
Snapshots of modern mathematics
from Oberwolfach

№5/2021

Braid groups, the Yang–Baxter
equat ion, and subfactors

Gandalf Lechner

The Yang–Baxter equation is a fascinating equation
that appears in many areas of physics and mathe-
matics and is best represented diagramatically. This
snapshot connects the mathematics of braiding hair
to the Yang–Baxter equation and relates it to cur-
rent research about systems of infinite dimensional
algebras called “subfactors”.

1 Introduct ion

What do ice crystals, braids, and quantum computers have in common with von
Neumann algebras? The answer to this lies in a mathematical concept connected
to all these topics, the so-called Yang–Baxter equation. This equation is named
after Chen Ning Yang and Rodney Baxter, who discovered it independently
in their research in quantum mechanics (scattering of particles) and statistical
physics (crystals).

It seems surprising that two so different topics should lead to one and
the same mathematical equation. But the Yang–Baxter equation and its
variants play a prominent role not only in these, but also in many other
fields. A few more examples are knot theory, particular models of quantum
field theory, configurations of resistors in electrical circuits, and subfactors
(certain pairs of infinite dimensional algebras in which the law of commutativity
xy = yx is maximally violated). The Yang–Baxter equation has even contributed
significantly to the emergence of a whole new branch of mathematics (quantum
groups) and is studied nowadays from various different points of view.
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At this point it would seem appropriate to write down this Yang–Baxter
equation. Here it is:

R

R

R = R

R

R

For the time being, this picture does not say much – it only indicates that
the Yang–Baxter equation is an equation for an object “R” written in a little
box, and that R appears three times on each side of the equation. How this
diagram encodes a precise mathematical equation, and why the diagrammatical
representation is much better than a formula, will be explained in this snapshot.

The plan for doing so is the following: At first (Section 2) we will talk about
braids and meet an interesting mathematical structure, the so-called braid group.
In Section 3 we then translate the abstract braid group into concrete objects,
namely (multi-dimensional) tables of numbers. At this stage the Yang–Baxter
equation appears as a crucial condition needed in order to ensure the consistency
of the translation from braids to tables.

The solutions of this equation are only partially understood. The last part
(Section 4) will draw the connection to the Oberwolfach workshop “Subfactors
and Applications” on which this snapshot is based, and explain how higher
mathematics can be used to study the solutions of the Yang–Baxter equation.

2 Braid groups

A good preparation for understanding the Yang–Baxter equation is combing your
hair. When combing hair, one is usually interested in completely disentangling
all strands, that is to arrange them in such a way that they are hanging down
side by side without any crossings. Given a sufficiently fine comb and sufficient
patience, this is in principle always possible.

From a mathematical point of view, combing hair is therefore not very
interesting. It gets more exciting when we consider n strands that are fixed at
their top ends (that is, at the head) but also at their bottom ends, and travel
from top to bottom without looping back. In such a braid, the strands can
be entangled in an arbitrary fashion, as shown in Figure (A1) in some simple
examples with n = 3 and n = 4 strands instead of the usual n ≈ 100000 strands
of hair on a human head.

(A1)
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In these diagrams, the little gaps at the crossings of two strands indicate
which strand lies on top and which at the bottom. In slight idealization we
think of the strands as arbitrarily elastic and untearable. We consider two
braids to be identical when one of them can be transformed into the other by
using fingers and comb, that is by stretching, twiddling, embroiling (but no
cutting or tearing!) – in this case, we also say that the braids are related by a
continuous deformation. In this sense, for example the following three equations
hold:

= = = (A2)

Since the strands are fixed at the top and bottom of their diagram, there exist
infinitely many different braids that can not be transformed into each other. As
soon as sufficiently many strands or crossings are involved, it is no longer easy
to see whether a braid can be completely disentangled like in the first equation
in (A2) or if that is impossible. Finding an algorithm that decides this question
is a first mathematical problem with braid. 1

For this and other questions it is important to learn more about the properties
of the set of all braids with n strands, usually denotedBn. The rich mathematical
structure of Bn derives from the fact that any two braids a, b, represented by
two arbitrary diagrams with n strands each, can be combined to a new braid,
called ab. The rule defining this product is to join a and b by gluing the bottom
end of a to the top end of b and then compressing the resulting diagram to the
height of a and b:

a = b = ab = ba = (A3)

