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Introduction by the Organizers

The workshop Analysis, Geometry and Topology of Positive Scalar Curvature Met-
rics, organized by Bernd Ammann (Regensburg), Bernhard Hanke (Augsburg) and
Anna Sakovich (Uppsala), was the fourth in a series of workshops with the same
title, the previous ones taking place in 2014, 2017 and 2021. It was attended by
48 participants in person, mainly from Europe, the USA and Asia, and 13 vir-
tual participants from Europe, the USA and China. Both numbers include some
graduate students and postdoctoral researchers.

On Monday morning, Christian Bär (Potsdam) and Piotr Chruściel (Vienna)
gave two extended 80-minute survey talks entitled Rigidity for scalar curvature
and Mathematical relativity, this and that, highlighting two important pillars in
scalar curvature geometry that were taken up in different variations by many of
the talks that followed.
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These included recent results on scalar curvature rigidity on convex polytopes,
a Llarull-type comparison theorem for possibly non-spin oriented 4 manifolds, the
relation of band width to the Rosenberg index, and scalar curvature rigidity of
manifolds with conical singularities.

Continuing a theme highlighted in Piotr Chruściel’s presentation, a number of
talks focused on topics related to the positive mass conjecture in general relativity.
In particular, we heard about a variant of the mass for asymptotically hyperbolic
manifolds defined using renormalized volume, we listened to talks about the re-
lation of positive mass theorem to non-uniqueness of Ricci flow, about the proof
of Riemannian Penrose inequality using potential theory, about estimates for the
Bartnik mass, and about new results on positivity of mass for spin initial data
sets. Another talk discussed a common ingredient of all positive mass theorems,
namely the dominant energy condition, from both a spacetime and initial data
set perspective. In a different talk, a summary of recent results for spacetimes
of low regularity featuring related curvature bounds was presented. The initial
value problem in general relativity received further attention in subsequent talks,
in particular a gluing construction yielding initial data that collapses to a black
hole in finite time was presented, and drawbacks of the conformal method that
aims to parametrise the set of all initial data were discussed.

A number of talks were devoted to the application of geometric flows to the re-
cent solution of the Hamilton-Lott conjecture and its possible extension to higher
dimensions, to scalar curvature extremality and rigidity with non-smooth met-
rics, to unstable Einstein 4-manifolds, and to the geometry of (3 + 1) Minkowski
spacetime.

Spaces and moduli spaces of Riemannian metrics with positive scalar curvature
are classical topics that still attract a lot of attention. This was addressed by
several talks using advanced bordism-theoretic techniques and family versions of
Seiberg-Witten invariants, respectively. One talk presented an extension of the
Lichnerowitz obstruction to a family of intermediate curvature conditions and
studied their behavior under surgery, leading to new invariants of rational bordism.
A gluing technique for manifolds with corners under positive scalar and mean
curvature assumptions was the topic of another talk, with applications to minimal
concordance.

Questions of extremality and rigidity are naturally related to questions of sta-
bility, identifying suitable topologies in which non-extremal situations converge to
extremal or rigid ones. This topic has attracted a lot of attention recently, which
was reflected in a survey lecture on tools, theorems and questions in scalar curva-
ture stability, and a lecture on limits of sequences of manifolds with nonnegative
scalar curvature. Somewhat related in spirit was another talk on the solution of
Schoen’s conjecture in the presence of a noncompact area-minimizing boundary,
which arises as a limit of isoparametric surfaces.

As the thematic field of the conference was very active in the last years, with
new ideas and important progress in several directions, we decided to have a
total of 26 reaseach talks (in addition to the 2 survey talks), in order to reflect a
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large spectrum of new developments and also to let some younger researchers to
present their work. Most of the research talks were 40 or 50 minutes long, but
we also had 25 minute talks contributed by younger participants. Similar to the
previous meetings in this series, we observed an intense interaction of scientists
with different mathematical backgrounds throughout the workshop, integrating
both face-to-face and online participants.

We could always rely on the perfect working conditions at the Oberwolfach
institute and the great support by its staff. In particular we appreciated the
possibility to invite a significant number of in-person participants who enjoyed the
traditional, stimulating Oberwolfach atmosphere, which was indispensible for the
success of our workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Scalar Curvature Stability: Tools, Theorems, and Questions

Brian Allen

(joint work with E. Bryden, D. Kazaras, R. Perales, and C. Sormani)

1. Introduction

Although scalar curvature is the simplest curvature invariant, our understanding of
scalar curvature has not matured to the same level as Ricci or sectional curvature.
Despite this fact, many rigidity phenomenon have been established which give
some of the strongest insights into scalar curvature. Important examples include
Geroch’s conjecture, the positive mass theorem, and Llarull’s theorem. In order
to further understand scalar curvature we ask corresponding geometric stability
questions, where the hypotheses of the rigidity phenomenon are relaxed, and one
would like to show that Riemannian manifolds which satisfy the relaxed conditions
are close to the rigid objects in some topology. In this talk we will survey what is
known for scalar curvature stability, discuss what the questions are in this area,
and introduce important tools which have been useful so far.

2. Scalar Curvature Phenomenon

When exploring sequences of Riemannian manifolds with scalar curvature lower
bounds we see that splines, bubbles, and drawstrings, depicted in Figure 2, are
persistent phenomenon which need to either be ruled out by making an assumption
or addressed by the choice of topology one makes when choosing an appropriate
notion of convergence. Examples with splines and bubbles are constructed using
Gromov-Lawson tunnels with estimates. Careful constructions of this type have
been carried out by Basilio, Dodziuk, and Sormani [12], Basilio and Sormani [13],
Dodziuk [19], and Sweeney [29]. If one allows a sequence of manifolds which are
non-diffeomorphic to the limit manifold then Basilio and Sormani [13] have also
shown that sewing is possible. The existence of drawstrings in dimensions n ≥ 4
with scalar curvature bounds was constructed by Lee, Naber, and Neumayer [33]
and constructed in dimension n = 3 by Kazaras and Xu [30].

Due to the presence of splines in all scalar curvature stability problems we know
that Gromov-Hausdorff stability is not appropriate since a sequence of manifolds
with increasingly many splines cannot converge in the Gromov-Hausdorff sense by
Gromov’s compactness theorem [16]. Hence we are left to look for other notions
of convergence for sequences of Riemannian manifolds. In this note we will give
examples of three different choices of convergence one can use. We emphasize that
there is no clear hierarchy between the three choices we have and hence it is the
philosophy of the author that our goal should be to prove all three notions of
convergence for most scalar curvature rigidity results.
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Figure 1. From left to right, splines, bubbling, and a drawstring
where a circle has been pulled to almost a point. Along such a
sequence the splines would become arbitrarily thin, the neck of
the bubble would pinch to a point, and the circle would be pulled
to a point by the drawstring.

3. Geroch Conjecture Stability

We start our exploration by considering the Geroch conjecture rigidity result.

Theorem 1 (Schoen and Yau [36], Gromov and Lawson [24]). If (Tn, g) is a
Riemannian metric with non-negative scalar curvature then (Tn, g) is isometric to
a flat torus.

Various special cases of Geroch stability have already been addressed. Single
and double warped products were addressed by Allen, Vazquez, Parise, Payne,
and Wang [3], the graph case was studied by Pacheco, Ketterer, and Perales [35],
and conformal cases by Allen [2], and Chu and Lee [17]. In these special cases,
Sormani-Wenger Intrinsic Flat (see Sormani and Wenger [39] for the definition) or
Gromov-Hausdorff convergence was established. In general, since splines, bubbles,
and drawstrings are possible in the case of Geroch stability, one needs to add
a hypothesis to remove two of the three scalar curvature phenomenon to show
stability. In the following stability result, the authors choose to assume an entropy
bound, which rules out splines and bubbles, and show dp stability to a flat torus.
One can find the definition of dp convergence in [33] where it is demonstrated that
dp convergence is resilient to drawstrings. See [8] for an explanation of the fact
that dp convergence is not well suited in the presence of splines and bubbles.

Theorem 2 (Lee, Naber, and Neumayer [33]). Fix n ≥ 2 and p ≥ n + 1. There
exists a δ = δ(n, p) > 0 and V0 = v0(n, p) > 0 such that the following holds: For
any V > V0 and (Tn, gj) a sequence of Riemannian tori such that

Rgj ≥ −1

j
, Vol(Tn, gj) ≤ V0, ν(Tn, gj) ≥ −δ,(1)

a subsequence of (Tn, gj) converges to a flat torus (Tn, gF ) in the dp sense.

Question 1. Given that the entropy bound of Theorem 2 removes the possibility of
splines and bubbles forming along a sequence, can we formulate and prove Geroch
stability where one removes the possibility of bubbles and drawstrings and shows
volume preserving Sormani-Wenger Intrinsic Flat convergence to a flat torus?
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4. Positive Mass Theorem Stability

Theorem 3 (Schoen and Yau [8], Witten [40]). If (M3, g) is an asympotically flat
manifold with non-negative scalar curvature then the ADM mass is non-negative.
If the ADM mass is zero then (M3, g) is isometric to Euclidean space.

The stability of the positive mass theorem has been studied in many special
cases. Assuming the existence of a smooth IMCF by Allen [4–7], in terms of the
Brown-York Mass for graphs in Euclidean space by Alaee, Cabrera Pacheco, and
McCormick [1], metrics conformal to Euclidean space by Corvino [18], Lee [31],
axially symmetric metrics by Bryden [15], using spinors by Finster and Bray [14],
Finster and Kath [22], and Finster [21], in the geometrostatic setting by Stavrov-
Allen and Sormani [38], and the rotationally symmetric setting by Lee and Sormani
[32]. In these special cases, many different notions of convergence were considered
which generally do not imply Gromov-Hausdorff convergence due to the presences
of splines.

In the following result, the authors address a conjecture by Huisken and Ilmanen
[28] where the philosophy is to remove all of the scalar curvature phenomenon
depicted in Figure 2 in a bad set and show that the remaining set converges to
Euclidean space.

Theorem 4 (Dong and Song [20]). Let (M3
i , gi) be a sequence of asymptotically

flat Riemannian manifolds with non-negative scalar curvature and suppose that
the ADM mass mADM (Mi, gi) ց 0. Then for all i ∈ N and each end in Mi, there
is a domain Zi ⊂Mi with smooth boundary so that |∂Zi|gi ց 0, Mi \ Zi contains
the given end, and

(Mi \ Zi, d̂gi , pi) → (R3, dE3 , 0),(2)

in the pointed measured Gromov-Hausdorff sense, where pi ∈Mi \Zi is any choice

of base point, and d̂gi is the restricted length metric on Mi \ Zi induced by gi.

Question 2. Can one formulate and prove a version of Geroch stability in the
style of Theorem 4?

Question 3. In light of Theorem 4, one can ask to say more about what is hap-
pening on the bad set Zi. For instance, is Zi made up of splines, bubbles, and
drawstrings only? One way of providing some evidence in this direction is to for-
mulate a stability conjecture where one assumes a condition which rules out splines
and bubbles and concludes dp stability and another version of a stability conjecture
where one rules out bubbles and drawstrings which concludes volume preserving
Sormani-Wenger Intrinsic Flat convergence. In concert, these three stability re-
sults would be giving strong evidence that the bad sets Zi are made up of only
splines, bubbles, and drawstrings, reinforcing the belief that these are the only phe-
nomenon which one needs to worry about when discussing sequences with scalar
curvature lower bounds (note that sewing is also possible if one allows the topology
of the sequence to vary).
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5. Llarull Stability

We now explore our last scalar rigidity theorem example. Here we state a slightly
less general version of Llarull’s rigidity theorem.

Theorem 5 (Llarull [11]). If (Sn, g) is a Riemannian metric so that g ≥ gSn ,
where gSn is the round sphere, whose scalar curvature Rg ≥ n(n− 1) then (Sn, g)
is isometric to (Sn, gSn).

In this case, when we consider the stability of Theorem 5 we notice that draw-
strings are not possible due to the metric lower bound assumption which is neces-
sary in the rigidity theorem. Hence, volume preserving Sormani-Wenger Intrinsic
Flat convergence is most appropriate for stability in this case. In fact, any time
that rigidity is phrased in terms of a 1−Lipschitz map F : (M, g) → (N, h) we
claim that volume preserving Sormani-Wenger Intrinsic Flat convergence will be
the correct choice for proving the corresponding stability result.

Theorem 6 (Allen, Bryden, and Kazaras [9]). Let V,D,m,Λ > 0. If a sequence
{(S3, gi)}∞i=1 of Riemannian 3-spheres satisfies

gi ≥ gS3 , Vol(S3, gi) ≤ V,(3)

Diam(S3, gi) ≤ D, inf
Ω⊂S3

Area(∂Ω,gi)
min(Vol(Ω,gi),Vol(S3\Ω,gi))

≥ Λ,(4)

and
∥∥∥(6−Rgi)

+
∥∥∥
1/2

L2(gi)
→ 0,(5)

then it converges in the volume preserving Sormani-Wenger Intrinsic Flat sense:

dVF((S
3, gi), (S

3, gS3)) → 0.(6)

The proof uses two main tools from the literature: spacetime harmonic functions
developed by Hirsch, Kazaras, and Khuri [25] and used to give a new proof of
Llarull’s theorem by Hirsch, Kazaras, Khuri, and Zang [26] and the Volume Above
Distance Below (VADB) theorem of Allen, Perales, and Sormani [11]. Shortly after
Theorem 6 was established a more general result was established using the spinor
formulas which Llarull used to establish stability and the VADB theorem.

Theorem 7 (Hirsch and Zhang [27]). Let V,D,m,Λ> 0. If a sequence {(Sn, gi)}∞i=1,
n ≥ 3 of Riemannian n-spheres satisfies

gi ≥ gSn , Diam(Sn, gi) ≤ D, inf
u∈W 1,2(Sn)

‖∇u‖2
L2(Sn)

infk∈R ‖u−k‖2
L2(Sn)

≥ Λ,(7)

and

Rgi ≥ n(n− 1)− 1

i
(8)

then it converges in the volume preserving Sormani-Wenger Intrinsic Flat sense:

dVF((S
n, gi), (S

n, gSn)) → 0.(9)
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It should be noted that Hirsch and Zhang prove two other versions of Llarull
stability, one with an Lp assumption of the negative part of the scalar curvature
below n(n− 1) and another result with a good set bad set decomposition similar
to Theorem 4.

Question 4. Can one use spinors in order to establish Geroch stability and posi-
tive mass theorem stability in dimensions n ≥ 3?

Question 5. Can one generalize Theorem 7 to the case of the results of Goette
and Semmelmann [23]?

6. Volume Above Distance Below Theorem

We end this note by stating and discussing the VADB theorem which has proved
useful so far in proving stability of Llarull as well as many special cases of Geroch
stability and positive mass thoerem stability.

Theorem 8 (Allen, Perales, and Sormani [11]). Suppose we have a fixed compact,
oriented, Riemannian manifold, (Mm, g0), without boundary and a sequence of
continuous Reimannian manifolds (M, gj) such that

(10) gj(v, v) ≥ (1− C(j)) g0(v, v), ∀p ∈M, v ∈ TpM, C(j) ց 0,

and a uniform upper bound on diameter, Diam(Mj) ≤ D0, and volume convergence

(11) Vol(M, gj) → Vol(M, g0),

then we find volume preserving Sormani-Wenger Intrinsic flat convergence

(12) dVF ((M, gj), (M, g0)) → 0.

It should also be noted that Allen and Perales [10] have proved a version of
Theorem 8 for manifolds with boundary. Hence one can use the VADB theorem
with boundary to discuss stability of scalar curvature rigidity results on manifolds
with boundary.

Question 6. Can one prove a version of Theorem 8 for sequences which are not
diffeomorphic to the limit manifold? Addressing this question would allow us to
extend Theorem 6 and Theorem 7 to 1−Lipschitz maps from manifolds which are
not diffeomorphic to the sphere.
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Rigidity for scalar curvature

Christian Bär

(joint work with Simon Brendle, Bernhard Hanke, Yipeng Wang)

In this talk we survey some older and some recent results about rigidity phenomena
for scalar curvature. There is no claim to completeness of the list of results.

The setup is as follows: By M and M0 we will always denote manifolds which
are connected, oriented, and of dimension n. We will fix the Riemannian manifold
(M0, g0), and we want to know if each smooth spin map

Φ: (M, g) → (M0, g0)

with deg(Φ) 6= 0 and Lipschitz constant 1 must be an isometry, provided S ≥ S0◦Φ.
Here S stands for the scalar curvature of g and S0 for the one of g0. In this case,
we say that (M0, g0) is rigid for scalar curvature.

Example. LetM0 = S2 equipped with any metric of positive scalar curvature S0.
In dimension 2, scalar curvature is the same as Gauss curvature, up to factor of
2. From S ≥ S0 ◦Φ we deduce that M also has positive curvature. By the Gauss-
Bonnet theorem, M must be diffeomorphic to S2 as well. W.l.o.g. let deg(Φ) ≥ 1;
otherwise reverse the orientation ofM . Denoting the area 2-forms ofM andM0 by
dA and dA0, respectively, we can write Φ∗dA0 = fdA for some function f : M → R.
The Lipschitz property of Φ implies |f | ≤ 1. Applying the Gauss-Bonnet theorem
to M and to M0 we find

deg(Φ) · 8π = deg(Φ)

∫

M0

S0 dA0 =

∫

M

(S0 ◦ Φ)Φ∗dA0 ≤
∫

M

S dA = 8π.
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This implies deg(Φ) = 1, S = S0 ◦ Φ and Φ∗dA0 = dA. The last fact, together
with the Lipschitz-1-property, implies that Φ is a local isometry. Since its degree
is 1, it is an isometry. This shows that S2 with any metric of positive curvature is
rigid for scalar curvature.

Llarull ([8, Thm. B]) extended this rigidity result to spheres of arbitrary dimen-
sion when equipped with their standard metric. The proof uses spin geometry and
index theory for Dirac operators. Goette and Semmelmann ([3, Thm. 2.1]) proved
rigidity for scalar curvature forM0 with non-vanishing Euler number, nonnegative
curvature operator and positive Ricci curvature.

IfM0 is the smooth boundary of a strictly convex domain Ω ⊂ Rn+1, thenM0 is
diffeomorphic to Sn and its Weingarten map W∂Ω is definite. The Gauss equation
implies that the curvature operator and the Ricci curvature of the induced metric
are positive definite. Hence, for even n, the result by Goette and Semmelmann
implies that Sn with such a metric is rigid for scalar curvature. For odd n, this
has been shown by Li, Su, and Wang ([7, Thm. 1.2]).

Remark. It should be emphasized that there are many Riemannian manifolds
which are not rigid for scalar curvature. To see this, we consider a closed manifold
M = M0 of dimension n ≥ 3. Start with a Riemannian metric g and denote its
scalar curvature by S. Assume S > 0.

Given ε > 0, there exists a Riemannian metric g0 with |S0 − 1
2S| < ε and

|g − g0| < ε, see [9, Thm. 1]. If ε is chosen small enough, we can rescale g to a

metric g̃ such that g̃ > g0 and S̃ > S0. Putting Φ = id we see that (M0, g0) is not
rigid for scalar curvature.

The results for compact M and M0 with empty boundary are summarized in
Table 1.

M0 g0 assumption conclusion

Gauss-Bonnet S2 S0 > 0 S ≥ S0 ◦ Φ Φ isometry

[8] Sn gstd S ≥ S0 ◦ Φ Φ isometry

[3] for n even

[7] for n odd
Sn g∂Ω

Ω ⊂ Rn+1 convex
S ≥ S0 ◦ Φ Φ isometry

[3] χ(M0) 6= 0
(R0 : Λ

2 → Λ2) ≥ 0

ric0 > 0
S ≥ S0 ◦ Φ Φ isometry

Table 1. M and M0 are compact with empty boundary

Lott ([10, Cor. 1.2]) generalized the results by Goette and Semmelmann to
manifolds with boundary. In addition to the scalar curvature assumption, one has
to require Φ(∂M) ⊂ ∂M0 and to make an analogous assumption on the mean
curvature of the boundary, H∂M ≥ H0 ◦ Φ.

