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Introduction by the Organizers

Nichols algebras are graded Hopf algebra objects in braided tensor categories.
They appeared first in a paper by Nichols in 1978 in the search for new examples
of Hopf algebras. Rediscovered later several times, they also provide a conceptual
explanation of the construction of quantum groups (Woronowicz, Lusztig, Rosso,
Schauenburg). Nichols algebras play a significant role in problems on Hopf algebras
or quantum groups, and in mathematical physics.

In recent years, the interplay between Nichols algebras and Number Theory
has become apparent. The aim of the workshop is to foster interaction of these
different communities, review recent developments in the field and discuss new
approaches to open problems.

A striking incarnation of Nichols algebras has been recently found by Kapra-
nov and Schechtman, where an equivalence of categories between the category of
connected and coconnected bialgebras in braided categories and the category of
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factorized perverse sheaves on the space Sym(C) of complex monic polynomials
is given. This equivalence established a dictionary between the braided bialgebra
world and the perverse sheaves world, through which Nichols algebras correspond
to intermediate extensions of local systems corresponding to coherent families of
representations of the braid groups. This dictionary opens new pathways in the
understanding of Nichols algebras, but also in their application to the study of
problems of geometric nature.

In a similar direction, Ellenberg, Tran and Westerland used Hurwitz spaces and
Nichols algebras to prove Malle’s conjecture on finite extensions of certain global
fields with fixed Galois group.

Arithmetic aspects show up in the theory of Nichols algebras from the beginning
and provide, from time to time, hairpin sharp tools to solve crucial problems.

The structure theory of pointed Hopf algebras depends crucially on a deep un-
derstanding of Nichols algebras over groups, in particular those of finite dimension
or finite Gelfand–Kirillov dimension. Each Yetter–Drinfeld module over a group
(or more generally a Hopf algebra) uniquely determines a Nichols algebra. Cur-
rently, the classification of Yetter–Drinfeld modules over groups providing finite-
dimensional Nichols algebras is one of the most challenging open problems in the
theory of (pointed) Hopf algebras.

This mini-workshop brought together experts from different fields related to
Nichols algebras. Discussions spread into several directions, with special emphasis
on open questions and conjectures. The meeting has been highly productive, allow-
ing participants to keep up with the recent developments, initiate collaborations,
and discuss new approaches to open problems.

Acknowledgement: The organizers would like to thank Dipartimento di Matemat-
ica “Tullio Levi-Civita” of the University of Padova for travel support.
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Abstracts

Some applications of Nichols algebras

Nicolás Andruskiewitsch

1. Finite-dimensional Hopf algebras

The base field is C. The classification of the finite-dimensional Hopf algebras is a
wild problem since the classification of the finite groups is a wild problem; see [12].
Indeed the classification of the 2-step (nilpotent) p-groups with non-cyclic center
is wild [14]. Still, one looks for a structural theory of finite-dimensional Hopf
algebras that has finite groups (and more) as parameters. We are far from any
proposal for such a theory; in fact, there are several kinds of finite-dimensional
Hopf algebras treated by specific methods that are difficult to extend to other
classes. Pointed Hopf algebras form the class best understood and Nichols algebras
play an important role in their classification. Two basic invariants of a pointed
Hopf algebra H are the group G = G(H) of group-likes and the infinitesimal
braiding V , see e.g. [6]. Our present knowledge leads to:

Conjecture 1. A finite-dimensional pointed Hopf algebra H is a cocycle twist of
the bosonization of the Nichols algebra B(V ) by the group algebra of G:

H ≃ (B(V )#CG)σ ,

where σ : B(V )#CG⊗B(V )#CG→ C is an invertible 2-cocycle.

This conjecture contains two important subproblems. Consider a group G and
V ∈ CG

CGYD with dimB(V ) <∞.

Question 1. Is B(V ) the only finite-dimensional post-Nichols algebra of V ? (gen-
eration in degree one).

The answer is yes when G is abelian [7] and for any known V (but is no in
positive characteristic). The proofs follow the strategy outlined in [5, Prop. 5.4]
that requires the knowledge of the defining relations of B(V ). There are alternative
proofs in [13], [10] but (part of) the relations are still needed. It is intriguing
whether a proof free of the knowledge of the relations could be obtained.

Question 2. Any H such that grH ≃ B(V )#CG is a cocycle twist as above (any
lifting is a cocycle deformation).

This is true when G is abelian [8] and for any known V ; again the proofs depend
on the knowledge of the defining relations of B(V ). A more abstract proof is
desirable and perhaps more expectable. When G is abelian and (|G|, 210) = 1,
the relations of any lifting H can de described explicitly [6]. Beyond that, liftings
were computed in several cases but their relations seem to be too complicated.
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Conjecture 1 makes sense for Hopf algebras whose coradical is a Hopf subal-
gebra; Questions 1 and 2 are valid replacing CG by a semisimple Hopf algebra.
Finally, the previous considerations could be adapted to Hopf algebras with finite
GK-dimension; see [1] and the talk by Angiono.

2. Racks

We do not know whether the following Question could be answered.

Question 3. Classify the pairs (G, V ) where G is a finite group and V ∈ CG
CGYD

satisfies dimB(V ) <∞ and compute the relations of B(V ).

If G is abelian, then both problems are solved by Heckenberger and Angiono
respectively, see the talk of the latter. Next, one may focus on finite simple groups
(see the talk of Vendramin), or, in the language of racks [4], on V ’s with suppV
a simple rack [3]. Simple racks, classified in [4, 11], are of two kinds: those with
pn elements (p prime) and the rest (including conjugacy classes in finite simple
groups that were studied intensively). Here is a recent progress for the former:

Theorem 1. [9] If V has dimB(V ) < ∞ and suppV is a simple rack with p
elements (p prime), then V belongs to a short list (and p ≤ 7).

Based on unpublished calculations we dare to claim that the techniques of [9]
could be adapted to simple racks with pn elements (p prime).

3. Finite-generation of cohomology

A well-known conjecture by Etingof and Ostrik was positively answered in [2] for
finite-dimensional pointed Hopf algebras with abelian group, using the structure
as stated in Conjecture 1, that is a Theorem in this case, as already said. We shall
outline the corresponding strategy.
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Nichols algebras of diagonal type and finite Gelfand-Kirillov dimension

Iván Angiono

Let k be an algebraically closed field of characteristic zero. The purpose of this
expository article is to recall the last advances towards Nichols algebras of diagonal
type and finite Gelfand-Kirillov dimension (GK-dim for short) over k.

Recall that the GK-dim of an associative algebra A is a measure of the growth
of products, mimicking the notion of growth for groups. In fact, given a group Γ,
the growth of Γ coincides with GK-dim kΓ.

The classification of finite-dimensional Hopf algebras has been successfully devel-
oped, mainly for the family of pointed ones. Using the so-called Lifting method by
Andruskiewitsch and Schneider, this problem leads to the classification of finite-
dimensional Nichols algebras over groups [6, 1]. One may wonder to extend this
theory to a subclass of infinite-dimensional Hopf algebras (and Nichols algebras)
with some kind of non-commutative geometry behind, and this leads to the anal-
ogous problem of Nichols algebras of finite GK-dim.

As a first source of examples we can consider Nichols algebras whose underlying
braided vector space is of diagonal type; that is, there exists a matrix q = (qij) ∈
(k×)θ×θ and a basis {xi}1≤i≤θ of V such that

c(xi ⊗ xj) = qijxj ⊗ xi, for all 1 ≤ i, j ≤ θ.

Although the braiding is simple, the structure of the corresponding Nichols algebra
Bq might be complicated. For example fix q = (qij), qij = qaij for q 6= 0,±1
and A = (aij) a finite Cartan matrix of a semisimple Lie algebra g. If q is
not a root of unity, then the Nichols algebra is U+

q (g), the positive part of the
quantized enveloping algebra of g, while for q a root of unity of order N (up to
mild restrictions on N), the Nichols algebra is u+q (g), the positive part of the small
quantum group.

The examples above suggest that we can find a basis á la PBW, with restricted
powers. Before to introduce this kind of bases, recall that Bq is Nθ0-graded, with
each xi in degree αi (the θ-uple with 1 in the i-th entry and 0 otherwise). For each

β = (b1, · · · , bθ) ∈ Nθ0 set qβ :=
∏θ
i,j=1 q

bibj
ij and N(β) := ord qβ . By [13] there

exists a restricted PBW basis whose set of letters L ⊂ Bq is made of homogeneous
elements, L has a total order < and

ℓa11 · · · ℓ
ak
k , ℓ1 < · · · < ℓk ∈ L, 0 < ai < N(deg(ℓi)),
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is a basis of Bq. In addition, ∆q
+ := {deg ℓ : ℓ ∈ L} ⊆ Nθ0 does not depend on

the chosen PBW basis. This invariant set is called the set of positive roots of
q, while ∆q := ∆q

+ ∪ (−∆q
+) is the root system of q. It is known that ∆q is a

(generalized) root system in the sense of [12], a combinatorial datum generalizing
the corresponding root system of contragredient Lie superalgebras. The main
result of [11] gives the classification of all Nichols algebras Bq of diagonal type
such that |∆q| <∞. The list is made of (generalized) Dynkin diagrams : a certain
graph with θ vertices and labels on the edges attached to each braiding matrix q.