The colors and dashed lines used here are for illustration purposes only and will
be omitted in the following. In general, the order in which two braids are glued
together plays an important role. For example, in (A3) one has ab 6= ba. Do
you see why? 2

Apart from this violation of the law of commutativity there are however
several analogies to multiplication of numbers: Analogous to the number 1 there
exists a special braid e in Bn that satisfies be = eb = b for all b ∈ Bn: The braid
e consists of n parallel strands without any crossings (as on the right hand side
of the first equation in (A2) or the third equation in (A4)). The product of

1 This problem is known as the “word problem”. The reason for using the term “word
problem” is explained after Figure (A5). For a solution see for example [4].
2 Hint: In this case it is sufficient to consider the end points of the strands.
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braids is associative, that is (ab)c = a(bc) for all braids a, b, c. Furthermore, for
each braid b there exists a corresponding inverse braid, denoted b−1, that has
the property that it “disentangles” b by multiplication. In a formula, this is
expressed as bb−1 = e = b−1b. For example:

b = b−1 = bb−1 = = = e (A4)

Since such a structure is called a group in mathematics, one speaks of the braid
group Bn on n strands.

Braids with a diagram having only a single crossing are called elementary,
these are the braids that cross two neighboring strands once. In Bn there
exist 2(n−1) elementary braids, called σ1, σ2, . . . , σn−1 and σ−1

1 , σ−1
2 , . . . , σ−1

n−1.
Numbering the strands 1, 2, . . . , n from the left to the right, σk moves strand k
over strand k + 1, and σ−1

k moves strand k under strand k + 1. For example,
Fig. (A3) shows a = σ1.

Using continuous deformations of strands, one realises that every braid in Bn

can be written as a product of elementary braids. For example:

= = σ1σ
−1
2 σ−1

2 σ−1
1 σ2. (A5)

Braids can be thought of as arbitrary “words” with the elementary braids σk

and σ−1
k playing the role of the “letters”, for instance σ1σ10σ

−1
8 σ−1

8 σ4. Whether
such a “word” can be simplified to the trivial braid e is the question posed in
the “word problem” in footnote 1.

The elementary braids σk are well suited for an algebraic approach to the
braid group. To calculate with them one only has to take into account that
they satisfy the following equations:

σkσ
−1
k = e = σ−1

k σk, (B1)
σkσl = σlσk if l 6= k ± 1, (B2)

σkσk+1σk = σk+1σkσk+1 . (B3)

These relations are easy to verify with diagrams. Fig. (A2) shows the three
equations σ1σ

−1
1 = e (left), σ1σ3 = σ3σ1 (middle) and σ1σ2σ1 = σ2σ1σ2 (right).

The equations (B1–B3) summarise the complete mathematical structure of
Bn: Already in 1925, Emil Artin has shown that there are no further independent
relations in the braid group [1]. That means that all equations that hold in Bn

can be traced back to the fundamental equations (B1–B3). For example, the
equation σ−1

1 σ2σ1 = σ2σ1σ
−1
2 holds in Bn, but this is no really new relation
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but rather a consequence of (B3) (exercise). Instead of using diagrams one can
work just as well with the equations (B1–B3); depending on the question the
graphical or algebraic point of view is more efficient.

The algebraic view on the braid group plays a central role in several ap-
plications. Taking advantage of the fact that the equations (B1–B3) can be
implemented well on a computer, there exist cryptography protocols based on
the braid group [6]. Secure cryptography applications are designed in such a way
that for decoding a message without the key one has to solve a computationally
very demanding problem. Instead of the widely used protocol based on the
difficulty of the factorization problem (find the factorization of a large integer
into prime factors), the so-called conjugation problem was suggested in the
context of braid groups. (Given a, b ∈ Bn, decide whether there exists x ∈ Bn

such that a = xbx−1.)
Another application comes from physics, where braid groups appear in the

description of elementary particles moving in a two-dimensional plane. A
description of a set of elementary particles t1, . . . , tn must take into account
that elementary particles of the same kind (e.g. electrons) are indistinguishable,
and hence a permutation of the particles can have no observable effect. While
this is formulated in terms of the symmetric group for particles moving in three
dimensions, one has to use the braid group for lower dimensional systems.

