studying Coxeter and Artin
groups via their actions on triangulated categories, whose associated complex man-
ifolds of Bridgeland’s stability conditions provide new realisations of the corre-
sponding K(π, 1) spaces [QW18, AW22]. This opens up an untapped wealth of
tools, which – when combined with the combinatorial and geometric tools used
to study Artin groups – could lead to powerful new insights in the study of Artin
and Coxeter groups.

The aim of this workshop was to bring together experts and early career re-
searchers in two areas of research – geometric and combinatorial group theory,
and the theory of stability conditions – to discuss methods and problems arising
from two different point of views surrounding Artin groups. As preparation for
the workshop, the participants received two sets of notes that aimed to establish a
common ground for further discussions. Each set of notes was roughly 20-30 pages
long, one on the geometric group theory’s view on Artin groups by the first-named
organiser, and one on Bridgeland’s stability conditions by the second-named or-
ganiser.

On Monday, two experts of the respective areas, Jon McCammond and Anthony
Licata, gave two lectures each as a gentle introduction to the respective research
areas. The day was concluded with an exercise session on both topics, that led to
a lively discussion. A short introduction of all the participants (ice breaker) was
carried out after dinner.

Throughout the remainder of the week, a total of 11 research talks were pre-
sented by the participants. These included in particular presentations by graduate
students as well as by our online participant. On Tuesday, a SAGE program that
calculates actions of braid groups and (semi)stable objects with respect to a given
Bridgeland’s stability condition were presented by Bapat. On Thursday, an open
problem session was held where we compiled a list of open questions, varying in
breadth, suggested by the participants.

The (inter-related) topics presented and discussed throughout the week are
summarised as follows:

• Singularities, polynomials and non-crossing partitions: Shimpi
presented a talk on triangulated categories associated to resolutions of sin-
gularities, together with the appearance of Artin group actions on them
and their relation to the K(π, 1)-conjecture. Keating also presented a
natural construction of actions of Artin groups on triangulated categories
via singularity theory, using plumbing of spheres and spherical (Dehn)
twists. McCammond presented an explicit relation between hyperplane
complements and configuration spaces via polynomials, and showed that
the orthoscheme metric on the complex of non-crossing partitions can be
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naturally induced from the space of polynomials. Relationship between
non-crossing partitions and (specific types of) stability conditions in the
type A case were also discussed during the exercise session. Related to
this, Bianchi presented results on the homology of configuration spaces of
surfaces.

• Hyperplane complements and their universal covers: Certain sub-
spaces of hyperplane complements were presented by Wemyss as naturally
occurring objects in the theory of flops, some of which are not associ-
ated to Coxeter groups but are indistinguishable from this point of view
(any reasonable proof of the K(π, 1)-conjecture will prove that they are
all K(π, 1)-spaces). Dell also talked about subspaces of hyperplane com-
plements in relation to the non-simply-laced type Artin groups, where a
similar relation on the space of stability conditions occurs via the subman-
ifold of fusion-equivariant stability conditions (which conjecturally covers
the non-simply-laced type hyperplane complements). Algebraic geomet-
ric consequences from the understanding of stability conditions were also
presented in both Wemyss’ and Dell’s talks.

• Actions of Artin groups on metric spaces: Various simplicial and
cube complexes upon which Artin groups act were introduced in talks
of Mastrocola, Corrigan, Huang and McCammond. Interesting metrics
were put on these spaces, and the geometric properties of the action were
utilised in proving group-theoretical properties of Artin groups. On the
other hand, Deopurkar discussed stability conditions as metrics on trian-
gulated categories, which prompts the possibility of using metrics on tri-
angulated categories to study groups acting on them. In the nearby world
of Coxeter groups, Schwer introduced a meta-complex, which encoded the
famous isomorphism problem for Coxeter groups.
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Abstracts

Minicourse: Artin Groups and Triangulated Categories

Tony Licata

This short course consisted of two one-hour lectures. The first lecture concerned
generalities of group actions on triangulated categories. We introduced strong and
strict actions and briefly discussed how different appearances of a group action
(combinatorial and intrinsic) give rise naturally to weak or strict actions. We
mentioned, but did not fully explain, that the weak actions of Artin groups which
are the topic of the second lecture can be made strict. We also discussed a few
examples of categorical structures (e.g. 2-character theory), which are seen by
strict actions but not by weak actions. We discussed the octahedral axiom for
triangulated categories and its relation to planar topology. We also introduced
the notion of a metric on a triangulated category, and explained how metrics
allow one to study triangulated equivalences via tools coming from dynamics.

The second talk concerned categorical actions of Artin groups, focusing on the
fundamental “geometric 2-representation” of an Artin group. If (W,S) is a Coxeter
system with associated Artin group AW , then the geometric 2-representation of
AW is a triangulated category TW , generated by a set of |S| 2-spherical objects.
The spherical twists of these objects define a categorical action of AW on TW . (In
the lectures, we only defined this category when W is simply-laced, though the
construction can be generalised to other types.)

The fundamental conjecture concerning the action ofAW on TW is the following.

Conjecture: The action of AW on TW is faithful. More precisely, if β ∈ AW acts
by (a functor isomorphic to) the identity functor on TW , then β = 1 ∈ AW .

The conjecture has been established in special cases, but remains open in gen-
eral. A corollary of the conjecture is a solution to the word-problem in AW .

The latter half of the second lecture concerned the moduli space of stability
conditions on TW , denoted here by Stab(TW ). We explained that a connected
component Stab∗(TW ) ⊂ Stab(TW ) is a covering space of a space YW , with
π1(YW ) ∼= AW . The fundamental conjecture regarding this space is:

Conjecture: The space Stab(TW ) is contractible.

Again, this is known in examples but open in general. Proving this conjecture
would solve many of the open problems about Artin groups.
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Minicourse: Artin Groups

Jon McCammond

Artin groups are derived from Coxeter groups and both classes of groups are suc-
cinctly defined by group presentations of a particularly simple form. These simple
presentations, however, obscure the fact that Coxeter groups are well understood,
while Artin groups remain fundamentally mysterious, outside of special classes of
examples and select portions of the groups.

Artin groups are of interest due to their close connections to other parts of
mathematics: (1) braid groups and polynomials (Hurwitz, Artin), (2) Coxeter
groups, buildings and Lie theory (Coxeter, Tits, Bourbaki), (3) singularity the-
ory (Arnold, Brieskorn, Deligne, Looijenga), (4) hyperplane arrangements (Or-
lik, Solomon, Terao, Salvetti), (5) finite complex reflection/braid groups (Broué,
Malle, Rouquier, Bessis), (6) noncrossing combinatorics (Reiner, Reading, Chapo-
ton, Stump, Williams), (7) exceptional sequences in hereditary algebras (Hubery,
Krause, Thomas), (8) extended affine Artin groups (Saito, Baumeister), and (9)
triangulated categories and stability conditions (Bridgeland, Licata, Wemyss).
The first three topics are the original source of these groups as an object of study.