Bär, Brendle, Hanke, and Wang ([1, Thm. A]) showed scalar curvature rigidity
for a class of warped product spaces, generalizing earlier results by Cecchini and
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Zeidler ([2, Thm. 10.2]). Here M0 = [θ−, θ+] × Sn−1 is equipped with a warped-
product metric g0 = gρ = dθ2 + ρ(θ)2gSn−1 . The crucial assumption is that ρ is
strictly logarithmic concave, i.e. (log ◦ρ)′′ < 0. This comprises annular regions in
Euclidean space (ρ(θ) = θ), in spheres (ρ(θ) = sin(θ)), and in hyperbolic space
(ρ(θ) = sinh(θ)). So positivity of the scalar curvature is no longer required.

Table 2 summarizes the results ifM andM0 are compact with nonempty bound-
ary.

M0 g0 assumption conclusion

[10] χ(M0) 6= 0

(R0 : Λ
2 → Λ2) ≥ 0

ric0 > 0

II∂M0 ≥ 0

S ≥ S0 ◦ Φ

Φ(∂M) ⊂ ∂M0

H∂M ≥ H0 ◦ Φ

Φ local

isometry

[2] n odd

[1] n ≥ 3

[θ−, θ+]× Sn−1

n ≥ 3

g0 = gρ

(log ◦ρ)′′ < 0

S ≥ S0 ◦ Φ

Φ(∂M) ⊂ ∂M0

H∂M ≥ H0 ◦ Φ

Φ isometry

Table 2. M and M0 are compact with nonempty boundary

Remarkably, rigidity for such warped products fails if n = 2. Indeed, putting
M := M0 and g = gλρ for any constant λ > 1 we have that Φ = id is Lipschitz
with Lipschitz constant 1, has degree 1 but is not an isometry. Yet gρ and gλρ
have the same scalar curvature and the same boundary mean curvature.

Scalar curvature rigidity is also of interest for noncompact, even for incomplete
Riemannian manifolds. Gromov [4, Sec. 3.9] suggested considering the standard
sphere with finitely many points removed as a test case. Even this is still open.
But if we remove one point or a pair of antipodal points, the punctured sphere is
known to be scalar curvature rigid, provided n ≥ 3. For n = 2 we have the same
counterexamples as mentioned above. For n = 3 and Φ = id rigidity has been
proved using µ-bubbles by Hu, Liu, and Shi, see [6, Thm. 1.6]. An independent
proof for n = 3 and Φ = id using spacetime harmonic functions is due to Hirsch,
Kazaras, Khuri, and Zhang ([5, Main Thm. D]). The general case n ≥ 3 has been
resolved by Bär, Brendle, Hanke, and Wang ([1, Thm. B]) using Dirac operator
methods.

We summarize this in Table 3.

M0 g0 assumption conclusion

[5], [6] for n = 3

and Φ = id

[1] for n ≥ 3

Sn \ {p,−p} gstd
S ≥ S0 ◦ Φ

Φ proper
Φ isometry

Table 3. M and M0 are incomplete

The question of scalar curvature rigidity can be modified in many ways. The
condition that Φ be Lipschitz with constant 1 can often be weakened to being
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contracting on 2-vectors. One can allow M to have higher dimension than M0

and then has to replace the degree of Φ by its Â-degree. One can try to drop
the assumption that Φ is a spin map. Finally, one can allow low regularity of the
metrics and of Φ. Various talks at this workshop deal with these modifications.
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Curvature operators and rational cobordism

Renato G. Bettiol

(joint work with McFeely Jackson Goodman)

A natural way to generalize the celebrated Lichnerowicz obstruction to positive
scalar curvature on spin manifolds is to find curvature conditions which imply that
some twisted Dirac operators have vanishing index. To make these generalizations
most interesting, the curvature conditions should be as weak as possible, easily
computable, and, ideally, invariant under appropriate surgeries.

Following this scheme and inspired by recent works of Petersen and Wink [2,3],
we determine a family of pointwise piecewise linear inequalities Cp(R) > 0 on
the eigenvalues of curvature operators R : ∧2 TM → ∧2TM that imply vanishing
of the twisted Â-genus Â(M,E) = 〈Â(TM) · chE, [M ]〉 on a closed Riemannian

spin manifold (M, g), where the twisting bundle E ⊆ TM⊗p
C

is any prescribed
parallel bundle of p-tensors. For instance, in dimension n = 8, Einstein metrics
with 5-positive curvature operator have C1(R) > 0. This shows that M = HP 2

does not admit Einstein metrics with 5-positive curvature operator, since it has
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Â(M,TMC) 6= 0. The curvature conditions Cp(R) > 0 determine spectrahedral
cones of curvature operators and are hence “easily computable”; they are also
stable under surgeries of sufficiently high codimension.

We show that every nontorsion cobordism class in ΩSO
n , n ≥ 10, has a manifold

with C1(R) > 0, that is, without the spin assumption, this curvature condition
does not impose any restrictions on the cobordism class (hence it is “as weak as

possible”). On the other hand, with the spin assumption, the vanishing of Â(M)

and Â(M,TMC) are the only restrictions on the cobordism class of manifolds with

C1(R) > 0. Namely, a closed spin manifold Mn, n ≥ 10, with Â(M) = 0 and

Â(M,TMC) = 0 is rationally spin cobordant to a manifold with C1(R) > 0.
The above can be used to annihilate further rational cobordism invariants, such

as the Witten genus, elliptic genus, signature, and even the rational cobordism
class itself, by requiring Cp(R) > 0 for appropriate values of p.

For further details, please refer to the preprint [1].
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Attaching faces of positive scalar curvature manifolds with corners

Alessandro Carlotto

(joint work with Chao Li)

It is a natural task, also partly motivated by the study of concordance for suitable
classes of Riemannian metrics on a compact manifold with boundary (see [2]), to
develop techniques to smoothly attach two assigned manifolds with corners while
preserving certain curvature conditions. In the context of this lecture we wish to
investigate the case when such conditions are a lower bound on the scalar curvature
(most notably the positive scalar curvature requirement) together with say the
mean-convexity or minimality of the leftover boundary (namely: the portion of
the boundary that remains after the attachment operation is performed). This
can be regarded as a natural, albeit long-awaited generalization of the classical
theorem by Miao [5] and - to some extent - of its much more recent refinements
by Bär and Hanke [1].

In my talk I have tried to describe some of the things we have learnt, over
the past few years, about these sorts of questions, in the special case when the
designated faces to be attached are smooth compact manifolds with boundary
meeting, in any of the two manifolds in question, their adjacent faces orthogonally.
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1. A sample statement

A prototypical statement we obtained (see [3]) reads as follows:

Main Theorem. Let (M−, g−) and (M+, g+) be (smooth) compact Riemannian
manifolds with corners, both having dimension n + 1 ≥ 3; assume F− ⊂ M−
(respectively: F+ ⊂ M+) are cylindrical faces and there exists φ : M− → M+

giving an isometry between [g−]|F−
and [g+]|F+

. Let M := M− ⊔φ M+, with its
natural atlas of manifold with corners and let π± :M± →M be the corresponding
projection maps (for either consistent choice of signs). We shall then introduce
the following notation:

• X is the codimension-one submanifold that is the common image of F+, F−
in M ;

• Y± ⊂ ∂M± is the disjoint union of all faces of M± having non-empty
intersection with F±, and Y the disjoint union of all faces of M having
non-empty intersection with X .

Suppose that Rg± > 0 on M±, that Y± ⊂ ∂M± are mean-convex and meet
F± at a right angle, and in addition there holds for the mean curvature of the
isometric faces

(⋆) Hg−,F−
≥ f(x), Hg+,F+ ≥ −f(x),

where either f(x) ≥ 0 (∀x ∈ X) or f(x) ≤ 0 (∀x ∈ X).

Given a neighborhood U of X in M , such that U ∩ ∂M ⊂ Y (thus disjoint from

sing(M)), there exist a Riemannian metric g on M and an open set Û ⊂ U such

that the restriction of g toM \Û satisfies π∗
±g = g± onM±, and in U the following

two properties hold:

(1) (M, g) has positive scalar curvature;
(2) (M, g) has mean-convex boundary, and in fact minimal boundary if the

same is assumed to be true for Y−, Y+ respectively in (M−, g−) and
(M+, g+).

Remark. Some comments on the assumptions are appropriate:

• condition (⋆) coincides (given the different sign convention) with the jump
condition (H) in [5], together with the additional technical requirement
that at least one of the two functions Hg+,F+ , Hg−,F−

does not change
sign;

• we stress the construction we present is local near the given interface, so
the singularities of M away from X do not play any role; that said, an
important special case occurs when

sing(M−) \ F− = sing(M+) \ F+ = ∅

for in that case the output of the theorem is a smooth compact manifold
with positive scalar curvature and mean-convex boundary (or minimal
boundary under the same assumption on the input data).
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We wish to stress that condition (⋆) is always satisfied when the two faces to
be glued are mean-convex in the standard geometric sense that an outward defor-
mation will (weakly) increase area, to leading order, at each point; this includes
the minimal case as a special instance.

2. Some applications to minimal concordance

Among the most direct application of our gluing result, we want to mention those
that are directly connected to the (two) notions of concordance that we gave in
[2]. So here they are. As a first application, we have that “weak PSC min-
concordance and weak PSC mc-concordance are transitive, therefore equivalence
relations”. Here is the precise statement:

Corollary 1. Let X be a compact manifold with boundary and let us assume that
there exist PSC Riemannian metrics g0,1 and g1,2 on X × [0, 1] such that, in both
cases, ∂X × [0, 1] is minimal (respectively: mean-convex), and the slices X × {0}
and X × {1} are free boundary minimal surfaces; furthermore, g0,1 restricts to h0
on X × {0}, and to h1 along X × {1}; similarly g1,2 restricts to h1 on X × {0},
and to h2 along X × {1}.

Then there exists a PSC Riemannian metric g0,2 on X × [0, 1] that makes
∂X × [0, 1] minimal (respectively: mean-convex), and both X × {0} and X × {1}
free boundary minimal surfaces, and in addition g0,2 restricts to h0 on X × {0},
and to h2 along X × {1} .

Furthermore, “the relation of weak PSC min-concordance (or, respectively, weak
PSC mc-concordance) is the same as its strong counterpart, if one restricts a priori
to the subclass RR>0,H=0(X) (respectively: RR>0,H≥0(X)).” By that we mean
what follows:

Corollary 2. Let X be a compact manifold with boundary. If h−1, h1 ∈
RR>0,H=0(X) are weakly PSC min-concordant through a PSC metric g on M =
X×[−1, 1] (thus: a metric making the cylidrical boundary minimal, and both faces
free boundary minimal surfaces) then they are also (strongly) PSC min-concordant
through a PSC metric g (thus: making the cylindrical boundary minimal, and be-
ing a Riemannian product in a neighborhood of both faces).

Such a result ensures, in particular, that our definition of weak concordance is
an honest generalization of the standard (strong) one, in that it reduces to the
latter when working with the privilged subspsace of metrics having positive scalar
curvature and minimal boundary.

3. Next steps and related open problems

We wish to end this report by mentioning three significant open problems that are
directly related to our construction, and can be regarded as the next (desirable)
steps in that same direction.
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Question A. Is it possible to remove, in the statement of the Main Theorem
above, the assumption that at least one of the mean curvature functions Hg−,F+ ,
Hg+,F+ does not change its sign?

It is indeed very natural to expect one should be able to prove the smoothing
theorem under the very same condition singled out in Miao’s work, [5].

Question B. Is it possible to prove an analogue of the Main Theorem above
simply assuming that the dihedral angles at each point add up to π?

It was pointed out to us by Hanke that such a construction relates to the
discussion by Gromov in [4, Section 2]. Moving even one step further, one may
then wonder what follows:

Question C. What are the sharp assumptions to attach a pair of not necessarily
cylindrical distiguished isometric faces of a given pair of manifolds with corners,
under the geometric requirements above?

How to translate this last question into a well-posed mathematical problem is
also not trivial and part of the question itself; however, in the special case when
the requirement on the leftover boundary is to be mean-convex (or minimal) we do
have natural weak notions, coming from the first variation of the area functional.
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Scalar curvature rigidity of the four-dimensional sphere

Simone Cecchini

(joint work with Jinmin Wang, Zhizhang Xie, Bo Zhu)

A cornerstone result in comparison geometry with scalar curvature is the rigidity
of the round sphere in the spin setting, established by Llarull.

Theorem 1 ([11, Theorem B]). Let (M, g) be an n-dimensional closed connected
spin Riemannian manifold with Scg ≥ n(n − 1). If f : (M, g) → (Sn, gSn) is a
smooth, distance non-increasing map of non-zero degree, then f is an isometry.

Its proof relies on the Dirac operator method, requiring the hypothesis that M
is spin. A big open question in the field is whether the spin assumption can be
dispensed with in Theorem 1. We address this question affirmatively, at least in
dimension four.
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Theorem A (C.-Wang-Xie-Zhu). Let (M, g) be a four-dimensional closed con-
nected oriented (possibly non-spin) Riemannian manifold and f : (M, g)→ (S4, gS4)
a smooth map of non-zero degree. If f is distance non-increasing and Scg ≥ 12,
then f is an isometry.

Our strategy to establish Theorem A is outlined below.

(1) We first rule out from Theorem A the case when all the inequalities are
strict, following ideas of Gromov [1]. This involves utilizing µ-bubbles and
a version with coefficients of Theorem 1 due to Listing, that applies to our
µ-bubbles since all three-dimensional oriented manifolds are spin.

(2) We then employ the harmonic map heat flow coupled with the Ricci flow to
demonstrate that the general case of Theorem A reduces to the situation
where all the inequalities are strict, unless the metric g is Einstein with
Ricg = 3g. Here, we make use of recent results of Lee and Tam [9],
showing that the harmonic map heat flow coupled with the Ricci flow
provides appropriate control of the Lipschitz constant with respect to the
change of the scalar curvature under Ricci flow.

(3) Finally, we prove Theorem A for Einstein manifolds, which follows as a
consequence of Bishop’s volume comparison theorem.
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Mathematical Relativity, this and that

Piotr T. Chruściel

(joint work with Raphaela Wutte)

The language of mathematical general relativity is that of Lorentzian geometry,
the methods are these of differential topology, of differential geometry, and of
geometric analysis. The aim is to exhaustively understand the space of solutions
of Einstein equations with physically relevant matter sources. The key question
is to understand the dynamics of Einstein equations. When doing so one is, as a
first step, led to the classification of stationary solutions; next, one faces the need
for an exhaustive description of general relativistic initial data sets, and of their
properties.

This talk is a double feature. In the first, “landscape” part, I will review some
of the key open problems in the field, leaving aside these questions which will
be addressed by other speakers in this meeting. In the second part, based on
joint work with Raphaela Wutte [25], I will introduce the audience to the unusual
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world of mass of two-dimensional manifolds, with properties strikingly different
compared to other dimensions.

1. The landscape

1.1. The Belinski-Khalatnikov-Lifschitz (BKL) conjecture. A bold con-
jecture of Belinski, Khalatnikov and Lifschitz [9] posits that generic singularities
resulting by evolution by the vacuum Einstein equations behave in an oscillatory
way, reminiscent of that of the spatially homogeneous Bianchi IX solutions. Here
one should keep in mind that even the Bianchi IX solutions are not completely
understood so far, in spite of substantial progress in [7, 8, 42, 47, 48]. The conjec-
ture is more than challenging, without any real evidence supporting it. In addition
to the Bianchi IX model there exists only one known family of metrics exhibiting
this behaviour, constructed by Berger and Moncrief [10] by a solution generating
technique starting from Bianchi IX metrics. The Berger-Moncrief family has only
a few free parameters, with all metrics having one Killing vector. It would be of
great interest to exhibit a family of metrics without symmetries, parameterised
by a function space, which has the conjectured BKL behaviour, or to prove that
there are no such families. A proof of the BKL conjecture would presumably also
prove the Strong Cosmic Censorship conjecture, another challenging problem in
the field; see [11, 16, 22, 34] and references therein.

1.2. Black hole uniqueness. A topic of significant interest is the classification
of time-independent black-hole spacetimes. The expectation is that, in four space-
time dimensions, the Kerr black holes exhaust the family of well-behaved station-
ary solutions of the vacuum Einstein equations. So far we only have by now a
satisfactory classification of static solutions: it has been established in full detail
that the Schwarzschild metrics are the only vacuum and static solutions satisfying
a few natural global regularity conditions [17, 19]. The current uniqueness theo-
rem for Kerr black holes, where the hypothesis of staticity has been replaced by
that of stationarity, requires the further assumptions of both connectedness of the
black hole and of analyticity of the metric. (In the static case, these last two
properties are derived and not assumed.) The undesirable assumption of analyt-
icity has only been removed for near-Kerr solutions [1] so far. And we only have
a proof of non-existence of well behaved vacuum stationary and axisymmetric so-
lutions with two components [21, 31]; the general case remains open. Settling the
connectedness-and-analyticity issue is the key problem of the mathematical theory
of black holes.

1.3. Initial data. A key topic in mathematical general relativity is the construc-
tion of initial data. The “conformal method” (see [6, 12] and references therein)
provides an exhaustive description of Cauchy data sets when the trace τ of the
extrinsic curvature tensor is constant and satisfies

τ2 ≥ 3Λ ,
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where Λ is the cosmological constant. There has not been any progress on remov-
ing these conditions since [29, 33, 46]. A pressing problem is to obtain a better
understanding of such data.

Gluing techniques [13,20,27] provide an alternative method for constructing so-
lutions of the constraint equations with useful properties. Nice progress on gluing
spacelike Cauchy data has been achieved in [32,43,44]. A gluing method for char-
acteristic initial data has been developed by Aretakis, Czimek and Rodnianski [1],
with interesting applications in [2, 3, 28, 35, 36]; see also [18, 26] for the linearised
problem.

2. Mass of two dimensional Riemannian manifolds

The definition of mass of initial data sets is well understood in space dimensions
n ≥ 3 (cf., e.g., [15, 23, 39]). It is, however, not widely known that the mass has
rather different properties in dimension two.

2.1. Two-dimensional asymptotically locally Euclidean (ALE) manifolds.
It has been suggested that a reasonable replacement for the notion of mass is pro-
vided by Shiohama’s theorem [49]. which ties the integral of the Ricci scalar with
a deficit angle at infinity. From this perspective the only geometrically finite, com-
plete manifold, with nonnegative scalar curvature in L1, is the Euclidean plane
when the usual asymptotic flatness conditions are imposed. The remaining such
manifolds are asymptotically locally Euclidean, with the geometry at infinity ap-
proaching that of a cone with strictly positive deficit angle. This can be thought
of as a positive mass theorem in dimension two, and should be contrasted with
the higher dimensional case, where the positive energy theorem is known to hold
in various situations for asymptotically Euclidean (AE) initial data sets (cf., e.g.,
[14, 41] and references therein), but fails for ALE ones [38].