Also on a purely mathematical level, the braid group still poses many
challenging questions, for example in the context of knot theory or so-called
representations of braids by more concrete mathematical objects as we will
discuss them in the next section.

Quiz 1:

• Find the inverses of the braids shown in Fig. (A1) and (A2).
• Find a braid z in B3 that is different from the trivial braid e and still has

the property zx = xz for all braids x in B3. (Hint: First find a braid δ
satisfying δσ1 = σ2δ and δσ2 = σ1δ. Then consider z = δδ.)

3 Tensor diagrams and the Yang–Baxter equat ion

We now turn to the question of representing braids by more concrete mathemat-
ical objects. That is, we are searching for objects satisfying equations analogous
to (B1–B3). “Representing” is strictly defined mathematical terminology that
we will discuss in an example in the following. Studying such representations is
by no means restricted to the braid group: When a mathematician encounters
a group, she is often interested not only in the group as such, but also in
realizing the relations in the group with concrete objects. This is a concept of
fundamental importance in pure mathematics as well as its applications.
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Looking at the braid grou Bn we can motivate the study of representations
in different ways: One the one hand, braids only have ambiguous realizations as
braid diagrams; each braid corresponds to infinitely many different diagrams
(see (A2) for examples). In contrast, in a representation we will associated a
unique object to each braid b. These objects will be so-called tensors which we
may think of as multi-dimensional tables.

On the other hand, the specific representations that we will discuss in the
following have several applications, in particular in quantum physics. In that
field, observable quantities of a physical system (like energy, momentum, spin,
...) are in the simplest case realized by matrices which can be composed to
tensors. The representations described below also appear in certain models of
topological quantum computers.

So much for openers. Multi-dimensional tables? What is that supposed to
mean?

To get started, let us consider a usual two-dimensional quadratic table T
with d rows and d columns (also called d× d matrix):

T = T =


T 1

1 T 1
2 . . . T 1

d

T 2
1 T 2

2 . . . T 2
d

...
. . .

...

T d
1 T d

2 . . . T d
d


To read off an entry from such a table, one has to know the row and column

number of the entry: The entry T i
j is the number in row i and column j. Since

there are d rows and columns, where d = 1, 2, . . . is a parameter chosen by us,
both i and j can take the values 1, 2, . . . , d independently of each other. The
figure on the left hand side is a tensor diagram in which the upper line of T
represents the upper index (row index) and the lower line represents the lower
index (column index) – such diagrams will soon turn out to be very useful.

Let us now imagine a multi-dimensional table T storing numbers (entries)
that depend not only on two parameters i and j, but rather on 2n parame-
ters i1, . . . , in, j1, . . . , jn, where each of these parameters can take the values
1, 2, . . . , d. Then T has d2n entries in total, and we denote these entries as
T i1...in

j1...jn
. Such a 2n-dimensional table is difficult to write down on paper, but

fits very well with tensor diagrams

...

...
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with n upper and n lower lines. Here the upper lines correspond to the upper
indices i1, . . . , in and the lower lines correspond to the lower indices j1, . . . , jn

of T (sorted from left to right). We call such a table a tensor of size n.
In the following we aim for a translation scheme that translates arbitrary

braids b on n strands into tensors T (b) of size n. 3 To find such a scheme, we
will in particular need two special tensors R and R∗ of size 2 to represent over-
and under crossings in braid diagrams:

R

R∗ = R

As an under crossing is the mirror image of an over crossing at a horizontal
line, the same should be true for R and R∗. To achieve that, we define R∗ by
exchanging the upper with the lower indices of R, namely 4 (R∗)i1i2

j1j2
= Rj1j2

i1i2
.

Note that with this definition, R∗ is now uniquely fixed by R.
A braid diagram can be built from its crossings by connecting the strands

horizontally and vertically. Analogously, we now need rules to built a tensor
diagram from R and R∗ by horizontal and vertical composition. This is done
by the following graphical calculus which also appears in knot theory [5].