The natural action of Symn on Cn is free once we remove the “braid arrange-
ment” of hyperplanes where two coordinates are equal, and the fundamental group
of the quotient of the complex hyperplane complement by the free Symn action is
the braid group. For a more general Artin group, the symmetric group action on
Cn is replaced with the faithful linear action, introduced by Jacques Tits, of the
corresponding Coxeter group on a (complexified) metric vector space. The contra-
gradient version of this representation preserves a union of (real) simplicial cones
called the Tits’ cone. The Coxeter group acts freely on the complexified Tits’ cone
once the complexified hyperplanes fixed by reflections are removed, and the funda-
mental group of the quotient by this free action is the corresponding Artin group.
The cell structure dual to the Tits’ cone is the Davis complex, which supports
a nonpositively-curved piecewise Euclidean metric where the cells are polytopes
that are generalized versions of permutahedra. For the complexified hyperplane
complement, there is a similar cell structure, called the Salvetti complex, which is
an oriented version of the Davis complex built out of oriented W -permutahedra.
See [1] and the references it cites for details.

Unfortunately, the local metric geometry of the Salvetti complex is not nonpos-
itively curved except in extremely simple cases. As an alternative, there is a dual
Garside construction for some classes of Artin groups which appear to have better
metric properties, at least in the case of the braid groups, and this is the topic of
the Friday research talk.
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The geometry of stability conditions

Anand Deopurkar

(joint work with Asilata Bapat, Anthony Licata)

Stability conditions bring triangulated categories into the realm of geometry in
more than one way. We recall stability conditions and explain a few ways of
thinking about them in geometric terms, particularly for the 2-Calabi–Yau (CY)
categories associated to quivers defined in the lectures of Anthony Licata (see [2,
§2.3]).

Let C be a triangulated category. A (Bridgeland) stability condition on C con-
sists of a central charge, namely a Z-linear map Z : K(C) → C, and a slicing,
namely a collection of abelian subcategories Pφ ⊂ C indexed by real numbers φ,
satisfying a number of conditions (see [3]). The objects of Pφ are called semi-stable
of phase φ. One of the conditions in the definition ensures that every object x ∈ C
admits a unique filtration, called the Harder–Narasimhan (HN) filtration, whose
factors are semi-stable and appear in the order of descending phase. A rough anal-
ogy is to think of an object of C as an audio wave, the semi-stable objects as waves
of pure frequency, and the decomposition of an object into semi-stable factors as
the decomposition of an audio wave into pure frequencies. (This analogy, however,
ignores that the HN decomposition is ordered).

A stability condition gives multiple measures of complexity of objects and mor-
phisms. Associated to an object x is its spread, namely the difference between the
highest and the lowest phases of the semi-stable objects in its HN filtration. The
spread is a measure of homological complexity of the object.

Also associated to an object x is its mass, defined as follows. The mass of
a semi-stable object is the absolute value of its central charge; the mass of an
arbitrary object is the sum of the masses of its semi-stable factors. The mass
gives another measure of complexity of the object, which is of a different flavour
than the spread. The mass also allows us to define a metric on the category by
declaring the length of a morphism to be the mass of its cone. With this metric,
we can think of a sequence of composable morphisms in the category as a path.
The sequence given by a HN filtration turns out to be a geodesic path. For 2-CY
categories of quivers, we prove that the metric thus induced by a stability condition
in fact determines the stability condition ([1, §6.1]). So, we can think of stability
conditions as particular kinds of metrics on the category. It will be fantastic to
understand exactly which metrics arise from stability conditions.

Thinking of stability conditions as metrics allows us to transfer ideas from
metric geometry to the study of triangulated categories. One such instance is a
compactification of a stability manifold inspired by Thurston’s compactification of
Teichmüller space ([1]).

Let C be the 2-CY category associated to the An quiver. Then the Grothendieck
group K(C) is the root system of type An, which we can take to be the span of
the vectors ei− ej in Rn+1. In this case, there is a beautiful geometric description
of stability conditions in terms of configuration of n + 1 points on the complex
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plane. Fix such a configuration {x0, . . . , xn} ⊂ C. We define the central charge by
Z(ei−ej) = xi−xj . To define the slicing, recall that Khovanov–Seidel give a recipe
to construct objects of C from arcs joining two marked points [4, §4]. We declare
the objects represented by the straight line segments to be semi-stable. This turns
out to indeed give a stability condition (see [5]). Let x be an object represented by
an arc γ. In this stability condition, the HN factors of x correspond to the straight
line segment pieces of γ when it is “pulled tight” around the marked points. This
geometric description of the HN factors implies many non-trivial properties of the
structure of HN filtrations of objects in C. A fundamental question is to understand
these properties using pure homological algebra and generalise them to a broader
class of categories.
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Geometers’ twisted retelling of the K(π, 1) story

Parth Shimpi

The central objects of the workshop, namely fundamental groups of complexi-
fied hyperplane complements, appear as key players in the age-old problem of
birational classification in algebraic geometry where they naturally act on trian-
gulated categories associated to reasonable algebraic singularities. The interface
between geometric group theory and homological algebraic geometry thus created
promises advancements of understanding on both sides. The talk sketches some of
these ideas and outlines the progress that has been made towards understanding
Artin groups from the perspective of the homological minimal model programme.

1. The categories and invariants

We direct the reader to [12] for an excellent survey of the geometric context and
related problems, a part of which is explained below.

Setup 1. Our geometric setup arises from an algebraic variety Y of dimension
d ≤ 3 with a rational singularity 0 ∈ Y , and a crepant projective birational
morphism f : X → Y where X has appropriately controlled singularities. Such
singular varieties Y occur in families labelled by Dynkin diagrams ∆ of type A,D
or E. The exceptional fiber f−1(0) is known to be a tree of rational curves which

can in turn be indexed by a subset of vertices J ⊂ ∆. We write ∆̂ ⊃ ∆ for the
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corresponding Dynkin diagram of affine type, and Ĵ ⊂ ∆̂ for the subset containing

J and the extended (special) vertex of ∆̂.

In this case we can define two subcategories of DbCohX , namely

C = {F ∈ DbCohX | Rf∗(F) = 0},

D = {F ∈ DbCohX | SuppF ⊂ f−1(0)}.