2.2. Two-dimensional asymptotically locally hyperbolic (ALH) mani-
folds. While for Λ = 0 the two-dimensional case needs a non-standard framework
to start with (ALE as opposed to AE), in the ALH case (where Λ < 0) to define
mass one can start with the usual Fefferman-Graham-type expansions. For con-
stant negative scalar curvature metrics (“time-symmetric vacuum initial data”)
the large-r expansion is provided by an exact formula:

g = r−2dr2 +
(
r2 +

µ(ϕ)

2
+
µ(ϕ)2

8r2
)
dϕ2 ,

where ϕ is a coordinate on S1, with r tending to infinity as the conformal boundary
at infinity is approched. Here µ is an arbitrary function of ϕ, called the mass aspect
function. (For non-vacuum or non-time-symmetric data there is no reason for the
1/r-expansion to stop, but it does for constant negative scalar curvature metrics;
this is specific to dimension two.) The Hamiltonian methods of [24, 37], or the
Noether charge methods of [40], or the “holographic” approach of [30], all lead to
the same global quantity, which we will refer to as Hamiltonian mass

H =
1

2π

∫

S1

µ dϕ ,
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and which is the direct specialisation to two dimensions of an expression valid in
all dimensions n ≥ 2. While this expression provides an invariant, or covariant,
quantity for n ≥ 3 [23, 50], when n = 2 we have:

(a) Under asymptotic symmetries, which in the current case are coordinate
transformations of the form

ϕ = f(ϕ̂)− f ′′(ϕ̂)

2r̂2
, r =

r̂

f ′(ϕ̂)
,

the Hamiltonian mass transforms as

H 7→ Ĥ =
1

2π

∫

S1

(
µ(f(ϕ̂))f ′(ϕ̂)2 − 2S(f)(ϕ̂)

)
dϕ̂ ,

where S(f) denotes the Schwarzian derivative:

S(f)(ϕ̂) =
f (3)(ϕ̂)

f ′(ϕ̂)
− 3

2

(
f ′′(ϕ̂)

f ′(ϕ̂)

)2

.

The first surprise is that Ĥ can be made as large as desired when varying
f .

(b) The second surprise is that there exist mass aspect functions µ for which

Ĥ can be made as negative as desired when varying f [5].
(c) However, when µ ≥ −1 the Hamiltonian mass is bounded from below, so

that an invariant can be obtained by minimisation. In joint work with
Raphaela Wutte [25] we conjecture that this happens in all physically rel-
evant cases, namely for globally well behaved initial data sets with matter
satisfying positivity conditions. The conjecture is supported by the ex-
istence of an identity which implies positivity, as well as a Penrose-type
inequality [25], both established when there exists a solution without crit-
ical points of the equation

Di

( Diρ

ρ|Dρ|
)
= 0 ,

with suitable asymptotic and boundary conditions. (The function ρ is
then used as a coordinate on the manifold.) However, because of the
asymptotic-symmetries-dependence of the Hamiltonian mass, the relevance
of these identities is not clear.

(d) Last but not least, there exist mass aspect functions µ which cannot be
transformed to a constant by an asymptotic symmetry. For such µ’s global
invariants are obtained by an analysis of the solutions of the associated
Hill equation, namely

ψ′′ =
µ

4
ψ ,

Counting zeros of solutions of this equation, and analysing the be-
haviour of the solutions under shifts by 2π, provides a complete classi-
fication of the mass aspect functions µ [5]; see also [25, 45].
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A volume-renormalized mass for asymptotically hyperbolic manifolds

Mattias Dahl

(joint work with Klaus Kröncke, Stephen McCormick)

We introduce a new mass-like quantity for the class of asymptotically hyperbolic
(AH) manifolds that are asymptotically Poincaré–Einstein (APE), which means
that Ric + (n − 1)g decays at an appropriate rate. By AH we mean that the
manifolds are conformally compact with sectional curvature tending to −1 towards
the conformal boundary.

The definition of the mass-like quantity utilizes the fact that a linear com-
bination of the ADM boundary expression and the renormalized volume of the
manifold is well-defined even in cases where neither is well-defined independently.

Given two AH manifolds (Mn, g) and (M̂n, ĝ) with diffeomorphic conformal in-
finities, the volume-renormalized mass of g with respect to ĝ is defined as

mVR,ĝ(g) =

∫

∂M

(divĝ(ϕ∗g)− dtrĝ(ϕ∗g))(ν)dA

+ 2(n− 1)

(∫

M

dVg −
∫

M̂

dVĝ

)
,

where ϕ is a diffeomorphism between neighborhoods of the conformal infinities
such that ϕ∗g − ĝ decays suitably, and the integrals should be understood as
appropriate limits.

When the asymptotic fall-off is so fast that the boundary integral vanishes, the
volume-renormalized mass is simply proportional to the renormalized volume. In
this sense, we can also view the quantity as a generalization of the renormalized
volume. Positivity of the renormalized volume has been proven for metrics on R3

asymptotic to the standard hyperbolic metric by Brendle and Chodosh [1], which
can be viewed as a positive mass theorem for the volume-renormalized mass under
strong decay conditions.

The first main result is

Theorem 1. Let (Mn, g) and (M̂n, ĝ) be APE manifolds with isometric conformal
boundaries that both satisfy scal + n(n − 1) ∈ L1. Then mVR,ĝ(g) is well defined
and finite.

The theorem follows from the observation that the volume-renormalized mass
contributes to a renormalized version of the Einstein–Hilbert action for AH man-
ifolds.
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A priori, the definition of the volume-renormalized mass depends on the choice
of ϕ. From a physical perspective however, a mass should be a coordinate-invariant
object and therefore not depend on the choice of diffeomorphism ϕ. We are indeed
able to show that this is the case for the volume-renormalized mass, provided that
an additional condition holds.

Theorem 2. Let (Mn, g) and (M̂n, ĝ) be APE manifolds with isometric conformal
boundaries that both satisfy scal + n(n− 1) ∈ L1. If the conformal boundaries are
proper, mVR,ĝ(g) does not depend on the choice of ϕ.

Here, we call a conformal class proper, if it is the conformal boundary of
a Poincaré–Einstein manifold (M, g) such that every isometry of the conformal
boundary extends to an isometry of (M, g).

We prove some positive mass theorems for the volume-renormalized mass. The
first is for two-dimensional manifolds.

Theorem 3. Consider a surface (M2, g) asymptotic to R2 with the metric ĝ =

dr2 + sinh2(r)
(

ω
2π

)2
dθ2, which is the hyperbolic metric with angular defect ω.

Under the assumption that scalg + 2 is nonnegative and integrable we have

mVR,ĝ(g) + 2(2π − ω) ≥ 0,

where equality holds if and only if (M2, g) is isometric to (M̂, ĝ).

For three-dimensional manifolds we prove the following.

Theorem 4. Let g be a complete APE metric on R3 whose conformal boundary
is the round 2-sphere. Assume furthermore that scalg +6 is nonnegative and inte-
grable. Then mVR,ghyp(g) is nonnegative and vanishes if and only if g is isometric
to ghyp.

The proof of this theorem uses the aforementioned positivity result for the renor-
malized volume by Brendle and Chodosh, combined with the following conformal
positive mass theorem.

Theorem 5. Let (Mn, ĝ) be a complete APE manifold with scalĝ = −n(n − 1),
and let (Mn, g) be a complete APE manifold conformal to (Mn, ĝ). Then if scalg+
n(n− 1) is nonnegative and integrable, we have mVR,ĝ(g) ≥ 0 with equality only if
g = ĝ.

The results presented are from [2]
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On the Hamilton-Lott conjecture in higher dimensions

Alix Deruelle

(joint work with Felix Schulze and Miles Simon)

In this report, we consider smooth, complete solutions (Mn, g(t))t∈(0,T ) to the
Ricci flow defined on smooth, connected manifolds satisfying for t ∈ (0, T ),

(1) Ric(g(t)) ≥ 0 and |Rm(g(t))| ≤ D0

t
,

where D0 is a positive constant. The curvature conditions (1) are particularly
relevant since they are invariant under parabolic rescaling. Due to [10] it is known
that (1) ensures the existence of an initial metric d0 onM (interpreted as a metric
space) such that the flow converges back to it in the distance sense.

This setting has been shown to occur in many situations, a prominent one being
that of self-similar solutions (also known as expanding solitons) with non-negative
curvature operator coming out of cones with non-negative curvature operator: see
for example [9], [2], [10], [1].

The first result of this talk concerns solutions to Ricci flow satisfying (1) un-
der the assumption that the scalar curvature controls the whole curvature tensor
pointwise, starting from a sufficiently regular metric cone. It quantifies locally (in
space) how far such a solution is from being self-similarly expanding: we refer the
reader to [4, Theorem 1.1] for a statement.

The second main result of this talk is motivated by the recent resolution of the
Hamilton-Lott conjecture on the rigidity of 3-dimensional Ricci-pinched metrics
by the authors [3] and Lee-Topping [7]. See also [5] for a proof using inverse mean
curvature flow. Recall that a Riemannian manifold (Mn, g) is Ricci-pinched if
Ric(g) ≥ 0 and if there exists a positive constant c such that Ric(g) ≥ cRg g
in the sense of symmetric 2-tensors. The Hamilton-Lott conjecture states that
3-dimensional Ricci pinched Riemannian manifolds are either flat or compact. In
[3, Question 1.5], we asked whether such a conjecture holds in higher dimensions
when the metric is not only Ricci-pinched but also 2-pinched i.e. if there exists a
constant c > 0 such that the sum of the two lowest eigenvalues λi(g), i = 1, 2, of
the curvature operator satisfies λ1(g) + λ2(g) ≥ cRg on M .

We are able to answer [3, Question 1.5] (and even more) under an additional
non-collapsing assumption:

Theorem 1. Let (Mn, g) be a smooth, complete, connected Riemannian mani-
fold that is PIC1 pinched. Assume it is non-collapsed at all scales: AVR(g) :=
limr→+∞ r−n volg Bg(p, r) > 0. Then (Mn, g) is isometric to Euclidean space.

Theorem 1 also yields a new proof of Hamilton-Lott conjecture in dimension 3.
The starting point of the proof of this conjecture for n = 3, in case the metric has

bounded curvature given in [3], are the following existence (E) and non-collapsing
(NC) results of [8] for starting metrics (M3, g0) which are non-flat, complete,
connected with non-negative Ricci curvature and bounded curvature:
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(E) there exists a smooth solution (M3, g(t))t∈[0,∞) to Ricci flow for all time
and the solution remains uniformly Ricci pinched, Ric(g(t)) ≥ αRg(t) g(t)
> 0 for some α > 0, and |Rm(g(t))|g(t) ≤ c/t for t ∈ (0,∞).

(NC) the solution is non-collapsed at all scales uniformly in time. More precisely,
it has constant positive asymptotic volume ratio: AVR(g(t)) = V0 > 0 for
all t ∈ [0,∞).

Assuming the initial metric to be Ricci-pinched, the existence part (E) was ex-
tended by [7] allowing the initial metric to have unbounded curvature. Important
ingredients in the proof of [3] are a local-in-time stability theorem for the Ricci
flow (see [3, Theorem 1.2]), existence results for self-similar solutions coming out
of non-negatively curved 3-dimensional Alexandrov metric cones and a number of
non-trivial results from the theory of RCD spaces. The proof of Theorem 1 in this
talk does not require any of these ingredients.

In the proof of Theorem 1 we require an existence result of the type given in
(E). Since we assume that the initial metric is PIC1 pinched, this is provided by
[6, Theorem 4.4].
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The positive scalar curvature cobordism category

Johannes Ebert

(joint work with Boris Botvinnik, Oscar Randal–Williams)

The Dirac operator on a closed spin manifold yields a secondary index invariant for
Riemannian metrics of positive scalar curvature, as first introduced by Gromov–
Lawson [9] and Hitchin [10]. This secondary invariant is a map of spaces

inddiff : R+(M)×R+(M) → Ω∞+d+1KO

where d = dim(M) and KO is the real K-theory spectrum. Fixing the first
variable, this map induces on homotopy groups a map

inddiff(g0, )∗ : πk(R+(M)) → KOd+k+1(∗).

It was shown in [1] that when d ≥ 6, the last map is surjective after tensoring with
Q, for all k, and in the talk, we sketched the streamlined proof of this result from
[5].

Both, the construction of the map inddiff and the surjectivity result, have
suitable variants which take the fundamental group of M into account; see [4] for
more details.

The proof uses cobordism categories. The cobordism category CobSpind of (d−1)-
dimensional closed spin manifolds and d-dimensional spin cobordisms is a well-

known object; it is a classical result [6] that its classifying space BCobSpind is
weakly homotopy equivalent to the infinite loop space Ω∞−1MTSpin(d) of the
relevant Madsen–Tillmann spectrum; at least rationally, the homotopy groups of
the latter space are easily computed.

A variant PCobSpind where all manifolds and cobordisms are equipped with Rie-
mannian metrics of positive scalar curvature is straightforward to define; the homo-

topy type of BPCobSpind is unknown. We use a subcategory CobSpin,2,1d ⊂ CobSpind ,
where the meaning of the decorations is as follows: we only take 1-connected man-
ifolds as objects, and allow only those morphismsW :M0 →M1 with 2-connected
inclusion map M1 →W . Such subcategories have been introduced in [7], together

with a surgery technique that proves that BCobSpin,2,1d → BCobSpind is a weak
equivalence if d ≥ 6.

We define PCobSpin,2,1,std ⊂ PCobSpind by taking only manifolds and cobordisms

in CobSpin,2,1d and psc metrics which are stable in the sense of [4, §3]; this no-
tion isolates an important property that metrics on elementary cobordisms com-
ing from a Gromov–Lawson surgery construction have. With some homotopy-
theoretic techniques and a use of Chernysh’s extension [2] of the Gromov–Lawson
surgery theorem [8], one can prove that the homotopy fibre of the forgetful map

BPCobSpin,2,1,std →BCobSpind is a delooping of the spaceR+(Sd−1×[0,1])stg
Sd−1,gSd−1

.
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To get an index-theoretic conclusion, one uses a variant of the Atiyah–Singer
family index theorem developed in [3]. More precisely, one establishes a commu-
tative diagram

BPCobSpin,2,1,std
//

��

≃ ∗

��

BCobSpind
// Ω∞+d−1KO;

the bottom map is a delooped version of the usual family index of the Dirac

operator. The fact that the composition with the forgetful map BPCobSpin,2,1,std →
BCobSpind is nullhomotopic is a consequence of the Lichnerowicz formula. We get
an induced map on (vertical) homotopy fibres; after taking loop spaces once more,
this map might be identified with inddiff(gSd , ). A variant of the Atiyah–Singer
index theorem and standard characteristic class calculations prove that the bottom
map is surjective on rational homotopy groups, which finishes the proof.
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From primary to secondary obstructions to positive scalar curvature

Georg Frenck

Given a manifold M , we will explain how to construct distinguished concordance
classes of psc-metrics.

Definition 1 (Concordance). Let M be a manifold and g0, g1 psc-metrics on M .
We say that g0 is concordant to g1 if there exists a psc-metric G on M × [0, 1]

such that the restriction of G to a neighbourhood of M × {i} equals gi + dt2 for

i = 0, 1. We denote by π0R̃+(M) the set of concordance classes of psc-metrics on
M .
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Now, if two psc-metrics are concordant, this yields an obstruction to positive
scalar curvature on the cylinder M × [0, 1] with given cylindrical boundary re-
strictions g0 and g1. Therefore, it is natural to ask, if obstructions to positive
scalar curvature on closed manifolds can also be employed to distinguish concor-
dance classes of psc-metrics, hence turning primary obstructions into secondary
obstructions.

Before doing so, we need to introduce the notion of tangential types. A tan-
gential structure is defined to be a map θ : B → BO for BO := colimd→∞BO(d).
The tangent bundle of a given manifold M has a classifying map τ : M → BO(d)
and hence also a map to BO, and we define a stable θ-structure on M to be a lift
ℓ : M → B of τ .

The reason for tangential structures being relevant in the study of positive
scalar curvature is the following reformulation of the Gromov–Lawson–Schoen–
Yau surgery theorem:

Theorem 1 ([2],[3]). Let θ be a 2-coconnected tangential structure, that is the
induced map is injective on π2 and bijective on π≥3. Let M0 and M1 be manifolds
of dimension at least 5 such that

(1) M0 admits positive scalar curvature and a θ-structure,
(2) M1 admits a 2-connected θ-structure ℓ, that is ℓ is bijective on π≤1 and

surjective on π2,
(3) there is a manifold W d+1 with a θ-structure, ∂W = M0 ∐ M1 and the

θ-structure on W restricts to the given ones on Mi.

Then M1 admits positive scalar curvature.

Since θ depends on M1, we call it the tangential 2-type of M1.This theorem can
be even improved as follows: There is another cobordism W+, θ-cobordant to W
relative to the boundary that admits a psc-metric G of product type near the
boundary that extends the given one on M0.

In order to reformulate the surgery theorem, we define

Ωθ
n :=

{n-dimensional closed θ-manifold}
θ-cobordism

Ωθ,+
n := {x ∈ Ωθ

n | ∃N representing x with psc}
Then, given a manifold M of dimension d ≥ 5 with tangential 2-type θ we have

M admits psc ⇐⇒ [M ] ∈ Ωθ,+
d

Having this notation at hand, we can now define the surgery map: Let M be
a manifold with a psc-metric g and tangential 2-type θ and assume we are given
a self-cobordism W : M  M with a θ-structure. We modify W as in the above
remark to obtain another self-cobordism W+ with a psc-metric G extending g on
the incoming boundary and we define

SW (g) := ι∗G

for ι the inclusion of the outgoing boundary. The following lemma states that this
is well-defined:
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Lemma 1.

(1) The concordance class of SW (g) is independent of W+ and G.
(2) If g and g′ are concordant, then so are SW (g) and SW (g′).

In particular, we obtain a well-defined action

S : Ωθ
d+1 × π0R̃+(M) → π0R̃+(M)

defined by (X, g) 7→ SM×[0,1]∐X(g). We will abbreviate SX := SM×[0,1]∐X . The
driving feature of this action is that it is precisely possible to determine the sta-
bilizer subgroup:

Proposition 1. Let X be a closed (d+1)-manifold with the same tangential 2-type
θ as M . Then the following are equivalent:

(1) SX = id.
(2) SX(g) = g for some g.

(3) X admits a psc-metric, that is [X ] ∈ Ωθ,+
d+1.

Therefore, we get a free action of the quotient Ωθ,−
d+1 := Ωθ

d+1/Ω
θ,+
d+1 on π0R̃+(M).

In particular, the orbit map Ωθ,−
d+1 → π0R̃+(M), g 7→ SX(g) is injective for every

g.

Remark 1. The idea behind this construction resembles the ones from [4]. Here,
Stolz constructs for every tangential 2-type, he constructs a group that acts freely

and transitively on π0R̃+(M). Transitivity of the action however comes at the cost
of computability: Even in the simplest cases, his groups are not computable. On
the other hand, Ωθ,−

n can be fully computed in many cases: If θ = spin : BSpin →
BO, then

Ωspin,−
n

∼= KO−d−1(∗) ∼=





Z/2 if d ≡ 0, 1(8)

Z if d ≡ 3(4)

0 else

and if θ = SO: BSO → BO, then ΩSO,−
n = 0.

We end this note with the following observation: If M is an orientable manifold
of dimension d ≥ 5 whose fundamental group split-surjects onto Zd+1, then the
(d + 1)-torus Td+1 admits a θ-structure such that every manifold in its class is
orientable and admits a map of non-zero degree to Td+1. It is known, that no such
manifold admits positive scalar curvature if d + 1 ≤ 10, see [1, 3]. Therefore, we
obtain the following result:

Theorem 2. Let M be an orientable manifold of dimension 5 ≤ d ≤ 9 such that

there is a split-surjection π1M → Zd+1. Then π0R̃+(M) is infinite.
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The conformal method is not conformal

Romain Gicquaud

Constructing and parameterizing physically relevant initial data in general relativ-
ity is a long standing problem having its roots in the proof by Y. Choquet-Bruhat
that the Cauchy problem for the Einstein equations is well-posed.

As the Einstein equations are covariant under diffeomorphism, it turns out
that they are not a priori hyperbolic and part of them dictate restrictions on the
allowed initial data. These restrictions are called the constraint equations. So,
if one is willing to get a solution to the Einstein equations, the first task is to
find a solution to the constraint equations before letting it evolve according to the
remaining Einstein equations.