One can see that every Nichols algebra in the list of [11] (i.e. with a PBW basis
of finite generators) has finite GK-dim, since the dimension of the subspace of
iterated products of PBW generators is less or equal than the corresponding one
for a polynomial ring in as many variables as PBW generators. Hence we may
wonder if there exists a relation between GK-dimBq and ∆q. More precisely,
based on the evidence in some cases as [3]:

Conjecture 1 ([2]). Let q be a braiding matrix. Then GK-dimBq < ∞ if and
only if |∆q| <∞; i.e. q appears in the list of [11].

A positive answer to this conjecture was recently obtained. Indeed:

Theorem 1 ([9]). If GK-dimBq <∞, then q belongs to the list of [11].

The proof in [9] can be summarized as follows:

• Arguing recursively on the rank θ (the answer for rank two was obtained in [3]),
we get a list of diagrams of rank θ + 1 whose underlying subdiagrams belong
to the list. Some diagrams depend on a parameter q (as for quantum groups)
and we prove that either the diagram of rank θ + 1 belongs to list or else the
parameter of each subdiagram of rank θ is evaluated in a root of unity of order
N ≤ 20. Thus we have a finite list of diagrams to be glued, and this is the first
instance where we use of the software GAP [10].
• Using a technique introduced in [3] we construct Nichols algebras Bp obtained as
subquotients of the initial Nichols algebra Bq. Thus GK-dimBp ≤ GK-dimBq.
They are related with hyperplanes H ⊆ Zθ, in such a way that the root system
ofBp is ∆q ∩H . Now we apply criteria for appropriate hyperplanes in order to
discard all the diagrams in rank θ + 1 which do not belong to the list.

Although some Nichols algebras of finite GK-dim over abelian groups are not of
diagonal type, Theorem 1 above has deep consequences towards the classification,
as shown in [2, 4]. There is a related problem towards the classification of pointed
Hopf algebras of finite GK-dim, which is the classification of pre-Nichols algebras
of finite GK-dim. Again, Theorem 1 is a key step, see e.g. [5, 7, 8].
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Prehomogeneous vector spaces and Nichols algebras over

symmetric groups

Kevin Chang

This talk was about a mysterious connection between certain prehomogeneous
vector spaces and Nichols algebras over symmetric groups Sd. Here are the relevant
objects:

• Prehomogeneous vector spaces: A prehomogenous vector space is a
faithful representation G → GL(V ) such that G is a connected linear
algebraic group and V has a Zariski open G-orbit. Over an algebraically
closed field of characteristic 0, prehomogeneous vector spaces where V is
an irreducible G-representation are classified up to “castling transforms”
by Sato-Kimura [7]. For any prehomogeneous vector space (G, V ), we
automatically know that dimG ≥ dimV . The case dimG = dimV where
the generic stabilizer is finite is very special, and the classification yields
only the following examples:

– (G2, V2) := (Gm, std1), with trivial generic stabilizer. If we don’t re-
quire the representation to be faithful, we can get any cyclic group
(e.g. S2) as a generic stabilizer by considering the nth power repre-
sentations.

– (G3, V3) := (GL2, Sym
3(std2)⊗ det std∨2 ), with generic stabilizer S3.

– (G4, V4) := ({(g3, g2) ∈ GL3×GL2 | det g3 = det g2}, Sym
2(std3) ⊗

std∨2 ), with generic stabilizer S4.
– (G5, V5) := ({(g4, g5) ∈ GL4×GL5 |(det g4)

2 = det g5}, std4⊗
det std∨4 ⊗Λ

2 std5), with generic stabilizer S5.
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In particular, any Sd with d ≥ 6 cannot appear as the generic stabilizer of
a prehomogeneous vector space.
• Nichols algebras: For d ≥ 2, we use Bd to denote the Nichols algebra
B(Q · τd,−1), where τd ⊂ Sd is the conjugacy class of transpositions. For
d ≥ 5, Bd is known to be finite-dimensional and quadratic. For d ≥ 6, Bd

is expected to be infinite-dimensional and quadratic, but neither property
has been proven for any d.

One immediate connection between these two objects lies in their numerology.
For d = 2, 3, 4, 5, dimGd (which is the same as dimVd) is 1, 4, 12, 40, respectively.
Similarly, the top nonzero degree of Bd for d = 2, 3, 4, 5 is 1, 4, 12, 40, respectively.
Moreover, things seem to go wrong in both settings when d ≥ 6.

A more substantial connection, studied in [3], comes from the geometry and
arithmetic of Hurwitz spaces. For any d ≥ 2 and n ≥ 0, let Hdn denote the
Hurwitz space whose points correspond to isomorphism classes of degree d simply
branched covers of A1 with n branch points. There is a natural branch map
Hdn → Confn(A1) to the configuration space of n unordered points in A1, which
takes a cover to its set of branch points. A theorem of Kapranov-Schechtman
[5, Corollary 3.3.5] implies that the Sd-invariant cohomology Extn−j,nBd

(Q,Q)Sd is

equal to the homology Hj(H
d

n,Q), where H
d

n is a smooth partial compactification
of Hdn admitting a proper and small extension of the branch map to the symmetric
power Hdn → Confn(A1) −֒→ Symn(A1).

In [3], we construct H
d

n for d ≤ 4 and a candidate for H
5

n. The k-points

H
d

n(k) correspond to Gd(k[t])-orbits in Vd(k[t]) with degree n discriminant (for

d = 3, this is the usual discriminant of binary cubic forms), and the map H
d

n →
Symn(A1) sends an orbit to the vanishing locus of its discriminant. The fact that
these orbit spaces compactify Hurwitz spaces is due to the parametrizations of
low degree algebras by prehomogeneous vector spaces, which are used extensively

in arithmetic statistics [1, 2, 4, 6, 8]. We can compute the homology of H
d

n in
terms of counts of Gd(k[[t]])-orbits in Vd(k[[t]]) with valuation n discriminant as
k ranges over finite fields. As n ranges over nonnegative integers, these counts
can be packaged into an integral over Vd(k[[t]]) called an Igusa zeta function.
Thus, we obtain an identity [3, Theorem 11.14] relating the Igusa zeta function
for (Gd, Vd) and the generating function for the Sd-invariant cohomology of Bd.

Despite what we know, the precise relationship between prehomogeneous vec-
tor spaces and Nichols algebras remains very mysterious. We have no idea how
the numerology and the Igusa zeta function/Nichols algebra cohomology connec-
tion relate to one another, as it is unclear how the dimension of Vd can be read
from its Igusa zeta function or how the top degree of Bd can be read from its
cohomology. On the prehomogeneous side, it is also unclear how to interpret the
finite-dimensionality of Bd or other numbers associated to Bd such as its dimen-
sion or the dimensions of its graded pieces. Furthermore, we point out that the
objects (Gd, Vd) and Bd are fundamentally different types of objects. (Gd, Vd)
falls out of the classification of prehomogeneous vector spaces, and it seems like a
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coincidence that we get Sd as a stabilizer. On the other hand, the Nichols algebra
Bd is intrinsic to the Coxeter group Sd. It would be very interesting to resolve
some of these mysteries.
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Geometric problems related to approximations of Nichols algebras

Francesco Esposito

(joint work with Giovanna Carnovale, Lleonard Rubio y Degrassi)

Let (V, c) be a braided vector space. Understanding the structure of the Nichols
algebra B(V, c) attached to (V, c) is an interesting algebraic problem that in general
is very hard to settle. For example, in [1] a quadratic algebra with applications to
Schubert calculus is defined, which is shown in [2] to be a Nichols algebra in small
cases. The general case is an open problem.

In the important special case in which (V, c) is obtained from a rack consisting in
a conjugation-invariant subset C of a finite group G and the one-cocycle identically
equal to −1 on C, we translate questions regarding B(V, c) in geometric terms.

Let Symn
6=(C) := Confn(C) be the space of configurations of n distinct points

on the complex affine line. The fundamental group of Confn(C) is the group of
braids Bn on n strings. The set Cn admits an action of Bn. Let

HurC,n → Confn(C)

be the finite étale covering of Confn(C) corresponding to the Bn-set C
n; it is the

so-called Hurwitz space attached to the data (C, n). The Hurwitz space HurC,n
is smooth, being an étale cover of the smooth space Confn(C); but it extends by

normalization to a ramified covering H̃urC,n of Symn(C), the space of degree n
monic polynomials with complex coefficients.
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In general, the spaces H̃urC,n, for varying n and fixed C, are singular. In fact,
the singularities of these spaces are closely connected to structural properties of
the Nichols algebra B(V, c). Furthermore, one has a product

H̃urC,n = C× 0H̃urC,n

where 0H̃urC,n is a n−1-dimensional variety, smoothly equivalent to H̃urC,n. More-

over, the stratification on 0H̃urC,n has a single closed stratum, which is reduced

to a point o. Thus to study the singularities of H̃urC,n one is reduced to studying

the singularities of 0H̃urC,n, in particular at its point o.
As an example, the fact that the Nichols algebra is quadratic translates into

the following geometric statement about 0H̃urC,n:
For every n,

IHn−1(0H̃urC,n \ {o},Q) = 0

where IH denotes global intersection cohomology, and n− 1 is the middle degree.
The proof uses the equivalence between connected bialgebras and factorizable

perverse sheaves on Sym(C) established in [3], translating geometrically the the
approximation of a Nichols algebra, identifying the local system involved as the
push-forward of the constant sheaf on the Hurwitz space, and finally using small-

ness of the finite map from H̃urC,n to Symn(C).
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Dualities in abelian monoidal functor categories

Sebastian Halbig

(joint work with Tony Zorman)

Questions concerning the existence and kind of dualisability for a given structure
are ubiquitous in modern mathematics. The Ext and Tor functors of homological
algebra are derived from the closed monoidal structure expressed by the tensor-
hom adjunction. Pontryagin duality can be interpreted in the framework of ∗-
autonomy, [Bar]. And rigidity, which corresponds to the existence of a dual basis
with a compatible evaluation, is an essential ingredient in the reconstruction of
Hopf algebras [Ulb90].