The latter category will witness phenomena of ‘affine’ type, while C ⊂ D will
provide a model for ‘finite’ type behaviour. To illustrate this, we note that the
Grothendieck groupK0C has a basis indexed by J whileK0D has a basis indexed by
Ĵ . The Grothendieck groups can thus be identified with (restricted) root lattices,

inducing hyperplane arrangements H, Ĥ in the respective dual Euclidean space
E, Ê as described in [8]. In particular if J = ∆, then we recover the Tits cones of
finite-type and affine Coxeter groups.

We remark that these hyperplane arrangements have a variety of homological
interpretations in relation to the perverse t-structure [10] on the derived category,
for example as the silting fan [11] or as the heart fan [4].

2. The group action

For the hyperplane arrangements arising from either category, the tautological
action of the fundamental group of the complexified hyperplane complement can
be lifted to an action on the derived category itself.

Theorem 2. There is a group homomorphism ϕ : π1(E \ H) → Aut(C) (resp.

π1(Ê \ Ĥ) → Aut(D)) such that the monodromy around a root hyperplane cor-
responds to the mutation autoequivalences defined in [13]. Furthermore, the as-
sociated Bridgeland stability manifold has a connected component Stab◦(C) (resp.

Stab◦(D)) that is a regular covering space of E \ H (resp. Ê \ Ĥ) with deck group
img(ϕ).

Remark 3. When f : X → Y is the minimal resolution of a Kleinian singularity
or a 3-fold flopping contraction, the mutation autoequivalences can be interpreted
geometrically as coming from spherical twist functors [9] and Bridgeland–Chen
flop functors respectively.

3. The questions

A few questions naturally emerge in the above setup.

(1) Is the covering map in theorem 2 the universal cover, i.e. does ϕ describe
a faithful action?

(2) Is the stability manifold connected, i.e. are there no stability conditions
outside the connected component appearing in theorem 2?

(3) Is the connected component Stab◦(C) (resp. Stab◦(D)) contractible, i.e. is

the hyperplane complement E \ H (resp. Ê \ Ĥ) a K(π, 1) space?
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To answer these, one might seek a complete classification of spherical objects
and t-structures on the categories. This is the approach taken in [5] to provide
a positive answer for all three questions in relation to category C. In fact there
have been multiple successful approaches for answering these questions for the
category C. For instance [3], [6] exploit the existence of normal forms in the
fundamental group to exhibit faithfulness of the action; [2] study the interaction
between spherical objects and stability conditions to exhibit connectedness of the
stability manifold; and [1] show that the category satisfies a certain homological
property called ‘silting discreteness’ which guarantees the contractibility of the
stability manifold.

Each one of these approaches exploits some aspect of the ‘finite-type’ nature of
C, and fails to generalise to D. Indeed all the questions for D remain open, except
for the minimal resolution of an An surface singularity where [7] use an explicit
understanding of coherent sheaves and spherical objects to show that the stability
manifold Stab(D) is connected and the action given by ϕ is faithful.
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The combinatorics of Tits cones, and related questions

Michael Wemyss

This is an overview talk of generalisations of Coxeter arrangements discovered in
[IW]. In algebraic geometry, these arise when studying stability conditions of either
partial resolutions of Kleinian singularities, or 3-fold flopping contractions [HW],
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but from the viewpoint of this talk, where the arrangements came from is not rele-
vant. The point is that from a categorical perspective, these arrangements can’t be
distinguished from their Coxeter cousins. So, if the stability condition/categorical
machine is going to prove the K(π, 1)-conjecture, almost certainly it will also have
to prove that these new arrangements are also K(π, 1). From this, various conse-
quences emerge.

The input is a subset of nodes, denoted J , inside a Coxeter graph ∆. Given
this data, we can perform a certain intersection inside the Tits cone, and from this
obtain a new hyperplane arrangement. This arrangement depends on both J and
∆, but it is not Coxeter in general. Its chambers and walls are, however, labelled
by ‘Coxeter data’, and so many of the features of Coxeter theory remain.

Some special cases which are particularly visually pleasing are those when J is
a three-element subset of either (a) an affine ADE diagram, or (b) a hyperbolic
diagram. Case (a) is studied in [IW], and examples include

The hyperbolic case (b) is studied by Lewis [L], and examples include
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The 2-complete Artin complex

Jill Mastrocola

Let Γ be a finite simplicial graph with edges labeled by integers greater than or
equal to 2. The Artin group AΓ is the group with presentation

〈s1, . . . , sn | sisjsi . . .︸ ︷︷ ︸
mij

= sjsisj . . .︸ ︷︷ ︸
mij

〉

where si ∈ V (Γ) and mij is the label of the edge between si and sj . If there is no
edge between si and sj , then those generators have no relation.

For T ⊆ V (Γ), the subgroup of AΓ generated by T is called a standard parabolic
subgroup, denoted AT . It is a theorem of Van der Lek that AT

∼= AΓ′ for Γ′ the
subgraph of Γ spanned by T [6]. In general, a parabolic subgroup is any subgroup
of the form gAT g

−1 for some T ⊆ V (Γ) and g ∈ AΓ.
There are many long-standing open questions about Artin groups. For example,

it is unknown whether Artin groups are torsion-free, have solvable word problem,
or satisfy the famous K(π, 1)-conjecture. In many cases for which these ques-
tions have been answered, we also have an understanding of the structure of their
parabolic subgroups.

In geometric group theory, we often study actions of groups on hyperbolic, or
more generally, nonpositively curved spaces. CAT(0) spaces have proven to be
particularly useful, but this property can be hard to check in dimensions bigger
than 2. For this work, we use a combinatorial version of nonpositive curvature
known as systolicity, developed by Januszkiewicz and Światkowski [3] and inde-
pendently by Haglund [2]. CAT(0)-ness implies unique geodesics, while systolicity
does not. But both properties imply contractibility and the following key prop-
erty: If G acts on X without inversions, and a subgroup H ≤ G fixes two vertices
in X , then H pointwise fixes the (resp. every) geodesic between the vertices.

An Artin group AΓ is called locally reducible if Γ does not contain triangles of
the form 2-3-3, 2-3-4, or 2-3-5. In other words, the only finite type subgraphs of
order 3 are of the form 2-2-k for k ≥ 2. In the case of locally reducible Artin
groups, Charney proved that the Deligne complex with the Moussong metric is
CAT(0), which implies the K(π, 1)-conjecture [1].

We will define the 2-complete Artin complex, show that it is systolic for locally
reducible Artin groups, and use this to show that many locally reducible Artin

groups are acylindrically hyperbolic. We start with a modification of Γ. Let Γ̂ be
the graph obtained from Γ by deleting all edges not labeled by 2. We are left with
the same set of vertices and a subset of the original edges. The 2-complete Artin

complex of AΓ, denoted X̂Γ, is the simplicial complex with vertices corresponding
to left cosets of standard parabolic subgroups of the form AΓ\T where T is the set

of vertices in a connected component of Γ̂. A collection of vertices spans a simplex
if the associated cosets have collective nonempty intersection.