In more precise terms, the initial data for the Cauchy problem in general rel-

ativity is given as a triple (M, ĝ, K̂), where (M, ĝ) is a Riemannian manifold of

dimension n ≥ 3 and K̂ is a symmetric 2-tensor on M . If we think of M as an
embedded hypersurface in the spacetime (M, h) solving Einstein’s equations, ĝ is

the metric induced by h on M and K̂ is the second fundamental form of M .
If one is only interested in the gravitational field (i.e. the so called vacuum

case), which is the case we will restrict ourselves to, the constraint equations then
read:

0 = scalĝ + (trĝ K̂)2 −
∣∣∣K̂
∣∣∣
2

ĝ
,(1)

0 = divĝK̂ − d(trĝ K̂).(2)

Equation (1) is a scalar equation called the Hamiltonian constraint, while Equa-
tion (2) is a vector equation called the momentum constraint. A loose counting of

the degrees of freedom shows that ĝ and K̂ are each locally given by n(n+1)
2 func-

tions providing a total of n(n+1) local degrees of freedom while the Hamiltonian
and the momentum constraints only form a set of n + 1 equations. This makes
the system formed by (1) and (2) underdetermined.

A natural strategy is then to decompose ĝ and K̂ into parameters (also called
“seed data”) that can be chosen arbitrarily and dependent variables. Several such
splitting have been explored in the litterature. The major ones being the gluing
techniques introduced by J. Corvino and R. Schoen and the “conformal-like” ones
that we will study.

The original conformal method was introduced by A. Lichnerowicz and by J.
W. York. It consists in choosing ĝ in the conformal class of a given metric g:
ĝ = φκg for some positive function φ and with κ = 4

n−2 . The decomposition for
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K̂ is more complex. We set

K̂ =
τ

n
ĝ + φ−2(σ + LW ),

where L is the Ahlfors operator, i.e. LW = L̊W g is the traceless part of the Lie
derivative of g with respect to the vector fieldW , σ is a trace-free symmetric tensor
which is also divergence-free, i.e. divgσ ≡ 0. And τ is a function that corresponds
to the mean curvature of the embedding M →֒ M.

The seed data then consist in the metric g, the mean curvature τ and the TT-
tensor σ and the unknowns are φ and W . The equations of the conformal method
are then

−4(n− 1)

n− 2
∆φ+ scal φ = −n− 1

n
φκ+1 +

|σ + LW |2
φκ+3

,

div(LW ) =
n− 1

n
φκ+2dτ.

Despite technical difficulties to solve these equations, the conformal method has
been highly successful in constructing large families of initial data.

However, the choice of the metric g in a given conformal class is arbitrary. The
consequence of this fact is that several choices for the seed data (g, τ, σ) will lead
to the same solution to the constraint equations and it is a priori very difficult to
tell whether two such choices will lead to the same initial data or not.

The point of this talk is to show that there cannot be any way to do this apart
from solving the equations of the conformal method.

The strategy to prove this fact is to find a situation where the equations of the
conformal method has two solutions. In a previous work, I showed that such a
situation occurs when g has vanishing Yamabe invariant with τ and σ carefully

chosen by numerical methods. We then get two solutions (ĝ1, K̂1) and (ĝ2, K̂2) to

the constraint equations and we now wonder how K̂1 and K̂2 decompose according
to a different choice of a metric g̃ in the conformal class of g. The claim is then
that their TT-tensor part σ̃1 and σ̃2 differ.

This shows that there cannot be any map σ 7→ σ̃ such that the set of solutions
to the conformal constraint equations with seed data (g, τ, σ) coincide with that
associated to (g̃, τ, σ̃).

How are the dominant energy conditions for Lorentzian spacetimes
and initial data sets related?

Jonathan Glöckle

This short talk, based on the article [1], had the goal to discuss the relationship
between the following two notions of dominant energy condition (=dec):

Definition 1. A spacetime (M, g), i. e. a time-oriented Lorentzian manifold, is

said to satisfy the dominant energy condition if Eing(V,W ) ≥ 0 for all future-
causal vectors V, W in the same tangent space.
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Here, the Einstein curvature is given by Eing := ricg − 1
2 scal

gg and we work
with the signature convention (−,+, . . . ,+).

Definition 2. An initial data set (M, g, k), i. e. a manifold M equipped with a
Riemannian metric g and a symmetric 2-tensor k, is said to satisfy the dominant
energy condition if ρ ≥ |j|g for

ρ =
1

2

(
scalg + trg(k)2 − |k|2g

)

j = divg(k)− d trg(k).
(1)

There is a well-known way to pass from the first to the second notion of dec. Any
spacelike hypersurface M of a spacetime (M, g) carries an induced Riemannian
metric g and an induced second fundamental form k (w. r. t. the future unit normal
e0), giving rise to an initial data set (M, g, k). In this case the so-called constraint
equations yield the decomposition

Eing|M = ρdt2 + j ⊗ dt+ dt⊗ j + S,(2)

where dt := −e♭0 and S is a symmetric 2-tensor on M . The dominant energy

condition for (M, g) implies that Eing(e0,−)♯ = −ρe0 + j is either past-causal
or zero and hence ρ ≥ |j|g. So: The induced initial data set on any spacelike
hypersurface of a dec spacetime satisfies dec.

We ask for a converse:

Question 1. Does there for any dec initial data set (M, g, k) exist a dec spacetime
(M, g) such that M is contained in (M, g) as spacelike hypersurface and (M, g, k)
is the induced initial data set?

This question came up in [2], where the authors explain how methods developed
to study positive scalar curvature can be used to study the space of dec initial
data sets. The goal, however, would be to eventually say something about dec
spacetimes, and the authors suspect the answer to the question to be yes, providing
a part of the missing link. This expectation was based on the following special
cases:

• All vacuum initial data sets (i. e. ρ = 0, j = 0) are contained in a dec
spacetime. In fact, by the celebrated solution of the vacuum Cauchy prob-
lem due to Yvonne Choquet-Bruhat [3], they are contained in a vacuum

spacetime (i. e. Eing = 0).
• All initial data sets satisfying the strict dec ρ > |j|g admit a dec spacetime
extension, cf. [4, Prop 1.10].

The first point could be generalized by considering the Cauchy problem with some
form of matter. Given an initial data set (M, g, k) the procedure would be to first
find suitable initial data for the matter fields. This is not easy, since typically
some constraints need to satisfied in order to be able to carry through the second
step: solving the Cauchy problem. Nevertheless, one might hope that with the
help of a matter model with sufficiently many degrees of freedom, e. g. Vlasov
matter [5, eq. (7.13)-(7.15)], it is possible to construct such matter initial data for
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all initial data sets (M, g, k). In the smooth world, however, this hope is destroyed
by the negative answer to the above question.

Theorem 1 ([1, Main Theorem]). For every manifold M of dimension n ≥ 3
there is a smooth dec initial data set (M, g, k) for which there is no smooth dec
spacetime (M, g) with spacelike hypersurface M such that (M, g, k) is the induced
initial data set.

The proof of the theorem relies on the following observation: If, in some point
p ∈ M , the equation ρp = |jp|g holds and Eing(V,W ) ≥ 0 for all future-causal

vectors V,W ∈ TpM , then the tensor S from the decomposition (2) necessarily
has to satisfy

Sp =

{
jp⊗jp
ρp

ρp 6= 0

0 ρp = 0.
(3)

The point is now that the function p 7→ Sp defined by (3) does not need be smooth
even if ρ and j are smooth and ρ = |j|g. In fact, one can cook up examples of
such ρ and j where S is not even C2. With this in mind, the task is to find an
initial data set (M, g, k) that satisfies dec and such that on an open subset ρ and j
(calculated by (1)) coincide with an example of this kind. Since this is essentially
a local construction, the topology of the manifold M does not play a role. For
details we refer to the aforementioned article.
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[4] Jonathan Glöckle, Initial Value Spaces in General Relativity, Master Thesis, Universität
Regensburg, 2019, https://epub.uni-regensburg.de/52853

[5] Hans Ringström, On the topology and future stability of the universe, Oxford Mathematical
Monographs, Oxford University Press, Oxford, 2013.

Rough metrics and curvature bounds from a Lorentzian perspective

Melanie Graf

A recurring theme of the present workshop has been how to deal with scalar cur-
vature and more specifically scalar curvature bounds in the context of Riemannian
metrics of low regularity. Similar issues with curvature bounds for rough (i.e. low
regularity) metrics have a long history in the Lorentzian setting as well. There are
several well-known key similarities and differences between these two settings:1

1References for all classical results may be found in either the standard textbook by O’Neill,
Semi-Riemannian Geometry, or by Beem, Ehrlich and Easley, Global Lorentzian Geometry.
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Riemannian: Smooth manifold
M w. positive definite metric
tensor g

Lorentzian: Non-degenerate metric tensor g

with one negative eigenvalue & (M, g) time-
oriented2

0 6= v ∈ TM with g(v, v) < 0 (resp. ≤ 0)
are called timelike (resp. causal)
Causal Structure: J±,≤ and I±,≪3

dg(p, q) := inf{L(γ)} where γ is
a C1 curve from p to q

τ(p, q) := sup{
∫ b

a

√
−g(γ̇, γ̇)} where γ :

[a, b] → M timelike from p to q if p ≪ q
and τ(p, q) := 0 otherwise

Volume measure dvolg analogous
Curvature: Riem, Ric, Scal analogous
Completeness and Hopf-Rionw No Hopf-Rinow; Global hyperbolicity4 acts

as a replacement for completeness in some
contexts

Curvature intimately linked to
local and global properties of dg
and dvolg  Metric Geometry:
(M,dg)

Lorentzian Length Spaces [6]:
(M,dbackground︸ ︷︷ ︸

metric space

, τ,≪,≤)

Toponogov triangle comparison
& Alexandrov Geometry

Lorentzian triangle comparison [1,5] & syn-
thetic timelike sectional curvature bounds
[6]

Ricci curvature bounds via opti-
mal transport & (R)CD spaces

Lorentzian optimal transport [7, 8] & syn-
thetic Ricci curvature bounds [3]

Since “metric” (or “synthetic”) Lorentzian geometry has only started to emerge
much more recently than the Riemannian counterparts, analytic tools have al-
ways been important for dealing with rough metrics in Lorentzian geometry. To
illustrate one of my favorites among these, we looked at the following

Theorem 1 (Lorentzian Myers Theorem, smooth version). Let (M, g) be a time-
oriented n-dimensional Lorentzian manifold. Assume that (M, g) is globally hy-
perbolic and that there exists k > 0 such that Ric(v, v) ≥ (n− 1) k for all v ∈ TM
with g(v, v) = −1. Then sup{τ(p, q) : p, q ∈M} ≤ π√

k
.

This bound on the timelike diameter is analogous to the diameter bound one
obtains in the Riemannian setting and the proof is similar as well, using that global
hyperbolicity guarantees the existence of τ -realizing timelike geodesics between any
p, q ∈ M with p ≪ q. One should, however, remark upon a key difference in the
meaning of the theorems: The Riemannian theorem assumes geodesic completeness

2I.e. there exists a C0 timelike vector field X allowing to continuously define future pointing

causal vectors (g(v, X) < 0) and past pointing ones (g(v, X) > 0).
3We say q ∈ I+(p), or equivalently p ≪ q, if there exists a smooth future directed timelike curve
from p to q. J+ and ≤ are defined analogously, but with causal curves (and p ≤ p by definition).
I− and J− are defined via past directed curves.
4We say (M,g) is globally hyperbolic if there are no closed future directed causal curves and
J+(p) ∩ J−(q) is compact for all p, q ∈ M .
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to be able to use Hopf-Rinow, whereas (timelike) geodesic incompleteness is a
consequence of the Lorentzian Myers theorem. The latter thus is the simplest
example of a so-called “singularity theorem”, predicting singular behavior in the
sense of geodesic incompleteness from causality and curvature assumptions.

Non-smooth versions include a version for C1-metrics where the Ricci curvature
bound is interpreted distributionally, cf. [4], as well as versions for Lorentzian
length spaces satisfying appropriate synthetic timelike curvature bounds, cf. [2,3].

The proofs for the distributional versions all rely on estimates on smoothings
via convolution summarized very informally as

(ab) ⋆ ρε − (a ⋆ ρε)(b ⋆ ρε) → 0 better than expected,

where ρε is a standard mollifier, for functions a, b : R → R. For example, if
a ∈ C0, b ∈ C1 then the difference above converges to zero locally uniformly in C1

and not merely in C0 as one would expect from the individual convergence of the
factors. This is rooted in the same principle as commutator estimates for (linear)
PDOs and convolution operators commonly referred to as Friedrichs Lemma and
is very widely applicable.
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Moduli Spaces of Positive Curvature Metrics

Thorsten Hertl

Many (global) differential geometric quantities, like the diameter, the volume, or
the average scalar curvature of a Riemannian manifold, are invariant under the
pull-back action of the diffeomorphism group Diff(M) on the space of Riemannian
metrics Riem(M). If one wishes to study the dependency of these quantities on
those Riemannian metrics that satisfy a curvature condition C, like positive scalar
curvature scal > 0 or positive sectional curvature sec > 0, it is thus enough to study
these quantities as functions on the moduli space MC(M) := RiemC(M)/Diff(M).
As the stabilisers of the diffeomorphism group, which are by definition the isometry
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groups, may vary in dimension with the underlying metric, we cannot expect that
these moduli spaces are not manifolds in general, but rather (infinite dimensional)
stratifolds.

To get rid of the singularities, one can consider the observer moduli space
MC

x0
(M) := RiemC(M)/Diffx0(M) instead, where Diffx0(M) is the subgroup

of observer diffeomorphisms consisting of those diffeomorphisms ϕ that satisfy
Dx0ϕ = id at the initially given point x0. It is not hard to prove that Diffx0(M)
acts freely on Riem(M) if the underlying manifold is connected.

Since these (observer) moduli spaces carry a lot of information about the geome-
tries the underlying manifold M can carry, topologists try to answer the following
question:

What can we say about the global topological properties of the observer moduli
spaces? In particular, how rich or complicated are their homotopy groups?

Early results indicating that such moduli spaces can be disconnected were estab-
lished in the early 90’s by Kreck and Stolz in [5]. The first examples that path
components of observer moduli spaces of positive scalar curvature metrics can be
non-contractible were found in the pioneering work [1], in which the authors prove
that π4k(Mscal>0

x0
(Sn)) ⊗ Q 6= 0 provided n is odd and k ≪ n. These results

were later subsequently refined in [2] and in the recent preprint [6] to prove sim-
ilar statements for positive Ricci curvature and certain intermediate curvatures
respectively. For a comprehensive overview of this field, we refer to [8].

The main result of this talk based on [4] provides, to the authors knowledge,
the first examples for non-trivial elements in the higher homotopy groups of the
observer moduli space of positive sectional curvature metrics. Furthermore, in
contrast to earlier resulst, the degree of the homotopy groups that host these non-
trivial examples, can be close to the dimension of the manifold under consideration.

Main Theorem.

(1) π2(Mscal>0
x0

(M4♯CP 2)) 6= 0 if M4 has positive scalar curvature,

(2) π2(Msec>0
x0

(CPn)) 6= 0,

(3) π2k(Msec>0
x0

(CPn))⊗Q 6= 0 if n ≥ 4 and k ∈ {3, . . . , n− 1} is odd.

1. From Bundles to Elements in Homotopy Groups

How does one construct a non-contractible map Sk → MC
x0
(M)? The naive ap-

proach would be to construct a promising map Sk → RiemC(M), compose it with
the canonical projection, and hope that the result remains non-trivial. This turns
out to be quite hard, as one needs highly non-trivial maps. The following ansatz
has a higher chance to succeed.

Assume that we are given a smooth fibre bundleM →֒ E
p−→ B, whose structure

group reduces to Diffx0(M), together with fibre metric {gb}b∈B, formally a smooth
family of inner products on the vertical tangent bundle T vertE := kerTp, satisfying
our favourite curvature condition C. This datum defines a map classifying map

fE,g : S
k → MC

x0
(M) given by b 7→ [F ∗gb],
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where F is an appropriate diffeomorphism that identifiesM and the fibre p−1({b}).
(Here, we use the Diffx0(M) reduction to guarantee that compatible choices can
be made.)

The name classifying map was not chosen by accident: Since the space of Rie-
mannian metrics Riem(M) without any curvature condition is convex, in particu-
lar contractible, the observer moduli space Mx0(M) ≃ BDiffx0(M) is a model for
the classifying space of M -fibre bundles with structure group Diffx0(M). Thus,
if we compose the classifying map fE,g with the canonical inclusion MC

x0
(M) →֒

Mx0(M), we get the classifying map fE for the bundle E → Sk, which is homo-
topic to the constant map if and only if the bundle is trivial.

Upshot: To construct non-trivial elements in πk(MC
x0
(M)), it suffices to con-

struct non-trivial bundles with structure group Diffx0(M) and a fibre metric sat-
isfying C.

2. Anti Blow-Up Families

In order to find promising M4♯CP 2-fibre bundles, we first observe that S3 =
∂D4 = ∂DO(1), where latter is the disc bundle associated to the dual tautological
line bundle over CP 1. The projection to the second component turns

DO(1) := (S3 × CP 1 ×D2)
/
∼, (p, [q], λ) ∼ (q−1eiθqp, [q], eiθλ)

into a fibre bundle DO(1) →֒ DO(1) → CP 1 with trivial boundary ∂DO(1) ∼=
S3×CP 1. The zero section provides a canonical embedding CP 1×CP 1 →֒ DO(1).
Furthermore, one can put a positive scalar curvaure fibre metric gDO(1) on this

bundle that is the product metric gS3 ⊕ d t2 of the standard round sphere and the
Euclidean metric near the boundary.

If M4 is a manifold that carries a positive scalar curvature metric, we can use
the surgery theorem [3] to deform any positive scalar curvature metric on M4 so
that it has product structure near the boundary of M4 \D4. Thus, we can equip
the fibre-connected sum

EM :=
(
M \D4

)
× CP 1 ∪S3×CP 1 DO(1),

which is the total space of a bundle M♯CP 2 →֒ EM → CP 1, with a fibre metric
that has positive scalar curvature.

One can prove that

〈p1(T vertEM ); [CP 1 × CP 1]〉 =
∫

CP 1×CP 1

p1(T
vertEM ) = −2,

which would be divisible by 3 if EM were fibre-diffeomorphic to (M♯CP 2)× CP 1

due to Hirzebruch’s signature theorem.

3. Positive Sectional Curvature and Homotopy Theory

Since ES4 is a CP 2-fibre bundle and all constructions of the previous section can be
carried out explicitly, one could ask whether it is possible to deduce non-triviality
results for Msec>0

x0
(CP 2)? The answer is positive, but we cannot rely on the

gluing result of the previous section. Instead, we will use the isometry group of
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the Fubini-Study metric and homotopy theory, which further allows us to produce
results for higher dimensional complex projective spaces.

Since the unitary group U(n+1) acts isometrically on CPn, we get the following
commutative diagram of fibre bundle maps

U(n+ 1) //

��

EU(n+ 1) //

��

BU(n+ 1)

��

Fr+(CPn) // Riemsec>0(CPn)//Diffx0(CP
n) //

≃
��

Riemsec>0(CPn)//Diff(CPn)

��

Msec>0
x0

(CPn) BhAut(CPn),

in which hAut(CPn) denotes the topological monoid of all continuous maps ho-
motopic to the identity, Fr+(CPn) the GL2n(R)-principal bundle of positively
oriented frames, and Riemsec>0(CPn)//Diff(x0)(M) the homotopy quotients, one
of which, in this particular case, is homotopy equivalent to the actual quotient,
the observer moduli space Msec>0

x0
(CPn).

Applying homotopy groups to that diagram yields maps between two long exact
sequences. It was proven in [7] that the map BPU(n + 1) → BhAut(CPn) is
injective on π2 and rationally an isomorphism. A diagram chase now implies part
(2) and (3) of the main theorem.
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Schoen’s conjecture for limits of isoperimetric surfaces

Thomas Körber

(joint work with Michael Eichmair)

Let (M, g) be a connected complete Riemannian manifold of dimension 3 ≤ n ≤ 7
with integrable scalar curvature R. We assume that (M, g) is asymptotically flat
in the sense that there is a number n−3 < τ ≤ n−2 and a nonempty compact set
whose complement is diffeomorphic to {x ∈ Rn : |x| > 1} such that, as x→ ∞,

|gij − δij |+ |x| |∂kgij |+ |x|2 |∂2kℓgij | = O(1) |x|−τ .

