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Abstract. The study of permutation patterns has recently seen several sur-
prising results, and the purpose of this mini-workshop was to bring together
researchers from across the field to focus on four hot topics related to these
recent developments. The topics covered the nature of generating functions
that enumerate permutation classes, the structure of permutation classes and
the impact this has on their growth rates, and the study of permutons, which
lies at the interface of permutation patterns and discrete probability. The
workshop offered an opportunity for knowledge exchange, but also time and
space to initiate group collaborations on open problems related to these top-
ics.
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Introduction by the Organizers

The mini-workshop Permutation Patterns, organized by Miklós Bóna (Gainesville),
Mathilde Bouvel (Vandoeuvre-lès-Nancy), Robert Brignall (Milton Keynes) and
Jay Pantone (Milwaukee) was attended by 17 participants, one of whom attended
remotely. Amongst the participants were researchers of varying levels of academic
seniority from a broad variety of geographic locations, and included several early
career researchers, and several females.

The aims of the mini-workshop were to bring together researchers with varied
interests in permutation patterns to tackle four hot topics in the study of permu-
tation classes, building on several recent and surprising results. A permutation
class is a downset of permutations under the permutation pattern order, and the
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questions of interest here include those concerning asymptotic and precise enumer-
ation, structural considerations and permutation limits. The four topics for the
workshop were as follows.

Topic 1: Negative results concerning generating functions Until recently,
relatively few techniques have been available to prove, for example, that a particu-
lar generating function cannot have a particular form, such as rational, algebraic,
or D-finite. Some methods for classifying generating functions are now coming
on-stream, and – furthermore – there are several candidate permutation classes
whose enumeration has proved elusive.

Topic 2: Structure and positive classification of generating functions
This, in a sense, is the converse approach to Topic 1, whereby one can exploit
understanding of the structure present in a given permutation class or family
of permutation classes to make conclusions about the nature of their generating
function. For example, it is known that every class with growth rate less than
κ ≈ 2.206 has a rational generating function.

Topic 3: Classification of growth rates Some permutation classes, most no-
tably Av(1324), have proved so difficult to enumerate that only rough bounds on
the growth rate are known. Meanwhile, there also exists the question of whether
a given positive real number is the growth rate of some permutation class. It
is known which real numbers below ξ ≈ 2.305 are growth rates of permutation
classes, and also that every real number ≥ λB ≈ 2.357 is the growth rate of some
permutation class, which leaves a gap of just over 0.05 to complete the classifica-
tion.

Topic 4: Permutons A more recent, but now well-established topic lies at the
interface of permutation patterns and probability theory, and addresses questions
of the form: what does a permutation in a given class typically look like?

The workshop schedule was designed to balance opportunities for knowledge
exchange (in the form of formal or informal talks) with time for collaborative work
in groups. Each day began at 9am with a (sometimes very short) plenary session,
allowing an opportunity for knowledge exchange as well as to make administrative
announcements. On Monday, three one-hour talks were given (two in the morning,
one in the evening) to introduce the four topics (one talk covered both Topics 2 and
3) and pose some open problems. After the final talk, an open problem session was
held in which participants were invited to present problems that could be worked
on during the week. The format of the open problem session was as follows: one
organizer (Jay Pantone) acted as ‘scribe’ by writing the open problem and any
relevant background material on the board, as directed by the setter of the open
problem from their chair. This ensured that each problem was presented in a clear
yet concise way, and at a pace that ensured all participants could follow what was
being presented.

Tuesday began by concluding the open problem session. All problems that were
presented during the sessions on Monday and Tuesday were written up by Justin
Troyka, and have been included in this report. Until 4pm, the day was given over
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to working on open problems. In order to ensure openness in forming groups,
participants were encouraged to write on a blackboard in the main lecture theatre
what they planned to work on, so that others could join if they wished. At the end
of the day, an expository talk on ‘twin width’ was given by Opler at 4pm, upon
the request of several participants who were interested to hear how this hot topic
might apply to the study of permutation classes.

By Wednesday morning, a counterexample to one question presented during
Bevan’s introductory talk on topic 4 had been found by Troyka, so our day began
with a brief presentation of this. The rest of the morning was devoted to time for
group collaboration, and the afternoon, of course, was given over to the walk to
Sankt Roman. Thursday was entirely devoted to group collaborative work.

On Friday morning, each collaborative group was invited to give a short pre-
sentation regarding progress that had been made during the week. The speakers
have recorded their talks in this report, but there are several highlights worth
mentioning here: Blitvić, Elvey Price and Troyka established a result relating
to Hamburger moment sequences of principal matching classes. Bousquet-Mélou,
Bouvel and Pantone found an explicit expression for the generating function of
Av(4123, 4231, 4312), a class for which 5 000 terms of the enumeration sequence
are known, and whose generating function is conjectured to be non-D-finite. Bóna,
Brignall, Defant, Opler and Vatter identified several promising avenues of research
related to classifying generating functions in subclasses of the separable permu-
tations. Finally, at the start of the week, Bouvel introduced an open problem
concerning k-shuffles which attracted a lot of interest from the workshop par-
ticipants, and Bevan, Elvey Price and Felsner established a characterisation of
permutations that are not k-shuffles of 21 (or, symmetrically, 12).

Overall, the mini-workshop offered a rare opportunity for a group of researchers
to come together and to spend time discussing mathematical problems. Many
participants expressed their gratitude for having long periods of unbroken time,
especially on Tuesday and Thursday, to devote to group collaboration. We antici-
pate several outputs will become available in due course, as a direct result of work
that was inspired by, or started during the mini-workshop.

We are grateful to Colin Defant for acting as Video Conference Assistant to
enable to remote participant to attend talks. We would, of course, like to thank
all the staff at Oberwolfach for enabling this mini-workshop to take place in such
a smooth and satisfactory way.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Negative Results

Miklós Bóna

When we want to solve a combinatorial enumeration problem and we fail, we may
want to have some form of measurement of the difficulty level of the problem. One
way to achieve that is by proving negative results on the generating function of
the counting sequence at hand, like proving that the generating function is not
rational, not algebraic, not differentiably finite or maybe not even differentially
algebraic.

Let Aq(z) be the ordinary generating function for the sequence counting per-
mutations of length n that avoid the pattern q. In this talk, we show that for most
patterns q, the power series Aq(z) is not rational. The only patterns for which
our proof does not work are, up to trivial symmetries, the patterns of length k
that start with the entry 1, end with the entry k, and are not Wilf-equivalent
with patterns that do not share those properties. It is worth pointing out that the
shortest pattern q for which we cannot prove nonrationality of Aq(z) is 1324. (For
the trivial pattern q = 12, we have Aq(z) = 1/(1− z), which is rational.)

One tool we use here is the theory of supercritical relations [5]. Let F and G
be two generating functions with nonnegative real coefficients that are analytic at
0, and let us assume that G(0) = 0. Then the relation

F (z) =
1

1−G(z)

is called supercritical if G(RG) > 1, where RG is the radius of convergence of G.
It is easy to prove that if the F and G are rational, then their relation displayed
above is supercritical. Therefore, in order to prove that a generating function is
not rational, it suffices to prove that the corresponding relation is not supercritical.
And a way to prove that is by showing that the exponential order of the number
of q-avoiding permutations of length n is the same as that of indecomposable q-
avoiding permutations of length n.