Diagrammatically, the horizontal composition simply consists of writing
two tensor diagrams side by side. When we write a tensor diagram T with n
upper/lower lines (that is, of size n) to the left of a tensor diagram S of size m,
we get a tensor diagram with n+m upper and lower lines. The corresponding
tensor is denoted T ⊗ S, and its entries are defined by (T ⊗ S)i1...ina1...am

j1...jnb1...bm
=

T i1...in
j1...jn

· Sa1...am

b1...bm
. This horizontal composition enables us to translate a braid

diagram consisting of non-overlapping crossings into a corresponding tensor.
For example, the following simple braid in B4 gets translated into a tensor of
size 4 like this:

R R∗ = R ⊗ R∗

In order to also be able to translate braid diagrams such as into tensors, we
also need a tensor of size 1 for a vertical line without crossings. That is the
“unit matrix” I,

3 We will soon see that the definition of the tensor T (b) requires the specification of a special
tensor R of size two. We will therefore write TR(b) instead of T (b) to indicate the dependence
on R.
4 In general, the entries of R can be complex numbers. In that case the definition of R∗ has
to be supplemented by a complex conjugation of all its entries.
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I =

1 0 . . . 0
...

. . .
...

0 0 . . . 1


which as a table has 1’s on the diagonal and 0’s everywhere else. That is, Ii

j = 1
for i = j and Ii

j = 0 for i 6= j.
For the vertical composition we consider two tensors T and S of size n

and define a product TS that again is a tensor of size n. We do this in analogy
to the product of braids by gluing the bottom end of the diagram of T to the
top end of the diagram of S. For example, if T and S have size 3, we get

T

S
T S =

In this diagram the lower lines of T coincide with the upper lines of S. We
therefore define TS as the tensor whose entries (TS)i1...in

j1...jn
are built from the

products T i1...in

k1...kn
Sk1...kn

j1...jn
(lower indices of T equal to upper indices of S), namely

by summation over all dn possibilities k1, . . . , kn ∈ {1, . . . , d}. Written as a
formula, we define the tensor TS of size n as

(TS)i1...in
j1...jn

=
d∑

k1,...,kn=1
T i1...in

k1...kn
Sk1...kn

j1...jn
.

To give an example, let us take n = 1 (just a single upper/lower index) and
d = 2, so that T and S are (2× 2)-matrices. Then our product is(

T 1
1 T 1

2
T 2

1 T 2
2

)(
S1

1 S1
2

S2
1 S2

2

)
=
(
T 1

1 S
1
1 + T 1

2 S
2
1 T 1

1 S
1
2 + T 1

2 S
2
2

T 2
1 S

1
1 + T 2

2 S
2
1 T 2

1 S
1
2 + T 2

2 S
2
2

)
,

which you might know as the matrix product from elsewhere. This again is a
product for which the law of commutativity does not hold, that is in general
TS 6= ST . One easily checks that AI = A = IA holds for all matrices A,
justifying our graphical notation for I (empty line without a box).

This completes our definition of the translation map b 7→ TR(b) from braids
in Bn to tensors TR(b) of size n. As mentioned before, the lower index R on
TR indicates that the mapping b 7→ TR(b) depends crucially on the choice of R.
As soon as R is fixed, we can view any braid in Bn (with an arbitrary number
n of strands) as a tensor of size n. As an example, we consider the braid b from
Fig. (A4):
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b = = R

R∗ = (R⊗ I)(I ⊗R∗) = TR(b)

All d6 entries of TR(b) can be calculated on the basis of the composition rules
described above and expressed in terms of the entries of R. To check that you
have memorised these rules, you can verify that in this example (for d = 3)

TR(b)123
211 = R12

21R
11
13 +R12

22R
11
23 +R12

23R
11
33.

As a crucial point of our construction, we however still have to check that
the translation from braids into tensors is consistent and does not run into
contradictions. This is not evident because a diagram of a given braid can be
twisted and bent into a different diagram which still represents the same braid
and hence ought to be translated into the same tensor. Each such deformation
can be expressed in terms of the three cases depicted in Fig. (A2) graphically
and in (B1–B3) in formulae. We therefore have to make sure that in each of
these three cases, the left and right hand sides of the equation correspond to
the same tensor under our translation map.