Theorem. Let AΓ be a locally reducible Artin group. If there are at least three

connected components in Γ̂, then X̂Γ is systolic.



Mini-Workshop: Artin Groups meet Triangulated Categories 217

We use this property to show that most parabolic subgroups of a locally re-
ducible Artin group are weakly malnormal. A subgroup H ≤ G is said to be
weakly malnormal if ∃g ∈ G such that |H ∩gHg−1| < ∞. We say a parabolic sub-
group is 2-complete if it can be written as gAUg

−1 where g ∈ AΓ and U is a union

of connected components of Γ̂. Given a parabolic subgroup P , a 2-completion of
P is any 2-complete parabolic subgroup which contains P .

Theorem. Let AΓ be a locally reducible Artin group and suppose Γ̂ has at least
two connected components. Then any parabolic subgroup P of AΓ which has a
2-completion that is not all of AΓ is weakly malnormal.

We will give the idea of the proof for a 2-complete, standard parabolic subgroup
of the form AΓ\T where T = {t1, . . . , tn} is the set of generators from some con-

nected component of Γ̂. Let t = t1 . . . tn. Then in the 2-complete Artin complex,
there are paths of length 2 from the vertex corresponding to AΓ\T to the ver-
tex corresponding to tAΓ\T (and each of these paths is a combinatorial geodesic).

Since X̂Γ is systolic, these paths are fixed pointwise. We use this to show that the
intersection of the stabilizers of the vertices is trivial, hence AΓ\T is weakly mal-
normal. Using the fact that these parabolic subgroups are weakly malnormal, we
can apply theorems of Martin [4] and Minasyan and Osin [5] to reach the following
result.

Theorem. Let AΓ be a locally reducible Artin group such that Γ̂ has at least two
connected components.

(1) If AΓ has a maximal finite-type subgroup which is dihedral and which has
a 2-completion that is not all of AΓ, then AΓ is acylindrically hyperbolic.

(2) If AΓ splits as an amalgamated product AΓ1
∗AΓ1∩Γ2

AΓ2
such that there is

a 2-completion of AΓ1∩Γ2
that is not all of AΓ, then AΓ is acylindrically

hyperbolic.
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Calculating braid group actions on categories

Asilata Bapat

(joint work with Anand Deopurkar)

We demonstrate some SageMath code to calculate the action of Artin braid groups
on 2-Calabi–Yau triangulated categories arising from undirected graphs.

Let Γ be an undirected graph. Let BΓ be the (simply-laced) Artin group as-
sociated to Γ. There is a 2-Calabi–Yau triangulated category CΓ associated to Γ,
constructed from the zig-zag algebra of (the doubled quiver of) Γ. The precise
definition of CΓ may be found in, e.g. [2, 3] (for Dynkin type A) and [1] (all types).
There is a weak action of the Artin group BΓ on the category CΓ. In this action,
the generator σi of BΓ acts by the spherical twist functor in the object Pi (see
e.g. [2]).

In this talk, we demonstrate the example where Γ is the Dynkin graph of type
A4. However, the code is equipped for similar calculations for any other simple
undirected graph. The code sets up the zig-zag algebra for the given input graph
Γ. It creates the basic projective objects Pi, as well as the basic spherical twist
operations and their inverses.

We demonstrate how to compute morphisms between objects and apply spher-
ical twists and inverse spherical twists to objects, starting with the generating
objects Pi. In particular, we check that the relations of the braid group are satis-
fied by this action.

Further, we can input the data of a generic standard Bridgeland stability con-
dition (technically, the salient part of the data of a slicing of a Bridgeland stability
condition). This is input as a list of the stable objects of the standard heart, from
lowest to highest phase. Based on this input, we demonstrate how to compute
the Harder–Narasimhan filtration of a given object. We can use this calculation,
e.g., to compute examples of the mass growth of objects after applying successive
different spherical twists.

We discuss some further possible generalisations as future questions, including
some discussion of non-simply-laced type, and how to input the data of a stability
condition by listing just the simple objects of the heart rather than all the stable
objects.
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Artin groups in symplectic topology

Ailsa Keating

The purpose of this talk was to give an introduction to Artin group actions in
symplectic topology, aimed at non-experts. These actions were first studied for
braid groups in major works of Seidel and collaborators (see [6, 10]), building on
an observation of Arnol’d.

Group actions on plumbings. Given a graph G, possibly with multiple edges, we
can associate to it:

(i) An Artin group AG, with a generator si for each vertex i of G, and constants
µij equal to 2 if there are no edges between i and j; 3 if there is a single edge
between them; and ∞ if there are two or more of them.

(ii) In each dimension n, an open symplectic manifold Xn
G given by taking a

copy of T ∗Sn for each vertex i of G, say T ∗Si, and plumbing them according to
the edges of G (for n = 1 some auxiliary decorations are required).

There is a natural map from AG to π0SympcX
n
G, the symplectic mapping class

group of Xn
G, given by mapping si to the Dehn twist in the Lagrangian Si.

Fukaya categories. The action by symplectomorphisms induces a representation

AG → AuteqFukXn
G.

Here FukXn
G can denote several possible ‘flavours’ of the Fukaya category of Xn

G.
In its most basic form, it is generated by the Sis. For n ≥ 3, this particular
category is known to agree with the Ginzburg CYn category associated to the
graph (in algebraic terms: the relevant A∞ category is formal). In this case, the
action of AG precisely matches the ‘categorical’ action discussed in the talks of
Licata and Deopurkar. One advantage of the geometric viewpoint is that one
may instead consider actions of ‘larger’ Fukaya categories, for instance ones whose
objects include non-compact Lagrangians; an entry-point for algebraists is [2].

Faithfulness: known cases. As with the purely categorical framework, the group
action is conjectured to be faithful whenever the Fukaya category is formal, but
this is only known for a handful of cases: ADE and affine A [6, 1, 8, 4, 3].

Finally, a word of warning: for n = 1, faithfulness of the action fails [11, 7]; in
known cases, this can be interpreted as a failiure of formality of the A∞ category
[9, 5].
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The spine of untwisted Outer space for RAAGs

Gabriel Corrigan

In this talk, we are only concerned with right-angled Artin groups (RAAGs): Artin
groups where the constants mij may only be either 2 or ∞. Our convention is that
a RAAG is communicated by a simplicial, unlabelled graph, where two vertices
are adjacent if and only if their corresponding generators commute. Hence the
graph with n vertices and no edges encodes the free group Fn, while the complete
graph on n vertices corresponds to the free abelian group Zn; in this way, RAAGs
can be seen as a natural interpolation between free and free abelian groups.