Recall that the mass of (M, g) is given by

m =
1

2 (n− 1)nωn
lim
λ→∞

λ−1

∫

Sn−1
λ

(0)

n∑

i, j=1

xi (∂jgij − ∂igjj).(1)

Here, ωn is the Euclidean volume of an n-dimensional unit ball.
The positive mass theorem proven by R. Schoen and S.-T. Yau [8] confirms the

basic heuristic that, if (M, g) has nonnegative scalar curvature, then the mass is
nonnegative and zero if and only if (M, g) is flat Rn. Its proof is based on the
following two observations. First, if (M, g) has negative mass, then there is a
noncompact area-minimizing boundary Σ ⊂M that is asymptotic to a coordinate
hyperplane and stable with respect to asymptotically constant variations, i.e., for
every f ∈ C∞

c (Σ),
∫

Σ

(|h|2 +Ric(ν, ν)) (1 + f)2 ≤
∫

Σ

|∇f |2.(2)

Here, h is the second fundamental form of Σ with respect to the normal ν and
Ric the Ricci curvature of (M, g). Geometrically, (2) means that Σ passes the
second derivative test for area among variations that are asymptotic to a vertical
translation. Second, if the scalar curvature of (M, g) is positive, then (M, g)
does not contain a noncompact area-minimizing boundary that is asymptotic to a
coordinate hyperplane and satisfies (2). In view of this argument, R. Schoen has
made the following conjecture.

Conjecture 1. Let (M, g) be an asymptotically flat Riemannian manifold of di-
mension 3 ≤ n ≤ 7 with nonnegative scalar curvature. Suppose that there exists a
noncompact area-minimizing boundary Σ. Then (M, g) is isometric to flat Rn.

Conjecture 1 has been confirmed in the case where n = 3 and in the case where
3 ≤ n ≤ 7 under the additional assumption that (M, g) is asymptotic to spatial
Schwarzschild and Σ satisfies (2); see [1, 2]. In [4], we have resolved Conjecture
1 as follows. It turns out that, quite surprisingly, Conjecture 1 fails in the case
where 3 < n ≤ 7.

Theorem 1. Let (M, g) be spatial Schwarzschild of dimension 3 < n ≤ 7. There
exist infinitely many mutually disjoint noncompact area-minimizing boundaries in
(M, g).
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It can be seen that the noncompact area-minimizing boundaries constructed in
the proof of Theorem 1 do not satisfy (2). Our next result shows that Conjecture
1 fails even with the additional assumption that Σ satisfies (2).

Theorem 2. Let 3 < n ≤ 7 and n− 3 < τ < n− 2. There exists a Riemannian
manifold (M, g) of dimension n that is asymptotically flat of rate τ with non-
negative scalar curvature and positive mass that contains infinitely many mutually
disjoint noncompact area-minimizing boundaries all of which are stable with respect
to asymptotically constant variations.

Theorem 2 shows that Conjecture 1 cannot possibly hold unless Σ captures
additional global information on the geometry of (M, g). A natural such situation
is when Σ arises as the limit of isoperimetric surfaces. As the main result of the
presented paper, we have settled Conjecture 1 in this case.

Theorem 3. Let (M, g) be an asymptotically flat Riemannian manifold of di-
mension 3 < n ≤ 7 with nonnegative scalar curvature. Suppose that there ex-
ist a noncompact area-minimizing boundary Σ = ∂Ω and isoperimetric regions
Ω1, Ω2, . . . ⊂ M with Ωk → Ω locally smoothly. Then (M, g) is isometric to flat
Rn.

In asymptotically flat Riemannian three-manifolds with nonnegative scalar cur-
vature and positive mass, there is a unique isoperimetric region for every given
sufficiently large amount of volume and these large isoperimetric regions are close
to centered coordinate balls; see [3]. An important consequence of Theorem 3 and
a step toward the characterization of large isoperimetric regions in asymptotically
flat Riemannian manifolds of dimension 3 < n ≤ 7 is that the (unique) large com-
ponents of the boundaries of such regions necessarily diverge as their volume tends
to infinity; see [5] for the corresponding result in the case where n = 3.

Below, I will outline our proof of Theorem 3. Let (M, g) be an asymptoti-
cally flat Riemannian manifold of dimension 3 < n ≤ 7 with nonnegative scalar
curvature. We assume that Σ = ∂Ω is a noncompact area-minimizing boundary.
Suppose for a contradiction that m > 0. A first difficulty not present in the case
where n = 3 is to show that Σ is asymptotic to a coordinate hyperplane. This is
complicated by the fact that Σ is not known to satisfy (2) at this point. To rem-
edy this, we prove explicit estimates for the density ratio of Σ in large coordinate
balls. The proof is based on the monotonicity formula applied to carefully chosen,
off-centered balls. We then use these estimates to establish a precise asymptotic
expansion for Σ. Using that τ > n−3, it follows that Σ is asymptotically flat with
mass zero.

Next, we assume that Σ = ∂Ω where Ω is the limit of large isoperimetric
regions Ω1, Ω2, . . . with |Ωk| → ∞ and prove that Σ is stable with respect to
asymptotically constant variations. To this end, we consider the second variation
of area of Ωk with respect to a suitable Euclidean translation that is corrected
to be volume-preserving. The stability with respect to asymptotically constant
variations then follows by passing to the limit k → ∞. Revisiting the proof of the
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positive mass theorem, we see that Σ is isometric to flat Rn−1 and totally geodesic
and that both R and Ric(ν, ν) vanish along Σ; see [7].

Then, given any p ∈M , we construct a noncompact area-minimizing boundary
Σp ⊂ M with p ∈ Σp. In view of Theorem 1 and different from the case where
n = 3, we need to ensure that Σp again satisfies (2). To this end, we construct
suitable local perturbations of the metric g and obtain Σp as the limit of large
isoperimetric regions with respect to these perturbations. A crucial ingredient
in this construction is that asymptotically flat Riemannian manifolds of positive
mass admit isoperimetric regions of every sufficiently large volume; see [2].

Finally, we show that the Riemann curvature tensor Rm of (M, g) vanishes,
contradicting that m > 0. To this end, we first observe that, since Σ is flat and
totally geodesic, the Gauss equation and Codazzi equation imply that Rm van-
ishes on Σ along four tangential directions and three tangential directions and one
normal direction. We then pick a point p ∈ Σ and choose a sequence Σ1, Σ2, . . . of
flat and totally geodesic noncompact area-minimizing boundaries that converges
locally smoothly to Σ. We locally write Σk as a graph over Σ and linearize the
second fundamental form of Σ along this approximation. This gives a positive
function f that satisfies

∇2f + f Rm( · , ν, ν, · ) = 0(3)

and is defined on all of Σ, a half-space of Σ, or a slab within Σ, depending on as to
whether Σk ∩ Σ has zero, one, or at least two components. Tracing (3) and using
that Ric(ν, ν) = 0 along Σ, we see that f is harmonic. In the first two cases, by
the Liouville theorem, f equals an affine function. By contrast, we show that the
third scenario does not occur. Revisiting (3), we see that Rm = 0 at p.
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Space of positive scalar curvature metrics on 4-manifolds

Hokuto Konno

Given a closed smooth manifold X , let R+(X) denote the space of positive scalar
curvature metrics. For R+(X) 6= ∅ and dimX 6= 4, the topology of R+(X)
has been extensively studied. For dimX < 4, the space R+(X) turns out to be
contractible [1, 3]. For dimX > 4, in contrast, many authors proved that R+(X)
can have quite non-trivial topology. The main technique to prove such a result in
higher dimensions is a combination of surgery and index theory.

However, because of the failure of surgery techniques, little is known about the
topology of R+(X) for 4-manifolds X . In dimension 4, certain family versions
of the Seiberg–Witten invariant sometimes tell non-trivial information about the
topology of R+(X). We shall summarize what is known in this direction in the
literature so far.

To understand general strategy, we start by recalling the Seiberg–Witten in-
variant as an obstruction to the existence of positive scalar curvature metric. Let
(X, s) be a closed smooth spinc 4-manifold. Fix a Riemannian metric g on X . The
Seiberg–Witten equations are of the form

(SW )(X,s,g) :

{
F+
A = σ(Φ,Φ),
DAΦ = 0.

Here A is a U(1)-connection on the determinant line bundle for s, F+
A is the

self-dual part of the curvature of A, Φ is a positive spinor for s, σ(−,−) is a
certain quadratic form, and DA is the spinc Dirac operator. The Seiberg–Witten
equations are a non-linear partial differential equations, which are elliptic if one
takes into account the gauge symmetry. The gauge symmetry is given by an
infinite-dimensional group Map(X,U(1)), which naturally acts on the space of
U(1)-connections and spinors, and the Seiberg–Witten equations are invariant
under the action of Map(X,U(1)). The space of solutions divided by Map(X,U(1))

M(X, s, g) := {(A,Φ) | (A,Φ) satisfies (SW )(X,s,g)}/Map(X,U(1)).

is called the moduli space of solutions to the Seiberg–Witten equations.
In practice, it is convenient to consider a perturbation (which we shall omit

from our notation) of the equations by adding a self-dual 2-form µ ∈ iΩ+
g (X) to

F+
A to achieve the transversality. Under a generic choice of (g, µ), the moduli space

M(X, s, g) is a smooth manifold of dimension

d(s) =
1

4
(c1(s)

2 − 2χ(X)− 3σ(X)).

Most notably, the moduli spaceM(X, s, g) is always compact. Further, the moduli
space can be oriented by picking a topological data called homology orientation.
Thus, when d(s) = 0, we can count points in the moduli space and get an integer.

Let b+(X) be the maximal dimension of positive-definite subspaces of H2(X ;R)
with respect to the intersection form. If b+(X) ≥ 2, it turns out that the count
#M(X, s, g) ∈ Z is independent of choice of g. This count is called the Seiberg–
Witten invariant, denoted by SW (X, s).
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In his paper introducing the Seiberg–Witten equations to mathematicians, Wit-
ten [5] proved that the moduli space M(X, s, g) is empty if g is a positive scalar
curvature metric. In particular, if b+(X) ≥ 2, we have SW (X, s) = 0.

Now we turn to a family version of this story. Let (X, s) → E → B be a
smooth fiber bundle whose fiber is a closed spinc 4-manifold (X, s) and whose
base is a closed manifold B. Suppose that d(s) < 0, and d(s) = − dimB. Picking
a fiberwise metric gE = {gb}b∈B on E, we can form the parameterized moduli space

M(E, gE) :=
⋃

b∈B

M(Eb, sb, g).

Generically, M(E, gE) is a closed manifold of dimension 0. Thus we can count
#M(E, gE) at least over Z/2 (which can be upgraded to a count over Z under
a certain hypothesis), and if b+(X) ≥ dimB + 2, this count is independent of
gE . Thus we can get a topological invariant SW (E) := #M(E, gE) ∈ Z/2 of the
fiber bundle E, which we call the families Seiberg–Witten invariant. Just as in
the unparameterised case, if E admits a fiberwise positive scalar curvature metric
gE , we get M(E, gE) = ∅, and hence SW (E) = 0. Thus, if SW (E) 6= 0, one can
conclude that R+(X) has non-trivial topology.

Ruberman [4] gave the first example of a 4-manifold X with R+(X) 6= ∅ such
that R+(X) is shown to have non-trivial topology, based on the above idea applied
to a 1-dimensional base space (but with a more elaborate version of the families
Seiberg–Witten invariant):

Theorem 1 (Ruberman [4]). There are 4-manifolds X such that R+(X) 6= ∅ and

R+(X) have infinitely many components. More concretely, X = #2nCP
2#kCP

2

for n ≥ 2 and k ≥ 10n+ 1 are such 4-manifolds.

Note that b+(X) is even for examples in Theorem 1, which is an essential
restriction in the proof of this result. However, using the above idea of the families
Seiberg–Witten invariant applied to a family over the 2-dimensional torus T 2, we
can prove that R+(X) can have non-trivial topology even when b+(X) is odd.
More precisely, we have:

Theorem 2 ([2]). Let X = #2n+1CP
2#kCP

2
for n ≥ 2 and k ≥ 10n+ 3. Then

R+(X) is not 1-connected, i.e. at least one of π0(R+(X)) and π1(R+(X)) is
non-trivial.
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A version of Ilmanen’s conjecture for asymptotically
hyperbolic manifolds

Klaus Kröncke

(joint work with Mattias Dahl, Stephen McCormick and Louis Yudowitz)

In 2008, Ilmanen conjectured that there should be a relation for ALE manifolds
and Ricci-flat cones between

(i) λ not a local maximum,
(ii) failure of positive mass.

It suggests a deep relation between Ricci flow and the positive mass theorem.
Recall that for a metric g on a compact manifold, λ(g) is defined to be the

smallest eigenvalue of the operator 4∆g + scalg. The importance of the λ-entropy
lies in the fact that is is monotonically increasing under the Ricci flow. The right
analogue of the λ-entropy on noncompact ALE-manifold was found by Deruelle-
Ozuch in [2] (building up on Haslhofer in [4]) and is

λALE(g) = inf
f∈C∞

c

∫

M

(|∇f |2g + scalg)e
−f dV −mADM (g),

where mADM (g) is the ADM-mass. The functional λALE is shown to be mono-
tonically increasing under the Ricci flow on ALE manifolds. By combining results
by Deruelle-Ozuch [2] and Hall-Haslhofer-Siepmann [3], one gets

Theorem 1. Let (M, ĝ) be a Ricci-flat ALE-manifold. Then the following are
equivalent:

(i) ĝ is a local maximizer of λALE

(ii) mADM (g) ≥ mADM (ĝ) = 0 for all metrics g near ĝ with scalg being
integrable and nonnegative.

This solves the above conjecture by Ilmanen. In our own work, we will focus
on the asymptotically hyperbolic (AH) setting. This geometric setting requires
different notions of mass and entropy which we defined in [1]. The expander
entropy (relative to a reference metric ĝ) is

µAH,ĝ(g) = inf
f∈C∞

c

∫

M

(|∇f |2g + scalg + n(n− 1)− 2(n− 1)(f + 1))e−f dVg

+ 2(n− 1)

∫

M

dVĝ −mADM,ĝ(g),

and it is nondecreasing under the normalized Ricci flow in the AH setting. The
volume-renormalized mass is

mV R,ĝ(g) = mADM,ĝ(g) + 2(n− 1)

∫

M

( dVg − dVĝ).

If g− ĝ ∈ Hk, k > n/2+2, then µAH,ĝ(g) ∈ R. If in addition, scalg+n(n−1) ∈ L1,

mV R,ĝ(g) ∈ R. If furthermore, g − ĝ = O(e−(n−1+ǫ)r), the boundary integral of
the ADM-mass drops and we get mV R,ĝ(g) = RVĝ(g) = vol(g) − vol(ĝ), which is
the renormalized volume.
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Recall that an AH Einstein manifold is called Poincaré-Einstein. Our analogue
of Theorem 1, established in joint work with Dahl-McCormick [1] and Yudowitz
[5], is

Theorem 2. [1,5] Let (M, ĝ) be a Poincaré-Einstein manifold. Then the following
are equivalent:

(i) ĝ is a local maximizer of µAH,ĝ

(ii) µAH,ĝ(g) ≥ µAH,ĝ(ĝ) = 0 for all metrics g near ĝ with scalg + n(n − 1)
being integrable and nonnegative.

(iii) RVĝ(g) ≥ 0 for all metrics g near ĝ with g − ĝ = O(e−(n−1+ǫ)r) and
scalg + n(n− 1) being integrable and nonnegative.

Due to monotonicity of the entropies along (the respective notion of) Ricci
flow, it is natural to relate Theorems 1 and 2 to dynamical stability of Ricci-flat
ALE manifolds, resp. Poincaré-Einstein manifolds. While in the ALE setting, this
is done under the integrability condition, we can establish this relation without
further conditions in the AH setting.

Theorem 3. [5] (Dynamical stability) Let (M, ĝ) be a Poincaré-Einstein manifold.
If ĝ is a local maximizer of µAH,ĝ, then for every L2 ∩ L∞-neighborhood U of ĝ,
there exists a L2 ∩ L∞-neighborhood V ⊂ U such that the Ricci flow starting at
any metric in V exists for all times and converges (modulo diffeomorphisms) to a
Poincaré-Einstein metric in U .

Theorem 4. [5] (Dynamical instability) Let (M, ĝ) be a Poincaré-Einstein man-
ifold. If ĝ is not a local maximizer of µAH,ĝ, then there exists a nontrivial an-
cient Ricci flow {g(t)}t∈(−∞,0] that converges (modulo diffeomorphisms) to ĝ for
t→ −∞.

Observe also that the converse implications do also hold due to the monotonicity
of µAH,ĝ along the Ricci flow. In particular, each Poincaré-Einstein manifold is
either dynamically stable or dynamically unstable and this entirely depends on
the local behaviour of µAH,ĝ. Summarizing and combining these results and the
discussion, we establish the following equivalences for Poincaré-Einstein manifolds:

dynamical stability ⇔ positive mass theorem for nearby metrics

dynamical instability ⇔ failure of positive mass for nearby metrics
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Manifolds. Preprint arXiv:2312.13011.



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 51

Band width and the Rosenberg index

Yosuke Kubota

The Rosenberg index Indπ1(M)(DM̃
), the C*-algebraic π1(M)-equivariant higher

index of the Dirac operator of the universal covering M̃ of a closed spin mani-
fold M , is defined by using (Real) C*-algebra K-theory and coarse geometry as
a vast generalization of the Fredholm index. It has been one of the most pow-
erful obstructions for a closed spin manifold to admit a positive scalar curvature
metric. Indeed, under the assumption of the Baum–Connes injectivity of π1(M),
the Rosenberg index is a complete obstruction to the existence of a PSC metric
on M ×Bn for some n ∈ N, where B is an 8-dimensional closed spin manifold B
with Sgn(B) = 0 and Â(B) = 1 (the Rosenberg–Stolz theorem [5]). On the other
hand, Schick used the Schoen–Yau minimal surface method to construct a closed
spin manifold in dimensions 5, 6, 7 which does not admit any PSC metric but its
Rosenberg index vanishes. This leads us to explore a PSC obstruction beyond the
Rosenberg index.

Recently, Gromov shed new lights on this problem [2]. One of the remarkable
ideas is a quantitative refinement of the non-existence of a complete PSC metric on
M×R when the PSC metric onM is obstructed. A (proper) compact Riemannian
band V is a compact Riemannian manifold with inward and outward boundaries
∂±V . The distance of ∂+V and ∂−V is called its width. Gromov proved that,
if ∂+V does not admit any PSC metric by the reason coming from the minimal
surface method, then the width of V is bounded by a constant depending on the
infimum of the scalar curvature and the dimension. Moreover, this inequality is
also used to define a quantity for a closed Riemannian manifold that is related to
the lower bound of the scalar curvature.

Definition 1. Let V be a class of compact Riemannian bands. The V-width of a
closed Riemannian manifold (M, g) is defined by widthV(M, g) := supwidth(V, gV ),
where (V, gV ) runs over all bands in V that is isometrically immersed to M .

A point is that the infiniteness of the V-width independent of g. If the band
width inequality holds for any V-band, then widthV(M, g) = ∞ implies the non-
existence of a PSC metric on M .

Following this line, Zeidler, Cecchini, and Guo–Xie–Yu [1, 3, 7] imported this
idea to the Dirac operator method. In these papers, a band width inequality
for bands in the class KO consisting of (V, gV ) such that V is equipped with
a spin structure and the higher index of the inward boundary Indπ1(V )(D∂+Ṽ )

does not vanish. Our main result is to compare the PSC obstruction coming
from KO-band width with the Rosenberg index, which answers to a conjecture by
Zeidler [7, Conjecture 4.12].