It turns out that the second equation (middle of Fig. (A2) and formula
(B2)) is automatically satisfied according to our rules of horizontal and vertical
composition, i.e. it does not pose any conditions on R. Do you see why? 5 The
first and third equation (left and right in Fig. (A2)) take the following form for
tensor diagrams:

=
R∗

R

R

R

R = R

R

R

(X)

The two diagrammatic equations (X) correspond to two concrete conditions
on R. The first equation poses a condition called unitarity which is satisfied by
many tensors. The second equation is however a much more involved condition
on R – this is the Yang–Baxter equation mentioned at the beginning, which we
can now understand precisely as an equation for tensors of size 2. The tensors R
solving both equations (X) simultaneously are called unitary “R-matrices”.

Given any unitary R-matrix R, the map TR is well-defined and – as mentioned
before – is called representation by mathematicians. That means that it carries

5 One can check that

(R⊗ I ⊗ I)(I ⊗ I ⊗R) = R⊗R = (I ⊗ I ⊗R)(R⊗ I ⊗ I)

holds for all tensors R of size two.
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products of braids into (vertical) products of tensors, i.e. satisfies TR(bb′) =
TR(b)TR(b′) for all braids b, b′ ∈ Bn. The tensors TR(σk) satisfy equations
analogous to (B1–B3), for example TR(σ3)TR(σ1) = TR(σ1)TR(σ3). In all
known cases the TR(b) satisfy also additional relations that depend on R (one is
in the situation of a so-called non-faithful representation) that we will however
not discuss here.

To appreciate the complexity of the Yang–Baxter equation one should realise
that this really is a system of d6 coupled cubic equations (the left and right
hand sides of the equation are tensors of size 3) for d4 unknowns (the entries of
the tensor R of size 2). In the simplest case d = 2 this amounts to 64 equations
for 16 unknowns. It is not very illuminating to write down these equations
explicitly, the diagrammatical form is much clearer.

An example of a solution with d = 2 is

R = 1√
2

(I ⊗ I +A⊗B), A =
(

1 0
0 −1

)
, B =

(
0 1
−1 0

)
.

Here ⊗ denotes the horizontal composition defined above, and I is the (2× 2)
unit matrix. The sum of tensors is defined entry by entry, and the prefactor 1√

2
multiplies all entries of the tensor.

For d = 2, all solutions of (X) are known. But already for d = 3, let alone
for general d, this is no longer the case.
Quiz 2:

• Given four arbitrary tensors A,B,C,D of size 1 (that is, (d× d) matrices),
consider the quadratic diagram

A

C

B

D

Show that it does not matter whether one first horizontally composes the
matrices A,B and C,D standing side by side, and then composes the result-
ing tensors vertically, or if one first vertically composes the matrices A,C
and B,D standing on top of each other, and then composes the resulting
tensors horizontally.

• Define a tensor R of size 2 as follows: Ri1i2
j1j2

= 1 if i1 = j2 and i2 = j1, and
Ri1i2

j1j2
= 0 in all other cases. Check that R is a unitary R-matrix, solving

both equations in (X).

4 From R-Matr ices to subfactors and back again

The Yang–Baxter equation keeps inspiring mathematicians to come up with new
ideas to learn something about its solutions. On the one hand, there is fairly
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concrete motivation like possible applications of R-matrices to the modelling of
logical gates in a quantum computer. On the other hand, there is fundamental
mathematical interest in the structure of the set of its solutions. A fascinating
aspect of this equation is that it not only plays a role in so many different areas,
but also that it allows for completely different approaches. For example, there
exist methods based on the idea of quantisation (the transition from a system
of classical mechanics to a system in quantum mechanics), or abstract algebraic
methods. In this last section I want to indicate how one can approach solutions
of the Yang–Baxter equation by a detour through infinite-dimensional analysis.

Let us summarise where we are after Sections 2 and 3: There exist certain
tensors of size 2 that are called unitary R-matrices. The condition defining
them is complicated and involves the Yang–Baxter equation. We know some
examples, but we have no good overview over the set of all R-matrices. However,
we do know that each R-matrix R defines a representation of braids b on n
strands by tensors TR(b) of size n. These tensors can be multiplied (vertically)
with each other, but they can also be added and multiplied with numbers.
Hence it makes sense to talk about polynomials in the tensors TR(b). These
form the algebra

NR,n = {All polynomials in TR(b) for arbitrary braids b on n strands} .