The starting point for our investigation are the following observations about
representations of a commutative algebra.

(i) If the algebra is Frobenius its regular representation is a dualising object
for its finitely-generated modules.
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(ii) A module is finitely-generated projective if and only if it is rigidly dualis-
able.

Using the perspective that modules over an algebra can be identified with linear
functors from an one-object category to vector spaces, we are going to discuss
in this talk generalisations of the above statements to linear presheaves. Our
results have on the one hand applications in modular representation theory as
Mackey functors, which abstract the operations of induction, restriction and con-
jugation, admit a concise definition in terms of presheaves, see [Lin76]. On the
other hand, we obtain a transparent way to construct ∗-autonomous categories,
which in turn are connected to modular functors and topological quantum field
theories, see [MW23].

Throughout, k is an arbitrary but fixed field and all categories, functors and nat-
ural transformations are linear, i.e. enriched over V :=k-Vect. The presheaves
[X ,V ]:=Fun(X ,V) of X op inherit the abelian structure of V . Furthermore, if X op

is monoidal, Day convolution allows us to extend the tensor product along the
Yoneda embedding X op →֒ [X ,V ] to the presheaves of X op. In case X has only
one object, it can be identified with a commutative algebra and Day convolution
recovers tensor product of its modules.

The presheaves [X ,V ] are closed monoidal. That is, tensoring with a fixed
object has a right adjoint. In order to address the first of the two statements given
above, we need to explain the notion of ∗-autonomous categories, which are also
called Grothendieck–Verdier categories.

Definition: A ∗-autonomous category comprises a monoidal category X and an
object d ∈ X , called its dualising object, such that there exists an anti-equivalence
D : X op → X and a natural isomorphism X (a⊗ b, d) ∼= X (b,Da).

Recently, it was shown, see [FSSW23], that finite-dimensional modules over a
finite-dimensional algebra are ∗-autonomous. The language of functor categories
provides us with a conceptual approach to this result and a method to obtain new
∗-autonomous categories.

Theorem ([HZ24, Lemma 5.6]). Let (X , d) be ∗-autonomous and assume that
the subcategory [X ,Vfin] ⊂ [X ,V ] of object-wise finite-dimensional functors is
closed monoidal. The presheaves [X ,Vfin] are ∗-autonomous with X (−, d)∗ as
their dualising object.

One can transfer the notion of finitely-generated projectiveness from modules
over algebras to objects in general abelian categories by characterising it in terms
of commutation relations with certain colimits. This allows us to obtain a variant
of the second observation.

Theorem ([HZ24, Proposition 5.17]). Let X be a small rigid monoidal category.
A functor F ∈ [X ,V ] is finitely-generated projective if and only if it is rigidly
dualisable.
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One consequence is that (quantum) traces for Mackey functors exist if and only
if these are finitely-generated projective. This was suggested by Bouc, see [Bou05],
who gave a detailed proof-sketch based on a different approach.
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Folding Nichols algebras

Simon Lentner

In this talk I review an older construction of mine [Len14], give modern (cate-
gorical) perspectives on some of the ideas and then present recent results with I.
Angiono and G. Sanmarco in [ALS23]. Ultimately, we settle the classification of
finite-dimensional pointed Hopf algebras whose coradical are given by nonabelian
groups, up to certain small-rank exceptional examples.

Folding means in our context in the most concrete form: Let M be a Yetter-
Drinfeld module over a group Γ and let Z be an abelian group of automorphisms
(in a twisted sense) of the Dynkin diagram associated toM in the theory of Nichols

algebras [AHS08], then we assign a Yetter-Drinfeld module M̃ over a group G,

which is a central extension of Γ by the dual group Ẑ. The associated Nichols
algebras B(M), B(M̃) are isomorphic as vector spaces, and the root system is
folded, in a sense known from Satake diagrams. For example, E6 with the obvious
involution on the Dynkin diagram is folded to F4:

The roots in one orbit merge into a single root in the folded root system (in this
example, orbits of 1 resp. 2 roots in E6 merge into a long resp. short root of F4).
On the level of Yetter-Drinfeld modules, this means that multiple irreducible Γ-
Yetter-Drinfeld modules combine into a new irreducible G-Yetter-Drinfeld module,
as the conjugacy classes increase due to the central extension.



Bridging Number Theory and Nichols Algebras via Deformations 249

We now discuss converse statements: It is quite clear that conversely any Hopf
algebra containing a central group algebra C[Z] is a folding. However, we may
consider a Doi-twist by another 2-cocycle, now over G, to quickly produce from
folding closely related Hopf algebras where Z is not central.

In a remarkable series of works culminating in [HV17], Heckenberger and Ven-
dramin have classified all finite-dimensional Nichols algebras of rank > 2 over
nonabelian groups. They find exceptional cases in rank 2, 3 and several large fam-
ilies, which seem to correspond to the different possible foldings of diagonal Nichols
algebras, which are all of Lie type. In [ALS23] we now prove:

Lemma 1. For any family in [HV17], all Nichols algebras in this family are a Doi
twist of a corresponding folding of a Nichols algebra of diagonal type.

This result allows us to talk about these families uniformly and with notions
from the diagonal Nichols algebras over Γ and their root system. For example,
we obtain a special PBW-type basis, which is not homogeneous over G but oth-
erwise much easier. Using this, we now settle for these families all steps of the
Andruskiewitsch-Schneider program for classifying pointed Hopf algebras:

Theorem 2. Any finite-dimensional pointed Hopf algebra, whose coradical is a
nonabelian group ring and whose infinitesimal braiding has rank > 3, is a Hopf
cocycle twist of a folding C[G]#B(M̃).

A more general version of folding starts with a Hopf algebra H and a group Z of
H-H-bigalois objects. Then their direct sum can be given the structure of a Hopf
algebra. This contains the previous notion of folding, if H = C[Γ]#B(M) and the
bigalois objects are given by 2-cocycles σz onC[Γ] and by coalgebra automorphisms
fz on B(M). The direct sums of the respective coradicals is a direct sum of twisted
group rings, which altogether forms the group ring of the centrally extended group
G

C[G] =
⊕

z∈Z

Cσz
[Γ]

An even more general notion, from today’s perspective, is to consider the extension
of tensor categories classified in [ENOM09], depending on a categorical homomor-
phism of the group Z to th Brauer-Picard group of Rep(H). Note that Bigalois
objects give an equivalence of tensor categories Rep(H∗) and thus via α-induction
elements in the Brauer-Picard group. This already gives a hint how to modify the
construction discussed above in order to produce a braided tensor category, which
will however involve nontrivial associativity constraints.

From a physics perspective, folding should appear in the context of a general-
ized logarithmic Kazhdan-Lusztig conjecture [CLR23] (more precisely: kernels of
screenings in lattice orbifold vertex algebras). In this context, the Nichols algebra
appears as algebras of screening operators, associated to the monodromy of certain
bundles over the configuration space. For usual quantum groups, this appearance
is a rather old story. But the author was very excited to learn about Nichols
algebras over nonabelian groups in several talks of the MFO miniworkshop. It is
conceivable that these appearances might not be unrelated.
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Non-existence of Hopf orders for certain Hopf algebras

Elisabetta Masut

(joint work with Giovanna Carnovale and Juan Cuadra)

The study of the (non)-existence of Hopf orders for finite-dimensional Hopf alge-
bras was initially motivated by Kaplansky’s sixth conjecture, which states that
given a complex finite-dimensional semisimple Hopf algebra H , the dimension of
every irreducible representation of H divides the dimension of H .

Larson proved a weaker version of this conjecture. Specifically, he proved that
if the Hopf algebra admits a Hopf order over a number ring, then the conjecture
holds.

It is also worth to mention that the property of admitting a Hopf order could
be useful for classifying semisimple Hopf algebras.

Let H be a finite-dimensional Hopf algebra over a field K and let R be a subring
of K. Roughly speaking, a Hopf order is a Hopf algebra over R, such that the
extension by scalars to K is isomorphic to H .

The goal of this talk is to present some results on the non-existence of Hopf orders
for certain Hopf algebras. In particular, the Hopf algebras we consider are obtained
by deforming group algebras, by means of a twist.

Given a Hopf algebra H , we say that an invertible element J ∈ H ⊗K H is a
twist if it satisfies the following equations

(1H ⊗ J)(Id⊗∆)(J) = (J ⊗ 1H)(∆⊗ Id)(J);

(ε⊗ Id)(J) = (Id⊗ ε)(J) = 1H .