Another approach is the following. Let Aq,i(z) be the ordinary generating
function for the number of permutations of length n that avoid q and have exactly
i skew components. It can be proved that if q is as described two paragraphs
earlier, then for all n, the number of such permutations of length n with i = 1 is
at least as large as the number of those with i = 2. So the chain of inequalities

Aq,2(z0) = (Aq,1(z0))
2 ≤ Aq,1(z0)

must hold for all z0 inside the circle of convergence of Aq,1. However, that means
that at such points z0, the inequality

Aq,1(z0) < 1

must hold, implying that the dominant singularity of Aq,1(z) cannot be a pole, so
in particular, Aq,1(z0), and therefore, Aq(z), cannot be rational.
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For the remaining cases, (those in which we could not prove that Aq(z) is not
rational), we show that the dominant singularity of Aq(z) cannot be a multiple
pole. Indeed, if an denotes the number of permutations avoiding a given single
pattern q, then it is known that anam ≤ an+m. On the other hand, if the sequence
an has a rational generating function then an ≃ αn ·nd must hold, for a nonnegative
integer d. These two conditions can simultaneously hold only if d = 0, which
implies that if the dominant singularity of Aq(z) is a pole, it is a simple pole.

A power series A(z) is called algebraic if there are polynomials P0(z), · · · , Pd(z)
that are not all identically zero so that the equality

P0(z) + P1(z)A(z) + P2(z)A
2(z) + · · ·+ Pd(z)A

d(z) = 0

holds. See Section 6 of [7] for a high-level introduction to the theory of alge-
braic power series. Until recently, the only general, direct method to prove non-
algebraicity of a generating function Aq(S) was the following theorem of Jun-
gen [6]. Let m be a positive integer, let c and γ be positive constants, and let
A(z) =

∑

n≥0 anz
n be a power series with complex coefficients. If

an ≃ c
γn

nm
,

then A(z) is not an algebraic power series.
However, the following tool that was recently developed by Alin Bostan is

stronger. Let A(z) =
∑

n≥0 anz
n be a power series with nonnegative real co-

efficients that is analytic at the origin. Let us assume that constants c, C, K and
m exist so that m > 1 is an integer, and for all positive integers n, the chain of
inequalities

(1) c
Kn

nm
≤ an ≤ C

Kn

nm

holds. Then A(z) is not an algebraic power series.
We show an application of this method to prove that the class of permutations

avoiding the patterns 12354, 12453, 13452, and 23451 is not algebraic. This result
can be generalized to classes defined by longer patterns in an analogous way. We
also show that the same result holds for the class of permutations avoiding the
patterns 21354, 21453, 31452, and 32451.
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[2] M. Bóna, A. Burstein, Permutations with exactly one copy of a monotone pattern of length
k, and a generalization. Ann. Comb. 26 (2022), no.2, 393–404.
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leur cercle de convergence. Commentarii Mathematici Helvetici 3, 266–306 (1931).
[7] R. Stanley, Enumerative Combinatorics, Volume II, second edition, Cambridge University

Press, 2023.



Mini-Workshop: Permutation Patterns 281

Permutons and permutation class limit shapes

David Bevan

Permutons are the analytic limits of convergent sequences of permutations, and
provide an effective way of describing the shape of a typical large element of
a permutation class. We present the relevant theory concerning permutons be-
fore surveying what is currently known about permutation class limit shapes and
putting forward conjectures concerning some of what remains to be established.

Formally, a permuton is a probability measure µ on the unit square that has
uniform marginals:

µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b− a for every 0 6 a 6 b 6 1.

A permuton can be used to randomly sample k points. Given that the probabil-
ity of sharing a coordinate is zero, the order of the y-coordinates gives a µ-random
permutation of length k. This enables us to define the notion of the density ρ(τ, µ)
of a pattern τ of length k in a permuton µ:

ρ(τ, µ) = P
[

a µ-random permutation of length k equals τ
]

.

We also have the analogous notion of the density ρ(τ, π) of a pattern τ of length
k in a permutation π of length n being ν(τ, π)/

(

n
k

)

, where ν(τ, π) is the number
of occurrences of τ in π.

With these notions, we can define convergence for a sequence of permutations to
a limit permuton. If |πj | → ∞, then (πj)j∈N is convergent if ρ(τ, πj) converges
for every pattern τ . The permuton µ is the limit if limj→∞ ρ(τ, πj) = ρ(τ, µ) for
every pattern τ .

Our main interest is permutation class limit shapes. Given a permutation class
C, let σC

n be a random permutation of size n drawn uniformly from Cn. If µ
σ

C
n

converges to some (possibly random) permuton µC , what can we say about its
scaling limit µC? Obviously, every permutation class scaling limit is singular,
since the density of any pattern in a nonsingular permuton is positive.

Existing results include the following:

• The limit shape of Av(321) and Av(312) is the increasing permuton.
See [9].

• The limit shape of Av(12 . . . k) and Av(12 . . . ℓk(k − 1) . . . (ℓ + 1)) is the
decreasing permuton. See [8].

• The deterministic limit shape of any connected monotone grid class is well
understood. See [5] and [1].

• The random limit shape of the class of square permutations (in which
every point is a left-to-right or right-to-left minimum or maximum) is
a randomly chosen rotated rectangle, with fluctuations are described by
certain coupled Brownian motions. See [7].
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• Given a class of permutations with a finite specification whose dependency
graph is strongly connected. Then its limit shape is a deterministic X-
permuton, if the specification is essentially linear, or a random Brownian
separable permuton, if it is essentially branching. See [4, 2, 3, 6].

We make the following three, increasingly general, conjectures:

Conjecture 1 (Bevan, Dijon 2023). If every pattern in B ends in 1, then the
scaling limit of Av(B) is the increasing permuton.

Conjecture 2 (Bevan, Oberwolfach 2024). If every pattern in B ends in 1 or
begins with its largest value, then the scaling limit of Av(B) is the increasing
permuton.

Conjecture 3 (Troyka). If every pattern in B is skew decomposable, then the
scaling limit of Av(B) is the increasing permuton.

To prove any of these, it would be sufficient to establish that E
[

ρ(21,σn)
]

→ 0,

or equivalently, that E
[

inv(σn)
]

≪ n2. However, in all the cases in which we know
the scaling limit, we have a nice structural specification of the class.
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Exact and asymptotic enumeration of permutation classes

Vincent Vatter

(joint work with Albert, Atkinson, Bouvel, Brignall, Ruškuc, and Pantone)

This talk attempts to summarize some results and questions concerning the clas-
sification of generating functions of permutation classes, one of the four topics of
the mini-workshop. Here a permutation class is a downset of permutations under
the permutation pattern order (for example, π = 372694185 contains σ = 32514,
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as witnessed by its subsequence 32918, but π avoids 54321 because it has no de-
creasing subsequence of length five). I refer to my survey [9] for any terms or
concepts not defined herein.

We begin by recalling a result that shows that the rationality of the generating
function of a permutation class cannot in general imply that the class has nice
structure. Note that the proof of this result uses the Marcus–Tardos theorem [8].

Theorem 1 (Albert, Brignall, and Vatter [3, Theorem 3.2]). Every permutation
class except for the class of all permutations is contained in a class with a rational
generating function.

Instead, one may want to consider the strongly rational classes—those permuta-
tion classes for which themselves and all their subclasses have rational generating
functions. The following result characterizes the strongly rational subclasses of
the separable permutations (the smallest class of permutations that can be con-
structed via direct and skew sums of smaller permutations from the class, starting
with the permutation 1).

Theorem 2 (Albert, Atkinson, and Vatter [2, Theorem 4.1]). If a subclass of the
separable permutations does not contain Av(231) or any symmetry of this class,
then it is strongly rational.

A component in the proof of Theorem 2 was a result that the inflation of the
class X—defined as the smallest class of permutations that can be constructed via
direct and skew sums with the permutation 1—by an arbitrary strongly rational
class is also strongly rational. As the class X is geometrically griddable (in the
sense of Albert, Atkinson, Bouvel, Ruškuc, and Vatter [1]), this result was later
generalized to the following theorem.

Theorem 3 (Albert, Ruškuc, and Vatter [4, Theorem 7.6]). The inflation of a
geometrically griddable class by a strongly rational class is also strongly rational.

The nonrationality results of Bóna [5], suggest that it may be possible to ask
about a converse to Theorem 2.