This is a finite-dimensional algebra in which the law of commutativity does
not hold, as already remarked in the context of the vertical product. But the
second exercise in Quiz 1 also shows that NR,n still contains many elements Z
that satisfy ZT = TZ for all T ∈ NR,n. In this sense, NR,n is not completely
non-commutative.

This changes when one takes the limit n→∞; at the same time taking this
limit also exhibits the characteristic analytic aspects of subfactors. The limit is
taken in two steps: In the first step, one considers the algebra NR,∞ defined
as the union of the NR,n over all natural numbers n. Thus NR,∞ contains
representations of braids with any arbitrary (but finite) number of strands.

While NR,∞ is still a purely algebraic object, the second step leads to
braids with infinitely many strands and relies on concepts from analysis in a
crucial manner. This will be described only briefly here: One considers the
so-called trace τ , that is the map from NR,∞ to (complex) numbers that maps
a tensor T ∈ NR,∞ of size n to the number τ(T ) = d−n

∑d
i1,...,in=1 T

i1...in
i1...in

. 6

With the help of τ one can define the norm ‖T‖ :=
√
τ(T ∗T ) ≥ 0 on NR,∞.

The norm has many similarities to the absolute value function x 7→ |x| on the
rational numbers x ∈ Q. Recall that the absolute value defines in particular
the distance |x− y| between two rational numbers x, y, and limits of sequences

6 Diagrammatically the trace looks like this (in an example of a tensor T of size 2):
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of rational numbers. When one adds all possible limits to the set of rational
numbers one obtains the real numbers R that contain also irrational numbers
like
√

2 and π and form the basis of analysis.
In analogy to the “completion” of Q to R, also our algebra NR,∞ can be

completed with the help of the trace τ and the norm ‖ · ‖ to a larger algebra NR

(we do not give details here). In contrast to NR,∞, the enlarged algebra NR

contains also representations of braids with infinitely many strands. Furthermore,
this algebra contains an identity I corresponding to the braid with infinitely
many strands and no crossings, and is “extremely non-commutative” in the
sense that only multiples of Z = I satisfy ZT = TZ for all T ∈ NR. Since NR

also has the right analytic properties (suitably defined limits of sequences in
NR also lie in NR), one speaks of a factor – a specific sort of algebra defined by
John von Neumann in his research on the mathematical foundations of quantum
mechanics.

Together with Francis Murray, von Neumann has organised factors in three
broad types, called type I, II, and III. This classification was later refined by
Alain Connes. On the basis of these results one can show that the factor NR

does not contain any interesting information about R; independently of R one
essentially always gets the same algebra NR, with the official (but slightly
clumsy) name “hyperfinite factor of type II1”. This sobering news seems to
call into question the approach based on the algebras NR. However, it can be
fixed: If one considers not only the factor NR on its own, but also a smaller
factor N<

R contained in it 7 , one obtains a so-called subfactor N<
R ⊂ NR, that

is an inclusion of two factors. This far more complex structure contains relevant
information on R and provides mathematical tools to extract this information.

Since Vaughan Jones’ (1952–2020) discovery [2] of a numerical invariant
measuring the relative size of the smaller factor in the bigger factor, subfactors
are an intense field of study. 8 Also the workshop on which this snapshot is

τ

(
T

)
= T = 1

d2

d∑
i1,i2=1

T i1i2
i1i2

.

7 The smaller factor is defined by the same idea that underlies Hilbert’s paradox of the
Grand Hotel [8]: In the braid group with infinitely many strands one can shift all crossings to
the right by one strand. The resulting braids do not entangle the first strand and lead to the
smaller factor N<

R .
8 Interestingly, there is also a connection in the other direction, starting from subfactors and
leading to braid groups: Jones’ works on subfactors led to surprising insights on representations
of the braid group, and the famous Jones polynomial from knot theory [3].
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based was dedicated to this topic.
With this and other methods one can study the set of all unitary R-matrices

and, despite the astonishing detour from a finite tensor R over an inclusion of
two infinite-dimensional algebras, obtain concrete information on the solutions of
the Yang–Baxter equation. In a special case, this has already led to a complete
classification [7], but in general a lot remains to be done!

A better understanding of this classification problem could have applications
in quantum physics: It would clarify the status of unitary R-matricds as logical
gates in a (so far hypothetical) topological quantum computer, and contribute
to the understanding of quantum field theoretic models.

Image credi ts
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