Using such an element J , we can define the Drinfeld twist HJ of H as follows:
HJ = H as an algebra, the counit is that of H , and the coproduct and antipode
differ from those in H in the following way:

∆J (h) = J∆(h)J−1, SJ (h) = uJS(h)u
−1
J for all h ∈ H.



Bridging Number Theory and Nichols Algebras via Deformations 251

Here uJ is an invertible element of H constructed by means of J .
Since we are interested in twisting group algebras, we specify the above con-

struction to this case, using the so called Movshev’s strategy.
Let G be a group and let M be an abelian subgroup of G. Movshev in [4]

proved that the element

J =
∑

ψ,φ∈M̂

ω(ψ, φ)eφ ⊗ eψ

is a twist for KM and in consequence for KG. Here, M̂ is the group of characters

of M , ω is a 2-cocycle on M̂ and eφ = 1
|M|

∑
m∈M φ(m)m−1 is the idempotent,

primitive central element associated to an element φ in M̂ .

In [2] and in [3] Cuadra and Meir proved the non-existence of Hopf orders for
several families of twisted group algebras, which turn out to be simple as Hopf
algebras. The authors hypothesized a relationship between the simplicity of the
twisted group algebras and the non-existence of Hopf orders. Since a twisted group
algebra of a simple group is simple, we tried to understand whether it admits a
Hopf order. In particular, in [1] we prove the following.

Theorem 1. Let K be a number field and let G be a finite non-abelian simple
group. Then, there is a twist J for KG, arising from a 2-cocycle on an abelian
subgroup of G, such that (KG)J does not admit a Hopf order over OK .

For the Janko group, the Suzuki groups and PSL2(q), where q is a prime power,
we show that the non-existence result holds for any twist arising from a 2-cocycle
on an abelian subgroup of G.

The next natural step is to focus on non-simple groups. In this regard, we show
the following.

Theorem 2. Let K be a number field and let G =
∏n
i=1Di ⋊ϕi

Mi, where
Di⋊ϕi

Mi is a Frobenius group for every i ∈ {1, . . . , n} andMi is an abelian group
of prime power order for every i ∈ {1, . . . , n}. Assume also that M =

∏n
i=1Mi is

of square order. Then, for the twist J arising from a 2-cocycle on M̂ , the Hopf
algebra (KG)J does not admit a Hopf order over OK .

The deformed group algebras considered in the above theorem are simple when
n = 2, while for n ≥ 3 the simplicity is still unclear.
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Geometry of braided vector spaces and Nichols algebras

Ehud Meir

A braided vector space is a vector space V equipped with a braiding c : V ⊗ V →
V ⊗ V that satisfies the Yang-Baxter (or Braid) Equation.

Such a structure defines a Nichols algebra B(V, c).
The goal of this talk is to present geometric and characteristic p methods in the

study of braided vector spaces and their Nichols algebras.
The main idea is the following: instead of looking at a specific braided vector

space, we can also consider the set of all possible braidings on a given vector space
V of some fixed dimension d.

This set has a structure of an affine variety Z. There is an action of GLd on Z,
and the different orbits correspond to isomorphism types of braidings.

It then becomes natural to ask what orbits are contained in the closure of other
orbits.

Intuitively, if one orbit O1 is contained in the closure of another orbit O2, then
it is, in an appropriate sense, simpler. We say in this case that O2 degenerates
to O1. It holds that if c ∈ O2 has a finite dimensional Nichols algebras, then the
same holds for the braidings in O1.

In this talk we use this geometric point of view to show that many Nichols
algebras are infinite dimensional. Specifically, we consider Nichols algebras that
arise from affine racks.

We do not have degenerations of these braidings in characteristic zero, but when
we reduce everything modulo some prime p we do. We then show that apart from
a list of 5 specific braidings we do not have any finite dimensional Nichols algebras.

This talk is based on a joint work with Istvan Heceknberger and Leandro Ven-
dramin (arXiv:2306.02989).

Cohomology, Representation theory and tt-geometry

Julia Pevtsova

Let A be a finite dimensional Hopf algebra over (a field) k. We consider the derived
and stable categories of A which are related by a localization sequence of tensor
triangulated categories (tt-categories):

Dperf(A)→ Db(A)→ stab(A).

Here, DbA is the bounded derived category of A-modules; Dperf(A) is the de-
rived category of perfect complexes and stabA is the stable category. It was an
observation of Rickard and Buchweitz independently [4], [11] that stab(A) can be
described explicitly in a different way.

Namely, the objects of stabA are finite dimensional A-modules whereas for
morphisms we quotient out A-module homomorphisms by the subset of maps
factoring through a projective module.
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Effectively, we kill projective A-modules, taking out injectives on the way since
projectives and injectives are the same by the self-injectivity of A.

We study these triangulated categories associated to A using the techniques of
tt-geometry (tensor triangular geometry), a field introduced by Balmer in 2005 [1].
To an essentially small tt-category T one associates its spectrum SpecT , together
with a universal support function:

supp : T → subsets of SpecT.

By a theorem of Balmer [1], Spec(stabA) (or of Db(A)) classifies A-modules up
to “homological operations”, thus capturing the global structure of stabA via this
topological invariant. Explicitly, there is one-to-one correspondence

{
thick tensor ideals

of stabA

}
∼

{
specialization closed subsets

of Spec stabA

}

One can reformulate this correspondence by saying that a module M can be
“constructed” out of module N using homological operations (such as shifts, cones,
sums, summands and tensoring with a simple module) if and only if suppM ⊂
suppN .

During the talk due to the limited time I was vague about the following point:
the “classical” tt-theory requires the tt-category T to be symmetric, hence a priori
applies only to cocommutative Hopf algebras A. Nonetheless, the generalizations,
leading to non-commutative tt-geometry have been developed which allow to con-
sider the more general situations, see [5], [10], [9].

If one accepts that line of approach to understanding the representation category
of A, then a natural question to ask is how to compute the spectrum? Another
theorem of Balmer [2] constructs a natural continuous map from the spectrum
SpecT to the spectrum of homogeneous prime ideals of the ring of endomorphisms
of the unit object in T . Applied to our situation, it has the following form:

Ψ : Spec(stabA)→ ProjH∗(A, k)

where H∗(A, k) = Ext∗A(k, k). This observation brings one in line with at least
one of the subjects of the mini-workshop.

The map Ψ, together with known results for finite groups and finite group
schemes over a field (see [4], [7]), suggest that studying H∗(A, k) brings one closer
to understanding the spectrum, and, hence, the global structure, of stabA. More-
over, when H∗(A, k) is Noetherian, the map Ψ is known to be surjective.

In the talk I aimed to describe our current knowledge on the following three
questions, with the second being also touched upon in N. Andruskiewitsch’s talk:

(1) When is ProjH∗(A, k) a scheme of finite type (when is H∗(A, k) Noether-
ian)?

(2) When is the map Ψ a homeomorphism?
(3) Can we calculate ProjH∗(A, k)?
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When A is not cocommutative, the results on (2) and (3) are scarce. On the
other hand, for a finite projective cocommutative Hopf algebra over any commuta-
tive Noetherian ring R one has a complete answer to questions (1) and (2), due to
a recent work of van der Kallen [12], Barthel, Benson, Iyengar, Krause, Pevtsova
[3]; see also Lau [8].

Theorem 1 (W. van der Kallen, 2023). Let R be a commutative Noetherian ring,
and A be a finite projective cocommutative Hopf algebra over R. Then A satisfies
“cohomological finite generation” property; in particular, H∗(A,R) is Noetherian.

Theorem 2 (Barthel, Benson, Iyengar, Krause, Pevtsova, 2023). Let R be a
commutative Noetherian ring, and A be a finite projective cocommutative Hopf
algebra over R. Then the tt-category Stab(A,R) (the stable module category of
lattices of A-modules over R) is stratified by ProjH∗(A,R).

In particular, the map Ψ : Spec(stab(A,R)) → ProjH∗(A,R) is a homeomor-
phism.

References

[1] P. Balmer, The spectrum of prime ideals in a tensor triangulated category, J. Reine Angew.
Math. 588 (2005), 149–168.

[2] P. Balmer, Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of
endomorphism rings, AGT, 10, no. 3, (2010), 1521–1563.

[3] T. Barthel, D. J. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova, Lattices over finite
group schemes and stratification, arxiv:2307.16271 (2023)

[4] D. J. Benson, J. F. Carlson, and J. Rickard, Thick subcategories of the stable module
category, Fundamenta Math., 153, (1997) 59–80.

[5] A. B. Buan, H. Krause, and O. Solberg, Support varieties: an ideal approach, Homology,
Homotopy Appl., 9(1):45–74, 2007.

[6] R-O. Buchweitz, Maximal Cohen Macaulay modules and Tate cohomology, Math Surveys
Monogr., 262, AMS (2021)

[7] E. M. Friedlander and J. Pevtsova, Π-supports for modules for finite groups schemes, Duke
Math. J. 139 (2007), 317–368.