Question 4. If a subclass of the separable permutations does contain all of Av(231)
or one of its symmetries, must it have a nonrational generating function?

By an elementary counting argument, such classes cannot contain infinite an-
tichains, and thus they are well-quasi-ordered (wqo). Indeed, if a permutation
class is not wqo, then it cannot even be strongly algebraic, that is, it contains sub-
classes with nonalgebraic generating functions (or strongly D-finite, or strongly
D-algebraic, and so on).

False Conjecture 1 (Vatter [9, Conjecture 12.3.4]). A permutation class is
strongly algebraic if and only if it is well-quasi-ordered.

This conjecture has been disproved in a preprint of Brignall and Vatter [6]. They
construct a family of well-quasi-ordered permutation classes that has uncountably
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many different enumeration sequences, thereby ensuring that there are well-quasi-
ordered permutation classes without algebraic generating functions (as there are
only countably many algebraic generating functions of combinatorial objects).

It is possible that one direction of False Conjecture 1 could be rescued by
strengthening the hypotheses to require labelled well-quasi-ordering; see Brignall
and Vatter [7], where the following question is stated.

Question 5. Does every labelled well-quasi-ordered permutation class have an
algebraic generating function?
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Open Problems

Justin Troyka (reporter)

1. Anders Claesson

Growth rate of Av(1324). The current bounds are

10.27 ≤ gr(Av(1324)) ≤ 13.5.

Consider Avkn(1324), the set of permutations of size n with k inversions.

Conjecture:

|Avkn(1324)| ≤ |Avkn+1(1324)|.

If true, we would have gr(Av(1324)) ≤ eπ
√

2/3 ≈ 13.002 (2012).
Another conjecture:

|Avkn(1324, 231)| ≤ |Avkn+1(1324, 231)|.
We may be able to use a bivariate generating function.
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Theorem (Claesson–Ulfarsson):

|Avkn(1324, 231, 4321)| ≤ |Avkn+1(1324, 231, 4321)|.

The domino subclass [Av(132) | Av(231)] (where we also require the whole thing
to avoid 1324) is one of the main things used in the proof of the known bounds.
Can we prove the inversion conjecture on the domino subclass?

2. Miklós Bóna

Consider patterns of size 6. Look at these three principal classes:

A = Av(132456), B = Av(124356), C = Av(123546).

All three have the same growth rate, which can be computed using Av(13245).
But A and B have different counting sequences, whereas C has the same counting
sequence as A.

The question is: how different are the counting sequences of A and B? Is their
ratio a constant? Is their ratio a polynomial? What is that polynomial?

In general, I am interested in finding principal permutation classes that are very
close to each other but not identical. How close can they be? How different can
they be?

3. Natasha Blitvic and Andrew Elvey-Price

Definition: A moment sequence is a sequence (a0, a1, . . .) such that there exists
a measure µ on R such that

an =

∫

R

xn dµ(x).

And the sequence is a Stieltjes moment sequence if the support of µ is contained
in (0,∞).

Example: n! =
∫∞
0

xne−x dx; so n! is a Stieltjes moment sequence with dµ(x) =

e−x dx.
Question: When are the counting sequences of a permutation class a moment

sequence (or Stiltjes moment sequence)?
Conjecture: It is a Stiltjes moment sequence for all principal classes.
This conjecture is supported by computational intuition from Elvey-Price and

Tony Guttmann, and it is also supported by structural intuition from Blitvic and
Steingŕımsson.

If you have a Stiltjes moment sequence, then you get surprisingly good lower
bounds on the growth rate. (This includes a better lower bound for 1324-avoiders!)

Next, define a k-arrangement to be a permutation with a k-coloring of its fixed
points. For k = 0, this is interpreted to be a derangement. Let Ak

n denote the
number of k-arrangements of size n. It is a fact that

Ak
n =

∫ ∞

k−1

xne−x+(k−1) dx.
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This has a combinatorial interpretation when k is a non-negative integer. We ask,
what is a combinatorial interpretation when k is not a positive integer?

Note that there is an alternative characterization of moment sequences, using
continued fractions:

Theorem: (an) is a Stiltjes moment sequence if and only if the generating function
∑

n≥0 ant
n is equal to

α0

1− tα1

1− tα2
1−···

for αi ≥ 0. And (an) is a moment sequence if and only if the generating function
is equal to

δ0

1− γ0t− δ1t2

1−γ1t− δ2t2

···

for γi ∈ R and δi ≥ 0.

Usually, there is a unique way to write a generating function as a continued
fraction in this way.

On the OEIS, about 5% of sequences are moment sequences, and about 2% are
Stiltjes moment sequences.

4. Justin Troyka et al.

We have Av(π) ⊆ Av(π ⊕ 1, 1⊕ π) ⊆ Av(1 ⊕ π).

Conjecture: gr(Av(π)) < gr(Av(π ⊕ 1, 1⊕ π)) < gr(Av(1⊕ π)).

We found an example where gr(Av(π)) = 4 and gr(Av(π ⊕ 1, 1⊕ π)) ≈ 4.002.
Here is what we proved:

Theorem: gr(Av(π) + 1 ≤ gr(Av(1⊕ π)).

The proof is by looking at the vertical juxtaposition of Av(π) and the class
of decreasing permutations. It can be generalized to prove that gr(Av(π) + 1 ≤
gr(Av(ρ)) if π is obtained from ρ by deleting the first entry of ρ and standardizing.

Our more general conjecture is that, if π contains ρ, and π 6= ρ, then gr(Av(π))<
gr(Av(ρ)).

5. Natasha Blitvić

What do the permutons of consecutive-pattern avoiders look like?

6. Robert Brignall

Conjecture: Every finitely based class with growth rate < 4 is rational.
Evidence:

• If C is contained in the separable permutations and C does not contain
Av(132) or its symmetries, then C is strongly rational (every subclass is
rational).
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• Every finitely based subclass of Av(123) is rational (Albert, Brignall,
Rusku’vc, Vatter).

7. Mireille Bousquet-Mélou

Does σn,C (uniformly random size-n permutation in C) converge to something for
every class C? What happens in other contexts, like graphons?

I am looking for functional equations with the property that F (t, u) satisfies a
polynomial equation in F (t, u), F (t, 0), Fu(t, 0), t, u, etc. Under natural assump-
tions, F (t, u) is algebraic.

I am also looking for series F (t, u, v) given by a polynomial in F (t, u, v), Gi(t, u)
depending only on t and u, and Hj(t) depending only on t. These are algebraic
under natural assumptions.

8. Colin Defant

A uniquely-sorted permutation is a permutation that has one pre-image under
the West stack-sorting map. We can also look at uniquely-sorted permutations
avoiding certain patterns.

What does the permuton of the set of uniquely-sorted permutations look like?
What about the permuton of the set of uniquely-sorted permutations that avoid
a given pattern?

We can do the same thing with sorted permutations, which are permutations in
the image of the West stack-sorting map.

9. Mathilde Bouvel

“Unavoidability of shuffles in permutations”
Let π be a permutation of size pk. We say π is a k-shuffle if it can be partitioned

into k subsequences such that every subsequence is an occurrence of the same
pattern (of length p).

Example: 652134 is a 2-shuffle of 312.

Conjecture: For each k, there exists a constant n0(k) such that every permuta-
tion of size n > n0(k) contains a factor (consecutive subsequence) of length ≥ 2k
that is a k-shuffle. (In all known examples, it can be done with length exactly 2k.)

Case analysis: n0(2) = 6; n0(3) = 12; n0(4) ≤ 26
We note that a permutation of size 2k is a 2-shuffle if and only if its inversion

graph has a perfect matching or its complement has a perfect matching.