Theorem 1 ([4, Theorem 1.3]). Let (M, g) be a closed spin manifold. If M has
infinite KO-width, then Indπ1(M)(DM̃

) 6= 0.
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Since the infiniteness of the KO-width is stable under the direct product with
the manifold B, the theorem follows from the Rosenberg–Stolz theorem if π1(M)
satisfies the Baum–Connes injectivity.

The (coarse) higher index IndΓ(DX) is defined for a complete Riemannian spin
manifold X on which a discrete group Γ acts properly. More generally, a relative
version of the higher index Indrel,π(DW ) is defined for a complete Riemannian
manifold W with boundary on which a discrete group π acts properly. It takes
value in the (Real) K-theory of a certain quotient C*-algebra, and can be non-
trivial only if ∂W ⊂W is not coarsely equivalent.

(1) If Y is a Γ-equivariant submanifold-with-boundary of X with the same
dimension, the ‘restriction map’ sends IndΓ(DX) to Indrel,Γ(DY ).

(2) The ‘K-theory boundary map’ sends Indrel,π(DW ) to Indπ(D∂W ) (this fact
is called the ‘boundary of Dirac is Dirac’ principle).

A plausible strategy to the proof of Theorem 2 is to relate Indπ1(M)(DM̃
) with

Indπ1(V )(D∂+Ṽ ) by using the above (1) and (2). However, there are some stumbling

blocks to execute it.

(i) Even after taking the universal coverings, Ṽ → M̃ may not be injective.

(ii) The inclusion ∂Ṽ ⊂ Ṽ is a coarse equivalence, thus Indrel,π1(V )(DṼ ) is
trivial and has no information.

(ii) A KO-band V has two boundary components ∂+V and ∂−V . We need to
separate one to another to get Ind(∂+V ).

To solve the problems (ii) and (iii), we take a sequence of KO-bands {Vn} and
immersions Vn →M such that the width of Vn with respect to the induced metric
goes to infinity, consider the box space V :=

⊔
Vn, and focus on the asymptotic

behavior of (relative) higher indices by considering a suitable quotient C*-algebra.
To solve (i), we construct a canonical lifting of a finite propagation operator on

M̃ to Ṽn in the way that Indπ1(M)(DM̃
) is lifted to Indrel,π1(Vn)(DṼn

). If there is

a subspace Z ⊂ X any short loop of X is contained in the R-neighborhood of Z

for some R > 0, then any finite propagation operator on X lifts to X̃ modulo the

subspace Z̃ ⊂ X̃. A typical example is X = R2 \ intD2 and Z = ∂D2, in which

case X̃ is the helical surface. This idea fits well with immersions of bands which
we are considering now. A key observation is that M̃ is not only 1-connected but
also uniformly 1-connected, that is, there is an increasing function ϕ : R>0 → R>0

with ϕ(t) → ∞ as t→ ∞ such that any loop in BR(x) is trivial in Bϕ(R)(x).
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Scalar curvature rigidity using Ricci flows

Man-Chun Lee

(joint work with Luen-Fai Tam)

In scalar curvature geoemetry, there has been interest in developing the compact-
ness theory in constrast with the Ricci geometry where the structure of Ricci limit
space has been studied extensively. At the same time, metrics with low-regularity
arise naturally also in the study of Brown-York quasi-local mass. Hence, under-
stand the notion of scalar curvature lower bound for metrics with weaker regularity
has been one of the important part in this problem. To extend the concept of scalar
curvature lower bound to non-smooth metrics in a meaningful way, it is impor-
tant to ensure singular metrics with scal ≥ κ still satisfies the rigidity Theorem
in scalar curvature geometry. For instances, the classicial torus rigidity Theorem
states that metrics with scal ≥ 0 on Tn must be flat. When 3 ≤ n ≤ 7, this was
proved by Schoen-Yau [13, 14] using method of minimal surface while the general
case was proved by Gromov-Lawson [4] using spin method.

This question was first took up by Gromov in [5]. By reformulating the scalar
curvature lower bound using local C0 structure of metric, Gromov showed that
on a fixed manifold M , if a sequence of smooth metric gi satisfies scal(gi) ≥ κ for
some continuous function κ ∈ C0(M) and converges to a smooth metric g∞ in C0

loc

sense, then the scalar curvature of g∞ also satisfies scal(g∞) ≥ κ. This opened the
door of understanding scalar curvature in a general framework. In particular, this
semi-lower continuity nature suggests the following definition of scalar curvature
lower bound for C0 metric on a given manifold:

Definition 1. Given a closed manifold M and a continuous metric g on M , we
say that scal(g) ≥ κ for some κ ∈ C0(M) if there exists a sequence of smooth
metrics gi on M such that scal(gi) ≥ κ − o(1) on M and gi → g in C0 sense as
i→ +∞.

In this way, we see that the definition is a direct generalization of the notion in
smooth case. In [1], Bamler gave an alternative approach to Gromov’s Theorem
using Ricci flow which turns out to be very powerful in studying problem in C0

category. The idea of Bamler is based on a result of Koch-Lamm [7] on the C0-
stability of Ricci-Deturck flow on Rn. The Ricci-Deturck flow is a one parameter
family of metric g(t) which solves

(1)

{
∂tgij = −2Rij +∇iWj +∇jWi;

W k = gpq(Γk
pq − Γ̃k

pq).
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This is a strictly parabolic system and is known to be diffeomorphic to the Ricci
flow in the smooth case. By localizing the scalar curvature lower bound uniformly,
Bamler [1] was able to show that the (unique!) Ricci-Deturck flow smoothing
satisfies the desired scalar curvature lower bound as t → 0+. The circle of idea
was generalized by Burkhardt-Guim [3] to general compact manifolds and was
used to define a notion of scal ≥ k for continuous metrics.

In studying the class of C0 metrics, the Ricci flow method turns out to be more
flexible and powerful. In [6], Huang and the author extended the idea of Bamler
to show that if a g∞ is a C0 limit of a sequence of smooth metric gi such that

(scal(gi) − κ)− converges to 0 in L
n/2
loc , then the Ricci-Deturck flow smoothing

g∞(t) from g∞ satisfies scal(g∞(t)) − κ − o(1) as t → 0. This integral flexibility
of scalar curvature lower bound is related to Miao’s positive mass Theorem with
corner [12]. Indeed if κ is a constant, we might drop the buffer term o(1) thanks
to the improved approximation from Ricci flow smoothing.

As discussed, the notion of scalar curvature lower bound for singular metrics
is related to the positive mass Theorem with corners. To ease the discussion,
we consider metric g on Tn such that g is smooth outside a singular set S with
scal(g) ≥ 0 on Tn \ S. The basic question is to ask under what conditions on S
and g, we can conclude the singularity S is removable. Restricting ourselves to C0

metric on M , we might also ask if g satisfies scal ≥ 0 in the sense of definition 1
under those conditions on S. Likewise, we might formulate the question in the
setting of positive mass Theorem where Tn is replaced by asymptotically flat
manifold with suitable (weighted) regularity at infinity. When S is a sub-manifold
with co-dimension 1 or 2, it is now well-known that singularity S might contribute
some scalar curvature in distributional sense, [10, 12]. When the co-dimension
≥ 3, in a joint work with Tam we showed that S is in some sense invisible for C0

metrics. More precisely,

Theorem 1 (Corollary 4.2 and Theorem 1.1 in [8]). If g is a metric in C∞
loc(M \

S) ∩ C0(M) such that scal(g) ≥ 0 outside S and the upper Minkowski dimension
≤ n− 3, then scal(g) ≥ 0 on M in the sense of definition 1. Moreover if M = Tn,
then (M, g) is distance-isometric to a flat metric.

What about rigidity in comparison with sphere? The classical Llarull Theorem
[11] states that a smooth map f from a closed spin manifold (Mn, g) with scal ≥
n(n−1) to Sn with f∗gSn ≤ g and deg(f) 6= 0 must be an isometry. It was asked by
Gromov if one can extend this to Lipschitz framework in order to understand the
singular scalar curvature world. The problem was first took up by Cecchini-Hanke-
Schick [2] by developing the singular spin method where distance non-increasing
Lipschitz maps f : M → Sn was considered. In [9], the author with Tam instead
considered the smoothing method. Even if the underlying metric g is smooth, the
major difficulty lies in regularizing the rough map f in a way that is related to
scalar curvature and distance non-increasing. To this end, the harmonic map heat
flow coupled with the Ricci flow (or Ricci-Deturck flow when g is non-smooth)
was found to be useful in smoothing out the map while preserving all necessary
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geometric properties. Together with classical smoothing method of Greene-Wu
and Llarull Theorem, we showed:

Theorem 2 (Theorem 1.2 in [9]). LetMn be a compact Riemannian spin manifold
and g0 is a C0 metric on M with scal(g) ≥ n(n− 1) in the sense of definition 1.
Suppose there is 1-Lipschitz continuous map f : M → Sn with non-zero degree,
then f is a distance isometry.

The underlying principle is to construct a smooth map Fi : M → Sn where
Fi → f while F ∗

i gSn ≤ g when g is smooth. This was done by deforming f
along the direction: ∂tF = ∆g,gSnF with initial data F (0) = f in suitable C0

sense. The method is purely a smoothing approach which is different from the
approach taken in [2]. Indeed, the Theorem of Llarull also holds if distance non-
increasing is relaxed to area non-increasing. Using the singular spin method in [2],
Cecchini-Hanke-Schick were also able to prove the singular rigidity under certain
area non-increasing assumption. It is at the same time unclear if such condition
is natural in smoothing procedure. More precisely, we ask the following:

Question 1. In general, suppose f : M → Sn is a Lipschitz map which satisfies
Λ2f∗gSn ≤ Λ2g almost everywhere, can we find a suitable smoothing F of f such
that Λ2F ∗gSn ≤ Λ2g smoothly on M?
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ADM Mass and Potential Theory

Francesca Oronzio

(joint work with V. Agostiniani, C. Mantegazza, L. Mazzieri.)

Asymptotically flat Riemannian 3-manifolds arise physically as spacelike hyper-
surfaces of spacetimes modeling isolated gravitational systems.

Every end of an asymptotically flat Riemannian manifold has the remarkable
property of being equipped with a well-defined notion of mass, called ADM mass,
introduced in [4] by Arnowitt, Deser and Misner and denoted by mADM. It is
a geometric invariant, furthermore, it satisfies the following crucial property in
any 3-dimensional complete asymptotically flat Riemannian manifold (M, g) with
nonnegative scalar curvature and with a single end.

• Positive mass theorem (with a single end) [9, 10]: If the boundary
∂M of M is empty, then mADM ≥ 0, and the equality is fulfilled if and
only if (M, g) is isometric to the Euclidean space.

• Riemannian Penrose Inequality (with a single black hole) [8]: If
the boundary ∂M of M is compact and connected, and it is the unique
minimal closed surface in (M, g), then mADM ≥

√
|∂M |/(16π), and the

equality holds if and only if (M, g) is isometric to a Schwarzschild manifold
of positive mass.

There are different generalizations of the previous theorems, moreover, different
approaches/tools were being used to prove them.

In [3], an alternative proof of the positive mass inequality, mADM ≥ 0, is ob-
tained via a monotonicity formula holding along the regular level sets of an ap-
propriate harmonic function related to the minimal positive Green’s function with
pole.

Sketch of the proof, [3]: By [6], it is sufficient to show that the positive mass
inequality is true in the class of 3-dimensional, complete, one-ended asymptoti-
cally flat, Riemannian manifolds (M, g), with nonnegative scalar curvature and
satisfying the following two properties:

• M is diffeomorphic to R3 (topological simplification);
• there exists a distinguished asymptotically flat chart Φ such that

Φ∗g =

(
1 +

mADM

2|x|

)4

gR3

(simplification of the metric near infinity).

Let us consider the function

u := 1− 4πGo,

where Go is the minimal positive Green’s function for the Laplacian operator ∆g

with pole at some point o ∈M . Notice that Go vanishes at infinity. We define

F (t) := 4πt − t2
∫

{u=1−1/t}

|∇u|H dσ + t3
∫

{u=1−1/t}

|∇u|2 dσ,
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for every t ∈ (0,+∞), where H is the mean curvature computed with respect to the
∞–pointing unit normal vector field ν = ∇u/|∇u|. The function F is well–posed
and in the absence of critical points, is everywhere continuously differentiable with
F ′(t) ≥ 0 for every t ∈ (0,+∞). Indeed, in this case, one has

F ′(t) = 4π−
∫

Σt

RΣt

2
dσ +

∫

Σt

[
| ∇Σt |∇u| |2

|∇u|2 +
R

2
+

|̊h|2
2

+
3

4

(
2|∇u|
1− u

−H

)2 ]
dσ,

and all of the level sets of u are regular and diffeomorphic to the 2-sphere. Thus,
the Gauss–Bonnet theorem and the fact that the scalar curvature R is nonnegative
imply F ′(t) ≥ 0 for all t ∈ (0,+∞). In presence of critical points, by using the
topological simplification, a suitable smooth vector field, an appropriate family of
cut-off functions and the Sard’s theorem with the Gauss–Bonnet theorem, one can
anyway show that the function F is nondecreasing on the open set {t ∈ (0,+∞) :
1− 1/t is a regular value of u}. As a consequence, one gets

8πmADM = lim
t→+∞

F (t) ≥ lim
t→0+

F (t) = 0,

where the first limit follows from the simplification of the metric near infinity and
the second one from the behavior of the minimal positive Green’s function Go near
the pole o. Thus, mADM ≥ 0.

In [1, 2], an alternative proof the Riemannian Penrose inequality (with a single
black hole) is exposed. In this case, the Riemannian Penrose inequality is a conse-
quence of a monotonicity formula holding along the regular level sets of appropriate
p–harmonic functions.

Sketch of the proof, [1, 2]: In this case, we consider the (weak) solution of the
following problem

(1)





∆pu = 0 in M

u = 0 on ∂M

u→ 1 at ∞
where ∆pu = div (|∇u|p−2∇u) is the p–Laplacian operator, for p ∈ (1, 3), and we
define the function

Fp(t) = 4πt − t
2

p−1

cp

∫

{u=αp(t)}

|∇u|H dσ +
t
5−p
p−1

c2p

∫

{u=αp(t)}

|∇u|2 dσ

whenever αp(t) is a regular value of u, where

αp(t) = 1− p− 1

3− p

cp

t
3−p
p−1

and cp−1
p =

Capp(∂M)

4π
.

Above, H is the mean curvature computed with respect to the ∞–pointing unit
normal vector field ν = ∇u/|∇u| and

Capp(∂M) = inf

{∫

M

|∇v|p dµ : v ∈ C∞
c (M), v = 1 on ∂M

}
.
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In absence of critical points, the function F is everywhere continuously differen-
tiable, with

F ′
p(t) =

∫

{u=αp(t)}

[
| ∇Σt |∇u| |2

|∇u|2 +
R

2
+

|̊h|2
2

+
5− p

p− 1

(
|∇u|

3−p
p−1 (1 − u)

− H

2

)2 ]
dσ

+ 4π −
∫

{u=αp(t)}

RΣt

2
dσ ,

and all of the level sets of u are regular and diffeomorphic to the boundary ∂M .
Then, by the Gauss–Bonnet theorem and the assumption R ≥ 0, one has F ′(t) ≥ 0
for all t ∈ [tp,+∞), where

tp =
( p− 1

3− p
cp

)p−1
3−p

.

In presence of critical points, we cannot proceed similarly to the proof the positive
mass inequality. The reason lies in the fact, being the p–harmonic functions in
general only of class C1, the Sard’s theorem cannot be applied. In order to obtain
the monotonicity, then we consider the solutions uε,T (in the classical sense) of the
following “perturbed” problem

(2)





div
(
|∇uε,T |p−2

ε ∇uε,T
)
= 0 in MT = {0 < u < T } ,

uε,T = 0 on ∂M ,

uε,T = T on {u = T } ,

where |∇uε,T |ε =
√
|∇uε,T |2 + ε2 and T is a fairly large regular value of u. The

functions uε,T are smooth (so Sard theorem can be applied) and Ck
loc–converge to

the function u outside {|∇u| = 0}, for every k ∈ N, as ε → 0. We can consider
analogous functions F ε

p , pointwise converging to Fp, as ε→ 0, which are “almost”
nondecreasing, up to an “error term” going to zero as ε → 0. Hence, sending
ε → 0, we obtain the monotonicity of the original function Fp. Thus, as before,
for every p ∈ (1, 3), one gets

(4π)
2−p
3−p

(p− 1

3− p

)p−1
3−p

Capp(∂M)
1

3−p ≤ Fp(tp) ≤ lim
t→+∞

Fp(t) ≤ 8πmADM

where the first inequality is a consequence of the fact that H = 0 on ∂M = {u =
αp(tp) = 0} and the last one follows from the behavior of the p–harmonics function
u near infinity, proved in [5], and by doing some computations in the same spirit
of [8]. Then, the Riemannian Penrose inequality follows by sending p → 1+, as
limp→1+ Capp(∂M) = |∂M |, by [7].
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Instabilities of Einstein 4-manifolds and selfduality along Ricci flow

Tristan Ozuch

(joint work with Olivier Biquard)

Einstein metrics and Ricci solitons are the fixed points of Ricci flow and model
the singularities forming. They are also critical points of natural functionals in
physics. Their stability in both contexts is a crucial question, since one should be
able to perturb away from unstable models.

In physics and in the formation of singularities of Ricci flow, the most important
Einstein metrics are either compact with positive scalar curvature, or noncompact
and Ricci-flat with finite L2-norm of curvature (gravitational instantons). In both
contexts, optimistic conjectures say that in dimension 4, the only stable such
metrics should be the round metric on S4 and hyperkähler metrics. The notions
of stability (at second perturbative order) are equivalent in physics, in the context
of Yamabe metrics, and in the dynamical sense for Ricci flow.

With Olivier Biquard, we motivate these conjectures by proving that indeed,
all of the known examples are unstable unless they are the round metric on S4 or
hyperkähler. The key point is that these other known examples are conformal to
Kähler metrics with positive scalar curvature.

The proof relies on three main ingredients which are of independent interest.

• A Weitzenböck formula [BL81,BR15,NO24] states that in dimension 4, the
stability at second order is equivalent to the nonnegativity of the spectrum
of the following operator on traceless 2-tensors:

(1) P := d−d
∗
− −R+,

where d− : Ω1 ⊗ Ω+ → Ω− ⊗ Ω+ is the covariant exterior derivative on
the bundle of Ω+-valued 1-forms composed with the projection on anti-
selfdual 2-forms, and where R+ is the natural action of the selfdual (only!)
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part of curvature. This is based on a classical 4-dimensional identification
between Ω− ⊗ Ω+ and traceless symmetric 2-tensors.

Note that (1), easily recovers that hyperkähler metrics with R+ = 0,
and metrics satisfying the condition R+ < 0 of are stable.

• We then show that negative directions for L := d−d∗− − 2
3δ

∗
0δ −W+, for

W+ the traceless part of R+, also detect instabilities of the metric with
nonnegative scalar curvature, and that L is conformally covariant. To
prove instability, it is therefore sufficient to show that the operator L has
a negative eigenvalue for one metric in the conformal class of g. This
can easily be found on Kähler metrics with positive scalar curvature and
b− ≥ 1.

• One then proves that all of the considered metrics must have b− ≥ 1 by
constructing decaying anti-selfdual harmonic 2-forms. This uses the fact
that being Einstein and conformally Kähler forces the metric to carry a
Killing vector field, and that Killing vector fields can be used to construct
anti-selfdual 2-forms on Ricci-flat 4-manifolds.
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Estimates on the Bartnik mass and their geometric implications.