[8] E. Lau, The Balmer spectrum of certain Deligne–Mumford stacks, Compositio Math, (2023).
[9] D. Nakano, K. Vashaw, and M. Yakimov, Noncommutative tensor triangular geometry,

arxiv:1909.04304 (2021).
[10] C. Negron, J. Pevtsova, Hypersurface support and prime ideal spectra for stable categories,

Ann K-theory, 8, no.1, (2023) 25–79.
[11] J. Rickard, Derived categories and stable equivalence , JPAA 61 (1989) no. 3, 303–317
[12] W. van der Kallen, A Friedlander-Suslin theorem over a noetherian base ring, Transforma-

tion groups, (2023)



Bridging Number Theory and Nichols Algebras via Deformations 255

A geometric approach to Nichols algebras

Lleonard Rubio y Degrassi

(joint work with Giovanna Carnovale and Francesco Esposito)

1. Introduction

Let V be an abelian braided monoidal category and let CB(V) be the category
of connected graded bialgebras (also called primitive bialgebras). An object A =
⊕n≥0An in CB(V) is a bialgebra which is N-graded as an algebra and a coalgebra
and satisfies A0 = k. For a given object V in V , notable examples of objects in
CB(V) are: the tensor algebra T!(V ), the cotensor algebra T∗(V ) and the Nichols
algebra B(V ) which is the image of a graded bialgebra morphism Ω : T!(V ) 7→
T∗(V ) which extends the identity on V .

A fundamental question in this context is to understand when B(V ) is finitely
presented, or equivalently, if there is a d ≥ 2 such that

B(V ) ∼= B̂(V )d := T!(V )/(ker(Ω) ∩ ⊕dj=2V
⊗j).

In other words, if B(V ) is isomorphic with its d-th approximation B̂(V )d for some
d ≥ 2.

Example 1. The Fomin-Kirillov algebras FKn for n ≥ 3 are quadratic algebras
introduced in [1]. The degree 1 term Vn in FKn is a Yetter-Drinfeld module
over the symmetric group Sn and by [3] the FKn is isomorphic to the quadratic

approximation B̂(V )2 of B(V ). For n = 3, 4, 5, it has been shown that FKn
∼=

B(Vn) ([4, 2], with the contribution of Graña), and for such values of n these
algebras are finite-dimensional [5, 1, 2]. For n ≥ 6, both the dimensions of these

algebras and the isomorphism B(V ) ∼= B̂(V )2 are still widely open problems.

2. Primitive bialgebras

We define the category CB≤d(V) of bialgebras mod d+1 in V as follows: objects

are graded objects of the form A =
⊕d

l=0Al, non-trivial only in degree ≤ d,
together with a coalgebra and algebra structure that are graded and connected
and satisfy the compatibility condition

∆A(mA(x⊗ y))−mA⊗A(∆A(x) ⊗∆A(y)) ∈ (A⊗A)≥d+1.

Morphisms are graded coalgebra maps preserving the multiplication.
We consider the truncation functor Θd : CB(V) → CB≤d(V) defined as follows:

If A =
⊕

l≥0Al is an object in CB(V), we set Θd(A) to be the object
⊕d

l=0 Al,
endowed with the graded algebra structure coming from the quotient by the graded

ideal A>d := ⊕j>dAj via the identification A/A>d ≃
⊕d

l=0Al and the graded

coalgebra structure coming from the coalgebra inclusion
⊕d

l=0Al → A.
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Let A =
⊕d

l=0Al be an object in CB≤d(V). We consider the tensor algebra
T (A), with grading induced from the grading of A. Let JA be the algebra ideal
generated by the elements:

a⊗ b− ab, a ∈ Ai, b ∈ Aj , 0 ≤ i+ j ≤ d; 1k − 1A,

The extension functor Ψd : CB≤d(V) → CB(V) sends an object A =
⊕d

l=0 Al to
T (A)/JA.

Theorem 1. For any d > 0 the functor Ψd ◦ Θd : CB(V) → CB(V) extends the
d-th approximation construction from primitive bialgebras generated in degree 1
to all primitive bialgebras.

3. Factorizable perverse sheaves

Kapranov and Schechtman [3] have established an equivalence L between the cat-
egory CB(V) and the category FP(Sym(C);V) of factorizable systems of perverse
sheaves on all symmetric products Symn(C) with values in V .

The space Sym(C) is the space of monic polynomials, which is the coproduct
of infinitely many connected components Symn(C), for n ≥ 0 given by monic
polynomials of degree n. Each space Symn(C) is stratified in terms of multiplicities
of the roots. The open stratum Symn

6=(C) consists of multiplicity-free polynomials
of degree n. Note that the fundamental group of each Symn

6=(C) is the braid group
Bn.

A sequence of perverse sheaves on each Symn(C) is factorizable if it satisfies a
condition ensuring compatibility with the monoid structure on Symn(C), see [3,
Definition 3.2.5]. The restriction of a factorizable perverse sheaf on Symn(C) to
Symn

6=(C) is a sequence of local systems on each Symn
6=(C), that is, a representation

of each braid group Bn. Factorizability makes these representations to be com-
patible, i.e., they are the representations V ⊗n for V an object in V , with action
coming from the braiding. We denote this collection of local systems by L(V ).
For d > 0, consider the dense open subsets Symn

≤d(C) of Symn
6=(C) consisting of

polynomials with root multiplicities not exceeding d, and the corresponding open
inclusions:

αd : Sym≤d(C)→ Sym(C); j : Sym6=(C)→ Sym(C) :

Following 6-functors formalism, under Kapranov and Schechtman’s equivalence,
one obtains:

L(T!(V )) = j!L(V ); L(T∗(V )) = j∗L(V ); L(B(V )) = j!∗L(V )

Let’s consider the categoryFP(Sym≤d(C);V) of factorizable perverse on Sym≤d(C).
Let pτ≥0 be the perverse truncation functor. The (geometric) truncation and ex-
tension functors are defined as α∗

d : FP(Sym(C);V) → FP(Sym≤d(C);V), and
pτ≥0αd! : FP(Sym≤d(C);V) → FP(Sym(C);V), respectively. Then we define the
(geometric) d-th approximation functor as the composition pτ≥0αd! ◦ α

∗
d.
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One of our main results establishes an equivalence between the category CB≤d(V)
and the category FP(Sym≤d(C);V) compatible with the d-th approximation func-
tors. We also rephrase the condition that a Nichols algebra coincides with its d-th
approximation in geometric terms. More precisely:

Theorem 2. There is an equivalence L≤d : CB≤d(V) → FP(Sym≤d(C);V) com-
patible with the d-th approximation functors. In addition, for an object V ∈ V ,

we have that B(V ) ∼= B̂(V )d if and only if

j!∗L(V ) = pτ≥0αd! ◦ α
∗
d ◦ j!∗L(V ).
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Math.172, Birkhäuser, (1999), 146–182.

[2] G. A. Garćıa, A. Garćıa Iglesias, Finite dimensional pointed Hopf algebras over S4, Israel

Journal of Math. 183, (2011), 417–444.
[3] Kapranov, M.; Schechtman, V. Shuffle algebras and perverse sheaves. Pure Appl. Math. Q.

16 (2020), no. 3, 573–657.
[4] Milinski, H.-J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, New

trends in Hopf algebra theory (La Falda, 1999), Contemp. Math., vol. 267, Amer. Math.
Soc., Providence, RI, 2000, pp. 215–236.

[5] J. E. Roos, Some non-Koszul Algebras, in: Advances in Geometry, J. L. Brylinksi, V. Nistor,
B. Tsygan, P. Xu, eds, Progress in Mathematics 172 (1999), 385–389.

Shuffle algebras, quantum groups and Hall algebras

Olivier Schiffmann

The talk presented two results concerned with shuffle algebras, understood in a
broad sense:

The first is a joint work with A. Negut and F. Sala, and deals with the structure
of certain shuffle algebras ShQ associated to quivers. From a geometric point of
view, this shuffle algebra arises as the so-called cohomological Hall algebra of
the cotangent stack to the stack of representations of a quiver Q (which may
be arbitrary). From a representation-theoretic point of view, this shuffle algebra
is a quantum affinization of the (Borcherds) Kac-Moody gQ algebra attached to
Q. One motivation for the study of these algebras is that they act naturally
on the equivariant K-theory of Nakajima quiver varieties. Our main theorem
provides a complete description, by generators and relations of ShQ, when the set
of equivariant parameters is large enough (or for a generic enough specialization of
the equivariant parameters). One first main application is the description, again
by generators and relations of the spherical Hall algebra HX of a generic curve
X (of arbitrary genus) defined over a finite field, which encodes the operators
of Eisenstein series and Constant Term for (everywhere unramified) automorphic
functions for the groups GLn over the function field of X .. This comes from a
Langlands-type isomorphism between the Hall algebra HX and ShQ where Q is a
quiver with one vertex and g loops, g being the genus of X .
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The second work, which is still in a very preliminary form, is a joint project
with M. Kapranov, V. Schechtman and J. Yuan. Motivated again by the theory
of Eisenstein series for automorphic forms over function fields, but this time for
an arbitrary reductive group G and parabolic subgroup P , we define a ’reductive’
version of shuffle algebras, the latter corresponding to the case of the general
linear groups GLn. We describe a set of axioms for such a structure, based on the
geometry of Coxeter complexes and double cosets in Weyl groups.