10. Mireille Bousquet-Mélou

Certain permutation classes are conjectured to be not D-finite: three classes each
avoiding 2 patterns of length 4, and one class avoiding 3 patterns of length 4.
Each one has functional equations with 2 catalytic variables. These classes are
Av(1234, 1324), Av(1243, 1432), Av(1324, 1432), and Av(1243, 1324, 1432).
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Twin Width

Michal Opler

In this talk, we introduce the notion of twin-width and review recent developments
with emphasis on permutations.

The most natural way to define twin-width for permutations comes from defin-
ing twin-width of an arbitrary point set in the plane. The twin-width of permu-
tations then follows by considering for each permutation π = π1, π2, . . . , πn the
point set Pπ = {(i, πi) | i ∈ [n]} called permutation diagram.

A rectangle family R is a set of axis-parallel rectangles. A merge sequence of a
point set P ⊂ R2 of size n is a sequence R1,R2, . . . ,Rn of rectangle families where
R1 = P is the original point set, Rn contains a single rectangle, and each Ri+1 is
obtained by replacing two rectangles of Ri by their bounding box. Figure 1 shows
an example merge sequence.

Figure 1. A 3-wide merge sequence of 23514. Black points are
also degenerate rectangles.

Two rectangles S and T are called homogeneous if their projections onto both
x- and y-axis are disjoint. Given a rectangle family Ri, we consider an auxiliary
graph Ri, called red graph, where the rectangles of Ri are vertices, and there is
a (red) edge between every pair of distinct non-homogeneous rectangles S, T . Let
d be a positive integer. We say that a merge sequence R1, . . . ,Rn is d-wide if
the maximum degree over all red graphs associated to this sequence is strictly less
than d. The twin-width tww(P ) of a point set P is then the minimum integer d
such that there exists a d-wide merge sequence of P . For a permutation π, we let
tww(π) = tww(Pπ).

Observation 1.

• The singleton permutation has twin-width 1.
• If π contains ρ, then tww(ρ) ≤ tww(π).
• tww(π ⊕ ρ) = tww(π ⊖ ρ) = max(tww(π), tww(ρ)). In particular, the
separable permutations are precisely the permutations of twin-width 1.

• More generally, if σ is the inflation of π by ρ1, ρ2, . . . , ρk, then

tww(σ) = max(tww(π), tww(ρ1), tww(ρ2), . . . , tww(ρk)).

In particular, any permutation class with finitely many simple permuta-
tions has bounded twin-width.
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It turns out that there is a tight connection between pattern-avoidance and
bounded twin-width. This correspondence arises as a consequence of the celebrated
Marcus-Tardos theorem. Given a permutation π, let exπ(n) be the maximum
number of ones in an n × n 0-1 matrix that avoids π. Marcus and Tardos [5]
proved that exπ(n) ∈ O(n) for each fixed π (the Füredi-Hajnal conjecture [3]).
The Füredi-Hajnal limit cπ of π is the constant hidden in the O-notation, i.e.
cπ = limn→∞

1
n exπ(n).

Theorem 1 (Guillemot and Marx [4]). Every π-avoiding permutation has twin-
width at most 8cπ. A corresponding merge sequence can be found in time O(n).

The original application of this result was a win-win type algorithm for the
Permutation Pattern Matching (PPM) problem, i.e., deciding for two given per-
mutations π and τ , whether τ contains π.

Theorem 2 (Guillemot and Marx [4]). There is an algorithm solving PPM in

time O(2O(k2) · n) where n is the size of τ and k is the size of π.

Later, twin-width was generalized to graphs and even arbitrary binary relational
structures by Bonnet, Kim, Thomassé and Watrigant [2] and ever since, it became
the focus of very active development. On the other hand, there have been far less
results exploring the structure of pattern-avoiding permutations through the lens
of twin-width. As one of the few exceptions, it has been recently showed that
pattern-avoiding permutations can be expressed as a composition of constantly
many separable permutations (permutations of twin-width 1).

Theorem 3 (Bonnet, Bourneuf, Geniet and Thomassé [1]). Every π-avoiding
permutation can be expressed as a composition of 2O(cπ) separable permutations.
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An example of the permuton of the intersection of two classes

Justin M. Troyka

In a conversation ensuing from David Bevan’s presentation, the question arose of
whether it is possible for two classes C and D to have the same limiting permuton
as each other but for the intersection C ∩D to have a different limiting permuton.
In this talk (and in this abstract), I present an example showing that it is possible.
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We define C = Av(321) ∪ Av(1243) and C = Av(321) ∪ Av(3214). Each of C
and D is a finitely based class whose basis permutations have size at most 7. The
growth rate of Av(321) is 4, and the growth rate of Av(1243) is 9 [3, 1], so almost
all elements of C are in Av(1243). Therefore, the limiting permuton of C is equal
to the limiting permuton of Av(1243), which is the anti-diagonal permuton (the
permuton with support y = 1− x in the unit square). Similarly, since the growth
rate of Av(3214) is 9 [3, 1], the same argument shows that the limiting permuton
of C is the anti-diagonal permuton.

However, C∩D = Av(321)∪Av(1243, 3214). The growth rate of Av(1243, 3214)
is only ≈ 3.87 [2], so almost all elements of C ∩ D are in Av(321). Therefore, the
limiting permuton of C ∩D is equal to the limiting permuton of Av(321), which is
the diagonal permuton (the permuton with support y = x in the unit square).
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Enumeration in subclasses of the separable permutations, and
related questions

Robert Brignall

(joint work with Miklós Bóna, Colin Defant, Michal Opler and Vincent Vatter)

This talk reports on discussions and findings made by various combinations of
M. Bóna (University of Florida), R. Brignall (Open University), C. Defant (Har-
vard University), M. Opler (Czech Technical University) and V. Vatter (University
of Florida) during the “Permutation Patterns” mini-workshop, held at Mathema-
tisches Forschungsinstitut Oberwolfach from 28 January 2024 – 2 February 2024.

The separable permutations are the well-known class of permutations that avoid
2413 and 3142, or that can alternatively be characterised as being the class of
permutations that can be constructed via direct and skew sums of smaller permu-
tations from the class, starting with the permutation 1. The class is enumerated
by the Schröder numbers (sequence A006318 in the OEIS), and thus they have the
following generating function.

f(z) =
1− z −

√
1− 6z + z2

2z
.

During his introductory talk earlier in the week, Vince Vatter asked the follow-
ing question:

Question 1. If a subclass of the separable permutations has a rational gener-
ating function, must it be the case that it cannot contain all of Av(231) and its
symmetries?
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The converse to this question is known to be true, namely:

Theorem 2 (Albert, Atkinson and Vatter [2]). Every subclass of the separable
permutations that does not contain all of Av(231) or a symmetry of this class has
a rational generating function.

Our explorations into Question 1 resulted in identifying four distinct avenues
for future research, alongside some related results. We briefly summarise each of
these avenues in the following four sections.

1. Tackling Question 1 directly

Our work in exploring this question primarily circulated around studying the
methodology used to prove the converse Theorem 2, and investigating what el-
ements of it could be applied to any subclass of the separable permutations. That
is, what happens to the argument if we drop the requirement that the class can’t
contain all of the 231-avoiders or a symmetry of this class? Our working hypoth-
esis became the following. The notation X [U ] denotes the permutation class in
which points of permutations from the class X are replaced by sequences of points
that are order isomorphic to an element from U .
Conjecture 3. Let C be a subclass of the separable permutations. Then either C
is sum or skew closed (or the finite union of such classes), or C ⊆ X [U ] where
X = Av(2413, 3142, 2143, 3412) and U is a proper subclass of C.

The reason this would help us is due to the following result, which is a slight
reinterpretation of Theorem 5.1 of Bóna [3].

Theorem 4. If C is a permutation class such that C ⊕ C and 1 ⊖ C are both
contained in C itself, then C does not have a rational generating function.

In particular, note that Av(231) is the smallest class that satisfies the hypotheses
of Theorem 4, which strongly suggests that the above machinery could be sufficient
to characterise nonrationality amongst subclasses of the separable permutations.