RAAGs form a special subclass of Artin groups. Their study often involves
techniques that do not work more generally - for example, the use of CAT(0)
geometry can be particularly fruitful. Consequently, RAAGs are less mysterious
than general Artin groups - for example, the K(π, 1) conjecture is known to hold,
and RAAGs are known to be biautomatic (that is, the word problem is solvable
by finite state automata). Despite these nice properties, and the fact that RAAGs
are particularly easy to describe, they can still admit rich structure. For example,
the fundamental group of a closed hyperbolic 3-manifold always virtually embeds
in a RAAG - this was pivotal to Agol’s proof of the virtual Haken conjecture [1].

In 1986, Culler and Vogtmann [2] constructed what became known as Culler-
Vogtmann Outer space, CVn, which allowed for a geometric study of Out(Fn). In
a recent series of papers, Charney and Vogtmann, along with various collaborators
[3, 4, 5], have constructed an ‘Outer space’ for RAAGs. That is, given a RAAG
AΓ, they construct an associated contractible complex OΓ upon which Out(AΓ)
acts properly.

Untwisted Outer space. In this talk we will be most concerned with one of the inter-
mediate steps in this construction: the untwisted Outer space ΣΓ, as constructed
in [4]. Laurence and Servatius [6, 7] provide a set of generators for Out(AΓ); one
family of generators are the so-called twists. The subgroup generated by all gener-
ators of Out(AΓ) except the twists is called the untwisted subgroup, and denoted
U(AΓ). ΣΓ is a contractible complex upon which U(AΓ) acts properly. Moreover,
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it has a natural deformation retract KΓ called its spine; this is a contractible cube
complex upon which U(AΓ) acts both properly and cocompactly. Hence (see [8]),
the virtual cohomological dimension of the untwisted subgroup, vcd (U(AΓ)), is
bounded above by the dimension of the spine KΓ.

Free groups admit no twists, so in this case the untwisted Outer space is
precisely the original Culler-Vogtmann Outer space. It is easy to verify that
dim(KFn

) = 2n − 3, and also that Out(Fn) has a free abelian subgroup of rank
2n − 3; hence, vcd(Out(Fn)) = 2n − 3. However, for general RAAGs, the story
is not so easy. Millard and Vogtmann [9] provide a way of finding large-rank free
abelian subgroups of U(AΓ) - thus obtaining lower bounds on vcd (U(AΓ)). In
many cases these match dim(KΓ), but not always. They impose a condition on
the graph Γ which guarantees that if these bounds do not match, then one may
tighten the upper bound by 1. Our main theorem is an extension of this result
for certain specific families of graphs Γ. In these cases, one can tighten the upper
bound so that it matches the lower bound. In particular, in these examples, the
gap between dim(KΓ) and vcd (U(AΓ)) can be arbitrarily large.

Our strategy (an extension of that in [9]) is to find free faces in the cube complex
KΓ that we may (equivariantly) retract, to obtain a complex of smaller dimension
which still has a proper and cocompact action of U(AΓ). The challenge is to
find enough free faces so as to admit a retraction which sufficiently reduces the
dimension of this complex. This inspires the following question. Although the
spine KΓ had a very natural description, it was ‘larger than expected’; on the other
hand, the complex obtained from this retraction process is the ‘correct dimension’
- but is there a more natural intrinsic description of it? One may hope that finding
a more natural construction of this complex could lead to generalisations of this
technique, and better understanding of the virtual cohomological dimension, at
least in the untwisted case. We make one final remark that to date, there is no
analogous ‘spine’ for the full Outer space OΓ.
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Stability manifolds and finite group actions

Hannah Dell

(joint work with Edmund Heng, Antony Licata)

Given a smooth projective complex variety X , one can associate an invariant,
Stab(X), called the stability manifold. In this talk, we will see the role that this
invariant plays in algebraic geometry, and in particular how it can be used to
detect geometric properties when X admits a free action by a finite group.

1. Motivation: Geometric stability conditions

In this workshop so far we’ve seen stability conditions arising from singularities
and Artin groups. Now let’s see an example on a smooth complex projective curve.

Example 1. Let D = DbCoh(C). Then σ = (Coh(C),−deg(E) + irank(E)) is
a stability condition. Let 0 6= E ∈ Coh(C). Then we can define the slope with
respect to σ as µσ(E) = +∞ if rank(E) = 0, and µσ(E) = deg(E)/rank(E)
otherwise. Then E is σ-stable if and only if any non-zero non-trivial subsheaf
F satisfies µσ(F ) < µσ(E). The latter matches the original definition of slope-
stability for vector bundles, which was used to classify them [4]. Examples of
σ-stable sheaves are line bundles, O(n), and all skyscraper sheaves of points, Ox.

From now on, we assume X is a smooth projective complex variety. Geometric
stability conditions know about the points/ geometry of your variety:

Definition 2. Write Stab(X) = Stab(DbCoh(X)). Then σ ∈ Stab(X) is geomet-
ric if for all points x ∈ X , Ox is σ-stable.

Question 3. Do there exist non-geometric stability conditions?

The short answer is “sometimes”. We summarise what is known in the literature
in the table below, see [1, §1.4] for further details and references.

dimX Stabgeo(X) Stab(X) 6= Stabgeo(X)?
1 ∼= C×H Stab(P1) ∼= Stab(rep(• = •)) ∼= C2

2 controlled by invariants of
sheaves on X

P2, K3 surfaces, rational surfaces,
X ⊃ C rational curve s.t. C2 < 0

≥ 3 6= ∅ for some 3folds and Pn Pn

This leads us to ask what the pattern is, i.e. which geometric properties lead
to geometric and non-geometric stability conditions? The first general answer was
given by [3, Theorem 1.1]. They showed that if X has finite Albanese morphism
albX (i.e. a finite map to an abelian variety), then Stab(X) = Stabgeo(X).

Question 4 ([3, Q. 4.11]). If albX is not finite, then is Stab(X) 6= Stabgeo(X)?

In all known examples, the answer to Question 4 was positive. Our goal is to
study a different flavour of examples: free quotients, i.e. quotients Y = X/G of
varieties by the free action of a finite group. Suppose albX is finite while albY is not
- this occurs in several examples including Beauville-type and bielliptic surfaces.
To answer Question 4 for Y , we need a way to compare Stab(Y ) with Stab(X).
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2. Actions on categories

Let D be an additive, C-linear category. To a finite group G we can associate a
monoidal category Cat(G), where the objects are group elements, the morphisms
are identities, and the tensor product is given by group multiplication.