An Example of a Braided Monoidal 2-category

Catharina Stroppel

(joint work with Y. L. Liu, A. Mazel-Gee, D. Reutter, P. Wedrich)

Braided monoidal categories play an important role in the construction and study
of Nichols algebras. Starting with a braided vector space, the Nicholas algebra can
be defined using the tensor algebra given by this vector space.

On the other hand, tensor products of a vector space with its obvious symmetric
group action is Schur Weyl dual to the general linear group over this vector space.
This duality quantizes to a duality between the Hecke algebra Hn attached to the
symmetric group and the quantum group of the general linear Lie algebra which
underlies the construction of all quantum link group invariants type A.

Hecke algebras. The Hecke algebras for all symmetric groups taken together
form a braided monoidal category that controls these quantum link invariants
and, by extension, the standard canon of topological quantum field theories in
dimension 3 and 4. More precisely, there is a monoidal category H with

• Objects: the natural numbers n ∈ N0.
• Morphisms: the endomorphism algebra of each object n ∈ H is Hn. All
other hom-sets are trivial.
• The monoidal structure is given on objects by addition, i.e. m⊗n = m+n,
and on morphism as the map Hm × Hn → Hm+n corresponding to the
parabolic subgroup Sm × Sn →֒ Sm+n.
• The braiding—a natural isomorphismm⊗n ∼= n⊗m for eachm,n ∈ H—is
given by the image in EndH(m+n) = Hm+n of the positive (m,n)-shuffle
braid in the braid group Brm+n.

Motivated by categorified knot invariants and by the desire to construct higher
TQFTs one would like to categorify this structure, see [9] for some overview.

Braided monoidal 2-categories. The result of such a construction should be
a version of a braided monoidal 2-category. The construction itself includes in
particular a precise definition of the term braided monoidal 2-category. The notion
of braided monoidal 2-categories has a long history, see e.g. [4, 5, 2, 1]. One
difficulty is the precise formulation and packaging of the required data and higher
coherences. The modern formulation is operadic and in terms of E2-algebras: an
E2-algebra in categories is a braided monoidal category. The goal can be therefore
reformulated as
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Construct an E2-algebra in an appropriate higher category.

Background: Soergel’s categorification Hecke algebra. The main result is
based on the categorification theorem of Soergel, [8]: The additive monoidal cate-
gory of (graded) Soergel bimodules categorifies the Hecke algebra in the sense that
its split Grothendieck ring is isomorphic to the Hecke algebra. The indecompos-
able bimodules correspond hereby to the Kazhdan–Lusztig basis. The standard
basis can be categorified by passing to complexes of Soergel bimodules. Rouquier
complexes, [7], (as objects in the homotopy category of Soergel bimodules) can be
used to categorify the standard basis.

The main result is now an upgrade of H, where the morphism spaces are cate-
gorified. The Hecke algebrasHn are replaced by the homotopy categoriesK(SBim)
of Soergel bimodules. This provides a monoidal 2-category. The main problem is

Construct a homotopy coherent of a braiding.

Formulation of the main result. We let stk denote the∞-category of small sta-
ble idempotent-complete k-linear ∞-categories. (Such ∞-categories can be mod-
elled by small pretriangulated idempotent-complete k-linear dg-categories.) Day
convolution induces a symmetric monoidal structure induces a symmetric monoidal
structure on stk (and even on a graded version of it) and also on the ∞-category
Cat[stk] of small∞-categories enriched in stk in the sense of Gepner-Haugseng [3].

Theorem 1.

(1) There is a monoidal (∞, 2)-category K(SBim) with objects labelled by
natural numbers n ∈ N0 and whose endomorphim ∞-categories are the
k-linear, stable, idempotent-complete ∞-categories Kb(SBimn) of chain
complexes of Soergel bimodules, with a Z-action by grading shift. More
precisely, K(SBim) defines an E1-algebra in the symmetric monoidal ∞-
category Cat[stk].

(2) There exists a unique braided monoidal, i.e., E2-algebra, structure on
K(SBim) ∈ Cat[stk] that enhances its monoidal structure and satisfies
(a) The fiber functor to stk is braided monoidal.

(b) The braiding 1⊗ 1
∼
→ 1⊗ 1 admits an equivalence with the Rouquier

complex corresponding to the braid group generator σ ∈ Br2.
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Linkage principle for small quantum groups

Cristian Vay

We call ”small quantum group“ the Drinfeld double Dq of the bosonization of
a finite-dimensional Nichols algebra Bq of diagonal type over kZθ ; here k is a
field and q ∈ kθ×θ gives the braiding of the Nichols algebra. For instance, if
q = (qdicij )i,j , where C = (cij)i,j is a Cartan matrix symmetrizable by D = (di)i
and q a root of unity of odd order, then Bq is the positive part of the small
quantum group introduced by Lusztig and associated to C. Moreover, the proper
Lusztig’s small quantum group is a quotient of Dq by a central group subalgebra.

A small quantum group admits a natural triangular decomposition:

Dq = D−
q ⊗D

0
q ⊗D

+
q = Bqt ⊗ k(Zθ × Zθ)⊗Bq.

Using this decomposition we can construct Verma modules as usual in Lie theory,
and prove that the simple Dq-modules are classified by the head of them. The
”linkage principle“ we alluded in the title provides us with information about the
composition factors of the Verma modules. This is the main result of [3].

In the talk we exposed this principle and discuss how all the machinery of
Nichols algebras of diagonal type (PBW basis, root system, Weyl groupoid, Lusztig
isomorphisms) is used to prove it. It is worth noting that the ideas and techniques
behind the proofs are borrowed from the work of Andersen, Jantzen and Soergel
in the context of Lusztig’s small quantum groups [1].

In order to state the linkage principle we need to introduce some notation. We
fix a Z-basis {α1, ..., αθ} of Z

θ. The matrix q defines a bicharacter Zθ×Zθ −→ k×

which we denote also q. We denote K1, ...,Kθ and L1, ..., Lθ the generators of D0
q

which is the group algebra of Zθ × Zθ. We think of it as a multiplicative group
and write Kα = Kn1

1 · · ·K
nθ

θ and Lα = Ln1

1 · · ·L
nθ

θ if α = n1α1 + · · ·+ nθαθ ∈ Zθ.
We now recall the construction of the Verma modules and their simple quotients.

Let π : D0
q −→ k be an algebra map and µ ∈ Zθ. We define the algebra map

πµ̃ : D0
q −→ k by πµ̃(KαLβ) =

q(α,µ)
q(µ,β)π(KαLβ), α, β ∈ Zθ. We denote kµ = k |µ〉

the one-dimensional Zθ-gradedD0
qD

+
q -module concentrated in degree µ with action

su · |µ〉 = ε(u)πµ̃(s) |µ〉 for all s ∈ D0
q and u ∈ D+

q where ε denotes the counit.



Bridging Number Theory and Nichols Algebras via Deformations 261

The Verma module associated to µ is the induced Zθ-graded Dq-module

Zk(µ) = Dq ⊗D0
q
D+

q

kµ.

It has a unique simple quotient which is denoted Lk(µ). Moreover, any simple
module can be constructed in this way.

The linkage principle states the following:

If Lk(λ) is a composition factor of Zk(µ), then λ = µ or there
exist β1, ..., βr ∈ ∆q

+ such that λ = βr ↓ · · ·β1 ↓ µ.

Here, ∆q
+ ⊂ Zθ≥0 denotes the root system of the Nichols algebra Bq and the

operation ↓ is defined as follows. Let ρq : Zθ −→ k× be the group homomorphism
such that ρq(αi) = qii. Thus, for β ∈ ∆q

+, we set bq(β) = ord q(β, β) and define

β ↓ µ = µ− nπβ(µ)β

where 1 ≤ nπβ(µ) < bq(β) is the unique natural number satisfying q(β, β)n
π
β (µ) =

ρq(β)πµ̃(KβL
−1
β ), if it exists, and otherwise nπβ(µ) = 0.

A first consequence of this principle is that it gives rise to an equivalence relation
in Zθ characterizing the blocks of the category of Zθ-graded Dq-modules. It is
also the starting point to imagine character formulas for the simple modules. In
this direction, we found a notion of (a)typicality analogous to the one in the
representation theory of Lie superalgebras. The typical simple modules turn out
to be the simple and projective Verma modules, and for 1-atypical simple modules
we deduce a character formula.

Under certain assumption the linkage principle can be reformulated by replacing
the operation ↓ with a true action, commonly called ”dot action“. For this purpose
we have to consider the set ∆q

+,car of Cartan roots of Bq and the associated

reflection sβ , cf. [2]. We set ̺q = 1
2

∑
β∈∆q

+

(bq(β) − 1)β; notice this element is

similar to the semi-sum of the positive roots in Lie theory but here the roots are
scaled by their height in the PBW basis. Now, every β ∈ ∆q

+,car and m ∈ Z define

an affine reflections sβ,m determined by its (dot) action on Zθ:

sβ,m • µ = sβ(µ+mbq(β)β − ̺q) + ̺q, µ ∈ Zθ.

Let Wq
link denote the group generated by all the affine reflections.

We recall that q is of Cartan type if ∆q
+ = ∆q

+,car, and q is of super type if its root
system is isomorphic to the root system of a finite-dimensional contragredient Lie
superalgebra in characteristic 0. If q is of super type, then ∆q

+,odd := ∆q
+ \∆

q
+,car

is not empty and ord q(β, β) = 2 if β ∈ ∆q
+,odd; in this case β ↓ µ = µ or µ− β.