The proof of Conjecture 3 remains incomplete, but we have established that
many of the steps needed can use similar methods to those from [2].

2. The form of generating functions for subclasses of
the separables

During our investigations, it was noted that when a proper subclass of the separa-
bles contains all of Av(231) (or a symmetry of this), then its generating function
belongs to Q(z,

√
1− 4z). That is, the generating function is ‘rational’ in z and

the radical
√
1− 4z, which features in the generating function for the Catalan

numbers.
It was asked whether this was always the case. That is, is it the case that

every proper subclass of the separables has a generating function that belongs to
Q(z,

√
1− 4z)?

Shortly before presenting the talk, it was observed that this turns out to be
false, slightly embarrasingly as a result of an enumeration first carried out in a
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paper authored by three participants of this mini-workshop [5]. Specifically, the
class Av(2143, 2413, 3142) has an enumeration sequence given by OEIS sequence
A033321, and generating function

f(z) =
2

1 + z +
√
1− 6z + 5z2

.

A possible explanation for the form of this generating function is that this class C is
the smallest for which C⊕C and 1⊖C⊖1 are contained in C itself, thereby indicating
a new type of recursive structure that introduces a slightly different combinatorial
specification. With this counterexample in mind, we pose the following question.

Question 5. Is it the case that every proper subclass of the separable permutations
has a generating function that belongs to Q(z,

√
1− 4z,

√
1− 6z + 5z2)?

3. Extending the theory to bigger classes

We investigated whether the methodology used to prove Theorem 2 could be ex-
tended to larger classes, providing the simple permutations in the class are suf-
ficiently well-behaved. A good candidate for exploration here are classes whose
simple permutations are “geometrically griddable” (see [1]), since this still gives
us some control of the structure, enumeration and well-quasi-ordering.

It was observed that in order to generalise the case where one can express a
subclass of the separable permutations as an inflation of the X class by a proper
subclass, C ⊆ X [U ], the class X = Av(2413, 3142, 2143, 3412) would likely need to
be replaced by a suitable class that can capture the structure of the simple permu-
tations in C. This may have consequences in other parts of a possible argument,
but it was felt that these complexities could be overcome with further in-depth
work.

4. Linear clique-width in hereditary graph classes

The final topic goes beyond permutation patterns entirely. An earlier paper by
Brignall, Korpelainen and Vatter [4] applied similar arguments to those in [2] to
show that amongst subclasses of cographs (which can be thought of as the graph-
theoretic equivalent of the separable permutations), the ones that have bounded
linear clique-width are precisely those that do not contain every quasi-threshold
graph or the complement of this class. In other words, boundedness of “linear
clique-width” in a hereditary graph class often requires similar structural prop-
erties to those that guarantee a rational generating function for a permutation
class.

While we did not explore this topic in any detail, it seemed worth recording that
this topic is closely connected to that of subclasses of the separable permutations,
and thus it might be possible to extend the results of [4] to hereditary classes that
are more general than cographs.
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The inversion conjecture for Av(1324)

Christian Bean

(joint work with Anders Claesson)

An inversion is a pair of indices (i, j) such that i < j and π(i) > π(j) for a permu-
tation π. Claesson, Jeĺınek, and Steingŕımsson [1] conjectured that for Av(1324)
if we fix k, then the number of permutations in Av(1324) with exactly k inversions
grows monotonically with the size of the permutation.

If true, Claesson, Jeĺınek, and Steingŕımsson [1] showed that it will improve the
upper bound on the growth rate of the number of permutations in Av(1324). In
particular, it would imply

gr(Av(1324)) ≤ eπ
√

2
3 ≈ 13.002.

For permutation classes that avoid only patterns of the form π ⊖ 1 or only 1⊖ π,
the inversion conjecture trivially holds, as can be seen by either prepending a 1 or
appending a new maximum to the permutation.

In this talk, we discuss progress on the subclass Av(231, 1324), where the same
monotonicity property appears to hold. Our approach was to find a two-variable
generating function F (x, t) that tracks both the size of the permutation and the
number of inversions of the permutation. We found functional equations for this
bivariate generating function, which verified the conjecture to be true for n ≤ 70.

We then turned our attention to finding a q-exponential generating function

A(x, q) =
∑

π∈Av(231,1324)

x|π|qinv(π)

[n]q!

where [n]q! is the q-analog of the factorial. This generating function has the nice
benefit that when taking products, it can neatly keep track of the number of
inversions. We first found a functional equation for the subclass Av(132, 231)

B(x, q) = 1 +

∫ x

0

B(tq, q)B(t, q)dqt
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where here we have the Jackson integral. This relies on the fact that these permu-
tations are of the form σ1τ where σ is a decreasing sequence and τ is an increasing
sequence.

From the functional equation we can find a formula for the polynomial that
records the distribution of inversions for the permutations of size n

bn =

n−1
∑

n=0

[

n− 1
k

]

q

q(
k

2)+k.

For Av(231, 1324), we get the functional equation

A(x, q) = 1 +

∫ x

0

A(tq, q)dqt+

∫ x

0

A(t, q)B(q(x − t), q)dqt.

This functional equation relies on the structure of the permutations in the class.
We need to consider if a permutation begins with its maximum element n or not.
If it is the form nσ then σ can be any permutation in Av(231, 1324), and if it is
of the form σnτ then σ can be any permutation in Av(132, 231), τ can be any
permutation in Av(213, 231) and all of the values to the left of n are lower than
the values to the right of n. Both of these subclasses are counted by B(x, q).

Although we were not able to solve the equations explicitly, we were able to use
them to verify that the conjecture holds for Av(231, 1324) for n ≤ 240. This could
easily be pushed further given more computation time.
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Moment sequences for pattern avoiding matchings

Natasha Blitvić, Andrew Elvey Price

(joint work with Justin Troyka)

A sequence a = (an)n≥0 of real numbers is called a (Hamburger) moment sequence
if there is some positive Borel measure ρ on R such that each term an can be
expressed as the integral

(1) an =

∫

R

xndρ(x) for all n ∈ N0,

and more specifically a Stieltjes moment sequence if the support of ρ is included
in the positive real line. The existence of a positive ρ satisfying (1) is equivalent
to the sequence (an)n≥0 being positive-definite [11].

In recent years there has been significant interest in combinatorial moment
sequences, and in particular it is now believed that the counting sequence Avn(π)
of permutations avoiding any single pattern π is a Stieltjes moment sequence [1,
2, 6, 8, 9]. During the week of the Oberwolfach conference, we worked on the
question of whether the same property holds for matchings.



Mini-Workshop: Permutation Patterns 295

A matching (aka perfect matching, pairing, or pair-partition) of a set [n] is a
partition of [n] into pairs. Clearly, there are no matchings on [n] when n is odd,
whereas there are exactly (n−1)!! := (n−1)(n−3) · · ·3 ·1 of these when n is even.
In other words, matchings enumerate moments of the standard Gaussian random
variable, i.e.

∫

R

x2n−1 e
−x2/2

√
2π

dx = 0 and

∫

R

x2n e
−x2/2

√
2π

dx = (2n− 1)!! for all n ∈ N.

Surprisingly, some of the basic combinatorial statistics on matchings can be
seen to correspond to moments of Gaussian-type random variables by moving
to the setting of noncommutative probability. In particular, the passage from
classical probability to free probability of Voiculescu [12] (roughly speaking, the
theory of ‘generic’ infinite-dimensional random matrices) is reflected in the passage
from matchings to non-crossing matchings, enumerated by the Catalan numbers
Cn = 1

n+1

(

2n
n

)

. Concretely, in free probability, the role of the Gaussian distribution

is played by the semicircle law
√
4−x2

2π dx with moments

∫

[−2,2]

x2n−1

√
4− x2

2π
dx = 0 and

∫

[−2,2]

x2n

√
4− x2

2π
dx = C2n.