Definition 5. An action of G on D is an additive monoidal functor φ : Cat(G) →
End(D), and we write φg = φ(g) for g ∈ G. This allows us to define a new category,
DG, the G-equivariantization, whose objects are pairs (E, λ) where E ∈ D is G-
invariant and λ = {λg}g∈G is a choice of isomorphism for each g, λg : E → φg(E).

This is equivalent to the definition Tony Licata gave of a strict action in his

mini-course. When G is abelian, there is an action of Ĝ = Hom(G,C×) on DG.
Now assume D is triangulated and G acts on D such that each φg is exact. G also
acts on the stabiliy manifold via φg · (A, Z) = (φg(A), Z ◦φg). Write Stab(D)G for
the stability conditions that are fixed by this action. There is a homeomorphism

Stab(D)G ∼= Stab(DG)
Ĝ, see e.g. [1, Lemma 2.23]. Given σ ∈ Stab(D)G, we obtain

σ′ ∈ Stab(DG)
Ĝ, where (E, λ) is σ′-semistable if and only if E is σ-semistable.

Theorem 6 ([1, Theorem 3.9, Corollary 3.10]). Suppose Y = X/G is a free quo-

tient with G abelian and albX finite. Then Stab†(Y ) := Stab(DG)Ĝ ⊆ Stabgeo(Y ),

with equality if dim(Y ) = 2. Moreover, Stab†(Y ) is open and closed.

This tells us that if Y is a Beauville-type or bielliptic surface, then either Ques-
tion 4 is false, or Stab(Y ) is disconnected. Both of these cases would be surprising!

Together with Edmund and Tony, we are extending this to non-abelian groups.

The main task is to understand what to replace the Ĝ-action with. In this case,
the simple representations are no-longer one-dimensional. We can still tensor G-
equivariant objects with representations, but rep(G) is not a group. It is nonethe-
less a “nice” monoidal category called a fusion category, see [2, Definition 2.1].

Definition 7. An action of a fusion category C on D is an additive monoidal
functor φ : C → End(D).

In [2, Theorem 4.8], we show that Stab(D)G ∼= Stabrep(G)(DG)
Ĝ, the submani-

fold of stability conditions that behave well under the rep(G)-action. In the second
version of our paper, we will prove that Theorem 6 also generalises, providing fur-
ther evidence that Question 4 may be false. If this is the case, then which other
geometric properties govern non-geometric stability conditions?
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Homology of configuration spaces of surfaces modulo an odd prime

Andrea Bianchi

The talk is based on joint work with Andreas Stavrou [2]. Let g ≥ 0, and let S be
a compact, connected, oriented surface of genus g with one boundary curve. We
let Cn(S) be the unordered configuration spaces of n points in S: it is the quotient
of Fn(S) = {(p1, . . . , pn) ∈ S×n | pi 6= pj ∀i 6= j} by the natural, free action of the
symmetric group Sn. Configuration spaces play a prominent role in the study of
manifolds in general; when S = D is a disc, the space Cn(D) is a classifying space
for the Artin group of type An−1 (the standard braid group on n strands); when
S is an aspherical surface (e.g. in our assumptions on genus g and one boundary
curve), then the space Cn(S) is aspherical, and its fundamental group deserves the
name of braid group of S on n strands.

We are interested in computing the homology of Cn(S) with coefficients in a
field. It is convenient to consider the totality of configuration spaces, i.e. the
disjoint union C•(S) =

∐
n≥0 Cn(S): then C•(D) has a natural structure of E2-

algebra, and C•(S) has a natural structure of E1-module over C•(D); passing to
homology with coefficients in any ring, H∗(C•(D)) is naturally a graded commu-
tative ring, and H∗(C•(S)) is naturally a module over H∗(C•(D)) .

The homology groupsH∗(C•(D)) have been computed with different coefficients
by Arnol’d [1] (Q), Fuchs [5] (F2) and, independently, Cohen and Weinstein [7, 4]
(Fp with p odd). The ring structure is the following in the three cases:

• H∗(C•(D);Q) ∼= Q[ǫ, α], with ǫ ∈ H0(C1(D);Q), α ∈ H1(C2(D);Q);
• H∗(C•(D);F2) ∼= F2[ǫ, γ1, γ2, . . . ], with ǫ ∈ H0(C1(D);F2) and with γi ∈
H2i−1(C2i(D);F2) for i ≥ 1;

• H∗(C•(D);Fp) ∼= Fp[ǫ, α0, β0, α1, β2, . . . ], with ǫ ∈ H0(C1(D);Fp) and
with αi ∈ H2pi−1(C2pi(D);Fp) and βi ∈ H2pi+1−2(C2pi+1 (D);Fp) for i ≥ 0.

For g ≥ 1, we want now to compute H∗(C•(S);Fp) as a module over the ring
H∗(C•(D);Fp) = Fp[ǫ, α0, β0, α1, β2, . . . ]. For i ≥ 0 we introduce the following
cyclic modules over the given ring:

• Si := Fp[ǫ, α0, β0, α1, β2, . . . ]/(α0, . . . , βi−1);
• Ti := Fp[ǫ, α0, β0, α1, β2, . . . ]/(α0, . . . , αi).

For k ≥ 0 and for any field F we denote by H(k) the vector space H1(S;F) ∼= F2g,
put artificially in homological degree k, and we denote by Sym(H(k)) the free
graded commutative algebra generated by H(k); we consider Sym(H(k)) as a plain
graded vector space.

The main result stated in the talk is that H∗(C•(S);Fp) is isomorphic to a
finite direct sum of suitable shifts of modules of the form Si ⊗ Sym(H(2)) and
Ti⊗Sym(H(2)); the direct sum can be made explicit, and for instance only values
of i such that pi ≤ g can occur.

For comparison, Bödigheimer and Cohen [3] have computed H∗(C•(S);Q): also
in this case one obtains a finite direct sum of suitable shifts of modules of the form
Q[ǫ, α]⊗ Sym(H(2)) and Q[ǫ, α]/α⊗ Sym(H(2)).
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The computation ofH∗(C•(S);F2) is implicit in the work of Löffler and Milgram
[6]: H∗(C•(S);F2) is isomorphic to the free module H∗(C•(D);F2)⊗ Sym(H(1)).

Our computation over Fp is based on a cell stratification of the configuration
spaces Cn(S) which is similar in spirit to the cell stratification of Cn(D) used
by Fuchs and Weinstein for their computations; in fact this cell stratification (or
rather, the dual cell structure on the homotopy type of Cn(D)) coincides with the
Salvetti complex of the Coxeter graph of type An−1.