Here it is the other formulation of the linkage principle:

If π = ε and Lk(λ) is a composition factor of Zk(µ), then

(1) λ ∈ Wq
link • µ if q is of Cartan type.

(2) λ ∈ Wq
link • (µ+ Z∆q

+,odd) if q is of super type.
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We remark that (1) extends a similar result of [1] since here we can consider
matrices of the form (qdicij )i,j with q of any order. Finally, we observe that we
find in the setting of Lie superalgebras a phenomenon similar to (2), but here the
Cartan roots play the role of the even roots.
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Nichols algebras: an overview

Leandro Vendramin

My presentation focuses on the classification of finite-dimensional Nichols algebras,
specifically, those over non-abelian groups.

We begin by examining a fundamental concept in this classification: braided
vector spaces. A braided vector space consists of a vector space (over a field K)
equipped with a map c ∈ GL(V ⊗ V ) that satisfies the braid equation:

c1c2c1 = c2c1c2.

Here, c1 = c⊗ id and c2 = id⊗c.
The braided vector spaces under consideration are the Yetter–Drinfeld modules

over the group algebra KG of a group G.
Given a braided vector space V , we can construct an algebra B(V ), known as

the Nichols algebra of V . It is defined as follows:

B(V ) = K ⊕ V ⊕
⊕

n≥2

V ⊗n/ kerSn,

where

Sn+1 = (id⊗Sn)(id+c1 + c1c2 + · · ·+ c1c2 · · · cn).

for all n ≥ 1.
Complex finite-dimensional Nichols algebras over abelian groups were classified

by Heckenberger in [7]. Consequently, my focus here shifts towards the case of
non-abelian groups. In this context, the classification relies on a certain notion of
reducibility of Yetter–Drinfeld modules. The exact notion of reducibility used will
become apparent later.

Finite-dimensional Nichols algebras of “reducible” Yetter–Drinfeld modules with
two irreducible summands was completely classified in [9].

Theorem 1 (with Heckenberger). Let K be a field, G be a non-abelian group and
V andW be absolutely irreducible Yetter-Drinfeld modules overKG. Assume that
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the support of V ⊕W generates G, that cW,V cV,W 6= id and dimB(V ⊕W ) <∞.
Then G is a quotient of a certain central extension of SL2(3) or a quotient of

〈g, h, ǫ : hg = ǫgh, gǫ = ǫ−1g, hǫ = ǫh, ǫn = 1〉

for n ∈ {2, 3, 4}.

In cases where cW,V cV,W = id, it follows that B(V ⊕W ) ≃ B(V ) ⊗ B(W ) as
vector spaces. Consequently, Theorem 1 explicitly assumes cW,V cV,W 6= id to
ensure being in a proper “reducible” case

Theorem 1 holds independently of the characteristic of the field. Furthermore,
it provides an explicit list of the finite-dimensional Nichols algebras relevant to
this context.

The classification of Nichols algebras in the case of at least three irreducible
summands was accomplished in [9], again without imposing any restrictions on
the characteristic of the base field. In this scenario, the finite-dimensional Nichols
algebras are classified using Dynkin diagrams of finite type. Similar to the case
with two summands, explicit descriptions of the algebras are provided.

What can be said about Nichols algebras over irreducible Yetter-Drinfeld mod-
ules? Let us explore some results in the context of complex numbers.

The following result appears in [3] and [4].

Theorem 2 (with Andruskiewitsch, Fantino and Graña). Let G be a finite alter-
ating simple group or an sporadic simple group different from Fi22, B and M . If
0 6= V ∈ CG

CGYD, then dimB(V ) =∞.

The theorem suggests a challenging question: Are Nichols algebras over finite
non-abelian simple groups infinite-dimensional?

Theorem 3 (Andruskiewitsch–Carnovale–Garćıa). Let G be one of the following
groups: PSLn(q) for n ≥ 4, PSL3(q) for q > 2, PSp2n(q) for n ≥ 3, or for q
even one of the following groups: PΩ+

4n(q), PΩ
−
4n(q),

3D4(q), E7(q), E8(q), F4(q),

G2(q). If 0 6= V ∈ CG
CGYD, then dimB(V ) =∞.

Theorem 3 was proved in [1, 2].

Theorem 4 (Carnovale–Costantini). Complex Nichols algebras over the Suzuki–
Ree groups are infinite-dimensional.

Theorem 4 was proved in [6].

Theorem 5 (with Heckenberger and Meir). Let G be a group and V be an
irreducible Yetter-Drinfeld module over CG of prime dimension p. Assume that
the support of V generates G. Then dimB(V ) <∞ if and only if p ∈ {3, 5, 7}.

The finite-dimensional Nichols algebras appearing in the context of Theorem 5
are documented in literature; see for example [5].
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Arithmetic statistics via the cohomology of Nichols algebras

Craig Westerland

(joint work with Jordan Ellenberg, TriThang Tran)

This was an overview of the paper [ETW23] which employs algebro-topological
and Hopf-algebraic methods to address a function field version of a conjecture of
Malle on the distribution of Galois groups.

Let G be a transitive subgroup of Sm, and let K be a separable closure of K.
Define a function which counts degree n extensions of K inside of K with Galois
group G:

(1) NG,K(X) := #{L ≤ K | deg(L/K) = m, Gal(L/K) ∼= G, |∆L/K | ≤ X}.

Here the isomorphism Gal(L/K) ∼= G is required to be one of groups acting on
the set of m embeddings of L into K. In [Mal04], Malle conjectures an asymptotic
for this quantity:

NG,K(X) ∼ cXa log(X)b−1,

where the constants a and b are given in terms of the group theory of G ≤ Sm and

the action of Gal(K/K) on G = Hom(Ẑ, G) through the cyclotomic character. In
joint work with Ellenberg and Tran, we proved an upper bound when K is taken
to be the function field Fq(t):

Theorem 1. For each integer m and each transitive G ≤ Sm, there are constants
C(G), Q(G), and e(G) such that, for all q > Q(G) coprime to #G and all X > 0,

NG,Fq(t)(X) ≤ C(G)Xa(G) log(X)e(G)

Here the exponent e(G) is always at least as large as Malle’s b− 1.
The main distinction between the number field and function field settings is

geometric. By definition, function fields are tied to the geometry of curves, and
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their extensions correspond to ramified covering maps between curves. Specifically,
extensions L/k(t) correspond to curves Σ = Spec(OL) defined over k, and maps
Σ → A1

k = Spec k[t]. When K = Fq[t], the set being counted in (1) can be
reinterpreted as the set of isomorphism classes of such branched covers. This,
in turn, may be identified as the set of Fq-points of a moduli space of branched
covers.

Explicitly, we make the following definition: for n ∈ Z≥0, the Hurwitz moduli
space HG,n is a Deligne-Mumford stack whose k points (with car(k) coprime to
#G) parameterize isomorphism classes of the following data:

• Σ is a smooth projective curve, and π : Σ→ P1
k is a branched cover:

• Away from a reduced divisor D ⊆ P1
k, π is a G-Galois cover.

• deg(D ∩ A1) = n.
• π is tamely ramified at D.

By replacing a G-Galois cover Σ with the degree m cover Σ ×G [m], we may
show

NG,Fq(t)(X) =
∑

|∆|≤X

#HG,n(Fq).

where the sum is over those components of HG,n whose associated extensions have
discriminant less than X .

To prove Theorem 1, then, we must bound the quantity #HG,n(Fq) as a function
of n. To do this, we employ the Grothendieck-Lefschetz trace formula. In our
setting, this is the statement that

#HG,n(Fq) = qn
2n∑

j=0

(−1)j tr(Frobq � Hi
et(HG,n|Fq

,Qℓ))

By way of the Artin comparison theorem and Deligne’s bounds on the eigenvalues
of Frobenius, Theorem 1 follows if we can control the Betti numbers r(j, n) =

rkQ(H
j
sing(HG,n(C),Q)). Specifically, we must show that these grow at worst

exponentially in j and polynomially in n.
This is now a purely algebro-topological problem. The function HG,n(C) →

Confn(C) which carries a branched covering to its branch locus is a covering space.
Further, the configuration space Confn(C) = K(Bn, 1) is an Eilenberg-MacLane

space for the nth braid group Bn. Thus the computation of Hj
sing(HurG,n(C),Q)

may be rephrased as a group cohomology computation for Bn with coefficients in
the Hurwitz representation.

Using the Fox-Neuwirth/Fuks cellular stratification of Confn(C), we reformu-
late this computation in terms of the cohomology of the quantum shuffle algebra
T co(V ∗[1]) associated to the G-Yetter-Drinfeld module V := Q[G \ {1}]:

(2) r(j, n) ≤ rkExtn−j,nT co(V ∗[1])(Q,Q).