We can further refine this result by moving to more general noncommutative prob-
abilistic frameworks. For instance, keeping track of the number of crossings in a
matching (i.e. pairs (i1, j1) and (i2, j2) s.t. i1 < i2 < j1 < j2), we obtain

∫

R

x2ndρq =
∑

π matching on [n]

q#crossings(π),

where ρq is the q-Gaussian law [4], parametrized by −1 ≤ q ≤ 1. Furthermore,
considering also nestings in matchings (i.e. pairs (i1, j1) and (i2, j2) s.t. i1 < i2 <
j2 < j1), we instead obtain

∫

R

x2ndρq,t =
∑

π matching on [n]

q#crossings(π)t#nestings(π),

where ρq,t is a two-parameter family of noncommutative Gaussian laws defined for
|q| ≤ t [3].

Note that while the semicircle law, ρq, and ρq,t are probability measures on the
real line, they can be interpreted as “noncommutative analogues” of the classical
Gaussian distribution, and naturally arise from certain algebraically-flavored con-
structions [12, 4, 3]. We are therefore interested in studying pattern avoidance in
matchings, as a potentially more natural setting in which to consider the question
of when the avoidance of a specific sub-diagram (aka pattern) preserves positivity.
For example, as per the discussion of the preceding paragraph, the avoidance of
crossings in matchings is well-understood, preserving not only positivity but also
the “Gaussianity” of the law. What can can be deduced for more general patterns
in matchings?



296 Oberwolfach Report 6/2024

1. Statement of the problem

Definition 1. We say that a matching π contains a matching τ (as a pattern)
if some subset of the pairs of π has elements in the same relative order as the
elements of τ .

For example the matching {(1, 3), (2, 6), (4, 5)} contains {(1, 3), (2, 4)} as a pat-
tern as the elements from the pairs {(1, 3), (2, 6)} lie in the same relative order as
those in {(1, 3), (2, 4)}. If π does not contain τ we say that π avoids τ , and we
denote by Mn(τ) the number of matchings of [n] avoiding τ . The determination of
the values Mn(τ) has been considered by several different authors, see for example
[5, 7, 10]. We consider the following question:

Question 1. For which matchings τ is the sequence (Mn(τ))n≥0 a Hamburger
moment sequence?

Since Mn(τ) = 0 for n odd, we could equivalently ask when the sequence
(M2n(τ))n≥0 is a Stieltjes moment sequence. The evidence that we have gath-
ered suggests that the answer may be that (Mn(τ))n≥0 is a Hamburger moment
sequence for any matching τ .

2. Exact enumeration for principal matching classes

Below we list several cases where the sequence (Mn(τ))n≥0 or its generating func-
tion is known exactly (see [5]). In each case we give an integral representation
showing that (Mn(τ))n≥0 is a Hamburger moment sequence, or equivalently that
(M2n(τ))n≥0 is a Stieltjes moment sequence.

M2n({(1, 3), (2, 4)}) = Cn =

∫
2

−2

x
2n

√
4− x2

2π
dx,

M2n({(1, 4), (2, 3)}) = Cn =

∫ 2

−2

x
2n

√
4− x2

2π
dx,

M2n({(1, 2), (3, 4)}) = n! =

∫ ∞

−∞

x
2n|x|e−x2

dx,

M2n({(1, 4), (2, 6), (3, 5)}) = [tn]
54t

1 + 36t − (1− 12t)3/2
=

∫ √
12

−
√

12

x
2n (12− x2)3/2

2π(x2 + 4)2
dx,

M2n({(1, 5), (2, 4), (3, 6)}) = [tn]
54t

1 + 36t − (1− 12t)3/2
=

∫ √
12

−
√

12

x
2n (12− x2)3/2

2π(x2 + 4)2
dx,

M2n({(1, 4), (2, 5), (3, 6)}) = Cn+2Cn − C
2
n+1 =

∫ ∞

−∞

x
2n
J(x)dx,

M2n({(1, 5), (2, 6), (3, 4)}) = Cn+2Cn − C
2
n+1 =

∫ ∞

−∞

x
2n
J(x)dx,

M2n({(1, 6), (2, 5), (3, 4)}) = Cn+2Cn − C
2
n+1 =

∫ ∞

−∞

x
2n
J(x)dx,

where

J(x) =

∫ 2

|x|/2

(z4 − x2)2
√

(4− z2)(4z2 − x2)

4π2z4
dz.
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3. Avoiding direct sum patterns

If π is a matching of [n] and τ is a matching of [m], denote by π⊕ τ the matching
of [n+m] given by π ∪ (τ +n), where (τ + n) denotes the matching of {n+1, n+
2, . . . , n+m} given by increasing each value in τ by n. for example, {(1, 4), (2, 3)}⊕
{(1, 3), (2, 4)} = {(1, 4), (2, 3), (5, 7), (6, 8)}. We derive the following formula for
enumerating Mn((1, 2)⊕ π) in terms of Mn(π):

M2n((1, 2)⊕ π) =

n−1
∑

k=0

M2k(π)
(n+ k − 1)!

(2k)!
(n− k),

moreover, using this equation we have deduced the following theorem:

Theorem 2. If (Mn(π))n≥0 is a Hamburger moment sequence then (Mn((1, 2)⊕
π))n≥0 is also Hamburger moment sequence.

It follows that (Mn(τ))n≥0 is a Hamburger moment sequence for both τ =
{(1, 2), (3, 4), (5, 6)} and τ = {(1, 2), (3, 5), (4, 6)}. Moreover,

Mn({(1, 2), (3, 5), (4, 6)}) = Mn({(1, 2), (3, 6), (4, 5)})
= Mn({(1, 3), (2, 4), (5, 6)}) = Mn({(1, 4), (2, 3), (5, 6)}).

We also deduced the following, more general formula, however we have not yet
been able to use it to show that other sequences are moment sequences:

M2n(π ⊕ τ) =

n−1
∑

ℓ=0

max(n−ℓ,n−1)
∑

k=0

M2k(π)M2ℓ(σ)
(n + ℓ− k − 1)!(n+ k − ℓ− 1)!

(2k)!(2ℓ)!(n− k − ℓ)!
((n−k−ℓ)2−4kℓ).

We note that an equivalent formula was found in [7], albeit in a slightly more
complicated form.

4. Remaining patterns of size 3

There are five matchings τ of [6] for which we have no exact formula, so we
have not yet been able to prove that (Mn(τ))n≥0 is a Hamburger moment se-
quence. Namely, the remaining cases are {(1, 3), (2, 5), (4, 6)}, {(1, 6), (2, 3), (4, 5)},
{(1, 6), (2, 4), (3, 5)}, {(1, 3), (2, 6), (4, 5)} and {(1, 5), (2, 3), (4, 6)}, the last two of
which are equivalent. In all but the first case our numerical analysis of the known
exact terms strongly suggest that the sequence is a moment sequence, while for
the case {(1, 3), (2, 5), (4, 6)}, no significant computation seems to have been done.
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Permuton Limits of Permutation Classes and Rare Regions

Justin M. Troyka

(joint work with David Bevan)

Bevan has conjectured the following:

Conjecture. The permuton limit of Av(α⊖ 1) is the diagonal permuton, for any
non-empty permutation α.

In trying to prove this conjecture, we have revisited work by Atapour and
Madras [1] and Madras and Yıldırım [2] on exponentially rare regions of permuta-
tion classes. For a pattern τ ∈ Sk, they define a point (x, y) ∈ [0, 1]2 to be τ-rare
if, for every sequence (in, jn) ∈ [n]2 such that (in/n, jn/n) → (x, y), there exists
r ∈ (0, 1) such that

Pτ
n[π(in) = jn] = o(rn)

as n → ∞, where π is chosen from the uniform distribution on Avn(τ) and where
Pτ
n denotes the probability measure of this distribution. In words, (x, y) is τ -

rare if every sequence of points converging to (x, y) has exponentially decaying
probabilities of being a point in a τ -avoiding permutation. Then the τ -rare region
R is defined to be the set of τ -rare points.