It would be interesting to find a good definition of configuration spaces depend-
ing on a generic manifold M and a generic Coxeter diagram, recovering Cn(M) in
the case of An−1.
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K(π, 1)-conjecture for Artin groups via combinatorial
non-positive curvature

Jingyin Huang

Given an Artin group with Dynkin diagram Λ and generating set S, the associated
Artin complex associated with an Artin group is defined as follows. For each s ∈ S,
let Aŝ be the standard parabolic subgroup generated by S\{s}. The Artin complex,
denoted by ∆Γ (or ∆S), is the simplicial complex whose vertex set corresponds
to left cosets of {Aŝ}s∈S. A collection of vertices span a simplex if the associated
cosets have nonempty common intersection. A vertex of ∆S has type ŝ = S \ {s},
if it corresponds to a coset of form gAS\{s}.

By a result of Godelle and Paris [3], proving the K(π, 1)-conjecture for all
Artin groups reduces to proving all Artin complexes are contractible, whenever
the associated Artin groups are not spherical.

We explore ways to prove the contractibility of some Artin complexes, based
on methods from combinatorial non-positive curvature. The general method has
two steps. First we find certain combinatorial conditions on how the simplices are
glued together locally, and try to show these conditions imply the contractibility
of space. This relies on ideas from earlier work of Chepoi, McCammond, Haettel,
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Hirai, Lang and Osajda [1, 2, 4, 6]. Second we verify these local conditions are
indeed true. The work is still in progress, though the first part is already on Arxiv
[5]. We manage to find a very simple local condition which holds true for certain
Artin complexes and gives contractibility of the spaces. This proves a large class
of Artin groups satisfying K(π, 1)-conjecture which are not previously known.

Let Λ be a Dynkin diagram which is a tree, with its vertex set S. LetX be the 1-
skeleton of ∆S with its vertex labeling as explained above. We say ∆S satisfies the
labeled 4-wheel condition if for any induced 4-cycle in X with consecutive vertices
being {xi}4i=1 and their labels being {ŝi}4i=1, there exists a vertex x ∈ X adjacent
to each of xi such that label ŝ of x satisfies that s is in the smallest subtree of Λ′

containing all of {si}4i=1.
We showed that whenever Λ is irreducible spherical, then ∆S satisfies the la-

beled 4-wheel condition. And use this to show the following class of Artin groups
satisfy the K(π, 1)-conjecture.

Suppose Λ is a tree Dynkin diagram. Suppose there exists a collection E of open
edges with label ≥ 6 such that for each component Λ′ of Λ \ E is spherical. Then
AΛ satisfies the K(π, 1) conjecture. Besides this, we also showed the K(π, 1)-
conjecture for new examples of Artin groups associated with reflection groups
acting on hyperbolic spaces up to dimension 7.

It is a ongoing work to use this method to understand the K(π, 1)-conjecture
for more general hyperbolic type Artin groups.
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The galaxy of Coxeter groups

Petra Schwer

(joint work with Yuri Santos Rego)

This report is based on [1], which is dedicated to the memory of Jacques Tits for his

influential work on Coxeter groups. It was him who, as an honorary Bourbaki, coined

the terms Coxeter group and Coxeter diagram.

1. What is the Coxeter galaxy?

While the isomorphism problem is undecidable in the full universe of groups, the
region containing Coxeter groups is fairly well understood and it is expected that
the problem is solvable within this class of groups. The Coxeter galaxy provides a
framework to study this and related, more refined questions. The galaxy itself is
is the flag simplicial complex G whose vertices are (graph-isomorphism classes of)
Coxeter systems of finite rank, two of which are connected if their underlying Cox-
eter groups are isomorphic as abstract groups. Solving the isomorphism problem
amounts to algorithmically being able to determine the connected components of
the galaxy. By construction G is organized in layers according to the rank of the
Coxeter systems.

Figure 1 provides first examples of Coxeter graphs defining the same underlying
(Coxeter) group. These graphs span three simplex in the galaxy with one vertex
of rank three, two of rank four and one vertex of rank five.

C0

6

10

C1

3

10

C2

5

6

C3

3

5

Figure 1. Four complete Coxeter graphs describing a same
group. The graphs C1,C2 and C3 may be obtained from C0 by
(repeated) applications of blow-ups.

2. How does the galaxy look like locally and globally?

As illustrated by the example, connected components of the galaxy typically span
over several layers. The subcomplex spanned by Coxeter systems of rank at most
k is denoted by G≤k. A solution to the isomorphism problem for (finitely gen-
erated) Coxeter groups is then equivalent to a solution to all ‘height-k restricted
isomorphism problems’, i.e., for all G≤k for every k ∈ N. We summarize our main
structural findings in the following theorem.
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Theorem 2.1 (Structure of the Coxeter galaxy G).

(1) The galaxy G is a locally finite, infinite dimensional simplicial complex
with finite connected components, all of which are simplices.

(2) Solving the isomorphism problem reduces to algorithmically computing (a
spine of) a proper subcomplex, called the vertical core.

(3) The subcomplex G≤3 is a 1-dimensional complex and equal to its vertical
core. Furthermore, the isomorphism problem is decidable for groups in this
subcomplex.

Many questions remain open: how does the dimension of the layers grow if
rank grows? Can one tell from a graph how many vertices are contained in the in
intersection of a component with a given layer?

3. How to navigate the galaxy?

Classical approaches to the isomorphism problem involve a) reducing to a specific
subclass of Coxeter groups and to b) finding explicit moves, i.e. explicit manipu-
lations, between defining graphs. These moves correspond to edges in the Coxeter
galaxy. Although many preliminary results exist, several fundamental problems
remain open:

Question 3.1 (Reachability and Coloring Problem). Does there exist a finite list
of vertical and horizontal moves such that, for any vertex in the Coxeter galaxy,
any other vertex in its connected component can be reached by applying a finite
sequence of these moves? Can such an algorithm also output which kinds of moves
are needed along a path between vertices of the galaxy?

This question (implicitly) appeared multiple times in the literature and was
answered positively in some cases. For example, Howlett and Mühlherr introduced
moves called blow-ups. Results by Mihalik, Ratcliffe, and Tschantz imply that they
suffice to vertically navigate the galaxy. The current state of the art concerning
the corresponding horizontal question revolves around Mühlherr’s twist conjecture,
which is discussed in detail in the final section of [1].

4. How does profinite rigidity come into play?

The proof of item (3) of Theorem 2.1 uses profinite techniques. Building up on
results of Bridson-Conder-reid, we deduche a complete picture of the first three
layers G≤3 of the galaxy by showing that Coxeter groups in G≤3 are profinitely
rigid within that family.