In the filtration of the shuffle algebra by powers of the augmentation ideal, the
associated graded Hopf algebra decomposes as a twisted tensor product of the
Nichols algebra B(V ∗[1]) with a complementary subalgebra E. The associated
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May and Cartan-Eilenberg spectral sequences allow us to reduce the computa-
tion in (2) to bounding the ranks of Extn−j,n

B(V ∗[1])(Q,Q). The requisite bounds are

obtained through study of the Koszul complex for the Nichols algebra, and the
Conway-Parker result which controls the number of braid orbits in the Hurwitz
representation.
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Tensor product decompositions for the smallest quantum coideal and

Jones–Wenzl projectors

Zbigniew Wojciechowski

(joint work with Catharina Stroppel)

1. Motivation

Consider the Lie subalgebra g :=
{(

0 λ
λ 0

)}
⊂ sl2(C). The standard vector repre-

sentation V = C2 decomposes into two 1-dimensional subspaces L1 := span {( 11 )},
L−1 := span

{(
1
−1

)}
, which are eigenspaces for the generator b := ( 0 1

1 0 ) ∈ g

with eigenvalues 1 and −1. Let n ∈ N and consider V ⊗n instead. The previous
decomposition implies that b acts semisimply on V ⊗n with eigendecomposition
V ⊗n =

⊕n
k=0

(
n
k

)
Ln−2k: one possible eigenbasis is n-fold tensors of the above vec-

tors v = ( 11 ) and w =
(

1
−1

)
. This simple starting situation becomes intriguing

when replacing sl2 by Uq(sl2). The Hopf algebra embedding U(g) ⊂ U(sl2) has
two quantizations as left respectively right coideal subalgebras

′ Uq(g) ⊂ Uq(sl2)
left coideal
←−−−−−−− U(g) ⊂ U(sl2)

right coideal
−−−−−−−−→ U′

q(g) ⊂ Uq(sl2)

generated by B = E + qKF respectively B = q−1EK−1 + F . Since these are
not Hopf algebra embeddings the argument giving the decomposition of V ⊗n does
not carry over. Instead of being a monoidal category, representations of ′ Uq(g)
and U′

q(g) have a non-trivial structure as left respectively right module categories
over Uq(sl2). Our result is the diagrammatic description of those categories by
generalized string calculus, where the decomposition is governed by idempotents
which are type B/D analogues of Jones–Wenzl projectors.

2. Results

We work with the right coideal U′
q(g). Let V = C(q)2 be the type 1 quantized

standard representation. The first theorem gives the quantum coideal version of
the decomposition of V ⊗n and is the combinatorial starting point:
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Theorem 1 ([3], Thm 2.6). Consider the family of quantizations of v, w given by

vn =
(

1
qn

)
, wn =

(
1

−q−n

)
, where n ∈ Z.

The representation V decomposes over U′
q(g) into summands

V = L[1] ⊕ L−[1] := span {v0} ⊕ span {w0} .

Let z be an eigenvector for B with eigenvalue [n] = qn−q−n

q−q−1 . Then z ⊗ vn,ε and

z⊗wn,ε are eigenvectors for B with eigenvalue [n+1] and [n− 1] respectively. In
particular we have the decomposition V ⊗n =

⊕n
k=0

(
n
k

)
L[n−2k].

Type 1 representations of Uq(sl2) are described by the Temperley–Lieb category.
The following theorem is a slight generalization that allows us to work with all
finite dimensional representations (both type 1 and −1):

Theorem 2 ([3], Thm 4.6). Let Kar(Add(V )) be the Karoubian envelope of the
additive envelope of the k-linear monoidal category (V ,⊗,1) generated by two
objects • and −, and morphisms

: •• → 1, : 1→ ••, : −− → 1, : 1→ −−,

: •− → −•, : −• → •−, id• = , id− =

subject to the relations:

= , = , = = , = = ,

= −[2], = 1, = , = − , = .

We have an equivalence of monoidal categories

(Repf.d.(Uq(sl2)),⊗k, k) ≃ (Kar(Add(V )),⊗,1).

Denote by Repf.d.(U′
q(g),Uq(sl2)) ⊂ Repf.d.(U′

q(g)) the subcategory of all ob-
jects which appear as direct summand of a restriced Uq(sl2)-representation. This

subcategory is naturally a right module category over (Repf.d.(Uq(sl2)),⊗k). The
following theorem describes it under the equivalence in Theorem 2.

Theorem 3 ([3], Thm 4.11). Let (M ,⊗ : M × V → M ) be the k-linear right
module category over V generated by one object 1′ and morphisms

• : 1′• → 1

′•, : 1′− → 1

′, : 1′ → 1

′−, id
1

′ =

subject to the relations:

• = 0, •
•

= , = , = ,

= , = , • = − •

We have an equivalence of right module categories

(Repf.d.(U′
q(g),Uq(sl2)),⊗k) ≃ (Kar(Add(M )),⊗).
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Our work relies on the isomorphism EndUq(g)(V
⊗n) ∼= TL(Bn) and the dia-

grammatics for TL(Bn) in [1]. In [3], Theorem 5.12 we connect Theorem 1 and
Theorem 3 via type B/D analogues of Jones–Wenzl projectors. These idempotents
appear in a seperate topological context in [2]. The study of their diagrammatic
properties including counting formulas for morphism spaces are the topic of the
rest of our paper ([3], §5 and §6).
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Poisson orders on large quantum groups

Milen Yakimov

(joint work with Nicolás Andruskiewitsch, Iván Angiono)

We report on the results in [2] where we develop a Poisson geometric framework
for studying the representation theory of all contragredient quantum super groups
at roots of unity. This is done in a uniform fashion by treating the larger class
of quantum doubles of bozonizations of all distinguished pre-Nichols algebras [1]
associated to the ones in the celebrated classification of Heckenberger [9, 10] and
belonging to a one-parameter family. We call these algebras large quantum groups.
For a corresponding braiding matrix q, subject to a mild technical hypothesis, we
have the chain of algebras

Uq ⊃ U
>
q ⊃ U

+
q ,

a large quantum group, and corresponding quantum Borel subgroup and quantum
unipotent subgroup. There is a canonical chain of central subalgebras

Zq ⊃ Z
>
q ⊃ Z

+
q ,

constructed by Angiono [1], where in the super A case we extend those in [1] by an
extra generator to ensure module finiteness of the corresponding noncommutative
algebra over the central subalgebra.

The following notion was axiomatized by Brown and Gordon [5] following the
fundamental work of De Concini, Kac and Procesi [7].

Definition. A pair of C-algebras (R,Z) is called a Poisson order if Z is a central
subalgebra of R, R is a finitely generated Z-module and the following conditions
hold:

(a) Z is equipped a structure of Poisson algebra {·, ·} ;
(b) There exists a linear map D : Z → DerC(R) such that Dz|Z = {z,−} for all

z ∈ Z.
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The key application of Poisson orders is the following theorem of Brown and
Gordon [5], which extended related results of De Concini, Kac and Procesi [6, 7, 8]
on quantum groups at roots of unity [7].

Theorem. [5, Theorem 4.1] Let (R,Z) be a Poisson order and M := MaxspecZ.
Given x ∈ M with maximal ideal Mx, let Rx := R/MxR, a finite dimensional
algebra. If x and y belong to the same symplectic core, then Rx ≃ Ry as algebras.

Our main results are summarized as follows:

Main Theorem. For all large quantum groups Uq, the following hold:

(1) The pairs (Uq, Zq), (U
>
q , Z

>
q ) and (U+

q , Z
+
q ) have Poisson order structures in

the sense of [5] obtained from specialization.
(2) We have

MaxSpecUq
∼= B+

q ×B
−
q , MaxSpecU≥

q
∼= B+

q , MaxSpecU+
q
∼= Gq/B

+
q ,

where B±
q are opposite Borel subgroups of an explicit semisimple algebraic

group Gq of adjoint type.
(3) The Poisson structures on the first two Poisson algebraic groups are the dual

ones of the Poisson algebraic groups of Gq and B−
q with (nonstandard) Pois-

son structures from the Belavin–Drinfeld classification [3] with “empty BD
triples.” The Poisson structure on the third one is the push forward to the
flag variety of the Poisson structure on Gq.

(4) The symplectic foliations in the three cases are given in terms of twisted con-
jugacy classes, double Bruhat cells and open Richardoson varieties. The cor-
responding fiber algebras are isomorphic to each other across those sets.

The above theorem presents new results already in the case of big quantum
groups considered by De Concini, Kac and Procesi [6, 7, 8] because we do not
place any conditions on the root of unity. Interestingly, depending on the order of
the root of unity one often needs to go to the Langlands dual group. Besides all
(multiparameter) big quantum groups of De Concini–Kac–Procesi and big quan-
tum super groups at roots of unity, our framework also contains the quantizations
in characteristic 0 of the 34-dimensional Kac-Weisfeiler Lie algebras [11] in char-
acteristic 2 and the 10-dimensional Brown Lie algebras [4] in characteristic 3. The
previous approaches to the above problems relied on reductions to rank two cases
and direct calculations of Poisson brackets, which is not possible in the super case
since there are 13 kinds of additional Serre relations on up to 4 generators. We
use a new approach that relies on perfect pairings between restricted and non-
restricted integral forms.
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Medina Allende s/n
5000 Córdoba
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Université de Paris-Saclay
Bâtiment 307
91405 Orsay Cedex
FRANCE

Prof. Dr. Catharina Stroppel

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Cristian Vay

FAMAF–CIEM (CONICET)
Universidad Nacional de Córdoba
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