There are some interesting results about τ -rare points, some of which we would
potentially like to adapt for proving Bevan’s conjecture:

Theorem [1, Thm. 8.1], [2, Thm. 1]. If τ = α ⊖ 1 for some non-empty α, then
the corner point (1, 0) has an open neighborhood contained in R.

Theorem [2, Thm. 17]. Suppose τ = α ⊖ 1 for some non-empty α. If (x, y) ∈
[0, 1] \ R, then the convex hull of {(x, y), (0, 0), (0, 1)} is contained in [0, 1] \ R.
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If we could adapt the proof of this last theorem to show that the convex hull
of {(x, y), (0, 0), (0, 1)} is in the support of the permuton limit, then this would
prove Bevan’s conjecture, since the support cannot have positive measure if the
permuton is the limit of a proper permutation class.

Both of those theorems involve exponentially rare regions, but we have found
that proving results about permutons can be done with a significantly weaker
condition than being exponentially rare. We have proved the following theorem,
which replaces o(rn) with o(1/n):

Theorem. Let U be an open set in [0, 1]2. If there exists a function f(n) = o(n)
such that Pτ

n[π(i) = j] ≤ f(n) whenever (i/n, j/n) ∈ U , then U is contained in
the complement of the support of the permuton limit of Av(τ).

This theorem is proved using weak convergence of probability measures. That
is, if µτ is the permuton limit of Av(τ), and if µτ

n is the measure on [0, 1] associated
to a uniformly random permutation in Avn(τ), then µτ

n weakly converges to µτ ,
meaning that limn→∞ µτ

n(A) = µτ (A) for every measurable set A. Thus, to prove
the conclusion of the theorem, we prove that limn→∞ µτ

n(U) = 0.
We hope that this condition with o(1/n) is the “right” condition for studying

permutons and proving Bevan’s conjecture. The condition is consistent with what
we know about the uniformly random permutation (chosen from the set of all
size-n permutations), since in that case the probability of π(i) = j is exactly 1/n
(rather than o(1/n)) for all i and j.
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Solution to a functional equation for Av(1243, 1324, 1432)

Jay Pantone

(joint work with Mireille Bousquet-Mélou, Mathilde Bouvel)

1. Background on C-Machines

The paper Generating Permutations with Restricted Containers by Albert, Hom-
berger, Pantone, Shar, and Vatter [1] defines a sorting (really, generating) machine
that generalizes a stack. For any permutation class C, the C-machine is a box into
which we place the entries 1, 2, 3, . . ., in order, in any arrangement such that the
entries currently in the machine form a permutation in the class C. This is
called a push operation. The pop operation removes the leftmost entry from the
machine and records it as the next entry of the output permutation. Finally, the
bypass operation takes the smallest entry that has not been pushed into the ma-
chine, and records it directly in the output, bypassing the machine entirely. Note
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that there may be places where a new entry cannot be inserted because it would
create a forbidden pattern, but after popping some of the entries on the left side
of the machine, those insertion locations are now allowed.

Theorem 1. Suppose C = Av(β1, . . . , βk). The set of permutations that the C-
machine can generate is precisely the class D = Av(1⊖ β1, . . . , 1⊖ βk).

For example, the Av(231, 1234)-machine generates the class Av(4231, 51234).
This theorem is most useful in reverse: If D is a permutation class of the form
Av(1⊖β1, . . . , 1⊖βk), then we can use the structure of the class C = Av(β1, . . . , βk)
to describe the structure of D. This is done by, in essence, creating a set of
succession rules where the labels are permutations of C.

For most permutations π ∈ D there are many different push/pop/bypass oper-
ation sequences on the C-machine that generate π, but a simple restriction ensures
that each permutation in D is generated exactly once: after each push, popping
is forbidden until a bypass has occurred. Phrased differently, pushing “locks” the
pop operation, while bypassing “unlocks” it.

Sometimes C is simple enough that it gives a structural description of D that is
actually useful. The following are proved in [1].

• If C is finite, then D has a rational generating function.
• If the enumeration of C is bounded by a constant, then D has an algebraic
generating function.

• If the enumeration of C is bounded by a polynomial, then there is a
polynomial-time counting algorithm for the enumeration of D.

When none of these hypotheses hold for C, it may still be possible to use the C-
machine to learn something about D. For instance, the class C =Av(231, 321) has
2n−1 permutations of length n, but [1] observes that a polynomial-time algorithm
(and a set of functional equations) can still be derived for D =Av(4231, 4321).

2. The class Av(1243, 1324, 1432)

The class Av(1243, 1324, 1432) is symmetrically equivalent to the class Av(4123,
4231, 4312). By Theorem 1, this class is generated by the Av(123, 231, 312)-
machine. The class Av(123, 231, 312) consists of permutations of the form α ⊕ β
where α and β are strictly decreasing. The highly-structured nature of this class
makes it possible to write down the following system of functional equations for
Av(4123, 4231, 4312):

A(u, t) = 1 + uA(u, t) + t
A(u, t)−A(0, t)

u
+ tB(0, u, t),

B(u, v, t) =
vt

(1− v)(1 − t)
B(u, v, t) +

t

1− t

B(u, v, t)−B(0, v, t)

u

+
vt

(1− v)(1 − t)

A(u, t)−A(0, t)

u
.
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The generating function for Av(4123, 4231, 4312) is then A(0, t). In [1], the
authors use the same structure to compute the first 5000 terms in the counting
sequence of this class, and conjecture that the generating function A(0, t) is non-
D-finite, and perhaps even non-D-algebraic. It is this conjecture that we worked
on during the week of our mini-workshop.

3. An Explicit Solution

The starting point in our search for an explicit expression for A(0, t) is an ap-
plication of the kernel method to the equation for B(u, v, t), which produces the
following single equation:

(1) (1− u)A(u, t) = 1 +
t

u
(A(u, t)−A(0, t)) +

tu

1− u
(A(R(u, t), t)−A(0, t))

where

R(u, t) =
t

1− t

1− u

.

Standard iteration techniques suggest that one should replace u by R(u, t)
in Equation (1), obtaining an equation for A(R(u, t), t) in terms of A(0, t) and
A(R(2)(u, t), t), and then substitute this back into Equation (1) to obtain an equa-
tion for A(u, t) in terms of A(0, t) and A(R(2)(u, t), t). It is sometimes possible to
repeat this process infinitely and, in the limit, obtain an equation to which the
kernel method can then be applied (see, e.g., [2]). Unfortunately, we discovered
that in this case, the iterated functions R(k)(u, t) converge to the (shifted) Catalan
generating function, which is also a root of the kernel of (1), namely 1− u− t/u,
that would need to be canceled in order to apply the kernel method.

At this juncture, we spent an afternoon creating a simpler functional equation
that encounters the same difficulties and proceeded to review some techniques used
successfully in earlier works to circumvent the issue. After some trial-and-error,
we discovered that a clever change in variables would allow us to “decouple” the
main variable t from its simultaneous usage in the iterated R(u, t). We introduced
a new variable s, and replaced R(u, t) in (1) by R(u, s). We further made the
changes of variables

t → q

(1 + q)2
and s → x

(1 + x)2
.

In particular, the fixed point of R(u, s) is now x/(1 + x). These alterations then
permitted us to successfully carry out the “iterate and apply the kernel method”
procedure to produce an explicit expression for A(0, t). Recall the q-Pochhammer
notation

(r; q)k =

k−1
∏

i=0

(1− rqi).
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Define a =
q − x

1− qx
and let

N(x, q) =
x

q

∑

k≥0

(

xq2(1 + q)

(q − x)(1 − qx)

)

k (

1 − aq

1 − aq2k−1

)(

(aq; q)2k

(q2; q2)k(a2q2; q2)k

)

.