Annachiara Piubello

(joint work with Pengzi Miao)

A triple (Σ, γ,H) where Σ is a closed, connected orientable surface, γ is a metric
on Σ and H is a function on Σ is called Bartnik data. For such a triple, we can
define the Bartnik mass mB(Σ, γ,H) as

mB(Σ, γ,H) := inf{m(g)|(M, g) is an admissible extension of (Σ, γ,H)},
where m(g) is the mass of an admissible extension (M, g) of (Σ, γ,H). This
is an asymptotically flat Riemannian 3-manifold with Rg ≥ 0 whose boundary
(∂M, g|∂M ) is isometric to (Σ, γ) and under this isometry the mean curvature of
∂M in (M, g) is H . We also assume that (M, g) satisfies some non-degeneracy
conditions that prevent the mass m(g) from being made arbitrarely small.

From its definition, we see that the mass of an admissible extension of the
given Bartnik data will provide an upper bound for the Bartnik mass, as done
for instance in [2, 4–6, 8, 11–13]. Our main result [10] is a generalization of Miao’s
estimate [9], for Bartnik data with arbitrary metric, positive mean curvature and
nonnegative Gauss curvature Kγ .
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Theorem 1 ([10]). Let (Σ, γ,H) be Bartnik data with H > 0 and Kγ ≥ 0. If

rγ =

√
|Σ|γ
4π is the area radius, then the Bartnik mass mB(Σ, γ,H) satisfies

(1) mB(Σ, γ,H) ≤
√

|Σ|γ
16π

[(
1 +

ζ(γ)

8πrγ

∫

Σ

H dγ0

)2

−
(

1

8πrγ

∫

Σ

H dγ0

)2
]

where ζ(γ) is a scaling invariant quantity so that

(2) ζ(γ0) = 0 and ζ(γ) → 0 as
maxΣKγ

minΣKγ
→ 1.

The estimate is sharp in the extreme cases of H → 0 or γ = γ0. However, for
metrics away from the known cases, we do not know. If Kγ > 0, then the quantity
ζ(γ) < CK , a constant depending on the min and max of Kγ .

To achieve this estimate, inspired by the constructions [8, 12], we considered
{γ(t)}t∈[0,1] to be a smooth path of metrics connecting γ to a round metric, so
that γ(t) has positive Gauss curvature for t > 0 and trγγ

′(t) = 0 for all t ≥ 0.
We reparametrized the path using a fuction t : [1,∞) → [0, 1] with t(1) = 0, and
t(s) = 1 ∀s ≥ s̃ for some s̃. Using results by Bartnik [1] and Shi–Tam [13], we
constructed a metric g on M = [1,∞) × Σ that is scalar flat, asymptotically flat
and whose mean curvature H1 of Σ1 = Σ×{1} agrees with H . Our main estimate
for the Bartnik mass was obtained by deforming the total mean curvature of large
spheres in (M, g). Set Hs = 1

8π

∫
Σs
Hsdµs, where Hs is the mean curvature of

Σs = {s} × Σ in (M, g). We have

(3)
dH2

s

ds
≥
(
1

s
− αs|t′(s)|2s

)
H2

s + sβs,

where αs = α(t(s)) and βs = β(t(s)) are quantities that measure how far the metric
along the path is different from a round metric. We note that in deriving (3), γ(1)
need not be a round metric; neither does Σ need to be a sphere. Combining (3)
with the asymptotic behavior of Hs for large s as in [13], we obtained the following
estimate.

Proposition 1 ([10]). For a path of metrics {γ(t)} as above, given any C1([0, 1])
function s(t) satisfying s(0) = 1 and s′(t) > 0, we have

(4) mB(Σ, γ,H) ≤
√

|Σ|γ
16π


s(1)−

∫ 1

0

β(t)s′(t)

e
∫

1
t
α(t) s(t)

s′(t)
dt
dt− (

∫
H dγ)2

16π|Σ|γe
∫

1
0
α(t) s(t)

s′(t)
dt


 .

The main estimate (1) follows from some ad hoc choice of s(t) and by setting

(5) ζ(γ) = inf
{γ(t)}

∫ 1

0

√
α(t)

4β(t)
dt.

To achieve the limit in (2), we constructed a more explicit path of metrics using
the Uniformization Theorem, appropriately deformed with a family of diffeomor-
phisms to have vanishing trace. We can then estimate α(t) and β(t) in terms of
the conformal factor ϕ arising from the Uniformization Theorem. Moreover, from
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conformal geometry we know that ∆ϕ = 1 − e2ϕKγ . We can then use PDE esti-
mates to get a bound of ζ(γ) in terms of the Gauss curvature Kγ . Assuming that
Kγ > 0 and Kγ close to 1 in the C1-norm, using estimates in [3, 14] we obtain

(6) ζ(γ) ≤ C

∣∣∣∣
maxΣKγ

minΣKγ
− 1

∣∣∣∣ .

Our main construction, and in particular (3) has applications in the context of
nonnegative scalar curvature fill-ins. Let (Σ, γ) be a closed (n − 1) dimensional
manifold, n ≥ 3 equipped with a metric with positive scalar curvature. Following
[7], we define

(7) Λ(Σ, γ) = sup

{
1

(n− 1)ωn−1

∫

∂Ω

H dµ
∣∣ (Ω, g

Ω
) ∈ F+(Σ, γ)

}
,

where F+(Σ, γ) consists of n dimensional, compact, connected Riemannian man-
ifolds (Ω, g

Ω
) of NNSC with boundary ∂Ω, whose induced metric is isometric to

(Σ, γ), and whose mean curvature H > 0. We obtain the following upper bound
for the Λ(Σ, γ).

Theorem 2 ([10]). Let γ be a metric with positive scalar curvature on Σ. If
F+(Σ, γ) 6= ∅, then

(8) Λ(Σ, γ) ≥ rn−1
γ

(
minΣRγ

(n− 1)(n− 2)

) 1
2

.

Here rγ is the volume radius of (Σ, γ), i.e. |Σ|γ = ωn−1r
n−1
γ .

If n = 3, (8) becomes Λ(Σ, γ) ≥ r2γ (minΣKγ)
1
2 . This can be alternatively de-

rived by isometrically embedding (Σ, γ) in R3, making use of the classic Minkowski
inequality and the Gauss-Bonnet theorem.
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Rigidity of positive scalar curvature and index theory on manifolds
with cone singularities

Thomas Schick

(joint work with Simone Cecchini, Bernhard Hanke, Lukas Schönlinner)

Llarull proved an influential rigidity result for the standard metric on the sphere
[6], as already discussed in the introductory talk by Christian Bär during this
conference.

We show the following generalization to low regularity maps and metrics:

Theorem 1. Let M be a smooth compact spin manifold without boundary and g
a metric tensor on M of regularity W 1,p for p > n := dim(M). This means, when
written in smooth local coordinates, the coefficient functions gij lie in the Sobolev
space W 1,p.

In this context, scalar curvature scalg of (M, g) is defined as a distribution
(compare [4], and we assume that scalg ≥ n(n − 1), where the right hand side is
the scalar curvature of the round metric gstd on the n-dimensional sphere Sn.

Assume furthermore that f : (M, g) → (Sn, gstd) is a Lipschitz map of non-zero
degree. Recall by Rademacher’s theorem that f is almost everywhere differentiable
and assume in addition that f is area non-expanding, i.e. that

||Λ2Dxf : Λ
2TxM → Λ2Tf(x)S

n|| ≤ 1

for almost all x ∈M .
Then it follows that f is a metric isometry.

The case for n even has been proven a while ago by a subset of the authors
in [3]. The proof is based on a careful extension of the methods of Llarull (using
the index theory of twisted Dirac operators) to Dirac operators in the context of
low regularity Riemannian metrics and twist bundles. This relies on fundamental
analytic work of Bartnick and Crusciel [1] and uses the general idea of using
Dirac operator methods proposed in [7], but combined with a crucial new input,
combining the information coming from the twisted Dirac operator with the theory
of quasi-regular mappings.

The passage to odd dimensional spheres is more intricate than one could expect.
The argument given in [6] not being quite complete, only recently [2] give a full
argument in the smooth case.
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An additional obstacle occurs in the non-smooth case when trying to adapt the
tools from the theory of quasi-regular mappings.

To overcome this, we use a suspension construction leading a priori to an even
dimensional space SM which is a manifold with two conical singularities. We then
develop the necessary index theory on such manifolds with isolated conical singu-
larities, where the operator is also singular/low regular due to the low regularity
of the metric g and the pulled back twist bundle via the suspension of S.

For the case that f satisfies the stronger condition to be 1-Lipschitz, [5] gives an
alternative proof of the main theorem by reduction to [6] via Ricci flow combined
with harmonic map heat flow, as described in the talk of Man-Chu Lee during the
conference.
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Limits of sequences of manifolds with nonnegative scalar curvature
and other hypotheses

Christina Sormani

(joint work with Wenchuan Tian, Changliang Wang)

In 2014, Gromov suggested that one should formulate and prove a compactness
theorem for sequences of compact manifolds, Mm

j , with Scal ≥ 0 and develop
a notion of generalized Scal ≥ 0 on the class of limit spaces. He suggested that
perhaps Sormani-Wenger’s Intrinsic Flat (SWIF) convergence would work well. In
fact Wenger had already proven a compactness theorem:

V ol(Mm
j ) ≤ V0 and Diam(Mm

j ) ≤ D0 =⇒ ∃Mjk →M∞ in SWIF sense,

where M∞ is an integral current space, possibly the 0 space. Note that collapsing
sequences of round spheres SWIF converge to the 0 space, so a compactness the-
orem for manifolds with Scal ≥ 0 would need a noncollapsing hypothesis to avoid
such a limit.
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In 2018, at an IAS Emerging Topics meeting, a conjecture was formulated in
dimension 3 using the two hypotheses of Wenger’s Compactness Theorem and a
very weak noncollapsing hypothesis, MinA(Mj) ≥ A0 > 0, where

MinA(M) = min{Area(Σ) : closed min surface Σ ⊂M3}.
Note that this hypothesis immediately rules out collapsing spheres (whose equators
are unstable minimal surfaces) as well as bubbles (which have necks with stable
minimal surfaces). This was a natural assume in light of Schoen-Yau theorems
regarding stable minimal surfaces, Marques-Neves Theorems regarding unstable
minimal surfaces, and the Penrose Inequality. See the 2023 survey by Sormani.

The MinA hypothesis rules out sequences of M3
j with Scal ≥ 0 which are built

using increasingly thin Schoen-Yau or Gromov-Lawson tunnels. This includes the
sewing examples of Basilio-Dodziuk-Sormani which GH and SWIF converge to a
pulled string space and examples of Basilio-Sormani which GH and SWIF converge
to a space where a set, K ∈ S3, has been identified to a single point. The key
idea in the latter paper is that one can take M3

j to be S3 with an increasingly

dense collection of balls located in K ⊂ S3 that are replaced by a collection of
increasingly small tunnels that run between each pair of balls.

In the Basilio-Sormani paper these tunnels were taken to be increasingly short
and it is proven via a scruching lemma that the region, K, contracts to a single
point or if K = S3 the sequence SWIF converges to the 0 space. Dodziuk proved
the tunnels could be taken arbitrarily thin and approaching any length. More
recently Sweeney has proven tunnels can be built with various bounds on Scalar
curvature including scalar curvature arbitrarily close to that of a sphere. Basilio-
Kazaras-Sormani took the tunnels developed by Dodziuk running between a ball
Bp(ǫj) and a ball Bq(ǫj) to have length close to the Euclidean distance between
them as points p, q ⊂ S3 ⊂ E4 and proved this sequence of Mj SWIF converges to
(S3, dE4) which is a metric space with no midpoints and no geodesics. The MinA
hypothesis prevents all these bad examples involving tunneling.

Open Question 1: Suppose a sequence, (M3
j , gj), with Scal ≥ 0 converge

in some sense to a smooth Riemannian manifold, (M3
0 , g0). Does (M3

0 , g0) have
Scal ≥ 0? Gromov and Bamler proved this is true for C0 convergence of the metric
tensors when M3

j are diffeomorphic to one another and to the limit space. SWIF
convergence allows one to study sequences which are not diffeomorphic. Does
this work for SWIF convergence? I believe the answer should be no if we allow
tunneling. If we take (M3

0 , g0) = (S3, dg) where g is any Riemannian metric on the
sphere such that g ≤ g3

S
, one can construct an example of a sequence of (M3

j , gj)
with Scal ≥ 0 using tunneling similar to the Basilio-Kazaras-Sormani sequence
with tunnels running between a ball Bp(ǫj) and a ball Bq(ǫj) that have length
close the Riemannian distance dg0 . It may be possible to prove this sequence
converges in the SWIF sense to (M3

0 , g0) which does not have Scal ≥ 0.
Open Question 2: If (M3

j , gj) have Scalar ≥ 0 and satisfy the MinA hy-

pothesis and converge in the SWIF sense to smooth (M0, g0), does (M0, g0) have
Scal ≥ 0? The MinA hypothesis prevents the use of tunneling to construct coun-
terexamples. If a counter example is found, then one needs to consider a stronger
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hypothesis than theMinA in the compactness conjecture. Proving this open ques-
tion in the affirmative would be very challenging. An easier case to check would
be to assume that the sequence converges in the VADB sense defined by Allen-
Perales-Sormani (where it was proven that VADB implies SWIF convergence).

There has been some interesting progress on the IAS MinA Compactness Con-
jecture described above by Park-Tian-Wang, Tian-Wang, and Kazaras-Xu. All
three teams consider fixed manifolds, M3, with varying metric tensors, gj , of the
following forms respectively:

(S3, dt2 + fj(t)
2gS2), (S

2 × S1, gS2 + fj(u)
2dθ2), and (T2 × S1, hj + fj(u)

2dθ2).

All three achieve W 1,p convergence for p < 2 to a limit metric tensor, g∞, of the
same form satisfying some distributional notion of Scal ≥ 0. Park-Tian-Wang
prove their f∞ are continuous and take values in [0,∞). Although S = f−1

∞ (0)
may be an open set, they prove SWIF convergence of their (M, gj) to the metric
completion of (M \ S, g∞) because the disappearing regions are wells.

Open Question 3: Recall that we already know there is a SWIF limit space,
(M3, d∞), which is a rectifiable metric space (possibly the zero space) in the setting
of the IASMinA Compactness Conjecture. If (M3, gj) → (M3, g∞) have gj → g∞
in theW 1,p sense can one prove the SWIF limit (M3, d∞) is isometric to the metric
completion of (M3 \S, g∞) where S is the singular set where g∞ is infinite valued
or degenerate? See work of Allen-Sormani and Allen-Bryden demonstrating how
different these can be without Scal ≥ 0 and the MinA hypotheses. With these
hypotheses, Sormani-Tian-Wang have an extreme limit space and Kazaras-Xu
have announced an example with a pulled thread limit which should be studied
closely. Are there additional hypothesis that can guarantee they are isometric? If
these spaces are not isometric, how are they related? Can one use distributional
Scal ≥ 0 on the W 1,p limit to say something about the SWIF limit?

The extreme limit space found by Sormani-Tian-Wang is a limit space achieved
in the Tian-Wang setting where gj ≤ gj+1 converges in theW 1,p sense for p ∈ [1, 2)
to a limit tensor, g∞, that is warped by a function, f∞, which is ∞ along two
circular fibres of infinite length. They prove this sequence satisfies the hypotheses
of the IASMinA conjecture. In upcoming work of Sormani-Tian we will prove the
SWIF limit (M3, d∞) is isometric to the metric completion of (M3 \ S, g∞) and
also isometric to the GH limit. So this is an interesting space to study possible
notions of generalized Scal ≥ 0. Open questions in this direction will appear in
this upcoming paper including possible generalizations of various such notions that
might be tested on this extreme space. Tian-Wang have already generalized the
Lee-LeFloch distributional Scal ≥ 0 to the limits achieved in their paper.

It is possible that some very natural notions of generalized Scal ≥ 0 may fail to
hold on some of these W 1,p and SWIF limit spaces. It is possible that a stronger
hypothesis than the MinA hypothesis is needed in order to obtain better control
on the limit space and stronger convergence than simply SWIF convergence.

Open Question 4: We could consider MinL(M), which is the length of
shortest closed geodesic in a closed min surface in M . By a theorem of Croke,
MinL(M) ≥ L0 > 0 is a stronger hypothesis than MinA(M) ≥ A0 > 0. This
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MinL hypothesis also provides a lower bound on the Gromov filling volumes of the
minimal surfaces in M . Filling volumes are closely related to SWIF distances and
can be used to prevent convergence to 0 and disappearing regions as seen in work
of Sormani-Wenger and Portegies-Sormani. One might also consider bounding the
systole, Sys(M), which is the length of shortest closed geodesic in M . See related
work of Nabutovsky, Rotman, and Sabourou.

Open Question 5: We could consider a noncollapsing condition defined using
constant mean curvature surfaces or isoperimetric regions. Portegies and Jauregui-
Lee have theorems about SWIF converging sequences of manfolds whose volumes
converge which may be useful to apply in combination with such an hypothesis.

Open Question 6: Is there a notion of convergence for sequences of distinct
Riemannian manifolds, (Mj , gj), which implies this volume preserving SWIF con-
vergence and also captures the information encoded in a W 1,p limit? Perhaps a
notion where the convergence on good diffeomorphic regons is in the W 1,p sense
and the bad regions have volume decreasing to 0. Can one define a distance
between Riemannian manifolds which captures this notion? Exploration in this
direction involves a deeper understanding of these examples mentioned above and
other possible limit spaces with even more badly behaved singular sets.

All papers and preprints mentioned above are cited within the references below.
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Event horizon gluing and black hole formation in vacuum: the very
slowly rotating case

Ryan Unger

(joint work with Christoph Kehle)

One of the central principles of modern high energy and gravitational physics is the
belief that black holes are thermodynamic objects. Namely, despite their enormous
size and complexity, black holes should obey “laws” which are strikingly similar
to the everyday laws of thermodynamics. This principle was first formulated in
a landmark paper by Bardeen, Carter, and Hawking in 1973, as the celebrated
four laws of black hole thermodynamics [4]. These laws are precise mathematical
statements about solutions to Einstein’s field equations

(1) Ric(g)− 1
2Rg = 2T

and proofs of the zeroth, first, and second laws are taught in graduate courses on
general relativity [9].
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According to black hole thermodynamics, a black hole may be assigned a tem-
perature which is proportional to its surface gravity. Black holes sitting at ab-
solute zero are called extremal and black holes with a positive temperature are
called subextremal. The two most important families of explicit black hole solu-
tions of Einstein’s equations, the Reissner–Nordström and Kerr families, have ex-
tremal and subextremal variants. Reissner–Nordström is electrically charged and
increasing charge at fixed mass decreases temperature, while Kerr is rotating and
increasing angular momentum at fixed mass decreases temperature. The famous
Schwarzschild solution is contained in both of these families and is subextremal.

In analogy with Nernst’s “unattainability” formulation of the third law of clas-
sical thermodynamics, Bardeen, Carter, and Hawking proposed [4]:

Conjecture 1 (The third law of black hole thermodynamics). A subextremal black
hole cannot become extremal in finite time by any continuous process, no matter
how idealized, in which the spacetime and matter fields remain regular and obey
the weak energy condition.

This version is distilled from the literature, particularly from the work of Israel
[6]. The first result discussed in my talk shows that the third law is fundamentally
flawed:

Theorem 1 ([7]). The “third law of black hole thermodynamics” is false: A self-
gravitating charged scalar field can collapse to form a subextremal Schwarzschild
apparent horizon, only for the spacetime to form an exactly extremal Reissner–
Nordström event horizon at a later advanced time.

Our construction in the proof of Theorem 1 is fundamentally “teleological” and
is a variant of characteristic gluing for the Einstein–Maxwell-charged scalar field
system in spherical symmetry. Characteristic gluing is a powerful new method
for constructing solutions of Einstein’s equations by gluing together two existing
solutions along a null hypersurface. The technique of characteristic gluing was
recently pioneered by Aretakis, Czimek, and Rodnianski in a series of works on
perturbative characteristic gluing near Minkowski space [1–3]. In contrast, the
gluing in Theorem 1 is performed on the event horizon, which is a fundamentally
nonperturbative regime. The usefulness of characteristic gluing is twofold:

• The global causal structure of the glued spacetime can be immediately
read off from the construction.