Theorem 4.1 (Profinite rigidity in rank ≤ 3).
Coxeter groups with diagrams in G≤3 are profinitely rigid within this class, that is,
two such groups are isomorphic if and only if their profinite completions agree.
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Polynomials and the Dual Braid Complex

Jon McCammond

(joint work with Michael Dougherty)

The braid groups have several well known classifying spaces. One of the earliest
and best known is the quotient of the complement of the complexified braid ar-
rangement by the free action of the symmetric group. This can also be viewed as
the space of monic centered polynomials of degree d with distinct roots. Monic
means the lead coefficient is 1 and centered means that the next coefficient is 0.
The dual braid complex is a modern classifying space constructed from the dual
Garside structure on the braid group [1, 3, 4]. It is a compact cell complex with a
piecewise Euclidean orthoscheme metric on its simplices. Since both sequences of
spaces are classifying spaces for the same sequenes of groups, they are known to
be homotopy equivalent, but until recently there has been no explicit natual map
that realizes this homotopy equivalence.

The dual braid complex is a quotient of the order complex of the posetNCPartd

of noncrossing partitions, where the quotient is defined by face identifications. Re-
call that a partition of the vertex set of a convex d-gon is noncrossing if the convex
hulls of the vertices in each block of the partition are pairwise disjoint. The partial
ordering of these partitions by refinement also encode the ways to factor a d-cycle
in the symmetric group into d− 1 transpositions [2].

In recent work with Michael Dougherty, we construct an explicit homotopy
equivalent embedding of the dual braid complex into the space Polymc

d (C0) of
monic centered polynomials of degree d with distinct roots [5, 6] and the image
of this embedding is the collection of points labeled by polynomials whose critical
values lie on the unit circle. The key idea is to use the polynomial interpretation,
as Daan Krammer suggested to the second author in 2017.

For each U ⊂ C, let Polymc
d (U) be the collection of monic centered polynomials

of degree d where all critical values lies in U . And recall that the Lyashko-Looijenga
map, or LL-map, sends a monic centered polynomial to its multiset of critical
values. Using the fact that the LL-map is a stratified covering map, we establish
homeomorphisms between spaces of such polynomials with critical values in U and
those with critical values in V , so long as there is a homotopy from U to V where
distinct points remain distinct throughout the homotopy. In particular, we prove
the following results characterizing polynomials with critical values in an interval,
a rectangle, a circle and an annulus.

Theorem 1 (Intervals). The space Polymc
d ( ) of monic centered polynomials of

degree d with critical values in a closed interval is homeomorphic to the complex
of branched planar lines called “metric banyans” and to |NCPartd|, the order
complex of the noncrossing partition lattice with the orthoscheme metric.

Theorem 2 (Rectangles). The space Polymc
d ( ) of polynomials with critical

values in a closed rectangle is a (proper) subcomplex of the direct product of
Polymc

d ( )×Polymc
d ( ) called the branched rectangle complex or the basket-

ball complex. It’s top-dimensional cells are products of two orthoschemes. It can
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be viewed as a compactification of the space of all polynomials. It is homeomoprhic
to a topoloical closed ball and it is metrically a manifold with corners.

The proof of this theorem uses a left-to-right Morse function to determine a
chain in the noncrossing partition lattice, and a top-to-bottom Morse function to
determine a second chain in a second noncrossing partition lattice. The compat-
ibility condition between the two is related to the “basketballs” introduced by
Martin, Salvitt and Singer in 2007 [7]. In addition, homotopies of subsets of C
where points are allowed to merge but not split can also be lifted to provide quo-
tients and deformations of spaces of polynomials. For example, the polynomials
with critical values in circles and annuli are obtained via face identifications on
the spaces of polynomials with critical values in intervals and rectangles.

Theorem 3 (Circles). The space Polymc
d ( ) of monic centered polynomials of

degree d with critical values in a circle is homeomorphic to the complex of branched
planar circles called “metric cacti”. It can also be viewed as a quotient by face
identifications of Polymc

d ( ). Finally, it is the cell complex derived from the
dual Garside structure of the braid group with the orthoscheme metric.

Theorem 4 (Annuli). The space Polymc
d ( ) of monic centered polynomials with

critical values in a closed annulus is homeomorphic to the branched annulus com-
plex, and it is a face identification of Polymc

d ( ). It can also be viewed as a
compactification of the space Polymc

d (C0) of monic centered polynomials with
distict roots.

Finally, the deformation retraction from C0 to the unit circle, shows that the
dual braid complex is not only contained in the space of monic centered polyno-
mials with distinct roots. It is also a spine for this space.

Theorem 5 (Deformations). The space Polymc
d (C0), the classical classifying

space for the braid groups, contains the subspace Polymc
d ( ), which is the dual

braid complex with the orthoscheme metric. Moreover, the former deformation
retracts to the latter, showing that they are homotopy equivalent.
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(2003), 647–683.

[2] P. Biane, Some properties of crossings and partitions, Discrete Mathematics 175 (1997),
41–53.

[3] T. Brady, A partial order on the symmetric group and new K(π, 1)’s for the braid groups,
Advances in Mathematics, 161 (2001), 20–40.

[4] T. Brady and J. McCammond, Braids, posets and orthoschemes, Algebraic and Geometric
Topology 10 (2010), 2277-2314.

[5] M. Dougherty and J. McCammond, Geometric combinatorics of polynomials I: The case of
a single polynomial, Journal of Algebra 607 (2022), 106–138.



Mini-Workshop: Artin Groups meet Triangulated Categories 231

[6] M. Dougherty and J. McCammond, Geometric combinatorics of polynomials II: polynomials
and cell structures, in preparation.

[7] J. Martin, D. Savitt and T. Singer, Harmonic algebraic curves and noncrossing partitions,

Discrete & Computational Geometry 37 (2007), 267–286.

Reporter: Gabriel Corrigan



232 Oberwolfach Report 4/2024

Participants

Dr. Asilata Bapat

Mathematical Sciences Institute
Australian National University
Science Road
Canberra, ACT 2601
AUSTRALIA

Dr. Andrea Bianchi

Mathematical institute
University of Copenhagen
Universitetsparken 5
2100 København
DENMARK

Dr. Rachael Jane Boyd

School of Mathematics and Statistics,
University of Glasgow
University Place
Glasgow G12 8QQ
UNITED KINGDOM

Gabriel Corrigan

School of Mathematics and Statistics
University of Glasgow
University Place
Glasgow G12 8QQ
UNITED KINGDOM

Hannah Dell

School of Mathematics
University of Edinburgh
James Clerk Maxwell Bldg.
King’s Buildings, Mayfield Road
Edinburgh EH9 3FD
UNITED KINGDOM

Dr. Anand Deopurkar

Mathematical Sciences Institute
Australian National University
GPO Box 4
Canberra ACT 2601
AUSTRALIA

Dr. Edmund Xian Chen Heng

IHES
Institut des Hautes Ètudes Scientifiques
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