Further define

D(x, q) = 1 − x

(1 + x)2
N(x, q) +

x2

(1 + x)2
· (1 + q)2

q2
·

∑

k≥1

(

xq2(1 + q)

(q − x)(1 − qx)

)

k
(

(1 − aq)(1 − aq2k)2

(1 − aq2k−1)2(1 − aq2k+1)

)

(

(aq; q)2k

(q2; q2)k(a2q2; q2)k

)

.

Then, an explicit univariate expression for A(0, t) is, after accounting for the sev-
eral changes in variable,

[

N(x, q)

D(x, q)

]

q=x

.

Carrying out this computation and then verifying its correctness took the re-
mainder of the mini-workshop. The next step of the project is to determine
whether one can use this explicit expression to prove non-D-finiteness, either by
using it to demonstrate that the generating function possesses infinitely many
singularities (as empirical evidence strongly suggests), or by other means.
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A probabilistic interpretation points to new combinatorial results for
k-arrangements

Natasha Blitvić and Miklós Bóna

Let A(n, k) be the number of permutations of length n whose fixed points are
colored using k colors. Such a structure is called a k-arrangement, introduced by
Blitvić and Steingŕımsson [1] as an interpolation between permutations (k = 1),
derangements (k = 0), and Comtet’s arrangements (k = 2) [2]. (For k = 2, these
are also Postnikov’s decorated permutations [3].) Several combinatorial properties
shared by the special cases k = 0, 1, 2 generalize naturally to the k-arrangements.
For example, it is known [1] that

A(n, k) = nA(n− 1, k) + (k − 1)n,

and that for fixed k,

(1)
∑

n≥0

A(n, k)
xn

n!
=

exp((k − 1)x)

1− x
.

Furthermore, the notion of pattern avoidance in permutations has a natural
generalization to k-arrangements. (See [1] for the definition of classical pattern



Mini-Workshop: Permutation Patterns 303

avoidance in this setting.) Let Avπ(n, k) denote the number of k-arrangements
avoiding the classical permutation pattern π. For any classical pattern π of size 3,
we have

Avπ(n, 1) =
1

n+ 1

(

2n

n

)

= Cn

which follows by the classical result of [4] as k = 1 recovers all permutations.
For k = 2 (decorated permutations), it can be shown [1] that

Avπ(n, 2) = C(n+ 1),

while for k = 3 it was conjectured by [1] and subsequently proven in [5] that

Avπ(n, 3) = C(n+ 2)− 2n.

Overall, the k-arrangements appear to provide a combinatorially rich general
setting for several types of enumerative questions.

Intriguingly, the k-arrangements are also closely connected to a fundamental
object in probability theory. Specifically, (1) can be seen to be equivalent to

(2) A(n, k) =

∫ ∞

k−1

xne−x+(k−1) dx.

In other words, the number of k-arrangements on [n] equals the nth moment of
a rate-one exponential random variable shifted to the right by k− 1 units. Letting
k = 1 recovers the exponential law. The k = 0 case appears in [6], while the k = 2
case was studied in detail by [7].

The starting point for this collaboration is the following observation. The inte-
gral on the right-hand side of (2) is defined for any k ∈ R, whereas its combinatorial
interpretation (i.e. the right-hand side of (2), given in terms of k-arrangements) is
currently only available for k ∈ Z≥0.

Question. (Remark 3.8 in [1]) Extend the definition of A(n, k) via (2) to any
n ∈ N and k ∈ R. Does A(n, k) have a combinatorial interpretation when k is an
arbitrary negative integer?

Furthermore, it follows by (2) that for n even, A(n, k) ≥ 0 for any k ∈ R. (We
are integrating x2 against a non-negative function over R.) A potentially easier
question is therefore:

Question′. Does A(2n, k) have a combinatorial interpretation for all k ∈ Z?

For fixed n, let the polynomial Bn(x) denote the generating polynomial of
permutations of length n with respect to the number of their fixed points. For
example,

B3(x) = x3 + 3x+ 2.
Then the equality Bn(k) = A(n, k) holds. We investigated what happens when

k is a negative integer.
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First, we noticed that Bn(−k) is the number of k-arrangements of length n with
an even number of fixed points minus the number of k arrangements with an odd
number of fixed points. In the above example, B3(−1) = −2, B3(−2) = −12, and
B3(−3) = −34.

Our main approach was the following. We tried to find an “almost bijection”
that matches k-arrangements on [n] with an even number of fixed points to k-
arrangements on [n] with

an odd number of fixed points. The k-arrangements missed by this almost-
bijection would then be counted by Bn(−k). A potential start for such a map
could be some operation that changes the number of fixed points of a permutation
by exactly one.

Note that even for k = −1, when we get the exponential generating function

∑

n≥0

A(n,−1)
xn

n!
=

exp(−2x)

1− x
,

we could not find a purely combinatorial interpretation for the sequence of co-
efficients, even though that sequence is in the Encyclopedia of Integer sequences
[8].

One possible starting point is a paper of Herbert Wilf [9] that sets up an almost-
bijection between derangements of length n and permutations of length n that have
exactly one fixed point.
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Progress on k-shuffle conjecture

Andrew Elvey Price

(joint work with David Bevan and Stefan Felsner)

A k-shuffle of a permutation τ is a permutation π of length k|τ | whose elements
can be partitioned into k sub-permutations, each with shape τ . For example,
219634785 is a 3-shuffle of 132 as the subwords 297, 164 and 385 all have the same
shape as 132. During the week of the Oberwolfach conference, we studied the
following conjecture, posed by Mathilde Bouvel:

Conjecture 1. For a fixed k ∈ N, any sufficiently long permutation contains a
factor which is a k-shuffle of 12 or 21.

Although we did not prove this conjecture, we made progress in a number of
directions. First, we reinterpreted the conjecture as a question about the existence
of a cycle in the following graph:

Definition 1. Define the factor graph Γk = (V,E) as follows: The vertex set V
is the set of all permutations of length 2k − 1. For each permutation π of length
2k which is neither a k-shuffle of 12 nor of 21, there is a directed edge from π1 to
π2, where π1 and π2 are the two factors of π of length 2k − 1, with π1 containing
the first element of π and π2 containing the last element of π.

Conjecture 1 holds for some k if and only if the factor graph Γk is acyclic, which
we confirmed up to k = 5.

Furthermore, we characterised permutations of length 2k which are not k-
shuffles of 12 or 21 using the observation that a permutation π is a k shuffle of 21
if and only if the inversion graph of π contains a perfect matching, along with the
Tutte theorem [1] which characterises graphs containing a perfect matching. In
our context the Tutte theorem is equivalent to the following Proposition:

Proposition 1. A permutation π of length 2k is not a k-shuffle of 21 if and only
if there is some ℓ and some sub-permutation π̂ of π of length 2k − ℓ such that π̂
can be written as the direct-sum of ℓ+ 2 permutations of odd size.

An analogous result holds for permutations which are not k-shuffles of 12 in-
volving a skew-sum rather than direct-sum. Intuitively, this means that the per-
mutations π which are neither a k-shuffle of 12 nor of 21 somewhat resemble an
X in that they can be mostly decomposed into both a long direct-sum and a long
skew-sum. Hence if the conjecture were false, one may expect that each factor
starts or ends with either its largest or smallest element, however we rule out this
extreme case in the following proposition:

Proposition 2. Let π be a permutation of length 2k2+2k such that each factor of
π of length 2k begins or ends with its largest or smallest element. Then π contains
a factor τ of length 2k which is a k-shuffle of 12 or 21.

For comparison, the longest permutation π which does not contain a 5-shuffle
of 12 or 21 has length 43 and satisfies the property that each factor of π of length
10 begins or ends with its largest or smallest element.
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