• The free data for the characteristic initial value problem of Einstein’s equa-
tions are more transparent than for the Cauchy problem.

Physically, the gluing in Theorem 1 can be interpreted as firing multiple oscil-
lating pulses of an electrically charged scalar field into an uncharged Schwarzschild
black hole, which initially has positive temperature. These pulses cause the black
hole to become charged, which decreases its temperature. By carefully tuning the
amplitudes of the pulses with the help of a topological argument, we ensure that:

• The scalar field is entirely swallowed by the black hole in finite time.
• At the very moment when the scalar field is completely absorbed by the
black hole, the black hole’s temperature hits zero.
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The solutions constructed in [7] contain charged black holes. It is natural (and
very relevant to astrophysics) to ask if the extremal threshold can also be accessed
via rotating black holes. In the second part of my talk, I discussed the following
conjecture:

Conjecture 2. The “third law of black hole thermodynamics” is already false in
vacuum: Gravitational waves can collapse to form a subextremal Kerr apparent
horizon, only for the spacetime to form an exactly extremal Kerr event horizon at
a later advanced time.

Proving this conjecture will require significantly more work than was required to
prove Theorem 1 because no symmetry reductions are possible and no mechanism
for transferring large amounts of angular momentum to a black hole via gravita-
tional waves is known. So far, we have obtained the following partial result, which
also provides an alternative and fundamentally different proof of Christodoulou’s
seminal theorem of black hole formation in vacuum [5]:

Theorem 2 ([8]). There exists a number 0 < a0 ≪ 1 such that for any M
and a satisfying 0 ≤ |a|/M ≤ a0, there exists a solution of the Einstein vacuum
equations describing gravitational collapse to a Kerr black hole with mass M and
specific angular momentum a in finite time.
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Scalar Curvature Rigidity of Polytopes

Yipeng Wang

(joint work with Simon Brendle)

The first significant result concerning the rigidity phenomenon of scalar curvature
can be traced back to theorems by Gromov-Lawson [9,10] and Schoen-Yau [14,15].
These theorems establish that any Riemannian metric on the torus with non-
negative scalar curvature must be isometric to the flat metric. Schoen and Yau’s
proof employs the method of minimal hypersurfaces, applicable up to dimension
7, due to the emergence of singularities in minimal surfaces at higher dimensions.
While Gromov-Lawson utilized Dirac operator techniques and the index theorem
which highly relies on the spin condition. The spinor approach usually involves
solving a Dirac equation on a twisted spinor bundle and applying the Weitzenböck
formula to the Dirac operator, leading to the conclusion that any solution must
be parallel. The existence of such a parallel spinor underpins the rigidity result.

Remarkably, these techniques have been extended to manifolds with boundaries.
Bär and Ballmann [1] developed a powerful index theory for boundary value prob-
lem of first order elliptic operator. When integrating the Weitzenböck formula,
it becomes necessary to consider both the scalar curvature of the manifold and
the mean curvature of the boundary. A pivotal theorem in this context, due to
Shi and Tam [16], concerns the positivity of quasi-local mass in general relativity,
highlighting the interplay between scalar and mean curvature on manifiold with
boundary.

Theorem 1 (Shi-Tam [16]). Let Ω ⊂ Rn be a smooth convex domain with a
Riemannian metric g, if

• Rg ≥ 0 in Ω.
• Hg ≥ HRn on ∂Ω.

Then g is isometric to the Euclidean metric.

A question in this flavor, which concerns scalar curvature rigidity of convex
polytope is the dihedral rigidity conjecture, first considered by Gromov [6]. We
remark that this conjecture can be considered as a singular version of Theorem 1.

Conjecture 1 (Dihedral Rigidity Conjecture). Let Ω ⊂ Rn be a convex polytope
with a Riemannian metric g, suppose

• Rg ≥ 0 in Ω.
• Hg ≥ 0 on ∂Ω.
• The dihedral angle with respect to g is not greater than the Euclidean angle.

Then g is isometric to the Euclidean metric.

The Dihedral Rigidity Conjecture is crucial for understanding the geometry of
scalar curvature for several reasons. For example, from the perspective of compar-
ison geometry, this conjecture can be regarded as an analogue to the Topogonov
comparison theorem in the context of scalar curvature.
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Partial results of the dihedral rigidity problem are obtained by Gromov in his
seminal work [6–8], when the polytope is a cube. For cases where the dimension is
at most 7, Li [11,12] has utilized capillary surface techniques to demonstrate that
the conjecture holds true for a large class of polytopes. Wang-Xie-Yu [17] have
also explored this problem, basing their studies on index theories for manifolds
with corners.

Last year, Brendle [2] established the conjecture in all dimensions under the
assumption that the dihedral angles are equal. The approach involves solving a
boundary value problem for the Dirac equation on a smooth domain. Additionally,
Brendle employed a smoothing technique to approximate the polytope with smooth
domains and used a profound result by Fefferman-Phong to take the limit [5]. This
method was later generalized by Brendle-Chow [3] to study the scalar curvature
rigidity of convex polytopes under the dominant energy condition.

By modifying the smoothing technique developed by Brendle, we have managed
to remove the matching angle hypothesis in Brendle’s theorem, provided that the
dihedral angle is at most π

2 .

Theorem 2 ([2] [4]). Let Ω ⊂ Rn be a convex polytope, let g be a Riemannian
metric on Ω such that Rg ≥ 0 in Ω and Hg ≥ 0 on ∂Ω. Suppose that either

(1) The dihedral angle with respect to g equals to the dihedral angle with respect
to gEucl along the intersection of any two faces.

(2) Or, dihedral angle with respect to g ≤ to the dihedral angle with respect to
gEucl ≤ π

2 along the intersection of any two faces.

Then g is isometric to the Euclidean metric.
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Ricci flow on surfaces along the standard lightcone in the
3 + 1-Minkowski spacetime

Markus Wolff

A version of null mean curvature flow along a null hypersurface was first studied
by Roesch–Scheuer [11] to detect marginally outer trapped surfaces (MOTS). For
a given null hypersurface N in an ambient spacetime (M, g), they say a smooth
family of spacelike cross sections x : [0, T ) → N evolves under what we will call
null mean curvature flow if

d

d t
x =

1

2
g
(
~H, L

)
L,(1)

where ~H is the codimension-2 mean curvature vector of the cross sections Σt in
(M, g), L is a choice of null generator of N , and L is the unique null vector field
normal to Σt such that g(L,L) = 2.

Recall that a null hypersurface N in a spacetime (M, g) is an orientable hyper-
surface with degenerate induced metric. Thus, there exists a tangent null vector
field L ∈ Γ(TN ) that is normal to all tangent directions. L is called a null genera-
tor ofN asN is ruled by the integral curves of L, and one can always reparametrize
the integral curves to be null geodesics ruling N . In particular, aL is also a choice
of null generator for any non-vanishing function a ∈ C∞(N ).

A spacelike cross section (Σ, γ) ofN is a spacelike (γ Riemannian), codimension-
2 surface in (M, g) with Σ ⊆ N such that any integral curve of L intersects Σ
exactly once. As L is normal to all tangent directions along N , L is normal to
Σ and there exists a unique choice of null vector field L normal to Σ such that
g(L,L) = 2, and {L,L} form a null frame of the normal bundle of Σ. One defines
the null second fundamental forms of (Σ, γ) (in (M, g)) as

χ(V,W ) := −g
(
∇VW,L

)
, χ(V,W ) := −g

(
∇VW,L

)
,

for X,Y ∈ Γ(TΣ). Note that the mean curvature vector ~H satisfies

~H = −1

2
θL− 1

2
θL,
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where θ := trγ χ, θ := trγ χ are the null expansions of (Σ, γ). Note that the
decomposition χ, χ, θ, θ, ζ depends on the choice of null frame, i.e. the choice of
null generator. Due to this gauge freedom, it is important to study the (extrinsic)
geometry of (Σ, γ) with respect to quantities that are independent of the choice of
null frame. For example, the above decomposition gives that

H2 := g( ~H, ~H) = θθ,

so the product of the two null expansions will always agree with the (Lorentzian)
length of the mean curvature vector, which is manifestly independent of the choice
of null frame. We call the function H2 the spacetime mean curvature of Σ, and
say Σ is a surface of constant spacetime mean curvature (STCMC surface) if H2 is
constant along Σ. Although such surfaces have already been studied more broadly,
see e.g. [5], the term spacetime mean curvature was first coined by Cederbaum–
Sakovich [3], where they construct asymptotic foliations by STCMC surfaces in
the asymptotically Euclidean setting to define a notion of center of mass. Note
that we do not impose any asymptotic assumptions on the spacetime (M, g) here,
and since g is Lorentzian, H2 can be a (at least locally) negative function. In a
similar way, one can check that null mean curvature flow (1) is independent of the
choice of L. Additionally, the right-hand side of (1) is precisely the projection of

the mean curvature vector ~H in direction of L. This greatly reduces the complexity
of the codimension-2 problem, and one can show that (at least locally) the flow is
always equivalent to single, scalar parabolic equation.

In the setting of Roesch–Scheuer [11] the presence of appropriate barriers en-
sures existence for all times and smooth convergence to a MOTS. On the other
hand, when no MOTS exists, one heuristically expects the flow to develop finite
time singularities. In the explicit case of the round Minkowski lightcone, this is
made precise by the following result:

Theorem 1 (W. ’23, [13]). Let (Σ0, γ0) be a spacelike cross section of the future-
pointing standard lightcone N in the 3+1-Minkowski spacetime. Then the solution
of null mean curvature flow starting from Σ0 extinguishes in the tip of the cone
in finite time and the renormalization by area converges to a surface of constant
spacetime mean curvature, which exactly arise as the image of a round sphere of
a Lorentz transformation in SO+(3, 1).

The result follows directly once it is shown that in this setting null mean curva-
ture flow is in fact equivalent to 2d-Ricci flow in the conformal class of the round
sphere, and using a classical result first proven by Hamilton [10]:

Theorem 2. For any Riemannian metric on a compact manifold, Hamilton’s Ricci
flow exists for all times and converges to a metric of constant (scalar) curvature.

Here, Hamilton’s Ricci flow denotes the rescaled Ricci flow equation preserv-
ing area. Theorem 2 was initially proven by Hamilton [10] in the conformally
round case only for metrics of strictly positive curvature. This restriction was
later removed by Chow [6], and their methods yield an independent proof of the
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uniformization theorem [4]. There are several independent proofs of Theorem 2 in
the conformally round setting, cf. [1, 2, 12].

The round (future-pointing) Minkowski lightcone N is given as the lvel-set
{v = 0} with respect to the the double null coordinates u := r + t, v := r − t. In
these coordinates, the Minkowski metric η takes the form

η =
1

2
(dudv + dvdu) + r2dΩ2,

where r = u+v
2 , and dΩ2 denotes the round metric on S2. It is easy to check that

the induced metric on N is indeed degenerate and that L = 2∂u is a geodesic

null generator of N . As N is a shear-free null hypersurface, one finds
◦
χ = 0 for

any spacelike cross section (Σ, γ). Thus, as the ambient spacetime is flat, the
codimension-2 Gauss equaton simply states that

H2 = 2RΣ(2)

for any spacelike cross section (Σ, γ), where RΣ denotes the scalar curvature of
(Σ, γ). Moreover, one can uniquely identify any cross section (Σ, γ) with a con-
formally round metric γ = ω2dΩ2. In particular, an STCMC surface carries a
conformally round metric of constant scalar curvature, and it is a well-known fact
that such a metric is generated by the action of a suitable Möbius transformation
on the round metric (up to scaling). As the Möbius group is isometric to the
restricted Lorentz group SO+(1, 3), one can also understand this from an extrinsic
viewpoint as a Lorentz transformation represents a change of observer that leaves
N invariant but distortes the sphere.

Equation (2) additionally yields the equivalence between the two flows. Up to
a constant depending on the dimension (2) remains true for conformally round
metrics in all dimensions, which yields an equivalence between null mean curva-
ture flow and Yamabe flow in any dimension. In fact, whenever a construction
of Fefferman–Graham [9] is possible for a Riemannian metric g0, which again
identifies any metric conformal to g0 with a unique spacelike cross section of a
hypersurface in the constructed spacetime, (2) holds and null mean curvature flow
and Yamabe flow are equivalent.

This viewpoint now allows one to study 2d-Ricci flow (at least in the conformal

class of the round sphere) as an extrinsic curvature flow. As
◦

Ric = 0, the scalar
curvature is the only intrinsic curvature quantity. By defining a scalar second
fundamental form A := θχ, which is again independent of the choice of frame,
we obtain additional (extrinsic) curvature information. In particular, A satisfies a
Codazzi euqation

∇iAjk = ∇jAik,(3)
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which yields that
◦
A = 0 if and only if Σ is an STCMC surface. Studying the

evolution equations

d

dt
H2 = ∆H2 +

1

2

(
H2
)2
,

d

dt
|A|2 = ∆|A|2 − 2|∇A|2 + 1

2

(
H2
)3

under the flow, one can prove the following gradient estimate simply by applying
the maximum principle:

Theorem 3 (W. ’23, [13]). Let H2 > 0 initially, p > 1
2 , η > 0. Then there exists

a constant C = C(η, p,Σ0) such that

|∇H2| ≤ η2(H2)p + C.

From this, one can give an independent prove of Hamilton’s classical result
(under Hamiltons initial assumption of positive scalar curvature).

Studying a suitable quantity that is monotone under the flow, one obtains a
quantitative statement of the consequence of the Codazzi Equation (3) for metrics
on non-negative scalar curvature:

Theorem 4. If H2 ≥ 0, then
∣∣∣∣
∣∣∣∣H2 − 1

|Σ|

∫
H2

∣∣∣∣
∣∣∣∣
2

L2(Σ)

≤ 4||
◦
A||2L2(Σ),

where equality holds if and only if Σ is an STCMC surface.

A corresponding estimate in Euclidean space was first proven by DeLellis–
Müller [7]. Additionally, one can view Theorem 4 as a generalization of an almost-
Schur lemma by DeLellis–Topping [8] to two dimensions, and the two estimates
are in fact equivalent in higher dimensions in the conformal class of the round
sphere.

References

[1] B. Andrews and P. Bryan, Curvature bounds by isoperimetric comparison for normalized
Ricci flow on the two-sphere, Calc. Var. 39 (2009), 419–428.

[2] J. Bartz and M. Struwe and R. Ye, A new approach to the Ricci flow on S2, Annali Della
Scuola Normale Superiore Di Pisa-classe Di Scienze 21 (1994), 475–482.

[3] C. Cederbaum and A. Sakovich, On the center of mass and foliations by constant space-
time mean curvature surfaces for isolated systems in General Relativity, Calc. Var. 60(214)
(2021).

[4] X. Chen and P. Lu and G. Tian, A note on uniformization of Riemann surfaces by Ricci
flow, Proceedings of the American Math. Society 134(11) (2006), 3391–3393.

[5] P.N. Chen and Y.K. Wang, Two rigidity results for surfaces in Schwarzschild spacetimes,
arXiv:2306.07477 (2023).

[6] B. Chow, The Ricci flow on the 2-sphere, J. Diff. Geom. 33(2) (1991), 325–334.
[7] C. de Lellis and S. Müller, Optimal rigidity estimates for nearly umbilical surfaces, J. Diff.

Geom. (2005), 75–110.
[8] C. de Lellis and P. Topping, Almost-Schur lemma, Calc. Var. 43 (2012), 347–354.



76 Oberwolfach Report 9/2024

[9] C. Fefferman and C. Graham, Conformal invariants, in Élie Cartan et les mathématiques
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Dominant energy shields on spin initial data sets

Rudolf Zeidler

(joint work with Simone Cecchini, Martin Lesourd)

The Riemannian positive mass theorem states that in a complete asymptotically
flat (AF) manifold of nonnegative scalar curvature, the ADM-mass of each AF
end is non-negative. The (more general) spacetime positive mass theorem yields
a similar inequality for AF initial data sets (M, g, k), where (M, g) is an AF Rie-
mannian manifold endowed with a suitable symmetric 2-tensor k. In this setting,
non-negativity of the scalar curvature becomes the dominant energy condition
µ ≥ |J |, where

µ =
1

2
(scalg + (trg(k))

2 − |k|2g), J = div(k)− d trg(k).

Moreover, the ADM mass is replaced by the ADM energy E and the ADM linear
momentum P at each asymptotically flat end. The positive mass theorem for
initial data sets [3, 5–7] states that if (Mn≥3, g, k) is a complete AF initial data
set that satisfies the dominant energy condition µ− |J | ≥ 0, then E ≥ |P| for each
asymptotically flat end, provided that n ≤ 7 or Mn is spin.

In our recent work [1], extending previous work of Cecchini–Zeidler [2] to the
spacetime case, we establish several results which allow to relax the asymptotic
flatness condition by focussing on a single end at a time. The first main result is a
“shielded” variant of the spacetime positive mass theorem in the following sense.

Definition 1. Let (Mn, g, k) be a Riemannian manifold, not assumed to be com-
plete. We say that (M, g, k) contains a dominant energy shield U0 ⊃ U1 ⊃ U2 if
U0, U1, and U2 are open subsets of M such that U0 ⊃ U1, U1 ⊃ U2, the closure
of U0 in (M, g) is a complete manifold with compact boundary, and we have the
following:

(1) µ− |J | ≥ 0 on U0,
(2) µ− |J | ≥ σn(n− 1) on U1 \ U2,
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(3) the mean curvature H∂Ū0
on ∂Ū0 and the symmetric two tensor k satisfy

H∂Ū0
− 2

n−1

∣∣k(ν,−)|T∂Ū0

∣∣ > −Ψ(d, l).

Here, Ψ(d, l) is the constant defined as

Ψ(d, l) :=

{
2
n

λ(d)
1−lλ(d) if d < π√

σn
and l < 1

λ(d) ,

∞ otherwise,

where d := distg(∂U2, ∂U1), l := distg(∂U1, ∂U0), and

λ(d) :=

√
σn

2
tan

(√
σnd

2

)
.

Notably, Ψ(d, l) tends to ∞ as d approaches a certain fixed number and some-
thing similar happens for l after fixed d > 0. This means that the boundary
condition (3) eventually becomes empty and can be dropped provided that the
combination of distances is large enough.

Theorem 1 ([1, Theorem A]). Let (Mn≥3, g, k) be an initial data set, not neces-
sarily complete, that contains an asymptotically flat end E and a dominant energy
shield as in Definition 1 with E ⊂ U2. Assume that U0 is spin and that E\U0 is
compact. Then EE > |PE |.

The proof of Theorem 1 for k = 0 can be reduced to the original spacetime
positive mass theorem by introducing an artificial tensor k that makes use of
the strictly dominant energy condition on the shield, and this idea underlies the
previous approaches [2, 4]. However, for k 6= 0, a new conceptual ingredient is
required: We need to introduce another ‘time’ direction in the spin bundle which
allows us to introduce an additional term in the Dirac operator (independent of
the given tensor k).

Using this idea we also obtain the following result showing that embedding an
end, which violates the positive mass theorem, into a complete initial data set is
obstructed in a quantitative way:

Theorem 2 ([1, Theorem B]). Let (E , g, k) be an asymptotically flat initial data
end of dimension n ≥ 3 such that EE < |PE |. Then there exists a constant R =
R(E , g, k) such that the following holds: If (M, g, k) is an n-dimensional initial
data set (without boundary) that contains (E , g, k) as an open subset and N =
NR(E) ⊆ M denotes the open neighborhood of radius R around E in M , then at
least one of the following conditions must be violated:

(1) N (metrically) complete,
(2) µ− |J | ≥ 0 on U ,
(3) N is spin.
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Universitẗsstraße 14
86135 Augsburg
GERMANY

Dr. Romain Gicquaud

Laboratoire de Mathématiques et
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